
Modified Kernel Principal Component Analysis and Autoencoder
Approaches to Unsupervised Anomaly Detection

Nicholas S Merrill

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Azim Eskandarian, Chair

Saied Taheri

Alfred L. Wicks

April 30, 2020

Blacksburg, Virginia

Keywords: Anomaly Detection, Unsupervised, Outlier, Kernel Principal Component

Analysis, Autoencoder, Machine Learning, Deep Learning

Copyright 2020, Nicholas S Merrill

Modified Kernel Principal Component Analysis and Autoencoder
Approaches to Unsupervised Anomaly Detection

Nicholas S Merrill

(ABSTRACT)

Unsupervised anomaly detection is the task of identifying examples that differ from the nor-

mal or expected pattern without the use of labeled training data. Our research addresses

shortcomings in two existing anomaly detection algorithms, Kernel Principal Component

Analysis (KPCA) and Autoencoders (AE), and proposes novel solutions to improve both

of their performances in the unsupervised settings. Anomaly detection has several useful

applications, such as intrusion detection, fault monitoring, and vision processing. More

specifically, anomaly detection can be used in autonomous driving to identify obscured sig-

nage or to monitor intersections. Kernel techniques are desirable because of their ability to

model highly non-linear patterns, but they are limited in the unsupervised setting due to

their sensitivity of parameter choices and the absence of a validation step. Additionally, con-

ventionally KPCA suffers from a quadratic time and memory complexity in the construction

of the gram matrix and a cubic time complexity in its eigendecomposition. The problem of

tuning the Gaussian kernel parameter, σ, is solved using the mini-batch stochastic gradient

descent (SGD) optimization of a loss function that maximizes the dispersion of the kernel

matrix entries. Secondly, the computational time is greatly reduced, while still maintaining

high accuracy by using an ensemble of small, skeleton models and combining their scores.

The performance of traditional machine learning approaches to anomaly detection plateaus

as the volume and complexity of data increases. Deep anomaly detection (DAD) involves the

applications of multilayer artificial neural networks to identify anomalous examples. AEs

are fundamental to most DAD approaches. Conventional AEs rely on the assumption that

a trained network will learn to reconstruct normal examples better than anomalous ones. In

practice however, given sufficient capacity and training time, an AE will generalize to recon-

struct even very rare examples. Three methods are introduced to more reliably train AEs

for unsupervised anomaly detection: Cumulative Error Scoring (CES) leverages the entire

history of training errors to minimize the importance of early stopping and Percentile Loss

(PL) training aims to prevent anomalous examples from contributing to parameter updates.

Lastly, early stopping via Knee detection aims to limit the risk of over training. Ultimately,

the two new modified proposed methods of this research, Unsupervised Ensemble KPCA

(UE-KPCA) and the modified training and scoring AE (MTS-AE), demonstrates improved

detection performance and reliability compared to many baseline algorithms across a number

of benchmark datasets.

Modified Kernel Principal Component Analysis and Autoencoder
Approaches to Unsupervised Anomaly Detection

Nicholas S Merrill

(GENERAL AUDIENCE ABSTRACT)

Anomaly detection is the task of identifying examples that differ from the normal or ex-

pected pattern. The challenge of unsupervised anomaly detection is distinguishing normal

and anomalous data without the use of labeled examples to demonstrate their differences.

This thesis addresses shortcomings in two anomaly detection algorithms, Kernel Princi-

pal Component Analysis (KPCA) and Autoencoders (AE) and proposes new solutions to

apply them in the unsupervised setting. Ultimately, the two modified methods, Unsuper-

vised Ensemble KPCA (UE-KPCA) and the Modified Training and Scoring AE (MTS-AE),

demonstrates improved detection performance and reliability compared to many baseline

algorithms across a number of benchmark datasets.

Dedication

To all the people in my life who were a constant source of support and encouragement over

these last two year.

v

Acknowledgments

I wish to thank my committee members, Dr. Saied Taheri and Dr Alfred Wicks, who both

demonstrate a commitment to education and a generosity with their time and experience. A

special thanks to my advisor and chair, Dr. Azim Eskandarian, who guided and supported

me throughout this process and has always made time for his students. I would also like

to thank Dr. Colin Olson who I learned an enormous amount from during my time at the

Naval Research Lab. Finally, I would like to thank the other members of the ASIM lab for

their helpful suggestions and feedback.

vi

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 6

1.3 Contributions and Scope . 7

1.4 Outline . 8

2 Review of Literature 9

2.1 Traditional Versus Deep Approaches . 9

2.2 Traditional Anomaly Detection . 10

2.2.1 Kernel Principal Component Analysis 17

2.3 Deep Anomaly Detection . 20

2.3.1 Autoencoders . 21

3 Proposed Methods 24

3.1 Unsupervised Ensemble Kernel Principal Component Analysis 24

vii

3.1.1 The Kernel PCA Algorithm . 24

3.1.2 Anomaly Scoring . 26

3.1.3 Challenges . 29

3.1.4 Learning the Kernel . 30

3.1.5 Skeleton Ensembles . 35

3.2 Modified Training and Scoring Autoencoder 37

3.2.1 Cumulative Error Scoring . 39

3.2.2 Percentile Loss . 42

3.2.3 Early Stopping via Knee Detection 44

3.3 Summary . 46

4 Experimental Methods 48

4.1 Baseline Algorithms . 48

4.1.1 kth Nearest Neighbor . 49

4.1.2 Local Outlier Factor . 49

4.1.3 Unweighted Cluster-Based Local Outlier Factor 50

4.1.4 Linear Principal Component Analysis 52

4.1.5 Mahalanobis Distance . 53

4.1.6 Kernel Density Estimator . 54

4.1.7 One Class Support Vector Machines 55

viii

4.1.8 Isolation Forest . 57

4.2 Parameter Settings and Implementation . 59

4.3 Datasets . 60

4.4 Evaluation Metrics . 64

5 Results and Discussion 69

5.1 Unsupervised Ensemble KPCA . 69

5.1.1 Batch Sigma Tuning . 69

5.1.2 Ensemble Parameters . 71

5.1.3 Comparisons with KPCA, KDE, and Linear PCA 75

5.2 Modified Training and Scoring . 76

5.3 Comparison with Baseline Algorithms . 79

6 Conclusions 85

6.1 Future Work . 86

Bibliography 88

Appendices 104

Appendix A ROC Curves 105

Appendix B Python Code 109

ix

B.1 UE-KPCA Code . 109

B.2 MTS-AE Code . 145

x

List of Figures

1.1 Comparing the different modes depending on the availability of training data:

a) Supervised anomaly detectors uses a fully labeled dataset containing anoma-

lous and normal examples during training and returns a classification b) Semi-

supervised anomaly detectors use only normal examples during training c) Un-

supervised anomaly detection takes unlabeled data and produces an anomaly

score. Adapted from [31] . 3

1.2 Different types of anomalies in an example 2-dimensional dataset. Adapted

from [16] and [32]. 5

2.1 A taxonomy of unsupervised anomaly detection methods. A superscript K

indicates a kernel-based method. The light blue indicates methods that are

the focus of this thesis, KPCA and reconstruction-based AEs 11

2.2 The decision boundaries of KPCA, OC-SVM, and SVDD in the feature space

produced by a Gaussian Kernel. (A) on the left shows the boundaries in

a three-dimensional representation. Both normal examples (green) and the

single anomaly (red) lie on the surface of a hypersphere. The (blue) line repre-

sents a kernel principal component (KPC), where a small boundary captures

all the normal examples. Both the SVDD hypersphere and OC-SVM must

include the anomaly in order to enclose all the normal points. (B) on the right

shows a cross section orthogonal to the principal component, representing the

same situation in (A). Adapted from [43]. 18

xi

2.3 Architecture of a simple, contractive Autoencoder with one hidden layer. . . 22

3.1 The anomaly scores is the squared distance represented by the red line indi-

cating the separation between the point in F (blue) and its projection onto a

subset of kernel principal components (green). 28

3.2 Gaussian kernels are corresponding to different choices of σ are fitted to one-

dimensional data. The black dots indicate the corresponding off-diagonal

kernel entries. The anomaly (at 0) is best separated when the index of dis-

persion is maximized. 32

3.3 A two dimensional example of linear PCA. Random subsampling produces

skeleton approximations of the PC. 35

3.4 Reconstruction error over 100 epochs for a normal (green) and anomalous

(red). Bold lines show cumulative error . 41

3.5 Early stopping via knee detection on the CES loss statistic. PL is also applied

in this example. 45

4.1 Histogram of anomaly scores. Orange indicates scores of anomalous examples,

while blue represents normal ones. The red vertical line indicates a specified

threshold for classification . 65

4.2 A ROC curve corresponding to the anomaly score histogram if 4.1. Each

threshold generates a corresponding FPR and TPR. The green dashed-horizontal

line indicates perfect detection, while the black-dashed angled line indicates

random scoring. The shaded-blue AUC summarizes the ROC curve. 66

xii

5.1 A relatively small batch size of Nb = 100 results in a stable σ at low compu-

tational time. 70

5.2 The value of the loss function (red) compared to AUC (blue) across a grid

search of 50 σ choices for the Gaussian kernel on nine real datasets. The

location of maximum AUC and minimum loss are indicated by dashed vertical

lines. 72

5.3 Stable results are achieved with Ns = 256 ofr Nm = 100. Computational time

increases cubically with the size of the individual models in the ensemble. . . 73

5.4 Stable results are achieved with Nm = 100 ofr Ns = 256. Computational time

increases linearly with the number of models in the ensemble. 74

5.5 The individual results from the models in an ensemble on the Forest dataset.

Only 5 out of the 100 individual models outperformed the ensemble average. 75

5.6 The seperate and combined effects of PL and CES 77

5.7 After only 50 epochs the anomaly is reconstructed under the standard MSE

objective. With PL, the AE does not reconstruct the anomalous example. . 78

5.8 ROC Curves comparing different methods on the stop-sign and speed-sign

datasets . 81

5.9 Rankings produces by the MTS-AE on the stop-sign and speed-sign datasets.

Anomaly scores in each grid increase form left to right and from top to bottom.

A red boundary indicates an anomaly, while a green boundary indicates a

normal example. 82

xiii

A.1 ROC Curves showing the detection performance of each method. FPRs and

TPRs are interpolated to form an average curve. The shaded area indicates

± 1 std. deviation. 108

xiv

List of Tables

4.1 Dataset properties where N is the number of examples, D is the number of

features, and θ is the percentage of anomalies 64

5.1 AUC results for an ablation study on UE-KPCA 76

5.2 AUC . 79

5.3 The AUC under the ROC and std. deviation for each method across all base-

line datasets. Higher scores are better. Bold indicates the best performing

method, while Italics indicates the second best performing method 80

5.4 The FPR at 95% TPR (FPR@95%) for each method across all baseline

datasets. Lower scores are better. Bold indicates the best performing method. 83

5.5 The Average Precision (AP) for each method across all baseline datasets.

Higher scores are better. Bold indicates the best performing method. 84

5.6 The run time for each method in seconds. 84

xv

List of Abbreviations

Φ feature space transformation function

Σ Covariance Matrix

X dataset

x a single example point in the dataset

κ kernel function

F Feature Space

L Loss

σ Gaussian Kernel Bandwidth

B knee-multiple stopping parameter

b bias

D number of features

d L2 Euclidean Distance

eb number of burn-in epochs

iD index of dispersion

J number of epochs

K kernel Gram matrix

xvi

k number of nearest neighbors

m sample mean

N number of examples

Nb subsampling batch size

Nm number of models used in the ensemble

Ns number of examples used to form a skeleton subsampled kernel matrix

q number of retained Principal Components

s sample standard deviation

z latent representation of an example

AE Autoencoder

AP Average Precision

AUC Area Under Curve (ROC)

CES Cumulative Error Scoring

DAD Deep Anomaly Detection

DL Deep Learning

DNN Deep Neural Network

FN False Negative

FP False Positivee

FPR False Positive Rate

xvii

iForest Isolation Forest

KDE Kernel Density Estimator

KPCA Kernel Principal Component Analysis

KPCA Kernel Principal Component

LOF Local Outlier Factor

ML Machine Learning

MSE Mean Squared Error

MTS-AE Modified Training and Scoring Autoencoder

NN Neural Network

OC-SVM One Class Support Vector Machine

PCA Principal Component Analysis

PCA Principal Component

PL Percentile Loss

ROC Reciever Operating Characteristic (Curve)

SVDD Support Vector Data Description

TN True Negative

TP True Positive

TPR True Positive Rate

UE-KPCA Unsupervised Ensemble Kernel Principal Component Analysis

xviii

Chapter 1

Introduction

1.1 Background

The goal of an anomaly (outlier) detection methods is to detect anomalous points within

a dataset dominated by the presence of ordinary background points. Machine learning

(ML) methods are commonly employed to analyze datasets to uncover anomalies. ML has

been most successfully applied to supervised tasks in which labeled data is available during

training. In anomaly detection, labels indicate whether a training example is considered

anomalous or normal. However, Anomalies are by definition rare and are often generated by

different or unknown underlying processes [26, 32]. Consequently, the conventional paradigm

of supervised learning is not well suited to anomaly detection because obtaining a sufficient

number of labeled anomalous examples is often infeasible [13, 32, 74].

Semi-supervised approaches to anomaly detection still require training data but attempt to

circumvent the need for labeled anomalous examples by only using more readily available

normal examples. Semi-supervised methods first attempt to model the single class of normal

examples. Then, examples that do not conform to the model are identified as anomalous.

Unfortunately, semi-supervised techniques are susceptible to over-fitting, or under-fitting;

the effect of which is poor precision or recall, respectively. [13, 32, 89].

The most flexible assumption is that of unsupervised anomaly detection where no labels are

1

2 Chapter 1. Introduction

available. The training data is not clean and may contain anomalies or challenging normal

examples. Instead, the training process alone attempts to separate normal and anomalous

examples based on the intrinsic properties of the data. Unsupervised techniques are necessary

if labeled data cannot be reasonably obtained or when patterns distinguishing anomalous and

normal behavior change irregularly over time [74]. Figure 1.1 provides a visual description of

the differences between the supervised, semi-supervised, and unsupervised anomaly detection

settings.

Even in domains where semi-supervised or supervised methods may be feasible, unsupervised

methods can be deployed to more readily label normal or anomalous examples. Unsupervised

techniques can also be used as a preprocessing or boosting step [101]. For conventional

supervised classification problems, removing or weighting anomalous examples in a training

set can produce significant improvements in accuracy [90]. Unsupervised methods can also

be used to automatically identify representation bias in training data by highlighting patterns

in the normal examples. For example, if most images of dogs in a training set have grass in

the background, then a classifier might key in on the grass features and ignore the relevant

target, causing a lack of generalization that would not be recognized from a holdout validation

set [55]. An unsupervised anomaly detector can assign the more abundant grass-background

examples of the dog class lower anomaly scores. A practitioner could then use this knowledge

to address the bias before training the supervised classifier.

Many approaches have been proposed to address the problem of unsupervised anomaly de-

tection. Traditional approaches can be thought of as belonging to the following categories:

statistical, proximity-based, subspace-based, or separation-based methods [32, 95]. The tax-

onomy is loosely defined, often methods combine techniques from multiple categories. Tra-

ditional approaches to anomaly detection, as with other machine learning problems, tend

to work well when the amount of data is small in number and dimensionality. However,

1.1. Background 3

Figure 1.1: Comparing the different modes depending on the availability of training data: a)
Supervised anomaly detectors uses a fully labeled dataset containing anomalous and normal
examples during training and returns a classification b) Semi-supervised anomaly detectors
use only normal examples during training c) Unsupervised anomaly detection takes unlabeled
data and produces an anomaly score. Adapted from [31]

4 Chapter 1. Introduction

deep learning-based, approaches are often necessary in order to scale to larger datasets and

higher dimensional inputs, such as images and sequential data. Deep refers to the multi-

hidden-layer arrangements of artificial neural networks (NN). The success of Deep Anomaly

Detection (DAD) techniques can be traced to their ability to automatically extract hierar-

chical features from the successive hidden layers. This has the additional benefit of removing

the need for manual feature extraction by domain experts and allows models to be trained

in an end-to-end manor from raw inputs.

Both traditional and deep methods of unsupervised anomaly detection must be able to

identify different types of anomalies. At the highest level of abstraction, an anomaly is an

example that does not conform to normal behavior [26]. In practice, applying this idea is

challenging. There are several cases where the separation between anomalous and ambiguous

data is ambiguous. Figure 1.2 illustrates the challenge of classifying anomalies.

The points a1 and a2 can more easily be identified as global anomalies, as they strongly

deviate from any clusters of normal examples. However, a3 requires more careful consid-

eration. Because it is not clearly distinct from the nearest cluster, it could be considered

a normal example that is part of N2, however, when observed only in context of its local

neighborhood, a3 appears locally anomalous [10, 16]. Another more subjective example is

presented by N3, which could be considered as a small cluster of normal data, or as three

coincidentally group anomalies. Furthermore, the figure illustrates how anomalies can often

only be identified by a collection of features. If each dimension is considered independently,

there is nothing abnormal about a1 or a2. Each anomalous points share similar D1 and D2

values to the collection of points in N2 and N3. Only by considering both dimensions to-

gether, simultaneously, does the anomaly become obvious. For instance, a car driving on the

highway in reverse is highly unusual, but on a driveway it is expected. Correct classification

often requires the correct feature representation, such as the inclusion of time or location,

1.1. Background 5

Figure 1.2: Different types of anomalies in an example 2-dimensional dataset. Adapted from
[16] and [32].

to identify these types of contextual anomalies.

The subjectivity of these assignments further separates the task of anomaly detection from

conventional classification tasks. A method that provides a meaningful, continuous anomaly

score that describes the level of outlierness for each example is more desirable than a binary

label output [32]. In Figure 1.2 for example, it is sensible to assign a1 a higher anomaly

score than a3. The data may then be ranked according to the more flexible outlier score, and

often a domain and method specific threshold (decision score) makes the final categorization

if necessary.

Perhaps the greatest challenge of applying unsupervised techniques is that of parameter

selection. In the unsupervised context there is no distinction between training and testing

data as shown in Figure 1.1 [32]. This removes the normal practice of a validation step;

6 Chapter 1. Introduction

therefore, a conventional parameter search where labels are used prior to testing to determine

the best parameters is not possible.

As a result, methods cannot be sensitive to parameter choices, or must implement some

reliable means of making an appropriate selection. For example, traditional kernel-based

methods are capable of capturing non-linear patterns to better identify local anomalies than

simpler cluster-based approaches, but are highly sensitive to parameter settings [27]. In

practice, domain specific heuristics are often applied, but may not generalize well. The

problem of parameter selection is further amplified in deep approaches as the models become

more complex. Though the parameters represented by the weights and biases of the network

are trained by back-propagation, many hyperparameters must still be selected manually.

Neural networks often require tuning the network architecture, learning rate, regularization,

activation functions, and number of training steps for optimal results [13]. DAD methods

specifically, are often prone to the overgeneralization to anomalous examples present in the

training data [7, 33].

Despite the challenges, unsupervised anomaly detection is of critical practical importance

and has been applied to areas of medicine, fraud detection, fault detection, cybersecurity,

industrial inspection, surveillance and autonomous vehicle safety [13, 16, 32, 52, 95]. Specif-

ically, our research focuses specifically on improving the performance of two anomaly detec-

tion algorithms, Kernel Principal Component Analysis (KPCA) and reconstruction-based

autoencoders (AEs), in the unsupervised setting.

1.2 Objectives

The objective of this research is to improve upon the existing machine-learning-based anomaly

detection methods of Kernel Principal Component Analysis (KPCA) and the Autoencoder

1.3. Contributions and Scope 7

(AE) by better adapting them to the unsupervised setting.

1.3 Contributions and Scope

The specific novel contributions of our research are outlined below:

1. Previous methods, which have been applied, approximate the Gaussian kernel pa-

rameter, σ in the unsupervised setting, but are either domain specific [11, 62], or

computationally inefficient on large datasets [27]. Few have been applied to Hoffman’s

formulation of KPCA for unsupervised anomaly detection [43]. Our research describes

a modification of previous work, [27], to fit the framework of mini-batch stochastic gra-

dient descent. In doing so, costly full constructions of the kernel matrix are avoided,

allowing for an efficient means of selecting nearly optimal σ for KPCA when a search

on labeled data is not possible.

2. Though KPCA has shown the ability to more tightly model background data than

other methods such as the One-Class Support Vector Machine [43], KPCA’s adoption

as a practical tool has been limited by the cubic time complexity of the eigendecompo-

sition step. Others have proposed approximation methods [67], but these suffer from

reduced detection and increased variation as anomalies may disproportionately con-

taminate the sample. By combining an ensemble of very small skeleton models, the

efficiency becomes effectively linear, while still maintaining or even increasing detection

performance.

3. AEs are amongst the fundamental architectures for DAD, but AEs suffer from the

problem of overgeneralizing anomalies when present in the training data. This un-

wanted property results in a diminished ability to separate anomalous and normal

8 Chapter 1. Introduction

examples based on reconstruction errors [7, 33]. Cumulative error scoring (CES) is

introduced to leverage the training history of the AE to reduce the sensitivity to the

stopping epoch.

4. Percentile loss (PL) is introduced to reduce the impact of anomalies on the parameter

updates during training during training. PL ignores the most difficult examples during

backpropagation to help prevent the AE from fitting anomalous examples present in

the training data.

5. Early-stopping via knee detection, uses the smooth loss metric from CES to identify

a stopping point for training. This again helps to prevent the AE from learning to

reconstruct anomalous examples.

1.4 Outline

This thesis introduces the problem of unsupervised anomaly detection, briefly describes the

current challenges, and highlights the contributions of this thesis in Chapter 1. Chapter 2

overviews a taxonomy of current traditional and deep approaches to unsupervised anomaly

detection, while situating the contributions of our research in the larger framework. Chapter

3 details the baseline algorithms, KPCA and the AE, as well as the novel contributions

that constitute the two new proposed method, Unsupervised Ensemble KPCA (UE-KPCA)

and the Modified Training and Scoring AE (MTS-AE). The baseline methods, benchmark

datasets, and metrics used in the evaluation of UE-KPCA and MTS-AE are described in

Chapter 4. Next, Chapter 5 demonstrates the results across a number of ablation studies to

identify the impact of the proposed modifications. Additionally, the proposed methods are

compared to the popular baselines in broader evaluation. Finally, Chapter 6 concludes this

thesis by summarizing the contributions and suggesting future areas of research.

Chapter 2

Review of Literature

This chapter reviews the most relevant research in the domain of unsupervised anomaly

detection. Section 2.1 describes the different challenges in traditional machine learning

and deep learning-based approaches and explains the need for progress in both. A brief

review of traditional anomaly detection methods is provided in Section 2.2. Subsection 2.2.1

places Kernel Principal Component Analysis (KPCA) within the taxonomy of traditional

methods as well as explaining its major limitations and noting recent attempts to address

them. Section 2.3 highlights the major direction in deep anomaly detection (DAD) research,

while Subsection 2.3.1 emphasizes the role of reconstruction-based approaches based on the

autoencoder (AE).

2.1 Traditional Versus Deep Approaches

Progress in machine learning (ML) approaches to unsupervised anomaly detection has fol-

lowed a different trajectory compared to other tasks such as classification or regression. In

many areas of ML a subset of methods, known as deep learning (DL), have achieved state-

of-the-art results that far exceed that of traditional approaches. The promise of DL methods

lie in their ability to 1) scale to very large datasets 2) learn hierarchical features in an end-

to-end fashion and 3) draw complex, non-linear boundaries between normal and anomalous

data [95]. However, the deep learning methods suffer from two inherent disadvantages: 1) A

9

10 Chapter 2. Review of Literature

sensitivity to hyperparamter selection and 2) A reliance on large amounts of labeled data for

learning [104]. Unsupervised anomaly detection methods do not have access to labels, there-

fore traditional means of training deep models are not applicable. As a result, traditional

ML approaches remain the best performing in a number of domains [71, 89].

Yet, traditional ML approaches alone do not provide a comprehensive answer to the prob-

lem of unsupervised anomaly detection, especially in areas where the dimensionality of the

data is high, such as images. A common problem, referred to as Curse of Dimensionality,

indicates that traditional approaches which that rely on metrics of distance and density lose

their ability to measure dissimilarity in higher dimensional spaces [3, 105]. Due to the issues

of performance on raw, high dimensional, or noisy data, a conventional component of many

traditional ML pipelines is feature engineering [103]. However, feature engineering requires

domain expertise; moreover, where the absence of labels inhibits a validation step, the en-

gineered features may not adequately differentiate anomalies from normal examples. Apart

from dimensionality, high cardinality is also an issue for many traditional approaches that

incur a quadratic or even cubic time complexity with the number of examples

Neither traditional ML nor DL methods fully address the challenges of unsupervised anomaly

detection, which motivates continued work in both approaches. Our research makes contri-

butions to both a traditional method, Kernel Principal Component Analysis (KPCA), and

to a DAD method, the Autoencoder (AE). The following sections attempt to place these con-

stituent methods within a larger framework. Figure 2.1 provides a taxonomy of unsupervised

detection methods, showing the division and overlap of traditional and deep methods.

2.2 Traditional Anomaly Detection

Traditional ML methods of anomaly detection can be roughly categorized into the following:

2.2. Traditional Anomaly Detection 11

Figure 2.1: A taxonomy of unsupervised anomaly detection methods. A superscript K
indicates a kernel-based method. The light blue indicates methods that are the focus of this
thesis, KPCA and reconstruction-based AEs

• Statistical approaches assume that the data fits a known statistical model and identifies

anomalies based on the distribution.

• Proximity-based approaches use measures of distance, density, or clustering assignment

to identify anomalies.

• Subspace-based approaches assume that a reduced lower-dimensional representation

or manifold better models the normal data, such that anomalies can be more easily

identified in the appropriate subspaces.

• Separation-based approaches learn boundaries that separate normal and anomalous

data using approaches similar to many traditional ML classification methods.

This categorization does not cover all existing anomaly detection methods. Moreover, meth-

ods often combine techniques in ways the blur the distinctions between categories. This

review only attempts to provide a structure to the most commonly-used, traditional ML

approaches for unsupervised anomaly detection [32, 95].

Before exploring specific methods, it is worth noting a meta-class of techniques, Ensemble

12 Chapter 2. Review of Literature

approaches assume that different methods trained on different subsets of the data better

capture different types of anomalies. That is, a combination of the anomaly detection meth-

ods provide the most effective and robust solution [95]. This collaborative framework further

motivates the broad investigation into new methods, as different approaches may strengthen

a larger ensemble.

Statistical methods can be either parametric or non-parametric. The term parametric a

misnomer in this context, as it does not refer to the presence or absence of specific parameters

used in the algorithms. Instead, the major difference is that parametric methods assume

an underlying distribution to the data and estimates the parameters of the model, whereas

non-parametric requires no prior assumptions about the data. The Gaussian Mixture Model

(GMM) is one of the most common parametric approaches.

The GMM attempts to fit several multi-variate Gaussian distributions to the data by using

the global optimal expectation maximization algorithm [97]. GMMs have a high time com-

plexity and demonstrate sensitivity to anomalies in the training data, limiting their use in

the unsupervised setting. The Maholonobis distance (MD) simplifies the GMM by assuming

the data can be described by a single multivariate Gaussian distribution [95]. The details of

calculating the MD are provided in Section 4.1. Though the MD cannot capture non-linear

relationships between features in the data, its fast run-time and simplicity make it a popular

baseline for anomaly detection in many areas such as remote sensing [76]. The Histogram-

Based Outlier Detection (HBOS) algorithm is a notable, non-parametric approach. HBOS

uses static and dynamic bin width histograms to model the distribution of features [30].

HBOS is among the most computationally efficient methods, but the independent treatment

of features prevents it from capturing correlations.

Distance-based anomaly detection methods are a class of direct, non-parametric approaches

that identify anomalies by their greater distance from neighboring points. The most common

2.2. Traditional Anomaly Detection 13

of these approaches, detailed in Section 4.1, uses the concept of a nearest neighbor. First,

the pairwise Euclidean distances of all points are calculated. A parameter k, determines the

number of points surrounding each example to be considered that example’s neighbors. The

anomaly score then becomes the distance to the furthest kth nearest neighbor (kthNN) [73]

or the average distance to all k nearest neighbors (k-NN) [12]. A major limitation of these

methods is the pair-wise comparison, which incurs a quadratic time and memory complexity

with the number of examples.

Closely related to distance-based approaches, density-based approaches are driven by the

assumption that anomalies are found in comparatively lower-density regions. Breuning et

al. introduced arguably the first density-based approach, the Local Outlier Factor (LOF)

method. LOF uses nearest-neighbor distances to compare the densities of local neighbor-

hoods [10]. The details of LOF are found in Section 4.1. The normalization of the anomaly

scores produced by measuring relative density by improves interpretability over nearest

neighbor-based methods. LOF is one of the most cited baseline methods among anomaly

detection algorithms [12, 32, 71].

There are several notable variations of the LOF. The Connective-base Outlier Factor (COF)

uses a chaining distance rather than a Euclidean distance to calculate proximity. The chain-

ing distance is the sum of the shortest path that connects all k neighbors to an example [92].

The COF significantly outperforms the LOF in instances where data exhibits a high linear

correlation [32]. The Local Outlier Probabilities (LoOP) method attempts to increase the

interpretability of the LOF by replacing the normalized density score with an probability

of an anomaly by fitting half-Gaussian distributions to the nearest-neighbor distances [50].

Though the LoOP method attempts to address the problem of interpreting anomaly scores,

it is unlikely to produce a better ranking for identifying anomalies [32]. The Influenced

Outlierness (INFLO) algorithm uses an additional reverse nearest neighbor set to check if

14 Chapter 2. Review of Literature

a point is at the boundary of two nearby normal clusters of different densities, preventing

erroneous high anomaly scores for those instances [44].

For the previously mentioned methods, the choice of the k parameter significantly impacts

performance. The Local Correlation Integral (LOCI) method attempts to address the prob-

lem of parameter selection in the unsupervised setting [69]. LOCI defines a radius around

each point that defines the points r-neighborhood. A maximization approach expands the

r for each point to maximize its anomaly score. As with LoOP, LOCI assumes a half Gaus-

sian distribution, but attempts to fit the aggregate number of examples, rather than the

distances in a neighborhood, to measure density. Additionally, instead of using the local

density’s ratio, LOCI compares the radii of local neighborhoods. Because the maximization

of r requires a search over all pairs for each example, the training incurs a cubic time com-

plexity. The authors of LOCI offer an approximate version, aLOCI, which provides some

reduction in complexity by using quad trees [69]. However, empirical performance of aLOCI

shows a sensitivity to parameter settings [32].

Distance and density methods rely on pairwise comparisons, but do not attempt to explicitly

identify patterns in data. Clustering-based approaches differ by directly identifying groups of

similar data by means of clustering. The k-means clustering algorithm is the most common

approach for membership assignment [61]. The algorithm begins by randomly locating a

number of cluster centroids, then assigns each point membership to a cluster. The centroids

are then recomputed, and the assignment step repeated. After a number of iterations, the

centroids and membership assignments converge to a final state. Though typically more

computationally efficient, clustering approaches are sensitive to noise, the specification of

the initial number of clusters, and the initialization of cluster centroids; all of which can lead

to poor performance [61]. Again, Section 4.1 details one of the generally best performing

cluster-based methods, the unweighted Cluster-Based Local Outlier Factor (uCBLOF) [40].

2.2. Traditional Anomaly Detection 15

The methods discussed so far attempt to identify anomalies by modeling the data in its

full (ambient) dimensionality. However, anomalies often only clearly exhibit abnormal char-

acteristics in a smaller subset of linear or nonlinear combination of one or more lower-

dimensional subspaces [98, 105]. The idea that anomalies are more pronounced in these

subspaces (embeddings, projections) by the removal and/or transformation of features char-

acterizes subspace-based approaches [16].

Principal component analysis (PCA), detailed in section 4.1, is the most common dimension-

ality reduction technique and can also be applied to anomaly detection. PCA projects data

onto orthogonal axes, or principal components (PC), representing the greatest variation.

Anomalies tend to lie farther from these principal components than normal data. However,

PCA assumes features are linearly correlated and is sensitive to both the presence of out-

liers during training and the choice of the retained principal components. Robust and local

versions of PCA have been proposed, but require additional parameter selection [49, 51].

Other algorithms attempt a more explicit search of a subspaces for anomaly detection. The

High Contrast Supspace (HiCS) assumes that rare patterns are statistically more common

in subspaces that display less uniformity. Combinations of subspaces are sampled and then

pruned based on statistical testing. Finally, the LOF is calculated across each set and the

anomaly scores are aggregated [46]. Subspace outlier detection (SOD) uses a distance-based

criterion for selecting local subspaces rather than a fixed set over the entirety of the data.

For each data point, a collection of k nearest neighbors forms a reference set. The subspace

is determined as the set of dimensions that minimizes the variance. The Euclidean distance

to the neighborhood’s mean, normalized by the new dimensionality, serves as the anomaly

score [48].

The methods discussed so far use only a subset or linear transformation of the original

features. However, high dimensional data is often distributed along non-linear lower dimen-

16 Chapter 2. Review of Literature

sional manifolds of arbitrary shape [16, 34]. Spectral methods are special class of subspace

methods that are focused on modeling these patterns. Local Density Meets Spectral Outlier

Detection (LODES), uses PC from a connective graph of nearest neighbors [84]. Similarly,

A Diffusion Map decomposes a transition matrix from a random walk in a transformed

feature space [19]. Non-linear methods produce better models of the data, but often at a

greater computational cost and can be susceptible to problems of over-fitting and parameter

selection [16].

Many traditional classification techniques serve as the basis for popular separation-based

anomaly detection approaches. Influenced by the random forests used for classification,

the Isolation Forest (iForest) algorithm, detailed in Section 4.1, uses an ensemble of iso-

lation trees to separate anomalies from normal data[56]. The method is arguably another

form of subspace-learning as the branches in the trees are built from randomly selected fea-

tures. Extended Isolation Forest (EIF), improves upon the original algorithm by allowing

the branching hyperplanes to take on any slope as opposed to standard iForest which allows

only orthogonal hyperplanes [38].

The One-class Support Vector Machine (OC-SVM) extends the popular support vector ma-

chine (SVM) algorithm for classification to anomaly detection. OC-SVMs attempt to explic-

itly separate the normal (single positive) class from anomalies by constructing a maximum-

margin hyperplane through the data [86]. Obviously, a linear hyperplane in ambient space

does little to isolate the normal class. Instead, the OC-SVM method is one of many kernel

methods that rely on an initial non-linear transformation of the data.

Given N data points, xi ∈ RD×N , comprising the dataset, X ∈ RD×N , kernel methods are

motivated by the idea that a better model of the data may be formed in a feature space, F ,

where a kernel function, κ(xi,xj), allows the efficient computation of inner products between

each points. Φ(xi) in F without the need to explicitly calculate the mapping xi → Φ(xi)

2.2. Traditional Anomaly Detection 17

from the ambient space to the feature space. The choice of kernel function allows for different

mappings [54].

Kernel-based methods are a meta-class of methods where familiar proximity, subspace, and

separation algorithms can be applied the feature space. Other popular kernel-based anomaly

detection methods include the Support Vector Data Description (SVDD) and the Kernel

Density Estimator (KDE). The SVDD is similar to the OC-SVM, but imagines the boundary

as a hypersphere enclosing the data, rather than a hyperplane [93]. The KDE, or Parzen–

Rosenblatt window method, is a non-parametric, statistical method based properties of the

Gaussian kernel [79]. Section 4.1 details OC-SVMs and the KDE and explains their close

relationship to the OC-SVM.

2.2.1 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a spectral technique that extends linear

PCA to the non-linear feature space using kernel methods [87]. Hoffmann [43] first demon-

strated that the independent treatment of points by the OC-SVM yields boundaries that

do not tightly enough model the data. In turn, Hoffman argues that KPCA discovers a

better model of the data by discovering the underlying manifold expressed by the principal

components in F . Next, an anomaly score can be defined as the reconstruction error be-

tween a given example and a subset of the learned principal components, creating a tighter

decision boundary, as shown in Figure 2.2. The steps in KPCA are described in greater

detail in Section 3.1.1. With the correct parameter settings, Hoffman showed that KPCA

demonstrated better generalization, accuracy, and robustness over linear PCA, KDE, and

OC-SVMs on a number of real-world and toy datasets.

Despite a demonstrated success in anomaly detection, KPCA has several limitations. KPCA

18 Chapter 2. Review of Literature

(A) (B)

Figure 2.2: The decision boundaries of KPCA, OC-SVM, and SVDD in the feature space
produced by a Gaussian Kernel. (A) on the left shows the boundaries in a three-dimensional
representation. Both normal examples (green) and the single anomaly (red) lie on the surface
of a hypersphere. The (blue) line represents a kernel principal component (KPC), where a
small boundary captures all the normal examples. Both the SVDD hypersphere and OC-
SVM must include the anomaly in order to enclose all the normal points. (B) on the right
shows a cross section orthogonal to the principal component, representing the same situation
in (A). Adapted from [43].

requires the eigenvalue decomposition of a N×N kernel (Gram) matrix. This incurs a cubic

time complexity with increasing N which can be limiting for many applications. Techniques

to discover reduced approximations of the kernel matrix have been developed, largely in

response to the computational costs of the more popular kernel-based support vector ma-

chines.

Uniform subsampling of the data in order to reduce the cost of calculating the adjacency

matrix has been proposed for both classification [6] and anomaly detection [66]. However,

a bad sampling can be contaminated with a greater number of anomalies. An alternative

approach to subsampling is the Nyström algorithm; an out-of-sample extension method

associated with dimensionality reduction. However, the method still requires a quadratic

2.2. Traditional Anomaly Detection 19

time full construction of the kernel matrix [8, 53].

Other methods attempt to batch the data to iteratively update principal components without

full evaluations. The kernel Hebbian algorithm (KHA) adapts the generalized Hebbian

algorithm commonly used in iterative linear PCA to the feature space [36, 47]. However,

because updates are made on previous solutions, these iterative methods cannot be computed

in parallel and may be slow to converge.

In addition to the challenges of computational efficiency, all kernel-based methods are

strongly sensitive to parameter choice. Aware of this shortcoming, Hoffman presented KPCA

in the semi-supervised setting with a a hold-out set of anomalies for parameter tuning. In

the unsupervised case heuristics based on statistics of the adjacency matrix are often used for

selecting parameters for kernel method [11], but do not always produce satisfactory results.

Ultimately, in the unsupervised setting there is no guaranteed means for verifying that a

specific parameter selection is an optimal or even reasonable choice. However, theoretically

motivated formulations to the problem of kernel parameter selection have shown promise

in OC-SVMs. These methods are motivated by the idea of minimizing the sparsity in the

high dimensional feature space, so that anomalies are more easily differentiated from normal

points [11]. Evangelista et al. demonstrated that maximizing the index of dispersion of kernel

entries produces generally good choices for the σ parameter of a Gaussian-kernel OC-SVM

[27]. However, the optimization incurred a large time complexity via multiple evaluations of

the full kernel matrix.

Our research makes contributions that improve KPCA to perform more reliably in the unsu-

pervised setting and to run more efficiently on larger datasets. Section 3.1 reviews the details

of the base KPCA method, introduces a mini-batch stochastic gradient descent method to

efficiently determine the kernel parameter, and presents an ensemble method that avoids

20 Chapter 2. Review of Literature

avoids the construction and decomposition of the full kernel matrix.

2.3 Deep Anomaly Detection

The deep in Deep Learning and Deep Anomaly Detection (DAD) refers to the use of multi-

layer artificial neural networks (NN) which are inspired by the structure of biological brains.

Each computational unit (node or neuron) of a typical NN receives inputs, performs an

element-wise multiplication by a set of individual weights, sums the results, adds a bias,

then finally applies a non-linear activation function. The basic feed-forward network (multi-

layer perceptron) organizes the computational units into layers, and then arranges the layers

sequentially, so that the output of one layer serves as the input to the next, forming a Deep

Neural Network (DNN) [34].

Training NNs first requires the formulation of a loss (cost) function, which measures the

difference between the network’s current output and some desired, target output. The gra-

dient of loss is then back-propagated through the parameters (weights and biases) to reduce

this difference. By iterative applications of this process, the network learns to better match

inputs to target outputs. In addition to the parameters that constitute the network, train-

ing also involves a set of hyperparameters, such as learning rates, mini-batch sizes, training

steps, weight decay, ect., that need to be specified by the user [34].

DNNs are able to learn hierarchical discriminative features and highly non-linear boundaries

in an end-to-end manner. The state-of-the art performance of DNN classifiers has motivated

the exploration of Deep Anomaly Detection (DAD) methods. However, because of the

challenges of hyperparamter selection, choosing architectures, and over or under-fitting most

DAD methods have been developed in the semi-supervised framework. Nevertheless, with

the correct settings DAD methods have shown improvement over traditional ML approaches,

2.3. Deep Anomaly Detection 21

particularly on higher dimensional data [13, 60, 71].

Semi-supervised DAD methods often employ autoencoders (AE) as well as other generative

models such as variational autoencoders (VAE) and generative adversarial networks (GANs)

to model normal data [21, 60]. Similar to subspace-methods, hybrid approaches apply more

traditional detection methods to the embedding spaces of AEs. VAEs can be used to en-

force statistical properties in the embedding space. Some examples of this paradigm include

the AE+OC-SVM [5], the AE+kNN [35], and AE+MD [24]. Alternatively, transfer learn-

ing uses the final hidden layers of pre-trained classifiers for feature extraction. Transfer

learning usually produces better embeddings, but requires a large corpus of labeled data

in a similar domain to train the original classifier [63]. Lastly, deep one-class classification

approaches, such as the One-class Neural Networks (OC-NN) [15] and Deep One-Class Clas-

sifiers (DOCC) [80], involve modifying the training objective in deep architectures to extract

features that differentiate anomalies and create a decision boundary [13].

Methods designed for semi-supervised DAD can often be applied in an unsupervised setting

as well. Yet difficulties in generalizing hyperparameter selection and sensitivity to anoma-

lies in the training data often significantly degrade performance [106]. The simplicity and

flexibility of the basic AE makes it a suitable starting point for addressing the challenges of

unsupervised DAD.

2.3.1 Autoencoders

An AE attempts to learn the identity function with some constraint, to prevent a trivial

mapping. Typically this constraint is in the form of contractive, bottleneck hidden layer,

where the original dimensionality is reduced. This reduced representation of the original

input, serves as end-to-end feature extraction step for the hybrid methods described in the

22 Chapter 2. Review of Literature

Figure 2.3: Architecture of a simple, contractive Autoencoder with one hidden layer.

previous section. Alternative to or in combination with a contractive layer, other constraints

such as sparsity, regularization, or added noise can be enforced. Because the target output

is simply the original data, AEs can be trained without labels [34]. Figure 2.3 illustrates the

architecture of a basic, single-hidden-layer, contractive AE.

Reconstruction-based unsupervised DAD methods using AEs measure the magnitude of the

reconstruction error (residual vector) to identify the anomalies. Anomaly detection in this

approach relies on the assumption that AEs will learn to reconstruct normal examples, which

are more prevalent in the training data, better than anomalous examples. Details of the AE

are outlined in Section 3.2.

AEs have been used to model and detect anomalies in high dimensional multivariate point

[64], image [20], temporal [81], and spatiotemporal data [100]. AE architectures have incor-

porated both 2D and 3D convolutional layers and recurrent modules such as RNNs, GRUs,

and LSTMs [22, 39, 77]. The recent survey by Chalapathy et. al provides a more exhaus-

tive list [13]. This paper focuses on the basic, fully-connected (dense) architecture, but the

methods can be easily extended to other AE architectures or reconstruction-based, DAD

2.3. Deep Anomaly Detection 23

methods.

AEs used for anomaly detection suffer from the fact that the reconstruction error serves

as both an objective function for training and an anomaly scoring metric. The fundamen-

tal problem is that in the unsupervised setting, the training acts to directly minimize the

anomaly score of anomalous examples in the training data. Therefore, simply enforcing

sparsity or other forms of regularization alone does not robustly prevent the problem of AEs

overgeneralizing anomalies.

Though recent works have trained AEs for anomaly detection tasks, few have remarked on

their significant limitations in the unsupervised setting. Beggel et al. proposed a hybrid

approach that iteratively refined the training set by using a one-class SVM in the latent

space of an adversarial autoencoder (AAE) to remove suspected anomalous examples [7].

Other boosting techniques and AE cascades have likewise shown resistance to generalization

[83]. Gong et al. used a memory-augmented AE to memorize normality and limit the

latent representations in order to prevent the model from learning anomalous examples [33].

Robust Convolutional Autoencoders (RCAEs) and related methods extend robust PCA to

DAD by learning a an embedding space via an AE that captures most of the normal features,

while providing a margin to account for anomalies during training [14]; however, this method

involves selecting a noise absorption term.

The contributions of our research are distinct in the fact that they focus on the reconstruc-

tion in the ambient space and do not require any modifications to network architecture.

Furthermore, the proposed techniques outlined in Section 3.2 can potentially be combined

with other existing, reconstruction-based techniques, including those discussed, to further

improve robustness and performance.

Chapter 3

Proposed Methods

3.1 Unsupervised Ensemble

Kernel Principal Component Analysis

The goal of this section is to first detail Hoffman’s original formulation of kernel principal

component analysis (KPCA) for anomaly detection and then to demonstrate how issues of

parameter selection and computational inefficiency can be effectively addressed.

3.1.1 The Kernel PCA Algorithm

The KPCA algorithm is designed to first calculate the non-linear mapping xi → Φ(xi)

of a datum in x ∈ X ⊂ RD×N from the original D-dimensional (ambient) space into the

potentially infinite-dimensional (for a Gaussian kernel) feature space F . After the initial

non-linear mapping, the data are centered in F via the transformation

Φ̃(xi) = Φ(xi)−Φ0, (3.1)

where

Φ0 =
1

N

N∑
n=1

Φ(xn). (3.2)

24

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 25

is the mean of the data distribution in F . Following the transformation, the next step is to

perform linear principal component analysis on the centered data to find the M -dimensional

subspace M ≤ N associated with the M principal components representing the greatest

variance of the data in F .

The principal components of X in F are the eigenvectors corresponding to the largest eigen-

values of the covariance matrix formed in F . The hope is that these eigenvectors will repre-

sent a non-linear model that describes underlying structure of the data. More directly, the

objective is to find the eigenvectors V = [V 1,V 2, . . . ,V M] and corresponding eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λM of

Σ̃F =
1

N

N∑
i=1

Φ̃(xi)Φ̃(xi)
T . (3.3)

Recalling the relationship to the eigenvectors and eigenvalues being

Σ̃FV
k = akV

k. (3.4)

The main challenge is that covariance matrix of the feature-space, centered data, Σ̃F , and

therefore the principal components, V , cannot be explicitly computed, as the transformed

data Φ(xi) is never available. However, the so called kernel trick allows a kernel function,

κ, to replace the inner product operations in F , where

κ(xi,xj) = Φ(xi) ·Φ(xj). (3.5)

For the choice of a Gaussian kernel,

κ(xi,xj) = exp(−||xi − xj||2

2σ2
). (3.6)

26 Chapter 3. Proposed Methods

Rather than explicitly calculating the transformation in order to determine V , the projec-

tions of data Φ(xi) onto V are found instead. Because V k is one eigenvector of Σ̃F , by

definition a kernel principal component can be expressed as a linear combination of points

Φ(xi),

V k =
N∑
i=1

αk
i Φ̃(xi), (3.7)

where each element αk
i is a component of a vector αk, which is an eigenvector of the N ×N

kernel adjacency matrix K̃ij = Φ̃(xi) · Φ̃(xj). Using the kernel trick, this matrix may in

turn be expressed solely as a function of ambient data,

K̃ij = Kij −
1

N

N∑
q=1

Kiq −
1

N

N∑
p=1

Kpj +
1

N2

N∑
p,q=1

Kpq, (3.8)

where Kij = κ(xi,xj). The eigenvectors αk and corresponding eigenvalues vk are then found

by the eigendecomposition of K̃ij ultimately yielding N eigenvectors α = [α1,α2, . . . ,αN].

A scaling of each αk is performed so that each V k has unit length, ||αk||2 = 1/vk.

3.1.2 Anomaly Scoring

The anomaly score for a point x is found by determining the reconstruction error in F from

some number of leading principal components that represent a normal model of the data

[43]. The reconstruction error is computed by

dE(x) = Φ̃(x) · Φ̃(x)−W Φ̃(x) ·W Φ̃(x), (3.9)

where W contains M rows of principal components V k corresponding to the M largest

eigenvalues, W = V T
M = [V 1, . . . ,V M]T .

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 27

The first term in (3.9) represents the spherical potential of x found by taking the scalar

product

dp(x) = Φ̃(x) · Φ̃(x), (3.10)

which is simply the squared distance of Φ̃(x) from the data mean Φ0 in F . The second

term in (3.9) represents the projection of the data onto a reduced number of M principal

components.

Again, it is not possible to to obtain Φ̃(x). Instead, the kernel trick (3.5) is used once again

by substituting after substituting (3.2) into (3.10), resulting in

dp(x) = κ(x,x)− 2

N

N∑
i=1

κ(x,xi) +
1

N2

N∑
i,j=1

κ(xi,xj). (3.11)

Next, fk(x) is defined as the projection of x in F onto one of the principal components, as

fk(x) = V kT · Φ̃(x). This projection can be written as a function of only the ambient data

by applying (3.7) and the kernel trick (3.5),

fk(x) =
N∑
i=1

αk
i [κ(x,xi) −

1

N

N∑
q=1

κ(xi,xq) −
1

N

N∑
q=1

κ(x,xq) +
1

N2

N∑
p,q=1

κ(xp,xq)]. (3.12)

Finally, the reconstruction error-based anomaly score can be directly computed by,

dE(x) = dp(x)−
M∑
k=1

fk(x)
2, (3.13)

which is the reconstruction error between Φ̃(x), the centered projection of x into F , and

its representation in F as a projection onto the largest M principal components of the PCA

28 Chapter 3. Proposed Methods

model learned from the data.

If M = N then dE(x) will be zero for all x because the representation of Φ̃(x) in PCA

coordinates is identically Φ̃(x). When M < N then dE(x) will remain smaller for non-

anomalous points because the learned PCA model better represents the background and

the error associated with dropping low-eigenvalue eigenvectors will remain smaller as M

decreases.

Figure 3.1: The anomaly scores is the squared distance represented by the red line indicating
the separation between the point in F (blue) and its projection onto a subset of kernel
principal components (green).

Figure 3.1 gives a visualization of the anomaly score. In this simplified version there are

only three principal components shown (black). A point x is transformed into F , Φ̃(x). The

reconstruction error in F , which serves as the anomaly score, is then the squared distance

between the point in centered feature space and its projection to a subset of the principal

components. The reasoning is that a large Φ̃(x) alone may not be indicative of an anomaly

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 29

if it lies close to a principal axis describing a larger pattern in the data. However, a large

reconstruction error should be indicative of an anomaly as it is a measure of how far a point

lies from the overall model of the data as represented by the principal components.

3.1.3 Challenges

In practice, it is difficult to implement KPCA for unsupervised anomaly detection for two

main reasons: 1) The sensitivity to the parameter settings of the Gaussian kernel 2) the

cubic time complexity of the eigendecomposition of the kernel matrix, K̃ (3.8). This section

details these issues, while 3.1.4 and 3.1.5 describe the proposed solutions.

As with all kernel based methods, the ability for kPCA to detect anomalies is directly tied

to parameter selection. For a Gaussian kernel, σ is the critical parameter choice [96]. It is

worth first exploring the limits of the parameter choice and general properties of the kernel

matrix. A Gaussian kernel matrix will always have a diagonal containing all ones, as the

diagonal represents the self-distance term, e.i. ||xi − xi|| = 0.

As σ approaches an arbitrarily large value, the argument of the kernel for any value of

x‘ approaches 0 as the argument of the exponent in (3.5) approaches negative infinity.

Explicitly,

lim
σ→0

κ(x,x′) = 0 (3.14)

In this case K̃ approaches the identity matrix. This indicates that all data vectors in feature

space become orthogonal to one another and the principal components become meaningless.

Alternatively, as the width of σ increases the off diagonal tend toward 1,

lim
σ→inf

κ(x,x′) = 1 (3.15)

30 Chapter 3. Proposed Methods

Evidently σ values that are too small lead to an over separation of points in F , a form of

over-fitting. For σ values that are too large, all points begin to be mapped to similar locations

in F , a type of under-fitting [88]. Otherwise stated, in the former case all points appear to

be anomalous F , in the latter all points appear normal. In the unsupervised setting it is not

possible to perform a parameter search because there is no conventional sense of a hold out

validation set without the availability of labels. Section 3.1.4 describes a proposed solution

to determining a nearly optimal kernel choice in the unsupervised setting.

Computational efficiency, both in terms of time and space complexity, is an issue at several

steps in the conventional deployment of KPCA, and a major limiting factor in its applica-

bility. Despite the demonstrated ability to fit non-linear patterns in data, kernel methods

require the calculation of a distance (adjacency) matrix comprised of all pairwise similar-

ity measures between each of the N data point in X. Specifically the calculation of the

adjacency matrix needed to form K, has O(DN2) time complexity and O(N2) space com-

plexity. Of even greater concern is the O(N3) time complexity to decompose K̃. This is

prohibitively expensive for large datasets. Section 3.1.5 outlines a process to greatly reduce

the computational costs, without sacrificing detection accuracy.

3.1.4 Learning the Kernel

Parameter selection in the supervised setting is often challenging for KPCA, as the complex-

ity makes an extensive grid search of parameters very expensive. However, for unsupervised

tasks, a conventional search of any kind is not possible. Instead, a heuristic based on the

nearest neighbor distance, or some other distance adjacency metric is often used to select σ

[11, 37, 67]. These heuristics are usually sub-optimal and tied to the dispersion of the data.

Other methods such as [27, 94] iterative full evaluations of the kernel matrix or estimations

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 31

of the error rate.

The proposed method extends [27] to KPCA and significantly reduces the time and space

complexity. Evangelista and Embrechts employ a powerful, general heuristic for selecting

a near optimal value of σ without the need for labeled data. The method is based on

maximizing the coefficient of variance of the off diagonal entries in the kernel matrix.

In the full N ×N kernel matrix there are N2−N off diagonal entries. Because of symmetry,

half are duplicates, so there are only l unique off diagonal entries, l = N2 −N . Evangelista

suggests the following fundamental premise of pattern recognition, that suggests a good model

should follow,

κ(i, j)|(yi = yj) > κ(i, j)|(yi ̸= yj), (3.16)

Which simply indicates that points that are closer in the ambient space will produce larger

kernel values than distant points. For the Gaussian kernel, this is a consequence of

lim
∥x,x′∥→0

κ(x,x′) = 1. (3.17)

For anomaly detection, most pair-wise comparisons are of normal to normal data, i.e. yi = yj

.

On first approach it is natural to assume that simply tuning the matrix to take on high values

will preserve the idea of adjacency in F . This is misguided, this leads to under-fitting where

anomalies are not pronounced. Instead, the important metric is the dispersion of the data.

Decomposing the disperse kernel matrix, results eigenvectors that are most representative of

neighboring points, as they have proportionally higher values, while minimizing the impact

of distant anomalies. This results in a good, non-linear model of the data.

32 Chapter 3. Proposed Methods

a) over-fitting b) good fit c) under-fitting

1.0 0.5 0.0 0.5 1.0 1.5 2.0
D1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
i,

x j
)

= 0.1
D = 0.03

1.0 0.5 0.0 0.5 1.0 1.5 2.0
D1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
i,

x j
)

= 0.33
D = 0.4

1.0 0.5 0.0 0.5 1.0 1.5 2.0
D1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(x
i,

x j
)

= 1.0
D = 0.03

Figure 3.2: Gaussian kernels are corresponding to different choices of σ are fitted to one-
dimensional data. The black dots indicate the corresponding off-diagonal kernel entries. The
anomaly (at 0) is best separated when the index of dispersion is maximized.

The index of dispersion, iD, (coefficient of dispersion, relative variance, or variance-to-mean

ratio) provides a normalize measure of the dispersion of a distribution of values,

iD =
s2

m
(3.18)

where s2 is the variance and m is the mean. By applying this measure, it is possible to quan-

tify the sparsity of the off-diagonal kernel entries, l. Figure 3.2 demonstrates the problem

of over-fitting and under-fitting for a simple, one-dimensional example with three points.

Furthermore, iD of the l kernel entries exhibits a global maximum, making it an ideal target

of an objective function to determine σ [27]

.

The main contribution of our research is to modify the objective to avoid the O(iN2) com-

putational complexity associate with i iterative evaluations of the full kernel matrix. Instead

of deploying the simple hill climbing optimization used in [27], the objective is cast as a loss

function to fit the framework of mini-batch stochastic gradient descent. Equation 3.18 is

inverted such that the objective becomes,

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 33

L(Xb, σ) =
mb

sb2 + ϵ
, (3.19)

where s2b is the variance of the off diagonal entries of Kb and mb is the mean. Kb is formed

by drawing a batch„ Xb, of examples from X, and then forming the adjacency matrix and

applying the kernel.

The proposed sampling method is beneficial because the full kernel matrix never needs to be

computed or stored in memory. Forming Kb in this way is equivalent to randomly drawing

a set of rows from K, applying the same indexing to the columns, and saving the entries

of intersecting rows and columns. This process relies on the assumption that the index of

dispersion of the samples, iDb
, approximates the iD of all l entries, so that using iterative

draws of iDb
as a metric for tuning yields the same, near optimal, result for σ.

Specifically, nb is the batch size and lb = nb
2 − nb, so that

mb =

∑nb

i=1

∑nb

j=1+1 κ(i, j)

lb
, (3.20)

and

sb
2 =

∑nb

i=1

∑nb

j=1+1(κ(i, j)−mb)
2

lb
. (3.21)

To prevent negative values for σ, optimization is instead performed on a bias, b, which is

passed through an activation function,

σ = log(1 + exp(b)). (3.22)

34 Chapter 3. Proposed Methods

An initial b0 is set to correspond to σ0 = 1. Early stopping is performed by tracking the

lowest value of the loss. The number of training steps (batches) since the record lowest loss

is tracked, and if the number exceeds a set patience, p, training is halted, and the average σ

over that period is returned. The Algorithm 1 outlines the steps for tuning σ.

The proposed extensions of [27] to the gradient descent framework allows for unsupervised,

near-optimal kernel tuning on very large datasets efficiently. The space complexity is reduced

to O(Nb
2) space and to O(ibNb

2) time complexity, where ib is the number of batches drawn

before convergences is declared. Results in Section 5.2 show that batches as small as Nb = 100

are generally sufficient and convergence that typically occurs in under 2000 steps.

Algorithm 1: Gradient Descent σ optimization
input : X -globally min-max normalized data
Given: nb -batch sampling size, p -patience, σ0 -initial σ
initialize b0;
initialize Lmin;
initialize t = 0 -batches since last Lmin update;
repeat

randomly draw nb samples from X to form a subsample Xb;
calculate Kb from Xb;
extract lb off diagonal unique entries from Kb;
calculate L (3.19) ;
apply gradient descent to update b;
if L < Lmin then

Lmin = L;
t = 0;

else
t = t+ 1;

end
until t > p;
output: σ̄ during p

3.1. Unsupervised Ensemble Kernel Principal Component Analysis 35

2 1 0 1 2 3
D1

1.0

0.5

0.0

0.5

1.0
D

2

Data
Sample 1
Sample 2

Figure 3.3: A two dimensional example of linear PCA. Random subsampling produces skele-
ton approximations of the PC.

3.1.5 Skeleton Ensembles

Even with the efficient means of computing an appropriate σ parameter, the cubic time

complexity of the eigenvalue decomposition of the K̃ makes performing KPCA on larger

datasets infeasible. An ensemble alternative technique is described that avoids the full

construction or decomposition of K. The key insight is that a small sampling of a collection

of points produces approximately the same principal components as the full dataset. Figure

3.3 shows a two-dimensional example using linear PCA to illustrate the point. PCA is

performed on 2000 randomly generated points, the PC are indicated by the black arrows.

Two separate random samplings of 20 points are taken to perform PCA again. Projections

onto the sampled PC approximate that of the full model. The insight is that the knowing

the true PCs is not important. Instead, the anomaly scores are averaged over many models

that approximate the PCs.

The idea expands the concept of an out-of-sample extension [68], that is, a datum that

36 Chapter 3. Proposed Methods

was not originally used in the eigendecomposition of K can be still be projected onto the

set of principal components. Or more plainly, points that were not used to construct the

approximate KPC can still be projected on to them. Most techniques focus on finding a

single good approximation of the kernel[68, 99]. In the unsupervised setting this can be

problematic, an unlucky random sampling may be strongly influenced by outliers. The

proposed method differs in the fact that an ensemble accounts for the errors produced by

decomposing a lower-rank K.

A randomly drawn number of examples ns is drawn from X, these are used to produce an

approximate low-rank Ks, from which the skeleton eigenvectors, αs, that form the approxi-

mate model of the data can be calculated. Then the reconstruction error (3.9) for all points

in X are found. This process is repeated for to form an ensemble of, nm, approximate low-

rank models. The reconstruction errors across all ensembles are averaged for each example

in X to form a final anomaly score. Algorithm 2 outlines the procedure.

The procedure of model averaging, also known as bootstrap aggregation or bagging, is an

ensemble method that has been primarily been primarily developed for decision tree meth-

ods, such as Isolation Forest [2, 56]. Notably, this type of sampling does not work as well

for some other methods such as OC-SVMs or distance-based approaches. As opposed to

KPCA, where the Principal Components are comparable (Figure 3.3), the margins gener-

ated by OC-SVMs and nearest neighbor rankings vary significantly because the distance

between the distances between points are much larger in the sample, especially in higher

dimensional data.. Similar methods have applied KPCA ensembles to applications such as

image denoising in the approximations of pre-images [82], however, this evaluation is the

first to apply an ensemble version as a general approach to the problem of unsupervised

anomaly detection.

The sampling process greatly reduces the computational complexity of KPCA, even when

3.2. Modified Training and Scoring Autoencoder 37

Algorithm 2: Ensemble KPCA
input : X -globally min-max normalized data, σ -Gaussian kernel parameter
Given: Ns -skeleton sampling size, nm -number of models in the ensemble
for model in Nm do

randomly draw Nb samples from X to form a subsample Xs;
form Ks from Xs;
form K̃s from Ks (3.8);
decompose K̃s to extract αs;
unit-norm αs;
calculate dE(x) for all x ∈ X (3.9);

end
output: d̄E(x) -average anomaly score for each example across all Nm models

accounting for the multiple evaluations necessary in the ensemble. The computational com-

plexity of the eigendecomposition step is reduced from O(N3D) to O(NmNs
3D). However,

the scoring across all models requires a O(NmN) time, but because only modest values of

Ns and Nm are necessary to approach the accuracy of the full rank evaluation, the ensem-

ble method quickly becomes the preferred approach as the cardinality increases. Another

desirable features follows the fact that each model’s score can be calculated independently,

meaning the procedure parallelizable.

3.2 Modified Training and Scoring Autoencoder

As described in Section 2.3.1, an autoencoder (AE) is an artificial neural network (ANN) that

is trained to reconstruct inputs. AEs are restricted by designed to prevent the learning of a

perfect identity mapping; this is normally achieved by a bottle neck where some information

is lost in compression.

Compared to other dimension reduction techniques, such as Principal Component Analysis

(PCA), AEs are able to perform non-linear transformations of the data via their non-linear

38 Chapter 3. Proposed Methods

activation function and hidden layers. This is a useful property for detection, as the division

between normal and anomalous examples is often non-linear. In addition, the mini-batch

gradient descent techniques used to train AEs scale well to large datasets and higher dimen-

sional features.

An AE can be though of as two networks. An encoder network, E , maps data from an input

example x ∈ X ⊂ RD in ambient space to a reduced latent space z ∈ Z ⊂ RK . Then,

a decoder network, D maps the latent space representation, back to the ambient space,

x′ ∈ X ′ ⊂ RD.

The encoder and decoder networks are jointly trained by a loss (objective) function. The

loss function aims to minimize the reconstruction error between the set of inputs X and the

reconstructions X ′. Errors are back-propagated through the network parameters. Measures

of reconstruction error are used to both train the AE and provide a measure of normality

for each example. The most common of which is the l2-based mean squared error (MSE),

MSE(x) = L(x,x′) = ∥x− (D ◦ E)x)∥2 . (3.23)

The AE is trained through the iterative backpropogation of the average error across a mini-

batch of examples, as with other feed forward ANN architectures.

This conventional formulation of an AE as an anomaly detector assumes that normal ex-

amples will be reconstructed better than anomalous examples based on greater frequency

during training. However, there is also an implicit assumption that anomalies cannot be

reconstructed accurately. In practice, this premise cannot be relied upon; AEs can often

generalize well enough to accurately reconstruct anomalous inputs [7, 33].

The over-generalization caused by the contamination of training data with anomalies cannot

3.2. Modified Training and Scoring Autoencoder 39

be corrected by ad hoc increase in regularization, restriction network capacity, or reduction

in training time. This is because any attempt to limit the generalization of anomalies also

jeopardizes the reconstruction of normal examples, leading to a high number of false positives.

Due to the unsupervised setting, the optimal hyperparameter choices cannot be determined

from a conventional, extensive search. New approaches are necessary.

To address the problem of AEs over-generalizing to fit anomalous data, we propose several

modifications to the training and anomaly scoring of AEs used for unsupervised deep anomaly

detection (DAD). This section describes these modifications and their motivations in detail.

Rather than assuming an AE cannot learn to generalize anomalies, anomalies are assumed to

require greater time to learn. That is, anomalous examples during training will have higher

reconstruction scores over more training steps. The shift in perspective allows anomalous

examples to be captured by leveraging the unsupervised AE training process instead of an

arbitrary single state of the network.

3.2.1 Cumulative Error Scoring

Figure 3.4 shows reconstruction error of an anomalous example and normal example from

one of the experiments on the stop-sign dataset detailed in 4.3. The converging errors

demonstrate the problem of generalization in unsupervised AE training. Based on the raw

error there is not a clearly best number of training steps. The pattern is different for other

normal and anomalous examples, and also varies with different random initializations of the

network parameters. As a result, simply setting an arbitrary number of training steps halt

training is unreliable. The diverging bold lines represent the proposed solution.

Early in training, reconstruction error of anomalous examples are well separated; yet over

time, the AE learns to reconstruct the anomalous example equally well as the normal one. In

40 Chapter 3. Proposed Methods

the extreme example, where the loss is zero, the AE has no ability to distinguish anomalies.

Over-training is obviously problematic, but arbitrarily choosing a stopping epoch may pre-

vent the AE from fully assimilating the normal examples. In order to allow for greater laxity

in the number of training steps and to fully leverage the history of the training process, we

introduce Cumulative Error Scoring (CES). CES sums the errors of each example across all

training epochs, normalizing by the number of epochs J , a monotonic function that does not

affect ranking. The CES for each example x is then,

CES(x) =
J∑

j=eb

MSE(x)j, (3.24)

where MSE(x)j is the reconstruction error at the end of epoch j and eb is the number of

burn-in epochs.

The CES metric can be understood in several ways. Ensemble techniques (model averaging)

are often used to add robustness to ANN training [34]. The summation of the reconstruction

errors can be thought of as an ensemble of earlier states of the model during training. CES

can be alternatively viewed as an approximation of the integrated error, as shown in Figure

3.4.

The bold lines in Figure 3.4 represent the cumulative errors of both anomalous and normal

examples. CES more reliably separates the anomaly over the course of training. Additionally,

the summation places less significance on later epochs where the reconstruction errors are

smaller and the network may be overgeneralizing anomalies. Specifying a small number

of burn-in epochs, eb, acts to ignore the some of the initial period of training where the

reconstruction errors are not reliably indicative of normality.

However, CES does not yield a final trained model that can be applied to unseen new data.

Instead, it can only be applied to identifying anomalies as part of a full dataset during the

3.2. Modified Training and Scoring Autoencoder 41

20 40 60 80 100
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

Background MSE
Anomaly MSE
Background CES
Anomaly CES

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
E

S

Figure 3.4: Reconstruction error over 100 epochs for a normal (green) and anomalous (red).
Bold lines show cumulative error

42 Chapter 3. Proposed Methods

act of training. One possible, but costly solution is to retain the historical states of the model

during training and evaluating new examples with each of these states. In our research we

only consider the unsupervised case where there is no distinct testing phase, again referring

to Figure 1.1.

3.2.2 Percentile Loss

CES improves accuracy but does not directly address the contamination of training data by

anomalies. This is evident by the decreasing trend in detection accuracy as measured by

AUC, in figure 5.6. After the AE is able to generalize the anomalies, continued summation

of error degrades performance over time as anomalous reconstruction errors are no longer

reliably higher than those of background examples.

Even if the training data contains a relatively low percentage of anomalies (θ), there is still a

significant probability that an anomaly will be present in any given mini-batch, as described

by the hypergeometric distribution. The probability of contamination, Pc, that a randomly

drawn mini-batch of size Nb contains at least one anomaly from a dataset that contains N

is given by,

Pc = 1−
(
θN
0

)(
N−θN
Nb

)(
N
Nb

) . (3.25)

A example calculation can provide some insight. If N = 1000, θ = 1%, and Nb = 100, then

Pc = 65.3%. In this example, most mini-batches will contain at least one anomaly, regardless

of the detector’s current ability to distinguish anomalous examples.

When anomalies are present in a mini-batch, they contribute to the parameter updates of

the network. Worse yet, because anomalies are intended to have the highest reconstruction

3.2. Modified Training and Scoring Autoencoder 43

errors they contribute disproportionately. This problem stems from the conventional duel

use of reconstruction error as both the training target and the basis of an anomaly score

(3.23). The training directly acts to reduce the anomaly scores of anomalous examples.

The goal of modifying the training objective is to adapt AEs specifically for anomaly de-

tection. The proposed method, Percentile Loss (PL), undermines an AE’s ability to learn

anomalies while still encouraging the generalization of normal examples. PL leverages the

assumption that early in training, the anomalous examples will more often generate the

highest errors in a given mini-batch. Or otherwise stated, the AE will be able to separate

many of the anomalies by their higher reconstruction scores.

Rather than updating parameters based on the errors of all the examples in a mini-batch,

we define an upper percentile q (e.g. q = 95%) and a reconstruction error in each mini-batch

corresponding to that percentile, Pq. PL then only performs parameter updates based on

the reconstruction errors less than Pq; allowing the AE to ignore most anomalous examples

during training.

Yet, even if the AE-based detector perfectly rank all anomalous examples above normal

examples, it is still possible that a randomly drawn mini-batch contains enough anomalies

that some number exists below the threshold. Nonetheless, this probability is much less than

before. The probability of contamination by at least one anomaly less than q in a perfect

detector is given by

Pc∗ = 1−
∑Nb−L

i=0

(
θN
i

)(
N−θN
Nb−i

)(
N
Nb

) , (3.26)

where we define L to be the position of q, L = ⌊Nb(q/100)⌋. Using the same example values

as before, there is a massive reduction in the probability, Pc∗ = 0.15%. The difference

decreases for worse (non-perfect) detectors and higher anomaly percentages.

44 Chapter 3. Proposed Methods

PL helps to prevent anomalies from contributing to parameter updates when they are present

in the training data. One potential issue is that PL can cause normal examples above the

percentile threshold to be ignored. However, PL relies on the assumption that by sufficiently

training on other normal examples the AE is still able to generalize the more difficult normal

examples better than the anomalies. MSE (3.23) serves as the base loss function for all

evaluations in this paper; however, the application of PL can easily be extended to other

reconstruction-based training objectives.

3.2.3 Early Stopping via Knee Detection

Despite the protections afforded by CES and PL, the AE degrades slowly over many training

steps as PL can frustrate, but not fully stop, anomalous examples from contributing to

parameter updates. CES and PL reduce the sensitivity to the number of training steps, but

a means of reliably halting training is still required. In most applications of ANN, the loss

metric of a hold-out validation set of the training data is used to determine the cross-over

point of under to over-fitting. This cannot be transferred to the case of DAD. The rarity of

anomalies cause them to contribute little to the overall loss metric. Furthermore, the value

of the loss is tied to the value of the input features. The proposed of early stopping that is

not sensitive to the magnitude of the loss.

Averaging the CES of all examples at the end of each epoch creates a smoother loss statistic

as seen in Figure 3.5. The CES is divided by the number of epochs so that it has the same

concavity as the conventional MSE loss. Figure 3.5 shows a run from the stop-sign dataset

discussed in Section 4.3. The thin red line indicates the conventional MSE loss. The bold red

line indicates the CES loss (average loss), which is the average cumulative error normalized

by the epoch. The knee in the CES Loss curve curve then serves as a reliable criterion to

3.2. Modified Training and Scoring Autoencoder 45

0 20 40 60 80 100 120 140
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

AU
C

CES AUC
AUC
KNEE
STOP

0.000

0.005

0.010

0.015

0.020

0.025

Lo
ss

CES Loss
Loss

Figure 3.5: Early stopping via knee detection on the CES loss statistic. PL is also applied
in this example.

end training. The Kneedle algorithm [85] is used to determine the knee in an online fashion

at the end of each epoch.

The Kneedle algorithm defines a mathematical definition of curvature as the basis for knee

detection. For a continuous function f the curvature, Cf (x), at any point, x is a function of

the first and second derivatives of f ,

Cf (x) =
f ′′(x)

(1 + f ′(x)2)1.5
. (3.27)

The knee is then defined as the point of maximum curvature. Yet due to the discrete nature

of the data forming the curve, the formulation in [85] cannot be directly applied. Instead,

46 Chapter 3. Proposed Methods

because the maximum curvature can be defined as a maximum distance from a straight

line, the Kneedle algorithm tracks a literal measure of distance between each point and line

connecting the end-points of the discrete curve. The algorithm then attempts to estimate

the point at which the distance begins to decrease after a period of increasing.

Because of noise, a threshold is used based on a number of points. The sensitivity parame-

ter S, search for a consecutive number of flat points, or approximate local extreme, before

declaring a knee. A smaller S declares a knee more quickly, while a larger value for S indi-

cates more patience [85]. For detection on the AE’s cumulative loss statistic, the sensitivity

parameter for algorithm is set to S = 5.

The location of the knee changes over the course of training, but the drift is typically slow

and consistent. The stopping epoch, jstop, is determined according to the location of the

knee epoch, jknee, by defining a parameter B. If J > B × jknee, then J = jknee and training

is halted. Some buffer a head of the knee is required as there is a latency in detection.

Generally, selecting B between 2 and 8 works well.

3.3 Summary

Overall, we introduced several methods to better adapt KPCA and AEs for unsupervised

anomaly detection. First, for KPCA, Algorithm 1 casts the σ tuning objective introduced

by Evangelista and Embrechts [27] to a mini-batch gradient descent framework, allowing for

the unsupervised selection of the kernel parameter. The cubic time cost from the eigende-

composition of the full kernel matrix is avoided by the model averaging method outlined

in Algorithm 2. Algorithms 1 and 2 together, create Unsupervised Ensemble KPCA (UE-

KPCA), and allows KPCA to be used in the unsupervised setting without any full evaluations

of the kernel matrix, resulting in an approximately linear time efficiency. This could provide

3.3. Summary 47

significant computational efficiencies on larger datasets.

Next, we introduced a combined approach to address the problems of overgeneralization in

AEs, namely: cumulative error scoring (CES), percentile loss (PL), and early stopping via

knee detection. CES leverages the history of training errors to better separate anomalous

and background points. PL diminishes the influence of anomalies on parameter updates,

undermining the ability of AEs to learn anomalous examples. Lastly, the smooth cumulative

loss statistic is leveraged as a reliable means of early stopping to prevent over-training. AEs

also scale well to large volumes. The time complexity is O(JTNDh), where h is the number

of hidden nodes in the network and JT is the total number of training and scoring epochs

[71].

Chapter 4

Experimental Methods

The two new methods proposed in our research, the Unsupervised Ensemble Kernel Principal

Component Analysis (UE-KPCA) outlined in 3.1 and the Modified Training and Scoring

Autoencoder (MTS-AE) described in 3.2, are compared to a number of other state-of-the-

art unsupervised anomaly detection methods across a number of benchmark datasets. This

chapter outlines the methods used for this comparison evaluation. Section 4.1 details the

other algorithms used for comparison, while Section 4.3 describes the sources and nature

of the benchmark datasets. Section 4.2 explains the parameter settings used to draw a fair

comparison and the specifics of the hardware and software tools employed. Lastly, Section

4.4 describes the metrics used to evaluate the anomaly detection performances of the different

methods.

4.1 Baseline Algorithms

Though a huge number other algorithms exist, many with several different extensions and

variations, the baselines chosen have been demonstrated to be among the generally best-

performing and widely adopted methods on tabular multivariate (point) datasets [12, 32, 71].

For the vector notation, each data example x belongs to a dataset X ⊂ RD×N , where N is

the number of examples and D is the dimensionality. Anomaly scores for each baseline are

formulated so that a higher value indicates a more anomalous point.

48

4.1. Baseline Algorithms 49

4.1.1 kth Nearest Neighbor

The kth-nearest-neighbor (kthNN) algorithm is an unsupervised method to detect anomalies

[73]. First, the pairwise Euclidean distance between all points is calculated. Then a parame-

ter, k specifies the k closest points, or neighbors, for each example. Among these neighbors,

the distance to the kth furthest point serves as the anomaly score. An alternative version

uses the average distances to all k neighbors [32].

If the choice of k is too small, then the measure is very susceptible to noise and may not

capture broader patterns in the data. Too large of a choice for k, then finer changes may

be missed. In the unsupervised setting, a value within the range 10 < k < 50 has been

shown to be a descent rule-of-thumb for good detection performance [12, 32]. The algorithm

is equivalent to sorting each of the rows of the adjacency matrix by ascending and selecting

the entries of k+1 column as the anomaly score. The computational complexity is O(N2D).

4.1.2 Local Outlier Factor

The simple distance measure used in kthNN assumes that each neighborhood of surrounding

points can be treated equally when scoring anomalies. Yet, in many datasets, different

partitions of the data exhibit different patterns, so that a measure of anomaly is specific to

the surrounding region. These local outliers can be identified by assigning each example a

Local Outlier Factor (LOF) [10].

LOF can be though of as a measure of relative density between an example and its neighbors.

The first step involves calculating the k-distance, dk(x), between an example and its kth

nearest neighbor. The neighborhood, Nk(x) around x can then be defined as all the examples

contained in this radius. A reachability distance, dR, can then be defined between the

50 Chapter 4. Experimental Methods

example of interest and each point, x′, in Nk(x),

dR(x,x
′) = max (dk(x′), d(x,x′)) , (4.1)

where d(x,x′) is the Euclidean distance between the two points and dk(x
′) is the k-distance

for x′. Notably, this distance is not symmetric because dR(x,x
′) a does not necessarily equal

dR(x
′,x).

The local reachability density (LDR) of an example is found by inverting the average reach-

ability distance in the neighborhood,

LDR(x) =

(
∥Nk∥∑

x′∈Nk
dR(x,x′)

)
. (4.2)

Finally, the LOF for x is determined by comparing the LDR of the example to those calcu-

lated for neighborhood,

sLOF (x) =

(∑
xk∈Nk

LDR(x)
LDR(x′)

∥Nk∥

)
. (4.3)

A higher LOF indicates a lower relative density compared to the neighborhood and serves as

the anomaly score. As with, kthNN the choice of k can significantly affect performance. The

same heuristic is followed, where k is selected in the range 10 < k < 50. The computational

cost is comparable to that of kthNN, as the most expensive step involves obtaining the

pairwise distances.

4.1.3 Unweighted Cluster-Based Local Outlier Factor

The Unweighted Cluster-Based Local Outlier Factor (uCBLOF), uses clustering to estimate

areas of greater density [40]. The unweighted refers to a divergence of the original formulation,

4.1. Baseline Algorithms 51

where the scores are no longer weighted by the populations of the cluster, as this modification

has shown to generally improve performance [4, 32]. The initial step of the algorithm is to

classify examples into either a small cluster (SC) or a large cluster (LC). The anomaly score

of x belonging to the cluster Ci is then the Euclidean distance to the C of the nearest LC,

suCBLOF (x) =

min(d(x, Cj)), if Ci ∈ SC,Cj ∈ LC

d(x, Ci), if Ci ∈ LC

(4.4)

The kMeans algorithm is used to for cluster assignment [57], making the uCBLOF algorithm

non-deterministic. Two parameters, α and β decide if a cluster is considered larger or small.

For a list of all clusters sorted in descending order by membership size, C1, C2, . . . Cn, b is

defined as the boundary of large and small clusters. If either of the conditions
∑b

i=1 |Ci| ≤

αN or Ck/(Ck−1) ≤ β are satisfied while traversing through the list, then b is declared [40].

In this evaluation, the values for the cluster-separating parameters are set to α = 0.95 and

β = 5, as per the author’s suggestion [32, 40]. Additionally, The number of clusters to

compute represents an important parameter and again follows the same rule-of-thumb used

for selecting k. Because clustering is a less common approach, there is not a well established

heuristic. Clustering assignment does not require the calculation of all pairwise distances;

therefore, the complexity is linear with N at O(NDki), where i is the number of iterations

by kMeans until convergence.

52 Chapter 4. Experimental Methods

4.1.4 Linear Principal Component Analysis

The linear formulation of principal component analysis (PCA) is a commonly used in ML

for dimensionality reduction and data exploration. However, PCA can also be applied to

anomaly detection following a similar procedure described in 3.1. The inclusion of this

baseline is also useful for an ablation study to determine the impact of the non-linear, kernel

extension. The goal of PCA is to find a lower-dimensional representation that accurately

reconstructs a majority of the original, mean-centered data [45].

min
W , z

1

N

N∑
i=1

∥xi − X̄ +W Tzi∥2, (4.5)

subject to:

WW T = I, (4.6)

where W is the transformation matrix, z is the reduced representation of the data, and X̄

is the data mean.

The minimum reconstruction is accomplished by aligning the data along orthogonal axes

with the highest variance. To do so, the data is first centered, X̃ = X − 1
N

∑N
i=1X. Next,

the eigendecomposition of the covariance matrix, Σ, yeilds the eigenvectors, V ,

Σ = X̃X̃
T
= V ΛV T , (4.7)

where Λ is the diagonal matrix whose elements correspond to the eigenvalues, Λii = λi. A set

of r eigenvectors corresponding to the sorted highest eigenvalues, V M = [V 1,V 2, . . . ,V M]

such that λ1 ≥ λ2 ≥ · · · ≥ λr. This set of eigenvectors forms the transformation matrix

4.1. Baseline Algorithms 53

W = V T
M . Data can be projected into the reduced latent space by Z = WX̃, so that the

number of retained eigenvectors, M corresponds to the dimensionality of the transformed

data, z ∈ Z ⊂ RM×N .

Anomaly detection is performed by calculating the reconstruction error (residuals) between

the full and reduced data,

sPCA(x) = (x − X̄)T (x − X̄)− ((x − X̄)V T
M)T ((x − X̄)V T

M). (4.8)

Because the eigenvectors are more indicative of the normal data, anomalies should produce

greater reconstruction errors [45]. The number of eigenvectors to retain corresponding to the

latent dimensionality, M , represents the crucial parameter. With no established guidelines

for selecting this parameter, initial experiments showed that M = D / 2, rounded down, was

a reasonable choice. The computational complexity of PCA is reasonable for low dimensional

data. The calculation of the covariance matrix is O(D2N); and its eigendecomposition is

O(D3).

4.1.5 Mahalanobis Distance

The Mahalanobis distance (MD) assumes a normal model of the data in order to create

a unitless, scale-invariant, multivariate generalization of a Z-score [58]. There is a strong

connection to PCA, where calculating MD can be thought of as first orienting the data along

the principal components and then standardizing so that the data has unit variance along

each principal component axis. The anomaly score is then the distance from the origin in

this transformed representation given by

54 Chapter 4. Experimental Methods

sMD(x) =

√
(x− µ)TΣ−1(x− µ), (4.9)

where Σ is the covariance matrix and µ is a vector of the feature means.

The main appeal of using MD is that it not parameter selection; nevertheless, its effectiveness

relies on a single, multivariate-Gaussian model fitting the data. Again, the calculation of

the covariance matrix is O(D2N); and its inversion is O(D3).

4.1.6 Kernel Density Estimator

The Kernel Desnity Estimator (KDE), also known as the Parzen-Rosenblatt Density Win-

dow, constructs a probability density function (pdf) from the summation of the kernel func-

tions centered at each point [43]. This can be thought of as superimposing the functions in

Figure 3.2. An anomaly score is generated by measuring the value of the pdf at each point

and reversing the sign,

sKDE(x) = − 1

N

N∑
i=1

κ(xi,x). (4.10)

Scores closer to zero indicate anomalies. For a Gaussian kernel, the effectiveness of the KDE

relies on the paramter choice, σ.

Conceptually, the KDE produces the same ranking as the spherical potential (3.10), or the

distance from the origin in the feature space, F , after mean-centering the data. That is, the

KDE is equivalent to KPCA if no principal components are retained (M = 0) [43]. Because

the KDE does not required the eigendecomposition step, but still requires construction of

the full kernel matrix, the time complexity is O(N2D).

4.1. Baseline Algorithms 55

4.1.7 One Class Support Vector Machines

For any kernel where κ(xi,xi) = 1, such as the Gaussian kernel, the data in the feature

space has a unit norm. As a result the points in the transformed space can be lie on the

surface of a hypersphere in feature space. A maximal-margin hyperplane can be constructed

to separate a majority of the points from the origin in F [9, 54]. The One-class Support

Vector Machine (OC-SVM) is a method of constructing a soft margin separating hyperplane

in the feature space to identify anomalous points [86]. For Gaussian Kernel, the OC-SVM

is geometrically equivalent to the Support Vector Data Description (SVDD), which finds

the smallest hypersphere that encloses the data in F [94], referring back to Figure 2.2 for a

simplified visualization.

The problem can be solved via quadratic programming,

min
w, ξi, ρ

1

2
∥w∥2 + 1

νn

N∑
i=1

ξi − ρ (4.11)

subject to:

w · ϕ(xi) ≥ ρ− ξi for all i = 1, . . . , n, (4.12)

ξi ≥ 0 for all i = 1, . . . , n, (4.13)

where w and ρ define the hyperplane, ξi are the slack variables to relax the constraint of the

margin, and ν characterizes the soft margin solution.

The formulation can be modified to use Lagrange techniques and replace inner products

with the kernel function (3.6).After introducing the multipliers αi,βi ≥ 0, the Lagrangian

becomes,

56 Chapter 4. Experimental Methods

L =
1

2
∥w∥2 + 1

νn

N∑
i=1

ξi − ρ−
N∑
i=1

αi((w · Φ(xi))− ρ+ ξi)−
N∑
i=1

βiξi (4.14)

The derivatives of L with respect to the primal variables w, ξi, and ρ are set equal to zero,

resulting in

w =
N∑
i=1

αiΦ(xi), (4.15)

αi =
1

νn
− βi ≤

1

νn
,

N∑
i=1

αi = 1. (4.16)

After substituting Equations (4.15) and (4.16) back into (4.14) and then applying kernel

trick (3.5) to replace the inner products, the dual objective becomes,

min
α

1

2

N∑
i,j=1

αiαjκ(xi,xj) (4.17)

subject to:

0 ≤ αi ≤
1

νn
for all i = 1, . . . , n, (4.18)

N∑
i=1

αi = 1 for all i = 1, . . . , n. (4.19)

The small number of non-zero α are the support vectors that define the hyperplane. The

hyperplane’s constant bias does not affect ranking, therefore by using equation (4.15) the

anomaly score can be expressed as the projection distance onto the hyperplane’s normal

vector, in terms of the support vectors and kernel,

sOCSVM(x) = −
N∑
i=1

αiκ(xi,x), (4.20)

4.1. Baseline Algorithms 57

where a value closer to zero indicates a more anomalous example. The combined primal

and dual optimization yields a complexity that is O(max(N,D)min(N,D)2) [17] making it

impractical for very large datasets.

The parameter ν indicates 1) an upper bound on the fraction of training errors and 2) a

lower bound of the fraction of support vectors, such that

Outliers

N
≤ ν ≤ SV

N
(4.21)

It is useful conceptually to note that for ν = 1 the two optimization constraints, allow only

for one solution where α1 = α2 = · · · = αn = 1/N . In this case where the number of support

vectors is equal to the number of training examples, the anomaly score (4.20) produces an

equivalent ranking to that of the KDE. Alternatively, this condition is equivalent to averaging

all the transformed points so that the normal of the hyperplane extends through the center

of the data. Sparsity in the model, gained by reducing the number of support vectors, acts

to regularize the solution by ignoring outliers.

There is not an accepted method for generally selecting this parameter. The optimal choice is

data dependent and difficult to select in the absence of labeled validation data. To represent

the variation caused from manually selecting ν, this evaluation follows [32], where ν is varied

across a range of 0.2 < ν < 0.8. While the Gaussian kernel is a good general choice for the

One-Class Support Vector Machines (OC-SVM), as with the KDE and KPCA, the results

are also sensitive to the kernel bandwidth, σ [11, 27].

4.1.8 Isolation Forest

Isolation Forest (iForest) is a tree ensemble method that aims to explicitly isolate anomalies

rather than model background data [56]. Each Isolation Tree in the ensemble is built by first

58 Chapter 4. Experimental Methods

selecting a random feature q ∈ Q and a random value p between the min and max of q in

X. The data is then partitioned on either side of p. The process is then repeated recursively

on partitions to form the branches of the tree. The tree is fully grown when each partition

contains only one example, separating every point in X. In practice, it is not necessary to

isolate all normal instances, instead the ensemble works well when each iTree is built from

a different subsampling of the data.

Anomalies, which take less partitions to isolate, should have shorter path lengths, h(x) in a

tree. The average path length for all points in a tree is given as,

c̄(Ψ) = 2 ln(Ψ− 1)− 2(Ψ− 1)

N
+ 2γ (4.22)

where γ = 0.5772, the Euler-Masheroni constant, and Ψ is the sample size from X used to

form each tree. A particular examples expected path length, E(h(x)), across an ensemble

of t iTrees can then be normalized by the average found by 4.22, to form an anomaly score,

sIF (x) = 2
−E(h(x))

c̄(Ψ) (4.23)

Values of sIF (x) approaching 1 strongly indicate an anomaly. If sIF (x) is smaller than 0.5,

then x is likely normal.

Following the authors’ suggestion, the parameters were set to Ψ = 256 and t = 100 [56]. The

generation of the trees is non-deterministic; therefore, during evaluation, multiple runs are

performed to express the variation. The sampling allows for a constant memory complexity,

but the evaluation still requires a linear time complexity.

4.2. Parameter Settings and Implementation 59

4.2 Parameter Settings and Implementation

Creating a fair evaluation of different anomaly algorithms is challenging. Often different

reviews take different approaches. Goldstein et al. advocates for attempting to find a

generally good set of parameters, while expressing some of the variability due to parameter

selection and initializations [32]. Because labels are not present in unsupervised anomaly

detection, cross-validation cannot be used for optimal parameter selection. As a result, rules-

of-thumb for these choices must be adopted. To simulate this uncertainty found in practice,

methods were evaluated across the reasonable parameter ranges described for each method.

Multiple trials (10) were performed for each baseline.

For a fair comparison, the same σ found for UE-KPCA by the Algorithm 1 outlined in

3.1.4 is used for the KDE and OC-SVM which both use a Gaussian Kernel. The RMSProp

optimizer with a learning rate of 0.001, a patience of p = 1000, and batch size of Nb = 100 is

used for tuning. Section 5.1 justifies the settings of Nm = 100 and Ns = 256 for UE-KPCA.

Though Algorithm 1 removes the requirement of manually selecting σ, there is still the

important parameter choice of M , the number of eigenvalues to retain. The ideal choice of

M best models the normal data, while failing to capture anomalous points. This is impossible

to know without validation, but setting M equal to D is a logical choice for most datasets

with no prior knowledge. However, as D grows, this choice becomes less reasonable as often

many of the features of very high dimensional data, such as images, are highly correlated.

Therefore, and arbitrary maximum of M = 75 is set. More reliably specifying M is remains

an open question.

The MTS-AE has a large number of hyperparameter settings. Again, these cannot be opti-

mized for any particular dataset without labeled information. In practice, MTS-AE would

likely only be used in a weakly supervised setting where a limited number of labeled data

60 Chapter 4. Experimental Methods

from a similar domain could be sued to verify these choices. A small number of initial exper-

iments on the forest and shuttle datasets (Section 4.3) identified a set of generally reliable,

but in no way optimal, set of choices. The same general architecture is used for all datasets:

FC(D,D/2) to FC(D/4, D/2) to FC(D/2, D), where FC(i, o) indicates the input and output

dimensionality of each fully connected (FC) layer and D is again the ambient dimensionality.

Non-integer values are rounded up. This scheme ensures that datasets with more features,

and likely more complicated patterns, have a network with a greater expressive power [71].

A sigmoid activation is applied to the output of each hidden layer, while the final layer has

a linear activation. The learning rate is set to 0.001 and an L2 regularization of 1e − 5 is

applied to output of each layer. Again, the Adam optimizer is used. To account for widely

different dataset sizes, one epoch is defined as 200 training steps with a batch size of 256.

Before beginning CES or early stopping detection, networks are pretrained with a eb = 10

epoch burn-in period using a standard MSE loss function. This allows for some meaning-

ful ranking of the reconstruction errors to occur before PL is applied. The knee-multiple

parameter is set to B = 5.

AEs were built using the Keras 2.3.1 API using the Tensorflow-GPU 2.0 backend in Python

3.7.4 [1, 18]. The Isolation Forest, One-Class Support Vector Machine, Local Outlier Factor,

and kth-nearest-neighbor methods are implemented using the sklearn and Pyod libraries in

Python [102]. Experiments are run on a desktop with a i7-9700F CPU with 16 GB of RAM

and an NVIDIA RTX 2060 Super GPU.

4.3 Datasets

Unsupervised anomaly detection does not use labeled data in the determination of anoma-

lies; however, labeled data are required for evaluation in order to determine accuracy and

4.3. Datasets 61

specificity. The datasets used in this evaluation vary in size, dimensionality, anomaly abun-

dance, and domain, and were selected from those that appear in meta-reviews of anomaly

detection methods.

From the most recent broad review of it’s kind by Goldstein and Uchidal, the datasets –b-

cancer, pen-global, pen-local, satellite, letter, shuttle, and aloi are used [32]. For a broader

comparison, stamps and waveform were obtained from the a separate repository [12]. Lastly,

four additional benchmark datasets-glass and vowels-were sourced from the Outlier Detec-

tion datasets (ODDS) [75]. Many of these curated anomaly datasets originated from data

retrieved from the UCI machine learning repository [25], where some data has been down

sampled to constitute anomalous instances. The very high volume forest dataset was taken

from a common baseline in remote sensing literature [70].

Lastly, stop-sign and speed-sign datasets were generated by sampling normal data from

the German Traffic Signs Detection Benchmark (GTSDB) [91] adding anomalous examples.

Table 4.1 provides a summary of the number of examples, the number of features, and the

percentage of anomalies.

A description of each dataset follows:

• glass: Attributes describe six different types of glass, one class was down sampled and

identified as anomalous.

• stamps: The dataset contains forged, anomalous and genuine, normal examples of

stamps. The features are based on color and printing properties.

• b-cancer: The features were extracted from a fine needle aspirate of normal healthy

and anomalous cancerous cells.

• pen-global: Based on the UCI database of 4 × 4 pixel handwritten digits 0-9 from 45

62 Chapter 4. Experimental Methods

writers, the digit 8 represents the normal class, and a small number of examples from

each of the remaining classes serve as the anomalies.

• stop-sign: The Stop Sign class of the GTSDB was first selected. A manual filtering

process removed examples that were incorrectly cropped or significantly distorted by

motion blur to create a normal set centered 32 × 32 RGB images of stop signs under

different conditions. A mixed anomaly class was generated by combining the most

distorted of the original images with new images taken of a stop sign that is either

heavily occluded or contains simulated-graffiti made by covering portions of the sign

with colored tape. Each image was flattened to form a data vector. See Figure 5.9 for

example images.

• speed-sign: Similar to the stop-sign dataset, this collection contains images from the

30km/hr Speed Limit Sign class of the GTSDB. The same procedure of manually

removing images was applied to create a normal set. The anomalies consisted of the

worst removed examples and generated obscured or graffiti examples.

• vowels: The original Japanese Vowels dataset contains time series data of nine male

speakers uttering the two /ae/ vowel sounds successively. Three speakers constitute

the normal examples, while one is down-sampled to create the anomalous class.

• letter: Sixteen features are extracted from the 26 letters of the English dataset. Three

letters form the normal class, while anomalies have been sampled from the rest. To

increase the challenge, the dimensionality was doubled by randomly concatenating

normal features to all the normal and anomalous examples.

• waveform: Three classes of waves are described by 21 numeric, engineered features.

The anomalies are formed from the down-sampled first class.

4.3. Datasets 63

• pen-local: The previous dataset is reused, but now all of the digit classes are kept in

the normal class, except the first 10 instances of the anomalous digit 4 class which are

considered anomalies.

• satellite: The features were extracted from green, red, and infrared light bands of a

satellite images. Observations taken from Red, Gray, Damp, and Very Damp Gray soil

areas serve as the normal class, which differ semantically from the Cotton Crop and

Vegetation Stubble anomalous examples.

• shuttle: Nine features describe radiator positions in a NASA space shuttle. The nor-

mal Radiator Flow class differs from examples drawn from five different anomalous

positions.

• aloi: The Amsterdam Library of Object Images collection characterizes images of 1000

different small objects by a 27 dimensional feature vector extracted using HSB color

histograms. Some object classes were down sampled to serve as anomalies.

• forest: A portion of the hyperspectral Image (HSI) from the Forest Radiance I (run05)

of the (HYDICE) imagine spectrometer [78]. The sensor captures data from 210 equally

spaced bands from approximately 400-2500 nm. Noisy bands were removed, the re-

maining 158 bands serve as features. The background contains mostly, grass, dirt, and

forest cover. Pixels where vehicles and tents appear serve as anomalies.

The three datasets with the largest number of examples, shuttle, aloi, and forest are used

in only in the evaluation of the linear complexity methods. This reduction is meant to

narrow the comparison as the computational costs of other methods eliminate their practical

application. For example, simply storing the full adjacency matrix for the forest dataset

would require almost 2TB of memory.

64 Chapter 4. Experimental Methods

dataset N D θ (%)

glass 214 9 4.21
stamps 315 9 1.90

b-cancer 367 30 2.72
pen-global 809 16 11.12
stop-sign 920 3072 3.59

speed-sign 1398 3072 3.29
vowels 1456 12 3.43
letter 1600 32 6.25

waveform 3443 21 2.90
satellite 5100 36 1.47
pen-local 6724 16 0.15
shuttle 46464 9 1.89

aloi 50000 27 3.02
forest 175800 158 0.87

Table 4.1: Dataset properties where N is the number of examples, D is the number of
features, and θ is the percentage of anomalies

4.4 Evaluation Metrics

Measures of anomaly detection are more nuanced than the familiar categorical classification

notion of accuracy. For example, in cases where anomalies are exceedingly rare, a method

that always identifies examples to be normal with a simple binary, may superficially achieve

a higher accuracy. Though there is the final distinction between normal and anomalous

classes, most detection methods output a continuous anomaly score. A score is often more

useful because of the often ambiguous distinction between normal and anomalous examples

as described in Chapter 1 [41, 72].

The anomaly scores for the anomalous and normal examples will produce two (typically

overlapping) distributions as seen in Figure 4.1. In order to make a final distinction to sep-

arate the classes and identify anomalous examples, a threshold must be set. Without access

to labeled data, this is non-trivial and naive choices can lead to superficial classification.

A very low threshold might be successful in identifying every anomaly in a dataset, but if

4.4. Evaluation Metrics 65

6 8 10 12 14 16
Anomaly Score

0

10

20

30

40

50

C
ou

nt
s

Threshold
Normal
Anomalous

Figure 4.1: Histogram of anomaly scores. Orange indicates scores of anomalous examples,
while blue represents normal ones. The red vertical line indicates a specified threshold for
classification

it is at the cost of misidentifying a large number of normal examples as anomalous it is

of little practical use. A normal example above the threshold is considered a false positive

(FP), whereas an anomaly below the threshold is a false negative (FN). Similarly, a true

positive (TP) is a correctly identified anomaly above the threshold and a true negative TN

is a correctly classified normal example below the threshold.

From this we can define a true positive rate

TPR =
TP

TP + FN , (4.24)

and a false positive rate,

FPR =
FP

FP + TN (4.25)

and examine the interplay. TP and TN indicate the number of true positives and true

66 Chapter 4. Experimental Methods

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC AUC: 0.875
Threshold

Figure 4.2: A ROC curve corresponding to the anomaly score histogram if 4.1. Each thresh-
old generates a corresponding FPR and TPR. The green dashed-horizontal line indicates
perfect detection, while the black-dashed angled line indicates random scoring. The shaded-
blue AUC summarizes the ROC curve.

negatives respectively. The TPR is also known as sensitivity or recall and FPR is equal to

one minus the specificity. For anomaly detection, it is desirable to establish a threshold that

guarantees a high true positive rate at a low false positive rate [72].

Each anomaly score that a method produces can be thought of as a potential threshold,

with a corresponding TPR and FPR. The pairs of TPR and FPR can be compared even

when the actual anomaly scores and thresholds for different methods exist on very different

scales. There is an obvious trade-off between TPR and FPR for most cases where the two

distributions cannot be perfectly separated. Increasing the threshold, decreases the FPR, but

also decreases the TPR, while decreasing the threshold has the opposite effect. A Receiver

Operating Characteristic (ROC) curve plots the TPR versus FPR pairs for each threshold

so that the number of points on the ROC curve is equal to the number of examples. Figure

4.2 illustrates the ROC curve from the sample distribution in Figure 4.1.

4.4. Evaluation Metrics 67

The shaded region in Figure 4.2 represents the Area Under the ROC curve (AUC or AU-

ROC), which provides a threshold-independent performance evaluation for comparing anomaly

detection methods [23]. In the unsupervised setting, AUC is most usefully interpreted as

the expectation that a randomly drawn anomalous example will be scored higher than a

randomly drawn normal example [29]. A method that randomly produces scores will gener-

ate thresholds with equal TPR and FPRs. A perfect method will produce a 100% TPR at

0% FPR. Consequently, AUCs for methods will range between 0.5 (random scoring) and 1.0

(perfect detection). The black dashed line in Figure 4.2 corresponds to an AUC of 0.5; the

green dashed line represents an AUC of 1.0.

In addition the AUC, the FPR at 95% TPR (FPR@95%), the mean run time, and the average

precision (AP) are also reported. FPR@95% is the expectation that an anomalous (positive)

example is misclassified as a normal (negative) example when the threshold is selected at a

TPR as high as 95% [41]. AP is the TPR-weighted mean of the precision at each threshold:

AP =
∑
n

(TPRn − TPRn−1)Pn (4.26)

where n indicates a threshold and precision (P) is defined as

P =
TP

TP + FP . (4.27)

Precision can be understood as the rate of correctly identify anomalies given a number of

anomaly predictions. The weighting rewards correct anomaly identifications at thresholds

where fewer are identified. The AP score can be more informative in the cases of very

imbalanced data because it removes the influence of correctly predicting a normal example

when normal examples are very abundant [59]. AP varies from 0-1, where 1 is closer to perfect

68 Chapter 4. Experimental Methods

detection. AP is a useful metric for cases like cancer detection capturing all anomalies is of

greater importance. Yet, AP does not reward correctly identifying the more abundant TN,

which is important in domains such as remote sensing and surveillance.

Chapter 5

Results and Discussion

The purpose of this chapter is to present comparisons of both UE-KPCA (Section 3.1)

and MTS-AE (Section 3.2) and to their constituent methods as well as a broader evalu-

ation against the baseline techniques described in Section 4.1. Section 5.1 demonstrates

the effectiveness of the mini-batch σ tuning described by Algorithm 1 and the impact of

the parameters in Algorithm 2 on detection performance and efficiency. Next, Section 5.2

compares the impact of CES and PL as part of the overall MTS-AE detection. Following

these ablation studies, Section 5.3 compares the proposed methods to other popular baseline

algorithms.

5.1 Unsupervised Ensemble KPCA

5.1.1 Batch Sigma Tuning

Evangelista et al. suggested that maximizing the index of dispersion of the off-diagonal en-

tries of the kernel matrix serves as a reasonable unsupervised means of selecting the Gaussian

kernel bandwidth σ for OC-SVMs [27]. Algorithm 1 proposed in Section 3.1.4 of our reserach

suggests inverting this objective to serve as a loss function to be minimized by mini-batch

stochastic gradient descent and applying this σ tuning technique to KPCA.

First, the convergence of the mini-batched method is examined. The major drawback of

69

70 Chapter 5. Results and Discussion

Evangelista’s original formulation is the storage and multiple constructions of the full-rank

kernel matrix, K. The goal of the proposed method is to converge on the correct σ by

subsampling the data to form reduced-size approximations of K.

The goal is to test if: 1) the algorithm converges on a single value of σ and 2) what is the

smallest batch sampling size, Nb, that leads to reliable converges while supporting compu-

tational efficiency. Again, a batch size of Nb produces (Nb
2 − Nb) / 2 number off diagonal

entries used for calculating the loss function.

Two of the datasets were selected, shuttle and forest. A log-space grid search of ten batch

sizes between 1 and 1000 were tested across ten different runs. The computational time and

final converged σ are reported in Figure 5.1. The error bars indicate ± 1 standard deviation

across the 10 runs. Though a subsampling of Nb = 100 represents only 0.06 % of the total

number of examples in the forest dataset, the small sample appears to be more than sufficient

for reliable convergence. The shuttle dataset showed the same trend.

shuttle forest

101 102 103

Nb

0.00

0.02

0.04

0.06

0.08

0

50

100

150

200

Ti
m

e
(s

)

101 102 103

Nb

0.25

0.30

0.35

0.40

0.45

0.50

20

40

60

80

100

120

Ti
m

e
(s

)

Figure 5.1: A relatively small batch size of Nb = 100 results in a stable σ at low computational
time.

5.1. Unsupervised Ensemble KPCA 71

Next, it is appropriate to establish how closely the choice of σ that minimizes the loss function

(3.19) is to the ideal choice, σ∗, that would result in the highest AUC. For each tested σ, in a

log space grid of 50 values ranging from 1e−4 to 1, the AUC is calculated from the ROC curve

corresponding to the KPCA reconstruction errors for all points in the dataset (no ensemble).

Next, the loss function (3.19) is evaluated on randomly drawn batches using the same choices

of σ. Figure 5.2 shows the relationship between AUC and the loss on nine of the benchmark

datasets. The solid blue curve shows the variation in AUC (left axis), while the solid red

curve represents the value of the loss function (right axis). The red vertical line indicates

σ, which is the converged output of applying Algorithm 1. Because of sampling, this does

not always appear at the global minimum of the red loss curve. The σ corresponding to

the maximum AUC is shown by a blue vertical line. The figure illustrates that AUC is very

sensitive to σ, and the loss function is strongly convex. While an ideal objective function

would produce overlapping red and blue vertical lines, σ is near the σ∗ that maximizes the

AUC on across a wide variety of datasets, indicating a good generalization.

5.1.2 Ensemble Parameters

Algorithm 2 of Section 3.1.5 details how a simple ensemble of models based on sampled

data can be used to greatly improve the computational efficiency of KPCA. This sub-

section evaluates the impact of the skeleton sample size, Ns, and the number of models,

Nm, on both the AUC and run time. The goal is to maintain a high detection accu-

racy while keeping the computational time reasonably low. Nine sampling sizes are tested,

{Ns = 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, at a fixed model number of Nm = 100 over ten

random initializations on two different datasets, shuttle and forest. Again, anomaly scores

are calculated by averaging the reconstruction error of each example produced by all the

models in the ensemble.

72 Chapter 5. Results and Discussion

glass stamps b-cancer

10 4 10 3 10 2 10 1 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

10

20

30

40

50

60

70

Lo
ss

pen-global vowels letter

10 4 10 3 10 2 10 1 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100

0.2

0.4

0.6

0.8

AU
C

10

20

30

40

50

60

70

Lo
ss

waveform satellite pen-local

10 4 10 3 10 2 10 1 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100

0.2

0.4

0.6

0.8

1.0

AU
C

10

20

30

40

50

60

70

Lo
ss

10 4 10 3 10 2 10 1 100

0.2

0.4

0.6

0.8

1.0

AU
C

10

20

30

40

50

60

70

Lo
ss

Figure 5.2: The value of the loss function (red) compared to AUC (blue) across a grid search
of 50 σ choices for the Gaussian kernel on nine real datasets. The location of maximum AUC
and minimum loss are indicated by dashed vertical lines.

5.1. Unsupervised Ensemble KPCA 73

shuttle forest

101 102 103

Ns

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

AU
C

0

100

200

300

400

500

600

Ti
m

e
(s

)

101 102 103

Ns

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
C

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(s

)

Figure 5.3: Stable results are achieved with Ns = 256 ofr Nm = 100. Computational time
increases cubically with the size of the individual models in the ensemble.

Figure 5.3 shows that the AUC increases with larger sampling sizes, but the benefit quickly

diminishes when considering the sharp increase in run time. This rise is expected as the

eigendecomposition incurs a cubic complexity with the number of examples used in the

construction of the kernel matrix. Again, the error bars indicate ± 1 standard deviation.

The results show that a moderate size of Ns = 256 achieves near optimal performance at

a low computational cost. For forest this represents a very small portion of the data, each

skeleton is only a 0.15 % sampling.

Next, the impact of the number of models in the ensemble, Nm, is evaluated. The skeleton

size is held constant at Ns = 256. Twenty different choices of Nm, linearly spaced from 1 to

200, are tested on the same datasets using 10 different initializations. Figure 5.4 shows that

the impact on AUC is less significant than that of Ns and that run time increases linearly

as expected. Though even a single model can be used, the ensemble provides a higher AUC

with far less variance. The conservative choice of Nm = 100 is high enough to reduce the

74 Chapter 5. Results and Discussion

shuttle forest

0 25 50 75 100 125 150 175 200
Nm

0.980

0.982

0.984

0.986

0.988

0.990

AU
C

0

10

20

30

40

50

Ti
m

e
(s

)

0 25 50 75 100 125 150 175 200
Nm

0.910

0.915

0.920

0.925

0.930

0.935

AU
C

0

50

100

150

200

250

Ti
m

e
(s

)

Figure 5.4: Stable results are achieved with Nm = 100 ofr Ns = 256. Computational time
increases linearly with the number of models in the ensemble.

variation in AUC caused by the sampling, while not being overly taxing. These settings give

an expected cross over point at N ≈ 1200, where the ensemble method quickly becomes the

computationally favorable choice compared to the original version of KPCA that uses the

full kernel matrix.

Figure 5.5 shows the ROC curves of the runs on forest. The bold red line indicates the

ensemble’s result, as the thinner lines represent the individual models in the ensemble. The

green lines represent the 5 out of the 100 total models in the ensemble that resulted in

higher AUCs than the ensemble. Clearly, averaging the anomaly scores produces a higher

AUC than the average AUC of the individual models. Not only is the variance reduced, but

the detection is improved.

5.1. Unsupervised Ensemble KPCA 75

10 5 10 4 10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Ensemble
Single model

Figure 5.5: The individual results from the models in an ensemble on the Forest dataset.
Only 5 out of the 100 individual models outperformed the ensemble average.

5.1.3 Comparisons with KPCA, KDE, and Linear PCA

UE-KPCA is first compared to the most similar methods: standard KPCA, which uses a

single full kernel matrix, KDE, and linear PCA. Again, KDE is equivalent to KPCA if no

principal components are retained. Table 5.1 displays the AUC. For UE-KPCA, which is

non-deterministic, the reported value is the mean of 10 initializations. Later results show

the variation is very small. The results show that UE-KPCA generally outperforms or

matches KPCA. The Linear PCA results clearly demonstrate the effectiveness of the non-

linear transformation provided by the kernel method. The generally worse performance of

KDE shows that the principal components better model trends in the data.

76 Chapter 5. Results and Discussion

dataset UE-KPCA KPCA KDE PCA
glass 0.870 0.870 0.851 0.627

stamps 0.948 0.950 0.950 0.207
b-cancer 0.980 0.974 0.960 0.263

pen-global 0.977 0.991 0.973 0.574
stop-sign 0.953 0.948 0.952 0.606

speed-sign 0.812 0.819 0.797 0.551
vowels 0.955 0.954 0.902 0.581
letter 0.907 0.909 0.919 0.432

waveform 0.778 0.812 0.760 0.525
satellite 0.973 0.973 0.963 0.626
pen-local 0.953 0.940 0.927 0.770
shuttle 0.989 n/a n/a 0.510

aloi 0.618 n/a n/a 0.524
forest 0.935 n/a n/a 0.637

Table 5.1: AUC results for an ablation study on UE-KPCA

5.2 Modified Training and Scoring

The goal of MTS is to avoid the loss in detection performance caused by an autoencoder

overgeneralizing the anomalies present in the training data. This section provides a compar-

ison between MTS and standard, MSE based training. Figure 5.6 illustrates the separate

roles of the two components of MTS, PL and CES, on the stop-sign and speed-sign. Even

though the architecture and hyperparameters are the same in both runs, and the datasets

are similar in both normal and anomalous data; the best stopping epoch is very different.

This implies that any attempt to set a rule-of-thumb to end training may fail to generalize

to even very similar cases. Also problematic, in both datasets the scores for anomalies invert

early into standard MSE training, so that anomalies are ranked below normal examples.

As this behavior is not seen on smaller capacity architectures, it is likely the result of the

AE memorizing anomalous examples based on their earlier high losses, which contributed

disproportionately to the gradient. The capacity of the network, relative to the number of

5.2. Modified Training and Scoring 77

examples, allows the reconstruction errors of the all the examples to become exceedingly

small, which also explains the flat CES curves.

stop-sign speed-sign

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

CES + PL
PL
CES
Standard

0 20 40 60 80 100
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

CES + PL
PL
CES
Standard

Figure 5.6: The seperate and combined effects of PL and CES

PL prevents this sharp drop in AUC by acting to exclude anomalous examples from the

calculation of the loss. Figure 5.7 demonstrates how standard MSE training leads to the

undesirable reconstructions of anomalies after only 50 epochs, while PL is able to frustrate the

network from learning anomalies while still allowing normal examples to be reconstructed.

However, Figure 5.6 shows that even with PL, overtime enough anomalies will fall below

the threshold and contribute to parameter updates. Separately, CES alone provides a buffer

from the erratic epoch-to-epoch performance of the standard MSE training, but also leads to

a slow decline as anomalies are no longer reliably have higher reconstruction errors. Nearly

optimal performance is achieved by applying both PL and CES and using knee detection to

end training early. In the case of speed-sign a small amount of performance is sacrificed, but

the detection AUC is very consistent across a large number of epochs.

78 Chapter 5. Results and Discussion

Ground Truth MSE Recon. PL Recon.

Normal

Anomaly

Normal

Anomaly

Figure 5.7: After only 50 epochs the anomaly is reconstructed under the standard MSE
objective. With PL, the AE does not reconstruct the anomalous example.

As discussed in Section 4.2, providing a fair comparison between MTS and standard MSE

training is difficult in the unsupervised setting. In practice, different domains are likely to

employ specific architectures and perform fine tuning on a small number of labeled anomalies

are artificially generated ones. The best architectures and hyperparameter settings are likely

to vary depending on the task. However, this evaluation attempts to draw some conclusions

5.3. Comparison with Baseline Algorithms 79

based on a shared set of conditions. The same architectures and hyperparameters are used

for both. As the best stopping point often occurs between 10 and 100 training epochs,

standard MES was randomly stopped at one of those points. Each method was run with

ten different initializations. Table 5.2 shows the results of the comparison. In every dataset

but glass, MTS shows an equal, or better performance than standard AE training with a far

lower variation in AUC.

dataset MTS-AE MSE-AE
glass 0.648 ± 0.013 0.674 ± 0.062

stamps 0.875 ± 0.018 0.831 ± 0.088
b-cancer 0.984 ± 0.009 0.951 ± 0.066

pen-global 0.977 ± 0.008 0.939 ± 0.015
stop-sign 0.957 ± 0.003 0.275 ± 0.307

speed-sign 0.860 ± 0.007 0.423 ± 0.249
vowels 0.872 ± 0.036 0.872 ± 0.086
letter 0.843 ± 0.012 0.808 ± 0.047

waveform 0.523 ± 0.025 0.523 ± 0.059
satellite 0.954 ± 0.004 0.885 ± 0.023
pen-local 0.846 ± 0.025 0.839 ± 0.107
shuttle 0.993 ± 0.000 0.992 ± 0.002

aloi 0.558 ± 0.003 0.553 ± 0.008
forest 0.921 ± 0.001 0.889 ± 0.022

Table 5.2: AUC

5.3 Comparison with Baseline Algorithms

In this section the two proposed methods, UE-KPCA and the MTS-AE, are compared against

six popular baselines used in unsupervised anomaly detection across fourteen benchmark

datasets. Each baseline is intended to demonstrate a different approach to anomaly de-

tection. The mean AUC and standard deviation for each method and dataset is reported

in Table 4.1. Following Goldstein et al. [32], the results represent ten runs with varying

80 Chapter 5. Results and Discussion

parameter settings as described in Section 4.2. Again, the purpose is to represent a random-

parameter-selection strategy within the given reasonable interval, which is often used in

practice when labels are unavailable. For MD, which does not require any parameters, only

one value of AUC is available. For the three largest datasets, only the linear time methods

are reported for a narrower comparison.

dataset UE-KPCA MTS-AE kth-NN LOF uCBLOF OC-SVM iForest MD
glass 0.870 0.649 0.804 0.784 0.761 0.849 0.700 0.584

± 0.000 ± 0.013 ± 0.038 ± 0.029 ± 0.038 ± 0.028 ± 0.016 -
stamps 0.948 0.875 0.922 0.862 0.903 0.901 0.909 0.896

± 0.001 ± 0.018 ± 0.001 ± 0.034 ± 0.053 ± 0.093 ± 0.008 -
b-cancer 0.980 0.985 0.952 0.983 0.980 0.980 0.982 0.954

± 0.002 ± 0.009 ± 0.019 ± 0.006 ± 0.004 ± 0.003 ± 0.002 -
pen-global 0.984 0.977 0.977 0.837 0.918 0.952 0.922 0.930

± 0.001 ± 0.008 ± 0.015 ± 0.082 ± 0.035 ± 0.042 ± 0.010 -
stop-sign 0.954 0.957 0.892 0.913 0.914 0.562 0.886 0.516

± 0.009 ± 0.003 ± 0.023 ± 0.009 ± 0.021 ± 0.089 ± 0.009 -
speed-sign 0.822 0.863 0.669 0.857 0.720 0.577 0.688 0.500

± 0.009 ± 0.007 ± 0.022 ± 0.019 ± 0.021 ± 0.097 ± 0.016 -
vowels 0.955 0.872 0.954 0.941 0.932 0.923 0.754 0.912

± 0.000 ± 0.036 ± 0.008 ± 0.004 ± 0.023 ± 0.017 ± 0.031 -
letter 0.907 0.844 0.839 0.875 0.818 0.687 0.635 0.804

± 0.004 ± 0.012 ± 0.023 ± 0.026 ± 0.019 ± 0.193 ± 0.018 -
waveform 0.778 0.523 0.749 0.735 0.737 0.720 0.730 0.574

± 0.002 ± 0.026 ± 0.002 ± 0.006 ± 0.021 ± 0.015 ± 0.022 -
satellite 0.973 0.953 0.973 0.815 0.966 0.964 0.947 0.914

± 0.000 ± 0.004 ± 0.001 ± 0.110 ± 0.003 ± 0.002 ± 0.003 -
pen-local 0.953 0.846 0.976 0.987 0.938 0.953 0.757 0.771

± 0.001 ± 0.025 ± 0.007 ± 0.002 ± 0.021 ± 0.013 ± 0.026 -
shuttle 0.989 0.993 n/a n/a 0.859 n/a 0.997 0.856

± 0.001 ± 0.000 n/a n/a ± 0.163 n/a ± 0.001 -
aloi 0.618 0.558 n/a n/a 0.556 n/a 0.539 0.521

± 0.002 ± 0.003 n/a n/a ± 0.005 n/a ± 0.004 -
forest 0.935 0.921 n/a n/a 0.908 n/a 0.859 0.906

± 0.000 ± 0.001 n/a n/a ± 0.018 n/a ± 0.012 -

Table 5.3: The AUC under the ROC and std. deviation for each method across all baseline
datasets. Higher scores are better. Bold indicates the best performing method, while Italics
indicates the second best performing method

UE-KPCA achieved a high AUC with very low variance across a number of datasets, repre-

senting the best or second best method in all but three of the datasets: cancer, pen-local, and

shuttle. Notably, UE-KPCA outperformed or tied the most popular kernel-based anomaly

5.3. Comparison with Baseline Algorithms 81

method, the OC-SVM, on every benchmark. The OC-SVM showed a strong sensitivity to ν,

which made it less reliable. The OC-SVM also performed very poorly on the high-dimensional

sign datasets across all parameter settings.

The MTS-AE was less consistent, but performed well on several datasets, particularly those

that had a large number of features such as forest, stop-sign, and speed-sign. The MTS-AE

generally performed better than iForest, the most commonly used baseline on very high

dimensional data. The results show the promise of deep methods in combating the curse-

of-dimensionality. Figure 5.8 shows the full ROC curves for the two sign datasets. The

shaded region indicates ± 1 standard deviation. The MTS-AE is able to capture far more

anomalies at a low FPR. UE-KPCA is able to capture more of the anomalies at a higher

FPR, a characteristic shown across a number of the datasets. The full ROC curves for each

dataset are presented in Appendix A.

stop-sign speed-sign

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

10 3 10 2 10 1 100

FPR

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.626±0.0]
iForest [AUC:0.688±0.017]
OC-SVM [AUC:0.577±0.124]
uCBLOF [AUC:0.72±0.021]
LOF [AUC:0.857±0.033]
Kth-NN [AUC:0.669±0.022]
MTS-AE [AUC:0.863±0.005]
UE-KPCA [AUC:0.822±0.011]

Figure 5.8: ROC Curves comparing different methods on the stop-sign and speed-sign
datasets

Figure 5.9 shows the most normal and most anomalous examples from the two sign datasets

82 Chapter 5. Results and Discussion

as ranked by the MTS-AE. A red border indicates a ground truth anomaly label and a

green border indicates a normal label. Almost all the examples with the highest anomaly

scores are labeled anomalies. The method can identify many different types of anomalies:

incorrect cropping, graffiti present, partial obstruction, heavy motion blur, and irregular

lighting. Some false positives among the speed limit signs display text rotation or strong

highlights. Again, what constitutes an anomaly is difficult to define as there is a subjective

element.
lowest scores highest scores

Figure 5.9: Rankings produces by the MTS-AE on the stop-sign and speed-sign datasets.
Anomaly scores in each grid increase form left to right and from top to bottom. A red
boundary indicates an anomaly, while a green boundary indicates a normal example.

Table 5.4 and Table 5.5 report the mean FPR@95% and AP respectively. A low FPR@95%

5.3. Comparison with Baseline Algorithms 83

and high AP are desirable. The results generally follow the same trends as reflected by the

AUC score. Table 5.6 shows the average run time of each method. Both UE-KPCA and

MTS-AE hare less efficient when the number of examples are low, but as the dimensionality

and cardinality increase, both become more favorable. UE-KPCA is also well suited for par-

allelization, as each model and evaluation in the ensemble can be calculated independently.

Though, MD has unquestionably the fastest run-time, the assumption of linearly-correlated

features leads to very poor detection performance on a number of datasets.

dataset UE-KPCA MTS-AE kth-NN LOF uCBLOF OC-SVM iForest MD
glass 0.214 0.698 0.303 0.537 0.703 0.381 0.503 0.869

stamps 0.618 0.740 0.840 0.692 0.844 0.900 0.852 0.961
b-cancer 0.070 0.070 0.185 0.048 0.070 0.062 0.070 0.143

pen-global 0.057 0.111 0.103 0.608 0.515 0.253 0.206 0.220
stop-sign 0.107 0.269 0.550 0.362 0.415 0.900 0.395 0.936

speed-sign 0.618 0.740 0.840 0.692 0.844 0.900 0.852 0.961
vowels 0.110 0.592 0.137 0.202 0.257 0.280 0.713 0.459
letter 0.269 0.426 0.530 0.472 0.536 0.845 0.788 0.665

waveform 0.682 0.928 0.733 0.725 0.766 0.774 0.647 0.879
satellite 0.106 0.250 0.136 0.875 0.142 0.135 0.336 0.433
pen-local 0.180 0.314 0.092 0.055 0.147 0.187 0.479 0.540
shuttle 0.018 0.010 n/a n/a 0.912 n/a 0.000 0.587

aloi 0.928 0.915 n/a n/a 0.931 n/a 0.9306 0.935
forest 0.445 0.447 n/a n/a 0.420 n/a 0.442 0.463

Table 5.4: The FPR at 95% TPR (FPR@95%) for each method across all baseline datasets.
Lower scores are better. Bold indicates the best performing method.

84 Chapter 5. Results and Discussion

dataset UE-KPCA MTS-AE kth-NN LOF uCBLOF OC-SVM iForest MD
glass 0.202 0.081 0.11 0.136 0.142 0.189 0.104 0.080

stamps 0.196 0.150 0.156 0.234 0.149 0.176 0.124 0.134
b-cancer 0.677 0.778 0.624 0.720 0.683 0.643 0.665 0.430

pen-global 0.861 0.846 0.851 0.504 0.815 0.758 0.605 0.558
stop-sign 0.409 0.811 0.4619 0.510 0.402 0.136 0.228 0.068

speed-sign 0.181 0.486 0.177 0.239 0.146 0.065 0.137 0.034
vowels 0.455 0.170 0.449 0.362 0.438 0.412 0.158 0.361
letter 0.324 0.210 0.238 0.431 0.230 0.216 0.092 0.226

waveform 0.109 0.035 0.138 0.097 0.173 0.067 0.058 0.036
satellite 0.469 0.595 0.601 0.222 0.601 0.548 0.641 0.379
pen-local 0.039 0.004 0.061 0.107 0.015 0.044 0.003 0.004
shuttle 0.430 0.606 n/a n/a 0.495 n/a 0.978 0.193

aloi 0.082 0.038 n/a n/a 0.046 n/a 0.033 0.037
forest 0.404 0.379 n/a n/a 0.087 n/a 0.039 0.153

Table 5.5: The Average Precision (AP) for each method across all baseline datasets. Higher
scores are better. Bold indicates the best performing method.

dataset UE-KPCA MTS-AE kth-NN LOF uCBLOF OC-SVM iForest MD
glass 0.925 33.7 0.002 0.002 0.069 0.002 0.101 0.001

stamps 0.963 94.2 0.003 0.003 0.075 0.003 0.114 0.001
b-cancer 0.951 172 0.003 0.003 0.165 0.006 0.125 0.001

pen-global 1.145 105 0.015 0.015 0.203 0.018 0.147 0.001
stop-sign 2.83 120. 3.31 3.44 5.04 4.83 1.98 0.545

speed-sign 3.65 286 8.16 8.54 8.07 11.2 3.35 0.645
vowels 1.63 74.9 0.033 0.034 0.256 0.049 0.167 0.001
letter 1.97 150. 0.097 0.097 0.274 0.175 0.194 0.001

waveform 2.62 76.7 0.361 0.362 0.580 0.377 0.267 0.001
satellite 3.82 91.8 0.660 0.660 0.904 1.18 0.446 0.004
pen-local 5.33 113 0.422 0.424 0.966 1.32 0.429 0.003

aloi 40.2 508 n/a n/a 15.0 n/a 4.08 0.034
shuttle 28.8 35.0 n/a n/a 3.53 n/a 2.42 0.012
forest 184 139 n/a n/a 151 n/a 70.3 0.891

Table 5.6: The run time for each method in seconds.

Chapter 6

Conclusions

The goal of unsupervised anomaly detection methods is to identify abnormal examples with-

out the use of labels based only on the intrinsic properties of the data. Unsupervised anomaly

detection is critical in areas where labeled data is difficult to obtain, or the pattern of normal

and anomalous data changes unpredictably. Our research introduces two novel techniques,

Unsupervised Ensemble Kernal Principal Analysis (UE-KPCA) and the Modified Training

and Scoring Autoencoder (MTS-AE), that better adapt existing anomaly detection methods

to the unsupervised framework.

UE-KPCA features two adaptations to standard KPCA. First, mini-batch sigma tuning

allows for a near optimal choice of the Gaussian Kernel parameter, σ, without the use labeled

data. Evangelista et al. showed that a maximally disperse kernel matrix showed good results

for OC-SVMs [27]. Our research shows that the same holds true for KPCA, and uses the

inverse, index-of-dispersion as a loss function in order to tune the σ parameter using mini-

batch stochastic gradient descent, greatly reducing the computational time required.

Secondly, skeleton ensembles eliminate the cubic training complexity of KPCA. In standard

KPCA, an eigendecomposition of the full kernel matrix is required. This is avoided by itera-

tive sampling of the dataset to form a number of much smaller kernel matrices. Projections

onto the eigenvectors of these much smaller kernel matrices approximate those of the full

evaluation. As with standard KPCA, the reconstruction error in feature space serves as

the anomaly scores [43]. By averaging the anomaly scores over the ensemble, UE-KPCA

85

86 Chapter 6. Conclusions

reliably approaches or exceeds the detection performance of KPCA while drastically reduc-

ing the run time on large datasets. Ultimately UE-KPCA, is able to detect anomalies in

data with highly non-linear distributions and our empirical evaluation shows that UE-kPCA

generally outperforms k-NN, LOF, uCBLOF, iForest, MD, and OC-SVMs.

The other method outlined in this thesis, the MTS-AE, addresses a problem of conventional

autoencoders (AE) used for unsupervised anomaly detection. When AEs are trained with

anomalies present in the data, the networks are prone to overgeneralize and learn to recon-

struct the anomalies as well as normal examples. This reduces the ability of AEs to identify

abnormal data when using reconstruction error as an anomaly score. To address this short-

coming, the MTS-AE incorporates several novel methods, namely cumulative error scoring

(CES), percentile loss (PL), and early stopping via knee detection. CES leverages the history

of training errors to better separate anomalous and background points. PL diminishes the

influence of anomalies on parameter updates, undermining the ability of AEs to generalize

anomalous examples. Lastly, the smooth cumulative loss statistic provides a reliable means

of early stopping. The results show a general improvement over the conventional AE as well

as a significant increase in performance over other baseline algorithms on high dimensional

benchmark datasets.

6.1 Future Work

There are several directions for future work. The framework of UE-KPCA can be potentially

used to find anomalies in streaming data. The mini-batch σ tuning presented can be easily

trained online with new data to update the parameter. Moreover, the individual models in

UE-KPCA can be swapped out over time to evolve the ensemble to a changing pattern of

data.

6.1. Future Work 87

Other future work aims to reliably select other sensitive parameters for AEs and KPCA.

For instance in KPCA, the selection of the number of M , still relies on heuristics that may

not generalize to all use cases. Another potential shortcoming, sensitivity to extreme global

outliers, is a known feature in both linear PCA and KPCA [28, 65]; however, no robust

versions of KPCA were used in this analysis. Another possible direction is to combine UE-

KPCA with the feature extraction abilities of deep learning models, as others have done

with similar traditional methods such as the OC-SVM [5].

Similarly, the AE architectures and hyperparameters are difficult to justify in the fully

unsupervised case. There is no consensus on how to reliably set these with validation data.

Additionally, the presented version of the MTS-AE does not yield a final trained model that

can be applied to unseen new data. Instead, MTS-AE can only be applied to identifying

anomalies as part of a full dataset during the act of training. One possible, but costly solution

is to retain a history of the previously trained models. Incorporating the training history

into a single model instance, perhaps through the use of distillation [42], is an interesting

idea for future exploration.

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-

jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software avail-

able from tensorflow.org.

[2] Charu C. Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier

ensembles. SIGKDD Explor. Newsl., 17(1):24–47, September 2015. ISSN 1931-0145.

doi: 10.1145/2830544.2830549. URL https://doi.org/10.1145/2830544.2830549.

[3] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising

behavior of distance metrics in high dimensional space. In Jan Van den Bussche

and Victor Vianu, editors, Database Theory — ICDT 2001, pages 420–434, Berlin,

Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-44503-6.

[4] Mennatallah Amer and Markus Goldstein. Nearest-neighbor and clustering based

anomaly detection algorithms for rapidminer. 08 2012. doi: 10.5455/ijavms.141.

[5] Jerone Andrews, Edward Morton, and Lewis Griffin. Detecting anomalous data using

88

https://www.tensorflow.org/
https://doi.org/10.1145/2830544.2830549

BIBLIOGRAPHY 89

auto-encoders. International Journal of Machine Learning and Computing, 6:21, 01

2016.

[6] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina. Exploiting manifold geometry

in hyperspectral imagery. IEEE Trans. on Geoscience and Remote Sensing, 43(3):

441–454, 2005.

[7] Laura Beggel, Michael Pfeiffer, and Bernd Bischl. Robust anomaly detection in images

using adversarial autoencoders. 01 2019.

[8] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet.

Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering.

In Advances in Neural Information Processing Systems, volume 16. The MIT Press,

Cambridge, MA, USA, 2004.

[9] A. Bounsiar and M. G. Madden. One-class support vector machines revisited. In

2014 International Conference on Information Science Applications (ICISA), pages

1–4, May 2014. doi: 10.1109/ICISA.2014.6847442.

[10] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:

Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’00, page 93–104, New

York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132174. doi:

10.1145/342009.335388. URL https://doi.org/10.1145/342009.335388.

[11] A. Budynkov and S. Masolkin. The problem of choosing the kernel for one-class support

vector machines. Automation and Remote Control, 78:138–145, 01 2017. doi: 10.1134/

S0005117917010118.

[12] Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. G. B. Campello,

https://doi.org/10.1145/342009.335388

90 BIBLIOGRAPHY

Barbora Micenková, Erich Schubert, Ira Assent, and Michael E. Houle. On the eval-

uation of unsupervised outlier detection: measures, datasets, and an empirical study.

Data Mining and Knowledge Discovery, 30(4):891–927, Jul 2016. ISSN 1573-756X. doi:

10.1007/s10618-015-0444-8. URL https://doi.org/10.1007/s10618-015-0444-8.

[13] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection:

A survey. CoRR, abs/1901.03407, 2019. URL http://arxiv.org/abs/1901.03407.

[14] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Robust, deep

and inductive anomaly detection. CoRR, abs/1704.06743, 2017. URL http://arxiv.

org/abs/1704.06743.

[15] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly

detection using one-class neural networks. CoRR, abs/1802.06360, 2018. URL

http://arxiv.org/abs/1802.06360.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-

vey. ACM Comput. Surv., 41(3), July 2009. ISSN 0360-0300. doi: 10.1145/1541880.

1541882. URL https://doi.org/10.1145/1541880.1541882.

[17] O. Chapelle. Training a support vector machine in the primal. Neural Computation,

19(5):1155–1178, May 2007. ISSN 0899-7667. doi: 10.1162/neco.2007.19.5.1155.

[18] François Chollet et al. Keras. https://keras.io, 2015.

[19] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational

Harmonic Analysis, 21(1):5 – 30, 2006. ISSN 1063-5203. doi: https://doi.org/10.

1016/j.acha.2006.04.006. URL http://www.sciencedirect.com/science/article/

pii/S1063520306000546. Special Issue: Diffusion Maps and Wavelets.

https://doi.org/10.1007/s10618-015-0444-8
http://arxiv.org/abs/1901.03407
http://arxiv.org/abs/1704.06743
http://arxiv.org/abs/1704.06743
http://arxiv.org/abs/1802.06360
https://doi.org/10.1145/1541880.1541882
https://keras.io
http://www.sciencedirect.com/science/article/pii/S1063520306000546
http://www.sciencedirect.com/science/article/pii/S1063520306000546

BIBLIOGRAPHY 91

[20] D. Cozzolino and L. Verdoliva. Single-image splicing localization through autoencoder-

based anomaly detection. In 2016 IEEE International Workshop on Information Foren-

sics and Security (WIFS), pages 1–6, Dec 2016. doi: 10.1109/WIFS.2016.7823921.

[21] Tal Daniel, Thanard Kurutach, and Aviv Tamar. Deep variational semi-supervised

novelty detection, 2019.

[22] Dario D’Avino, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Autoencoder

with recurrent neural networks for video forgery detection. CoRR, abs/1708.08754,

2017. URL http://arxiv.org/abs/1708.08754.

[23] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc

curves. In Proceedings of the 23rd International Conference on Machine Learn-

ing, ICML ’06, page 233–240, New York, NY, USA, 2006. Association for Comput-

ing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143874. URL https:

//doi.org/10.1145/1143844.1143874.

[24] Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and

Sachin Vernekar. Improving reconstruction autoencoder out-of-distribution detection

with mahalanobis distance, 12 2018.

[25] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

[26] G. Enderlein. Hawkins, d. m.: Identification of outliers. chapman and hall, london

– new york 1980, 188 s., £ 14, 50. Biometrical Journal, 29(2):198–198, 1987. doi:

10.1002/bimj.4710290215. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/bimj.4710290215.

[27] Paul Evangelista, M. Embrechts, and Boleslaw Szymanski. Some properties of the

http://arxiv.org/abs/1708.08754
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710290215
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710290215

92 BIBLIOGRAPHY

gaussian kernel for one class learning. pages 269–278, 09 2007. doi: 10.1007/

978-3-540-74690-4_28.

[28] Jicong Fan and Tommy W. S. Chow. Exactly robust kernel principal component

analysis. CoRR, abs/1802.10558, 2018. URL http://arxiv.org/abs/1802.10558.

[29] Tom Fawcett. Introduction to roc analysis. Pattern Recognition Letters, 27:861–874,

06 2006. doi: 10.1016/j.patrec.2005.10.010.

[30] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast

unsupervised anomaly detection algorithm. 09 2012.

[31] Markus Goldstein and Seiichi Uchida. Behavior analysis using unsupervised anomaly

detection. 2014.

[32] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsuper-

vised anomaly detection algorithms for multivariate data. PLoS ONE, Apr 2016.

URL https://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0152173.

[33] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha

Venkatesh, and Anton van den Hengel. Memorizing normality to detect anomaly:

Memory-augmented deep autoencoder for unsupervised anomaly detection. CoRR,

abs/1904.02639, 2019. URL http://arxiv.org/abs/1904.02639.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[35] J. Guo, G. Liu, Y. Zuo, and J. Wu. An anomaly detection framework based on

autoencoder and nearest neighbor. In 2018 15th International Conference on Service

http://arxiv.org/abs/1802.10558
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152173
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152173
http://arxiv.org/abs/1904.02639
http://www.deeplearningbook.org

BIBLIOGRAPHY 93

Systems and Service Management (ICSSSM), pages 1–6, July 2018. doi: 10.1109/

ICSSSM.2018.8464983.

[36] Simon Günter, Nicol Schraudolph, and S. Vishwanathan. Fast iterative kernel principal

component analysis. Journal of Machine Learning Research, 8:1893–1918, 08 2007.

[37] Fredrik Hallgren and P. Northrop. Incremental kernel pca and the nyström method.

01 2018.

[38] Sahand Hariri, Matias Carrasco Kind, and Robert J. Brunner. Extended isolation

forest. CoRR, abs/1811.02141, 2018. URL http://arxiv.org/abs/1811.02141.

[39] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and

Larry S. Davis. Learning temporal regularity in video sequences. CoRR,

abs/1604.04574, 2016. URL http://arxiv.org/abs/1604.04574.

[40] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster based local out-

liers. Pattern Recognition Letters, 24:1641–1650, 06 2003. doi: 10.1016/S0167-8655(03)

00003-5.

[41] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-

distribution examples in neural networks. Proceedings of International Conference on

Learning Representations, 2017.

[42] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network, 2015.

[43] Heiko Hoffmann. Kernel pca for novelty detection. Pattern Recognition, 40(3):863 –

874, 2007. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2006.07.009. URL

http://www.sciencedirect.com/science/article/pii/S0031320306003414.

http://arxiv.org/abs/1811.02141
http://arxiv.org/abs/1604.04574
http://www.sciencedirect.com/science/article/pii/S0031320306003414

94 BIBLIOGRAPHY

[44] Wen Jin, Anthony K. H. Tung, Jiawei Han, and Wei Wang. Ranking outliers us-

ing symmetric neighborhood relationship. In Wee-Keong Ng, Masaru Kitsuregawa,

Jianzhong Li, and Kuiyu Chang, editors, Advances in Knowledge Discovery and Data

Mining, pages 577–593, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN

978-3-540-33207-7.

[45] Ian Jolliffe. Principal Component Analysis, pages 1094–1096. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2. doi: 10.1007/

978-3-642-04898-2_455. URL https://doi.org/10.1007/978-3-642-04898-2_455.

[46] Fabian Keller, Emmanuel Muller, and Klemens Bohm. Hics: High contrast sub-

spaces for density-based outlier ranking. In Proceedings of the 2012 IEEE 28th In-

ternational Conference on Data Engineering, ICDE ’12, page 1037–1048, USA, 2012.

IEEE Computer Society. ISBN 9780769547473. doi: 10.1109/ICDE.2012.88. URL

https://doi.org/10.1109/ICDE.2012.88.

[47] Kwang Kim, Matthias Franz, and Bernhard Schölkopf. Iterative kernel principal com-

ponent analysis for image modeling. IEEE transactions on pattern analysis and ma-

chine intelligence, 27:1351–66, 10 2005. doi: 10.1109/TPAMI.2005.181.

[48] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection

in axis-parallel subspaces of high dimensional data. In Thanaruk Theeramunkong,

Boonserm Kijsirikul, Nick Cercone, and Tu-Bao Ho, editors, Advances in Knowledge

Discovery and Data Mining, pages 831–838, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg. ISBN 978-3-642-01307-2.

[49] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection

in axis-parallel subspaces of high dimensional data. In Thanaruk Theeramunkong,

Boonserm Kijsirikul, Nick Cercone, and Tu-Bao Ho, editors, Advances in Knowledge

https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1109/ICDE.2012.88

BIBLIOGRAPHY 95

Discovery and Data Mining, pages 831–838, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg. ISBN 978-3-642-01307-2.

[50] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Loop: Local

outlier probabilities. pages 1649–1652, 01 2009. doi: 10.1145/1645953.1646195.

[51] Roland Kwitt and Ulrich Hofmann. Unsupervised anomaly detection in network traffic

by means of robust pca. 2007 International Multi-Conference on Computing in the

Global Information Technology (ICCGI’07), pages 37–37, 2007.

[52] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang Suh, Ikkyun Kim, and Kuinam

Kim. A survey of deep learning-based network anomaly detection. Cluster Computing,

22, 01 2019. doi: 10.1007/s10586-017-1117-8.

[53] S. Lafon, Y. Keller, and R. R. Coifman. Data fusion and multicue data matching by

diffusion maps. IEEE Transactions on pattern analysis and machine intelligence, 28

(11):1784–1797, 2006.

[54] Christoph H. Lampert. Kernel methods in computer vision. Foundations and Trends®

in Computer Graphics and Vision, 4(3):193–285, 2009. ISSN 1572-2740. doi: 10.1561/

0600000027. URL http://dx.doi.org/10.1561/0600000027.

[55] Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition with-

out representation bias. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,

and Yair Weiss, editors, Computer Vision – ECCV 2018, pages 520–535, Cham, 2018.

Springer International Publishing. ISBN 978-3-030-01231-1.

[56] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings of the

2008 Eighth IEEE International Conference on Data Mining, ICDM ’08, pages 413–

http://dx.doi.org/10.1561/0600000027

96 BIBLIOGRAPHY

422, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3502-9.

doi: 10.1109/ICDM.2008.17. URL https://doi.org/10.1109/ICDM.2008.17.

[57] J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of

California Press. URL https://projecteuclid.org/euclid.bsmsp/1200512992.

[58] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Proceedings

of the National Institute of Sciences (Calcutta), 2:49–55, 1936.

[59] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, USA, 2008. ISBN 0521865719.

[60] Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi. A

survey on gans for anomaly detection. CoRR, abs/1906.11632, 2019. URL http:

//arxiv.org/abs/1906.11632.

[61] Kishan Mehrotra, Chilukuri Mohan, and HuaMing Huang. Clustering-Based Anomaly

Detection Approaches, pages 41–55. 10 2017. ISBN 978-3-319-67524-4. doi: 10.1007/

978-3-319-67526-8_4.

[62] R. T. Meinhold, C. C. Olson, and T. Doster. Kernel PCA for anomaly detection

in hyperspectral images using spectral-spatial fusion. In Miguel Velez-Reyes and

David W. Messinger, editors, Algorithms and Technologies for Multispectral, Hyper-

spectral, and Ultraspectral Imagery XXIV, volume 10644, pages 601 – 608. Interna-

tional Society for Optics and Photonics, SPIE, 2018. doi: 10.1117/12.2306359. URL

https://doi.org/10.1117/12.2306359.

https://doi.org/10.1109/ICDM.2008.17
https://projecteuclid.org/euclid.bsmsp/1200512992
http://arxiv.org/abs/1906.11632
http://arxiv.org/abs/1906.11632
https://doi.org/10.1117/12.2306359

BIBLIOGRAPHY 97

[63] Manpreet Singh Minhas and John S. Zelek. Anomaly detection in images. CoRR,

abs/1905.13147, 2019. URL http://arxiv.org/abs/1905.13147.

[64] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An en-

semble of autoencoders for online network intrusion detection. CoRR, abs/1802.09089,

2018. URL http://arxiv.org/abs/1802.09089.

[65] Minh Hoai Nguyen and Fernando De la Torre. Robust kernel principal component

analysis. In Advances in Neural Information Processing Systems. 2009.

[66] C. C. Olson and T Doster. A parametric study of unsupervised anomaly detection per-

formance in maritime imagery using manifold learning techniques. In SPIE Defense+

Security, pages 984016–984016. International Society for Optics and Photonics, 2016.

[67] C. C. Olson and T. Doster. A novel detection paradigm and its comparison to statistical

and kernel-based anomaly detection algorithms for hyperspectral imagery. In Proc.

CVPRW, pages 302–308. IEEE, 2017.

[68] C.C. Olson, K.P. Judd, and J.M. Nichols. Manifold learning techniques for un-

supervised anomaly detection. Expert Systems with Applications, 91:374 – 385,

2018. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2017.08.005. URL

http://www.sciencedirect.com/science/article/pii/S0957417417305328.

[69] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip Gibbons, and Christos Faloutsos.

Loci: Fast outlier detection using the local correlation integral. pages 315–326, 01

2003. doi: 10.1109/ICDE.2003.1260802.

[70] Zhimin Peng, Prudhvi Gurram, Heesung Kwon, and Wotao Yin. Sparse kernel learning-

based feature selection for anomaly detection. IEEE Transactions on Aerospace and

Electronic Systems, 51:1698–1716, 2015.

http://arxiv.org/abs/1905.13147
http://arxiv.org/abs/1802.09089
http://www.sciencedirect.com/science/article/pii/S0957417417305328

98 BIBLIOGRAPHY

[71] Mark Pijnenburg and Wojtek Kowalczyk. Extending an Anomaly Detection Benchmark

with Auto-encoders, Isolation Forests, and RBMs, pages 498–515. 10 2019. ISBN 978-

3-030-30274-0. doi: 10.1007/978-3-030-30275-7_39.

[72] Foster Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estima-

tion for comparing induction algorithms. Proceedings of the Fifteenth International

Conference on Machine Learning, 04 2001.

[73] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for

mining outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’00, page 427–438, New

York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132174. doi:

10.1145/342009.335437. URL https://doi.org/10.1145/342009.335437.

[74] Daniel Ramotsoela, Adnan Abu-Mahfouz, and Gerhard Hancke. A survey of anomaly

detection in industrial wireless sensor networks with critical water system infrastruc-

ture as a case study. Sensors, 2018:2491, 08 2018. doi: 10.3390/s18082491.

[75] Shebuti Rayana. Outlier detection datasets: ODDS, 2016. URL http://odds.cs.

stonybrook.edu.

[76] I. S. Reed and X. Yu. Adaptive multiple-band cfar detection of an optical pattern with

unknown spectral distribution. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 38(10):1760–1770, Oct 1990. ISSN 0096-3518. doi: 10.1109/29.60107.

[77] Manassés Ribeiro, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A study of

deep convolutional auto-encoders for anomaly detection in videos. Pattern Recog-

nition Letters, 105:13 – 22, 2018. ISSN 0167-8655. doi: https://doi.org/10.1016/j.

patrec.2017.07.016. URL http://www.sciencedirect.com/science/article/pii/

S0167865517302489. Machine Learning and Applications in Artificial Intelligence.

https://doi.org/10.1145/342009.335437
http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
http://www.sciencedirect.com/science/article/pii/S0167865517302489
http://www.sciencedirect.com/science/article/pii/S0167865517302489

BIBLIOGRAPHY 99

[78] Lee J. Rickard, Robert W. Basedow, Edward F. Zalewski, Peter R. Silverglate, and

Mark Landers. HYDICE: an airborne system for hyperspectral imaging. In Gregg Vane,

editor, Imaging Spectrometry of the Terrestrial Environment, volume 1937, pages 173

– 179. International Society for Optics and Photonics, SPIE, 1993. doi: 10.1117/12.

157055. URL https://doi.org/10.1117/12.157055.

[79] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function.

The Annals of Mathematical Statistics, 27(3):832–837, 1956. ISSN 00034851. URL

http://www.jstor.org/stable/2237390.

[80] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Sid-

diqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class clas-

sification. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th In-

ternational Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 4393–4402, Stockholmsmässan, Stockholm Sweden, 10–15

Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/ruff18a.html.

[81] Alaa Sagheer and Mostafa Kotb. Unsupervised pre-training of a deep lstm-based

stacked autoencoder for multivariate time series forecasting problems. Scientific Re-

ports, 9:19038, 12 2019. doi: 10.1038/s41598-019-55320-6.

[82] Anshuman Sahu, George Runger, and Daniel Apley. Image denoising with a multi-

phase kernel principal component approach and an ensemble version. pages 1–7, 10

2011. doi: 10.1109/AIPR.2011.6176339.

[83] Hamed Sarvari, Carlotta Domeniconi, Bardh Prenkaj, and Giovanni Stilo. Unsuper-

vised boosting-based autoencoder ensembles for outlier detection, 2019.

[84] Saket Sathe and Charu C. Aggarwal. Lodes: Local density meets spectral outlier

detection. In SDM, 2016.

https://doi.org/10.1117/12.157055
http://www.jstor.org/stable/2237390
http://proceedings.mlr.press/v80/ruff18a.html

100 BIBLIOGRAPHY

[85] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan. Finding a ”kneedle” in a haystack:

Detecting knee points in system behavior. In 2011 31st International Conference on

Distributed Computing Systems Workshops, pages 166–171, June 2011. doi: 10.1109/

ICDCSW.2011.20.

[86] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the support of a high-dimensional distribution.

Neural Comput., 13(7):1443–1471, July 2001. ISSN 0899-7667. doi: 10.1162/

089976601750264965. URL https://doi.org/10.1162/089976601750264965.

[87] B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10(5):1299–1319, July 1998. doi: 10.1162/

089976698300017467.

[88] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, USA, 2004. ISBN 0521813972.

[89] Vít Skvára, Tomás Pevný, and Václav Smídl. Are generative deep models for novelty

detection truly better? CoRR, abs/1807.05027, 2018. URL http://arxiv.org/abs/

1807.05027.

[90] Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance

level analysis of data complexity. Mach. Learn., 95(2):225–256, May 2014. ISSN

0885-6125. doi: 10.1007/s10994-013-5422-z. URL https://doi.org/10.1007/

s10994-013-5422-z.

[91] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German

Traffic Sign Recognition Benchmark: A multi-class classification competition. In IEEE

International Joint Conference on Neural Networks, pages 1453–1460, 2011.

https://doi.org/10.1162/089976601750264965
http://arxiv.org/abs/1807.05027
http://arxiv.org/abs/1807.05027
https://doi.org/10.1007/s10994-013-5422-z
https://doi.org/10.1007/s10994-013-5422-z

BIBLIOGRAPHY 101

[92] Jian Tang, Zhixiang Chen, Ada Wai-chee Fu, and David W. Cheung. Enhancing

effectiveness of outlier detections for low density patterns. In Ming-Syan Chen, Philip S.

Yu, and Bing Liu, editors, Advances in Knowledge Discovery and Data Mining, pages

535–548, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-47887-

4.

[93] David Tax and Robert Duin. Support vector data description. Machine Learning, 54:

45–66, 01 2004. doi: 10.1023/B:MACH.0000008084.60811.49.

[94] David M. J. Tax and Robert P. W. Duin. Support vector domain description. Pattern

Recognition Letters, 20:1191–1199, 1999.

[95] H. Wang, M. J. Bah, and M. Hammad. Progress in outlier detection techniques: A

survey. IEEE Access, 7:107964–108000, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.

2019.2932769.

[96] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann.

Backpropagation-friendly eigendecomposition. CoRR, abs/1906.09023, 2019. URL

http://arxiv.org/abs/1906.09023.

[97] Liang Xiong, Barnabás Póczos, and Jeff Schneider. Group anomaly detection using

flexible genre models. In Proceedings of the 24th International Conference on Neural

Information Processing Systems, NIPS’11, page 1071–1079, Red Hook, NY, USA, 2011.

Curran Associates Inc. ISBN 9781618395993.

[98] Xiaodan Xu, Huawen Liu, and Minghai Yao. Recent progress of anomaly detection.

Complexity, 2019:1–11, 01 2019. doi: 10.1155/2019/2686378.

[99] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved nyström low-rank approx-

imation and error analysis. In Proceedings of the 25th International Conference on

http://arxiv.org/abs/1906.09023

102 BIBLIOGRAPHY

Machine Learning, ICML ’08, page 1232–1239, New York, NY, USA, 2008. Associa-

tion for Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390311.

URL https://doi.org/10.1145/1390156.1390311.

[100] Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua. Spatio-

temporal autoencoder for video anomaly detection. In Proceedings of the 25th ACM

International Conference on Multimedia, MM ’17, page 1933–1941, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450349062. doi: 10.

1145/3123266.3123451. URL https://doi.org/10.1145/3123266.3123451.

[101] Yue Zhao and Maciej Hryniewicki. Xgbod: Improving supervised outlier detection

with unsupervised representation learning. pages 1–8, 07 2018. doi: 10.1109/IJCNN.

2018.8489605.

[102] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier

detection. Journal of Machine Learning Research, 20(96):1–7, 2019. URL http:

//jmlr.org/papers/v20/19-011.html.

[103] Alice Zheng and Amanda Casari. Feature Engineering for Machine Learning: Princi-

ples and Techniques for Data Scientists. O’Reilly Media, Inc., 1st edition, 2018. ISBN

1491953241.

[104] Xiangxin Zhu, Carl Vondrick, Charless C. Fowlkes, and Deva Ramanan. Do we need

more training data? CoRR, abs/1503.01508, 2015. URL http://arxiv.org/abs/

1503.01508.

[105] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised

outlier detection in high-dimensional numerical data. Statistical Analysis and Data

Mining: The ASA Data Science Journal, 5(5):363–387, 2012. doi: 10.1002/sam.11161.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11161.

https://doi.org/10.1145/1390156.1390311
https://doi.org/10.1145/3123266.3123451
http://jmlr.org/papers/v20/19-011.html
http://jmlr.org/papers/v20/19-011.html
http://arxiv.org/abs/1503.01508
http://arxiv.org/abs/1503.01508
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11161

BIBLIOGRAPHY 103

[106] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Dae ki Cho,

and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised

anomaly detection. In ICLR, 2018.

Appendices

104

Appendix A

ROC Curves

105

106 Appendix A. ROC Curves

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.584±0.0]
iForest [AUC:0.7±0.016]
OC-SVM [AUC:0.849±0.028]
uCBLOF [AUC:0.761±0.038]
LOF [AUC:0.784±0.029]
Kth-NN [AUC:0.804±0.038]
MTS-AE [AUC:0.649±0.013]
UE-KPCA [AUC:0.87±0.0]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.896±0.0]
iForest [AUC:0.909±0.008]
OC-SVM [AUC:0.901±0.093]
uCBLOF [AUC:0.903±0.053]
LOF [AUC:0.862±0.034]
Kth-NN [AUC:0.922±0.002]
MTS-AE [AUC:0.875±0.018]
UE-KPCA [AUC:0.948±0.001]

a) glass b) stamps

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.954±0.0]
iForest [AUC:0.982±0.002]
OC-SVM [AUC:0.98±0.003]
uCBLOF [AUC:0.98±0.004]
LOF [AUC:0.983±0.006]
Kth-NN [AUC:0.952±0.019]
MTS-AE [AUC:0.985±0.009]
UE-KPCA [AUC:0.98±0.002]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.93±0.0]
iForest [AUC:0.923±0.01]
OC-SVM [AUC:0.952±0.042]
uCBLOF [AUC:0.918±0.035]
LOF [AUC:0.837±0.082]
Kth-NN [AUC:0.977±0.015]
MTS-AE [AUC:0.977±0.008]
UE-KPCA [AUC:0.985±0.001]

c) b-cancer d) pen-global

107

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.912±0.0]
iForest [AUC:0.755±0.031]
OC-SVM [AUC:0.923±0.017]
uCBLOF [AUC:0.932±0.023]
LOF [AUC:0.941±0.004]
Kth-NN [AUC:0.954±0.008]
MTS-AE [AUC:0.872±0.036]
UE-KPCA [AUC:0.955±0.001]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.804±0.0]
iForest [AUC:0.635±0.018]
OC-SVM [AUC:0.687±0.193]
uCBLOF [AUC:0.818±0.019]
LOF [AUC:0.875±0.026]
Kth-NN [AUC:0.839±0.023]
MTS-AE [AUC:0.844±0.012]
UE-KPCA [AUC:0.907±0.005]

e) vowels f) letter

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.574±0.0]
iForest [AUC:0.73±0.022]
OC-SVM [AUC:0.72±0.015]
uCBLOF [AUC:0.737±0.021]
LOF [AUC:0.735±0.006]
Kth-NN [AUC:0.749±0.002]
MTS-AE [AUC:0.522±0.026]
UE-KPCA [AUC:0.778±0.002]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.914±0.0]
iForest [AUC:0.947±0.003]
OC-SVM [AUC:0.964±0.002]
uCBLOF [AUC:0.966±0.003]
LOF [AUC:0.815±0.11]
Kth-NN [AUC:0.973±0.001]
MTS-AE [AUC:0.953±0.004]
UE-KPCA [AUC:0.973±0.0]

g) waveform h) satellite

108 Appendix A. ROC Curves

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.771±0.0]
iForest [AUC:0.757±0.026]
OC-SVM [AUC:0.953±0.013]
uCBLOF [AUC:0.938±0.021]
LOF [AUC:0.987±0.002]
Kth-NN [AUC:0.976±0.007]
MTS-AE [AUC:0.846±0.025]
UE-KPCA [AUC:0.953±0.001]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.856±0.0]
iForest [AUC:0.997±0.001]
uCBLOF [AUC:0.86±0.163]
MTS-AE [AUC:0.993±0.0]
UE-KPCA [AUC:0.989±0.001]

i) pen-local j) shuttle

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.521±0.0]
iForest [AUC:0.539±0.004]
uCBLOF [AUC:0.556±0.005]
MTS-AE [AUC:0.558±0.003]
UE-KPCA [AUC:0.618±0.002]

10 3 10 2 10 1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

MD [AUC:0.906±0.0]
iForest [AUC:0.859±0.012]
uCBLOF [AUC:0.908±0.018]
MTS-AE [AUC:0.921±0.001]
UE-KPCA [AUC:0.935±0.0]

k) aloi l) forest

Figure A.1: ROC Curves showing the detection performance of each method. FPRs and
TPRs are interpolated to form an average curve. The shaded area indicates ± 1 std. devia-
tion.

Appendix B

Python Code

This appendix chapter provides the Python code for each of the proposed methods. Section

B.1 includes the code for the UE-KPCA and KPCA methods and Section B.1 provides the

code for the MTS-AE.

B.1 UE-KPCA Code

import numpy as np

from scipy.stats import pearsonr

import warnings

import keras.backend as kb

from tensorflow import keras

import tensorflow as tf

import gc

import numpy as np

from scipy.linalg import eigh

import warnings

tf.compat.v1.disable_eager_execution()

109

110 Appendix B. Python Code

class kPCA:

"""

author: nmerrill@vt.edu

Calculate the principle components in feature

space and return the reconstruction errors.

The implementation is based on Heiko Hoffman.

http://www.heikohoffmann.de/kpca.html

Parameters

kernel : string, optional (default='rbf')

Specifies the kernel type to be used in the algorithm.

It must be one of 'poly' or 'rbf'

If none is given, 'rbf' will be used.

sigma : float, optional (default=1)

Kernel coefficient for 'rbf'

order : int, optional (default=3)

Kernel degree for 'poly'

q : int, optional (default='same')

number of retained eigenvectors (alphas)

for the reconstruction error

B.1. UE-KPCA Code 111

If q is 'auto' then n_features

will be used instead. For a 'linear

kernel this will result in zero reconstruction error

sample_pct : float, optional (default: 1.0)

What percentage of the data to use

to determine the principle components

block_size : int, optional (default: 500)

The number of examples per batch during testing

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold

on the decision function.

verbose : bool, (default: False)

Prints out runtime and feedback

Attributes

model_X_S : numpy array of shape (n_sub,d_features)

112 Appendix B. Python Code

sample of X used for calulating alphas, typically

the full sample is used so that X_S = X.

Sampling set by sample_pct

model_K_mat : numpy array of shape (n_sub,sub)

uncentered gram matrix after training

model_alphas : numpy array of shape (n_samples, q)

retained eigen values after training

decision_scores_ : numpy array of shape (n_samples,)

The outlier scores of the training data.

The higher, the more abnormal.

Outliers tend to have higher scores.

This value is available once the detector is fitted.

threshold_ : float

The threshold is based on ``contamination``. It is the

``n_samples * contamination`` most abnormal samples in

``decision_scores_``. The threshold is calculated for generating

binary outlier labels.

labels_ : int, either 0 or 1

The binary labels of the training data. 0 stands for inliers

and 1 for outliers/anomalies. It is generated by applying

``threshold_`` on ``decision_scores_``.

B.1. UE-KPCA Code 113

"""

def __init__(self, kernel='rbf', order = 3, q = 'same', sigma = 1.0,

sample_pct = 1.0, shrinking=True, block_size = 500,

contamination = 0.1, verbose=False):

self.kernel = kernel

self.sigma = sigma

self.gamma = 1/2/sigma/sigma

self.order = order

self.q = q

self.sample_pct = sample_pct

self.block_size = block_size

if contamination <= 0 or contamination > 0.5:

warnings.warn("Contamination must be between (0,0.5)\

contamination set to 0.1")

self.contamination = 0.1

else:

self.contamination = contamination

self.verbose = verbose

def subsample_data(self,X, sample_pct = None):

"""Returns X_S a random subsample of X".

Parameters

114 Appendix B. Python Code

X : numpy array of shape (n_samples, d_features)

The input samples.

sample_pct: float, percentage (0,1) to sample from X

"""

if sample_pct == None:

n_s = self.n_bag #use class default if none is specified

else:

assert not (sample_pct <= 0 or sample_pct > 1),\

"Sampling must be between (0,1)"

n_s = int(sample_pct * X.shape[0])

idx = np.random.permutation(X.shape[0])

X_s = X[idx[:n_s]]

return X_s

def sqrd_euclid(self, X,X_S):

"""Returns the (n_S x n) matrix of pairwise distances.

Parameters

X : numpy array of shape (n, d_features)

The input samples.

B.1. UE-KPCA Code 115

X_S : numpy array of shape (n_S, d_features)

The input samples.

params: float, kernel parameter, defaults to sigma or order if None

"""

a = \

np.expand_dims(np.diag(X_S.dot(X_S.T)),\

axis = 1).dot(np.ones((1, X.shape[0])))

b = \

np.ones((X_S.shape[0],\

1)).dot(np.expand_dims(np.diag(X.dot(X.T)),axis = 0))

sqrd_dists = a + b - 2*X_S.dot(X.T)

return sqrd_dists

def gramMatrix(self,X, X_S, kernel = None, params = None):

"""Returns the (n x n) gram matrix based on the kernel.

Parameters

X : numpy array of shape (n_samples, d_features)

The input samples.

kernel: string, {'rbf, 'poly'}

116 Appendix B. Python Code

kernel function to use options

params: float, kernel parameter, defaults to sigma or order if None

"""

#use class default if none is specified

if kernel == None:

kernel = self.kernel

sqrd_dists = self.sqrd_euclid(X,X_S)

if kernel == 'rbf':

if params == None:

params = self.gamma

K = np.exp(-params*sqrd_dists)

elif kernel == 'poly':

if params == None:

params = self.order

K = np.power((sqrd_dists +1),params)

else:

assert False, "Specify an available kernel {'rbf, 'poly'}"

return K

def eigenDecomp_gramMatrix(self, K_centered, numev = None):

B.1. UE-KPCA Code 117

"""Returns the leading q number of

eigenvectors from the eigendecomposition

of the centered gram matrix

Parameters

K : numpy array of shape (n_samples,n_samples)

centered gram matrix

numev: int, number of eigenvectors (alphas) to retain

"""

K_centered = (K_centered + K_centered.T) / 2

if numev == None:

numev = self.q

w_, v = eigh(K_centered)

w_ = w_.reshape(-1,1)

w_ = np.flipud(w_)

v = np.fliplr(v)

alphas = v[:,:numev]

#Each column is an eigen vector

lambdas = w_[:numev]

#from biggest to smallest

118 Appendix B. Python Code

alphs = alphas*np.squeeze(1/np.sqrt(lambdas))

return alphs,lambdas

def calc_reconstructionErrors(self, X, X_S, K_mat, alphs):

"""Returns the reconstruction error projecting onto alphas.

Parameters

X : numpy array of shape (n_samples, d_features)

The input samples.

alphs: numpy array of shape (n_samples, q)

eigenvectors of centered gram matrix

X_S : numpy array of shape (n_subsamples, d_features),

optional (default=None)

Subsampling of the data.

If none, the full kernel is used for projection

"""

n_samples, d_features = X.shape

n_sub = K_mat.shape[0]

numev = alphs.shape[1]

B.1. UE-KPCA Code 119

#helper calcs

Krow = K_mat.sum(axis = 0)/n_sub #not normed!

Ksum = (Krow).sum()/n_sub

sumalphs = np.ones(n_sub).dot(alphs)

reconstruction_errs = np.zeros(n_samples)

for block_i in (range(0,n_samples,self.block_size)):

X_block = X[block_i:block_i+self.block_size,:]

n_block = X_block.shape[0]

k_L = self.gramMatrix(X_block, X_S)

f_L = \

np.dot(k_L.T,alphs) - (sumalphs*np.ones((n_block,numev)) * \

np.expand_dims((np.sum(k_L,axis=0).T/n_sub - Ksum),axis=1)) \

- np.ones((n_block, numev))*np.dot(Krow,alphs)

d_p = (1 - (2*np.sum(k_L,axis = 0)/n_sub).T + Ksum)

f_L_ = np.diag(np.dot(f_L,f_L.T))

errs_block = (d_p - f_L_)

reconstruction_errs[block_i:block_i+self.block_size] = errs_block

120 Appendix B. Python Code

return reconstruction_errs

def threshold(self,scores,contamination):

"""Fit detector. y is optional for unsupervised methods.

Parameters

scores : numpy array of shape (n_samples, d_features)

The input samples.

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold

on the decision function.

"""

threshold_ = np.quantile(scores,1-contamination)

labels = np.ones(scores.shape[0])

labels[scores < threshold_] = 0

self.threshold_ = threshold_

return labels

B.1. UE-KPCA Code 121

def fit(self, X, y=None):

"""Fit detector. y is optional for unsupervised methods.

Parameters

X : numpy array of shape (n_samples, d_features)

The input samples.

y : numpy array of shape (n_samples,), optional (default=None)

The ground truth of the input samples (labels).

"""

n_samples, d_features = np.shape(X)

self.d_features = d_features

if self.q == 'same':

self.q = d_features

if self.sample_pct < 1:

X_S = self.subsample_data(X)

else:

X_S = X

K_mat = self.gramMatrix(X_S,X_S)

n_sub = K_mat.shape[0]

122 Appendix B. Python Code

one_n = np.ones((n_sub,n_sub)) / n_sub

K_centered = K_mat - one_n.dot(K_mat - K_mat.dot(one_n)) \

+ one_n.dot(K_mat).dot(one_n)

K_centered = (K_centered + K_centered.T) / 2

if self.verbose:

print("Computed gram matrix")

alphs,lambdas = self.eigenDecomp_gramMatrix(K_centered)

if self.verbose:

print("Computed alphas","\n")

self.model_alphas = alphs

self.model_lambdas = lambdas

self.model_X_S = X_S

self.model_K_mat = K_mat

reconstruction_errs = self.calc_reconstructionErrors(X,

X_S,

K_mat,

alphs)

self.decision_scores_ = reconstruction_errs

B.1. UE-KPCA Code 123

self.labels_ = self.threshold(self.decision_scores_,

self.contamination)

return self

def decision_function(self, X_test):

"""predict anomaly scores (reconstruction error) using model \

gram matrix and alphas

Parameters

X_test : numpy array of shape (n_test_samples, d_features)

The test samples.

"""

correct dimension if a single example is given

if X_test.ndim == 1:

X_test = np.expand_dims(X_test,axis = 0)

scores = \

self.calc_reconstructionErrors(X_test,

self.model_X_S,

self.model_K_mat,

self.model_alphas)

return scores

124 Appendix B. Python Code

def predict(self,X_test,threshold = None):

"""predict anomaly label (reconstruction error)

using model gram matrix and alphas

Parameters

X_test : numpy array of shape (n_test_samples, d_features)

The test samples.

threshold: float, optional, default to

threshold calculated by .fit()

"""

correct dimension if a single example is given

if X_test.ndim == 1:

X_test = np.expand_dims(X_test,axis = 0)

if threshold == None:

threshold = self.threshold_

scores = \

self.calc_reconstructionErrors(X_test,

self.model_X_S,

self.model_K_mat,

B.1. UE-KPCA Code 125

self.model_alphas)

labels = np.ones(scores.shape[0])

labels[scores < threshold] = 0

return labels

class UEKPCA:

"""

Parameters

initial_sigma : float, optional (default=1e-3)

Initialize the Kernel coefficient for 'rbf'

q : int, optional (default='auto')

number of retained eigenvectors (alphas)

for the reconstruction error

If q is 'auto' then n_features

will be used instead up to a maximum of

75.

learning_rate: float, optional (default = 0.005)

learning rate for gradient descent

n_bag : int, optional (default: 100)

126 Appendix B. Python Code

The number of examples used to construt

the kernel matrix in for sigma tuning

n_model : int, optional (default: 100)

Number of kPCA models in the ensemble

n_skel : int, optional (default: 256)

The number of examples used to build

the kernel matrix for finding alphas

in each model of the ensemble

batch_size : int, optional (default: 1)

Number of batches per training step

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold

on the decision function.

patience : int, optional (default:1000)

number of training steps to wait for

a change in sigma before deciding

convergence and early stopping

verbose : bool, optional (default: False)

B.1. UE-KPCA Code 127

Prints out runtime and feedback

max_steps : int, optional (default: -1)

maximum numer of steps for sigma tuning. -1, places no limit

weighted_ensemble_avg : bool, optional (default: False)

Uses a weighted averaging, rather than

simple averaging for ensemble scores

initial_sigma : float, optional (default: 1.0)

Starting point for sigma tuning

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold on

the decision function.

Attributes

sigma: float

The sigma parameter in the rbf kernel

sigma_hist: list of floats with len = training steps

A history of sigma for each training step

128 Appendix B. Python Code

loss_list: list of floats with len = training steps

A history of losses for each training step

model_X_S : numpy array of shape (n_sub,d_features)

sample of X used for calulating alphas, typically

the full sample is used so that X_S = X.

Sampling set by sample_pct

model_K_mat : numpy array of shape (n_sub,sub)

uncentered gram matrix after training

model_alphas : numpy array of shape (n_samples, q)

retained eigen values after training

decision_scores_ : numpy array of shape (n_samples,)

The outlier scores of the training data.

The higher, the more abnormal.

Outliers tend to have higher scores.

This value is available once the detector is fitted.

threshold_ : float

The threshold is based on ``contamination``. It is the

``n_samples * contamination`` most abnormal samples in

``decision_scores_``. The threshold is calculated

for generating binary outlier labels.

B.1. UE-KPCA Code 129

labels_ : int, either 0 or 1

The binary labels of the training data. 0 stands

for inliers and 1 for outliers/anomalies.

It is generated by applying ``threshold_``

on ``decision_scores_``.

"""

def __init__(self,

q = 'same',

initial_sigma = 1,

shrinking=True,

sigma = 'auto',

n_bag= 100,

n_skel = 256,

n_models = 100,

contamination = 0.1,

patience = 1000,

batch_size = 1,

verbose = True,

learning_rate = 0.005,

max_steps = -1,

weighted_ensemble_avg = False

):

self.initial_sigma = initial_sigma

130 Appendix B. Python Code

self.n_skel = n_skel

self.batch_size = batch_size

self.q = q

self.n_bag = n_bag

self.n_skel = n_skel

self.verbose = verbose

self.patience = patience

self.learning_rate = learning_rate

self.max_steps = max_steps

self.n_models = n_models

self.weighted_ensemble_avg = weighted_ensemble_avg

self.n_iter = 0

self.sigma = sigma

if contamination <= 0 or contamination > 0.5:

assert False

else:

self.contamination = contamination

def check_settings(self,X):

"""checks the parameter settings and initializes

self.n_samples and self.d_features

Parameters

B.1. UE-KPCA Code 131

X : numpy array of shape (n_samples, d_features)

The input samples.

"""

self.n_samples,self.d_features = np.shape(X)

assert X.max() < 1.01 and X.min() > -0.01, \

"Norm data [0,1]"

if self.q == 'same':

self.q = min(self.d_features,75)

if self.verbose:

print("n_samples:" ,self.n_samples, "d_features:", \

self.d_features, "bag size:", self.n_bag,\

"skel size:", self.n_skel, "numev:", self.q)

return self

def threshold(self,scores,contamination):

"""Fit detector. y is optional for unsupervised methods.

Parameters

132 Appendix B. Python Code

scores : numpy array of shape (n_samples, d_features)

The input samples.

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold

on the decision function.

"""

threshold_ = np.quantile(scores,1-contamination)

labels = np.ones(scores.shape[0])

labels[scores < threshold_] = 0

self.threshold_ = threshold_

return labels

def subsample_data(self,X, n_s = None):

"""Returns X_S a random subsample of X".

Parameters

X : numpy array of shape (n_samples, d_features)

The input samples.

sample_pct: float, percentage (0,1) to sample from X

B.1. UE-KPCA Code 133

"""

if n_s == None:

n_s = self.n_bag #use class default if none is specified

idx = np.random.permutation(X.shape[0])

X_s = X[idx[:n_s]]

return X_s

def sqrd_euclid(self, X,X_S):

"""Returns the (n_S x n) matrix of pairwise distances.

Parameters

X : numpy array of shape (n, d_features)

The input samples.

X_S : numpy array of shape (n_S, d_features)

The input samples.

params: float, kernel parameter, defaults to sigma or order if None

"""

a = \

np.expand_dims(np.diag(X_S.dot(X_S.T)),\

134 Appendix B. Python Code

axis = 1).dot(np.ones((1, X.shape[0])))

b = \

np.ones((X_S.shape[0],\

1)).dot(np.expand_dims(np.diag(X.dot(X.T)),axis = 0))

sqrd_dists = a + b - 2*X_S.dot(X.T)

return sqrd_dists

def UE_kPCA_Loss(self,sd_mat_offDiag):

"""Returns the inverse index of dispersion

of the off diagonal kernel parameters

Parameters

sd_mat_offDiag :tensor of shape

(batch_size, ((n_bag^2)-n_bag))

The input sub_samples.

"""

def loss(y_true,y_pred):

sigma = kb.mean(y_pred,axis = 0)

gamma = 1/(2*sigma*sigma)

K_offDiag = kb.exp(-gamma*sd_mat_offDiag)

B.1. UE-KPCA Code 135

m1 = kb.mean(K_offDiag)

s2 = kb.mean(kb.square(K_offDiag-m1))

small eps to prevent div by zero

inv_iD = m1/(s2+1e-20)

return inv_iD

return loss

def sigma_model(self):

"""Create a model of a single unit that

is trained by SGD to optimize sigma

"""

#feeding zeros, needed to fit Keras framework

dummy_input = keras.layers.Input(shape=(1,))

def custom_activation(x):

#A custom activation is necessary to bound the

#output of sigma between approx 0 and inf

#otherwise you will see errors if the sigma switch signs.

return tf.math.log(1+tf.math.exp(x))

#based on inverse of activation

136 Appendix B. Python Code

initial_bias = np.log(np.exp(self.initial_sigma)-1)

sigma_output = \

keras.layers.Dense(int(1),activation= custom_activation,\

bias_initializer=\

keras.initializers.Constant(initial_bias))(dummy_input)

sd_mat_offDiag = \

keras.layers.Input(shape=(self.n_bag*(self.n_bag-1))//2)

sigmaModel = \

keras.models.Model([dummy_input,sd_mat_offDiag], sigma_output)

sigmaModel.compile(optimizer = \

keras.optimizers.RMSprop(self.learning_rate),#, clipvalue=1),

loss = self.UE_kPCA_Loss(sd_mat_offDiag))

return sigmaModel

def optimize_sigma(self, X):

"""Returns the optimized sigma by perfomring batch gradient descent

Parameters

X: numpy array of shape (n_samples, d_features)

The input data set

B.1. UE-KPCA Code 137

"""

self.check_settings(X)#setting 'auto' and checks

self.current_sigma = self.initial_sigma

#Generate the model

Model = self.sigma_model()

self.sigma_hist = [self.initial_sigma]

self.loss_hist = []

#initialize main loop

self.step_i = 0

last_update = 0

self.max_steps = -1

best_loss = 1e10

sigma_list = []

#Main Sigma training loop

while self.step_i < self.max_steps or self.max_steps == -1:

X_batch = \

138 Appendix B. Python Code

np.zeros((self.batch_size,(self.n_bag*(self.n_bag-1))//2))

for j in range(self.batch_size):

X_s = self.subsample_data(X)

sd_mat = self.sqrd_euclid(X_s,X_s)

sd_mat_offDiag = sd_mat[np.triu_indices(self.n_bag,k=1)]

X_batch[j,:] = sd_mat_offDiag

sigma_loss = \

Model.train_on_batch([np.zeros((self.batch_size ,1)), X_batch],\

np.zeros((self.batch_size ,1)))

bias = Model.layers[-1].get_weights()[1][0]

self.current_sigma = np.log(1+np.exp(bias))

if len(sigma_list) < self.patience:

sigma_list.append(self.current_sigma)

else:

sigma_list += [sigma_list.pop(0)]

sigma_list[-1] = self.current_sigma

B.1. UE-KPCA Code 139

if sigma_loss < best_loss:

best_loss = sigma_loss

self.low_sigma = self.current_sigma

last_update = 0

else:

last_update += 1

if last_update > self.patience:

if best_loss > 10:

last_update = 0

warnings.warn("Did not converge.")

else:

self.sigma = np.asarray(sigma_list.copy()).mean()

return self.sigma

if self.verbose:

print(f'Step:{self.step_i} Sigma:{self.current_sigma:.4f} \

Loss:{sigma_loss:.3f} Patience:{last_update}')

self.step_i +=1

#trainging stopped at max steps

return self.sigma

140 Appendix B. Python Code

def make_skel_model(self,X_):

n_s = self.n_skel

X_s = self.subsample_data(X_, n_s = n_s)

skel_model = kPCA(

sigma = self.sigma,

q = self.q,

verbose = self.verbose,

contamination = self.contamination,

)

skel_model.fit(X_s)

scores = skel_model.decision_function(X_)

return scores,skel_model

def fit(self, X, y=None):

"""Fit detector. y is optional for unsupervised methods.

Parameters

X : numpy array of shape (n_samples, d_features)

B.1. UE-KPCA Code 141

The input samples.

y : numpy array of shape (n_samples,), optional (default=None)

The ground truth of the input samples (labels).

"""

self.check_settings(X)

if self.sigma == 'auto':

self.sigma = self.optimize_sigma(X)

gc.collect()

self.ensemble = []

self.ensemble_scores = np.zeros((self.n_samples,self.n_models))

for n in range(self.n_models):

scores, skel_model = self.make_skel_model(X)

self.ensemble.append(skel_model)

self.ensemble_scores[:,n] = scores

if self.weighted_ensemble_avg:

pseudo_GT = self.ensemble_scores.mean(axis=1)

self.detector_weights = np.zeros(self.n_models)

for n in range(self.n_models):

self.detector_weights[n] = \

142 Appendix B. Python Code

pearsonr(pseudo_GT, self.ensemble_scores[:,n])[0]

self.decision_scores_ = \

(self.detector_weights*self.ensemble_scores).mean(axis=1)

else:

self.decision_scores_ = \

(self.ensemble_scores).mean(axis=1)

self.labels_ = \

self.threshold(self.decision_scores_,self.contamination)

return self.decision_scores_

def threshold(self,scores,contamination):

"""calculate the threshold based on

contamination and scores.

Parameters

scores : numpy array of shape (n_samples, d_features)

The input samples.

contamination : float in (0., 0.5), optional (default=0.1)

The amount of contamination of the data set,

i.e. the proportion of outliers in the data set.

Used when fitting to define the threshold

B.1. UE-KPCA Code 143

on the decision function.

"""

threshold_ = np.quantile(scores,1-contamination)

labels = np.ones(scores.shape[0])

labels[scores < threshold_] = 0

self.threshold_ = threshold_

return labels

def predictE(self, X_test, threshold = None):

"""predicting labels based on the ensemble of models

Parameters

X_test : numpy array of shape (n_test_samples, d_features)

The test samples.

"""

correct dimension if a single example is given

if X_test.ndim == 1:

X_test = np.expand_dims(X_test,axis = 0)

scores = np.zeros(X_test.shape[0])

for m in self.ensemble:

144 Appendix B. Python Code

scores += m.decision_function(X_test)

scores = scores/len(self.ensemble)

if threshold == None:

threshold = self.threshold_

labels = np.ones(scores.shape[0])

labels[scores < threshold_] = 0

return labels

def decision_functionE(self,X_test,threshold = None):

"""predict anomaly scores (reconstruction error)

using the ensemble of models

Parameters

X_test : numpy array of shape (n_test_samples, d_features)

The test samples.

threshold: float, optional, default

to threshold calculated by .fit()

"""

correct dimension if a single example is given

B.2. MTS-AE Code 145

if X_test.ndim == 1:

X_test = np.expand_dims(X_test,axis = 0)

if threshold == None:

threshold = self.threshold_

scores = np.zeros(X_test.shape[0])

for m in self.ensemble:

scores += m.decision_function(X_test)

scores = scores/len(self.ensemble)

return scores

B.2 MTS-AE Code

import numpy as np

import tensorflow as tf

from tensorflow.keras.optimizers import *

import tensorflow_probability as tfp

import tensorflow.keras.backend as kb

from kneed import KneeLocator

from sklearn import metrics

import gc

import warnings

146 Appendix B. Python Code

warnings.filterwarnings("ignore", message="No knee/elbow found")

class MTS_AE:

"""

Unsupervised Autoencoder training class

Parameters

verbose : bool, optional (default: False)

Prints out training information and AUC

batch_size: int, optional (default: 256)

number of examples per batch

learning_rate: float, optional (default 0.001)

learning rate for optimizer

max_epochs: int, optional (default: 500)

maximum number of epochs to wait before

terminating training

percentile_loss: bool, optional (default: True)

Use percentile loss for training so

that mini-batch updates are only performed

B.2. MTS-AE Code 147

on examples below a threshold

percentile_loss_quantile : float [0,100],

optional (default: 95. 'percent')

threshold for percentile Loss

M_knee_stop : float optional (default: 5)

early stopping parameter, if a knee

is detected and the current epoch

exceed M_knee_stop * current epoch,

training is halted

full_hist : bool optional (default: False)

store a history of training anomaly scores

CES : bool optional (default: True)

Use cumulative error scoring or not

pretrain: bool optional (default: True)

Number of epochs to use MSE

loss before PL loss

Attributes

KNEE : int

148 Appendix B. Python Code

epoch that the knee is detected

err_hist : list (N, num_epochs)

if full_hist = True, then store

MSE of each example at the end

of each epoch

sum_err_hist : list [N, num_epochs]

if full_hist = True, then store

unormalized CES of each example

at the end of each epoch

hist_auc_base : list (num_epochs,)

if mask = GT labels, then store

the MSE AUC at the end of each epoch

hist_auc_sum : list (num_epochs,)

if mask = GT labels, then store

the CES AUC at the end of each epoch

hist_loss : list (num_epochs)

MSE loss at the end of each epoch

hist_mean_err_sum : list (num_epochs)

normalized (div by epoch) CES

loss at the end of each epoch

B.2. MTS-AE Code 149

decision_scores_ : numpy array of shape (n_samples,)

The outlier scores of the training data.

The higher, the more abnormal.

Outliers tend to have higher scores.

This value is available once

the detector is fitted.

"""

def __init__(self,

model,

max_epochs = 500,

batch_size = 256,

verbose = True,

learning_rate = 0.001,

percentile_loss = True,

CES = True,

percentile_loss_quantile = 95.0,

steps_per_epoch = 200,

M_knee_stop = 5,

full_hist = False,

pretrain = 10

150 Appendix B. Python Code

):

self.model = model

self.verbose = verbose

self.batch_size = batch_size

self.learning_rate = learning_rate

self.max_epochs = max_epochs

self.percentile_loss = percentile_loss

self.percentile_loss_quantile = percentile_loss_quantile

self.M_knee_stop = M_knee_stop

self.full_hist = full_hist

self.steps_per_epoch = steps_per_epoch

self.CES = CES

self.pretrain = pretrain

def subsample_data(self,X, n_s = None):

"""Returns X_S a random subsample of X".

Parameters

X : numpy array of shape (n_samples, d_features)

The input samples.

sample_pct: float, percentage (0,1) to sample from X

"""

if n_s == None:

B.2. MTS-AE Code 151

n_s =self.batch_size

idx = np.random.permutation(X.shape[0])

X_s = X[idx[:n_s]]

return X_s

def compile_model(self,model,PL,learning_rate):

"""

Compliles a model using either PL or MSE

Parameters

model : tensorflow or keras model to compile

PL : bool

comiles with PL if True, else MSE

learning_rate : float

learning rate for Adam Optimizer

"""

outshape = kb.int_shape(model.outputs[0])

L = np.prod(outshape[1:])

152 Appendix B. Python Code

def Percentile_Loss(y_true,y_pred):

#needed for reshaping batch for boolean mask

true = tf.reshape(y_true, [-1,L])

pred = tf.reshape(y_pred, [-1,L])

LOSS = tf.keras.losses.mse(

true,pred,)

#calculate the q-percentile error

r = tfp.stats.percentile(LOSS,

q=self.percentile_loss_quantile)

#remove examples above percentile

iLT = tf.math.logical_not(tf.math.greater(LOSS,r))

#use loss only of examples below threshold

LOSS_LT = tf.boolean_mask(LOSS,iLT,)

LOSS_LT = kb.mean(LOSS_LT)

return LOSS_LT

def Base_Loss(y_true,y_pred):

LOSS = tf.keras.losses.mse(

B.2. MTS-AE Code 153

y_true,y_pred,)

return LOSS

opt = Adam(learning_rate,clipnorm=1.0)

if PL:

model.compile(loss = Percentile_Loss , optimizer=opt)

if self.verbose:

print('Using percentile loss')

else:

model.compile(loss = Base_Loss , optimizer=opt)

return model

def fit(self, data, mask = None):

"""

Trains the autoencoder model

Parameters

data : A (N x D) data matrix

mask : GT labels for reporting AUC during training

"""

#get the dimensionality of the data, used for MSE calc

154 Appendix B. Python Code

self.data_shape = data.shape

self.N = self.data_shape[0]

if len(self.data_shape) > 2:

W,H,C = self.data_shape[1:]

compiles the model

self.model = self.compile_model(self.model,

False,

self.learning_rate)

#initialize list for training

self.hist_loss = []

self.hist_mean_err_sum = []

self.err_sum = np.zeros(self.N)

loss_sum = np.zeros(self.N)

if mask is not None:

self.hist_auc_base = []

self.hist_auc_sum = []

self.epoch = 1

self.Exit = False

if self.full_hist:

self.err_hist = []

self.sum_err_hist = []

#Upsample the dataset if necessary

B.2. MTS-AE Code 155

X_train = []

if self.steps_per_epoch * self.batch_size > self.N:

mult = (self.steps_per_epoch *self.batch_size)//self.N + 1

for i in range(mult):

X_train.append(data)

X_train = np.vstack(X_train)

else:

X_train = data

#begin the main trianing loop

while self.epoch <= self.max_epochs and self.Exit == False:

#shuffle each epoch

X_train = X_train[np.random.permutation(X_train.shape[0])]

#train on a number of steps

self.model.fit(X_train,

X_train,

verbose=self.verbose,

batch_size = self.batch_size,

epochs=1)

#predict on every example

preds = self.model.predict(data,

156 Appendix B. Python Code

batch_size = self.batch_size)

#reshape for CNN models using image data

if len(self.data_shape) > 2:

self.err =(np.square(data.reshape(self.N,\

int(W*H*C))-preds.reshape(self.N,int(W*H*C)))).mean(axis=1)

else:

self.err = np.square(data-preds).mean(axis=1)

#get epoch loss

loss = np.mean(self.err)

#store

loss_sum += self.err.copy()

if self.epoch >= self.pretrain:

self.err_sum += self.err.copy()

if self.epoch == self.pretrain:

self.model = self.compile_model(self.model,

self.percentile_loss,

self.learning_rate)

#get current anomaly score

if self.CES:

self.decision_scores_ = self.err_sum/self.epoch

else:

self.decision_scores_ = self.err

B.2. MTS-AE Code 157

lossM = np.mean(loss_sum.copy())/(self.epoch)

self.hist_loss.append(loss.copy())

self.hist_mean_err_sum.append(lossM.copy())

if self.full_hist:

self.err_hist.append(self.err)

self.sum_err_hist.append(loss_sum.copy())

if mask is not None:

auc_base = metrics.roc_auc_score(mask,

self.err)

auc_sum = metrics.roc_auc_score(mask,

self.err_sum/self.epoch)

self.hist_auc_base.append(auc_base)

self.hist_auc_sum.append(auc_sum)

search for a knee in the CES Loss

if self.epoch >= 10 and self.M_knee_stop > 0:

kn = KneeLocator(np.arange(self.epoch),

np.asarray(self.hist_mean_err_sum),

S=5, curve='convex',

direction='decreasing',

online=True)

self.KNEE = kn.knee

158 Appendix B. Python Code

if self.KNEE != None and self.KNEE >= 5:

if self.verbose:

print('Knee:',self.KNEE)

if self.epoch >= self.KNEE * self.M_knee_stop:

self.Exit = True

self.epoch += 1

#clear cache

gc.collect()

if self.verbose and mask is not None:

print(f"Epoch: {self.epoch} \t \

Standard AUC: {round(auc_base,3)} \

\t CES AUC: {round(auc_sum,3)} \t \

PL bool: {self.percentile_loss}")

else:

print(f"Epoch: {self.epoch}")

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Contributions and Scope
	Outline

	Review of Literature
	Traditional Versus Deep Approaches
	Traditional Anomaly Detection
	Kernel Principal Component Analysis

	Deep Anomaly Detection
	Autoencoders

	Proposed Methods
	Unsupervised Ensemble Kernel Principal Component Analysis
	The Kernel PCA Algorithm
	Anomaly Scoring
	Challenges
	Learning the Kernel
	Skeleton Ensembles

	Modified Training and Scoring Autoencoder
	Cumulative Error Scoring
	Percentile Loss
	Early Stopping via Knee Detection

	Summary

	Experimental Methods
	Baseline Algorithms
	kth Nearest Neighbor
	Local Outlier Factor
	Unweighted Cluster-Based Local Outlier Factor
	Linear Principal Component Analysis
	Mahalanobis Distance
	Kernel Density Estimator
	One Class Support Vector Machines
	Isolation Forest

	Parameter Settings and Implementation
	Datasets
	Evaluation Metrics

	Results and Discussion
	Unsupervised Ensemble KPCA
	Batch Sigma Tuning
	Ensemble Parameters
	Comparisons with KPCA, KDE, and Linear PCA

	Modified Training and Scoring
	Comparison with Baseline Algorithms

	Conclusions
	Future Work

	Bibliography
	Appendices
	Appendix ROC Curves
	Appendix Python Code
	UE-KPCA Code
	MTS-AE Code

