
A Global Database of Cholera

CS 4624 Multimedia, Hypertext & Information Access
Instructor: Dr. Edward A. Fox

Virginia Tech
Blacksburg, VA 24061
6 May 2020

Hemakshi Sharma, Gabby Alcantara, Michael Roberto, Andrés García
Solares, Emily Croxall

Client: Dr. Luis Escobar

 2

Table of Contents
1.	Abstract	...	3	
2.	Introduction	...	4	
2.1	Background	...	4	
2.2	Client	..	4	
2.3	Objective	...	4	

3.	Requirements	..	6	
4.	Design	..	7	
5.	Implementation	..	8	
5.1	WHO	Data	Gathering	...	8	
5.2	Map	Creation	...	8	
5.3	ProMED	Data	Gathering	...	8	
5.4	Report	Graph	Creation	...	10	
5.5	Website	...	12	

6.	Testing,	Evaluation,	Assessment	...	13	
7.	Users’	Manual	...	14	
7.1	Tutorial	of	Use	..	14	
7.2	User	Goals	&	Use	Cases	..	16	

8.	Developer’s	Manual	..	21	
8.1	Python	Requirements	..	21	
8.2	WHO	Modules	..	21	
8.3	Graph	Module	..	22	
8.4	Website	...	23	
8.5	DataGatherer	...	23	

9.	Lessons	Learned	..	28	
9.1	Schedule	..	28	
9.2	Problems	...	29	

10.	Acknowledgements	..	30	
11.	References	...	31	
12.	Appendices	..	32	
Appendix	A:	Regular	Expression	Patterns	...	32	
Appendix	B:	Python	Libraries	..	33	
Appendix	C.	Table	of	Figures	..	34	
Appendix	D.	Table	of	Tables	...	35	

 3

1. Abstract
This paper describes the process and implementation details of work toward a database of
Cholera records from 2010 – 2020. The WHO repository was used to extract and normalize data
to build CSV files. Each year where data is available has a CSV file containing location and total
number of cases in the location. The ProMED repository was used to collect data for the same
timeframe. The data was extracted, condensed, and tagged for easier manual viewing. Data for
all years available is given in one CSV file.

Data from WHO can be viewed in logarithmically colored maps based on the number of cases in
each location. These visualizations are produced for each year in the study. The data from
ProMED can be viewed in bar graphs which graph the number of articles that occur and in what
weeks the articles are written for each country. These visualizations can be seen or downloaded
at choleradb.cs.vt.edu. Additionally, all the CSV files of data produced are available for
download on our website.

Due to the complexity of NLP and the inconsistencies in the ProMED articles, our data is not
completely normalized and requires some manual work. Unforeseen circumstances, including the
COVID-19 crisis, slowed the project’s progress. Therefore, the ProMED data extraction did not
proceed further, other data repositories have not been explored, and interactive visualizations
have not been built.

The results of this project are compiled datasets and data visualizations from the WHO and
ProMED repositories. These are useful to our client for future analysis as well as anyone else
who may be interested in the trends of Cholera outbreaks. The results of data collection are
formatted for easy analysis and reading. The graphics provide a simple visual for those who are
more interested in higher level analysis. This project can be useful to developers who are
working on data extraction and representation in the field of epidemiology or other case based
global studies.

In the future, more repositories can be explored for more extensive results. Additionally, further
work can be done with the ProMED set developed in order to condense it further and eliminate
the need for any manual analysis after our program is run. The results of this project are all
available publicly on choleradb.cs.vt.edu, including for download. All code is open source and
available on Gitlab.

 4

2. Introduction

2.1 Background
Cholera is an infectious disease that has global and simultaneous transmission, making it an
ongoing pandemic. Cholera is a bacterium that can kill within hours, mainly due to a lack of
fluids. There are an estimated 4 million cases annually worldwide and about 143,000 cases result
in death. It is spread through food or water that is unclean or contaminated. It is especially
prevalent in coastal areas and places with poor sanitation practices. The bacteria thrive in an
environment with a mixture of fresh and saltwater that is standing still, often in deltas or other
similar areas.

2.2 Client
Our client, Dr. Luis Escobar, is part of the Fishing and Wildlife Conservation Department at
Virginia Tech and has a laboratory that works with cholera epidemics. They work to understand
the temporal, spatial, and climatic pulses in past years cases. The laboratory has been a pioneer
in disentangling the potential effects of climate change on this water-borne disease. Dr. Escobar
has built a database of cases in 2014 to track start and end times of outbreaks, where outbreaks
occur (not including the outliers), and how many cases are counted in every outbreak. This
database was built by collecting and verifying data by hand.

2.3 Objective
Our problem was to develop a way of collecting data by web scraping and other automatic means
in order to create a digital epidemiology. This means the automated collection, curation, storage,
and analysis of the disease. Data will originate from two main sources, ProMED and the World
Health Organization (WHO). From each source, the data will be collected, accounting for date
ranges, number of cases, and location. The data will be analyzed to assess whether cases are
stand-alone or part of an outbreak, as stand-alone cases are beyond this project’s scope.

The WHO data repository contains data about the number of cases, deaths, and fatality rate per
year per country. Such coarse-grained data will only give a general idea of where cholera has
been more prevalent over the years. But, due to its yearly precision, it won’t shed much light on
the seasonal nature of the outbreaks, which is something our client is interested in. To process
the WHO data, a Python tool has been developed that allows filtering and clustering of the data
in various ways. This allows the WHO data to be collected in many different and meaningful
ways. Using this data, choropleth maps of cholera across the world have been produced. For this
purpose, another Python tool was developed. It takes in a data file and outputs a map as an image
file, which enables easy visualization of the data.

ProMED is a collection of articles submitted by different sources that are regarded as a reputable
source of data. The data in these articles is much more in-depth than the data provided by the
WHO, giving specific numbers for certain cities/localities, down to the week. This is the primary
data source that is used to gather our information about the trends of seasonal outbreaks. This
data, however, does not have as much structure as the WHO data. There are many different ways

 5

that the same data can be conveyed since the English language can be very complicated. Due to
this, processing is broken into multiple steps where regular expressions and natural language
processing are used to extract important data. Another Python script developed collects,
analyzes, and processes the data to return a file that contains: the location, city, and country if
applicable; the number of cases; the date of the outbreak; and the latitude/longitude of the
location.

To allow others to learn about our project and access our results, a public website is available. It
will contain basic information about our project, some data visualization elements such as maps,
and download links for the data collection produced. There will also be a way of sorting or
filtering the data, because users may be interested only in a specific country or time range. The
website is hosted by VT and deployed in a virtual server with a public IP address and name,
which has been requested and granted. This server is expected to last for at least a year.

The efforts from this project will be used to analyze the impacts of climate change and increasing
water temperatures on cholera outbreaks. The database will be added to an international effort to
inform policy to prevent human mortality around the world.

 6

3. Requirements
Our system requirements have been defined by our client, Dr. Escobar. In order to be a
continuation of his previous work, the solution needs to follow similar guidelines as he had. The
main deliverable is a website that has data available for download. The data needs to be
outbreaks of Cholera for the last 10 years, worldwide. The data is expected to include the number
of cases per outbreak, the location of the outbreak, and the time range of the outbreak with
emphasis on the start date. The website will allow anyone to access the data collected, in a well
formatted database. For ease-of-use, the data is returned in the form of CSV files. The website is
required, at a bare minimum, to have the data available year-by-year. Additional goals include
the website having visuals for the number of cases and where the cases are located, and
interactive maps that may be clickable.

The data collected needs to be from reputable and verifiable sources. Because of this,
professional sources and databases are required such as WHO and ProMED. Another potential
data repository is HealthMap.org; however, the administrators for this data were unresponsive.
This is discussed further in 9. Lessons Learned. The data collection also needs to be automated
so that no manual data processing is needed. Therefore, one of the requirements is to create a
program to get the data, clean it, and enter it into a database for accessing.

Another requirement that is important to our client is documentation of the process. The process
that needs to be highlighted most is the web scraping and automated data collection. The
documentation needs to be detailed and descriptive enough that someone from a non-tech
background could operate and utilize this program for their own research. The goal is that Dr.
Escobar can use code created in the future to compile data, and that the code could be applied to
data collection for other diseases.

 7

4. Design
Our system’s general design is to pull data from online repositories, generate maps and other
visual representations of the data, organize the data in a database, and post this information to
our website. The data collection happens through two programs that get data from the ProMED
and WHO websites, clean up the data, and export normalized numbers into CSV files. The
organization of the data follows the required pieces of information: location of outbreak, number
of cases, and start week (and end week if available). The data will be in a normalized form where
locations will have a country if not a specific location, the number of cases will be an integer
number, and weeks will be an integer number. If the end week is found it will accompany the
start week. Raw data will also be available so that those interested can see where data comes
from, such as seeing a precise date instead of simply a week number.

The maps generated assign colors to numbers on a logarithmic scale for visualization purposes.
The countries with more cases per outbreak are colored in increasingly darker colors. These
maps serve as a basic visualization tool in order to see area trends and how they change across
years. These maps do not include any time information such as date ranges from outbreaks
beginning and ending, or trends in outbreak seasons; they just include the year.

On our website, the homepage has visual representations of the data. There is another page
where users can go to access the data downloads. Downloads are available as CSV files which
will make accessing their contents and readability simple. Our website will also feature an About
page with our team’s contact information in case any user has follow up questions or comments.
It also contains a description of this project and our client’s contact information. This site is
hosted on the VT CS servers and will be available to the public for access at choleradb.cs.vt.edu.
For more details and screenshots, see 7. User’s Manual.

Our system is simplistic yet effective in data collection. Our main purpose is to gather
information and make our project replicable. For our client’s goal of usability, our design is
consistent with his past project.

 8

5. Implementation

5.1 WHO Data Gathering
The WHO data is processed with a Python script called who.py that reads from a CSV file
(formatted like the ones in the WHO data repository). See 8. Developer’s Manual Table 2. WHO
Directory Details for descriptions of each file. At a high level, the program re-organizes the data
based on the arguments that were specified by the user. More about these arguments will be
explained in 7. User Manual. The algorithm the script performs will iterate over the entire input
file (Ω(n)). Each row (which is formatted as Country, Year, Value) will be filtered out if it
doesn’t fall into the year range specified by the user, or if the country doesn’t match the one
specified by the user. Otherwise, a test is made regarding whether the value for the country needs
to be added to an existing row in the output (in case the user is adding up the values for different
years), or if this is the first time the program encounters this country in the input. Next, the
program sorts the list resulting from the previous step. The sorting algorithm used is Selection
Sort (O(n²)), and the order of sorting is from greater to lesser, to prioritize the most relevant
ones. As it is sorted, the list is truncated to the maximum number of countries specified by the
user. After that, the program outputs the list as a CSV file or prints it to the console, depending
on whether the user specified an output file.

There’s another script which contains a batch of calls to who.py. It is called batch_run_who.py.
It is useful when the user needs to systematically retrieve exhaustive information from the WHO
files.

5.2 Map Creation
The maps are generated with the make_map.py script, which heavily relies on matplotlib,
numpy, and Pandas. The way the script works is, it takes in the output from who.py and creates a
Pandas dataframe to facilitate access. It then creates an array with the bins for the map legend
and assigns each country a bin based on the value for the country. That assignment is done in a
logarithmic way because the distribution of cholera cases across the countries is roughly
exponential, with a few countries containing most of the cases, so this logarithmic scale
compensates for that and the result is a uniform distribution of countries across the bins. Then, a
continuous color gradient is generated and discretized, so each bin will have an associated color
hue. The map is drawn using a file containing the shape information, with matplotlib, and for
each country in the Pandas dataframe, that country in the map is colored with the corresponding
color. Lastly, the legend and other texts (header and footer) are added to the image, and it’s
saved to a PNG file.

There’s another script called batch_run_map.py which, similarly to batch_run_who.py, can be
used to batch-run the map.py script.

5.3 ProMED Data Gathering
The ProMed data is much more complex to deal with. There is no specific API that allows data
collection from the website, so HTTP POST requests are used to retrieve the HTML. There are 2

 9

different POST requests required. One request is to get the article IDs for the current page, and
one request is to retrieve the actual article. Multiple requests are performed in order to get all the
article IDs because they are spread across multiple pages. A Keep-Alive socket is set up to use
one TCP connection to gather all the data. First, a page that lists all the ProMed articles is
fetched. The page is then iterated over to get the ID for each individual article. Finally, using the
ID number, an HTTP request is made to get the HTML. See 8. Developer’s Manual Table 3.
dataGatherer.py Details for details about each function.

After each individual article is collected, the HTML is parsed to extract the raw data. However,
before extracting the data, the HTML needs to have preprocessing done. Some of the older
records from 2010 and 2011 have formatting problems where there are
 (break lines) in the
middle of the sentence which, when run through an HTML parser, leads to analysis of partial
sentences. So, the function break_removal() is called to clean up the HTML data before it is sent
through the parser. The BeautifulSoup library is used for the parsing. BeautifulSoup takes the
HTML as input and provides a list of the stripped strings that represent the article. Each entry in
this list constitutes a paragraph. There is now a list of paragraphs in the article which can contain
“noise” or irrelevant data. Therefore, filtering of the noise is required before analysis begins.
Using a predefined list of keywords (found in keyWords.txt), sentences are analyzed to decide
relevancy. If enough keywords are found, the paragraph is kept. If not, the paragraph is deemed
irrelevant and not included in the condensed article.

One thing to note is there can be multiple articles within a single ProMed article. Sometimes
articles discuss about multiple locations, so a separate ProMed record is created for each of the
locations mentioned. There is a specific pattern that separates each of these articles within the
article. The flow diagram can be found in Figure 12. Anything that takes the form of something
like “[1] Cholera - Somalia” represents a change in the article discussion and signifies that a new
ProMed Record should be created for the next data.

There is important metadata stored in the beginning of the article including the archive number,
the source of the article, the general location that the article references, and the date the article
was published. This data can be useful for analysis. Therefore, it is found in parsing and added to
the promedRecord object. The condensed article data is part of this object as well, allowing all
necessary information to be stored together.

Once the article is condensed, one final intermediate step occurs; potential cases within each
article are “highlighted.” Name Entity Recognizers (NERs) have a highlighting scheme that can
be used for natural language parsing. A tagging scheme was created to mark potential cases in
each article. The motivation is that manual analysis will be simpler and more straightforward.
Alternatively, future development of this project can run the tagged data produced through
natural language processing routines. Before tagging is done, the elements that need to be tagged
are determined. This is done by training an NER model using the Spacy library within Python.
The code repository has a file called train.json which contains 200 training sentences created by
NER to help find what should be tagged. The goal is to tag the cases and the dates within each
article. With this training data, a blank Spacy model is trained over 20 iterations so a model that
can catch all important information is built. The program runs through 20 iterations so little loss
would occur. This means the model will not miss any phrases, which can happen when a model

 10

is over trained or under trained. After running the training and manually analyzing the results
manually, it was found that 20 iterations provides a good model to maximize the number of
results found. Once the list of tagged data is built, tags are highlighted within the condensed
article. The structure of highlighting is as follows: “There have been <CASE> 32 new cases of
cholera </CASE> in <DATE> week 2 of 2019 </DATE>”. This allows the text to stand out and
as well as makes it easy to parse through this data for potential future use. Using this tagged
format, useful data such as total number of cases per record and number of reported cases per
record are easily pulled from the article. With this information, a new field called rankSeverity is
added. The rank is calculated by sorting each record based on total number of cholera cases in
descending format. This is done by looking for case tags in the data just created. When a case tag
is found, the number of cases found in this document is incremented by 1 and then by a search
for a number within the case tag. If a number is found, it is added to a total cases variable for that
article. Once all articles have an associated number of cases and total number of cases, they are
sorted by number of cases and then generate a rank severity for each one. This is done by
walking down the list incrementally and giving a case a sequential number. So, the case with the
highest number of total cases, which will be at the front of the list, will have a rank severity of 1,
the next highest will have a rank severity of 2, and so on.

Finally, important case information is extracted from condensed articles and moved to CSV
format. Information extraction is done using 14 regular expressions; see Appendix A for more
details. These regular expressions are complex and attempt to capture the different ways that
someone can say the same phrase such as: “There are 20 new cases”. But there are many
different expression types that can occur. The program attempts to match a case to a location and
date; however, these are not always specified in the current sentence being analyzed. Because
only one sentence is analyzed at a time, context is lost in each iteration. Therefore, it is necessary
to check each sentence of an article for location and date information. Most of the processing is
done in the analyzeData() function. If a last known location and a last known date can be found,
possible correlations could be found to fill in missing data. This may not be the most accurate
method. Some analysis needs to be done to see if results are accurate.

In the generateRecords() function, the case, location, and date data are combined together. It is
possible that for a single case, 2 dates could be applied which classify as a date range.

Finally, normalized data is converted into the final data format. This involves stripping any
words out of the date and cases data, converting the date to a week format (week 12 of 2019) and
converting the location to a latitude and longitude format. To strip the extra words, more regular
expressions are used. To convert the location, the Google Maps API is used. The location and the
2-letter country alpha code (if known) is fed to the API, to get the latitude and longitude
coordinates back. Once this data is collected, it is added to the final CSV data file. This is done
in the normalizeData() function.

5.4 Report Graph Creation
This module, named graph.py, generates a set of graphs given a collection of reports in JSON
format. The format of the file should be a JSON object in which each report is an object with at

 11

least a “location” and “datePublished” attribute. This is the kind of file that the dataGatherer
module can generate from the ProMED data.

It works by first loading the JSON file into a Python dictionary. The keys will be the report ID
and the values, the report object containing the attributes. It iterates through the dictionary keys,
and for each value, it extracts its location and its publication date. The publication date format is
extremely heterogeneous, so the code accounts for a wide variety of formats. These are some of
the date formats encountered:

• day - three letter month - year
• day - full textual month - year
• three letter month - day - year
• month - year

There are also some erroneous or misspelt dates that the program tries to correct, which are
mainly due to entry errors. Finally, each date is converted to a Python datetime object, and all
dates and locations are put into a Pandas dataframe. A list of locations is built to facilitate
iteration. Locations with only 1 report are discarded due to 2 reasons: it doesn’t make any sense
to draw a graph with only one data point, and most of the time it corresponds to an
erroneous/misspelt location.

The plots are drawn using matplotlib and the Pandas dataframe. First, two graphs (Figures 1 and
2) are created for the complete set of reports (global): one of them groups the reports by month
and the other one by week. Then, by iterating over the locations list, two graphs for each location
are drawn (one monthly and one weekly). Only the rows of the dataframe that match each
location are considered for each graph.

Figure 1. Weekly Global Graph

 12

Figure 2. Monthly Global Graph

5.5 Website
The site is a relatively simple PHP + HTML website. Each one of the three pages (Figures 3, 4,
and 5 in section 7.1 Tutorial of Use) is a PHP file and makes use of a “header” and “footer”
HTML for code clarity. The searching functionality is implemented with the help of AJAX
requests. The downloads page allows users to filter the files through the form and sends a get
request to search.php. Then based on the form input, the search is resolved, and the file iterates
over the “/downloads” directory, picking the relevant files. Links to those files are assembled in
an HTML format and sent back to the view (the downloads.php page). Additionally, the
/downloads/ directory tree is publicly accessible from the browser.

 13

6. Testing, Evaluation, Assessment
The data collected from the repositories is not dynamic. To test the method of pulling data,
manual verification was done to ensure the articles had relevant information to cholera cases or
outbreaks. Through testing, it was discovered that most of the early ProMed articles were
formatted in a way that was not compatible with the current method of parsing. These early
articles contained
 tags between every line, whereas a new paragraph was indicated by two
consecutive
 tags. This caused the current parsing method to believe these
 separated
lines are their own separate paragraphs. Formatting of these earlier articles was fixed using a
preprocessing method.

A user test was done for usability of the website. A paper prototype test was conducted in which
each page of the website was printed on separate pieces of paper and tasks were outlined for a
test subject to complete on the site. The tasks were

1. Locate the map for WHO data of cases in 2014 per country
2. Download the fatality rate per country WHO data for 2011
3. Download the monthly graph for Kuwait from the ProMed data
4. Locate the team members’ contact information

As the research subject tried to navigate the pages to perform the tasks, they were given the next
subsequent printed page of the website based on the button they “clicked.”

The research subject was Taylor Casarotti, a Virginia Tech student who is interested in learning
more about Cholera, which is one of the identified user types. During the task run-through, she
completed task #1 quickly and efficiently, and located the correct map displayed on the
homepage carousel. In task #2, she immediately clicked the “downloads” tab on the website. She
then noted that it was difficult to locate the exact data she wanted from the list of downloadable
files and suggested some sort of sorting feature. This was noted and has been implemented in the
current website design. She had the same complaint with task #3 but was still able to locate the
desired information. She also completed task #4 quickly, navigating to the “about” tab in the
website. In conclusion, she found the website easy to navigate and found each task to be clear.
Through this test, the website design was improved by implementing a search feature on the
data.

 14

7. Users’ Manual

7.1 Tutorial of Use
Navigate to the website at choleradb.cs.vt.edu. Once here, the homepage is automatically
displayed, see Figure 1. This features maps that were developed from the WHO data. The maps
themselves run in a carousel that rotates automatically. The title above the map will tell what
year the map correlates with. At the bottom there is a message detailing how the maps are
logarithmic. It is important to read the legend on the map to understand the case number range
that each color represents, as it is logarithmic and not linear. This was done for visualization
purposes as the case numbers have large ranges.

Figure 3. Website Home Page

By clicking on the Downloads tab along the top of the page, all data can be viewed. There are
three lists of data displayed on this page (see Figure 2). The first column is data from WHO that
was collected. For ease of use, this list is searchable by year. The second column is data from
ProMED that was collected. This column is also searchable by year. Finally, the third column is
graphs developed from the ProMED data. These graphs feature the number of cases over a
certain time frame for various locations; see 8. Developer’s Manual Graph Module for more
information. This column is searchable by location and grouping type (any, month, or year). All
of the data that is on this page is easily downloaded by clicking the link desired.

 15

Figure 4. Website Downloads Page

The final page on the website is About; see Figure 3. This page features information and contact
information for our client as well as all team members. There is information about this project
and other projects done by the client.

Figure 5. Website About Page

 16

7.2 User Goals & Use Cases
This project accounts for and supports various users with end goals. For each user, a goal was
developed, with use cases to achieve those goals to help develop a user-friendly application. The
first user group supported is epidemiology researchers or trackers whose end goal may be to see
data presented visually and by year and country. Another user group with a similar goal is
Cholera experts. The third user group includes people who are interested in learning about
Cholera. For this user, use cases provided include those for the goal of seeing where outbreaks
are most common and at what time of year outbreaks occur, as well as finding out how many
cases are common per year and per country in an outbreak. The fourth and final user type is a
developer who is looking for open source code to develop a project similar or based on this
project. The end goal for this user is to find code that is replicable in a web-scraping process.

Table 1. User Types and Descriptions

User Type Short Description General Goals
1. Epidemiology Researchers
or Trackers

Researchers and disease
trackers who use past cases
and databases to map the
spread of their disease. They
may utilize digital
epidemiology.

They can utilize our project
for their own diseases by
changing some of the input
data. They can use our data to
view the spread of Cholera
worldwide over multiple
years.

2. Cholera Experts This user is anyone who
specializes in studying
Cholera. It could include
doctors or researchers.

This group can use our data
to view the spread of Cholera
worldwide over multiple
years. They can also build on
our data and expand on the
years and precision of our
data.

3. People Interested in
Cholera

Anyone who is generally
interested in Cholera would
fit into this user type,
including the members of our
group.

A goal for this user group is
to see where and when
Cholera outbreaks occur most
in the world and to find out
how many cases are typical in
an outbreak.

4. Developers (see 8.
Developer’s Manual)

Software developers who are
interested in finding open
source code to develop
similar projects.

This user’s goals include
getting access to open source
code that they can utilize and
replicate.

For each goal, tasks and subtasks were developed in a user-centric form for how a goal is
accomplished. Figures 6-10 are task diagrams with an accompanying description of the process.

Goal 1:

 17

This goal (see Figure 6) consists of viewing general data about Cholera in a map. Researchers
may want to get a general idea without having to dive into our huge files, but they still want to
see numbers together with the visual elements (colors).

a. Users access the website via their browser (the site has a public domain name).
b. Maps are presented on the Home page and users can browse them using clickable arrows.
c. View the numbers on the map and interpret using the legend.

Figure 6. Goal 1 Subtasks

Goal 2:
Goal 2, illustrated in Figure 7, consists of using the data the Cholera website provides for
different purposes such as tracking patterns over years and by country and making predictions.
Researchers will need data organized by year and country for their analysis purposes.

a. Users access the website via their browser (the site has a public domain name).
b. Users may search through the downloadable data by navigating to the Downloads tab.

Here they will find the search bar where they can search by year and country using the
dropdown menu.

c. After filtering the data, they may download the relevant data by simply clicking on the
CSV file name.

Figure 7. Goal 2 Subtasks

 18

Goal 3:
The users with this goal (see Figure 8) will be regular people trying to learn about Cholera and
its seasonal patterns, who are interested in getting to the files. It’s likely that they will look at the
maps first, to get an idea of what the general situation of Cholera is.

a. Users access the website via their browser (the site has a public domain name).
b. Maps are presented on the Home page and users can browse them using clickable arrows.
c. Based on what they learn from the map, they can then navigate to the “downloads”

section, filter by country/year, and download the files they’re interested in.

Figure 8. Goal 3 Subtasks

Goal 4:
This goal (see Figure 9) is similar to goal 1 in the sense that users are interested mainly in the
maps. However, the users are not professional researchers, but normal people, trying to get an
idea of which countries have a higher prevalence of Cholera, how it has evolved over time, etc.
So, they value a powerful visualization and don’t care that much about the numbers in the
legend.

a. Users access the website via their browser (the site has a public domain name).
b. Maps are presented on the Home page and users can browse them using clickable arrows.
c. The legend is at the bottom of the image, but users will probably get more meaningful

information from the colors, which allow for an easy comparison.

 19

Figure 9. Goal 4 Subtasks

Goal 5:
This last goal (see Figure 10) relates to the “workflow” aspect of our project, i.e., the process
followed to reach the results in this project, and project reutilization. Along with the results, the
code and documentation for this project will be published. Other developers may want to build
on the code or adapt it to their needs (for which they will appreciate the documentation and the
description of our process).

a) Our website will include a link to a public repository, but developers may reach it from
other sources as well.

b) Since the repository will be public, they will be able to download its content. If they are
trying to modify it for their own projects, “forking” will probably be their best option.

c) Documentation of the code and the workflow will be available publicly as well, probably
in the website and/or the repository.

d) This last task is pretty much up to them and out of the scope of our project.

 20

Figure 10. Goal 5 Subtasks

 21

8. Developer’s Manual
In 7.2 Users Goals & Use Cases, developers will find a helpful guide to the users this system
was designed for and what use cases were considered in the development. There are useful
diagrams to show the workflow of each use case.

8.1 Python Requirements
To run the Python modules, developers need to make sure they have the correct dependencies
installed. A list of all dependencies can be found in Appendix B. A requirements.txt file can be
found in the repository, along with the rest of the code:
https://git.cs.vt.edu/mikero/choleradatabase

8.2 WHO Modules

Table 2. WHO Directory Details

File Name Dependencies Inputs Outputs Description
who.py argparse, csv User-provided

arguments (for
more info, see 7.
User Manual)

CSV file or
console print,
depending on
user arguments

Performs the bulk
of the WHO data
processing, as
explained above

batch_run_who.py argparse, who None A set of CSV
files

This script invokes
the who-py module
with a variety of
predefined
arguments in order
to automatically
produce a set of
CSV files.

make_map.py argparse,
matplotlib,
numpy,
Pandas,
mpl_toolkits

User-provided
arguments (for
more info, see 7.
User Manual)

PNG image
containing the
map

Performs the map
plotting operation,
as explained above

batch_run_map.py argparse,
make_map

None A set of PNG
images

Invokes the
make_map module
with a variety of
predefined
arguments in order
to automatically
produce a set of
maps

 22

Figure 11. WHO Directory Workflow

The who.py module can be invoked with a wide variety of command line arguments, which,
when combined, can produce different results. Here is a list of all of them:

• filename (positional): path to the source CSV file containing the WHO data. Typically, it
will be “who/resources/cases.csv”

• -m, --minyear (optional): minimum year (included) for the time range that will be used to
filter the WHO data.

• -x, --maxyear (optional): maximum year (included) for the time range that will be used to
filter the WHO data (when minyear == maxyear, only that year will be considered when
gathering the data).

• -n, --numcountries (optional): maximum number of countries to display after the data has
been sorted. Only the n countries with the top values will be displayed.

• -c, --country (optional): if specified, only data from that country will be gathered. If
absent, every country will potentially be included in the list.

• -b, --breakdown (optional switch): Boolean value. If present, a year by year breakdown of
the values will be displayed for each country. If absent, values across the time range will
be added up for each country.

• -f, --fileoutput (optional): name of the file where the output will be written to. If absent,
the output will be printed to the terminal.

The make_map.py module takes in some arguments as well:

• filename (positional): path to the source CVS file containing the result of a who.py
invocation. Typically, it will be a file under “who/out/”.

• fileoutput (positional): path/name to the output image that will be generated. Typically, it
will be under “who/images”.

8.3 Graph Module
As mentioned in 5. Implementation, a variety of date formats are considered when interpreting
the report date, and some possible errors are accounted for. However, this is an ad-hoc
implementation that works for our data collection but could fail if a new, non-standard date
format is plugged in. In that case, the datetime module will most likely throw an error.

 23

8.4 Website
The website was created with a LAMP stack in mind, although it makes no use of the database.
A Windows XAMPP environment was used for development.

The production version runs on a virtual machine provided by the Virginia Tech Computer
Science department. Its name is choleradb.cs.vt.edu and its public address is 128.173.237.71.
Developers can access it via SSH connections, but only from the VT network or the VT VPN.

8.5 DataGatherer
The data gatherer module can be found in the dataGatherer.py file. Much like the WHO module,
make sure that you have all the dependencies installed. A list of all dependencies can be found in
Appendix B. A requirements.txt file can be found in the repository, along with the rest of the
code: https://git.cs.vt.edu/mikero/choleradatabase.

Table 3. dataGatherer.py Details

Function Name Dependencies Inputs Output Description
getSingleProMedData None ID Number

as integer

Socket as a
Requests
Socket

List of
PromedRecord
objects

Retrieves a ProMED
record by using
HTTP, grabs
important information
and condenses the
article text

getAllProMedData None None A dictionary of
PromedRecords
that are indexed
by a number

Access all the
ProMED articles
related to Cholera and
call
getSingleProMedData
to create a list of
condensed data

normalizeRecords None List of
caseRecords

Last known
location as
string

Date
published as
string

List of
formatted
records

Take the data
collected from
generateRecords and
normalize the data so
that cases are a
number, and the
location has a latitude
and longitude

getMonth None Month as
string

Month as int This function takes
the date string and
outputs the month as

 24

an int for normalizing
the data.

generateRecords None List of
caseRecords
containing
only cases

List of
caseRecords
containing
only dates

List of
caseRecords
containing
only
location

Last known
date as
string

Last known
location as
string

Date
published as
a string

List of
caseRecords
that are
completely
filled out with
the case, date,
and location

This takes the partial
information obtained
from analyzeData and
creates full
caseRecords. By
using the sizes of
each of the list inputs,
generateRecords tries
to create the correct
records that were
listed in the full
article.

parseNormal None Current line
as string

Last known
location as
string

Date
published as
string

List of
caseRecords
that are
completely
filled out with
the case, date,
and location

parseNormal uses
regular expressions
(see Appendix A) to
parse out the cases,
date, and location. It
creates partial
caseRecords that are
then passed into
generateRecords

parseSpecial None Current line
as string

List of
partial
caseRecords

List of
caseRecords
that are
completely
filled out with
the case, date,
and location

parseSpecial is for
some special types of
expressions that
appear in ProMED
records like “Uganda
(53)” to express the
number of cases.

 25

dateFound
as Boolean

Last known
location as
string

Date
published as
string

Cases are sent see if a
location and date for
each special case is
found, then pass
those incomplete
caseRecords into
generate Records

analyzeData None A ProMED
article as
string

List of
caseRecords
that are
completely
filled out with
case, date, and
location

analyzeData uses all
the defined regular
expressions (see
Appendix A) to send
current sentence to
parseNormal or
parseSpecial

createSynonyms A list of stop words
already defined

None A list of the
most common
words in the
article sorted

Searches through all
the ProMED articles
to find the most
common words that
can be used to
identify the most
important parts of the
article. Meant to be
analyzed manually

expandSynonyms NLTK corpus

Lemma names

None A list of our
synonyms and
synonyms for
those

Takes the synonyms
defined in
createSynonyms and
expands the list to
include synonyms for
those words

convert_dataturks
_to_spacy

None File path
and a
correctly
formatted
JSON

A correctly
formatted
JSON file that
spacy can use
to train

Takes a JSON file
with tags and
converts it to a JSON
file that can be used
to train an empty
spacy model for use.

train_spacy A correctly
formatted JSON file

Spacy

A correctly
formatted
JSON file

None Uses the JSON file to
train a spacy model
over 20 iterations to
find cases and dates
for tagging

break_removal getSingleProMedData html_data
as string

html_data as
string

This function takes
raw text pulled from
ProMED and will

 26

remove excessive
breaks that interfere
with analysis.

insert_tag None Text as the
full body of
text that is
being
tagged

Start as the
start
character
offset

End as the
end
character
offset

Tag as the
string that
will be used
as the tag

The full article
with an
additional tag
that highlights
the important
data found
from the spacy
model

This function allows
us to add any tag to
an article given a start
index, an end index, a
body text and the tag
to be inserted

tag_records None Record as
the
ProMED
record that
will be
tagged

A taggedData
object that
contains the
ProMED
record and the
tagged data

This function takes a
promedRecord object
and calls nlp() on the
provided text to allow
spacy to find the tags
based on the given
model, which is then
run through insert_tag
to insert the data into
the text.

generate_CSV None Dictionary
of
taggedData
objects

A file named
output.csv
containing all
the taggedData
object data in
CSV format

Converts a set of
taggedData objects
into CSV format

 27

Figure 12. dataGatherer.py Workflow

The dataGatherer module can be invoked by calling: python3 dataGatherer.py. There are no
parameters that need to be passed in. The dataGatherer module does not use every function listed
above. The main functions that are left out are analyzeData, parseNormal, parseSpecial,
generateRecords, and normalizeRecords. These methods are not included the main method of the
module because there is not confidence in the output produced. While it has functionality, more
work needs to be done on these methods to provide a more consistent output. All of these
functions can be invoked by running analyzeData.

To run analyzeData, a file needs to be provided in the directory called key.py. Google Maps
Geocoding API is used, which requires an API key. For security reasons, this team’s API key is
not displayed in the file for public use, so the separate file was created to store the key, then
import that file to the dataGatherer module. The only line that needs to be in key.py is
“API_KEY=[YOUR API KEY]”. This will allow the dataGatherer module to use the Google
Maps to access the API that allows for latitude and longitude lookup. To get an API key, go to
https://developers.google.com/maps/documentation/javascript/get-api-key. Please note that there
may be some payment required. The API used in this project has a fee of $5 per 1000 requests
made. In testing, 100 requests were made. There are 1600 articles available with approximately 2
locations per article, needing about 3200 requests. We did not have to pay for usage of this API
because we were able to use Google’s free trial credit that was given to us when we signed up.

 28

9. Lessons Learned
While there were some successes in this project, many obstacles and roadblocks were
encountered; many focused on the natural language processing part. None of this team had any
experience with NLP parsing and name entity recognition before, so this was a new topic. It was
quickly discovered that English is a very complicated language with a lot of ambiguity. When
looking through the articles, there were many different ways to say the same thing. One article
could say “There are 20 new cases in week 10” where another article could say “In EW
(epidemiological week) 10, the number of new cases was 20”. Both sentences mean the same
thing, but that is expressed in different ways. This made it very difficult to make regular
expressions to cover all the different ways to express something. It is something that we should
have been considered beforehand, and then analyzed more articles to see the differences.

Another lesson, perhaps the most important, is the idea of intermediate steps. As the project
progressed, the main goal was to try and deliver the finished product to our client by the end of
the semester. However, this project, while it sounds simple, is quite complicated, and will take
time to complete correctly and thoroughly. Originally, no intermediate steps were planned. The
program would go directly from condensed articles to the final CSV output. This is not friendly
to others who may want to use this data and it is inappropriate if the project is not complete at the
end of the semester. So, intermediate steps were incorporated. These steps are to translate the
data into a different form, slowly changing it from the normal text to the final output. This is
very important because even if the final product our client wanted is not exactly produced,
another team will be able to finish the work started, or someone can use the condensed form of
the data for a different analysis. The main takeaway is handing in unfinished work that is usable
by others is better than turning in bad, inaccurate, and unusable data as a final product.

9.1 Schedule
● 1/23: Reach out to client about meeting time to talk about project specs
● 1/28: Finalize project proposal
● 2/12: Data collection from one repository fully functional and a list of repositories to use
● 2/13: Initial Project Presentation -- proposal and deliverables
● 3/5: Prototype website with data from one online repository
● 3/31: Secondary Project Presentation -- work so far and future plans
● 4/1: Data collection from at least one more repository fully functional
● 4/14: Data collection from all repositories completed; website is being built and refined
● 4/28: Final Project Presentation -- work completed
● 4/30: User views finalized, data is downloadable
● 5/5: Reports and all other deliverables completed
● 5/6: Project Due

 29

9.2 Problems
One of our goals in this project was to get data from multiple repositories. According to the
client, ProMED had the most comprehensive data and was where data collection should be
focused. There is a 3rd party website called HealthMap.org which displays data about outbreaks
and diseases in an interactive map. This site collects a lot of data from ProMED and will
distribute the data on request. As issues arose with data parsing through the ProMED articles,
HealthMap seemed to be a useful alternative. Multiple attempts to contact the HealthMap team
received no reply. Future work in this area could be to request the data at a time with less
extenuating circumstances in order to retrieve comprehensive data from them.

The client expressed that he would like the data to be displayed visually on the website as well as
be interactive. Specifically, he suggested a map that allowed the user to click on a country and
have the information about that country’s outbreaks as well as the downloadable data. As parsing
issues arose, the focus of the project shifted to data collection rather than the interactive display
of information. Data visualizations became a stretch goal in the project. This decision was made
under the notion that the main goal of this project was to collect data and have it as
downloadable for the user. Non-interactive visualizations of the data have been provided on the
website, which is an alternative substitute for the interactive visualizations.

One final problem encountered was something out of our control. In March of 2020, the COVID-
19 outbreak resulted in campus being closed down and classes being moved to an online format.
Because campus was now closed, several of our team members went back home to social
distance. This made working together difficult because there was upwards of a 14-hour time
zone difference between members. Planning meetings and communicating between partners
became much more difficult as someone may have questions for another member but are unable
ask because it is 3 A.M. in the other time zone. It really tested the team’s communication skills.

 30

10. Acknowledgements
This section is to acknowledge our client, Dr. Luis Escobar.
Dr. Escobar is a member of the Fishing and Wildlife Conservation Department at Virginia Tech.
He specializes in the distribution of biodiversity, including parasites and pathogens at global
scales, and under past, current, and future environmental conditions. He looks into how climate
change and land use conditions have affected the spread and seasons of outbreaks. Dr. Escobar’s
laboratory has worked to understand the temporal, spatial, and climatic pulses associated with
cholera epidemics. Additionally, the laboratory has been a pioneer in disentangling the potential
effects of climate change on this water-borne disease. A new challenge to understand and
prevent this disease is to have a comprehensive assessment of the number of cases at the local
level.

Dr. Escobar’s contact information
Phone number: (540) 232-8454
Email: escobar1@vt.edu
Personal VT website: https://fishwild.vt.edu/faculty/escobar.html
Lab website: https://ecoguate2003.wixsite.com/escobar

 31

11. References
[1] Doctorj, googlemaps 1.0.2, PyPI, Oct. 17, 2009. Available:

https://pypi.org/project/googlemaps/1.0.2/ (accessed 25 April 2020).

[2] J. Geissinger, T. Long, J. Jung, J. Parent, and R. Rizzo, “Big Data Text Summarization -
Hurricane Harvey,” VTechWorks, Dec. 2018. http://hdl.handle.net/10919/86358
(accessed 25 April 2020).

[3] J. Hunter, D. Dale, E. Firing, M. Droettboom, Matplotlib, 2012. Available:

https://matplotlib.org/index.html (accessed 25 April 2020).

[4] K. Reitz, Requests: HTTP for Humans, 2019. Available:

https://requests.readthedocs.io/en/master/ (accessed 25 April 2020).

[5] L. Richardson, Beautiful Soup Documentation, 2020. Available:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/ (accessed 25 April 2020).

[6] M. Honnibal, spaCy Industrial Strength Natural Language Processing, March 12, 2020.

Available: https://spacy.io/ (accessed 25 April 2020).

[7] Numpy Developers, Numpy, 2005. Available: https://numpy.org/index.html (accessed 25

April 2020).

[8] ProMED International Society for Infectious Disease, 2020. Available: promedmail.org

(accessed 25 April 2020).

[9] S. Bird, L. Tan, NLTK 3.5 documentation, Apr. 3, 2020. Available: nltk.org (accessed 25

April 2020).

[10] The Pandas Development Team, Pandas, “pandas-dev/pandas: Pandas 1.0.3”. Zenodo,

March 18, 2020. Available: https://pandas.pydata.org/ (accessed 25 April 2020).

[11] World Health Organization, 2020. Available: who.int (accessed 25 April 2020).

[12] Y. Martinez Palenzuela, geotext 0.4.0, PyPI, July 7, 2018. Available:

https://pypi.org/project/geotext/ (accessed 25 April 2020).

 32

12. Appendices

Appendix A: Regular Expression Patterns
Table 4. Regular Expression Patterns

Pattern Name Regular Expression
Case Extractor (\d+\s\d*(?!Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Dec))+
Cases ((\d+\s*\d*)+\s(new|confirmed|suspected|reported|new\ssuspect

ed)\s(cases|case))|((\d+\s*\d*)+\s(cases|case))|((\d+\s*\d*)+
\s(new|confirmed|suspected|reported|new\ssuspected)\scholera\
scases)|((\d+\s*\d*)+\s(\snew|confirmed|suspected|reported|ne
w\ssuspected)*\scholera\s*\/\s*AWD\scases)|cases\s(\w\s*)*\si
s\s(\d+\s*)+

Cumulative (cumulative)*\stotal\sof\s((\d+\s*)+)\s(\w\s*)*cases|total(\s
number)?\sof(\scases)?\s(\w\s*)+(\d+\s*)+\scases|(cumulative\
s)*total\snumber\sof\s(\w\s*)*\scases\s(\w\s*)*\sis\s(\d+\s*)
+

Date (\d+\s(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|Januar
y|February|March|April|June|July|August|Semptember|October|No
vember|December)\s\d+)|(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|O
ct|Nov|Dec|January|February|March|April|June|July|August|Semp
tember|October|November|December)(\s\d+)*\s\d+|(beginning\sof
\s\d+)|during\s(\d+)

Date (this
week)

this week|the week under review|this year|the week in review

Deaths ((\d+\s*\d*)+(new|confirmed|suspected|deported|new\ssuspected
)\s(deaths|death))|((\d+\s*\d*)+\s(deaths|death))

First Check (\S+\s\((\d+\s*)+\))|(\S+\s\(\d+\.\d+%;\s(\d+\s*)+\))
Last Known
Location

\S+:

Location ((include|include;|includes:|including)\s(\w+,\s|and\s\w*)+)|
\w*\s(region|district)

Number (to
find numerical
values)

\(\d+.\d+%;\s\d+\)|\(\d+\)

Record
Splitting

\[\d\|10|11|12\s\w+.+

Second Check (\d+\s*)+\sin\s\w+
Week (week(s*)\s\d+)
Week Number (?<!\w)\d+

 33

Appendix B: Python Libraries
This is a list of Python Libraries that are required to run our program:

• argparse
• beautifulsoup
• csv
• datetime
• geotext
• googlemaps
• json
• key
• logging
• matplotlib
• mpl_toolkits.basemap (Linux only)
• nltk
• nltk.corpus
• numpy
• operator
• pandas
• pycountry
• random
• re
• requests
• spacy

 34

Appendix C. Table of Figures
Table 5. Table of Figures

Figure Number Figure Title Page Number
1 Weekly Global Graph 11
2 Monthly Global Graph 11
3 Website Home Page 13
4 Website Downloads Page 14
5 Website About Page 14
6 Goal 1 Subtasks 16
7 Goal 2 Subtasks 17
8 Goal 3 Subtasks 17
9 Goal 4 Subtasks 18
10 Goal 5 Subtasks 19
11 WHO Directory Workflow 21
12 dataGatherer.py Workflow 26

 35

Appendix D. Table of Tables
Table 6. Table of Tables

Table Number Table Title Page Number
1 User Types and Descriptions 15
2 WHO Directory Details 20
3 dataGatherer.py Details 22-25
4 Regular Expression Patterns 31
5 Table of Figures 33
6 Table of Tables 34

