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ABSTRACT 

 

Water quality management for agricultural production is a complicated and 

interesting problem. Hydrological and economic factors must be considered when 

designing strategies to reduce nutrient runoff from agricultural activities. This 

dissertation is composed of three chapters that investigate cost-effective ways to 

mitigate water pollution from agricultural nonpoint pollution sources and explore 

farmers’ incentives when participating in water quality trading programs. 

Chapter 1 investigates landscape targeting of best management practices (BMPs) 

based on topographic index (TI) to determine how targeting would affect costs of 

meeting nitrogen (N) loading goals for Mahantango watershed, Pennsylvania. We use 

the results from two climate models and the mean of the ensemble of seven climate 

models to estimate expected climate changes and the Soil and Water Assessment Tool-

Variable Source Area (SWAT-VSA) model to predict crop yields and N export. Costs 

of targeting and uniform placement of BMPs across the entire study area (4.23 km2) are 

compared under historical and future climate scenarios. We find that with a goal of 

reducing N loadings by 25%, spatial targeting methods could reduce costs by an average 

of 30% compared with uniform BMP placement under three historical climate 

scenarios. Cost savings from targeting are 38% under three future climate scenarios. 

Chapter 2 scales up the study area to the Susquehanna watershed (71,000 km2). We 

examine the effects of targeting the required reductions in N runoff within counties, 

across counties, and both within and across counties for the Susquehanna watershed. 

We set the required N reduction to 35%. Using the uniform strategy to meet the required 

N reduction as the baseline, results show that costs of achieving a regional 35% N 
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reduction goal can be reduced by 13%, 31% and 36% with cross-county targeting, 

within-county targeting and within and across county targeting, respectively.  

Results from Chapters 1 and 2 suggest that cost effectiveness of government 

subsidy programs for water quality improvement in agriculture can be increased by 

targeting them to areas with lower N abatement costs. In addition, targeting benefits are 

likely to be even larger under climate change. 

Chapter 3 investigates the landowner’s nutrient credit trading behavior when 

facing the price uncertainty given the credits are allowed to be banked for future use. A 

two-step decision model is used in this study. For the first step, we determine the 

landowner’s application level of a BMP on working land in the initial time period. The 

nutrient credits awarded to the landowner depend on the nutrient reduction level at the 

edge of field generated by the BMP application. For the second step, we use an 

intertemporal model to examine the landowner’s credit trading behavior with  stochastic 

price fluctuations over time and with transaction costs. The theoretical framework is 

applied with a numerical simulation incorporated with a hydro-economic model and 

dynamic programming. Nutrient Management (NM) is selected as the BMP on working 

land to generate N credits. We find that gains to the landowner from credit banking 

increase with higher price volatility and with higher price drift, but that gains are larger 

with price volatility. However, for a landowner holding a small amount of nutrient 

credits, the gains from credit banking are small due to transaction costs. 
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GENERAL AUDIENCE ABSTRACT 

 

Two considerations are critical for efforts to mitigate nutrient runoff from nonpoint 

sources: cost effectiveness of strategies to reduce nutrient runoff and landowners’ 

incentives to participate in these programs. This dissertation is composed of three 

manuscripts, aiming to evaluate the cost effectiveness of government subsidy programs 

for water quality management in agriculture and investigate the landowner’s incentives 

to participate in water quality trading programs for the Chesapeake Bay watershed. 

Chapter 1 investigates gains from targeting Best Management Practices (BMPs) under 

current and future climate conditions based on the soil characteristics relative to 

uniform BMP application for a small experimental watershed (4.23km2). Chapter 2 

scales up the study area to a 71,000 km2 watershed and treats each county within the 

watershed as a representative farm to explore economic gains from targeting within 

county and across county based on counties’ physical conditions and agricultural 

patterns. Both Chapters show that cost-effectiveness of government subsidy programs 

can be improved by spatial targeting BMPs to areas with lower abatement costs.  Gains 

from targeting increase under climate change. In Chapter 3 we shows how a 

landowner’s revenues from nutrient credit selling will be affected if the credits are 

allowed to be banked for future use when she faces price uncertainty. We find that gains 

to the landowner from credit banking increase more with higher price volatility than 

with higher price drift. Gains from banking are largely reduced by transaction costs 

associated with trading.  
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Chapter 1 Meeting Water Quality Goals by Spatial Targeting under Climate 

Change 

Reprinted from Environmental Management, Yuelu Xu, Darrell J. Bosch, Moges B. 

Wagena, Amy S. Collick and Zachary M. Easton, Meeting Water Quality Goals by 

Spatial Targeting of Best Management Practices under Climate Change, 2019, doi: 

10.1007/s00267-018-01133-8 

1.1 Introduction  

The Chesapeake Bay watershed, covering more than 166,000 square kilometers 

across six states (New York, Maryland, Virginia, West Virginia, Pennsylvania and 

Delaware) and the District of Columbia, contains the largest estuary in the United States 

(Cooper, 1995). Agricultural production is one of the major human activities within the 

watershed, and intensive agricultural activities represent the largest single source of 

nutrients, contributing 44% and 58% of the total nitrogen (N) and phosphorus (P) 

discharged to the Chesapeake Bay, respectively (Chesapeake Bay Program, 2015). To 

mitigate the nutrient pollution and improve water quality, US EPA has set up a Total 

Maximum Daily Load (TMDL) program to improve water quality, which employs Best 

Management Practices (BMPs) and wastewater treatment plant upgrades to achieve 

nutrient reduction goals including a 25% N loading reduction by 2025 (US EPA, 2010a; 

US EPA, 2010b).  

Best Management Practices are an effective way to reduce soil erosion, prevent N 

loss and improve water quality (Rao et al., 2009). However, because of the variability 

in soil, land use pattern, topography, climate, and other site-specific characteristics, the 

effectiveness of a BMP in terms of N loading reduction varies across different sites and 

spatial scales within a watershed (Rao et al., 2009). Spatial targeting of BMPs according 

to runoff potential can improve water quality (Wagena and Easton, 2018), and reduce 
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the costs to farmers and taxpayers of achieving water quality goals. Numerous studies 

have found that targeting BMPs to sites with higher pollution potential can improve 

cost effectiveness of pollution reduction efforts (Khanna et al., 2003; Yang and 

Weersink, 2004; Yang et al., 2005 and Giri et al. 2012). Studies have shown that 

targeting BMPs or a land retirement payment scheme by flow paths, sub-catchment, 

soil erodibility, or other land and soil characteristics instead of applying BMPs 

randomly or uniformly can reduce costs of meeting a given water quality goal (Khanna 

et al., 2003; Yang and Weersink, 2004; Yang et al.,2005). Although targeting methods 

are more effective than uniform or arbitrary BMP placement, different targeting criteria 

may be needed for sediment, phosphorus, or nitrogen. For instance, Giri et al. (2012) 

demonstrated that targeting BMPs by Load per Subbasin Area Index (LPSAI) results in 

the most significant reductions for sediment and phosphorus, whereas targeting BMPs 

by Concentration Impact Index (CII) is most effective for nitrogen reduction.  

Climate change impacts agricultural output and pollution potential (Walthall et al., 

2013), but the effects on pollution loadings are unclear. For instance, greater and more 

variable rainfall increases N loading, but this may be balanced by increased 

denitrification under warmer temperatures (Jeppesen et al., 2011; Kosten et al., 2012; 

Wagena et al., 2018). As a result, the cost and effectiveness of BMPs and the gains from 

targeting BMPs may vary as the climate changes. While there is extensive literature on 

targeting BMP placement to achieve water quality goals under current climate 

conditions, few studies have evaluated the effects of climate change on water quality 

targeting strategies or on the economic consequences of BMP targeting. We 

hypothesize that increased variability of N loadings under climate change will alter the 

optimal choice of BMPs and BMP placement and increase the gains from targeting 

BMPs compared to gains realized by targeting under current climate conditions.  
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The purpose of this study is to evaluate the effects of climate change on potential 

farm-level cost savings from spatial targeting of water quality BMPs. Bosch et al. 

(2018) evaluated effects of climate change on costs of achieving water quality goals in 

this watershed using a farm economic model in combination with SWAT-VSA forced 

with climate model predictions. We extend that model to examine the possibility of 

targeting BMPs based on a Topographic Index (TI), a measure of soil runoff risk that 

combines upslope contributing area and local slope gradient (Easton et al., 2008; 

Collick et al., 2015). 

1.2 Materials and methods 

1.2.1 Study area 

We carried out the study in WE-38, a 7.3 km2 sub-watershed of Mahantango 

Watershed, located in Northumberland County, Pennsylvania (Figure 1.1). WE-38 has 

been extensively studied as a USDA Agricultural Research Service experimental 

watershed beginning in 1966 (Bryant et al., 2011). The total area of the WE-38 sub-

watershed is 730 ha with 54.9% cropland, 3.2% pasture, 39.6% woodland, and 2.3% 

developed (Bryant et al., 2011). The crop (400 ha) and pasture area (23 ha) are the focus 

of this study.  

1.2.2 Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) 

We use SWAT-VSA (Soil and Water Assessment Tool-Variable Source Area) 

model from Easton et al. (2008), a derivative of the SWAT model, to predict the N loss 

from agricultural landscapes and evaluate the effectiveness of BMPs subject to climate 

change. The SWAT model is a watershed-scale, physical model incorporating weather, 

soil, land cover and land management data to simulate surface and subsurface 
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hydrology and various chemical and sediment fluxes (Collick et al., 2015). Spatial data 

for SWAT include soils, land use and elevation. SWAT-VSA replaces the commonly 

used STATSGO or SSURGO soil layer with a spatial combination of the FAO-

UNESCO Digital Soil Map of the World (FAO, 2007) and topographically-derived soil 

wetness TI class (Easton et al. 2008). After dividing a catchment into Hydrologic 

Response Units (HRUs), we use SWAT-VSA to estimate crop yields and N loadings 

and evaluate the environmental effectiveness of BMPs at the HRU scale. In this study, 

we use the TI to classify the soil into 10 equal area wetness classes from the least runoff 

prone (1) to the most runoff prone (10) (Easton et al., 2008). The total cropland area in 

each TI class is 40 ha and the total pasture area is 2.3 ha.  

The WE-38 SWAT-VSA model was calibrated and evaluated using SWAT-CUP 

(SWAT Calibration and Uncertainty Procedure) (Arnold et al., 2012) using the SUFI2 

(Sequential Uncertainty Fitting) optimization algorithms with the objective function set 

to the Nash Sutcliffe Efficiency coefficient (NSE). The SWAT-VSA model 

performance was evaluated based on three metrics, percent bias (PBIAS), coefficient 

of determination (R2), and the NSE, against the historical measured data from 1989 to 

1999 for model calibration and 1999 to 2007 for model evaluation. For further details 

see Wagena et al. (2018). 

1.2.3 Climate prediction model 

Results from seven climate models were obtained from the North American 

Climate Change Assessment Program (NARCCAP) model dataset (Mearns et al., 

2009). The models use dynamical downscaling—nesting a regional climate model 

(RCM) within a global climate model (GCM)—and provide data at high temporal (3-

hourly) and spatial (50-km) resolutions, better capturing local processes 
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(Rummukainen, 2010). Greenhouse gas concentrations in the NARCCAP future 

simulations are obtained from the medium-high SRES A2 emissions scenario 

(Nakicenovic et al., 2000). For a more detailed description of the climate models refer 

to Wagena et al. (2018).  Then for each climate scenario, SWAT-VSA generates 

estimated crop yields and N loadings from each TI class for a given land use. We 

evaluated seven climate change models from NARCCAP for the estimation of future 

crop yields and N loading levels by TI class. We ranked the estimated N loadings per 

hectare for six crops: alfalfa, corn, wheat, soybean, rye, and pasture and averaged the 

ranks of results from seven models over the soil TI classes. From the seven climate 

models, we selected two: 1) WRFG-CGCM3 (Weather Research & Forecasting Model, 

Third Generation Coupled Global Climate Model) which ranked highest in terms of 

absolute predicted yield differences between future and historical climates; and 2) 

CRCM-CCSM (Canadian Regional Climate Model, Community Climate System 

Model), which ranked lowest in terms of predicted yield differences. In addition, we 

used the mean yield and loading predictions generated by the ensemble of seven 

models, which we refer to as the Ensemble Mean model. Each model was used to 

represent climate variables under historical (1975 to 1998) and future (2045 to 2068) 

conditions.  

1.2.4 Economic model 

The farm model maximizes the total gross margin from crop and livestock 

production, subject to land, machinery, crop rotation, crop nutrition, livestock facilities, 

livestock feeding, and N loading constraints. Crop and pasture production are limited 

to 400 hectares of cropland and 23 hectares of pasture. Crop rotations include 

continuous corn, continuous grass pasture, one-year corn one-year soybean, two-year 
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corn three-year alfalfa, one-year corn two-year alfalfa, corn followed by double-

cropped wheat and soybeans, and corn or soybean followed by rye cover. In addition, 

the farm can produce corn as silage or grain. 

Because of limits on machinery and labor time within the available days suitable 

for fieldwork, the maximum areas for growing corn, full season soybeans, double-

cropped soybeans, and wheat are 231, 186, 191, and 240 hectares, respectively (USDA, 

2015). In addition, we set a constraint that the farm can buy or raise alfalfa for feed, but 

cannot sell alfalfa given the primary focus of the farm on dairy and poultry production.  

Crop costs/ha (including labor and machinery, but excluding land and fertilizer) 

for corn grain, corn silage, full season soybean, double crop wheat/soybean, alfalfa hay 

establishment, and alfalfa hay are $912, $1,384, $467, $971, $679, and $759 (2015$), 

respectively. The model calculates fertilizer costs separately depending on nutrient 

source. Crop nutrients mainly come from legume N carryover, commercial fertilizers, 

or manure (Penn State, 2015). Crop prices/Mg (2015$) for corn grain, corn silage, 

soybean, wheat and alfalfa hay are $235, $57, $471, $247, and $187, respectively. 

Livestock facility limits constrain the dairy to 80 cows and the number of broilers 

to 1 broiler house with production of 242,000 birds/year (Rhodes, et al., 2011). Total 

gross revenue from dairy cows is $4,463 per cow per year. Costs per cow including 

purchased feed, veterinary supplies, breeding fees, calf-raising costs, milk hauling, 

building, machinery, utility, and labor costs are $2,614/cow unit/year. The model 

calculates costs of farm raised feed and manure spreading separately. The model can 

meet feed requirements by purchase and/or on-farm production. Crop feed requirements 

per lactating cow per year include 1.41 Mg corn grain, 13.74 Mg corn silage, 1.5 Mg 

alfalfa and 0.25 hectares of pasture. Total annual gross revenue of the broiler house is 

$70,674 with variable costs of $16,820. The poultry integrator supplies feed for broilers. 
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Some characteristics of the farm such as number of cows and broilers are selected to be 

representative of the surrounding county and differ from actual watershed conditions.  

Manure production includes 21,087 liters liquid manure per lactating cow, 8.6 Mg 

solid manure produced by heifers and dry cows per lactating cow equivalent, and 376 

Mg litter per broiler house annually. Per unit sale prices for these three manures are 

$−0.002/L, $0, and $15.7/Mg, respectively.  

Net returns are optimized subject to constraints using linear programming (McCarl 

and Spreen, 1997). The model is coded using the General Algebraic Modeling System 

(GAMS Development Corporation, 2018).  

1.2.5 BMPs 

Six BMPs are assessed (Table 1.1): conservation tillage, stream buffers, cover 

crops, crop nutrient management, off-stream watering without fencing for livestock, 

and land retirement. These are the most cost-effective BMPs for the Chesapeake Bay 

watershed (Chesapeake Bay Foundation, 2015). 

Conservation tillage in this study means continuous no tillage. Compared with 

conventional tillage, the implementation of no tillage could bring 10.5% N reduction 

ha and costs -$111 ha annually (Devereux and Rigelman, 2014). Cover crops are 

considered as an effective way to enhance the soil structure and prevent N from 

running-off (Ritter et al., 1998). Non-harvested rye and commodity wheat are included 

as cover crops in this study.  

Nutrient management (NM) prevents pollutant loading from excessive nutrient 

applications. There are three tiers of NM containing various combinations of practices, 

effectiveness, and costs (Table 1.1). Tier 1 NM consists of the estimation of crop yields 

based on farm records or the rated soil production capacity of the field, and taking 
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account of N contributions from the soil, manure applications, and legume carryover, 

when estimating fertilizer N application rates. Tier 2 NM contains all Tier 1 activities 

and soil lab analysis as well as contemporary guidelines from state programs necessary 

for proper nutrient source, rate, timing, and placement to improve nutrient use 

efficiency. Tier 3 NM includes all Tier 2 practices. In addition, Tier 3 NM requires an 

Illinois Soil N Test (ISNT), Corn Stalk Nitrate Test (CSNT), Pre-side dress Nitrate Test 

(PSNT), or Fall Soil Nitrate Test (FSNT) resulting in changes in net N applications for 

the field (Devereux and Rigelman, 2014; Nutrient Management Expert Panel, 2015).  

A stream buffer involves placing grass strips as filters along streams to delay or 

reduce loadings from upslope contributing areas to surface water bodies. Effectiveness 

of stream buffers has been widely proven (Azzaino et al., 2002; Yang et al., 2014). In 

this study, grass buffers consist of a 10-meter wide planting along streams, reducing N 

loading up to 32% (Devereux and Rigelman, 2014). Annual costs for establishing and 

maintaining the buffer area are $471/ha. The model calculates separately the 

opportunity cost of the buffer, which is the foregone income when the farmer removes 

land from cropping for the buffer. The stream buffer reduces loadings of N from the 

buffer area itself and four times as much upslope area. Therefore, the area treated by 

the stream buffer is five times the actual buffer area (Devereux and Rigelman, 2014; 

Van Houtven et al., 2012). The allowable area for buffers from TI class 1 to 10 are 0.40 

ha, 0.43 ha, 0.43 ha, 0.33 ha, 0.38 ha, 0.57 ha, 0.22 ha, 0.38 ha, 0.36 ha and 3.70 ha, 

respectively. The total area eligible for buffers is 7.20 ha and the area treated by the 

buffer is 36.0 ha.  

Livestock watering in streams are a source of N pollution. Off-stream watering 

without fencing limits the tendency of livestock to enter the stream for drinking and 

therefore reduces the stream bank erosion from livestock and pollution from livestock 
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defecating in the stream (Dillaha et al., 2009). The maximum area that can be treated 

by off-stream watering is equal to the total pasture area, 23 ha. 

Land retirement is an important nonpoint source pollution control method under 

the Conservation Reserve Program (CRP). Land retirement reduces N loading by taking 

agricultural lands out of production for at least 10 years. Soils targeted are those with 

poor soil conditions and in close proximity to streams. Such soils, when cultivated, 

generate pollutants at higher than average rates. Landowners who enroll receive an 

annual rental payment for retired land, $295.39/ha based on the rental payment in 

Pennsylvania (USDA, 2016). The maximum land enrolled in the land retirement 

program cannot exceed 25% of total agricultural land in production per farm (Stubbs, 

2014).  

1.2.6 Conceptual framework 

The first step to estimating effects of climate change on gains from targeting is to 

estimate the farmer’s costs of meeting a required reduction in nutrient loadings under 

historical (j = 0) and future (j = 1) climate scenarios and for uniform and targeted 

placement of BMPs. The cost is equal to the reduction in farm net revenue under the 

constraint compared to a baseline with no constraint on nutrient loadings. The second 

step is to estimate the reductions in the cost of meeting the nutrient loading constraint 

under targeting compared to uniform placement of BMPs. The reductions in cost 

represent the economic gains from targeting. The third step is to compare the reductions 

in costs with targeting under future climate with cost reductions from targeting under 

current climate conditions.   

Costs of meeting the nutrient loading constraint 
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Costs of meeting the constraint are estimated assuming that the farmer maximizes 

net revenue from agricultural production for a farm subject to constraints including the 

requirement that the farmer reduce N loading by 25 percent. Let m denote an index of 

TI class, where m = 1,2,…,M. Because the study area is a small watershed, we assume 

only one farm across the whole watershed. Let 𝑥𝑐𝑚 denote the level of crop c on TI class 

m (𝑐 = 1,2, … , 𝐶), and let xi denote livestock level  (𝑖 = 1,2, … , 𝐼). 

Let 𝜋𝑐𝑚  denote the per unit net revenue from crop c on TI class m and 𝜋𝑖 denote the 

per unit net revenue from livestock i. The farmer’s objective is to maximize E(x) the 

total expected farm revenue from the watershed, which is the sum of the expected per 

unit crop (πcm) or livestock (πi) net revenue times the number of crop and livestock units. 

(1) 𝑀𝑎𝑥 𝐸(𝑥) = ∑ ∑ 𝜋𝑐𝑚 ∗ 𝑥𝑐𝑚
𝑀
𝑚=1

𝐶
𝑐=1  + ∑ 𝜋𝑖 ∗ 𝑥𝑖

𝐼
𝑖=1  

Expected net revenue is maximized subject to 

(2) ∑ 𝑎𝑘𝑚𝑥𝑐𝑚
𝑀
𝑚=1 ≤  𝑏𝑐𝑘 

Equation (2) describes conventional resource constraints, including land, rotation, 

and machinery for crops; 𝑎𝑘𝑚 denotes the amount of constraint k required per unit of 

the farm and 𝑏𝑐𝑘 denotes the amount available of constraint k for crop 𝑐.  

 In addition, there are requirements to meet crop nutrient needs 

(3) ∑ 𝑛𝑐𝑚𝑟𝑥𝑐𝑚
𝑀
𝑚=1 ≥ 𝑤𝑐𝑟 

Equation (3) describes the nutrient (N, phosphorus, and potassium) requirement of 

crop production, where 𝑛𝑐𝑚𝑟 denotes the amount of nutrient r applied per unit crop 𝑐 

and TI class m and 𝑤𝑐𝑟 is the total requirement of nutrient r for crop 𝑐.  

 Livestock production is also subject to constraints  

(4) 𝑓𝑝𝑖𝑥𝑖 ≤ 𝑠𝑝𝑖 
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Equation (4) is a set of livestock production constraints including livestock 

facilities. 𝑓𝑝𝑖 denotes the amount of constraint 𝑝 required per unit of livestock 𝑖 and 𝑠𝑝𝑖 

denotes the total amount of available 𝑝 for livestock 𝑖. 

 Livestock also are subject to feeding requirements (5) 

(5) 𝑒ℎ𝑖𝑥𝑖 ≥ 𝑞𝑗𝑖 

𝑒𝑗𝑖 is the requirement of feed type h per unit of livestock 𝑖; and 𝑞𝑗𝑖 is the total feeding 

requirement of livestock 𝑖 for the hth feed type. 

Equation (6) is the N loading constraint for the farm. 

(6) 
∑ ∑ ∑ 𝑑𝑟𝑚𝑥𝑐𝑚

𝑀
𝑚=1

𝑅
𝑟=1

𝐶
𝑐=1

𝑅
≤ (1 − 𝐺𝑒) ∗ ∑ 𝑡𝑀

𝑚=1 𝑚
, r = 1,2, … . , R 

The left side of the equation represents average loadings from crops where the area 

of each crop and TI class (xcm) is multiplied by 𝑑𝑟𝑚 the per unit area loading for the farm 

in state 𝑟. A state corresponds to a climate pattern for a growing season under either the 

current climate or a future climate scenario. The summation of the product of per ha 

loading for crop and pasture times the total ha crop and pasture for the farm is the total 

loadings in each state. Loadings are summed over all states and divided by the number 

of states (R) to obtain an average. The right side of equation 6 represents the constraint 

on loadings. The average N loading level over all states must be less than or equal to 

the required N loading level, where 𝐺𝑒  is the reduction set for the environmental goal 

(expressed as a decimal fraction) and tm represents the baseline (unconstrained) loading 

from soil TI class m. We investigate targeting strategies when reductions of nitrogen 

loadings are set at 25%.   

Under the baseline, the constraint on nutrient loadings is not binding and expected 

returns are maximized. When the nutrient reduction constraint is imposed, farm net 

returns are reduced below those of the baseline and the reduction is the cost of the 
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nutrient loading constraint. Expected returns with the constraint are Euj(x) or Etj(x) when 

BMPs are uniformly placed or targeted, respectively.  

Reduced costs with targeting  

The costs of the nutrient loading constraint depend on how the constraint is met, 

i.e., whether BMPs are uniformly applied (Cuj) or targeted (Ctj) as described below.  

(7) 𝐶𝑢𝑗 = 𝐸𝑛𝑐𝑗(𝑥)– 𝐸𝑢𝑗(𝑥), 

Costs of the nutrient loading constraint with uniform placement equal expected 

returns with no constraint minus expected returns with uniform placement (7). 

(8) 𝐶𝑡𝑗 = 𝐸𝑛𝑐𝑗(𝑥)– 𝐸𝑡𝑗(𝑥). 

Costs of the nutrient loading constraint with targeted placement equal expected 

returns with no constraint minus expected returns with targeting (8). 

 The reduced costs from targeting (gains from targeting) are equal to the 

reduction in costs of meeting the N loading constraint with targeting relative to costs 

with uniform allocation of BMPs (9): 

(9) △ 𝐶𝑗 = 𝐶𝑢𝑗 − 𝐶𝑡𝑗, j = 0, 1 where 0 refers to the historical climate scenario and 1 is 

the future climate scenario.  

Effects of climate change on costs  

The effects of future climate on gains from targeting (𝐺𝑡) equal the difference in 

the gains from targeting under the future climate scenario minus the gains under the 

historical climate scenario (10).  

(10) 𝐺𝑡 = △ 𝐶1 − △ 𝐶0 

1.2.7 Robustness checking for uncertainty 

The model of nutrient loading reductions and associated costs is subject to 

uncertainty. To deal with the uncertainties, a robustness check of the model focuses on 
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two aspects, the cost predictions for water quality improvements with spatial targeting 

and gains from targeting compared with the uniform strategies under the historical and 

future climate scenarios. To test the robustness of cost predictions from the targeting 

model with 25% N reduction constraint, three prediction uncertainties in terms of costs 

are considered, the N reduction policy, the farm size and market prices and costs. The 

following parameters are varied for robustness check of the cost prediction: (1) N 

reduction goal (30%, 35% and 40%), (2) farm size, including increasing cropland area 

(by 50%, 100%, 150% and 200%) and livestock number (by 50%, 100%, 150% and 

200%) and (3) increasing prices and costs of crops and livestock (by 5%, 10%, 15%, 

20% and 25%). The Ensemble mean model with historical and future scenarios are 

selected for the robustness check. 

The results of robustness checks presented in Section 3.3 showed that costs 

increased nonlinearly as the N reduction goal and farm size (livestock) increased. 

Therefore, we further evaluated the effects of the N reduction goal and farm size on the 

gains from spatial targeting compared with uniform strategies under historical and 

future climate scenarios.  Moreover, to explore other possible behavior patterns of farm 

owners, we simulated a random application of BMPs to meet the water quality goal, 

which means the farmer neglects soil TI class and applies BMPs arbitrarily in the study 

area.   

1.3 Results 

1.3.1 Baseline1  

SWAT-VSA is used to predict N loadings for current and future climate scenarios 

                                                 
1 Results of this study are based on the assumption of the farm profit maximization. In some cases actual crop and 

BMP choices observed in the watershed may deviate from those predicted by profit maximization. 
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in soils with each TI class (Table App.pp.1.1). The results of ANOVA for differences 

in means of crop N loading levels across TI classes within climate scenarios and across 

climate scenarios, at a 5% significant level, indicate the following: wheat differences in 

loadings are statistically insignificant both across TI classes and across climate 

scenarios. Corn and soybean differences are statistically insignificant across TI classes, 

but statistically significant across climate scenarios. Alfalfa differences are statistically 

insignificant across climate scenarios. However, alfalfa differences are statistically 

significant across TI classes for the historical climate scenario based on the Ensemble 

Mean model.  

Under the historical scenario with the Ensemble Mean, CRCM, and WRFG 

models, total estimated N loadings from the farm are 15,679 kg, 15,642 kg and 15,384 

kg, respectively. Alfalfa and pasture have lower N loadings, while wheat has the highest 

N loadings for historical and future climate conditions with all three climate models 

(Figure 1.2). The variation of N loading levels does not simply follow the increase of 

the soil TI class. For instance, under the historical scenario with the Ensemble Mean 

predictions, the lowest N loading from corn is 30.25 kg/ha in TI class 3 and the highest 

level is 33.63 kg/ha in TI class 4; the lowest N loading from soybean is 22.81 kg/ha in 

TI class 3 and the highest level is 26.48 kg/ha in TI class 9.  

Average yields predicted by SWAT-VSA across TI classes are shown in Figure 

1.3. For ANOVA results, at a 5% significance level for alfalfa, corn and wheat, the 

mean differences of yields are statistically significant across historical and future 

climate scenarios (Table App.pp.1.2). However for a given climate scenario and crop, 

the mean differences of yields are statistically insignificant across TI classes. Alfalfa 

yields increase while wheat, corn, and soybean yields decline under climate change.  
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For the Ensemble Mean, CRCM, and WRFG models, total gross margins (TGM) 

decline 15%, 16% and 19%, respectively, under the future climate scenario compared 

to the historical scenario (Figure 1.4, Table App.1.3). TGMs decline because yields of 

corn, the most profitable crop, decrease under the future climate. Under the Ensemble 

Mean historical condition, the shadow prices ($/ha) for cropland by TI class from 1 to 

10 are 477, 451, 468, 483, 466, 466, 446, 451, 467 and 495, respectively. Taking land 

from TI class 7 out of production would have the smallest opportunity cost, while TI 

class 10 would have the highest opportunity cost and should be given lower priority for 

being placed under CRP.  

Total N loadings decline for the future climate scenario compared to historical 

loadings by 19% (Ensemble Mean), 17% (CRCM) and 23% (WRFG) (Table App.1.3). 

The decline is due to a shift out of wheat into corn and soybeans which have lower N 

loadings. Average per ha loadings (kg) by TI class from 1 to 10 equal to 45, 34, 42, 44, 

41, 29, 24, 45, 43, and 45, respectively. TI classes 1 and 10 generate the highest per ha 

loading level from agricultural production among all soil TI classes indicating that they 

may receive higher priority for CRP allocation. However, TI class 1 also has higher net 

returns from crop production, which also is taken into consideration when targeting 

CRP or other BMPs.  

Predicted changes in crops from the historical to the future climate scenario are 

similar for the three climate models (Table App.1.3). Corn grain and full season 

soybean remain the two major crops. Under the future climate, full season soybean 

increases by 17, 5, and 9 times under the Ensemble Mean, CRCM and WRFG models, 

respectively. Double-cropped soybean and wheat decrease to zero in the future climate 

scenario with all three models. Corn silage and alfalfa production are almost the same 

between historical and future climate scenarios. CRP is not selected in either historical 
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or future climate scenarios, which implies that net revenues per ha from planting crops 

are still higher than the CRP rental payment per ha. 

1.3.2 Costs of meeting the water quality goal with uniform and targeting 

strategies  

The evaluation of 25% N reduction is based on baseline loading under the 

historical scenario as predicted by each climate model. Hence, N limits under the 

historical and future climate scenarios are 11,759 kg (=15,679kg*0.75) for Ensemble 

mean, 11,732kg (=15,642kg*0.75) for CRCM, and 11,538kg (=15,384kg*0.75) for 

WRFG. 

Uniform strategies mean farmers apply BMPs uniformly across all TI classes to 

meet this water quality goal. For the same N reduction goal, spatial targeting lets 

farmers apply BMPs and select crops according to yield and N runoff potential derived 

from each soil TI class. 

Costs of uniform and targeting application of BMPs to meet the water quality goal 

under both climate scenarios and all three climate models are presented in Figure 1.5.  

Compared with uniform BMP application, targeting methods reduce costs by 30% and 

37% for Ensemble Mean historic and future scenarios, 34% and 43% for CRCM historic 

and future scenarios, and 27% and 33% for WRFG historic and future scenarios, 

(Tables A1.4, A1.5, and A1.6). For all climate scenarios, the above results indicate that 

BMP application with spatial targeting is an important strategy under current as well as 

future climate scenarios to achieve the water quality goals.  

Under the historical climate scenario, farm TGMs increase under BMP targeting 

relative to the uniform scenario because cover crop wheat and the accompanying 

double-crop soybean can be produced on higher yielding land rather than being 
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allocated uniformly across TI classes (Tables A1.7 and A1.8). Under the future climate 

scenario, more cost effective allocation of BMPs and CRP enables the farm to achieve 

higher returns by producing more acres of corn (Ensemble Mean), slight increases in 

full season soybean (CRCM and WRFG), and slight reductions in total CRP (CRCM).  

In addition, under both historical and future scenarios, the allocation of CRP to lower 

yielding land means that crops can be produced on higher yielding land resulting in 

higher overall profits from crop production.  

Cost savings from spatial targeting are smaller in absolute value under climate 

change compared to historical conditions while relative savings are larger (Figure 1.5). 

Smaller cost savings under climate change occur because the N loading restriction is 

less binding (less N needs to be reduced) under climate change meaning that overall 

costs are smaller and there are fewer potential savings to be obtained. Further, in 8 of 

the 12 cases examined for corn, soybean, alfalfa, and wheat, yields per ha declined 

under climate change (Table App.1.2). Lower yields also reduce the gains from 

targeting because cost savings from shifting CRP to lower yielding land and 

reallocating crops to higher yielding land are reduced when overall yields decline.  

1.3.3 Robustness checking of uncertainty 

When we change the N reduction goal from 25% to 30%, 35% and 40%, and hold 

all other parameters constant, Figure 1.6 panel (a) shows that the slopes indicating cost 

increases with increased N reductions are stable for both ensemble history and future. 

For the variation of farm size parameters (Figure 1.6 panel (b) and (c)), cropland area 

and livestock number are increased by 50%, 100% and 150% separately; other 

parameters are held constant. The slope showing cost increases with percent increases 

in cropland is a bit greater for Ensemble history compared to Ensemble future, but both 
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are still stable when we expand cropland area. Effects of increased livestock are similar 

with up to 50% increases in livestock, but for further livestock increases costs increase 

with the historical scenario but not for the future scenario. Predicted costs are more 

sensitive to changes in livestock number under Ensemble history than under Ensemble 

future, especially for the 150% increase in livestock numbers. When we increase all 

prices and costs of agricultural production from 5% to 20%, costs increase in a linear 

fashion with similar slopes for both historical and future climate scenarios (Figure 1.6 

panel (d)).  

Figure 1.7 panel (a) indicates that gains from targeting decline under both 

historical and future climate scenarios when the N reduction goal increases. This result 

occurs because as N reduction goals increase with a fixed land area, there is less 

flexibility for targeting in the allocation of CRP and BMPs. However, percentage gains 

from targeting are still higher under future climate compared to historical climate. For 

cropland area expansion with 50%, 100% and 150%, the gains from targeting methods 

compared with uniform application remain at 31% and 37% under Ensemble history 

and future respectively. When there are 50% and 100% increases in livestock numbers, 

targeting methods contribute more in the historical scenario than under future climate. 

With increased livestock numbers, gains from targeting decline under the historical 

scenario while remaining constant under the future climate scenario (Figure 1.7 panel 

(b)).   

The robustness check about BMPs application methods show that the cost saving 

from targeting methods compared to uniform application could be viewed as the lower 

bound for the study area because we only compare targeting with a uniform strategy of 

placing BMPs over the entire study area. A random allocation of BMPs including CRP 

could result in higher costs compared to the uniform strategy. Costs of 25% N reduction 
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under random application compared with other two methods (Figure 1.8) are higher 

than costs under uniform application and targeting methods for both Ensemble history 

and future.  

1.4 Discussion 

These results showing the benefits of targeting are in line with findings from 

previous studies that have addressed the design and performance of targeting BMPs by 

various soil criteria to control nitrate pollution cost-effectively (Jha et al., 2010; Giri et 

al., 2012; Willis and Privette, 2017). For instance, Jha et al. (2010) suggested that 

targeting conversion of row crops to grassland on Highly Erodible Land (HEL), in 

upper basin and floodplain areas could mitigate N loadings by 47%, 16%, and 8%, 

respectively, in Squaw Creek watershed, IA. Willis and Privette (2017) examined the 

cost-effectiveness of BMPs based on targeting the high runoff subbasins for meeting 

given water quality goals in the Reedy River basin, SC, and found that targeting reduced 

control cost by at least 26% compared with a uniform control standard for all subbasins.  

This study contributes to the targeting literature by targeting BMPs by runoff 

generating areas (TI). In watersheds dominated by saturation excess runoff, the TI has 

been found to represent spatial heterogeneity for susceptibility to N runoff more 

effectively and simply compared to other criteria (Easton et al., 2008). Hence, targeting 

BMPs by soil TI class could achieve a more cost-effective BMP allocation than other 

targeting methods that are based on more aggregate soil criteria. This study also 

contributes by considering the opportunity costs of applying BMPs instead of only 

calculating BMP implementation and maintenance costs (Wu et al., 2006; Cools et al., 

2011 Giri et al., 2014). Opportunity cost is particularly important in the case of CRP, 

which involves removal of land from production. This study also extends previous 
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analysis to look at how climate change impacts potential cost reductions from spatial 

targeting, showing that while absolute benefits are smaller, relative benefits of targeting 

are likely to be larger under future climate scenarios. The effects of climate change on 

gains from targeting have received little attention in the literature.  

The results provide additional encouragement to natural resource managers and 

policymakers regarding the importance of applying BMPs by targeting methods with 

finer scale soil criteria. The results suggest that in the future, spatial analytical tools 

(Geographic Information Systems, remote sensing, and other decision aids) will be 

important tools for cost-effective implementation of water quality improvements for 

agriculture.  

Uncertainty analysis indicates that model results are robust with respect to 

increased N reductions, cropland area and prices and costs (Figure 1.6 panel (a), (b) and 

(d) respectively). However, varying livestock numbers results in large differences in 

costs between Ensemble history and future climate scenarios (Figure 1.6 panel (c)). The 

large differences are due to two factors. First, required N reductions are larger under 

Ensemble historical climate conditions than under Ensemble future climate and the 

differences become larger when livestock numbers increase. Hence, the marginal N 

abatement costs under Ensemble history are higher than under the Ensemble future 

climate scenario. Second, additional reductions of N under the historical scenario are 

achieved with 90ha of nutrient management as well as increased amounts of manure 

transport off the farm, both of which involve high costs. The use of nutrient 

management with manure further reduces the manure revenue under the Ensemble 

history. 

Relative gains from targeting decline with increasing N reduction goals (Figure 

1.7 panel (a)) and with increasing livestock numbers under historical conditions (Figure 
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1.7 panel (b)). Higher N reductions brought on by increased livestock numbers or 

increased N reduction goals are met by applying nutrient management, the BMP used 

in managing livestock manure, extensively across all cropland, which reduces the 

ability of targeting to control costs by allocating the BMP to specific crop areas. In 

addition, much of the increased cost of N reduction is due to off-farm manure disposal 

costs, which are not affected by targeting.  

Spatial targeting results in higher gains in comparison with random application of 

BMPs. These gains are larger than were realized with uniform application (Figure 1.8). 

However, farmers may already be following other strategies such as targeting based on 

partial information about soil productivity and runoff. Such strategies may incorporate 

less information compared to the TI class, in which case targeting benefits based on TI 

class might be smaller than the estimates from our study. Consideration of such 

strategies is beyond the scope of this paper.  However, for water quality management, 

BMP placement and CRP enrollment, farm and natural resource conservation advisors 

should encourage farmers to seek out where targeting benefits can be obtained.  

1.5 Conclusion 

Results of this study suggest that spatial targeting is an important strategy for 

reducing costs of achieving water quality goals under both historical and future climate 

scenarios. Targeting methods for BMP placement are always superior to uniform 

strategies because they increase farm TGMs while achieving the environmental goal 

under all climates scenarios in which the N loading constraint is binding. Targeting 

improves returns by converting lands with relatively higher N loading and lower yield 

potential to CRP thereby reducing the cost of idling land compared to uniform 

placement.  



22 

 

Researchers, resource program managers, and farmers should monitor climate 

change impacts on crop production closely to insure that they select optimal 

combinations of BMPs and crops to meet water quality goals at least cost. Spatial 

targeting will be an important part of these strategies to adapt climate change and reduce 

future water quality management cost.  

Two areas of further research are suggested. The effects of climate change and 

changing crop production patterns on relative crop prices should be investigated. 

Changing relative prices could have important implications for crop production and 

costs of meeting environmental loading constraints. Second, results for this small 

watershed should be confirmed for varying farm and watershed conditions.  
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Tables 

Table 1.1.1 Costs per hectare (2015$) and effectiveness of BMPs 

BMPs 
N loading reduction 

(%) 

Annualized cost/ ha 

(2015$) 

Conservation tillage 10.50  -111.00  

Stream buffers 32.00  471.00  

Off-stream watering without fencing 5.00  73.00  

Rye cover crop   82.00  

   

   

Tier 1 NM- both high and low till with manure 9.25  31.32  

Tier 1 NM- high till without manure; hay with 

nutrients 
5.00  31.32  

Tier 2 NM- high till with manure 4.40  50.30  

Tier 2 NM- low till with manure 4.40  182.20  

Tier 2 NM- hay with nutrients 2.80  21.43  

Tier 3 NM- high till, low till with manure 2.80  2.68  

Land retirement  100 -297.50 

Source: Bosch et al., (2018) 
a N loading reductions from cover crops are estimated by SWAT-VSA and vary by soil and TI class. 

Commodity wheat is also a cover crop. Its costs are included as part of the wheat-double cropped 

soybean rotation. 
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Figures  

 
Figure 1.1 WE-38 watershed and location within the Mahantango Creek and 

Chesapeake Bay watersheds. Source: Modified from Bryant et al, 2011, Figure 1. 
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Figure 1.2 N loadings (kg/ha) by climate scenario 

 

 

 
Figure 1.3 Crop yields (mg/ha) by climate scenario 

 

0

10

20

30

40

50

60

70

Alfalfa Corn Soybean Wheat Pasture Rye cover

K
g
/h

a

Ensemble history Ensemble future CRCM history

CRCM future WRFG history WRFG future

0

2

4

6

8

10

12

Alfalfa Corn Soybean Wheat Pasture Rye cover

M
g
/h

a

Ensemble history Ensemble future CRCM history

CRCM future WRFG history WRFG future



32 

 

 
Figure 1.4 Farm total gross margins by climate scenario with no loading constraint 

 

  
Figure 1.5 Costs (US dollars) of 25% N reduction under two BMP application 

methods by climate scenarios 
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Figure 1.6 Sensitivity analysis of costs prediction under spatial targeting. Panel (a). 

Changes in N reduction goals. Panel (b). Changes in cropland area. Panel (c). Changes 

in livestock numbers. Panel (d). Changes in prices and costs of crops and livestock 

 

 

 

Figure 1.7 Sensitivity of gains from spatial targeting compared with uniform 

strategies. Panel (a). Changes in N reduction goals. Panel (b). Changes in livestock 

numbers 
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Figure 1.8 Costs comparison between three BMP Application Method 
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Appendix tables 

Table App.1.1 Unconstrained N loading of crops under all climate scenarios 

Baseline N loading of crops (kg/ha） 

Ensemble history Alfalfa Corn Soybean Wheat Pasture Rye cover 

Mean 20.8 31.8 25.07 50.77 19.95  24.54  

SD 8.39 7.33 8.46 16.06 7.62  11.54  

CV 0.4 0.23 0.34 0.32 0.38  0.47  

Ensemble future       

Mean 20.52  36.51  32.59  58.27  15.98  47.99  

SD 8.18  7.52  6.83  22.51  6.31  9.73  

CV 0.40  0.21  0.21  0.39  0.39  0.20  

CRCM history       

Mean 20.27  31.95  26.08  52.11  20.52  23.23  

SD 9.22  7.44  9.76  22.28  8.13  12.91  

CV 0.45  0.23  0.37  0.43  0.40  0.56  

CRCM future       

Mean 20.89 37.6 32.99 44.59 19.10  32.75  

SD 10.34 13.17 11.32 29.91 9.66  20.58  

CV 0.5 0.35 0.34 0.67 0.51  0.63  

WRFG history       

Mean 21.29  31.66  23.70  50.90  19.77  23.96  

SD 10.17  11.69  9.96  22.78  9.67  14.50  

CV 0.48  0.37  0.42  0.45  0.49  0.61  

WRFG future       

Mean 18.99 33.83 30.6 44.23 18.38  28.57  

SD 8.66 9.47 8.6 34.28 8.94  17.89  

CV 0.46 0.28 0.28 0.77 0.49  0.63  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 

 

Table App.1.2 Yields of crops under all climate scenarios with no N loading 

restriction 

Yields of Crops Baseline (Mg/ha)  

Ensemble history Alfalfa Corn Soybean Wheat Pasture Rye cover 

Mean 9.04 8.26 1.89 5.75 1.18  6.54  

SD 1.96 0.32 0.16 1.55 1.88  1.81  

CV 0.22 0.04 0.09 0.27 1.60  0.28  

Ensemble future       

Mean 9.55  7.06  1.93  3.99  1.33  3.05  

SD 2.47  0.46  0.59  0.67  2.02  0.49  

CV 0.26  0.07  0.30  0.17  1.52  0.16  

CRCM history       

Mean 9.23  7.85  1.80  5.37  1.14  6.67  

SD 2.13  0.65  0.27  1.85  1.78  2.54  

CV 0.23  0.08  0.15  0.34  1.56  0.38  

CRCM future       

Mean 8.95 6.69 1.83 3.82 1.36  3.86  

SD 2.36 0.88 0.62 1.04 2.20  1.70  

CV 0.26 0.13 0.34 0.27 1.61  0.44  

WRFG history       

Mean 8.90  8.63  2.01  6.05  1.14  7.15  

SD 2.20  0.61  0.21  1.82  1.88  2.00  

CV 0.25  0.07  0.11  0.30  1.65  0.28  

WRFG future       

Mean 9.97 7.08 1.87 4.04 1.21  3.63  

SD 2.7 1.11 0.62 0.87 2.04  1.71  

CV 0.27 0.16 0.33 0.21 1.69  0.47  
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Table App.1.3 Total gross margins, N loading levels and agricultural production with 

no constraint on N loading 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

Total Gross Margin ($) 375,660 319,180 348,350 293,430 390,290 315,730 

Total N Loading (kg) 15679 12671 15642 12924 15384 11867 

Annual Crop Area (ha)a       

Corn Grain 211 208 211 179 212 210 

Corn Silage 20 23 20 22 19 21 

Full Season Soybean 9 157 36 186 17 158 

Double Crop Soybean 147 0 120 0 140 0 

Wheat 147 0 120 0 140 0 

Alfalfa 9 8 9 8 8 8 

Alfalfa Establishment 4 4 4 4 4 4 

CRP 0 0 0 0 0 0 

Pasture 20 20 20 20 20 20 

Idle Land 3 3 3 3 3 3 

Livestock       

Dairy Cows 80 80 80 80 80 80 

Broiler Houses 1 1 1 1 1 1 

a Total land area may not add to 423 ha due to rounding and crop rotation. 
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Table App.1.4 Total gross margins, N loading levels and agricultural production with 

a 25% N loading reduction constraint and uniform allocations of BMPs 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

Total Gross Margin ($) 368,930 315,020 343,020 290,280 382,950 314,350 

Total Gross Margin Baseline ($) 375,660 319,180 348,350 293,430 390,290 315,730 

Cost of N loading constraint ($)a 6,730 4,160 5,330 3,150 7,340 1,380 

Total N Loading (kg) 11,759 11,759 11,732 11,732 11,538 11,538 

Total N Loading Baseline (kg) 15,679 12,671 15,642 12,924 15,384 11,867 

Annual Crop Area (ha)b       

Corn Grain 211 171 211 165 212 210 

Corn Silage 20 22 20 22 19 21 

Full Season Soybean 126 168 156 162 126 145 

Double Crop Soybean 31 0 0 0 31 0 

Wheat 31 0 0 0 31 0 

Alfalfa 8 8 9 8 8 8 

Alfalfa Establishment 4 4 4 4 4 4 

CRP 0 26 0 38 0 12 

Pasture 20 20 20 20 20 20 

Idle Land 3 4 3 3 3 3 

Livestock       

Dairy Cows 80 80 80 80 80 80 

Broiler Houses 1 1 1 1 1 1 

a Cost = total gross margin baseline minus total gross margin under constraint. 
b Total land area may not add to 423 ha due to rounding and crop rotation. 
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Table App.1.5 Total gross margins, N loading levels and agricultural production with 

25% N loading reduction constraint under spatial targeting 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

Total Gross Margin ($) 370,950 316,550 344,830 291,620 384,920 314,810 

Total Gross Margin Baseline ($) 375,660 319,180 348,350 293,430 390,290 315,730 

Cost of N loading constraint ($)a 4,710 2,630 3,520 1,810 5,370 920 

Total N Loading (kg) 11759 11759 11732 11732 11538 11538 

Total N Loading Baseline (kg) 15,679 12,671 15,642 12,924 15,384 11,867 

Annual Crop Area (ha)b       

Corn Grain 211 195 211 165 212 210 

Corn Silage 20 23 20 22 19 21 

Full Season Soybean 126 141 136 163 127 146 

Double Crop Soybean 31 0 20 0 30 0 

Wheat 31 0 20 0 30 0 

Alfalfa 8 8 9 8 8 8 

Alfalfa Establishment 4 4 5 4 4 4 

CRP 0 29 0 37 0 11 

Pasture 20 20 20 20 20 20 

Idle Land 3 3 3 3 3 3 

Livestock       

Dairy Cows 80 80 80 80 80 80 

Broiler Houses 1 1 1 1 1 1 

a Cost = total gross margin baseline minus total gross margin under constraint. 
b Total land area may not add to 423 ha due to rounding. 
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Table App.1.6 TGMs and costs ($) of N reduction and gains from targeting for the 

baseline and 25% N reduction goal 

  Uniform application 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

TGM baseline  375,660 319,180 348,350 293,430 390,290 315,730 

TGM 25% reduction  368,930 315,020 343,020 290,280 382,950 314,350 

Costs 25% reduction  6,730 4,160 5,330 3,150 7,340 1,380 

  Targeting method 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

TGM baseline  375,660 319,180 348,350 293,430 390,290 315,730 

TGM 25% reduction  370,950 316,550 344830 291,620 384,920 314,810 

Costs 25% reduction  4,710 2,630 3,520 1,810 5,370 920 

Gains from targetinga 
2,020 1,530 1,810 1,340 1,970 460 

30% 37% 34% 43% 27% 33% 

a Gains estimated as the reduction in costs under targeting relative to uniform placement for a given 

percentage reduction in N loadings. Percentage gains from targeting = (gain from targeting/cost of 

uniform placement)*100 

 
 

Table App.1.7 BMPs under uniform and targeting strategies 

  
Ensemble 

history 

Ensemble 

future 

CRCM 

history 

CRCM 

future 

WRFG 

history 

WRFG 

future 

25% loading reduction, uniform application 

No tillage (ha)  431 374 400 362 431 388 

Cover crop wheat (ha)  31 0 0 0 31 0 

Land retirement (CRP) 0 26 0 38 0 12 

25% loading reduction, targeted application 

No tillage (ha)  431 371 420 363 430 389 

Cover crop wheat (ha)  31 0 20 0 30 0 

Land retirement (CRP) 0 29 0 37 0 11 
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Table App.1.8 BMP distribution with targeting in each TI class and a 25% N loading 

reduction constraint under different climate scenarios 

BMPs application with targeting methods under Ensemble history   

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 51 40 40 40 40 40 60 

Cover Crop Wheat 0 0 0 11 0 0 0 0 0 20 

BMPs application with targeting methods under Ensemble future 

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 40 40 40 40 40 40 11 

CRP 0 0 0 0 0 0 0 0 0 29 

BMPs application with targeting methods under CRCM history 

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 40 40 60 40 40 40 40 

Cover Crop Wheat 0 0 0 0 0 20 0 0 0 0 

BMPs application with targeting methods under CRCM future 

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 40 40 40 40 40 40 3 

CRP 0 0 0 0 0 0 0 0 0 37 

BMPs application with targeting methods under WRFG history 

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 50 40 40 40 40 40 60 

Cover Crop Wheat 0 0 0 10 0 0 0 0 0 20 

BMPs application with targeting methods under WRFG future 

BMPs TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 

No Tillage 40 40 40 40 40 40 40 40 40 29 

CRP 0 0 0 0 0 0 0 0 0 11 
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Chapter 2 Reducing Costs of Mitigating Nitrogen Loadings by Within- and 

Cross-county Targeting  

2.1 Introduction 

Nonpoint source (NPS) water pollution from agricultural production has raised 

public concern since the Clean Water Act was authorized in 1972. The National Water 

Quality Assessment reports that agricultural NPS pollution is the leading contributor to 

water pollution problems, including surveyed surface water, ground water, wetlands 

and estuaries (US EPA, 2017). The Chesapeake Bay, the largest estuary in United 

States, has suffered excessive nitrogen (N), phosphorus (P) and sediment loadings from 

several sources including intensive agricultural activities in the Chesapeake Bay 

watershed over the last few decades (US EPA, 2017). To mitigate this problem, the 

United States Environmental Protection Agency (US EPA) set up the Chesapeake Bay 

Total Maximum Daily Load (TMDL) in 2010 (US EPA, 2016). Based on 2018 N 

loading level for each state within the Chesapeake Bay watershed, Delaware, Maryland, 

New York, Pennsylvania, Virginia and West Virginia need to implement 37%, 10%, 

18%, 35%, 11% and 1% N reduction respectively by 2025 (Chesapeake Bay Program, 

2019). 

Policymakers and program managers require estimates of the effectiveness and 

costs of programs to achieve water quality goals. Integrated optimization and 

simulation models, combining estimated hydrological processes and economic 

performance, have been used to predict costs of water quality control (Johansson and 

Randall, 2003; Secchi et al., 2007; Uthes et al., 2010; Rabotyagov et al., 2010; Kaufman 

et al., 2014; Xu et al., 2019).  
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A common finding from studies based on integrated economic-hydrological 

models is that costs can be reduced by spatial targeting of water quality improvement 

practices, also called Best Managements Practices (BMPs). Johansson and Randall 

(2003) compared estimated P abatement costs using targeting based on a P index and 

using a decision model based on abatement cost functions estimated at the national 

level. Their analysis was applied to watersheds at the eight-digit hydrologic level, 

covering 540,000-km2 of agricultural land with a goal of mitigating P discharge from 

agricultural production. The results of the study show that average costs are $20.63/kg 

for a total 64,464,656 kg P reduction and $23.67/kg for a total 56,181,737 kg P 

reduction under targeting strategies based on marginal P abatement cost and the P index, 

respectively, given a $1.3 billion budget. Secchi et al. (2007) estimated the total costs 

of achieving water quality improvement from the hypothetical placements of a selected 

combination of BMPs for 13 major Iowa watersheds covering 87% of the area of the 

state. They combined Soil and Water Assessment Tool (SWAT) with economic models, 

land use data, and BMPs, and found that depending on spatial placement the simulated 

effectiveness of the identical BMPs in reducing N, P, and sediment varies from 28% to 

59%, 6% to 20% and 6% to 65%, respectively. Rabotyagov et al. (2010) developed an 

integrated simulation-optimization model to assess the optimal trade-off between 

nutrient loadings and the marginal abatement costs for a total of 35.53-km2 cropland 

area in Squaw Creek watershed, Iowa. Kaufman et al. (2014) disaggregated the entire 

Chesapeake Bay watershed into statewide levels and carried out targeting of BMPs by 

state to minimize the N reduction costs (BMP implementation and maintenance costs) 

over the entire study area, using the Chesapeake Bay Watershed Model to estimate 

BMP effectiveness. Their results show that significant cost saving (60%) could be 

realized through targeting of BMPs.  
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Xu et al. (2019) evaluated the effects of climate change on potential farm-level 

cost savings from spatial targeting of water quality BMPs based on soil and terrain 

properties for WE-38 (7.3 km2), a sub-watershed of Mahantango Creek Watershed in 

east-central Pennsylvania, which drains to the Susquehanna River. Their study found 

that compared with uniform BMP placement to reduce N loadings by 25%, targeting 

methods could reduce costs of achieving the same overall reduction by an average of 

30% under three historical climate scenarios and an average of 38% under three 

corresponding future climate scenarios.  

The above studies provide insight into optimal strategies to achieve water quality 

goals and illustrate the tradeoffs involved in the choice of scale of analysis. Studies 

conducted at a smaller scale can derive detailed agricultural production and BMP 

selection strategies (Rabotyagov et al., 2010; Xu et al., 2019). However, results from a 

small study area may provide limited information for regional or national-scale policy 

setting. Other studies have been conducted at a larger scale with regional level input 

data (Johansson and Randall, 2003; Secchi et al., 2007; Kaufman et al., 2014). Such 

studies may fail to account for the heterogeneity of farms across large study areas and 

the boundaries that limit farms’ abilities to respond to water quality constraints and 

goals. For example, Kaufman et al. (2014) divided their study area into six 

representative farms aggregated at the state level. Such aggregation may lead to biased 

estimates of pollutant reduction costs because farms within a state may differ in their 

costs of responding to water quality goals and constraints. 

To be useful to policymakers, costs and effectiveness of BMPs need to be 

aggregated to a large watershed or regional scale while retaining the variability in 

responses based on heterogeneous farm conditions across the study area. This study 

analyzes the benefits of targeting water quality practices in a large watershed while still 
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considering farm heterogeneity that is characteristic of small-scale studies. We use the 

county or portion of county contained in the watershed as the assumed farm boundary. 

However, variability of physical resources within the county is also considered in the 

same way that farms are made up of fields with varying physical characteristics. We 

evaluate potential cost reductions from targeting water quality practices across counties 

as well as within-counties. We develop an integrated decision-making framework, 

incorporating economic optimization using a model formulated in GAMS (General 

Algebraic Modeling System) (GAMS Development Corporation, 2013 

https://www.gams.com/) and a watershed scale model developed for the Susquehanna 

watershed (Wagena and Easton, 2018). We treat each county as a representative farm 

with differentiated soil types within the county and optimize the placement of BMPs, 

land retirement, and other N control actions within and across counties within a large 

watershed.  

2.2 Models and input data 

2.2.1 Study area 

We carried out the study in the Susquehanna River basin, which contributes more 

than 50% of the freshwater to the Chesapeake Bay (Wagena and Easton, 2018). The 

total drainage area is approximately 71,000 km2 and has six major subbasins: Chemung, 

Juniata, Lower Susquehanna, Middle Susquehanna, Upper Susquehanna and West 

Branch Susquehanna, covering portions of three states: Pennsylvania, Maryland and 

New York. Sixty-six counties are entirely or partially located in the watershed. The land 

use of the Susquehanna River basin includes 2% for water and wetland, 7% urban area, 

21% agricultural land, 69% forest and 1% for other use (Susquehanna River Basin 

Commission, 2015). Only agricultural land is considered in this study; all other 



46 

 

landuses, such as forest, are excluded. Since 76% of the Susquehanna watershed is 

located in Pennsylvania, we use the N reduction goal of Pennsylvania, 35%, as the 

regional N reduction goal in this study (Susquehanna River Basin Commission, 2016).  

The area of crop and pasture within each county in the watershed is considered as a 

representative mixed crop and livestock farm. For those counties partially located 

within the Susquehanna watershed, we calculate first the percentage of each county’s 

area within the watershed and then adjust the county level data on crop and pasture area 

accordingly. For example, 51.4% of Adams County PA is located within the 

Susquehanna watershed. Thus, we multiply 51.4% by all Adams County level data, 

such as cropland area and pasture and animal units.  

2.2.2 Hydrological Model and Data 

We use Soil and Water Assessment Tool – Variable Source Area (SWAT-VSA) 

model to estimate the N loading and crop yields for each county in this study. SWAT 

is a process-based, watershed-scale model that uses inputs of weather, soil, land cover 

and land management data to simulate surface and subsurface hydrology and various 

chemical and sediment fluxes (Arnold et al., 1998). In SWAT, the watershed is 

delineated into Hydrological Response Units (HRUs), the smallest spatial on which 

calculations are performed. An HRU is the total area in a sub-basin with the same land 

use, soil and slope. The SWAT-VSA model is a derivative of the SWAT model, which 

identifies areas of the landscape subject to variable source area of runoff (Easton et al, 

2008, Collick, et al. 2015). In SWAT-VSA the area of each HRU is defined by the 

coincidence of land use and TI class. In SWAT-VSA, runoff depth within a TI class 

will be the same irrespective of land use while N dynamics vary with land uses and, 

thus, can differ within TI classes. In this study, there are a total of 10 TI classes covering 
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the entire study area. Soil TI class 1 defines areas of the landscape least runoff prone 

and TI class 10 are the areas most runoff prone (Easton et al., 2008). For each county, 

crop yields and N loadings are determined by its unique combination and proportion 

within each of the 10 TI classes.  

Crop yields and N loading levels by crops are generated by SWAT-VSA. Tables 

2.1 and 2.2 show the summary of crop yields and N loading levels averaged over the 

10 soil TI classes. Figure 2.1 presents the distribution of TI classes for the Susquehanna 

watershed with county boundaries. 

Nitrogen delivery ratios are used to estimate the proportion of N leaving the field 

that reaches the Chesapeake Bay. The delivery ratio is based on three components: (i) 

the proportion of N generated by the agricultural land that reaches surface water (land 

to water); (ii) the part of N remaining in free-flowing streams and reaching the river 

(stream to river); (iii) the proportion of N delivered from river to the bay (river to bay). 

Hence, the N delivery ratio is calculated by multiplying land to water, stream to river, 

and river to bay N delivery ratios provided by CAST (Chesapeake Bay Program, 2019). 

Nitrogen delivery ratios are specified for land-river segments, which are the 

intersections of land segments (counties) and river segments (watersheds). Delivery 

ratios were established in the Phase 6 Model for the Chesapeake bay watershed and are 

obtained from the Chesapeake Assessment Scenario Tool (CAST) (Chesapeake Bay 

Program, 2019). We estimated the county-level delivery ratio by averaging the delivery 

ratios for land-river segments contained in that county, which vary from 0 to 1. Figure 

2.2 shows the distribution of county-level delivery ratios in the Susquehanna watershed. 

2.2.3 Economic Model Assumptions 
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The economic model consists of two parts. The first part incorporates the 

agricultural producer’s perspective. The producer faces constraints on N loadings 

imposed by water quality programs and attempts to minimize the cost of meeting those 

constraints for the county-level representative farm. The second part incorporates the 

perspective of the water quality program manager. The watershed manager attempts to 

allocate pollution reduction goals across counties in order to minimize the watershed’s 

aggregate costs of meeting a given goal for reducing N pollution. We assume that 

agricultural producers are price takers and that the water quality program manager has 

perfect information regarding N control costs, for example, true self-reporting by each 

county.  

2.2.4 Economic model for within-county profit maximization  

First, we consider the producer’s perspective using county boundaries to represent 

a farm. Each county has its predominant enterprises, size, and physical conditions, 

including terrain, soil, and distance from fields to streams as well as its unique optimal 

combination of enterprises to maximize profit. As a result of such heterogeneity, the 

marginal N abatement cost (MNAC) curves differ by counties. 

The producer’s objective is to maximize expected net revenue 𝐸𝑖(𝑥) for county i: 

𝑀𝑎𝑥 𝐸𝑖(𝑥) = ∑ ∑ 𝜋𝑐𝑚𝑖 ∗ 𝑥𝑐𝑚𝑖
𝑀
𝑚=1

𝐶
𝑐=1  + ∑ 𝜋𝑙𝑖 ∗ 𝑥𝑙𝑖

𝐿
𝑙=1   (1) 

Let 𝜋𝑐𝑚𝑖  denote per unit net revenue from crop c in soil wetness TI class m and 

𝜋𝑙𝑖  denote per unit net revenue from livestock type l of county i. 𝑥𝑐𝑚𝑖  and 𝑥𝑙𝑖  are 

decision variables for the crop production area in soil TI class m for crop c and livestock 

production units for livestock type l of county i. 



49 

 

The expected county-level net revenue is maximized subject to constraints of 

county i. For crop production, the constraints for county i include conventional resource 

constraints and the nutrient requirements of crop production.  

𝑎𝑐𝑚𝑖𝑘 ∗ 𝑥𝑐𝑚𝑖𝑘 ≤ 𝑏𝑐𝑚𝑖𝑘  (2) 

Equation (2) describes conventional resource constraints, including land area for 

crop production, crop rotation requirements, and machinery for crops; 𝑎𝑐𝑚𝑖𝑘 denotes 

the amount of constraint k required per unit of county i in soil TI class m and 𝑏𝑐𝑚𝑖𝑘 

denotes the amount available of constraint k for crop c for county i in soil TI class m.  

𝑝𝑐𝑚𝑖𝑟 ∗ 𝑥𝑐𝑚𝑖𝑟 ≥ 𝑤𝑐𝑚𝑖𝑟  (3) 

Equation (3) describes the nutrient (N, P, and potassium (K)) requirements of crop 

production, where 𝑝𝑐𝑚𝑖𝑟 denotes the amount of nutrient r applied per unit area for crop 

c in soil TI class m and 𝑤𝑐𝑚𝑖𝑟 is the total requirement of nutrient r for crop c in county 

i in soil TI class m.  

For livestock production, the constraints for county i includes the livestock 

production resource constraints including the feed requirement. 

  𝑓𝑙𝑖𝑗 ∗ 𝑥𝑙𝑖𝑗 ≤ 𝑠𝑙𝑖𝑗  (4) 

Equation (4) is a set of livestock production constraints including livestock 

facilities. 𝑓𝑙𝑖𝑗 denotes the amount of constraint 𝑗 required per unit of livestock 𝑙 and 𝑠𝑙𝑖𝑗 

denotes the total amount of available facility 𝑗 for livestock 𝑙. 

𝑒𝑙𝑖𝑢 ∗ 𝑥𝑙𝑖𝑢 ≥ 𝑞𝑙𝑖𝑢  (5) 

Equation (5) is the livestock feed requirement. 𝑒𝑙𝑖𝑢 is the per unit requirement of 

feed type u for livestock 𝑙; and 𝑞𝑙𝑖𝑢 is the total feeding requirement of livestock 𝑙 for 

the uth feed type. 
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The above is the county-level profit maximization problem for each county in the 

watershed. Therefore, the total expected profit A from agricultural production generated 

by n counties in this watershed when there is no water quality constraint is  

𝐴 =  ∑ 𝐸𝑖(𝑥)𝑁
𝑖=1    (6) 

2.2.5 Economic model for watershed-level cost minimization  

For the water quality program manager, the objective is to minimize the total 

marginal N abatement cost (MNAC) of the entire watershed under the given regional 

environmental goal. The objective is minimized by allocating different water quality 

goals, 𝑔𝑖, to each county within the watershed according to their MNACs. For a given 

N abatement constraint, the marginal abatement cost of each county is equal to the 

reduced net income with the N abatement constraint relative to TGM of each county 

under the baseline. The water quality manager is assumed to know the MNAC of each 

county located within the watershed which is denoted as 𝑓′(x𝑖) , where x𝑖  is the 

required N reduction for each county. Hence, the water quality manager’s problem can 

be expressed as:  

Min TMC = ∑ 𝑓′(x𝑖)
𝑁
𝑖=1   (7) 

subject to the regional environmental N reduction goal at the outlet 𝐺𝑒, 

 ∑ 𝜔𝑖x𝑖
𝑁
𝑖=1 ≥ 𝐺𝑒   (8) 

  0 ≤ x𝑖 ≤ 𝑈𝑖     (9) 

where TMC is the total regional MNAC at the outlet; 𝜔𝑖 is the N delivery factor 

for county i; and 𝑈𝑖 is the baseline N generated by county i under the county-level profit 

maximization. 

Total abatement costs are minimized by allocating the N reduction goal among 

counties where the MNACs at the outlet are equalized across counties. Counties’ 
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MNACs at the outlet equal MNACs at the edge of field divided by the delivery ratio, 

that is  

MNAC𝑜𝑢𝑡𝑙𝑒𝑡𝑖
=

MNAC𝑒𝑑𝑔𝑒−𝑜𝑓−𝑓𝑖𝑒𝑙𝑑𝑖

𝜔𝑖
, 𝑖 = 1, … , 𝐼    (10). 

To implement the conceptual model we use linear programming in GAMS using 

the following steps:  

1. We run the county-level model without N constraints to 

determine the baseline agricultural production, N loading, and county net 

revenues. The baseline results reflect the optimal agricultural production 

strategy of each county when there is no regional water quality goal.  

2. The curve representing each county’s MNAC at the outlet is 

generated based on the reduction in its net revenue with the N loading 

restriction relative to the baseline results. Each county’s MNAC is derived 

based on targeting N reductions within the county. The heterogeneity in 

MNAC curves among counties, contributed by the variation in N delivery 

ratios, physical conditions and the pattern of agricultural production of each 

county, indicates the potential to reduce costs of achieving the watershed N 

reduction goal by targeting. 

3. We minimize costs of achieving the regional water quality goal 

by minimizing the sum of all counties MNACs based on the results of step 2. 

Because of the step-wise nature of the MNAC curves, the equilibrium MNAC 

is close, but not exactly the same among counties. 

4. We rerun the farm level model and assign N reduction goals for 

each county to get the corresponding production strategy to achieve the 

regional water quality goal.  

5. We estimate the benefits of targeting as the reduction in costs of 
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achieving the regional water quality goal when reductions are based on 

different targeting scenarios compared to costs when equal percentage N 

reductions are assigned uniformly. 

2.2.6 Quantifying benefits of within-county targeting 

The benefits of within-county targeting are estimated based on the reduction of 

costs to meet the regional N reduction goal compared to the costs with uniform 

allocation of BMPs within the county. The benefits of within-county targeting are 

evaluated for both the cross-county targeting strategy (within county uniform, cross 

county targeting) and the cross-county uniform strategy (within county uniform, cross 

county uniform). Benefits of within-county targeting are evaluated with respect to 

placement of two BMPs: nutrient management (NM) and Conservation Reserve 

Program (CRP) lands. These BMPs are flexible and can be allocated to cropland 

anywhere. The remaining BMPs investigated in this study: off-stream livestock 

watering, prescribed grazing, grass buffer for cropland, cover crop and conservation 

tillage, have natural location constraints--existing pastures for prescribed grazing, 

adjacent to the stream for grass buffer, and existing pasture and adjacent to the stream 

for off-stream watering, and incorporated into the crop rotation for cover crop and 

conservation tillage. Here the within-county uniform strategy means each county 

applies NM and CRP uniformly over all agricultural land, each TI class getting its 

allocation of CRP and NM according to its corresponding proportion of the county’s 

cropland. Crops are still allocated to TI classes based on profitability reflecting the 

assumption that agricultural producers know the soil productivity of their lands and 

allocate crops accordingly. Our model follows this crop selection behavior, putting 

crops in their most profitable TI classes to realize the objective of profit maximization.  
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Four strategies to meet the regional water quality goal are examined:  

1. within-uniform-cross-uniform (WUCU): within-county uniform 

application of CRP and NM to soil TI classes, regional N reduction goal 

assigned uniformly across counties;  

2. within-uniform-cross-targeting (WUCT): within-county 

uniform application of CRP and NM to soil TI classes, regional N reduction 

goal targeted across counties based on each county’s MNAC;  

3. within-targeting-cross-uniform (WTCU): within-county 

targeting of CRP and NM based on profitability, regional N reduction goal 

assigned uniformly across counties;  

4. within-targeting-cross-targeting (WTCT): within-county 

targeting of CRP and NM based on profitability, regional N reduction goal 

targeted across counties based on each county’s MNAC. The cost under the 

WUCU targeting method serves as the baseline to be compared with the other 

three strategies for achieving regional N reduction goal.  

2.2.7 BMPs 

Seven of the most effective BMPs for N reduction in the Chesapeake Bay 

watershed are considered in this study. They are conservation tillage, 10-meter width 

stream buffers, cover crops, crop NM, off-stream watering without fencing for 

livestock, prescribed grazing and land retirement (Chesapeake Bay Foundation, 2015; 

Kaufman et al., 2014). N reduction efficiencies and costs of BMPs are obtained from 

CAST (Chesapeake Bay Program, 2019). Table App. 2.1 in the supplementary material 

summarizes the average efficiency and costs of BMPs over all counties within the 

Susquehanna watershed. When detailed county-level efficiencies and costs of BMPs 
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are available (Tables App. 2.2 and App. 2.3), that information is used instead of average 

values presented in Table App. 2.1.  

Conservation tillage applied in this study is continuous no till, which reduces soil 

erosion and N runoff (Carpenter et al., 1998). Cover crops improve the soil structure 

and hence prevent N runoff (Ritter et al., 1998). Non-harvested rye and commodity 

wheat serve as cover crops. Non-harvested rye can follow full season soybean and corn. 

Commodity wheat can follow corn and is followed by double-cropped soybean.  

Crop NM directs application of nutrients to crops at the right rate, time, and place 

to mitigate N runoff to the Bay (Chesapeake Bay Program, 2015). Two types of NM, 

with manure and without manure, are considered here (Chesapeake Bay Program, 2015, 

2019; Nutrient Management Expert Panel, 2015). 

Planting buffers along streams has been widely proven as an effective way to 

reduce nutrient loadings entering the waterway (Azzaino et al., 2002). We consider 

grass buffers with 10-meter widths in this study. The allowable buffer area of the entire 

Susquehanna watershed is calculated by GIS by building 10-meter width buffer areas 

around all streams for agricultural lands within the watershed. The estimated maximum 

potential buffer area within each county is based on stream frontage within agricultural 

lands in the county.  

Off-stream watering without fencing for pastured livestock encourages livestock 

to stay out of streams for drinking, resulting in less pollution of the waterway. The 

maximum area that can be treated by off-stream watering is equal to the pasture area of 

each county. 

Prescribed grazing (PG) utilizes a range of pasture management and grazing 

techniques to improve the quality and quantity of the forages grown on pastures and 

reduces the impact of animal travel lanes, animal concentration areas or other degraded 
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areas (Chesapeake Bay Program. 2019). The maximum area that can be treated by PG 

is equal to the pasture area of each county. 

The last BMP included in this study is land retirement under the Conservation 

Reserve Program (CRP). Land retirement reduces N runoff by taking the cropland on 

highly erodible soil out of agricultural activities and placing it in conserving uses such 

as grasses, shrubs, and/or trees. Landowners, who successfully enroll in this program, 

receive a rental payment for their retired land. In this study, the rental payment is based 

on CRP payment rate of each county in 2018 dollars (Table App. 2.3) (USDA FSA, 

2018). The maximum allowable land that can be retired is 25% of total cropland of the 

county (NSAC, 2016). 

2.2.8 Crop and livestock data 

The Susquehanna watershed covers parts of three states, Pennsylvania, New York 

and Maryland, and includes all or part of 66 counties (Susquehanna River Basin 

Commission, 2016). The study area includes these 66 counties, with each considered 

as a representative farm with differentiated soil TI classes and integrated crop and 

livestock production.  

The crops considered are the major crops in the three states comprising the 

watershed, including corn for grain, corn for silage, soybean, wheat, alfalfa, and pasture 

(USDA, 2014). Crop rotation patterns include continuous corn, continuous grass 

pasture, one-year corn one-year soybean, two-year corn three-year alfalfa, one-year 

corn two-year alfalfa, corn followed by double-cropped wheat and soybeans, and corn 

or soybean followed by rye cover. Crop prices/Mg (2018$) for corn grain, corn silage, 

soybean, wheat, and alfalfa hay are $249, $60, $499, $262, and $198, respectively. Crop 

costs/ha (2018$) excluding land rent and fertilizer costs for corn grain, corn silage, full 
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season soybean, rye cover crop, double crop wheat/soybean, alfalfa hay establishment, 

and alfalfa hay are $967, $1,467, $495, $87, $1,029, $720, and $805, respectively (Penn 

State, 2015; Bosch et al., 2018). The model calculates fertilizer costs separately 

depending on nutrient source. Crop nutrient sources include commercial fertilizers, 

legume N carryover, and manure (Penn State, 2015). Total available cropland in each 

county is obtained from 2012 Census of Agriculture (USDA, 2014).  

For livestock production, we consider both confined and pastured animals that are 

typically raised in the Susquehanna watershed, including beef cow-calf, dairy cows, 

hogs (farrow to finish), broilers, layers and turkeys. All hogs, broilers, layers and 

turkeys are assumed to be fed in confinement. For pastured animals, the grazing density 

is 3.2 cows per ha (Penn State Extension, 2016). All beef cows and calves are assumed 

to be pastured. For dairy cows, we assume only lactating cows are confined and dry 

dairy cows and dairy heifers are pastured. For a herd with 100 dairy cows, there are 40 

bred heifers, 43 open heifers , and 47 yearling heifers  for replacement (Virginia 

Cooperative Extension, 2011). Hence, the ratio between lactating cows and replacement 

heifers is 1:1.3 in the model. Livestock budget data are obtained from Penn State 

Extension (Penn State Extension, 2016), University of Maryland Extension (University 

of Maryland, 2011) and Virginia Cooperative Extension (Virginia Cooperative 

Extension, 2011). The unit gross revenues (2018$) for dairy cattle, beef cow-calf and 

hogs (farrow to finish, sold at 280lbs) are $4,128, $844, $174, respectively. Per bird 

gross revenues of layer and turkey are $42 and $29, respectively. Broiler revenues are 

$0.30 per bird, based on integrator payments to growers. The livestock unit costs 

(2018$) excluding land rent and farm raised feed are $2,272, $407, $0.07, $58, $24 and 

$27 for dairy cattle, beef cow-calf, broiler, hogs, layer and turkey respectively (Penn 

State Extension, 2016 for dairy cattle, layer, turkey and hog; UMD extension, 2011 for 
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broiler; Virginia Cooperative Extension, 2011 for beef cow-calf). Livestock facility 

limits for each county within the study area are obtained from CAST under 2012 

scenario (Chesapeake Bay Program, 2019). The feed requirements for dairy cattle, beef 

cow-calf and hogs follow 2011 Virginia Farm Business Management Livestock 

Budgets (Virginia Cooperative Extension, 2011). The feed for broiler, layer and turkey 

are supplied by the poultry integrator. Livestock budgets are provided in the 

supplementary material (Table App. 2.4). 

The annual manure production from confined animal production includes 14.27 

thousand liter (l) per dairy cow, 5.96 Mg per hog for breeding, 1.24 Mg per hog for 

slaughter, 0.001 Mg per broiler, 0.031 Mg per layer and 0.005 Mg per turkey 

(Chesapeake Bay Program, 2019). Sale prices for these manures are $-0.002/liter for 

liquid manure (the farmer is assumed to give the manure away and pay spreading costs), 

zero for solid manure from hog for breeding and hog for slaughter due to their relatively 

low nutrient content and high transportation costs, $14 per Mg for broiler and layer 

litter, and $21 for turkey litter (Bosch et al., 2018; Carreira et al., 2007). All prices and 

costs are adjusted to 2018 price level. The N runoff generated from pastured animals is 

estimated by SWAT-VSA (Table 2.2). 

2.3 Results 

2.3.1 Costs for achieving N reduction goal 

First, we present the results of the baseline scenario, under which each county 

produces at the optimal level without the N reduction constraint. Next, we present the 

results of four strategies to meet the goal of 35% N reduction at the outlet relative to 

the baseline scenario.  
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When there is no N constraint, the total gross margin (TGM) over the entire 

watershed is $2,247,818,647 with $1,420,599,342 from livestock and $827,219,305 

from 1,012,432 ha crop production (Table 2.3). Crop revenue here does not include the 

value of crops fed to livestock since the value of crops for feed is counted as feed costs 

for livestock production in the model. The aggregated N loading level at the edge of 

field for counties and the total N loading level at the outlet are 11,585,539 kg and 

7,720,463 kg respectively. Two BMPs are selected: 1,012,432 ha of no tillage and 

75,036 ha CRP under the baseline scenario. No tillage is more profitable than 

conventional tillage. A positive CRP area indicates that crop returns from some areas 

are lower than CRP payments even when there is no N reduction requirement. All 

cropland within the watershed is under crop production, pasture, or CRP. When there 

is no N constraint, corn grain and soybean are two major crops selected by the model 

because of their profits, followed by corn silage and alfalfa while 161,794 ha 

pastureland are selected for livestock production.  

For a regional 35% N reduction goal, the allowable annual N loading level at the 

outlet is 7,720,463 kg * 0.65 = 5,018,301 kg. To achieve the regional 35% N reduction 

goal, the within-uniform-cross-uniform (WUCU) strategy incurs the highest cost: 

$184,493,267. Under this strategy the TGM decreases to $2,063,325,379, an 8% 

decrease compared with the baseline TGM (Table 2.3). The aggregated N loading level 

at the edge of field for counties and the total N loading level at the outlet are 7,530,601 

kg and 5,018,301 kg, respectively. The crop production area decreases by 33% to 

677,945 ha while total revenues from livestock production decrease to $1,403,877,918. 

Compared with the baseline scenario, corn grain area decreases 37%, which is the 

largest reduction among crops, followed by soybean, 34%. The reduced crop area is 

primarily replaced by an increase in CRP, which expands by over 250%. For BMP 
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application, there are a total of 677,945 ha no tillage, 3,637 ha cover crop rye, 205,723 

ha NM with manure, 242,054 ha NM without manure, 70,774 ha off-stream watering 

without fencing, 35,668 ha prescribed grazing and 269,547 ha CRP (Table 2.4). Buffers 

are not selected. 

The within-uniform-cross-targeting (WUCT) strategy incurs the second highest 

cost, $159,699,178, to meet the 35% reduction in N delivered to the outlet. The cost 

represents a 13% cost saving relative to WUCU. For WUCT which applies CRP and 

NM uniformly within county, the gains from cross-county targeting are mostly 

contributed by county heterogeneities in terms of delivery ratios and agricultural 

production patterns. The cost savings due to cross county targeting result from 

increased crop production area (Table 2.3) and decreased BMP applications (Table 2.4) 

except for no tillage and NM (Table 2.4). Total crop production area increases from 

677,945 ha under (WUCU) to 761,161 ha under (WUCT) (Table 2.3). The areas of 

cover crop rye, off-stream watering without fencing, prescribed grazing and CRP 

decline by 11%, 67%, 75% and 21%, respectively (Table 2.4) while areas with no tillage 

and NM with and without manure increase by 12%, 12% and 4%, respectively. The 

increase in no tillage and NM is due to more land being planted in crops than under the 

WUCU case.  

The within-targeting-cross-uniform (WTCU) strategy has the third highest cost of 

meeting the 35% N reduction, $127,073,156, which is a 31% reduction compared to 

WUCU. The cost reduction is partly due to the increased crop production area, which 

increased from 677,945 ha under WUCU to 786,059 ha. The increased crop area 

relative to WUCU results in increases in no tillage from 677,945 ha to 786,059 ha 

(16%), NM with manure from 205,723 to 389,578 ha (89%) and NM without manure 

from 242,054 to 387,146 ha (60%). CRP increases slightly from 269,547 ha to 271,378 



60 

 

ha, cover crop rye decreases from 3,637 ha to zero. For BMPs for pastured animals, off-

stream watering without fencing decreases from 70,774 ha to 24,044 ha; and prescribed 

grazing slightly increases from 35,668 ha to 39,665 ha. The gains from the within-

county targeting method relative to uniform application (WUCU) are a result of 

targeting CRP and NM based on soil TI classes. The strategy allows each county to 

enroll land with lower marginal value for crop production and higher N runoff potential 

into CRP and apply NM on land with higher marginal value for crop production and 

relatively higher N runoff potential. This leads to a more than 73% increase in NM and 

a 31% total cost saving for the regional water quality goal compared with WUCU.  

The within-targeting-cross-targeting (WTCT) strategy achieves the highest TGM, 

$2,130,533,853, among four strategies when there is a 35% N reduction goal. The cost 

is $117,284,794, a 36% reduction compared to the WUCU strategy. These savings 

result from the highest total crop production among the N reduction strategies, 

eliminating cover crop rye, and reducing off-stream watering without fencing by over 

56,000 ha (80%), prescribed grazing by over 26,000 ha (74%) and CRP levels by over 

50,000 (19%) ha with targeting. Crop areas are larger under WTCT compared to 

WUCU except for corn silage (Table 2.3). For example, some 63,000 ha more corn 

grain is produced with WTCT. Corn grain has the highest profit and generates the 

highest N loading level per ha among crops. No tillage and total NM (with and without 

manure) are higher under targeting reflecting higher overall crop production under 

WTCT compared to WUCU (Table 2.4). Cost reductions under WTCT are contributed 

by targeting NM and CRP based on soil TI classes within county and assigning N 

reductions across counties based on the MNAC curve. Both the unique physical 

conditions--the delivery ratio and the proportion of land with higher productivity, and 
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unique agricultural production patterns--proportion of revenue from pastured livestock 

production, contribute to differences in MNACs for counties within the watershed.  

Counties assigned the highest goals tend to have relatively lower MNACs at the 

outlet, which are contributed by relatively high delivery ratios and low MNACs at the 

edge of field (Equation 10 and Figure 2.3). MNAC at the edge of field for a county is 

affected by the distribution of soil TI classes and agricultural production patterns. A 

larger proportion of higher (wetter) TI classes raises MNAC because higher TI classes 

tend to have higher crop yields. Counties with somewhat higher corn and soybean yields 

will be assigned lower N reduction goals since these two crops bring highest net 

revenues among all crops considered in the model (Figure 2.4). Counties with the 

highest goals assigned tended to have somewhat smaller revenues from pastured 

livestock (Figure 2.3). Raising the proportion of revenues a county obtains from 

pastured livestock raises its MNAC as pasture BMPs--off-stream watering without 

fencing and prescribed grazing, are costly relative to their effectiveness (Table App. 

2.1). While pastured livestock production contributes to high N reduction costs; 

confined livestock production does not. N runoff from confined animal manure disposal 

can be managed with nutrient management which is more cost effective compared to 

pasture BMPs (Table App. 2.1). Further layer, turkey and broiler litter can be sold for 

relatively high prices. 

Ignoring either physical conditions affecting pollution potential or agricultural 

production patterns affecting economic productivity will lead to economically 

inefficient allocations of N reductions. For example, considering physical conditions 

by putting CRP on cropland with high pollution potential but ignoring economic 

productivity and therefore the opportunity costs to retire this land will reduce profit and 
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raise the MNAC if other areas can reduce pollution by an equivalent amount at lower 

opportunity cost. 

2.3.2 Discussion 

Consistent with previous studies advocating spatial targeting based on soil criteria 

to reduce costs of meeting water quality goals (Carpentier et al., 1998; Secchi et al., 

2007; Kaufman et al., 2014; Xu et al., 2019), our results show that the strategy of 

targeting reductions within and among counties is superior to the uniform strategy in 

terms of lowering costs to achieve a given water quality goal.   

By disaggregating the watershed into county-level representative farms, we 

account for heterogeneity in production conditions and constraints within the 

watershed. For example, the CRP enrollment is limited to a maximum area of 25% 

cropland at a county level (NSAC, 2016). Ignoring the constraints imposed by farm 

boundaries, approximated here by county boundaries, may cause N abatement costs to 

be under-estimated.  

Counter to previous studies, which applied a targeting method based on the soil 

criteria (Jha et al., 2010; Uthes et al., 2010; Willis and Privette, 2017), the cross-county 

targeting criteria in this study employing a MNAC curve, reflects physical conditions 

including the delivery ratio and agricultural production characteristics of counties 

within the watershed. Figure 2.5 summarizes the result of the allocation of N reduction 

goals under the WTCT strategy. For example, Herkimer County, NY, with a baseline 

N loading level of 15,956 kg and 18.4% of the N load reaching the outlet, receives the 

goal of zero due to its high marginal cost to reduce one kg of N at the outlet. Total costs 

for meeting regional N reduction goal will be lower if more reduction is assigned to 

other counties with higher N delivery ratios. Allegany County, NY, with 35.7% N 
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delivery ratio to the outlet, is also not required to reduce any amount of N because its 

main agricultural production activity is livestock production (41% net revenues from 

pastured livestock production), which leads to the high MNAC at the edge of field. 

Furthermore, the relatively low delivery ratio of this county implies a high MNAC. 

Among all counties, Schuylkill County, PA receives the highest N reduction goal, 75%. 

Two factors contribute to this result. First, 100% of the N from Schuylkill County will 

reach the outlet. Given the 100% delivery ratio of Schuylkill County any N reduction 

efforts will be completely realized at the outlet, implying the MNAC at the edge of field 

is the same as that at the outlet. Second, MNAC at the edge of field is relatively low 

due to less dependence of revenues on livestock production (12% net revenues come 

from livestock production). 

Within each county, this study targets the agricultural production and BMP 

placement based on the soil TI classes, and therefore represents a more comprehensive 

inter- and intra- county targeting comparison compared to previous literature 

(Carpentier et al., 1998). These findings illustrate that although there are large potential 

gains from targeting practices among counties—allocative efficiency (Abler and 

Shortle, 1991) within farm targeting of practices is even more important.  

Results of this study highlight some policy implications for the Susquehanna 

watershed. Differentiated performance goals are necessary for allocating loading 

reductions efficiently within and among counties and promoting regional cost-

effectiveness (Carpentier et al., 1998; Shortle et al., 2012). To achieve efficiency in 

allocating N reductions, policy makers should place greater emphasis on targeting 

BMPs through subsidies and technical assistance to counties with lower costs to meet 

N reduction goals. For the Susquehanna watershed, heterogeneity of physical 

conditions (soil TI class and delivery ratio) and agricultural production patterns (crop 
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and livestock combinations) both contribute to the large differences of the marginal cost 

curves among counties and the potential to increase economic efficiency by targeting.  

2.4 Summary 

In this study, we assume policymakers are seeking to reduce N loadings by 35% 

to the outlet of the Susquehanna watershed. Agriculture plays an important role in 

achieving these reductions. The two-level targeting method applied in this study 

explores the possibility of lowering the costs to achieve these reductions by targeting 

reductions both among and within counties. Results of this study suggest that targeting 

methods should be considered at both within- and cross-county levels to increase cost-

effectiveness of N reductions. To achieve the 35% N reduction goal at the watershed 

outlet, cross-county targeting, within-county targeting, and within- and cross-county 

targeting lower N abatement costs relative to uniform application by 13%, 31% and 

36%, respectively.   

  Three limitations of our study should be mentioned. First, maximizing cost-

effectiveness to meet the regional water quality goal is the only objective in this study. 

We do not consider equity for counties within the watershed as some counties do not 

need to reduce N loading, while the highest N reduction goal received by a county is 

75%. However, given the voluntary nature of agricultural BMP adoption and the use of 

subsidies (cost-share and technical assistance) to encourage adoption, the policy 

implication of the study focuses on the optimal allocation of government subsidies to 

regions where they can be used most effectively. Second, we do not consider the 

transactions and information costs for the application of targeting, which may reduce 

the gains from targeting methods, which are based on compliance cost savings. 

Targeting may necessitate more information to determine which counties to target, 
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which would increase costs. But Carpentier et al. (1998) showed that transaction and 

information costs could be lower under the targeting method compared with the uniform 

application because targeting methods place BMPs in ‘hot spots’ for nutrient loading 

and only information about such hot spots is needed. Further research, for example, 

quantifying the transaction costs to achieve targeting goals for within and cross county 

targeting will be needed to determine effects of transactions costs on feasibility of 

individual and regional level targeting methods. Third, we only consider effects of N 

loadings delivered to the outlet of the watershed and disregard local effects. For 

example, estimated N loadings at the edge of field under WTCT were some 550,000 kg 

larger than under WUCU (Table 2.3). Further research could attempt to estimate costs 

of local damages from these increased loadings and the effects of these costs on gains 

from targeting. 
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Tables 

Table 2.1 Crop yields (mg/ha)a 

  Corn Soybean Wheat Alfalfa  Rye b 

Mean 4.86  3.18  5.04  9.75  4.84  

SD 0.47  0.30  0.44  0.60  0.54  

CV 0.10  0.09  0.09  0.06  0.11  
a Values are means over TI classes and years (1981 to 2010) 
b Rye is an unharvested cover crop in our model 

 

 

 

Table 2.2 N loading level by crops (kg/ha)a 

  Corn Soybean Wheat Alfalfa Rye 
Pastured 

Dairy  

Pastured 

Beef 

Mean 9.61  6.60  8.76  4.72  5.32  20.88 30.91 

SD 0.95  0.69  0.94  0.43  0.62  4.22 4.93 

CV 0.10  0.10  0.11  0.09  0.12  0.20 0.16 
a Values are means over TI classes and years (1981 to 2010) 
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Table 2.3 Farm revenues, costs, and production under the baseline and with the 35% N reduction goal 

  Baseline 
Within-Uniform-Cross-Uniform 

(WUCU) 
Within-Uniform-Cross-Targeting 

(WUCT) 
Within-Targeting-Cross-Uniform 

(WTCU) 
Within-Targeting-Cross-Targeting 

(WTCT) 

Total gross margin ($) 2,247,818,647  2,063,325,379  2,088,119,469  2,120,745,490  2,130,533,853  

Cost of meeting regional 35% N reduction goal  184,493,267  159,699,178  127,073,156  117,284,794  

N loading level at edge-of-field (kg) 11,585,539  7,530,601  8,085,637  7,530,601  8,085,637  

N loading level at outlet (kg) 7,720,463  5,018,301  5,018,301  5,018,301  5,018,301  

Total livestock revenue ($) 1,420,599,342  1,403,877,918  1,397,477,054  1,396,911,728  1,395,695,706  

Dairy cattle revenue ($)  736,621,327  736,621,327  736,621,327  736,621,327  736,621,327  

Broiler revenue ($) 41,705,787  41,705,787  41,705,787  41,705,787  41,705,787  

Layer revenue ($) 512,297,838  512,297,838  512,297,838  512,297,838  512,297,838  

Turkey revenue ($) 12,923,868  12,923,868  12,923,868  12,923,868  12,923,868  

Beef cattle revenue ($) 117,050,522  100,329,099  93,928,235  93,362,909  92,146,887  

Total crop revenue 827,219,305  659,447,461  690,642,414  723,833,762  734,838,146  

Total cropland area (ha) 1,012,432  677,945  761,161  786,059  799,365  

Corn grain 456,710  287,479  329,369  343,594  350,326  

Corn silage 46,051  46,226  46,134  45,984  45,902  

Soybean 495,851  326,799  368,593  382,676  389,319  

Alfalfa 13,820  13,803  13,818  13,805  13,818  

Rye Cover 0  3,637  3,248  0  0  

Pasture 161,794  149,837  145,259  144,855  143,986  

CRP 75,036  269,547  213,689  271,378  219,364  
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Table 2.4 Total BMP applications (ha) under uniform and targeting strategies to achieve the regional 35% N reduction goal 

  
Within-Uniform-Cross-Uniform 

(WUCU) 

Within-Uniform-Cross-Targeting 

(WUCT) 

Within-Targeting-Cross-Uniform 

(WTCU) 

Within-Targeting-Cross-Targeting 

(WTCT) 

No Tillage 677,945  761,161  786,059  799,365  

Cover Crop 3,637  3,248  0  0  

Nutrient Management with Manure 205,723  231,098  389,578  382,292  

Nutrient Management without Manure 242,054  250,884  387,146  225,227  

Grass Buffers 0  0  0  0  

CRP 269,547  213,689  271,378  219,364  

Off-stream Watering without Fencing 70,774  23,605  24,044  14,104  

Prescribed Grazing 35,668  8,809  39,665  9,101  
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Figures 

 
Figure 2.1 Distribution of TI classes by county (class 1 indicates least runoff prone 

and class 10 is most runoff prone) 
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Figure 2.2  The frequency of county-level delivery ratios for Susquehanna watershed 

Counties (Observations=66) 
 

   

Figure 2.3 Characteristics of counties with lower and higher assigned N reduction 

goals 
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Figure 2.4 Weighted average of corn and soybean yields (mg/ha) for counties with 

lower and higher assigned N reduction goals 
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Figure 2.5 N Reductions allocated under within-targeting-cross-targeting method 
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Appendix tables 

Table App 2.1 Average BMP efficiencies and costs over all countiesa 

BMPs 
Average N loading 

reduction (%) 

Average annualized cost/ ha 

(2018$) 

Conservation tillage 10 -111 

Stream buffers 37 495 

Off-stream watering without fencing 5 73 

Prescribed grazing 11 206 

Rye cover crop b  - - 

Nutrient management with manure 27 44 

Nutrient Management without 

manure 
12 44 

Land retirement (CRP)  100 268 
a When county-level BMPs efficiency and cost data are available, that information is used instead of 

average values presented here. See Tables S2 and S3.  
b N loading reductions from cover crops are estimated by SWAT-VSA and vary by soil and TI class. 

Commodity wheat is also a cover crop. Rye and/or wheat cover crop costs are included as part of the 

wheat-double cropped soybean rotation. 

 

Table App. 2.2 Grass buffer efficiency by county a 

County  State Grass Buffer 

Adams County PA  0.61  

Bedford County PA 0.62  

Berks County PA 0.68  

Blair County PA 0.62  

Bradford County PA 0.62  

Cambria County PA 0.62  

Cameron County PA 0.62  

Carbon County PA 0.68  

Centre County PA 0.62  

Chester County PA 0.61  

Clearfield County PA 0.62  

Clinton County PA 0.62  

Columbia County PA 0.62  

Cumberland County PA 0.62  

Dauphin County PA 0.68  

Elk County PA 0.62  

Franklin County PA 0.68  

Fulton County PA 0.68  

Huntingdon County PA 0.68  

Indiana County PA 0.62  

Jefferson County PA 0.62  

Juniata County PA 0.68  
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Lackawanna County PA 0.62  

Lancaster County PA 0.61  

Lebanon County PA 0.68  

Luzerne County PA 0.62  

Lycoming County PA 0.62  

McKean County PA 0.62  

Mifflin County PA 0.68  

Montour County PA 0.68  

Northumberland County PA 0.68  

Perry County PA 0.68  

Potter County PA 0.62  

Schuylkill County PA 0.68  

Snyder County PA 0.68  

Somerset County PA 0.62  

Sullivan County PA 0.62  

Susquehanna County PA 0.62  

Tioga County PA 0.62  

Union County PA 0.68  

Wayne County PA 0.62  

Wyoming County PA 0.62  

York County PA 0.68  

Allegany County NY  0.62  

Broome County NY 0.62  

Chemung County NY 0.62  

Chenango County NY 0.62  

Cortland County NY 0.62  

Delaware County NY 0.62  

Herkimer County NY 0.62  

Livingston County NY 0.62  

Madison County NY 0.62  

Oneida County NY 0.62  

Onondaga County NY 0.62  

Ontario County NY 0.62  

Otsego County NY 0.62  

Schoharie County NY 0.62  

Schuyler County NY 0.62  

Stueben County NY 0.62  

Tioga County NY 0.62  

Tompkins County NY 0.62  

Yates County NY 0.62  

Baltimore County MD  0.61  

Carroll County MD 0.61  

Cecil County MD 0.61  
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Harford County MD 0.61  

a CAST Source data (Chesapeake Bay Program, 2019); Values in this table are the remaining proportion of N 

loading after applying the grass buffer.  

 

 

Table App. 2.3 BMPs costs/payments by county (2018$) a 

County  State 
Nutrient Management with 

& without Manure ($/ha) 

Grass 

Buffer($/ha) 

CRP Payment 

($/ha)  

Adams County PA  40.94  527.87  329.81  

Bedford County PA 40.94  527.87  227.96  

Berks County PA 40.94  527.87  346.96  

Blair County PA 40.94  527.87  439.53  

Bradford County PA 40.94  527.87  285.35  

Cambria County PA 40.94  527.87  329.67  

Cameron County PA 40.94  527.87  375.43  

Carbon County PA 40.94  527.87  380.84  

Centre County PA 40.94  527.87  395.90  

Chester County PA 40.94  527.87  243.80  

Clearfield County PA 40.94  527.87  227.61  

Clinton County PA 40.94  527.87  332.96  

Columbia County PA 40.94  527.87  233.34  

Cumberland County PA 40.94  527.87  264.33  

Dauphin County PA 40.94  527.87  241.38  

Elk County PA 40.94  527.87  179.74  

Franklin County PA 40.94  527.87  270.20  

Fulton County PA 40.94  527.87  226.37  

Huntingdon County PA 40.94  527.87  437.16  

Indiana County PA 40.94  527.87  288.15  

Jefferson County PA 40.94  527.87  223.25  

Juniata County PA 40.94  527.87  241.81  

Lackawanna County PA 40.94  527.87  294.80  

Lancaster County PA 40.94  527.87  548.29  

Lebanon County PA 40.94  527.87  420.10  

Luzerne County PA 40.94  527.87  385.21  

Lycoming County PA 40.94  527.87  337.21  

McKean County PA 40.94  527.87  324.00  

Mifflin County PA 40.94  527.87  409.26  

Montour County PA 40.94  527.87  267.05  

Northumberland County PA 40.94  527.87  267.83  

Perry County PA 40.94  527.87  240.10  

Potter County PA 40.94  527.87  356.79  

Schuylkill County PA 40.94  527.87  262.34  

Snyder County PA 40.94  527.87  246.12  

Somerset County PA 40.94  527.87  196.74  

Sullivan County PA 40.94  527.87  257.94  
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Susquehanna County PA 40.94  527.87  268.58  

Tioga County PA 40.94  527.87  276.04  

Union County PA 40.94  527.87  298.07  

Wayne County PA 40.94  527.87  313.91  

Wyoming County PA 40.94  527.87  265.37  

York County PA 40.94  527.87  341.90  

Allegany County NY  49.36  406.08  115.85  

Broome County NY 49.36  406.08  212.15  

Chemung County NY 49.36  406.08  104.43  

Chenango County NY 49.36  406.08  220.73  

Cortland County NY 49.36  406.08  183.03  

Delaware County NY 49.36  406.08  318.74  

Herkimer County NY 49.36  406.08  137.61  

Livingston County NY 49.36  406.08  155.11  

Madison County NY 49.36  406.08  168.61  

Oneida County NY 49.36  406.08  157.27  

Onondaga County NY 49.36  406.08  184.97  

Ontario County NY 49.36  406.08  147.39  

Otsego County NY 49.36  406.08  115.09  

Schoharie County NY 49.36  406.08  219.87  

Schuyler County NY 49.36  406.08  119.63  

Stueben County NY 49.36  406.08  127.38  

Tioga County NY 49.36  406.08  117.41  

Tompkins County NY 49.36  406.08  193.85  

Yates County NY 49.36  406.08  206.74  

Baltimore County MD  58.24  565.28  307.61  

Carroll County MD 58.24  565.28  388.96  

Cecil County MD 58.24  565.28  306.02  

Harford County MD 58.24  565.28  361.99  

a CAST Source data (Chesapeake Bay Program, 2019).  

 

Table App. 2.4 Livestock budget (2018 price level) a 

  Gross revenue ($/unit) Total costs ($/unit) Net revenue ($/unit) 

Dairy Cattle b 4,128 2,272 1,856 

Beef Cow-calf c 844 407 437 

Broiler d 0.3 0.07 0.23 

Hog b 174 58 116 

Layer b  42 24 18 

Turkey b 29 27 2 
a Gross revenue, total costs and net revenue are all adjusted to 2018 price level by multiplying their 

corresponding GDP deflators. See Bosch et al. (2018). Total costs exclude land rent and feed that can 

be raised or purchased and manure spreading. 
b Penn State Extension, 2016 
c Virginia Cooperative Extension, 2011 
d University of Maryland Extension, 2011 
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Chapter 3 Selling Nutrient Reduction Credits under Uncertainty with Credit 

Banking 

3.1 Introduction 

Because of high rates of nutrient and sediment runoff leading to eutrophication 

and dead zones in the Chesapeake Bay, the U.S. Environmental Protection Agency (US 

EPA) set up the Total Maximum Daily Load (TMDL) to mitigate runoff in December 

2010. The program aims to reduce 25% nitrogen (N), 24% phosphorus (P) and 20% 

sediment by 2025 relative to the loading level in 2010 (US EPA, 2016). One way of 

inducing agricultural sources to voluntarily reduce their emissions is through water 

quality trading (WQT). WQT has been viewed as a promising policy tool and is 

advocated by policy makers and government agencies because of its market-based 

criteria that could improve the cost-effectiveness of policies to achieve these water 

quality goals. WQT allows sources with high abatement costs to purchase credits from 

sources with relatively lower costs, which generates additional revenues for credit 

sellers while helping buyers meet their own caps with lower costs.  

The agricultural sector, contributing 42% N loads and 54% P loads to the 

Chesapeake Bay and exempted from federal permitting for nutrient emission, is 

expected to participate in the WQT program and contribute reductions for improving 

water quality (Van Houtven et al., 2012). For WQT programs within the Chesapeake 

Bay watershed, landowners usually need to first achieve a baseline level of nutrient 

reduction through all required BMPs that are applicable to their agricultural operations 

and then they will be allowed to generate and sell nutrient credits to potential trading 

partners. Once the baseline level of nutrient mitigation is achieved, additional 

reductions realized by approved BMP enhancements or land conversion are eligible to 
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generate nutrient credits for selling to buyers who generate nutrient runoff in the same 

tributary or watershed for the same calendar or compliance year (Branosky et al., 2011).  

WQT creates another revenue source for agricultural producers from selling their 

earned nutrient credits and helps them realize cost savings from BMP application in the 

short term. However, farmers are often reluctant to participate in WQT program 

regardless of the direct financial incentive. One issue is the limited flexibility of selling 

nutrient credits, that is farmers cannot bank awarded nutrient credits to the next year; 

all unsold credits in this year will be zero next year regardless of future demand. For 

risk-averse agricultural producers , the market uncertainty, like the ambiguity about 

supply and demand within WQT markets, would discourage credit providers from 

entering the WQT markets (Walker and Selman, 2014). The inability to bank unsold 

credits means that farmers may not get full payment from the environmental services 

provided by them and cannot take advantage of fluctuations in credit prices since credit 

demand varies year by year. For example, under changeable climates, farmers may face 

extraordinary demand with high credit prices for some years and may not be able to sell 

all their credits for other years. These issues lead to further uncertainty about the 

profitability of participating in the WQT program. Hence, the prohibited credit banking 

reduces financial incentives for agricultural producers to participate in the WQT 

program.  

To mitigate this inflexibility, EPA published the new water quality trading policy 

memorandum in February 2019, which identifies six market-based principles designed 

to encourage creativity and innovation in the development and implementation of 

programs that help to reduce pollutants in America’s waters (US EPA, 2019). One of 

these six principles is allowing water quality credits to be banked for future use. 
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There is extensive previous literature on the dynamics of the tradeable permits 

system with banking and decision making for various environmental and natural 

resources problems, such as air emission and groundwater trading. The air emission 

offsets program has achieved success in terms of the cost saving over command and 

control (Tietenberg, 2010). Cronshaw and Kruse (1996) develop a firm-level profit 

maximization model with a temporal setting of allowing permits banking and find that 

a firm would not bank permits unless the growth rate of permit price rises with the rate 

of interest. Kling and Rubin (1997) use an optimal control model to explore the 

incentive of firms for borrowing and banking emission permits for offsetting firms’ own 

emissions or selling to other firms in the future. They find that when emission’s permits 

can freely move intertemporally, firms will not choose the optimal levels of emissions 

and outputs, but produce more outputs and generate more emissions than optimal 

through borrowing permits to meet their emission caps in early periods and generate 

less emissions than optimal in later periods. Schennach (2000) analyzes the permit 

banking for electricity-generating units by building a framework that determines the 

length of the banking period, the absolute level of the emissions and the permit price. 

The framework also incorporates banking behavior under uncertainty about future 

marginal pollution abatement costs and the demand for electricity. Results show that 

emission permit banking could smooth the effect of the shock on the permit price level.  

For groundwater extraction, Provencher and Burt (1994) investigate farmers’ 

behavior regarding the use of annually assigned tradeable permits to the in situ 

groundwater stock through a dynamic programming framework with stochastic surface 

water deliveries. The tradeable permits represent the private groundwater stock of each 

farm. Permit trading changes the farm’s activities of pumping water over time, 

increasing (decreasing) when they purchase (sell) the permits. The permit price could 
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play a role in controlling the rate of groundwater pumping over time. Laukkanen and 

Koundouri (2006) explore the economic and environmental outcomes of the optimal 

individual and social extraction rates by the method of dynamic programming with 

stochastic rainfall. Results show that the individual optimal extraction rate exceeds the 

socially optimal rate and the competitive extraction leads to serious depletion of the 

aquifer and significant welfare losses for a small-capacity aquifer. 

WQT is similar to tradeable permit system of air emission and groundwater 

extraction because participants have to sacrifice revenues to generate credits in all cases 

and intertemporal decision making is used for maximizing the present value. However, 

WQT differs from these two topics in three aspects. First, unlike the air emission trading 

market in which every participant has to be in compliance with the emission cap, and 

unlike the groundwater permit market in which farmers need the groundwater for crop 

production, nutrient credit suppliers (farmers) do not need to meet their water quality 

goal and hence banking nutrient credits for future use does not serve for smoothing the 

abatement cost curve across time periods. Second, the nutrient credits are obtained 

through applying eligible BMPs. The BMP installation cost for participating in the 

WQT program needs to be added into the individual’s objective. Third, WQT markets 

are relatively thin since buyers and sellers are required to generate nutrient runoff to the 

same tributary or watershed. As a result, nutrient credit prices are usually determined 

by bilateral negotiation instead of by government agency (Woodward and Kaiser, 

2002).  

Transaction costs, which are inevitable in WQT markets, are considered in this 

study as well. Previous literature regarding the tradeable-permit system for pollution 

mitigation shows that the transaction cost should be incorporated into decision making 

for the trading implemented for WQT markets (Stavins, 1995; Hahn and Hester, 1989; 
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Woodward et al., 2002; DeBoe and Stephenson, 2016). Following Stavins (1995) and 

Stephenson and Shabman (2017), transaction costs involved in WQT for credit sellers 

can be identified as (i) pre-trading costs, including the administration costs associated 

with the certification, verification and registration for nutrient credits; (ii) costs 

associated with time and efforts for credits trading such as searching for potential 

buyers, bargaining during the negotiation process, and contracting costs to implement 

the trading agreements; (iii) post-trading transaction costs regarding monitoring and 

enforcement of BMP application in the agreement.  

To explore these problems exclusively raised by WQT, this paper aims to examine 

farmers’ credit-selling behavior and corresponding economic outcomes for WQT when 

credit banking is allowable, taking transaction costs into consideration. An optimal 

control framework with credit prices driven by a stochastic process in WQT markets is 

used for the analysis. 

 

3.2 Theoretical Framework 

Due to uncertain future demands for credits, the option to delay selling credits to 

the following time periods could be valuable. By delaying the time to sell nutrient 

credits, a credit owner can observe whether credit prices increase or decrease before 

making a selling decision. One assumption for the theoretical framework is that the 

nutrient credit price is taken as given by farmers since they do not have market power.  

We develop the theoretical framework in two stages. In the first, we hold the BMP 

investment as given, and examine the farmer’s behavior of credit sales with the 

possibility of credit banking. In the second, we allow her to choose an optimal BMP 

investment level for credit generation along with a path of credit sales when credit 

banking is allowed. For both stages, we examine the outcomes in both model variants 



87 

 

taking into account transaction costs associated with credit banking and sales. Since 

nutrient credits here are term credits that are awarded annually, the BMP considered in 

this framework is for agricultural working land. There are total four scenarios will be 

discussed in the theoretical framework. 

3.2.1 Dynamic optimization model for credits selling when banking is allowed 

with fixed BMP investment 

We formulate a dynamic model to examine individual credit owner’s decisions 

regarding credits selling and banking. We assume a farmer participating in a WQT 

program by investing fixed BMP level on working land and being awarded q credits 

each year over a T-year contract. The farmer aims to maximize her discounted profits 

from selling these credits. She can choose the amount of credits to sell in this time 

period and store the unsold credits to the next time period. The objective function for 

individuals’ profit maximization problem at time t is  

 Max
u(t)

∫ p(t)𝑢(𝑡)𝑒−𝑟𝑡𝑑𝑡
𝑇

0

   (1) 

s. t.  �̇� = −𝑢(𝑡) + 𝑞,   (2) 

A(0) = 𝐴0 = 0.   (3) 

u(t) is the amount of sold credits at time t, given that the available credits are A(t); r 

is the interest rate, and p(t) is the unit price of credits. Equation (2) is the equation of 

motion when credit banking is allowed; equation (3) is the initial state of credit stock 

based on credits awarded from one-unit BMPs investment.  

Credit price is assumed to be stochastic, driven by the demand for credits in WQT 

markets. Following Clarke and Reed (1989), the price is driven by stochastic processes 

with independent increments: 

𝑑𝑝(𝑡) = α𝑝(𝑡)dt + σ𝑝(𝑡)dw(t),     (4) 
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where α is the constant drift, σ is the constant volatility and w is the increment of a 

standard Wiener process, w(t)~N(0, t) . Following Kafash and Nadizadeh (2017), 

equation (4) could be analytically solved 

 p(t) = 𝑝0𝑒
((α−

1
2

𝜎2)t+𝜎𝑤(𝑡))
, p(0) = 𝑝0.  (5) 

The mean of the price is 𝐸(𝑝(𝑡)) = 𝑝0𝑒αt.  

The Hamiltonian based on equation (1) to (3) could be written as: 

H = p(t)𝑢(𝑡) + λ(t)[−𝑢(𝑡) + 𝑞].  (6) 

The control variable, 𝑢(𝑡), is linear in the Hamiltonian. This implies a bang-bang 

solution in which the farmer sells credits either at the lower bound (𝑢(𝑡) = 0) or the 

upper bound ( 𝑢(𝑡) = 𝐴(𝑡) ) to maximize her objective function. That means the 

decision for banking and selling credits depend on the exogenous price fluctuation, 

which will be examined later in the empirical section.  

The transaction cost function consists of parts (i), (ii) and (iii) mentioned in 

previous section. In previous literature, the transaction costs for WQT markets are 

usually defined in a linear way (DeBoe and Stephenson, 2016). The linear way is proper 

to represent the costs associated with the administration part, but trading and post-

trading costs are likely to be nonlinear (part ii and iii). We split the transaction costs 

into two parts in this study. The first part, 𝐶1(𝐴(𝑡)), assumed to be positively linear in 

credit stock, denotes the transactions costs for pre-trading (part i). Since transaction 

costs associated with credits generation are fixed over time given the same amount of 

credits awarded in each time period (part i) they are not considered here. 𝐶1(𝐴(𝑡)) only 

accounts for the administration costs associated with credit banking. Because there is 

no existing banking policy for WQT markets, we base these transaction costs on a 

similar program, air emission trading program. The program requires that any person 
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who wants to bank emission reductions should submit an application to the Air 

Pollution Control Officer, which involves fees for credit banking application, credit 

transfer application, credit reclassification application and an advisory opinion (Air 

Pollution Control District County of San Diego, 2019). We assume that the unsold and 

banked nutrient credits incur similar transaction costs to those of the air emission 

trading program, for which 𝐶1
′(𝐴(𝑡)) > 0 and for which 𝐶1

′′(𝐴(𝑡)) = 0. 𝐶2(𝑢(𝑡)), 

transaction costs associated with trading and post-trading (part ii and iii), is a function 

of credits sold, for which 𝐶2
′(𝑢(𝑡)) > 0 and for which 𝐶2

′′(𝑢(𝑡)) > 0. The convexity 

of 𝐶2(𝑢(𝑡)) comes from the fact that the more credits to be sold, the more searching 

and bargaining efforts will occur per unit of credit. In addition, the monitoring and 

enforcement costs (part iii) increase at an increasing rate with increasing BMP 

investment in working agricultural land (Rees and Stephenson, 2017). The problem 

could be expressed as 

Max
u(t)

∫ [p(t)𝑢(𝑡) − 𝐶1(𝐴(𝑡)) − 𝐶2(𝑢(𝑡))]𝑒−𝑟𝑡𝑑𝑡
𝑇

0

.  (7) 

Equation (7) is subject to equation (2) and (3) as well. The Hamiltonian is: 

H = [p(t)𝑢(𝑡) − 𝐶1(𝐴(𝑡)) − 𝐶2(𝑢(𝑡))] + λ(t)[−𝑢(𝑡) + 𝑞].  (8) 

The maximum principle for equation (8) implies the first-order conditions: 

∂H

∂u(t)
= 𝑝(𝑡) −

𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)
− λ(t) = 0,   (9) 

−
∂H

∂A(t)
=

𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)
= λ(t)̇ − 𝑟λ(t), (10) 

∂H

∂λ(t)
= −𝑢(𝑡) + 𝑞 = �̇�.      (11) 

Rearrange equation (9) and we get: 

λ(t) = 𝑝(𝑡) −
𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)
.   (12) 
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From equation (12), the derivative of λ(t) with respect to time can be written as 

λ(t)̇ = p(t)̇ −
𝜕𝐶2

2(𝑢(𝑡))

𝜕(𝑢(𝑡))2

𝜕𝑢(𝑡)

𝜕𝑡
= p(t)̇ −

𝜕𝐶2
2(𝑢(𝑡))

𝜕(𝑢(𝑡))2
u(t)̇ .  (13) 

Putting equations (12) and (13) into (10), we get: 

𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)
= p(t)̇ −

𝜕𝐶2
2(𝑢(𝑡))

𝜕(𝑢(𝑡))2
u(t)̇ − 𝑟 (𝑝(𝑡) −

𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)
).  (14) 

Rearranging equation (14), we could get: 

𝑟 =

p(t)̇ −
𝜕𝐶2

2(𝑢(𝑡))

𝜕(𝑢(𝑡))
2 u(t)̇ −

𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)

𝑝(𝑡) −
𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)

.    (15) 

Equation (15) is the equilibrium condition with transaction costs when nutrient credits 

can be banked for future use, conditional on the predetermined BMP investment. This 

result is an analogue of the Hotelling’s rule. For the RHS of equation (15), the 

denominator is the net price for credit sales at time t; the numerator is the net price 

increase for credit sales over time, (p(t)̇ −
𝜕𝐶2

2(𝑢(𝑡))

𝜕(𝑢(𝑡))
2 u(t)̇ ), minus the marginal cost for 

holding credits, (
𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)
), which is the net price increase rate. In equilibrium, the LHS 

of equation (15), the interest rate, should equal the RHS of equation (15), the net price 

increase rate of nutrient credits. In equilibrium the farmer is indifferent between selling 

credits now versus waiting to sell them in a future period. If the net credit price increase 

rate is greater than the interest rate, the farmer can benefit from waiting to sell credits; 

if the interest rate is greater than the net credit price increase rate, the farmer will choose 

to sell all available credits and bank the revenues. u(t) = 𝑢∗  can be derived from 

equation (15). 
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3.2.2  Credit selling decision model when BMP investment is contingent on the 

credit-selling behavior 

In this section, the BMP investment is endogenous. Consider a problem of a 

farmer who has met the threshold requirement of the WQT program and observed the 

potential profitability of participation. The first step for this farmer is to determine the 

level of BMP investment to generate nutrient reduction credits. The BMP investment 

involves costs for installment and maintenance. Hence, the BMP investment area 

depends on the trade-off between the expected NPV of revenues generated by nutrient 

credit selling and BMP investment costs. The problem for the farmer in the first step is 

to maximize her expected total revenues from selling credits over a T-year contract to 

determine the BMP investment level given the price information at t = 0. For the 

second step, the farmer needs to determine the optimal timing of credit sales to 

maximize the NPV from credit sales over time. 

WQT without transaction costs 

We consider the case without transaction costs. The NPV of the expected profits 

to participate in the WQT program over a T-year contract at t = 0  can be 

mathematically expressed as: 

𝑅(𝑉0) = 𝐸 ∫ (𝑓(𝑙)𝑝(𝑡) − 𝐶(𝑙))𝑒−𝑟𝑡𝑑𝑡
𝑇

0

= ∫ (𝑓(𝑙)𝐸(𝑝(𝑡))) − 𝐶(𝑙))𝑒−𝑟𝑡𝑑𝑡
𝑇

0

= ∫ (𝑓(𝑙)𝑝0𝑒αt − 𝐶(𝑙))𝑒−𝑟𝑡𝑑𝑡
𝑇

0

= ∫ (𝑓(𝑙)𝑝0𝑒−(𝑟−α)𝑡 − 𝐶(𝑙)𝑒−𝑟T)𝑑𝑡
𝑇

0

=
𝑓(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
−

C(𝑙)(1 − 𝑒−𝑟T)

𝑟
, 𝑤ℎ𝑒𝑟𝑒 𝑝0 > 𝑃.  (16) 

𝑉0 is the NPV of credit selling profits at time 0; 𝑝(0) = 𝑝0 is the WQT credit price 

at time 0, which is assumed to be greater than the threshold for participation, 𝑃. 𝑙 is the 
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BMP investment level which needs to be determined. 𝑓(𝑙) is the total credits awarded 

annually to the farmer based on nutrient reduction at the edge of field and the expected 

quantity of credits sold for each time period at t = 0. 𝑓(𝑙) is assumed to be concave, 

i.e. 𝑓′(𝑙) > 0 𝑎𝑛𝑑 𝑓′′(𝑙) < 0. The concavity comes from the fact that the more BMPs 

applied, the more nutrient runoff could be reduced, but the amount of nutrient reduction 

at the edge of field from one more unit of BMP application is decreasing when the soil 

runoff potential is heterogeneous within a farm. 𝐶(𝑙) is the cost function for BMP 

investment, which is assumed to be convex. If the expected credit selling revenue from 

extra BMP application, 𝑓(𝑙)𝐸(𝑝𝑡) , is always greater than expected revenue from 

agricultural production without extra BMPs, a corner solution applies and the farmer 

will incorporate all her crop production with the BMP and vice versa. The farmer’s 

BMP application level with the goal of NPV maximization at t = 0 could be specified 

as  

max
𝑙 

𝑅(𝑉0) =
𝑓(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
−

C(𝑙)(1 − 𝑒−𝑟T)

𝑟
  (17)  

Taking the derivative with respect to 𝑙, 

∂𝑅(𝑉0)

∂𝑙
=

𝑓′(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
−

𝐶′(𝑙)(1 − 𝑒−𝑟T)

𝑟
= 0, (18) 

𝑓′(𝑙∗)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
=

𝐶′(𝑙∗)(1 − 𝑒−𝑟T)

𝑟
.         (19) 

Equation (19) shows that in equilibrium the optimal BMP application level, 𝑙∗, 

occurs where the LHS of equation (19), the expected NPV obtained from applying one 

more unit BMP, equals the RHS of equation (19), the marginal nutrient abatement cost 

through BMP application. The BMP should be applied to lands with highest runoff 

potential first since nutrient reduction is largest and more credits will be awarded in 
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these lands. The BMP will be applied until the marginal revenue generated by one more 

ha with BMPs equals the marginal BMP application cost.   

After installing 𝑙∗-acres of BMP and obtaining 𝑓(𝑙∗) credits in each time period, 

the next step for the farmer is to determine the optimal selling path for these credits 

over a T-year contract with the allowance of storing the credits for future use. The credit 

selling problem over time can be written as 

 max
u(t)

∫ p(t)𝑢(𝑡)𝑒−𝑟𝑡𝑑𝑡
𝑇

0

           (20) 

s. t.  �̇� = −𝑢(𝑡) + 𝑓(𝑙∗),   (21) 

A(0) = 𝐴0 = 0.   (22) 

𝐴𝑡 is the stock of credits; A0 is the initial level of the stock of credits. 

The current value Hamiltonian is  

H = p(t)𝑢(𝑡) + λ(t)[−𝑢(𝑡) + 𝑓(𝑙∗)].  (23) 

Similar to case in which the BMP investment is fixed, when there are no transaction 

costs, the control variable, 𝑢(𝑡), is linear in the Hamiltonian. The bang-bang solution 

implies the farmer should sell either zero or A(t) in each time period to maximize profit. 

WQT with transaction costs 

When transaction costs are considered in the expected NPV for taking part in the 

WQT, the NPV of the expected profits to participate into the WQT program over T 

years can be expressed as 

R𝑇(𝑉0) = 𝐸 ∫ [𝑓(𝑙)𝑝𝑡 − 𝐶(𝑙) − 𝐶2(𝑓(𝑙))]𝑒−𝑟𝑡𝑑𝑡
𝑇

0

=
𝑓(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α

−
(𝐶(𝑙) + 𝐶1(𝑓(𝑙)) + 𝐶2(𝑓(𝑙)))(1 − 𝑒−𝑟T)

𝑟
.   (24) 
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The farmer’s land allocation problem with the goal of NPV maximization at time 

0 could be specified as  

max
𝑙 

R𝑇(𝑉0) =
𝑓(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
−

(𝐶(𝑙) + 𝐶2(𝑓(𝑙)))(1 − 𝑒−𝑟T)

𝑟
  (25)  

Taking the derivative with respect to 𝑙, 

∂R𝑇(𝑉0)

∂𝑙
=

𝑓′(𝑙)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
−

(𝐶′(𝑙) + 𝐶2
′(𝑓(𝑙))) (1 − 𝑒−𝑟T)

𝑟
= 0, (26)  

𝑓′(𝑙′∗)𝑝0(1 − 𝑒−(𝑟−α)T)

𝑟 − α
=

(𝐶′(𝑙′∗) + 𝐶2
′(𝑓(𝑙′∗))) (1 − 𝑒−𝑟T)

𝑟
.  (27) 

Equation (27) is the equilibrium condition for optimal area with BMP application, 

which shows that the last unit of land with BMP application should generate the same 

marginal net value as the marginal BMP application cost. Although we could not 

mathematically compare equation (27) with (19) since 𝑙  appears on both sides of 

equations, the difference between equation (27) and (19) is obvious. The RHS of 

equation (27) now includes one additional cost term that capture the marginal 

transaction costs associated with an additional unit of land installed with BMP.  

To determine the credit selling path after applying 𝑙′∗ area of BMPs, the farmer 

faces the problem:  

Max
u(t)

∫ [p(t)𝑢(𝑡) − 𝐶1(𝐴(𝑡)) − 𝐶2(𝑢(𝑡))]𝑒−𝑟𝑡𝑑𝑡
𝑇

0

  (28) 

s. t.  �̇� = −𝑢(𝑡) + 𝑓(𝑙′∗),   (29) 

A(0) = 𝐴0 = 0.   (30) 

The current value Hamiltonian is  

H = p(t)𝑢(𝑡) − 𝐶1(𝐴(𝑡)) − 𝐶2(𝑢(𝑡)) + λ(t)[−𝑢(𝑡) + 𝑓(𝑙′∗)].  (31) 

Similar to the case of fixed BMP investment with transaction costs, we get:  
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𝑟 =

p(t)̇ −
𝜕𝐶2

2(𝑢(𝑡))

𝜕(𝑢(𝑡))
2 u(t)̇ −

𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)

𝑝(𝑡) −
𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)

.    (32) 

Equation (32) is the equilibrium condition with transaction costs when nutrient credits 

can be banked, contingent on the BMP investment selected in the initial time period, 

which is the same as equation (15) in terms of the components in equations. We derive 

the optimal credit selling path for this case from equation (32), u(t) = 𝑢′∗. Different 

from equation (15) where the BMP application is given, the magnitude of 
𝜕𝐶1(𝐴(𝑡))

𝜕𝐴(𝑡)
 and 

𝜕𝐶2(𝑢(𝑡))

𝜕𝑢(𝑡)
 in equation (32) are contingent on BMP application area selected in the first 

step and the awarded credits, 𝑙′∗ and 𝑓(𝑙′∗). 𝑙′∗ has a linear relationship with the given 

area of BMP application, but the awarded credits, 𝑓(𝑙′∗), have a nonlinear relationship 

with the nutrient credits awarded to the given BMP application level, q. Hence, the 

credit selling paths generated by equation (15) and (32) will not be precisely the same, 

but we expect the similar shape of these two credit-selling paths over time. 

3.3 Application to the WQT markets in the State of Pennsylvania 

3.3.1 Study area 

In this section, we examine the results of our theoretical model for the WQT 

markets in the State of Pennsylvania. Based on 2018 N loading level, Pennsylvania still 

needs to reduce 35% N to meet the target loading level set up in 2010 by the Chesapeake 

Bay Total Maximum Daily Load (TMDL). The study area is Northumberland County, 

PA, located at the junction of the North and West Branches of the Susquehanna River 

and covering 1,236 km2 area with 375 km2 cropland and 57 km2 pastureland (USDA, 

2014). Northumberland County is selected for its intensive agricultural production, high 
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delivery ratio (0.92) and large amounts of total nitrogen (approximately 3 million 

pounds annually) delivered to the Chesapeake Bay (Northumberland County 

Conservation District, 2014). We are modelling a representative typical farm within the 

Northumberland County as the study area. According to 2012 Census of Agriculture, 

the average farm size of Northumberland County is 62 ha, (USDA, 2014). The 

representative farm size is assumed to be 62 ha. The land constraint, soil distribution 

and other input data for the representative farm are the corresponding data of 

Northumberland County in 2012 Census of Agriculture proportionally reduced by 605 

times (37,536/62=605). This farm is assumed to consist of 53 ha cropland and 9 ha 

pastureland corresponding to the ratio of total cropland and pastureland in the County 

of 37,536 ha and 5,706 ha, respectively. 

3.3.2 Numerical simulation model 

The numerical simulation model addresses the question of how the banking policy 

affects an individual farmer’s returns from participating in Pennsylvania Nutrient 

Credit Trading Program (PANCT). The numerical simulation model is composed of a 

hydro-economic model and dynamic programming. We use an integrated hydro-

economic model to simulate the edge-of-field N reduction generated by NM 

application, which consists of a process-based hydrological model and a static 

economic model. The hydrological model used for estimating the crop yields and N 

runoff potential for the study area is Soil and Water Assessment Tool- Variable Source 

Area (SWAT-VSA). SWAT is a process-based, watershed-scale, physical model that 

simulates surface and subsurface hydrology and various chemical and sediment fluxes 

(Arnold et al., 1998). SWAT-VSA is a derivative of the SWAT model, which identifies 

areas of the landscape subject to variable source area of runoff (Easton et al, 2008, 
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Collick, et al. 2015). Wagena and Easton (2018) provide detailed hydrological model 

description and parameter calibration results for the study area. The economic model 

follows Xu et al. (2019, working paper), which is a static profit maximization model. 

Crops considered include corn, soybean and alfalfa. The prices and costs are showed in 

supplementary materials (Table App 3.1). Livestock includes dairy cattle, beef cattle, 

broiler, layer, turkey and hogs. Livestock budget for production is provided in Table 

App 3.2 in supplementary material. Dynamic programming is used for the intertemporal 

credit-selling decision for the farmer with backward recursion; the salvage value of 

available credits is set to be zero after the last time period. The simulation results will 

be compared with the no-banking situation to see the magnitude of banking impacts on 

an individual farmer’s welfare. The simulation will also provide insight into the 

sensitivity of gains from credit banking to the theoretical model’s parameters. 

The PANCT allows existing municipal and industrial wastewater treatment plants 

(WWTPs) to achieve annually assigned nitrogen and phosphorus wasteload allocations 

(WLAs) through purchasing NPS credits (US EPA, 2012). After meeting the baseline 

requirement, farmers can generate credits by applying extra eligible BMPs and 

generating extra nutrient reduction beyond the baseline level. These extra nutrient 

reductions will be awarded as per kg based credits and farmers can sell the annually 

awarded credits to offset the discharge from WWTPs to the same watershed. The 

trading ratio is 1:1 between PS and NPS. There is a 10% reserve ratio for nutrient credits 

generated by NPS to address the uncertainty associated with NPS BMP efficiency 

(Branosky et al., 2011; Stavins, 2019). That is, if a farmer is awarded 100 kg nutrient 

credits annually, the total available credits to be sold are 90 kg. 

The BMP used for generating credits for this study is nutrient management (NM). 

In Pennsylvania, cost-shared BMPs are eligible to generate nutrient credits (Branosky 
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et al., 2011). The NM cost-sharing offered is $18.3 per ha in 2018$ (Tremplo County, 

WI, 2015). The per ha application costs for the farmer is $40.9-$18.3=$22.6 for both 

NM with and without manure. The N reduction efficiencies of NM with and without 

manure are 27% and 12%, respectively (Chesapeake Bay Program, 2019).  

Initial parameter values for the theoretical model are shown in in Table 3.1. The 

initial nutrient credit price for NM application is assumed to be determined through a 

bilateral negotiation with a spot contract, which is $14/kg/year in $2018 (Ribaudo and 

McCann, 2012). The transaction cost for pre-trading preparation is assumed to be linear 

in the credit stock, i.e. 𝐶1(𝐴(𝑡)) = 𝑑𝐴(𝑡), where 𝑑 > 0 . The transaction cost for 

selling credits, is assumed to be quadratic in sold credits, i.e. 𝐶2(𝑢(𝑡)) = 𝑏𝑢(𝑡) +

𝑐𝑢(𝑡)2, where 𝑏, 𝑐 > 0. Following Ribaudo and McCann (2012), pre-trading cost per 

kg N is $0.22 in 2018$, that is 𝑑 = 0.22. We calibrate the parameters for 𝐶2(𝑢(𝑡)), 

based on the $0.39 per kg N in 2018$, that is 𝑏 = 0.37 𝑎𝑛𝑑 𝑐 = 0.02. Initial values of 

price drift and volatility (Table 1) used in the simulation are 0.01 and 0.01. Parameter 

values selected for nutrient prices are conservative since we want to avoid overstating 

the gains from banking, which will be varied to test sensitivity of total revenues to price 

fluctuation. 

We simulate numerically the optimal N credit-selling path based on exogenous 

NM application first then the optimal nitrogen credit-selling path contingent on 

endogenous NM application. Both cases are solved with and without transaction costs. 

For each of these cases, we solve the system in discrete time with necessary and 

sufficient conditions for an optimum. Total revenues from four cases are all compared 

with their corresponding cases when N credits are not allowed for banking. 
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3.4 Results 

3.4.1 Results for exogenous NM application 

For exogenous NM application, we assume there is 110 kg N reduction could 

be generated at the edge-of-field of the representative farm each year; 110 kg N 

reduction are generated by 47 ha NM application from the hydro-economic model for 

the representative farm. For a 10% reserve ratio, there are total 99 kg N credits can be 

sold annually. The quantity for credit sold when credit banking is not allowed is at its 

profit maximized N credit level in each year. Total revenues achieved from the without 

banking case could be viewed as the upper bound that the farmer could expect (Table 

3.2).  

Table 3.2 presents the simulation results holding 47 ha NM application for with 

and without banking when the transaction costs are absent and present using the initial 

parameters from Table 1. When the transaction costs are not considered, the empirical 

results under credit banking case accord with the theoretical expectation for the bang-

bang solution; the timing of sales aligns with the highest prices over the time period. 

Gains from banking policy are the difference of total revenues (no discounted) between 

with and without credit banking. With no transactions costs, a farmer with 110 kg N 

reduction at the edge of field generated by NM application could benefit from credit 

banking with $777 (5.23%) over a 10-year contract realized by credit selling. When 

transaction costs occur, the total revenues decrease to $12,569 and $12,534 for banking 

and no banking cases, respectively. Banking credits could bring $35 (0.28%) in total 

revenues from credit sales with transaction costs given 47 ha NM application.    

3.4.2 Results for endogenous NM application 
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The results of exogenous NM application case show the effects of the 

transaction costs on the gains from credit banking when the farmer’s NM investment 

decision at t = 0 is independent of NM application cost and transaction costs associated 

with WQT. The results from the endogenous NM application present the effects of NM 

application costs and transaction costs on the NM investment level and credit generated 

for participating the WQT program. Then the credit-selling path and the gains from 

banking, which are contingent on the NM application level invested at t = 0 , are 

determined. 

At t = 0, the N loading level without extra NM application is 692 kg N; the 

expected NPV of 10-year total revenues from agricultural production only is $ 648,127.   

Table 3.3 presents the farmer’s decision about NM application level for joining 

in the WQT program at t = 0. When the farmer does not consider transaction costs 

associated with WQT, 47 ha NM will be applied, which could decrease N runoff 

generated by the agricultural production at the edge-of-field from 692 kg to 582 kg. The 

farmer will be awarded 110 kg N credit each year for a 10-year contract. At t = 0, it is 

hard for the farmer to determine the quantity of credits to be banked in each time period 

and hence the expected credit sold in each time period is 110 kg N as well. The expected 

NPV over 10 years for agricultural products and N credit sales is $652,035, 0.6% higher 

than the expected NPV from agricultural production only for 10 years. When 

transaction costs are taken into consideration, the theoretical framework yields 

ambiguous results about the comparison of the BMP application level between with and 

without transaction costs because of the unknown magnitude of the transaction costs. 

Results of the numerical simulation show that the NM application level is reduced to 

28 ha, a 40% decrease relative to the case without transaction costs. As a consequence, 

28 ha NM area leads to the edge-of-field N loading level of 617 kg. The farmer will 
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receive 75 kg N annually based on the baseline N loading level, 692 kg; the credit 

awarded is 32% lower than the case without transaction cost. The expected NPV from 

credit sales and agricultural production over 10 years is $650,380, improving the 

baseline NPV by $2,253 (0.35%).  

Table 3.4 presents the simulation results about N credit selling when NM 

application is endogenous, where the paths of credit selling under the absence and 

presence of transaction costs are chosen to maximize the sum of total revenues to both 

cases. Banking N credit for future selling could increase total revenues by 5.23% and 

0.33% compared with no banking for without and with transaction costs respectively.  

3.4.3 Sensitivity Analysis 

Because of limited data availability, most parameters in Table 1 are calibrated 

using limited nutrient credit trading information from the State of Pennsylvania. For 

example, the unit N credit price for WQT implemented by a bilateral negotiation over 

years is unavailable. As a result, the initial parameter values associated with price 

fluctuation are chosen with observation of a limited number of trades in Pennsylvania 

WQT markets (Table 1), which are known with uncertainty. Transaction costs, usually 

private information for credit brokers, are calibrated with limited information from 

previous study with unknown trading volume (Ribaudo and McCann, 2012). In 

addition, the magnitude of interest rate relative to the nutrient credit price increase rate 

is the key factor that affects the farmer’s credit-selling decision in the theoretical 

framework. It is instructive to consider changes to the model parameters in order to 

gauge the effects of nutrient credit banking policy on an individual farmer’s credit-

selling behavior and economic outcome when facing price uncertainty. For this section, 

the sensitivity analysis is conducted based on the endogenous NM application case with 
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transaction costs; the economic outcome derived by changed parameter values will be 

compared with its corresponding results when nutrient credit banking is not allowed.  

The first important consideration is the fact that price fluctuations may be more 

stable or drastic relative to the initial parameter values selected for the stochastic price 

over time, which would alter the relative values of the parameter, α and σ. Table 3.5 

and 3.6 describe the change in the path of credit selling when the price drift and 

volatility tends to be large. When price is extremely stable (α = 0 in Table 3.5 and σ =

0 in Table 3.6), there is no gain for the farmer from credit banking since the credit-

selling paths under both banking and no banking cases are exactly the same. The gains 

from banking relative to no banking in terms of the total revenues slightly increase with 

the increase in price drift. That is, when there is general economic growth which leads 

to increasing nutrient credit prices given low price volatility, farmers could benefit from 

banking credits for future sale, but the increase relative to the scenario that banking is 

not allowed is small. The gains from banking increase at an increasing rate with the 

increase in the price volatility (Table 3.6). Banking could protect the farmer’s 

profitability and increase the total revenues of credits sales from higher price volatility. 

Figure 3.1 presents the impact of price volatility on the optimal credit banking and 

selling path under banking policy over time. The higher the price volatility, the more 

variation there is in the credit-selling path. The farmer will choose to bank credits when 

price is low to protect their profitability from credit sales.  

The second necessary consideration is associated with parameters for transaction 

costs, which are calibrated given limited information. To see how transaction costs 

affect the NM application, credit creation and further the credit-selling path, we would 

alter the relative values of the quadratic parameter, c. Table 3.7 presents the impact of 

changing the trading transaction cost function on the farmer’s decision in terms of the 
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credit quantity generated by NM application. From the left column to the right in Table 

3.7, with the increase in the quadratic parameter, the marginal transaction cost becomes 

steeper, leading to a more rapid growth in the transaction cost with less credits being 

sold. Expected NPV of the sum of agricultural production and credit sales for a 10-year 

contract decreases from 650,385 to 649,495 to 649,092; NM application level decreases 

as well since the marginal cost for N credit generation plus marginal trading cost needs 

to be equalized with the marginal revenue brought by N credit sales in equilibrium. 

Reduction in NM application level results in an increase in the N runoff level at the 

edge of the field and a decrease in credits awarded annually. Table 3.8 shows the impact 

of steeper transaction cost functions on changes in quantity of credits to be awarded in 

each time period and gains from banking. With the available credits sold going down, 

the total revenues and gains from banking both decrease at a decreasing rate.  

The interest rate is the last parameter to be examined in this section. Our theoretical 

framework predicts that the magnitude of the interest rate relative to the nutrient credit 

price increase rate directly affects the farmer’s credit selling and banking behavior. We 

alter the value of interest rate from 1%, 5%, 7% to 10% to measure its effects. Figure 

3.2 shows that the credit-selling path will be flatter under a higher interest rate and 

banking credits will be more attractive under a lower interest rate, which is consistent 

with the theoretical prediction. Consider, when the interest rate is relatively lower than 

the potential price increase rate of nutrient credits, banking credits and waiting to sell 

them at a higher price increase rate could benefit farmers more. Similarly, when the 

interest rate is high, the incentive for banking credits will decrease. The farmer tends to 

sell credits as soon as possible to earn the interest rate in the bank and hence the credit-

selling paths become flatter under higher interest rates in Figure 3.2.  

 



104 

 

3.5 Conclusions 

We have examined the farmer’s credit-selling behavior under a proposed policy 

that nutrient credits can be banked for future use in this study through a simple 

intertemporal model of the farmer’s decision making when facing price uncertainty and 

considering transaction costs for credit banking and selling. Results of the model predict 

that the farmers will sell either zero or all available credits when the transaction costs 

are absent. When the transaction costs occur, the farmer will be indifferent between 

selling credits now versus waiting to sell them in a future time period when the interest 

rate equals the increase rate of nutrient credit price. Otherwise, the farmer will tend to 

sell credits as soon as possible or wait to sell them in a future time period when the 

interest rate is greater than or smaller than the nutrient credit price increase rate, 

respectively. 

A numerical simulation calibrated using the example of WQT markets in the State 

of Pennsylvania through a representative farm located in Northumberland County, PA 

is applied to examine the results of our model. The simulation eliminates the ambiguity 

in the theoretical framework, for example, the BMP application level changes when 

transaction costs appear, validates the selling-path predicted in the model and also sheds 

light on understanding how banking policy could protect farmers’ profitability from 

credit sales when facing price uncertainty. Results from the simulation and sensitivity 

analysis present that a higher price volatility implies a larger gain from banking relative 

to the no banking outcome; however, banking credit for future use because of higher 

price drift, which may be driven by the expected economic or population growth, 

increases revenues only slightly.  

Transaction costs, an important hindrance for trading, are examined in the 

numerical simulation as well. Results indicate that transaction costs largely reduce the 
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benefits from banking. For exogenous NM application, the presence of the transaction 

costs decreases the gains of banking credits from 5.23% to 0.28%; for endogenous NM 

application, the presence of transaction costs significantly reduces the NM application 

level decreases by 40%. This finding is consistent with previous literature that high 

transaction costs are currently the main factor that drive low participation from farmers 

to generate term nutrient credits through BMP application on agricultural working land 

(Rees and Stephenson, 2014). The reduction of NM application leads to decreasing 

credit generation, which further lessens the gains from banking. In our simulation, the 

total gains from banking are $30 from a 10-year time horizon planning with 75 kg credit 

awarded annually. 

Relative to other environmental and natural resource trading system with banking 

allowance, for example, air emission and groundwater trading programs, WQT involves 

a much thinner market where participants face more restricted geographically 

constraints than other programs. For example, Virginia’s Nutrient Credit Exchange 

Program requires that trading could only happen between credit sellers and buyers who 

generate the nutrient runoff to the same tributary; PANCT requires that trading can 

occur among sources within the same watershed (US EPA, 2007; US EPA, 2012). 

Based on the own characteristics of WQT markets, our results imply that this proposed 

credit banking policy will improve the participation from farmers in the WQT programs 

for three reasons. First, credit banking improves the flexibility of credit sales, for 

example, the unsold credits can be saved to the following time periods for sale, which 

ensures that the environmental services provided by farmers can be fully paid and 

profitability realized for joining in the WQT markets. Second, our results, which could 

be viewed as the farmer’s expectation of this proposed policy, suggests that the larger 

gains could be brought by the higher nutrient credit price volatility. For WQT markets, 
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we expect a high price volatility for nutrient credits in the future due to: (i) the price is 

generated by bilateral negotiation since there are only a limited number of credit buyers 

and sellers in the same market; (ii) the future climates are predicted to be wetter and 

there is increasing probability of extreme precipitation in northeastern United States, 

which will increase the demand for nutrient credits in WQT markets (Marquardt Collow 

et al., 2016; Woodward and Kaiser, 2002). For example, the nutrient credit supply in 

Pennsylvania was ample relative to the demand side prior to 2018; however, due to the 

extremely wet weather in 2018 resulting in excessive flows, flooding, and inflow and 

infiltration issues, the demand of WWTPs for nutrient credits is higher than usual, 

causing nutrient credit prices to soar (PA DEP, 2019). Hence, the farmer will expect 

this proposed policy could increase their revenues from credit sales directly and tend to 

participate in the WQT programs. Third, although we try not to overstate the gains from 

credit banking, for example, we choose conservative parameter values for price 

fluctuation and zero initial credit stock under banking case for comparing the total 

revenues under banking and no banking cases prudently, farmers could still benefit 

from credits banking. We also quantify the impact of transaction costs on gains from 

banking. One caution suggested by the results is, if credit banking involves relatively 

high transaction costs, they will easily offset the gains brought by the fluctuation in 

credit prices. 

Three limitations should be mentioned here and can be extended in future study. 

First, the decision of credit sold with banking in each time period is derived by 

backward recursion, which could be viewed as a perfect forecast for decision making. 

For WQT in real life, participants may not achieve the gains relative to the no banking 

case estimated in this study, though credits are assumed to be sold out in each time 

period for no banking case, which is the upper bound revenue that could be achieved 
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under no banking as well. Second, the farmer is assumed to be risk-neutral in our model. 

It would be interesting to see how banking policy affects risk-averse participants’ 

trading behavior and corresponding economic outcome. When a farmer is risk-averse, 

the utility from credit sales will increase at a decreasing rate. Allowing credit banking 

for risk-averse farmers is expected to increase their utility more from banking than risk-

neutral farmers. Third, the parameters in transaction cost functions are static in our 

model. Jaraite and Kažukauskas (2012) find that transaction costs play an important 

role in the initial years for the emission trading market and decline over time due to 

learning-by-doing. Based on the results in this study, if there are structural changes that 

reduce the transaction costs over time, the gains from credit banking are expected be 

enhanced further for farmers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference 



108 

 

Air Pollution Control District County of San Diego. 2019. Rules and Regulations. 

https://www.sdapcd.org/content/dam/sdc/apcd/PDF/Rules_and_Regulations/RR_

Title_ToC.pdf 

Arnold, J.G., Srinivasan, R., Muttiah, R.R. and Williams, J.R., 1998. Large area 

hydrologic modeling and assessment part I: model development. J. Am. Water 

Resour. Assoc., 34(1): 73-89. 

Branosky, E., Jones, C., and Selman, M. 2011. Comparison tables of state nutrient 

trading programs in the Chesapeake Bay watershed. World Resources Institute, 

Washington, DC. 

Chesapeake Bay Program Foundation. 2015. Pennsylvania Fact Sheet. 

https://www.cbf.org/document-library/cbf-guides-fact-sheets/Manure-Impacts-

on-Chesapeake-Bay-Jan-20153981.pdf (accessed in January, 2015) 

Chesapeake Bay Program. 2019. Source Data CAST. https://cast.chesapeakebay.net/ 

(accessed March 19, 2019) 

Collick, A. S., Fuka, D. R., Kleinman, P. J., Buda, A. R., Weld, J. L., White, M. J., 

Veith, T. L., Bryant, R. B., Easton, Z. M., 2015. Predicting phosphorus dynamics 

in complex terrains using a variable source area hydrology model. Hydrol. 

Process. 29(4), 588-601.  

Easton, Z. M., Fuka, D. R., Walter, M. T., Cowan, D. M., Schneiderman, E. M., 

Steenhuis, T. S., 2008. Re-conceptualizing the soil and water assessment tool 

(SWAT) model to predict runoff from variable source areas. J. Hydrol. 348(3-4), 

279-291. 

Cronshaw, M. B. and Kruse, J. B. 1996. Regulated firms in pollution permit markets 

with banking. Journal of Regulatory Economics, 9(2), 179-189. 

https://www.sdapcd.org/content/dam/sdc/apcd/PDF/Rules_and_Regulations/RR_Title_ToC.pdf
https://www.sdapcd.org/content/dam/sdc/apcd/PDF/Rules_and_Regulations/RR_Title_ToC.pdf


109 

 

DeBoe, G. and Stephenson, K. 2016. Transactions costs of expanding nutrient trading 

to agricultural working lands: A Virginia case study. Ecological Economics, 130, 

176-185. 

Hahn, R. W. and Hester, G. L. 1989. Marketable permits: lessons for theory and 

practice. Ecology LQ, 16, 361. 

Jaraite, J. and Kažukauskas, A. 2012. Firm trading behavior and transaction costs in the 

European Union’s Emission Trading System: An empirical assessment. 

Kafash, B. and Nadizadeh, A. 2017. Solution of stochastic optimal control problems 

and financial applications. Journal of Mathematical Extension, 11, 27-44. 

Kling, C., and Rubin, J. 1997. Bankable permits for the control of environmental 

pollution. Journal of Public Economics, 64(1), 101-115. 

Laukkanen, M. and Koundouri, P. 2006. Competition versus cooperation in 

groundwater extraction: a stochastic framework with heterogeneous agents. Water 

Management in Arid and Semi-Arid Regions: Interdisciplinary Perspective, 188-

198. 

Marquardt Collow, A. B., Bosilovich, M. G. and Koster, R. D. 2016. Large-scale 

influences on summertime extreme precipitation in the northeastern United 

States. Journal of hydrometeorology, 17(12), 3045-3061. 

Northumberland County Conservation District. 2014. Northumberland County 

Implementation Plan For the Chesapeake Bay Tributary Strategy. 

https://www.nccdpa.org/wp-

content/uploads/2018/04/NCCD_CBTS_Implementation_Plan_2014.pdf 

(accessed June 5, 2014) 

https://www.nccdpa.org/wp-content/uploads/2018/04/NCCD_CBTS_Implementation_Plan_2014.pdf
https://www.nccdpa.org/wp-content/uploads/2018/04/NCCD_CBTS_Implementation_Plan_2014.pdf


110 

 

Pennsylvania Department of Environmental Protection. 2019. Nutrient Credit Reports. 

https://www.dep.pa.gov/Business/Water/CleanWater/NutrientTrading/Pages/Nut

rientCreditRegistry.aspx. 

Pindyck, R. S. 1980. Uncertainty and exhaustible resource markets. Journal of Political 

Economy, 88(6), 1203-1225. 

Provencher, B. and Burt, O. 1994. A private property rights regime for the commons: 

The case for groundwater. American Journal of Agricultural Economics, 76(4), 

875-888. 

Rees, G. and Stephenson, K. 2014. Transaction costs of nonpoint source water quality 

credits: Implications for trading programs in the Chesapeake Bay watershed. 

Ribaudo, M. and McCann, L. M. 2012. Accounting for Transaction Costs in 

Point/Nonpoint Water Quality Trading Programs in the Chesapeake Bay 

Watershed (No. 323-2016-11839). 

Schennach, S. M. 2000. The economics of pollution permit banking in the context of 

Title IV of the 1990 Clean Air Act Amendments. Journal of Environmental 

Economics and Management, 40(3), 189-210. 

Stavins, R. N. 1995. Transaction costs and tradeable permits. Journal of environmental 

economics and management, 29(2), 133-148. 

Stavins, R. N. (Ed.). 2019. Economics of the environment: selected readings. Edward 

Elgar Publishing. 

Tietenberg, T. 2010. The evolution of emissions trading. Better Living Through 

Economics, 42. 

Tremplo County. 2015. Nutrient Management Cost-sharing Frequently Asked 

Questions. 



111 

 

http://www.tremplocounty.com/tchome/landmanagement/documents/information

al/FAQ%20NMP%20Cost-Sharing.pdf (accessed May 2015) 

United States Department of Agriculture (USDA), 2014. 2012 Census of Agriculture. 

https://www.nass.usda.gov/Publications/AgCensus/2012/index.php (accessed 

May 2014) 

United States Environmental Protection Agency. 2007. Water quality trading toolkit for 

permit writers. 

United States Environmental Protection Agency. 2012. Pennsylvania's Trading and 

Offset Programs Review Observations. 

https://www.epa.gov/sites/production/files/2015-07/documents/pafinalreport.pdf 

(accessed February 17, 2012) 

United States Environmental Protection Agency. 2016. Chesapeake Bay TMDL Fact 

Sheet. https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-fact-

sheet. (accessed September 29, 2016) 

United States Environmental Protection Agency. 2019. EPA Announces New Water 

Quality Trading Policy Memorandum. https://www.epa.gov/newsreleases/epa-

announces-new-water-quality-trading-policy-memorandum (accessed February 6, 

2019)  

Van Houtven, G., R. Loomis, J. Baker, R. Beach, and S. Casey. 2012. Nutrient Credit 

Trading for the Chesapeake Bay: An Economic Study. Chesapeake Bay 

Commission, Annapolis MD. 

Virginia Department of Environmental Quality. 2008. Trading Nutrient Reductions 

from Nonpoint Source Best Management Practices in the Chesapeake Bay 

Watershed: Guidance for Agricultural Farmers and Your Potential Trading 

Partners. 

http://www.tremplocounty.com/tchome/landmanagement/documents/informational/FAQ%20NMP%20Cost-Sharing.pdf
http://www.tremplocounty.com/tchome/landmanagement/documents/informational/FAQ%20NMP%20Cost-Sharing.pdf
https://www.epa.gov/sites/production/files/2015-07/documents/pafinalreport.pdf
https://www.epa.gov/newsreleases/epa-announces-new-water-quality-trading-policy-memorandum
https://www.epa.gov/newsreleases/epa-announces-new-water-quality-trading-policy-memorandum


112 

 

Wagena, M. B. and Easton, Z. M. 2018. Agricultural conservation practices can help 

mitigate the impact of climate change. Science of The Total Environment, 635, 

132-143. 

Walker, S. and Selman, M. 2014. Addressing risk and uncertainty in water quality 

trading markets. World Resources Institute. 

Woodward, R. T., Kaiser, R. A. and Wicks, A. M. B. 2002. THE STRUCTURE AND 

PRACTICE OF WATER QUALITY TRADING MARKETS 1. JAWRA Journal 

of the American Water Resources Association, 38(4), 967-979. 

  



113 

 

Tables 

Table 3.1 Initial parameter values for numerical simulation of the farmer’s credit-

selling behavior over time under banking and no banking 

Parameter Description Initial value 

T Years for the contract 10 

𝑝0 Nutrient credit price at t=0 14 

α Price drift of nutrient credits 0.01 

σ Price volatility of nutrient credits 0.01 

d Linear parameter for transaction cost function 1 0.22 

b Linear parameter for transaction cost function 2 0.37 

c Quadratic parameter for transaction cost function 2 0.02 

r Interest rate 0.07 

 

 

Table 3.2 Simulation results, including credit-selling path and nondiscounted total 

revenues from credit sales for exogenous NM application 
Time period   Exo. NM application w/o transaction costs Exo. NM application w/ transaction costs 

  w/ banking w/o banking w/ banking w/o banking 

 p(t) u(t) u(t) u(t) u(t) 

1 14.99 99 99 99  99 

2 15.98 99 99 99 99 

3 16.20 99 99 99 99 

4 12.88 0 99 92 99 

5 14.37 198 99 106 99 

6 14.03 0 99 93 99 

7 14.87 0 99 89 99 

8 16.98 298 99 115 99 

9 14.34 0 99 97 99 

10 15.47 198 99 101 99 

Total revenue ($)   15,638 14,861 12,569 12,534 

 

Table 3.3 Farmer's NPV for expected revenues from agricultural production and credit 

sales, N runoff level, NM application decision and annually awarded credit at t=0 

  Baselinea w/o transaction cost w/ transaction cost 

NPV over a 10-year contract ($) 648,127 652,035 650,385 

N runoff level (kg) 692 582 617 

NM application level (ha) - 47 28 

annually awarded credit (kg) - 110 75 

a Baseline is the scenario that the farmer operates the farm at the optimal level and does not participate 

into the WQT program. 
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Table 3.4 Simulation results, including credit-selling path and nondiscounted total 

revenues from credit sales for endogenous NM application 

 

 
Time period   Edog. NM application w/o transaction costs Edog. NM application w/ transaction costs 

  w/ banking w/o banking w/ banking w/o banking 

 p(t) u(t) u(t) u(t) u(t) 

1 14.99 99 99 67.5  67.5 

2 15.98 99 99 67.5  67.5 

3 16.20 99 99 67.5  67.5 

4 12.88 0 99 61.2  67.5 

5 14.37 198 99 73.5  67.5 

6 14.03 0 99 63.5  67.5 

7 14.87 0 99 57.5  67.5 

8 16.98 298 99 81.5  67.5 

9 14.34 0 99 66.9  67.5 

10 15.47 198 99 68.1  67.5 

Total revenues   15,638 14,861 9,001 8,971 
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Table 3.5 The impact of the drift of credit price on the gains from nutrient credit banking policy (holding other parameter value constant) 

 
Time period α=0 α=0.01 (Initial value) α=0.02 α=0.03 

  w/ banking w/o banking  w/ banking w/o banking  w/ banking w/o banking  w/ banking w/o banking 

 p(t) u(t) u(t) p(t) u(t) u(t) p(t) u(t) u(t) p(t) u(t) u(t) 

1 13.56 67.5 67.5 14.99 67.5 67.5 16.56 67.5 67.5 18.31 67.5 67.5 

2 14.46 67.5 67.5 15.98 67.5 67.5 17.66 67.5 67.5 19.52 67.5 67.5 

3 14.66 67.5 67.5 16.20 67.5 67.5 17.90 67.5 67.5 19.79 67.5 67.5 

4 11.65 67.5 67.5 12.88 61.2 67.5 14.23 60.6 67.5 15.73 59.8 67.5 

5 13.01 67.5 67.5 14.37 73.8 67.5 15.89 74.4 67.5 17.56 75.2 67.5 

6 12.70 67.5 67.5 14.03 63.5 67.5 15.51 63.1 67.5 17.14 62.6 67.5 

7 13.45 67.5 67.5 14.87 57.5 67.5 16.43 56.5 67.5 18.16 55.3 67.5 

8 15.36 67.5 67.5 16.98 81.5 67.5 18.77 83.0 67.5 20.74 84.6 67.5 

9 12.97 67.5 67.5 14.34 66.9 67.5 15.84 66.9 67.5 17.51 66.8 67.5 

10 14.00 67.5 67.5 15.47 68.1 67.5 17.09 68.1 67.5 18.89 68.2 67.5 

Total revenues ($)  8,006 8,006  9,001 8,971  9,071 9,034  10,140 10,094 

Gains from banking   0%   0.32%   0.41%   0.45% 

Sensitivity index   0.32   -   0.09   0.065 
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Table 3.6 The impact of the volatility of credit price on the gains from nutrient credit banking policy (holding other parameter values) 
Time period σ = 0  σ = 0.01 (Initial value) σ = 0.015 σ = 0.02 

  w/ banking w/o banking  w/ banking w/o banking  w/ banking w/o banking  w/ banking w/o banking 

 p(t) u(t) u(t) p(t) u(t) u(t) p(t) u(t) u(t) p(t) u(t) u(t) 

1 15.472 67.5 67.5 14.99 67.5 67.5 14.75 63.0 67.5 14.50 56.8 67.5 

2 15.472 67.5 67.5 15.98 67.5 67.5 16.23 72.0 67.5 16.49 78.2 67.5 

3 15.472 67.5 67.5 16.20 67.5 67.5 16.57 67.5 67.5 16.94 67.5 67.5 

4 15.472 67.5 67.5 12.88 61.2 67.5 11.75 52.9 67.5 10.71 35.9 67.5 

5 15.472 67.5 67.5 14.37 73.8 67.5 13.85 82.1 67.5 13.34 79.0 67.5 

6 15.472 67.5 67.5 14.03 63.5 67.5 13.36 48.0 67.5 12.71 39.0 67.5 

7 15.472 67.5 67.5 14.87 57.5 67.5 14.57 51.5 67.5 14.27 51.7 67.5 

8 15.472 67.5 67.5 16.98 81.5 67.5 17.78 103.0 67.5 18.62 132.1 67.5 

9 15.472 67.5 67.5 14.34 66.9 67.5 13.79 60.0 67.5 13.27 53.4 67.5 

10 15.472 67.5 67.5 15.47 68.1 67.5 15.46 75.0 67.5 15.44 81.6 67.5 

Total revenues ($)  9,283 9,283  9,001 8,971  8,956 8,835  9,009 8,711 

Gains from banking     0%   0.32%   1.36%   3.42% 

Sensitivity index   0.32   -   2.08   3.1 
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Table 3.7 The impact of transaction costs associated with trading on the NM application level and the 

quantity of credit generated  
b=0.37, c=0.02 (Initial value) b=0.37, c=0.05 b=0.37,c=0.08 

NPV over a 10-year contract ($) 650,385 649,495  649,092  

N runoff level (kg) 617 641 658 

NM application level (ha) 28 18 11 

annually awarded credit (kg) 75 51 34 

 

Table 3.8 The impact of transaction costs and annually awarded credit quantity on the 

gains from banking 
  b=0.37, c=0.02 (initial value) b=0.37, c=0.05 b=0.37,c=0.08 

annually awarded credit (kg) 75 51 34 

 w/banking w/o banking w/banking w/o banking w/banking w/o banking 

p(t) u(t) u(t) u(t) u(t) u(t) u(t) 

14.988 67.5  67.5 45.9 45.9 30.5  30.6 

15.98 67.5  67.5 45.9 45.9 30.7  30.6 

16.198 67.5  67.5 45.9 45.9 30.6  30.6 

12.879 61.2  67.5 42.7 45.9 28.5  30.6 

14.374 73.8  67.5 49.1 45.9 32.7  30.6 

14.033 63.5  67.5 42.9 45.9 28.6  30.6 

14.867 57.5  67.5 42.9 45.9 28.1  30.6 

16.98 81.5  67.5 52.9 45.9 35.1  30.6 

14.344 66.9  67.5 45 45.9 30.0  30.6 

15.465 68.1  67.5 46.8 45.9 31.2  30.6 

Total revenues 9001  8971  4459  4444  3759  3749  

Gains from banking    0.3299%   0.3296%   0.2598% 
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Figures 

 
Figure 3.1 The impact of price volatility (middle panel) on the credit-banking path 

(top panel) and the credit-selling path (bottom panel) 
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Figure 3.2 The impact of the interest rate on the credit-selling path 
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Appendix tables 

 

Table App 3.1 Crop production budgeta 
 Price (2018$/Mg) Cost (2018$/ha)b 

Corn grain 249 967 

Corn silage 60 1467 

soybean 499 495 

alfalfa 198 805 
a Bosch et al., 2018 

b Costs exclude land rent and fertilizer costs. 

 

 

Table App 3.2 Livestock budget (2018 price level) a 

  Gross revenue ($/unit) Total costs ($/unit) Net revenue ($/unit) 

Dairy Cattle b 4,128 2,272 1,856 

Beef Cow-calf c 844 407 437 

Broiler d 0.3 0.07 0.23 

Hog b 174 58 116 

Layer b  42 24 18 

Turkey b 29 27 2 
a Gross revenue, total costs and net revenue are all adjusted to 2018 price level by multiplying 

their corresponding GDP deflators. See Bosch et al. (2018). Total costs exclude land rent and 

feed that can be raised or purchased and manure spreading. 
b Penn State Extension, 2016 

c Virginia Cooperative Extension, 2011 
d University of Maryland Extension, 2011 

 

 


