
Hardware-Aided Privacy Protection and Cyber Defense for IoT

Ruide Zhang

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Application

Wenjing Lou, Chair
Ning Zhang, Co-chair

Y. Thomas Hou
Na Meng

Ing-Ray Chen

Apr 22, 2020
Falls Church, Virginia

Keywords: Internet of things, Electromyogram signal, Digital signal processing, Machine
learning, Cognitive radio network, Remote attestation, Trusted execution environment,

Program analysis, Side channel, Symbolic execution, Compartmentalization

Copyright 2020, Ruide Zhang

Hardware-Aided Privacy Protection and Cyber Defense for IoT

Ruide Zhang

ABSTRACT

With recent advances in electronics and communication technologies, our daily lives are im-
mersed in an environment of Internet-connected smart things. Despite the great convenience
brought by the development of these technologies, privacy concerns and security issues are
two topics that deserve more attention. On one hand, as smart things continue to grow in
their abilities to sense the physical world and capabilities to send information out through
the Internet, they have the potential to be used for surveillance of any individuals secretly.
Nevertheless, people tend to adopt wearable devices without fully understanding what pri-
vate information can be inferred and leaked through sensor data. On the other hand, security
issues become even more serious and lethal with the world embracing the Internet of Things
(IoT). Failures in computing systems are common, however, a failure now in IoT may harm
people’s lives. As demonstrated in both academic research and industrial practice, a software
vulnerability hidden in a smart vehicle may lead to a remote attack that subverts a driver’s
control of the vehicle.

Our approach to the aforementioned challenges starts by understanding privacy leakage in
the IoT era and follows with adding defense layers to the IoT system with attackers gaining
increasing capabilities. The first question we ask ourselves is ‘what new privacy concerns do
IoT bring’. We focus on discovering information leakage beyond people’s common sense from
even seemingly benign signals. We explore how much private information we can extract by
designing information extraction systems. Through our research, we argue for stricter access
control on newly coming sensors. After noticing the importance of data collected by IoT,
we trace where sensitive data goes. In the IoT era, edge nodes are used to process sensitive
data. However, a capable attacker may compromise edge nodes. Our second research focuses
on applying trusted hardware to build trust in large-scale networks under this circumstance.
The application of trusted hardware protects sensitive data from compromised edge nodes.
Nonetheless, if an attacker becomes more powerful and embeds malicious logic into code for
trusted hardware during the development phase, he still can secretly steal private data. In
our third research, we design a static analyzer for detecting malicious logic hidden inside code
for trusted hardware. Other than the privacy concern of data collected, another important
aspect of IoT is that it affects the physical world. Our last piece of research work enables a
user to verify the continuous execution state of an unmanned vehicle. This way, people can
trust the integrity of the past and present state of the unmanned vehicle.

Hardware-Aided Privacy Protection and Cyber Defense for IoT

Ruide Zhang

GENERAL AUDIENCE ABSTRACT

The past few years have witnessed a rising in computing and networking technologies.
Such advances enable the new paradigm, IoT, which brings great convenience to people’s
life. Large technology companies like Google, Apple, Amazon are creating smart devices
such as smartwatch, smart home, drones, etc. Compared to the traditional internet, IoT
can provide services beyond digital information by interacting with the physical world by
its sensors and actuators. While the deployment of IoT brings value in various aspects of
our society, the lucrative reward from cyber-crimes also increases in the upcoming IoT era.
Two unique privacy and security concerns are emerging for IoT. On one hand, IoT brings a
large volume of new sensors that are deployed ubiquitously and collect data 24/7. User’s
privacy is a big concern in this circumstance because collected sensor data may be used to

infer a user’s private activities. On the other hand, cyber-attacks now harm not only
cyberspace but also the physical world. A failure in IoT devices could result in loss of
human life. For example, a remotely hacked vehicle could shut down its engine on the
highway regardless of the driver’s operation. Our approach to emerging privacy and
security concerns consists of two directions. The first direction targets at privacy

protection. We first look at the privacy impact of upcoming ubiquitous sensing and argue
for stricter access control on smart devices. Then, we follow the data flow of private data
and propose solutions to protect private data from the networking and cloud computing
infrastructure. The other direction aims at protecting the physical world. We propose an

innovative method to verify the cyber state of IoT devices.

To my family and fiancée

iv

Acknowledgments

Luck has been on my side throughout my life. Words can’t express how lucky I am to have
received so much supports and encouragement from my family, teachers, colleagues, and
friends. I would love to express my greatest gratitude to all of them.

First and foremost, I would like to express my deepest appreciation to my advisor Dr.
Wenjing Lou. She supports me to pursue my research interest even if it is not my academic
background. And she always encourages me to seek for the truth in science. I am constantly
inspired by her rigorous research attitude and professional dedication. Besides, I am super
grateful for all the visions she shares with me and they reform the way I look at the world.

I would also like to thank Dr. Ning Zhang. He has guided me through researching in system
security and pointed out important directions in this area. He has shared his rich experiences
as a security researcher and has helped me to survive in system security research. I sincerely
thank him for being a knowledgeable mentor and a cheerful friend.

I would like to thank my committee members Dr. Na Meng, Dr. Ing-Ray Chen, Dr. Tom
Hou for their invaluable advice and insightful comments on my research.

I thank Dr. Wenhai Sun, Dr. Changlai Du, Dr. Yan Zheng, Dr. Qiben Yan, Dr. Kun Sun,
Ning Wang, Assad Moini for their helpful suggestions in our research works.

I also thank my colleagues at the complex network and security research (CNSR) laboratory
at Virginia Tech, Dr. Bing Wang, Dr. Yao Zheng, Dr. Tao Jiang, Dr. Xindi Ma, Dr. Jin Li,
Dr. Teng Li, Dr. Yimin Chen, Dr. Yaxing Chen, Dr. Qinlong Huang, Yang Xiao, Di Zhang,
Wei Chang, Haomeng Xie, Shanghao Shi, Yang Hu, Jingru Wang for their active discussion.

Lastly, I would like to thank my family for being supportive of all my decisions. And I would
like to thank my fiancée. She sacrifices her career opportunity in west coast to come with
me to the east coast and takes care of me wholeheartedly. The delicious food she makes and
her cheerfulness inspires me and supports me through the tough days.

v

Funding Acknowledgments

The works presented in this dissertation were supported in part by US National Science Foun-
dation under grants CNS-1446478, CNS-1443889, CNS-1837519, CNS-1916902 and CNS-
1916926, by Office of Naval Research under grant N00014-19-1-2621, and by Virginia Com-
monwealth Cyber Initiative (CCI).

vi

Contents

1 Introduction 1

1.1 Motivation - The Emergence of IoT . 1

1.2 Security and Privacy Challenges in IoT . 2

1.3 Research Contribution in Understanding Privacy Leakage in IoT 4

1.4 Research Contribution in Defending against Compromised Network Components 5

1.5 Research Contribution in Hardening Trusted Hardware Ecosystem 6

1.6 Research Contribution in Protecting the Physical World 7

1.7 Dissertation Organization . 7

2 Understanding Privacy Leakage in IoT 8

2.1 Privacy Impact of Wearables in Augmented Reality 8

2.2 Background . 10

2.2.1 Gesture Controlled Device - Myo . 10

2.2.2 The Myoelectric Signals . 11

2.3 Information leakage from EMG signal Overview 12

2.3.1 Threat Model . 12

2.3.2 Steps in deducing passwords . 13

2.3.3 Steps in recovering PIN Sequences 14

2.4 Information Extraction System Design . 15

2.4.1 EMG Signal Modeling . 15

2.4.2 Input Event Detection . 15

vii

2.4.3 Finger And Number Classification . 19

2.4.4 Hand Movement Tracking . 19

2.5 Evaluation on Information Extraction System 22

2.5.1 Evaluation Matrices . 22

2.5.2 Implementation and Evaluation . 23

2.6 Further exploration: Password Extraction Without Prior Information 24

2.6.1 Extracting user muscle models without labeled data 24

2.6.2 Experiments and results . 25

2.7 Related Work . 25

2.7.1 Digital Key Steal . 25

2.7.2 Human Movement Detection . 27

2.8 Summary . 27

3 Defending against Compromised Network Components 28

3.1 Privacy-preserving Radio Context Attestation in Cognitive Radio Network . 28

3.2 Background . 30

3.2.1 Spectrum Sharing in CRN . 30

3.2.2 Radio Context Attestation in CRN 31

3.2.3 Intel SGX . 31

3.3 PriRoster System Model and Assumptions 32

3.4 PriRoster Framework . 33

3.4.1 Privacy-Preserving Single Device Attestation 34

3.4.2 Privacy-Preserving Multiple Devices Attestation 37

3.4.3 Defense Against Side Channel Attack 39

3.5 Security Analysis of PriRoster Local Appraisal 41

3.6 Implementation of PriRoster Prototype . 42

3.7 Evaluation on PriRoster System . 43

3.7.1 Prototype Comparison . 43

3.7.2 Oblivious Appraisal Process . 45

viii

3.8 Related Work . 45

3.9 Summary . 46

4 Hardening Trusted Hardware Ecosystem 47

4.1 Detecting Information Leakage in Intel SGX Enclaves 47

4.2 Background . 49

4.2.1 Intel SGX . 49

4.2.2 Symbolic Execution . 49

4.2.3 Clang Static Analyzer . 49

4.3 Threat Model And Assumptions . 50

4.4 Nonreversibility Property . 51

4.5 PrivacyScope Static Analyzer . 52

4.5.1 A General Language: PRIML . 52

4.5.2 PrivacyScope Program Analysis . 54

4.5.3 Incorporating PrivacyScope in an Intel SGX enclave 58

4.6 Evaluations on PrivacyScope Prototype . 59

4.6.1 Implementation . 59

4.6.2 Illustration: a Leakage Example in C 59

4.6.3 Performance Evaluation . 62

4.6.4 Case Studies . 63

4.7 Related Work . 69

4.7.1 Information Flow Analysis Methods 69

4.7.2 Secure Systems on Trusted Hardware 70

4.7.3 Privacy Leakage in Machine Learning 70

4.8 Discussion and future work . 71

4.8.1 Covert and Side Channels . 71

4.8.2 Prior Knowledge on User Data . 71

4.8.3 Limitations and Future Work . 72

4.9 Summary . 72

ix

5 Protecting the Physical World 73

5.1 Continuous Attestation for Unmanned Vehicles 73

5.2 Background . 76

5.2.1 Compartmentalization . 76

5.2.2 Runtime Attestation . 76

5.2.3 ARM TrustZone and Attestation . 78

5.2.4 Ardupilot . 78

5.3 Problem Setting for ConAttest . 79

5.4 Threat model and Assumptions . 80

5.5 ConAttest Design . 81

5.5.1 ConAttest System Model . 82

5.5.2 Compartmentalization . 83

5.5.3 Program Instrumentation and View Switch 84

5.5.4 Secure Timer Initiated VF Recording 85

5.6 Implementation of ConAttest . 86

5.6.1 ConAttest Prototype . 86

5.6.2 Porting OPTEE to Navio2 Platform 87

5.6.3 Enabling Secure Timer on Navio2 Platform 88

5.6.4 Compartmentalization Development Flow 89

5.6.5 ConAttest Runtime . 90

5.7 Evaluation on ConAttest Prototype . 91

5.7.1 Performance Impact of control flow instrumentation 91

5.7.2 Performance Impact of ConAttest . 92

5.8 RELATED WORK . 93

5.9 Discussion . 94

5.9.1 Control model of autopilots . 94

5.9.2 ConAttest on Paparazzi . 95

5.10 Summary . 96

x

6 Conclusion 97

6.1 Research Summary . 97

6.2 Future Work . 98

Bibliography 99

xi

List of Figures

1.1 IoT architecture. 3

2.1 Real-life EMG signals collected by Myo . 11

2.2 A user interacting with AR system using Myo 11

2.3 Myo device and its collected signal. 11

2.4 EMG signals and their decomposition into MUAPTs. 12

2.5 System overview of deducing passwords. 13

2.6 Multicscale decomposition using orthogonal wavelet. 16

2.7 5-levels detailed WT decompositions histograms. 16

2.8 Analysis of EMG signals. 16

2.9 DCS and point of change for one channel. 17

2.10 DCS of all eight EMG channels. 17

2.11 DCS of EMG signals. 17

2.12 Classification window and its divisions. 20

2.13 Acceleration after projection. 20

2.14 Number classification accuracy . 21

2.15 Top-k success rate . 21

2.16 Evaluation on inferring PIN sequence. 21

2.17 Finger classification accuracy . 24

2.18 Top-k success rate . 24

2.19 Evaluation on inferring passwords. 24

2.20 In English literature. 25

xii

2.21 In our article. 25

2.22 Comparison of relative frequencies in English literature and in our article. . . 25

2.23 Finger detection accuracy . 26

2.24 Top-k success rate . 26

2.25 Evaluation on unsupervised typing model. 26

3.1 Radio Context Attestation in CRN. 32

3.2 Privacy-Preserving Device Attestation . 34

3.3 The radio context attestation protocol . 36

3.4 Trust Establishment of SAS on SGX enclave 37

3.5 Trust transfer procedure by transferring symmetric key. 38

3.6 Memory Access Pattern of Native Appraisal Process (a), Full Traversal Design
(b), and Oblivious Appraisal (c). 40

3.7 OCompare() function diagram. 41

4.1 Security semi-lattice for taint status . 55

4.2 Truth table for Pbinop(t1, t2) and Pcond(t1, t2) 55

5.1 Illustration of memory view switch process. 77

5.2 Abstract view of boundary crossing runtime attacks. 81

5.3 Overview of ConAttest . 83

5.4 Illustration of ConAttest’s concept of compartments. (a) ConAttest isolates
memory with access permissions shown in columns. (b) ConAttest records
view switch activities. 84

5.5 Randomized VFI measurement. 85

5.6 Our prototype of ConAttest implemented on Navio2 87

5.7 Overview of ConAttest development Workflow. 88

5.8 Overview of ConAttest runtime. 90

5.9 Performance impact of ConAttest on real-time tasks with deadline constraints.
The overhead introduced by ConAttest is marked on top of every bar that
represents the execution time with ConAttest. The results are the average of
more than 100 runs. 92

xiii

5.10 The general dynamical model and nested control architecture for autopilots.
Different levels have different update frequency and latency requirements. . . 95

xiv

List of Tables

3.1 Acronyms & Parameter Definition . 35

3.2 Primitive Benchmark . 44

3.3 Design Benchmark Comparison . 44

4.1 PrivacyScope’s policy for nonreversibility violation. 55

4.2 Simulation of PrivacyScope detecting explicit leakage 56

4.3 Simulation of PrivacyScope detecting implicit leakage 56

4.4 Exploration of illustrative example . 60

4.5 Performance evaluation . 62

4.6 Systematic approaches for detecting secret leakage 63

5.1 Remote Attestation Research in Recent Years 94

xv

Chapter 1

Introduction

1.1 Motivation - The Emergence of IoT

The term, Internet of Things, was first proposed by Kevin Ashton in 1999 [1]. He foresaw a
world where every physical object has its own identities and is ubiquitously connected. With
recent advances in computing and communication technologies, this future is coming closer
and closer. According to Gartner, around 25 billion smart devices are expected to join the
Internet of Things by the year 2020 [2]. These smart devices collect data with their sensors
and forward them to the cloud for processing. The cloud performs analytics on the received
data and sends action commands back to the smart devices.

Although IoT shows great potential and a bright future, privacy concerns and security issues
are even more critical. Attacks on upcoming ubiquitous sensors are concerning and a failure
in the computing system can now lead to severe consequences to the physical world. For
instance, hackers snoop on security cameras [3] and vulnerability in the software stack of a
smart vehicle can disable a driver’s control on the car [4]. In the meantime, the unique prop-
erties of IoT compared to traditional computing systems brings additional challenges. For
example, IoT has always-on sensing capabilities that could lead to surveillance of individu-
als; IoT relies on edge computing and cloud computing for its data processing where service
providers may be honest but curious; IoT has limited resources and real-time constraints
that restricts it from modern cyber defense mechanisms. To systematically solve unique
privacy and security challenges in IoT, we present the architecture of IoT and describe our
research efforts tackling corresponding challenges in the following.

1

Ruide Zhang Chapter 1. Introduction 2

1.2 Security and Privacy Challenges in IoT

IoT is composed of three layers, things layer, network layer and cloud layer as shown in
Fig. 1.1. The things layer consists of smart devices equipped with various sensors and
actuators. They obtain data from and interact with the physical world. The network layer
transmits the gathered data from the smart devices to the cloud. Internet service providers,
such as Verizon and AT&T, control the network layer [5]. The cloud layer stores and processes
the received data and it sends out action commands back to smart devices. Amazon EC2
and iCloud are examples of the cloud layer [6]. To systematically tackle the security and
privacy of IoT, we span our research on all three layers of IoT and increases the attacker’s
power gradually. We start by understanding the privacy leakage in IoT at the things layer.
Through this investigation, we realize the importance of private data collected by smart
devices. We assume an unprivileged attacker here. Because smart things lack access control
on new sensors, even an unpriviledged attacker has access to the sensor data. Then we
trace the data flow of private data and research on defending against compromised network
components of the network layer. Here we assume a more powerful attacker who is capable
of compromising service providers and launching data breach attacks at runtime. We use
trusted hardware to defend against compromised network components. The next stop of
private data is the cloud layer. Data analytics is performed on the private data at this
layer. Confidential cloud computing with trusted hardware can protect the private data
during the analytical phase. However, an insider attacker may hide malicious logic inside
the code for trusted hardware during the development phase. So we put our attention to
harden trusted hardware ecosystem. Finally, we revisit the things layer. This time, instead
of sensing capabilities, we focus on the interaction with the physical world aspect of smart
devices. We propose to protect the physical world by remote verification of the integrity of
smart devices. We assume the attacker here is extremely powerful and can compromise a
smart device and recover the normal state of the device without being noticed. The following
listings identify the unique challenges brought by IoT and position our works. We introduce
our research contributions in the next section.

Understanding Privacy Leakage in IoT:

• New types of sensors: IoT devices introduce new sensors at the things layer. They are
deployed ubiquitously and collect data 24/7. During data collection, the enforcement
of collecting the specified type of data and the access control to the collected data are
important from the privacy perspective. However, with a large amount of upcoming
different types of sensors, the privacy implication of each new type of data is not
known. It is hard to tell which type of sensor data does not have a privacy concern
since modern data analytics can dig out hidden facts. [7] and [8] are among the first
works working in this direction. They show that seemingly benign accelerometer data
on a smartwatch could be used to leak PIN code. Our work [9] explores the privacy
implication of EMG signals by designing and building a prototype to infer passwords.
Through this work, we argue for stricter access control when introducing a new type

Ruide Zhang Chapter 1. Introduction 3

Figure 1.1: IoT architecture.

of sensor.

Defending against Compromised Network Components:

• Edge computing: More data is processed at edge nodes at the network layer. IoT
requires service providers to provide its networking functionalities. But networking
service providers may be compromised. Confidential computing is a promising tool
to solve this concern. To provide confidential computing, there exist two directions
of research. [10] represents the cryptographic way to achieve confidential computing.
While [11] and [12] design confidential data analytics platforms using trusted hardware.
Cryptographic solutions have the advantage of theoretical guarantees while trusted-
hardware-based solutions have the benefit of performance. Our work [13] follows the
direction of trusted hardware and offers a privacy-preserving networking architecture.
The simple adoption of trusted hardware to the network layer is not scalable. We
design a scalable scheme to set up trusted execution environments (TEE) on edge
nodes. And we apply this scheme to the cognitive radio context attestation scenario
and show its efficacy.

Hardening Trusted Hardware Ecosystem

• Trusted hardware: Trusted hardware is gaining popularity for confidential machine
learning (ML) in cloud computing. IoT broadly applies ML for data processing and
confidential ML can protect private data at the cloud layer. Intel SGX is one of the
most promising trusted hardware technologies. It provides a secure enclave on the cloud
providers’ servers, and consumers can trust their private data on this secure enclave.

Ruide Zhang Chapter 1. Introduction 4

However, an insider attack within an organization is a long-lasting threat [14] and Intel
SGX relies on the benignity of enclave programs themselves. A malicious insider may
hide data leakage code inside the ML enclave code of Intel SGX during the development
phase. Information flow analysis [15, 16] is a conventional line of research to discover
information leakage in programs. However, it is not suitable for ML enclave programs.
This is because the output of an ML enclave program always correlates with its input.
Our work [17], PrivacyScope, solves this challenge and provides a static analysis tool
to automatically find out information leakage on ML enclave programs. PrivacyScope
is also extendable to other TEE technologies.

Protecting the Physical World:

• Interaction with the physical world: More IoT devices at the things layer can affect the
physical world and we need to ensure their integrity. Remote attestation of runtime
property is a promising solution. [18, 19, 20] provide remote attestations of runtime
control flow and data flow properties. However, because of computational power and
energy consumption limitations, IoT devices cannot afford heavy runtime overhead.
Also, the runtime overhead could break the real-time constraints of an IoT device.
Failing to meet real-time requirements leads to a malfunctioning device. Besides, ex-
isting runtime property remote attestations focus on a snapshot of the system state,
while in the IoT scenario, only a continuous benign running state of a device can
guarantee the integrity of a mission. Our work, Conattest, aims at providing remote
attestation of memory view flow as a security service under such harsh circumstances.
Conattest applies light-weight instrumentation on IoT devices and can provide con-
tinuous runtime attestation capability for a device. Conattest allows an IoT user to
verify and trust on the past and present execution state integrity of an IoT device.

1.3 Research Contribution in Understanding Privacy Leak-
age in IoT

The first work of this dissertation focuses on exploring the privacy leakage of IoT. More
specifically, we are interested in discovering what kind of seemingly benign sensor data on
gesture control devices can lead to serious privacy leakage. Gesture control devices have
recently emerged to be the next great IoT gadgets due to its unique ability to enable com-
puter interaction with day-to-day gestures. While these gesture control devices are bringing
revolutions to our interaction with the cyber world, it is also important to consider potential
privacy leakages from these always-on wearable devices. Especially, the coarse access control
on the current IoT system could lead to possible abuse of sensor data.

Although the always-on gesture sensors are frequently quoted as a privacy concern, there
hasn’t been any study on information leakage of these devices. In this work, we present

Ruide Zhang Chapter 1. Introduction 5

our study on side-channel information leakage of the most popular gesture control device,
Myo. Using signals recorded from the electromyography (EMG) sensor and accelerometers
on Myo, we can recover sensitive information such as passwords typed on a keyboard and
PIN sequence entered through a touchscreen. EMG signal records subtle electric current
of muscle contractions. We design novel algorithms based on dynamic cumulative sum and
wavelet transform to determine the exact time of finger movements. Furthermore, we adopt
the Hudgins feature set in support vector machine to classify recorded signals segments
into individual fingers or numbers. We also apply coordinate transformation techniques to
recover fine-grained spatial information with low-fidelity outputs from the sensor in keystroke
recovery.

We evaluated the information leakage using data collected from a group of volunteers. Our
results show that there is severe privacy leakage from these commodity wearable sensors. Our
system recovers complex passwords constructed with lower case letters, upper case letters,
numbers, and symbols with a mean success rate of 91%.

1.4 Research Contribution in Defending against Compro-
mised Network Components

The second part of this dissertation focuses on protecting sensitive data from compromised
edge nodes. More specifically, we are interested in designing a privacy-preserving attestation
framework and apply it to the cognitive radio network (CRN) scenario. Spectrum shortage is
a global concern and CRN is envisioned to be one of the key technologies for overcoming this
challenge. However, the proper operation of a CRN heavily depends on the compliance of
cognitive radios (CRs). Although remote attestation of a CR’s radio context is a promising
solution, the current remote attestation that requires the target’s configuration to be publicly
available to the verifier poses a fundamental challenge to the operational security of spectrum
users, especially military primary users.

To protect a device’s configuration information, we propose PriRoster, a privacy-preserving
remote attestation mechanism, that effectively separates the need to know the operational
configuration from the capability to execute the verification process correctly at the veri-
fier. PriRoster hides sensitive device and/or radio configuration information from untrusted
intermediate verifiers in a public network and enables a range of new applications such
as efficient network-wide radio context attestation. Trusted execution environment (TEE)
such as Intel SGX is used in our design to provide confidential processing. However, the
naive application of TEE suffers from not only poor system scalability, but also information
side-channel leakage. We develop trust transfer protocol to significantly enhance system
scalability, and the protection against information side-channel attack is accomplished by
automatically incorporating obliviousness primitive into the attestation program.

We build a prototype of the proposed PriRoster system using Raspberry Pi, USRP, Intel

Ruide Zhang Chapter 1. Introduction 6

NUC, and AWS cloud. The feasibility of our proposed framework is demonstrated by system
benchmarks and the effectiveness of the proposed oblivious appraisal functions are verified
by recording memory access pattern via code instrumentation.

1.5 Research Contribution in Hardening Trusted Hard-
ware Ecosystem

The third work of this dissertation focuses on hardening TEE ecosystem for IoT users. We
research on complimenting the ecosystem of current trusted hardware by designing a new
program analysis tool. IoT data analytics is having a profound impact on many sectors of
the economy by transforming raw data into actionable intelligence. However, increased use
of sensitive business and private personal data with no or limited privacy safeguards has
raised great concerns among individuals and government regulators. To address the growing
tension between the need for data utility and the demand for data privacy, trusted execution
environment (TEE) is being used in academic research as well as industrial application as
a powerful primitive to enable confidential computation on the private data with only the
result disclosed but not the original private data. While much of the current research has
been focusing on protecting the TEE against attacks (e.g. side-channel information leakage),
the security and privacy of the applications executing inside a TEE enclave has received little
attention. The general attitude is that the application is running inside a trusted computing
base (TCB), and therefore can be trusted. This assumption may not be valid when it comes
to unverified third-party applications.

In this work, we present PrivacyScope, a static code analyzer designed to detect leakage of
private data by an application code running in a TEE. PrivacyScope accomplishes this by
analyzing the application code and identifying violations of a property called nonreversibil-
ity. We introduce nonreversibility since the classical noninterference property falls short of
detecting private data leakage in certain scenarios, e.g., in machine learning (ML) programs
where the program output is always related to (private) input data. Given its strict re-
liance on observable state, the noninterference falls short of detecting private data leakage
in these situations. By design, PrivacyScope detects both explicit and implicit informa-
tion leakage. The nonreversibility property is formally defined based on the noninterference
property. Additionally, we describe the algorithms for PrivacyScope as extensions to the
run-time semantics of a general language. To evaluate the efficacy of our approach and
proof-of-feasibility prototype, we apply PrivacyScope to detect data leakage in select open-
source ML code modules including linear regression, k-means clustering and collaborative
filtering. Also, PrivacyScope can detect intentional data leakage code injected by a pro-
grammer. We responsibly disclosed all the discovered vulnerabilities leading to disclosure of
private data in the open-source ML program we analyzed.

Ruide Zhang Chapter 1. Introduction 7

1.6 Research Contribution in Protecting the Physical World

The fourth work of this dissertation focuses on the trustworthiness of the IoT devices. We
research on designing a continuous attestation scheme for IoT devices. As the proliferation of
IoT like drones, PLC, autonomous cars, the security of these systems is important. Since now
IoT can affect the physical world and bring physical damage to human beings if controlled
by malicious actors. The verification of if a IoT is running at a benign state is of utmost
importance. To know an IoT is compromised ahead of time can save people from cyber
attacks. Remote attestation is a crucial security service particularly targets for this purpose.
However, remote attestation on a static snapshot of software under attest cannot capture
runtime attacks, for example, ROP. And recent research on remote attestations of runtime
property like control flow sequence or data flow sequence leads to high performance overhead
at IoT side and high computational complexity at the verifier side. This heavy burden on
IoT could break the real-time constraint of IoT and make the system unresponsive. And the
large volume of runtime records makes the time span of the attestation report as short as
seconds. While a task for an IoT may span minutes or even hours, for example, a drone food
delivery. Besides, existing attestation of runtime property either cannot or needs manual
annotation for defending against data-oriented attacks.

In this work, we propose a new runtime property, View Flow Integrity (VFI), and ConAttest
to attest on it. Instead of attesting on the sequence of fine-grained control flow, ConAttest
compartmentalizes the IoT software into the user-defined amount of segments. Each seg-
ment has its memory view during runtime. ConAttest attesting on the sequence of view
switch between segments. Through this way, continuous attestation span as wide as hours is
achieved, the real-time constraint for IoT is satisfied and data-oriented attacks are mitigated.
ConAttest uses ARM TrustZone to record VFI and to transmit VFI report from IoT to the
verifier. We create a prototype of ConAttest using a real-world drone and demonstrate its
efficacy.

1.7 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 explores the privacy indication
of EMG signals. Chapter 3 presents our work on designing a large-scale privacy-preserving
radio context attestation for the cognitive radio network. In Chapter 4, we focus on building
a static analyzer for finding information leakage in code for trusted hardware. Chapter 5 in-
troduces our continuous runtime view switch flow attestation scheme for unmanned vehicles.
At the end, Chapter 6 summarizes the research contributions and future research directions.

Chapter 2

Understanding Privacy Leakage in IoT

2.1 Privacy Impact of Wearables in Augmented Reality

Augmented reality (AR) technology is a variation of virtual reality (VR). Unlike VR, AR
promises to enhance our perception of and interactions with the real world, while VR com-
pletely immerse users inside a simulated one. AR has been researched extensively in academic
world since 1960s. However, previous research mainly focused on the construction and ap-
plication aspects of AR, there is little study on the security and privacy implications. With
recent advancements in wireless networking and embedded devices, AR is no longer a fancy
equipment in sci-fi movies. Early generation AR products are already available commercially.
Microsoft Hololens was just released in the start of 2016 [21]. People’s enthusiasm on AR
can be seen through the popular AR game Pokemon Go sweeping the world. Apart from
this, Goldman Sachs Group has announced its prediction of an 80 billion dollars market by
2025 for AR and VR [22].

As the AR systems are making their way to people’s lives, we believe that it is now a pressing
issue to study new security and privacy issues arise with AR. In order to identify new security
problem, we ask ourselves: What new security and privacy concerns arise with AR systems?
We observe that unlike most of today’s desktop and smartphone applications, to provide their
intended functionality, complex AR applications will require various, always-on sensing. It
is crucial for AR systems to balance the access required for functionality with the risk of
an application stealing data or misusing that access. The current common access control
for mobile application is to ask for user permission for accessing specific sensor data. Some
permissions, such as access to video or voice recording, can be easily identified as sensitive,
while others can be subtle and difficult to know the implicit privacy risk. For example, two
recent papers [7, 8] leveraged insensitive accelerometer sensors on smartwatch to infer PIN
sequence which a user keyed in on an ATM machine.

In this paper, we identify a new type of side channel information leakage from the elec-

8

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 9

tromyography (EMG) based gesture devices used in AR systems. EMG signals are subtle
electric currents detectable from the skin due to muscle movements. When worn on the
arm of the user, the signatures of current can be used to identify the hand gesture, such as
holding a fist or waving hands. When the users are interacting with the AR system, gesture
control input devices are used legitimately. However, in this work, we show that it is possible
for malware listening in the background of AR system to infer sensitive secrets from coarse
grained EMG signals, when the users are interacting with other computing systems in the
physical world. To demonstrate the feasibility of attack, we use the leading EMG-based
gesture control device, Myo, as the platform for the study. We consider two scenarios which
happen almost every day in our daily lives.

The first one is tapping in PIN sequence to unlock screen on a mobile device. Nowadays, the
authentication system on mobile devices like iPhone relies on PIN sequence. If one can steal
the PIN sequence, he is able to access all information (e.g. photo, text ...) on the mobile
device. Previous research [7, 8] has designed attacks for ATM based on the fact the user
is moving his hand during the input process. However, when it comes to unlocking screen,
people often tap with both thumbs rather than a single one, so their hands keep still. The
idea is to know which number each thumb is taping from EMG sensor data. Our case study
on this scenario shows that EMG signals can significantly reduce the search space for smart
device PIN recovery.

The second scenario we consider is typing passwords on a keyboard. If one can deduce
the password a victim type on a computer, he potentially may access the resources on the
computer and even the victim’s bank account. [7] and [23] has provided methods to deduce
words a user has input on a keyboard. But modern passwords are seldom words but a
combination of signs, letters, and numbers. Therefore, recovering password needs accurate
recovery of each symbol typed without the help of a dictionary. The idea is to combine
the knowledge of which finger a user moves through raw EMG data and the track of user’s
hand movement to recover the keystroke a user typed. Our experiments show promising
results of recovery complex passwords with high probability. Furthermore, we observe that,
even though the assumption of having a prior model of user’s typing habit is widely used,
it could be unrealistic in certain scenarios. We also perform further investigations to assess
the possibility of employing unsupervised learning to develop user-specific models from his
own typing. Even though the accuracy is lower than the supervised counterpart, it remains
a serious threat to user privacy.

There are several challenges in our attack. First, it is challenging to detect the exact starting
points for input events on the keyboard or touch screen device. Because of the pushing and
releasing phase of a single keystroke or tapping being so close, the EMG signals appears as
a whole rather than distinct signals. Besides, there are eight EMG signal channels, and not
a single channel can have enough information to detect all of the starting points. Second, to
track hand movement with low-fidelity sensors could be troublesome. The white noise due
to the imperfection of sensor would make the estimation of direction and distance easily go
wrong. Third, how to determine which finger has moved through the raw EMG sensor data

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 10

segment is not clear.

To solve these challenges, we design and implement four subsystems based on the key insight
of the signals. We borrow ideas from digital signal processing field and machine learning
field to help build up the subsystems. Input event subsystem is capable of obtaining the
starting points of the noisy EMG signal which solve the first challenge. The second challenge
is tackled down by the coordinate transformation subsystem which projects the track of hand
movement to the keyboard plane. Number classification subsystem and finger classification
system are designed to deal with the third challenge. The former one is able to infer the
PIN sequences from EMG signal segments around the starting points, while the latter one
can get the exact finger user is moving.

We summarize our main contributions as follows:

• We are among the first to study privacy leakage from EMG signal in gesture-control de-
vices, which is poised to be an essential component in next generation human-computer
interaction in AR.

• We design novel algorithms based on dynamic cumulative sum and wavelet transform to
determine the exact time of finger movements. Furthermore, we adopt Hudgins feature
set in support vector machine to classify recorded signals segments into individual
fingers or numbers. We also apply coordinate transformation techniques to recover
fine-grained spatial information with low-fidelity outputs from the sensor in key stroke
recovery.

• Based on the experiments with one of the most popular gesture-control device, Myo,
we show that it is possible to recover sensitive user secrets, such as PIN sequence for
unlocking smart devices and complex passwords typed on physical keyboards, using
the coarsed-grained information EMG and accelerometer from sensor.

2.2 Background

2.2.1 Gesture Controlled Device - Myo

Myo [24] is a gesture control device that is designed to be worn on the forearms of a user. It’s
light-weighted with only 93 grams. Fig. 1.2 shows a user wearing Myo arm bands while typing
on a keyboard. Multiple sensors are included on Myo to provide seamless human-computer
interaction. Myo is connected to computer desktop or mobile devices using bluetooth. It is
powered by an ARM Cotex M4 processor which enables it to be used for a full day with one
charge. Within the slick design, it houses high-resolution medical grade sensors including
eight EMG sensors and one three-axis accelerometer. Fig. 1.1 show some samples of EMG
signals, which are recorded when a user is stroking letter ’s’ on the keyboard. Although Myo

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 11

Figure 2.1: Real-life EMG signals collected by
Myo

Figure 2.2: A user interacting with AR system
using Myo

Figure 2.3: Myo device and its collected signal.

enables many applications because of its high-resolution sensors, we observe that there is
a potential privacy leakage caused by them. There is no control of the access to the data
streams generated by these sensors. Based on this observation, we believe this vulnerability
can be leveraged to record passwords and PIN sequences.

2.2.2 The Myoelectric Signals

Body movement is a result of muscle contraction[25]. A skeletal muscle is comprised of
individual cells, or fibres, that are grouped into functional units called motor units. A single
motor nerve can innervate the muscle fibres of a motor unit to make them contract together
when receiving an electrical stimulus, called an action potential. The electrical stimulus is
sent from the motor cortex of the brain to the muscle fibres via the motor nerve. When
the motor unit fibres receive an action potential, they also generate action potentials by
themselves, which are transient electrical signals that are conducted along the muscle fibre
membranes. The motor unit action potential (MUAP) is the summation of the electrical
stimulus in the single fibres of the motor unit and it can be elicited by a single action potential
sent to a motor unit, which will lead to a transient contraction of the associated muscle fibres.
Since muscle contraction results in electrical activity near the skin surface, it is possible to
place sensors, called electrodes, onto the skin to detect the electrical activity. The area that
an electrode is in direct contact with is referred to as the detection surface[26]. Physiological
data recorded by a surface electrode is called a surface EMG. Any portion of a muscle may
contain muscle fibers belonging to 20-50 motor units. During a muscle contraction, multiple
motor units are repeatedly stimulated. These stimulations typically occur asynchronously to

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 12

Figure 2.4: EMG signals and their decomposition into MUAPTs.

facilitate smooth movements and delay muscle fatigue. This excitation pattern results in a
sequence of MUAPs called a motor unit action potential train (MUAPT). Fig. 2.4 shows that
the myoelectric signal represents the temporal and spatial summation of MUAPTs within
the pickup region of the recording electrode [27]. As we can see in Fig. 2.4, EMG is a
composite of different MUAPTs. The key insight here is that, when people is doing different
motions, each MUAPT will contribute differently. This shows the possibility of classifying
different finger actions.

2.3 Information leakage from EMG signal Overview

In this section, we first make clear the assumptions. Then we demonstrate the steps of how
our supervised implementations could infer passwords and PIN sequences. Besides, at the
end of each part, we demonstrate the potential advantages of information leakage based on
our methods.

2.3.1 Threat Model

For our supervised attacks, we assume an application has been installed beforehand on a
user’s computer or mobile device depending on to which Myo armbands are connecting. This
application can access insensitive EMG and accelerometer sensor data and the application
can interact with a remote server. We also assume our application includes an initialization
phase. During the initialization phase, a user is instructed to do a series of tapping actions.
Applications with these abilities are common. For example, a health monitoring application
would serve all the needs.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 13

2.3.2 Steps in deducing passwords

We implement a realistic system to clarify the possibility of using side-channel provided
by gesture control device to recover passwords. Fig. 2.5 presents the system framework
for deducing passwords. In the system, we first detect the starting points of each keystroke.
Then we extract the EMG signal around the starting point. With machine learning schemes,
we map the EMG signal to finger. At the same time, we extract the trace of hand movement
relative to keyboard. Combining the finger and trace of hand, we deduce the exact keystroke
a user has input. The methods applied in the system is elaborated below.

Myo EMG Sensor Readings

Detecting Starting Points of Keystrokes
Dynamic Cumulative Sum

 Movement Detection
Change Points Fusion

 DCS (e.g. four inputs of s)

Classification Window
for

EMG Signal Segments

Finger differentiation
Hudgins Feature Set

Support Vector Machine

Tracking Hand Movement
Coordinate Transformation

from 3-d Accelerometor Data

Recovering Passwords

Input Event Detection Subsystem

Finger Classification Subsystem

Coordinate Transformation Subsystem

2-d Data after
Coordinate

Transformation

Figure 2.5: System overview of deducing passwords.
Detecting keystrokes. The sensor data for a user’s finger movements need to be separated
first when he types on a keyboard. By the methods implemented in the input event detection
subsystem, we are able to separate the signals. The methods include dynamic cumulative
sum (DCS) in [28, 29, 30, 31, 32] and our new algorithms, movement detection algorithm
and change points fusion algorithm.

Finger differentiation. With the timestamps from the previous step, we now direct them
into the finger classification subsystem. Finger classification subsystem uses Hudgins feature
set [33] and adopt supervised machine learning method, Support vector machine (SVM) [34],
to generate classifier which is .

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 14

Track hand movement. Utilizing the starting points from the first step, we employ the
coordinate transformation subsystem to obtain the distance and direction of hand movement
relative to keyboard between consecutive keystrokes.

Recovering passwords. Combining the information from the second and third steps, we
can now infer which key the user has typed each time. Furthermore, by recording the key
sequences when a user is typing passwords, we successfully recover a user’s passwords.

Compared with previous works on keystroke inferring methods, our work has multiple ad-
vantages as follows:

• Non-intrusive. In [35, 36, 37], they have to deliberately put external devices like mi-
crophone or touch screen device close to the keyboard. Otherwise, they cannot access
signals with enough signal noise ratio to do the inference. However, in our scheme,
Myo is on the user’s forearm. So we do not have to set up any specified scenario.

• No access to highly sensitive sensors. In [7], they assume the application can gain access
to the audio recorder of the mobile device and in [38, 39], they assume the application
can obtain the camera data. In our method, we only need access to accelerometer and
EMG sensor, which are pretty common for any gesture control applications.

• Capability of recovering non-contextual inputs. In [40, 7], linguistic models or dictio-
naries are employed to infer the words. Their methods cannot recover non-contextual
inputs like passwords. Nonetheless, with our scheme, we can achieve letter-granularity
precision which is necessary for recovering passwords.

• High accuracy. We adopt accelerometer and EMG sensor data which can generate high
entropy. And this leads to the high letter-granularity accuracy of our scheme.

2.3.3 Steps in recovering PIN Sequences

The other scenario we consider is that the victim is holding his touch screen device with both
hands when unlocking screen. In this case, our application only require the access of EMG
sensor. At first, we detect the starting points of each tapping action. Then we extract the
EMG signal around the starting point and map the EMG signal to number. The methods
applied in the demonstration is elaborated below:

Detecting thumb movement. We slightly modify the parameters in our input even
detection subsystem to adapt to this scenario because the patterns of EMG signal are similar
to the keyboard scenario. The outcome of this step is the starting point for every thumb
movement.

Classifying thumb movement. With the starting point of every thumb movement, we
direct EMG signal segments into the number classification subsystem. SVM and Hudgins
feature set are adopted in the number classification subsystem.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 15

Previous works [41, 42, 43] utilize data through the accelerometer embedded in the targeted
device which is the touch screen device in our case. They cannot be used if the touch screen
device is free of malware. On the contrary, the method we adopt does not need direct access
to the target device. In addition, our attack in this scenario is also non-intrusive and does
not need access to highly sensitive sensors.

2.4 Information Extraction System Design

In this part, we discuss the detailed technologies applied in our supervised attacks. We start
with introducing the modeling of EMG signal and then we introduce the four subsystems to
accomplish the demonstrations.

2.4.1 EMG Signal Modeling

Input event detection subsystem is designed for detecting the starting points of the motions.
Detection of finger movement is based on the analysis and characterization of forearm EMG
during an action. In our case, the recorded electromyographic signals can be modeled by a
random process

x(t) =
n∑
i=1

Ci(t) +
n∑
i=1

Ri(t) + n(t) (2.1)

This equation is a composite of multiple types of signals collected by the EMG sensor like
activity burst and noise.

∑n
i=1Ci(t) are our target signals which are caused by the pushing

actions while
∑n

i=1Ri(t) are caused by the releasing actions. The superscript n means the
number of keystrokes performed. Both the pushing and releasing actions follow a pattern of
short potentials which appear with the acts of fingers. At last, n(t) is the white noise caused
by multiple factors like environmental conditions or thermal noise.

2.4.2 Input Event Detection

Detection of human movement by simple threshold methods and simple energy comparison
between neighbor signal windows has been presented in [44, 45, 46] and in [47]. However,
those methods are not suitable for cases where signals appear dynamic and noisy. Also, to
obtain the starting point of movement visually as in [48] is neither accurate nor efficient in
our case. In addition, no unique database can be set up for any person [28]. Fortunately, the
generalized likelihood ratio test in [49, 50] can be utilized to build DCS which can be used to
detect human movement [28, 29, 30, 31, 32]. Nonetheless, their method cannot be directly
applied to our case because our EMG signals has eight channels and requires distinguishing
between two similar patterns (i.e., pushing and releasing of keys). In order to construct an

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 16

50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

d
1

-0.4

-0.2

0

0.2

d
2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

d
3

-0.06
-0.04
-0.02

0
0.02
0.04

d
4

-0.02

0

0.02

d
5

-0.5

0

0.5

s

Coefs, Signal and Detail(s)
5
4
3
2
1

cfs

X+
X-

Y+
Y-

XY+
XY-

Center
On

X Y
Info

X =
Y =

History

<<-

<- ->
View Axes Close

Data (Size) emg (541)

Wavelet coif 2

Level 5

Analyze

Statistics Compress

Histograms De-noise

Display mode :

Separate Mode

More Display Options

Colorma
p

pink
Nb.
Colors

128

Figure 2.6: Multicscale decomposition using
orthogonal wavelet.

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

s

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

d
1

-0.2 -0.1 0 0.1 0.2
0

0.1

0.2

d
2

-0.1 0 0.1
0

0.1

0.2

0.3

d
3

-0.02 -0.01 0 0.01 0.02
0

0.02

0.04

0.06

d
4

-0.01 -0.005 0 0.005 0.01
0

0.02

0.04

d
5

Close

emg (491 values) analyzed at level 5 with coif2. Components : 1 --> 491 Data (Size) emg (491)

Wavelet coif 2

Level 5

Original Signal

Synthesized signal

Approximations

Details

Detail levels
All

N...

...

... ...

Coefficients

Reconstructed

Number of
bins

100

Show histograms

original signaloriginal signal - reconstructed detailsoriginal signal - details coefficientsoriginal signal - reconstructed detailsoriginal signal - reconstructed details

Figure 2.7: 5-levels detailed WT decomposi-
tions histograms.

Figure 2.8: Analysis of EMG signals.

accurate movement detection algorithm, we first obtain the dynamic cumulative sum (DCS)
of the collected EMG signals. Then we design novel algorithms to obtain the starting point
of each target action from DCS. The key insight is that, DCS will reach maximum during
the motion as proved in [51].

Dynamic Cumulative Sum

DCS is an improvement of CUSUM (or cumulative sum control chart) [52]. However,
CUSUM is only suitable for situations where the priori knowledge of what change will hap-
pen to the signal after the point of change is known. Thus we adopt DCS which suits
circumstances where the priori knowledge is not required. One prerequisite of applying DCS
is that signals must follow Gaussian distribution. We will show that in the following part
of this section. Basically, DCS calculate local cumulative sum of likelihood ratios between
segments before and after time point tm. Let us assume the two segments are S(tm)

b (before
tm) and S

(tm)
a (after tm) and the width of these two segments is W . Stmb : xi;i=tm−W,...,tm−1

follows a pdf fθb(xi) and Stma : xi;i=tm+1,...,tm+W
follows a pdf fθa(xi). The parameters θ̂b and

θ̂a are estimated using S(tm)
b and S(tm)

a . The DCS is defined as the sum of the logarithm of
likelihood ratios from the beginning of the signal to the time tm:

DCS(tm)(S(tm)
a , S

(tm)
b) =

tm∑
i=1

Ln
fθ̂a

(tm)(xi)

fθ̂b
(tm)(xi)

(2.2)

where, the θ can be estimated by the variance of each segments.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 17

Figure 2.9: DCS and point of change for one
channel. Figure 2.10: DCS of all eight EMG channels.

Figure 2.11: DCS of EMG signals.

We further adopt wavelet transform (WT) [53] to improve the movement detection accuracy.
The prerequisite of using WT in DCS is that the WT decompositions of EMG signals are
multidimensional Gaussian. Fig. 4.2 presents an example of the histograms of randomly
selected 600-sample and its WT decomposition at five scales. It shows that our case meets the
prerequisite. WT is applied to both the before and after segments. The choice of motherlet is
crucial when adopting WT in signal processing. In [29], they conclude that the best wavelet
for human movement EMG signal processing is the second-order Coiflet associated with the
first five decomposition scales obtained by Shannon entropy criterion. The results of our
experiment reinforce their conclusion. Fig. 4.1 illustrate multiscale decomposition of EMG
signal in Fig. 2.1 using a second-order Coiflet orthogonal wavelet. The time interval between
samples in is 5 milliseconds.

The DCS corresponding to signals in Fig. 4.1 is depicted in Fig. 5.1 and Fig. 5.2. We
observe that DCS in some channels has larger maximum than others and larger maximum
can make the movement detection more accurate. From Fig. 5.2, channel 1 and channel 8
which are next to each other have greatest maximum. This is because the muscle used to
perform these actions majorly sits close to each other. The detection decision is included in
Fig. 5.1 as blue circles. We easily observe that the turning point of the DCS indicates the
existence of an action as expected. In addition, we could find two bumps which indicate the
releasing movement in the DCS of the first two keystrokes.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 18

Algorithms

Our next task is to extract the timestamps of starting points for movements from the DCS
described above. We develop two algorithms to accomplish the task. Movement detection
algorithm is developed to calculate the DCS and detect the pushing movements in the EMG
signals. In the movement detection algorithm, we set up threshold T to get rid of the
releasing movements. The value of T is set to 350 empirically. Then we redirect the output
timestamps to change point fusion algorithm. Empirically, we use two channels and the
threshold x in the change point fusion algorithm is set to 20 which is 100 milliseconds.

Algorithm 1 movement detection algorithm
1: At each sample, the DCS is calculated according to (3) using the two segments Stm

b : xi;i=tm−W,...,tm−1

and Stm
a : xi;i=tm+1,...,tm+W

2: if The DCS has a turning point at that sample which indicates that it may be a finger pushing movement
or a finger releasing movement then

3: if There is a releasing movement before then
4: This is a pushing movement, record the timestamp
5: Move to the next sample
6: else
7: if The difference between this movement and the former pushing movement exceeds a threshold T

then
8: This is a releasing movement
9: Move to the next sample
10: else
11: This is a pushing movement, record the timestamp
12: Move to the next sample
13: end if
14: end if
15: else
16: Move to the next sample
17: end if
18: Output the timestamps recorded

Algorithm 2 change point fusion algorithm
1: Get the recorded timestamps from the output of movement detection algorithm for selected channels

and sort them into list L1 ascendingly.
2: Generate an empty list L2
3: Start from the first element lm in L1 and do the following.
4: if Any timestamp from other selected channels are close to lm within threshold x then
5: Add lm into list L2
6: Delete timestamps close to lm within threshold x in list L1
7: Delete lm in list L1
8: Go to the next element in list L1
9: else
10: Go to the next element in list L1
11: end if
12: Output the list L2

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 19

2.4.3 Finger And Number Classification

Finger and number classification subsystem are similar to each other, so we introduce them
together in this part. Finger classification subsystem is about classifying which finger is a
user using from a part of EMG signal. While the job of number classification subsystem
is to determine which number has been tapped from a segment of EMG signal. With the
input event detection subsystem, we now have the starting point for each finger action. Here
we set up a window for the EMG signal at each starting point. Empirically, classification
achieves decent performance when the size of the sliding windows is 45 samples which is 225
milliseconds for finger classification subsystem and 60 samples which is 300 milliseconds for
number classification subsystem. The insight here is that the action of tapping is larger than
the action of stroking key. Besides, we add offset to the starting point so that the sliding
window could include the signal for the whole action.

Feature extraction and classification

We extract Hudgins feature set [45] from each motion. The Hudgin’s time-domain features
are comprised of five different features for a given classification window. Here we divide
the classification window into five equally-divided segments as in Fig. 2.12 and each of
the segments will have five features. So there will be a total of 30 features per channel
(including the undivided classification window). These features include mean absolute value
(MAV), difference MAV, zero crossing, slope sign changes and waveform length. Then we
take advantage of the labeled samples collected in the initialization phase to do a supervised
learning using SVM classifier in our implementation. After training, the SVM classifier could
give us which finger or number a new signal segment is related to.

2.4.4 Hand Movement Tracking

The last subsystem is coordinate transformation subsystem which calculates projection of
distance and direction of the hand movement between every two successive keystrokes onto
keyboard plane. The distance and direction derivation sections are similar to the technique
used in [8] and we follow their symbol and sign in our description of this subsystem. Our
scheme and theirs differs on the coordinate alignment part. [8] assume the adversary has
placed other accelerators on the target plane (which is keyboard plane in our case). However,
in our case, we only assume the keyboard is placing on a flat plane and all users’ forearms
have similar initial position towards the keyboard.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 20

Classification
Window

Divisions

Figure 2.12: Classification window and its di-
visions. Figure 2.13: Acceleration after projection.

Projection matrix

In order to calculate the displacement of hand moving on keyboard, we need to perform
coordinate system transformation. So our goal is to obtain a projection matrix. According
to our assumption, it only needs to be calculated once. The first coordinate system we
build is the keyboard coordinate and the second coordinate system is the device coordinate.
The job required is to transform the displacement in the device coordinate to the keyboard
coordinate. This way, we can observe the finger movement projected to keyboard plane
directly. For the sake of calculating the displacement between two consecutive keystrokes,
we assume the origin of the two coordinate systems overlap. To calculate the P matrix,
we need to have the correspondences between three different points in the two coordinate
systems. According to our assumptions, the gravity is parallel with the z axis of keyboard
coordinate. Thus, we assume the coordinate for gravity is (0, 0, 1) for convenience, which will
not affect the construction of P . The initial reading of accelerometers in Myo is caused by
the gravity, so let us assume the initial readings are (x1, y1, z1). And (x1, y1, z1) is according
to the device coordinate. This vector in the keyboard coordinate will be (0, 0, 1) according
to our assumption. We obtain the other two points by asking a user to type in ‘f’ ‘r’ and
‘f’ ‘g’ respectively. This way, we get the vector (0, 1, 0) and (1, 0, 0) on keyboard coordinate
and at the same time, we record the readings of Myo. The readings of Myo can be used to
construct the displacement of hand in every two consecutive keystrokes. The method applied
here to get the displacement is integration. It is well known that the integral of acceleration
is velocity and the integral of velocity is displacement. Let us assume the recorded vectors
are (x2, y2, z2) and (x3, y3, z3). So we get the linear algebra formula

(
0 0 1
0 1 0
1 0 0

)
=
(
x1 y1 z1
x2 y2 z2
x3 y3 z3

)
∗M .

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 21

Figure 2.14: Number classification accuracy Figure 2.15: Top-k success rate

Figure 2.16: Evaluation on inferring PIN sequence.

By solving these linear equations, we can obtain the linear transformation matrix M . And
the projection matrix P can be constructed by extract the first two columns of M .

Distance estimation and direction derivation

Because we obtain the starting points of the movements from movement detection, we can
extract the accelerometer sensor within the time interval between two consecutive keystrokes
out accurately. Besides, the movement of forearm is before the stroking of keys, so we add
an offset here to capture the whole interval of the movements. Fig. 7 shows an example
of acceleration data after projection between two keystrokes ‘v’ and ‘t’. To get rid of the
noise brought by hand vibration, we can easily observe that acceleration captured during
the two consecutive motions has unique patterns on x and y axes (i.e., either up-and-down
or down-and-up shapes due to different moving directions). Thus, we follow the technology
in [8] to get the starting point and ending point by first zero-crossing point occurring before
and after the unique acceleration pattern. So the acceleration is always like a pattern of
[0, ak,max(ak,min), 0, ak,min(ak,max), 0] (k could be x or y).

Therefore, our strategy can be separated into following parts: 1) extract the 3-axis accelera-
tion between the releasing and pressing points of two consecutive keystrokes; 2) project the
3-axis accelerometer data to the keyboard plane; 3) examine the 2 dimensional data to find
[ax,max, ax,min, ay,max, ay,min]; 4) find the starting point of the the movement by searching the
first time that acceleration crosses the axis (i.e., zero-crossing point) before ak,max or ak,min,
whichever comes first; 5) similarly, find the ending point by searching the zero-crossing point
after ak,max or ak,min, whichever comes later; The two accelerations after projection within
the range of starting and ending points correspond to forearm movement and are employed
to calculate the distance and direction of the forearm movement. And we set the hand

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 22

position at starting point as the origin of both coordinate systems.

The distance calculation is trivial. We consider the movements in both x and y axes bounded
by their starting and ending points. As the distance is two times integration of accelerations,
we apply trapezoidal rule to approximate the distance on each axis.

We employ the acceleration data for x and y axis and the results of distance calculation to do
direction derivation. From the comparison of the positions of [ax,max, ax,min, ay,max, ay,min],
we can derive the direction range. The whole 360° can be split into eight direction ranges
(start from x-axis). 0° to 45° is range 1, 45° to 90° is range 2 and so on. So if the position of
ay,max is before ay,min, it means the direction angle sits in 0° to 180°. If the position of ax,max
is before ax,min, it means the direction angle sits in 270° to 90°. With these two comparisons,
we can locate the direction angle into a 90° range. Then we compare the distance obtained
from distance calculation. If the absolute value of distance along x axis is larger than the
absolute value of distance along y axis, it means the direction angle is either in 315° to
45° or 135° to 225°. Combining this comparison with former comparisons, we can locate
the direction angle into a 45° range, which can be used to differentiate between consecutive
keystrokes pairs like ‘f’ ‘v’ and ‘f’ ‘b’.

2.5 Evaluation on Information Extraction System

We conduct experiments on 8 volunteers, and all the participants are between 20 and 40
years old, including 3 women and 5 men. All the volunteers have the ability to type in words
following the standard type method [54] fluently. All participants are instructed to type or
tap as they usually do. The participants are also instructed to avoid huge body movements
and keep the wrist always above the desk when typing words. They are instructed to hold
the iPad with both hands and tab with thumbs when unlocking screen.

2.5.1 Evaluation Matrices

We develop the following metrics to evaluate our system.

Classification accuracy: To evaluate the performance of classifier, we define classification
accuracy as the possibility of correct classification. The ground truth is recorded by us
during the experiments.

Top-k success rate: Given an experimental run of a password or PIN activity, our algorithm
could return multiple top candidates of password or PIN sequence. We define that a Top-k
success hit if the password or PIN resides in the returned k candidates list.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 23

2.5.2 Implementation and Evaluation

In the experiment to infer PIN, we ask the volunteers to tap in ‘0’ to ‘9’ each for 20 times
for two rounds. The data gathered from the first round is used to train the SVM classifier
while the data collected in the second round is used to do the testing. Then, the volun-
teers are instructed to type in different length-4 PIN sequences. We adopt the input event
detection subsystem to extract the timestamps of starting points and it fully detected all
the movements. We start by evaluate the performance of number classification subsystem.
There is one SVM classifier for each volunteer trained by the their own labeled samples.
The classification accuracy for each volunteer is shown in Fig. 8.1 We have also explored
whether it is possible to generate a general classifier for all volunteers. However, the general
classifier achieves classification accuracy close to random guess. The reason is that the EMG
signals collected from volunteers relate to the structure of the volunteers’ muscle and every
volunteer has different muscle structure.

We can observe that a big difference of the number detection accuracy between left hand
and right hand exists. This is because people tend to type in ‘1’ ‘4’ ‘7’ ‘8’ ‘0’ with left hand
and the others with right hand. And the numbers touched by right hand are close to each
other. The way we use to generate candidate is basically replacing classification outcome
one by one. For example, if the ground truth is ‘5709’. But the classifier give us ’5749’.
Then the top-4 candidate list will be ‘0749’ ‘5049’ ‘5709’ and ‘5740’. So we have recovered
the right typing in the top-3 candidate list. Fig. 8.2 presents the top-k success rate of the
PIN sequence reconstruction compared to simple brute-force.

In the experiment to recover passwords, we ask the volunteers to type in ‘a’ ‘s’ ‘d’ ‘f’ ‘j’ ‘k’
‘l’ ‘;’ each for 20 times for classification, and another 20 times for testing. Then, we ask
volunteers to type in multiple passwords. The construction of the passwords include lower
case letters, upper case letters, numbers and symbols. We first evaluate the performance
of finger classification subsystem. Input event detection subsystem is employed here and it
has one hundred percent accuracy. There is one SVM classifier for each volunteer trained by
their own labeled samples. The classification accuracy for each volunteer is shown in Fig.
9.1.

Basically, the way we use to generate candidate is to replace one classification outcome one
by one. For example, if the ground truth is ‘see’, which is {ring finger, middle finger, middle
finger}. But the classifier gives us {ring finger, index finger, middle finger}. Then the top-3
candidate list will be {pinky finger, index finger, middle finger}, {ring finger, middle finger,
middle finger} and {ring finger, index finger, index finger}. So we have recovered the right
typing in the top-3 candidate list. The other factor we use to generate the candidate list is
from the coordinate transformation subsystem. Coordinate transformation subsystem can
make it easy to differentiate situations like ‘r’ and ‘v’. Fig. 9.2 presents the success rate of
the password reconstruction.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 24

Figure 2.17: Finger classification accuracy Figure 2.18: Top-k success rate

Figure 2.19: Evaluation on inferring passwords.

2.6 Further exploration: Password Extraction Without
Prior Information

In the supervised implementation, we assume our application includes an initialization phase,
during which a user is instructed to do a series of tapping actions. We make a further effort
to make our attack even more stealthy and practical. We get rid of the training phase in our
unsupervised implementation. The assumption reduces to that the application instead only
need to have the ability to record EMG sensor data of the user typing in an article.

2.6.1 Extracting user muscle models without labeled data

The difference between supervised and unsupervised implementation lies on the finger classi-
fication subsystem. Other than that, the procedure is the same. In finger classification sub-
system for unsupervised implementation, it uses model obtained from unsupervised learning.
We record the whole process of a user typing an article and then we apply k-means cluster-
ing method with principal component analysis (PCA) to all the unlabeled samples collected
from the article. With the letter frequency analysis of English text, the subsystem can know
which cluster corresponds to which finger. For example, if one of the letters ‘a’ ‘q’ ‘z’ appears
in the article, it means one keystroke with little finger. And according to the letter frequency
ranking of the sum of ‘a’ ‘q’ ‘z’ in English text, we can know the correspondence between
finger and cluster. Because the cluster with the greatest amount of samples relates to the
finger used most frequently in English text typing. The frequency analysis of English text is
in Fig. 10.1 [55]. In comparison, Fig. 10.2 is the frequency analysis of the article we used in
our experiment. After training, the classifier could give us which finger a new signal segment
is related to.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 25

Figure 2.20: In English literature. Figure 2.21: In our article.

Figure 2.22: Comparison of relative frequencies in English literature and in our article.

2.6.2 Experiments and results

As usual, we evaluate the performance of finger classification subsystem first. We ask the
volunteers to type in an article with two thousand letters. Then, we ask volunteers to type in
same passwords as the first implementation. The EMG data gathered is put into the input
event detection subsystem. We implement a small experiment here to test the performance
of our input event detection subsystem. We extract the signal segment of twenty letters from
each volunteer and combine the signal segments together. Then we put the composite signal
into our input event detection subsystem. It turns out if we set the maximum false positive
rate to be five percent, our subsystem could detect eighty four percent of the events. With
the timestamps, we can extract the keystroke samples out. We adopt k-means clustering
to the unlabeled samples to find the centroids. The finger classification accuracy for each
volunteer is shown in Fig. 11.1. What worth mentioning here is that thumb movement is
not required when recovering password. So whenever the sample segment to be classified is
close to the centroid for thumb, we label it as index finger. We apply the same way as the
first implementation to generate candidate list and Fig. 11.2 presents the top-k success rate
of the password reconstruction.

2.7 Related Work

2.7.1 Digital Key Steal

It has been a long history of adversaries trying to steal the key entries of users on key-based
security systems. A popular tool broadly employed by adversaries is keylogger which can log
all the keystrokes on the computer. The only drawback of this tool is that it leaves footage on
the victim’s computer. Some other traditional attacks in [38, 39] rely on shoulder surfing and
hidden cameras. In these kinds of attacks, the malicious code will gain access to the direct

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 26

Figure 2.23: Finger detection accuracy Figure 2.24: Top-k success rate

Figure 2.25: Evaluation on unsupervised typing model.

visual image of the key entry process. However, the capability to gain access to camera is a
strong assumption. In order to achieve stealthiness, we can see another line of work which
focuses on developing novel side-channels to infer the key entries. For example, the sound
produced by different keystroke can be a valid side-channel to infer keys as described in [35].
Following this line of research, a bunch of other valid side-channels are discovered such as
electromagnetic emanations [56], acoustic emanations [37, 57, 58], optical emanations [59],
and even the vibration of wooden desk [36]. The main drawback of these side-channels is that
special equipments need to be deployed beforehand. Researchers noticing this drawback try
to install malicious application on smartphone to exclude the strong assumption. However,
the experiment results in [36, 37] indicates that smartphones need to be placed close enough
to the keyboard by the victim, which is not the case in most scenarios. In recent years,
wearable devices are becoming part of modern life. Researchers who notice the trend start
to exploit sensors on wearable devices to do keystroke or PIN sequence inference. Two recent
papers [8, 7] leverage sensors on smartwatch to infer PIN sequence. Explicitly, both of them
take advantage of the accelerometers to measure the distance between two different input
on ATM machine to recover PIN sequence. [8] takes one more step to get rid of training
phase which is required in [7]. [7] also provides a method which employs accelerometers and
audio recorder on smartwatch to infer keystrokes on keyboard. However, it can only recover
user’s typed words and will not work with non-contextual inputs. [60] employs camera to
capture user’s hand and the back side of the touch screen to recover smartphone lock PIN.
The method has a low inference accuracy and it assumes the capability for malicious code
to access sensitive sensor.

Ruide Zhang Chapter 2. Understanding Privacy Leakage in IoT 27

2.7.2 Human Movement Detection

Detection of human movement by simple threshold methods and simple energy comparison
between neighbor signal windows has been presented in [44, 45, 46] and in [47]. However,
those methods are not suitable for cases where signals appear dynamic and noisy. Also, to
obtain the timestamp of movement visually as in [48] is neither accurate nor efficient in our
case. In addition, unlike classical detection problems where every event is well identified in
its time and frequency contents, EMG signals are nonstationary and is extremely complex on
time-frequency domain. Therefore, EMG signals cannot be analysed with classical methods,
and no unique database can be set up for any person [28]. Fortunately, the generalized
likelihood ratio test in [49, 50] can be utilized to build DCS which can be used to detect
human movement [28, 29, 30, 31, 32]. Nonetheless, their method cannot be directly applied
to our case because our EMG signals has eight channels and requires distinguishing between
two similar patterns (i.e., pushing and releasing of keys).

2.8 Summary

In this work, we study on a new kind of side-channel information leakage on gesture control
device in AR. By exploiting the EMG and acceleration signals available on the wearable
device, we are able to recover passwords from keyboard and user login PIN on touch screen
device. To succeed in the attacks, we address unique challenges in using the EMG signal.
More specifically, we invent new movement detection algorithms based on DCS to reliably
detect movement events of fingers. In our exploit with unsupervised learning, we avoid the
assumption of labeled sensor data which makes our attack stealthy. In the same time, it is
able to recover complex passwords constructed with lower case letters, upper case letters,
numbers and symbols with mean success rate of 56% in the first 5000 trials. Furthermore,
our exploit with supervised learning is able to achieve mean success rate 91% in the same
settings. Through experiment data recorded with volunteers, we show that our exploits can
be applied to users from different age and gender group. Lastly, we provide a discussion on
the possible mitigation to the attack.

Chapter 3

Defending against Compromised
Network Components

3.1 Privacy-preserving Radio Context Attestation in Cog-
nitive Radio Network

With the large scale deployment of smart devices, the world has witnessed an increasing
utilization of wireless communications in the last decade [61]. According to Cisco, global
mobile data traffic will reach about 25 Exabytes per month by the end of 2019 [62]. Wireless
communities throughout the world have recognized the shortage of spectrum for commercial
broadband uses and acknowledged the urgent need for an effort to make more efficient use
of the available spectrum.

One of the key technologies to improve spectral efficiency is spectrum sharing in a cogni-
tive radio network (CRN) [63], where opportunistic access to the radio spectrum that was
originally allocated to the primary users (PUs) exclusively is now allowed to be accessed by
secondary users (SUs) when the spectrum is not used by the PUs. In [64], the U.S. Federal
Communications Commission (FCC) has described a dynamic spectrum management frame-
work for a Citizen Broadband Radio Service (CBRS) governed by a spectrum access system
(SAS). Based on the spectrum utilization plans from PUs and radio environment maps from
sensing partners such as Google, SAS manages the use of available spectrum opportunities
for SUs by granting transmission permits to CRs based on their access level and location.

While spectrum sharing holds great promises, correct operations of SAS often assume hon-
est participation. CRs need to faithfully report the sensing results and strictly follow the
transmission permits issued by the SAS. Due to the dynamic reconfigurabiity, selfish users
or malicious attackers can easily reconfigure their radios to gain unfair advantage or to cause
harm to the network.

28

Ruide Zhang Chapter 3. Defending against Compromised Network Components 29

One way to ensure the operational correctness is via remote attestation. Remote attestation
is a process of making a claim about properties of a target by supplying evidence to an
appraiser or verifier over a network [65]. The primary objective of remote attestation is to
provide verifiable evidence about the state of software executing on a system. This evidence
is intended to ensure that targets will not engage in some class of misbehavior. The process
of verifying the verifiable evidence on appraiser is called appraisal. Remote attestation may
be used to address a number of trust problems, including guaranteed invocation of software,
delivery of premium content to trusted clients, assuaging mutual suspicion between clients,
and more. In the context of CRN, remote attestation provides cryptographically verifiable
evidence on the state of a CR device to prove the compliance of the CR. In [66], remote
attestation is used to measure the cognitive radio context as a compliance check, however,
the problem of spectrum availability privacy receive little attention. In order for the verifier
to assess whether the received configuration is correct or not, he will need to possess the full
knowledge of legit configurations. In CRN, this configuration consists of software configura-
tion, radio configuration and location. To make the decision on the compliance of CR, the
verifier not only need to know the CR radio context but also the full spectrum information,
which is often sensitive. For example, leakage of location trajectory and transmission param-
eters is a serious concern for PUs that are sensitive military devices [67]. With these highly
sensitive information, a malicious actor can infer where a military base is located and where
an army is heading towards [68]. And leakage of software configurations can also allow an
adversary to make use of known vulnerabilities in a CR device [69].

Existing approaches towards protection of spectrum information privacy is to treat the SAS
as a sensitive database, and secure computation techniques are used to construct privacy-
preserving queries [70]. However, direct application of these techniques can lead to significant
scalability issue both in the number of radio devices and the number of possible configura-
tions. First, the number of possible configurations for each device is not a small number
since a radio context configuration consists of not only the software configuration but also
the location and radio transmission parameters, which leads to many possible combinations
of legit radio context configuration. Second, cryptographic privacy-preserving methods of-
ten involves significant computation overhead even if the problem can be formulated as a
multi-party computation problem. Furthermore, billions of radio devices are expected to
be connected to the mobile network, this shear scale would require an efficient method to
handle the configuration verification in CRN attestation.

In this work, we present PRIvacy-preserving Radio cOntext atteSTation in cognitivE Radio
networks (PriRoster). We achieve the goal of preserving privacy of a local appraiser (LA)
on an edge base station (BS) by introducing trusted hardware, i.e. Intel SGX [71]. While
building a secure system on top of Intel SGX is mostly a development effort, the integration
of Intel SGX to preserve privacy in CRN radio context attestation is challenged by scalability
requirement and by side channels on Intel SGX.

The first challenge is scalability when integrating Intel SGX for mutual verification between
CRs and BSs. For a CR device to establish trust on an edge BS before uploading the at-

Ruide Zhang Chapter 3. Defending against Compromised Network Components 30

testation report, the CR device needs to perform remote attestation on the SGX enclave
inside the edge BS. However, CR devices are resource-constrained and frequently performing
remote attestation on SGX enclave consumes energy and adds unacceptable computation
burden on the Intel Attestation Service (IAS). Furthermore, creating independent SGX en-
claves for a large amount of CR devices introduces a large computation load on the edge BSs.
In PriRoster, CR devices delegate the power-consuming attestation on SGX enclaves to the
more powerful SAS server and only one enclave is needed on each edge BS for conducting
local appraisals.

The second challenge is the privacy leakage from memory access side channel on Intel SGX.
Memory access side channel is a known vulnerability on Intel SGX [72, 73, 74]. A privileged
software can observe the memory access pattern of an enclave to extract sensitive information.
In our case, an edge BS can infer the radio context of CR devices from their memory access
patterns which are observable by the edge BS. In PriRoster, we design oblivious appraisal
functions for preventing memory access pattern leakage.

To summarize, our contributions are:

• We propose PriRoster, a privacy-preserving radio context attestation technique that al-
lows a untrust verifier to carry out remote attestation of a CR device’s context without
knowing the device’s context information itself. This technique can effectively conceal
the operational parameters of the PUs’ as well as the CR devices’ from untrusted
network components such as an intermediary edge BS.

• We consider a systematic network-wide large-scale remote attestation which allows a
large number of remote devices be attested simultaneously and efficiently. We propose
a novel trust transfer mechanism to address the scalability problem raised in this
scenario. Individual devices can rely on the attestation result done by an trusted
entity rather than each carrying out a separate attestation process.

• To address the memory side channel limitation of Intel SGX, We design an oblivious
appraisal function that effectively prevents leakage of sensitive PU information through
memory access at the edge BS.

• We build a prototype system of PriRoster using USRP, Raspberry Pi, Intel NUC, and
Amazon AWS. The prototype system shows the feasibility of the PriRoster framework.

3.2 Background

3.2.1 Spectrum Sharing in CRN

To tackle the problem of spectrum scarcity, spectrum sharing is proposed to allow new en-
trants to utilize the radio spectrum allocated to incumbents when the spectrum is not in use.

Ruide Zhang Chapter 3. Defending against Compromised Network Components 31

The spectrum sharing solutions can be divided into two categories: decentralized and cen-
tralized. Decentralized solutions are not reliable because of sensing challenges such as hidden
node problem. The centralized dynamic spectrum management framework is increasingly
attracting more attention. FCC has proposed a centralized dynamic spectrum management
framework for CBRS governed by SAS. It is a three-tiered spectrum authorization framework
accommodating a variety of commercial uses on a shared basis with incumbent federal and
non-federal users of the 3.5 GHz band. The three tiers are: Incumbent Access(IA), Priority
Access (PA), and General Authorized Access (GAA) [75]. IA has the highest priority while
GAA has the lowest. The CR devices in this paper refer to the devices at PA or GAA level.

The SAS is capable of dynamic frequency assignment and interference management[76].
The core of the SAS is a database system which receives feedings from incumbent users
regarding spectrum usage information, such as usage duration and operational parameters.
Operational parameters include primary user identity, location, transmission power, antenna
parameters, and interference tolerance. With the spectrum usage information provided, the
SAS determines the available frequency within an area at a time slot and assign them to
nearby CRs and determines the maximum transmission power [76, 75]. Meanwhile, SAS is
responsible for detecting and removing CRs that do not obey its assignment.

3.2.2 Radio Context Attestation in CRN

The security of the SAS system involves the protection of the SAS databases and functions
at the servers and the confidentiality and integrity protection of the operational CR devices
in the field. In [66], we proposed a remote attestation framework for CRNs that aims
to ensure the operational integrity of the CR devices by remote radio context attestation.
As shown in Fig. 3.1, there are three major entities in the architecture- SAS, Regulatory
Authority (RA) and Local Appraiser (LA). RA is a regulatory entity like FCC and LA
denotes a local appraiser typically hosted on an edge base station. RA informs SAS to
start attestation tasks by sending it an attestation token. Upon receiving the token, SAS
delegates its appraisal tasks to LA and LA performs local appraisal of attestation reports
from radio devices. In that architecture, both RA and LAs are trusted entities in the network.
However, since edge base stations do not have same security level as SAS and is more likely
to be compromised, the sensitive information is not safe kept on LA. Thus, in this paper,
we consider the protection of sensitive information released to LAs and we integrate trusted
hardware to mitigate information leakage from LAs.

3.2.3 Intel SGX

Intel SGX is Intel’s latest instruction extensions that allows processes to shield part of their
address space from privileged software such as operating system and hypervisor. Processes
on SGX-capable platform can construct trusted execution environments called enclaves. In-

Ruide Zhang Chapter 3. Defending against Compromised Network Components 32

AuthorityAuthority
SASSAS

Local
Appraiser

Local
Appraiser

Edge

 Base Station

Local
Appraiser

Edge

 Base Station

Local
Appraiser

Local
Appraiser

Edge

 Base Station

Local
Appraiser

Edge

 Base Station

Figure 3.1: Radio Context Attestation in CRN.

tegrity and confidentiality guarantees are provided to security-sensitive computation con-
ducted inside the enclaves. Intel SGX also provides remote attestation and provision, which
allows a remote party like a SAS server to verify an application enclave’s identity and se-
curely provision keys, credentials, and other sensitive data to the enclave on an untrust host,
such as an edge BS.

Despite the new security capabilities brought by Intel SGX, there are some known security
limitations in modern Intel processors. Although Intel’s autonomous memory encryption
engine (MEE) encrypts data in DRAM, if an attacker sniffs the address bus physically, he
or she can observe a cache line-granularity side channel, which has been confirmed at both
page [73] and cache line level [72]. We integrate oblivious function to mitigate this leakage.

3.3 PriRoster System Model and Assumptions

System Goals

PriRoster is designed to take a network-wide attestation of CR devices. The aggregated
attestation report, if successfully verified, is a cryptographical proof of the compliance of all
the CR nodes to the spatial-temporal sensitive radio policy. During this process, the radio
context of individual CRs should not be accessible by BSs, and neither should the BSs learn
the full details of the PU’s operational parameters.

Threat Model

For CR devices, we assume attackers can gain control of a CR device by conducting software
attacks. They can thus modify radio related parameters like transmission power, modulation
method and more. Attackers can also fabricate network packets coming out of the controlled
device. We do not consider hardware attacks. For edge BSs, we assume there could be
an malicious actor like a malicious insider or a remote attacker controlling its computing

Ruide Zhang Chapter 3. Defending against Compromised Network Components 33

platform. The malicious actor can intercept or fabricate information in and out the edge BS
via its network interface. We assume an adversary can use privileged software to observe
fine-grained memory trace.

Assumptions

We assume CRs are equipped with trusted hardware components like widely available ARM
TrustZone [77]. We assume CRs’ software stack contains normal world and secure world. And
the integrity of secure world software is guaranteed by secure boot. We assume certificates of
SAS and RA are preloaded to the secure world of CR nodes and certificates of both RA and
CR nodes are available to SAS. We assume remote attestation report generation is sitting
inside trusted hardware and software attack cannot reveal or modify the process. We assume
CR devices are powerful enough to perform asymmetric cryptograhic primitives. For edge
BSs, we assume they are equipped with Intel SGX [71]. We assume edge BSs can control
the privileged software like hypervisor and operating system but cannot modify hardware.

3.4 PriRoster Framework

PriRoster is a network-wide radio context attestation framework that allows secure and
scalable verification of operational integrity for a large number of CR devices in a spectrum
sharing network. In order to keep the framework scalable, radio context appraisal of CR
nodes is delegated to edge BSs while only aggregated attestation results are sent back to
SAS. However, radio context (location, spectrum usage, power level, operating time and
software configuration) of CR node contains sensitive information. Thus, local appraisal
should not leak actual radio context on CR nodes to edge BS. Besides, SAS compliance rules
used in local appraisal needs protection since this information can be used to infer sensitive
information of primary users like location of military radios. Therefore, in our design, we
target at preventing both CR’s radio context and compliance rules in local appraisal from
being leaked to edge BS. To achieve this goal, are three major challenges:

• Conducting local appraisal at untrusted edge nodes may leak sensitive information
including radio context and compliance rules. To provide privacy-preserving radio
context attestation, we implement LA’s functionalities in an enclave on the edge BS.
This process is detailed in Sec. 3.4.1.

• To scale up, multiple devices with same service request are assigned to share one enclave
at a BS. However, remote attestation of the LA enclave needs to be conducted by each
CR device to establish the trust on the LA enclave by the CR devices. This leads to
non-negligible energy consumption at each CR and a tremendous amount of attestation
burden on IAS server. We propose a trust transfer design which delegate the task of

Ruide Zhang Chapter 3. Defending against Compromised Network Components 34

remote attestation of LA enclave from CRs to SAS thus minimize the number of remote
attestations that need to be done in Sec. 3.4.2.

• Intel SGX provides confidentiality and integrity for enclave programs, however, there
are known security limitations of Intel SGX itself. For example, although privileged
software cannot access enclave memory, it can be used to observe memory access pat-
tern [73]. Therefore, an attacker controlling privileged software can potentially disclose
sensitive information such as software configuration of CR. To mitigate this kind of
side channel attack, we realize oblivious software configuration appraisal by designing
oblivious function in Sec. 3.4.3.

3.4.1 Privacy-Preserving Single Device Attestation

In this section, we present privacy-preserving remote attestation of radio context on a sin-
gle device. We take advantage of trusted hardware (i.e. Intel SGX enclave) for defending
against compromised edge BS. From a high level view, SAS distributes radio context at-
testation request and LA enclaves conduct the radio context attestation on behalf of SAS.
Before delegating radio context attestation task to LA enclave, SAS needs to assess the trust-
worthiness of LA enclave’s execution environment by performing remote attestation on it.
Similarly, CR node needs to first verify the trustworthiness of LA enclave before accepting
the attestation request from it. Then CR sends its radio context report to correctly verified
LA enclave with confidence that both the integrity and confidentiality are guaranteed. In
the end, LA enclave sends local appraisal results to SAS and single device attestation is
completed.

Base Station

Radio

!"#$$%&$

"""'%()%&$

*"#$$%&$"'%()%&$

+"#$$%&$"'%()%&$

,"#$$%&$"'%-.'$"R

/"0%'123"R"

4"'#51."6.7$%8$"'%-.'$

9":%#&)'%"

""""6.7$%8$

'#51.

0%'123

;

<"#$$%&$#$1.7

""""'%&)=$

'#51."

172.

normal

world

secure

world

IASSAS

enclave

Figure 3.2: Privacy-Preserving Device Attestation

Ruide Zhang Chapter 3. Defending against Compromised Network Components 35

As shown in Fig. 3.2, authority initiates a radio context attestation. SAS pushes a remote
attestation request to BSs in step 1 . Each BS forwards the request to the CRs within its
range in step 2 . Upon receiving the request, a CR in turn requests to attest the execution
environment of the LA enclave running on the BS in step 3 . LA enclave replies with
its enclave attestation report R to the CR node in step 4 . With the help of IAS, the
CR assesses enclave’s trustworthiness in step 5 . Only if a positive verification response
from IAS is received, will the CR start radio context measurement in step 6 . Then the
attestation report is sent to LA in step 7 . With the information regarding compliance rules
(radio assignment information and correct software configuration) received from SAS, LA
enclave conducts radio context verification for the CR in step 8 . In the end, LA enclave
sends back attestation result to SAS in step 9 .

The detail of radio context attestation protocol is outlined in Fig. 3.3, describing a successful
protocol run. Note that we assume SAS and CR nodes know the public key of RA, and RA
and CRs also know the public key of SAS, as described in our assumptions in Sec. 3.3. In
addition, SAS has to set up a LA enclave on each untrusted edge node involved with the
help of IAS before delegating radio context attestation task to it. After successfully setting
up the LA enclave, an unique attestation key used to produce signature will be burned
into each newly established LA enclave. SAS conducts authentication on LA enclave by
verifying LA enclave’s signature against an endorsement certificate created by manufacturer
Intel. A secure channel between SAS and LA enclave will be established after LA enclave is
successfully set up. Acronyms and parameters definition are shown in Table. 3.1.

Table 3.1: Acronyms & Parameter Definition

RA Regulatory authority
SAS Spectrum access system
LA Local appraiser
IAS Intel Attestation Service

kij Shared secret key between CR di and local
enclave appraiser Ej

kAEj
Shared key between global appraiser and
base station enclave Ej

Ŝi Measured software configuration of di
f̂i Measured frequency band used by di
p̂i Measured power level of di
L̂i Location measurement of di
Conf Correct software configuration at SAS
τ Attestation token from RA
NA Nonce generated by RA for attestation
di Identification of CR device i
MACij MAC generated by di using key kij

Steps 1 and 2 show the propogation of radio context attestation request from SAS to CR
devices. After mutual authentication with RA, SAS obtains a valid token τ from RA. SAS

Ruide Zhang Chapter 3. Defending against Compromised Network Components 36

!"#$%"&'!"(
)*

+,%-.#"'#$(
/

% &'()&

! *"' !"' *+,"$ - 0.1$2&%2,3"43&

#"5$6$%.3$2,7 " .'*+,/012
.' ()

8","5.3"&5.1$2&

%2,3"43&.33"93.3$2,&

5":;"93&
.33"93.3$2,&5":;"933 &'()&

.33"93.3$2,&5":;"93<"5$6=&5":;"93>

?,3.-&.&5":;"93&

32&.33"93&",%-.#"

4@".9;5"&

5.1$2&%2,3"43
5"A253&B".9;5"C&

?!&.,1&@/D 625E.51&5"A253

<"5$6=&

5":;"93

5 .33"93.3$2,&5":;"93

6 9",1&5"A253&7
8","5.3"&"4"%;3$2,&

",#$52,B",3&5"A253
8 <"5$6=&7 E$3F&
3F"&F"-A&26&?/*&&

%2BA-"3"1

Figure 3.3: The radio context attestation protocol

sends the attestation request consisting of τ and a nonce NA to local enclaves. Nonce
NA is used to resist the replay attack and to associate an attestation request with the
corresponding attestation report. It can prevent an adversary from reusing old attestation
requests, thus stopping potential DoS attacks where an adversary spams attestation requests
on the network.

Steps 3 to 5 describe attestation of the LA enclave. Upon receiving a radio context at-
testation request, the CR node verifies the token generated by RA and check the included
nonce NA to ensure the freshness of this request. If the request is verified correctly, CR node
initializes a request to attest the execution environment of LA enclave. This verification is
done with the help of IAS, and detail of SGX enclave attestation can be found in [78].

Steps 6 to 9 are the radio context measurement and report process. Radio context Mi is
measured by the attestation routine inside ARM TrustZone of CR device. A CR device i
then generates the response {Mi, di,MACij}, where MACij = MAC(Mi, di, NA), using the
shared secret key kij between CR device i and LA enclave j. MAC value is used to ensure
both source and content integrity of the report. Mi, the radio context, contains four parts,
{Ŝi, f̂i, p̂i, L̂i}, which will be explained in step 8 , verification of radio context, as follows.

The software configuration Ŝi generated by hashing the memory pages is verified by checking
against a set of known benign device software configurations received from SAS. If Ŝi is not
on the list, then it is likely that the CR platform software stack is compromised. However,
there is no known list of compliant radio configurations due to dynamic spectrum availability.

Ruide Zhang Chapter 3. Defending against Compromised Network Components 37

!" #$%&'()*!"+ "," -,"

'..)/.'.01$23)45)/.

!6227)30892!" :'/);2

1$20./23)<13.2

'..)/.'.01$23)<13.

"62-$0.0'&0=)2'..)/.'.01$2

3)45)/.21$2!"

'..)/.'.01$23)<13.

#62>)$)3'.)22

3)<13.2#

Figure 3.4: Trust Establishment of SAS on SGX enclave

To verify the radio configuration, LA enclave first verifies if the used channel f̂i reported by
CR is the same as what is assigned by SAS. Then the power level p̂i is compared with the
maximum power allowed by SAS. In conclusion, CRs are audited by LA enclave to ensure
that they do not exceed the maximum transmission power at given location on assigned
channel by SAS. In the end, LA sends the attestation result r of a CR with corresponding
MAC(r,NA) to SAS in Step 9 .

3.4.2 Privacy-Preserving Multiple Devices Attestation

Running single device attestation described in Sec. 3.4.1 can satisfy the security requirement
but it is not scalable. If one has to set up an LA enclave for each CR device, a large number
of enclaves will have to be established which is a big burden for the host. In our PriRoster
design, only one LA enclave is established at the edge BS node, and this one LA enclave will
serve multiple CRs associated to this BS.

Another scalability concern is that, by the naive design, each CR device needs to carry out a
remote attestation on the LA enclave it associates before it sends radio context report to the
enclave. This would be duplicated efforts if multiple CRs are connected to a same LA enclave.
Considering that a remote attestation is a much more expensive process comparing to a
cryptographic authentication, in our PriRoster design, we release the resource-constrained
CR deviced from the burden of carrying out the remote attestation of the LA enclave.
Instead, we delegate the attestation of the LA enclave to the more resourceful SAS and
transfer the trust established on the LA enclave by SAS to each individual CRs through an
authentication protocol.

The task delegation is a two-step process: Trust Establishment and Trust Transfer.

Trust Establishment: Fig. 3.4 shows the trust establishment on LA enclave by SAS through

Ruide Zhang Chapter 3. Defending against Compromised Network Components 38

!"#$%"&'!"()* +,%-.#"'#$(*/*

%&'()*+, (-./0123
%&'()*+,

%&'

!"#0","1.2"&34.1"5&3"%1"2&6"7&8$24&#$

%45'

21.,39"1&%&'6.,5&7*+,

'3:928.1"&%:,9$0;1.2$:,(&

$"#<;2;.-&.;24",2$%.2$:,&8$24&5$0$2.-&%"12$9$%.2"=

%"#0","1.2"&34.1"5&3"%1"2&6"7&%&' 241:;04&**>

Figure 3.5: Trust transfer procedure by transferring symmetric key.

conducting remote attestation on enclaves. SAS first initializes a remote attestation request
on enclave Ej to assess the execution environment trustworthiness of local enclave. Local
enclave Ej generates a report and sends it back to SAS. Once the attestation result is verified
correctly by SAS with the help of IAS, SAS’s trust on LA enclave will be established.

Trust Transfer: Following trust establishment, SAS can transfer its trust on a LA enclave
to individual CRs assocaiated with that LA, through authentication protocol. We propose
two implementations of trust transfer: i) Symmetric Key Transfer, ii) Public Key Certificate
Distribution. Essentially, the task of attesting the trustworthiness of enclave is delegated to
SAS.

i) Symmetric Key Transfer: Trust transfer through transferring symmetric key is outlined
in Fig. 3.5. Both SAS and CR devices have their own public keys so mutual authentication
can be done between SAS and any CR i, and a shared secret key kij can be generated
securely during this process, where j denotes the BS that the CR is associated with. SAS
then securely transmits this shared secret key kij to LA enclave j. For a CR device, the
keys are stored in its trusted hardware and cryptographic computations are performed in
its secure world. Instead of carrying out a remote attestation on LA j, CR i now relies on
authentication of LA j based on the shared secret kij in order to gain trust on LA enclave j.

ii) Public Key Certificate Distribution Alternatively, SAS can issue a certificate with an
expiration time to an LA enclave once a successful attestation is done. LA enclave sends
both the attestation request and its signed certificate to the CRs to start radio context
attestation at each individual CR device. CRs establish trust on LA enclave by verifying
the received certificate. In the end, CRs send back the radio context report to trusted LA.

Ruide Zhang Chapter 3. Defending against Compromised Network Components 39

However, this method requires constant certificate verification on the CR side. And this
is not suitable for defending against hardware attack. Thus, we choose the symmetric key
transfer scheme.

Note that authentication and attestation establish different levels of trust. Crypto authen-
tication protocols only verify the keying material. As long as the party being authenticated
demonstrates the knowledge of the secret keying material, the trust is established. However,
enclave attestation verifies not only the keys, but also the code and data integrity inside the
enclave. Authentication can only ensure that the party holds the right key, while attestation
can also ensure the operational integrity of the party. Therefore, the trust transfer is not at
the same trust level. The transfer would remain at the same level if the following assump-
tion holds: no successful attack to the enclave between the SAS attestation and the CR
authentication. We made this assumption as it is very likely to be true and the delegation
of attestation tasks allows significant computation savings in the overall system.

3.4.3 Defense Against Side Channel Attack

One of the primary tasks in software configuration appraisal is the verification of the cryp-
tographic hash of the system memory that captures the software configuration. If the hash
checksum does not match any of the known good configurations, then the device is considered
compromised. However, if a matched is found before reaching the end of lists of legitimate
configurations, the function returns without doing further comparisons. However, such early
termination of comparison leaks side channel information allowing the attacker to extract
the software configurations of the target under attestation. We perform a experiment to
demonstrate the side channel information leakage of this design in Fig. 3.6(a).

While an enforced full traversal design would solve the early termination of hash comparison,
the attacker can also exploit memory access pattern on the preparation of the result network
packet. More specifically, he can observe if the attestation pass or fail based on if the real
device id memory is loaded or the stub id memory is loaded. We show evaluation of this
information leakage in Fig. 3.6(b). In comparison, with integration of the following oblivious
function, we design an oblivious appraisal process whose memory trajectory is shown in
Fig. 3.6(c). The detail design is discussed in Sec. 3.7.2.

To mitigate this information leakage, we implemented an oblivious software configuration
appraisal by designing oblivious function with X86 cmovz instruction. X86 cmovz instruction
moves source operand to destination operand if condition code is true. When both source
and destination operands are put in registers, this data transfer turns out to be oblivious
and leaks no information about the branch selection. Our design is similar to [74, 79, 80].
An OCompare() function is used to hide the trace of software configuration comparison
by using cmovz instruction. This function takes in input including hash of two software
configurations and return the device id only if the two hashes match. Note that, the hashes
here are trimmed to fit in register. The authors consider trimmed hash is robust enough for

Ruide Zhang Chapter 3. Defending against Compromised Network Components 40

(a) Memory Access Pattern of Naive Appraisal
Process.

(b) Memory Access Pattern of Appraisal Pro-
cess with Full Traversal Design.

(c) Memory Access Pattern of Oblivious Appraisal Process.

Figure 3.6: Memory Access Pattern of Native Appraisal Process (a), Full Traversal Design
(b), and Oblivious Appraisal (c).

Ruide Zhang Chapter 3. Defending against Compromised Network Components 41

CPU

sw1

sw2

id

res

Memory

esi

edx

ecx

eax

cmovz

cmp

read

write

Figure 3.7: OCompare() function diagram.

current circumstance. If the two configurations mismatch, this function does not change the
return buffer for result. The function has four main steps, 1) both values are loaded into
register, 2) the cmp instruction compares received hash of software states and update Zero
Flag (ZF) in EFLAGS register to reflect the comparison, 3) the cmovz instruction copies
id into the destination register according to ZF, 4) the test instruction resets EFLAGS
register by comparing known values. Fig. 3.7 shows the process. OCompare() presents the
same memory access pattern since the operation is done all within registers. Therefore, an
attacker can not distinguish from memory traces which software configuration is selected.

3.5 Security Analysis of PriRoster Local Appraisal

In this section, we analyze the security of PriRoster local appraisal process in terms of radio
context, compliance rules and memory oblivious function.

Confidentiality of the Radio Contexts and Spectrum One of the primary security
goals of PrivacyScopeis to ensure the confidentiality of configurations of the prover (CR)
from verifier (BS). There are two aspects of confidentiality in the attestation process, the
confidentiality of individual provers (CRs) and the set of legal configurations derived from
the sensitive spectrum information. The individual prover’s configurations are protected
via either remote attestation or trust verification in the transfer process. More precisely,
with remote attestation, the CR can verify not only the identity but also the configuration
of the system that processes his submitted information. As a result, the information is
protected by the TEE in BS. Through the trust transfer process, individual CRs leverage
verification of authentication token to alleviate the process of the remote attestation to the
trust on authority in that he has performed the attestation and have verify the environment
appropriately. For the spectrum availability, since all the information are processed within
the TEE and is only used to perform attestation, its protections will be based on the security

Ruide Zhang Chapter 3. Defending against Compromised Network Components 42

guarantee of the TEE.

Defense against Side Channel We define a program’s interaction with memory as a
trace execution τ which records the access type (read or write) and address of some con-
tents. We express our proof using a simulation-based technique: for each run of a software
configuration comparison procedure that yields a trace τ , we show that there exists a simu-
lator program, whose software configuration under comparison is different from the original
comparison procedure, that simulates the interaction of the original comparison procedure
with memory by producing a trace τ ′ indistinguishable from τ . More precisely, we define
indistinguishability similar to semantic security in cryptography using a game between a sys-
tem that runs the comparison procedure (or the simulator) and a computationally bounded
adversary that interacts with the system to observe the trace and attempts to guess whether
it interacts with the original procedure or the simulator. The comparison procedure is secure
when such adversaries guess correctly with probability at most 1

2
plus a negligible advantage.

To ensure security of comparison procedure, we first need to evaluate the OCompare() func-
tion in Fig. 3.7. Since the code operates on the processor registers only and never accesses
memory, it operates within the (trusted) boundary of the sealed processor chip. As such,
evaluations that involve registers only are not recorded in the trace τ , hence, we consider any
register-to-register data manipulation secure. As such, we evaluate full traversal design with
OCompare() function. Since we use a full traversal design, different software configuration
input will all go through all the OCompare() functions. Simulation of the program with a
different software configuration as input cannot be differentiated from original trace τ by the
adversary.

3.6 Implementation of PriRoster Prototype

For CR device prototype hardware setting, we select Raspberry Pi 3 as application processor
and USRP N210 as baseband processor. USRP N210 has been one of the standard radio
platform for CR research. For CR device software setting, we apply TrustZone to build a
trusted environement for the attestation software. To be specific, we use OPTEE secure
kernel [81] in the secure world and build a OPTEE Static Trusted App called ATTEST with
approximately 1000 software line of code (SLOC) to serve as attestation software. We use
Ubuntu 15.04 with 4.6.3 ARM 64 bit Linaro Linux kernel in normal world. The radio core
device driver libUHD is the software for controlling USRP N210. It sits in the normal world
and is loaded in an address known to ATTEST at runtime. The radio parameters used by
LibUHD are saved as global variables in a specific memory location known to ATTEST.
Upon receiving a valid remote attestation request, ATTEST will perform SHA256 checksum
of the linear memory map of libUHD and code page of Operating System kernel and embed
the hash result with retrieved radio parameters inside the attestation report. We refactor

Ruide Zhang Chapter 3. Defending against Compromised Network Components 43

openSSL 1.0.1f library for cryptographic operations and secure communication.

For edge BS, we choose Intel NUC which supports Intel SGX natively. The NUC is powered
by Intel i7-6770HQ Skylake CPU with 6MB cache at 2.6 GHz and 8GB DRAM. We use
ubuntu 16.04 and the local appraisal enclave is built with Intel SGX SDK v2.4. For SAS,
we choose AWS EC2 instance with 64 bit Ubuntu Server 18.04 LTS. According to lshw, it is
using Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz and 983MiB system memory.

We implement remote attestation between CR node and LA enclave on Intel NUC, Raspberry
Pi and remote attestation between SAS and LA enclave on Intel NUC, AWS cloud. We
register our self-signed certificate with Intel SGX remote attestation service and retrieve
SPID from Intel by contacting Intel customer support. We store the private key for the
self-signed certificate inside secure world of Raspberry Pi and on AWS cloud.

3.7 Evaluation on PriRoster System

Our evaluation of the proposed system focus on two main aspect - scalability of in large radio
network context attestation, and the ability to protect confidential configuration information
against side channel leakage of the TEE during the verification process.

3.7.1 Prototype Comparison

In order to effectively compare three designs, we individually benchmark the primitives used
in the protocols. To be specific, we benchmark instantiating remote attestation on CR
node, instantiating remote attestation on AWS cloud, trust establishment and trust transfer
process of PriRoster.

Primitives Benchmarks

We measure the time for a single CR device to perform a successful remote attestation on
LA enclave from connection establishment with IAS server to disconnection. It turns out
the average time needed is 366.45ms for this remote attestation. We also use a AVHzY USB
Power Meter Tester to supply power for Raspberry pi and collect measurement of consumed
power. The collected power consumption for performing a successful remote attestation on
LA enclave for a single CR device is 0.28J on average. On the other hand, we measure the
time for SAS to perform a successful remote attestation on LA enclave. The average time
for this remote attestation is 32.7ms. We implement trust establishment and trust transfer
process on Raspberry Pi and AWS cloud instance using Linux socket. We evaluate the
process and the outcome shows that this process takes 2.57ms on average. And the energy

Ruide Zhang Chapter 3. Defending against Compromised Network Components 44

consumed on CR device for trust transfer is on average 0.003J. Table. 3.2 summarizes the
benchmark results for primitives.

Table 3.2: Primitive Benchmark

HW Function Time(ms) Energy(J)

Pi Remote attestation 366.45 0.28
Pi Trust Transfer 2.57 0.003

AWS Remote attestation 32.7 -

Table 3.3: Design Benchmark Comparison

Design Pi Energy IAS Time SAS Time Single BS Time

Single device design 37.33 kWh 6.56 years 181 days 10.80 mintutes

Single enclave design 37.33 kWh 5.57 years 2.9 hours 9.16 minutes

PriRoster 0.4 kWh 5.81 hours p ∗ 14.4 days 3.92 seconds

p is the percentage of CRs that join a new BS per unit time

Design Benchmark Comparison

We focus on computation overhead and energy consumed brought by difference between the
three designs of prototypes. Thus, we skip overlapped processes like radio context attestation
report generation on CR nodes in these designs. For simplicity of demonstration, we assume
that in real life setting, there are 1,500 CR devices connected to one edge BS and there exists
320,000 edge BS in the U.S. [66]. IAS server is assumed to serve clients one by one. We
assume IAS time is composed of AWS time and Pi time, since IAS participates SGX enclave
attestation in both cases.

We first present the design of every CR device conducting its own remote attestation on LA
enclave to establish trust. In this single device design, there are 1,500 independent enclaves
existing on each edge BS, and enclaves are created or destroyed with CR’s joining and leaving
BS. Therefore, CRs need to attest LA enclaves per radio context attestation request. For
simplicity of comparison, we assume all CR nodes are static for now. LA enclave attestation
consumes 37.33 kWh for all CR devices under all BSs. SAS need to perform 960,000,000
times of remote attestation which takes 363 days for a single cloud instance. Task at a single
BS including enclave attestation by CRs, SAS takes around 11 minutes. And the overall
processing time for IAS is 6.56 years of single machine time.

In the single enclave design, only one LA enclave is created on a BS for 1,500 CRs. Thus,
SAS only needs to perform one time of remote attestation on this enclave respectively. But

Ruide Zhang Chapter 3. Defending against Compromised Network Components 45

all CRs still need to attest enclaves. So altogether the attestation time for single BS is around
9 minutes. Similar to single device design, CRs need to attest LA enclave per radio context
attestation request. SAS needs to perform 320,000 times of remote attestation, which takes
2.91 hours for a single cloud instance. The overall processing time for IAS is 5.57 years of
single machine time.

In PriRoster, each CR device does not need to remote attest LA enclave but it needs to
perform trust establishment and trust transfer process the first time it joins in a network.
SAS only needs one attestation on this enclave respectively. Enclave attestation (by SAS)
together with trust transfer at a single BS takes around 3.92s. The trust establishment and
trust transfer process of all CRs at SAS takes 14.28 days and cost 0.4 kWh for a single
cloud instance. Note that, the trust establishment and trust transfer process only takes
place at CRs’s joining time, so the runtime burden for SAS will be much lighter. The overall
processing time for IAS server is 5.81 hours of single machine time. Note that we can easily
establish multiple cloud instances and use multiprocessing for bootstrapping the attestation
time. Suppose we have 16 threads on one server, this process only takes 20min. Table. II
summarizes the benchmark results for design comparisons.

3.7.2 Oblivious Appraisal Process

We show the effectiveness of oblivious appraisal function in this section. We use dynamic
instrumentation tool, Intel Pin Tool 3.0 [82], for tracing memory access pattern.

We choose full traversal design to protect against side channels brought by early termination
design. In addition, to hide memory access trace, we apply oblivious compare function
OCompare(). For every comparison, we use OCompare() to replace previous comparison
function. At the end of the comparison procedure, device id is saved in result buffer if a
match is found or else a stub value will be saved in result buffer. Fig. 3.6(c) shows the
oblivious appraisal process and for all matches, the memory traces stay the same. As in
Fig. 3.6(c), we can see that an attacker cannot infer which software configuration is matched
since all comparisons’ memory trace appear to be the same.

3.8 Related Work

Although PriRoster is the first work to provide privacy-preserving radio context attestation,
there has been closely related works on remote attestation, CRN security and side channels
in trusted execution environment.

Remote attestation of software on a prover for a single appraiser is well studied. The prover
is the device under attested and it sends a status report of its current execution state to
an appraiser. Since malicious software on the prover could potentially forge the report,

Ruide Zhang Chapter 3. Defending against Compromised Network Components 46

various methods have been proposed to promise the trustworthiness of the report. For
example, [83, 84, 85, 86, 87, 88] put secure hardware in use and [89, 90, 91, 92, 93] take
advantage of trusted software. Recent interest arises on malicious actors with hardware
attack capabilities also. [94, 95] take a first step to use remote attestation for protecting
against hardware attacks. Besides attestation of one prover to one appraiser, [96, 97] propose
swarm attestation for integrity of a group of devices. In this work, we consider remote
attestation under a centralized edge computing architecture using secure hardware.

For CRN security, [98, 99, 100, 101] propose authentication of CR device with signal at the
physical layer and [102, 103] propose detecting and preventing malicious CR at device level.
Although authentication can verify the identity of a CR device and device level security
protects a CR device from being compromised, they cannot ensure authority that every
connected CR device is benign and complies to transmission permissions at runtime in our
case. To ensure authority the operational integrity of the CR devices and provide insights for
authority to verify their compliances, [66] comes up with remote attestation of radio context.
Despite [66] provides operational integrity of CRN, the potential privacy leakage inside edge
BS of the network is not considered.

Side channel information leakage on trusted system remains an active area of research [73,
104, 74, 79, 80, 105, 106, 107, 108]. [73] proposed page-fault side-channel attacks on SGX,
where an attacker controlling priviledged software could extract secrets from enclave execu-
tion by tracking memory access patterns at the granularity of memory pages. [109] demon-
strates another attack approach by using branch shadowing to infer the control flow of the
execution inside an enclave. Branch shadowing requires frequently interrupting the victim
enclave and this observation enables effective detection methods [104, 107]. [74, 79, 80] re-
search on information leakage of search index through memory access pattern. [105] proposes
a generic path ORAM [106] enclave for hiding memory traces. In PriRoser, we put mem-
ory access pattern side channel under consideration and design OCompare() function for
preventing information disclosure of this type.

3.9 Summary

In this paper, we propose PriRoster, a privacy-preserving radio context attestation framework
for CRN. PriRoster integrates trusted hardware, Intel SGX, to prevent information leakage
at edge BS. Our system has two key innovations. To solve the scalability challenge in
remote attestation of a large network, we design a novel trust transfer protocol to allow an
effective trade-off between security guarantee and scalability. To address the side-channel
information leakage at the TEE, we design an input oblivious algorithm to enable radio
context verification without leaking memory access information. A prototype of PriRoster
is implemented to demonstrate the feasibility of the system in terms of computation, energy
overhead, as well as the memory access pattern.

Chapter 4

Hardening Trusted Hardware Ecosystem

4.1 Detecting Information Leakage in Intel SGX Enclaves

With more and more data being collected and analyzed, there is an increasing concern on
privacy implication of the sensitivity of information on individuals. While we are enjoying
such rapid advancement in data science, many consider this a step backwards on the fun-
damental civil right to privacy. In an effort to tackle this fundamental tradeoff between
data utility and data privacy, much work has been done to enable secure computation on
confidential data, where only the results are revealed but not the original data. Secure com-
putation techniques are generally divided into two categories, cryptographic techniques [110]
and system mechanisms [12, 11, 111]. Trusted Execution Environment (TEE) is one of the
more popular system methods designed to ensure secure computation on private data given
its ability to host arbitrary computation with limited overhead.

However, even though techniques leveraging TEE aim at providing privacy assurance to
users, the security protection of system actually depends on both the TEE and the TEE-
protected applications themselves. For example, while the Intel SGX architecture can guar-
antee the integrity and confidentiality of execution, it does not address leakage of private
data due to program code vulnerabilities or intentionally injected backdoors within SGX-
protected program. The code executing in a SGX enclave can inadvertently or maliciously
leak private data outside its trust boundary. Majority of recent research [73, 112, 109] focus
on addressing potential data leakage on TEE, while few works [113] focus on private data
leakage by TEE-protected applications themselves.

Since TEE-protected applications may contain malicious logic embedded by attacker or data
leakage bugs brought by programmers, it is important for users of these secure applications to
audit and validate them. However, ensuring trustworthiness of TEE-protected applications
manually requires security expertise and is not scalable for upcoming large amount of TEE-
protected applications. Therefore, an automatic verification tool for users to detect leakage in

47

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 48

TEE-protected applications is desired. [113] formally specifies semantics of TEE-protected
application and applies classical information flow analysis [15] to automatically detect leakage
on it. The classical information flow analysis applies the noninterference property that
essentially ensures no mutation of sensitive data can lead to observable changes in program
state from the perspective of an outside observer. However, the noninterference property is
not suitable for widely adopted ML algorithms in the era of IoT and cloud computing. ML
algorithms use private data to train models which are observable for cloud service provider.
Thus, ML programs always violate classical noninterference property. Therefore, a new
property is desired for defining information leakage in ML programs.

Inspired by the noninterference property, we formally define nonreversibility property of
enclave application in this paper. Violations of nonreversibility property implies malicious
actor can infer sensitive input by observing the output generated by program code running
in an enclave. Thus, nonreversibility is applicable to analyzing data leakage issues in widely
adopted ML code modules. Detecting violation of nonreversibility is challenging, there are
fundamental challenges that are different from noninterference. First, it is not trivial to
determine if the recovery from output to input is deterministic or not. Second, even if
there is a data flow from sensitive input to output, it is not entirely clear what the exact
relationship is between input and output, which is crucial in determining recoverability. To
tackle these challenges, we design and develop PrivacyScope, a static code analyzer that
detects violations of the nonreversibility property by enclave program code. PrivacyScope
employs symbolic execution to track propagation of private data and records path conditions
when program branches throughout the exploration based on a symbolic program input. At
the conclusion of program analysis, PrivacyScope generates a report detailing any leakage of
private data. PrivacyScope works seamlessly with the secure development environment. As a
demonstration, we extend the Intel SGX software development ecosystem with PrivacyScope
to automatically detect violation of nonreversibility property on enclave modules.

The main contributions of this work are as following:

• We formally define nonreversibility property to characterize the notion of secret data
leakage in ML programs. Inspired by noninterference property, nonreversibility ac-
complishes this by establishing a deterministic relationship between program input
and output in TEE-protected application.

• We construct PRIML language to formally describe our proposed innovative approach,
PrivacyScope, which automatically detects violations of the nonreversibility property
in a TEE-protected application.

• We present a proof-of-feasibility implementation of PrivacyScope leveraging the Clang
Static Analyzer and demonstrate the viability and efficacy of our approach by eval-
uating its performance by analyzing select ML applications executing in Intel SGX
enclaves.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 49

4.2 Background

4.2.1 Intel SGX

Intel Software Guard Extensions (SGX) is an extension of the Intel’s processor architecture
designed to safeguard code and data against unauthorized modification and disclosure. SGX
guarantees the integrity and confidentiality of user code and data by providing a processor-
hardened, processor-protected, trusted execution environment called an enclave. A user
application executing within an enclave is subject to heightened security measures enforced
by the processor. Remote attestation, key and credential provisioning are other critical
features of the Intel SGX architecture. Remote attestation allows a remote party to verify
the authenticity of application code module executing inside an enclave.

Despite its strength, SGX suffers from several hardware security limitations including SGX
page faults, cache timing, address bus monitoring and processor monitoring [73]. There has
been research working on addressing these limitations like defending against cache timing
attacks in [114]. We consider these security limitations orthogonal to our intent of this paper
and believe these limitations must be addressed independently from PrivacyScope.

4.2.2 Symbolic Execution

Symbolic execution is a popular program analysis technique that dates back to the 1970s
to test whether certain properties can be violated by a piece of software [115, 116]. The
key idea is to allow a program to take on symbolic inputs. Then the program is abstractly
interpreted by an symbolic execution engine. During interpretation, path condition and
symbolic memory store are recorded for each explored control flow path.

By symbolically interpreting TEE-protected applications, PrivacyScope logs symbolic ex-
pression of targeted input arguments and uses logged information to track any explicit leak-
ages. Additionally, by tracking target input arguments in path conditions and by combining
that information with the returned result from the application, PrivacyScope can detect any
implicit leakages. An alternative way to find explicit leakage is to use data flow analysis
(DFA) frameworks [117, 118]. Symbolic execution is orders more complex in terms of com-
plexity comparing to DFA. However, most data flow frameworks are path insensitive and are
hard to be used for finding implicit leakages.

4.2.3 Clang Static Analyzer

The Clang Static Analyzer is an open source analysis tool for finding bugs in C/C++,
and Objective-C programs during compilation phase. The analyzer is a symbolic execution
engine that abstractly interprets program code and traces out possible execution paths. After

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 50

generating the possible execution paths, the analyzer performs conceptually a reachability
analysis. During the analysis, the analyzer enters predefined bug checkers. A bug is found
by hitting a state where some violation of checking invariants are satisfied. PrivacyScope
is a special checker we create, which is implemented on top of Clang Static Analyzer for
identifying explicit and implicit leakage of enclave program.

Clang Static Analyzer leverages a region-based memory model to perform path-sensitive
symbolic program analysis [119]. The Analyzer can process most forms of C expressions,
containing arbitrary levels of pointer dereferencings, pointer arithmetics, composite arrays
and struct data types, arbitrary type casts, dynamic memory allocations, etc. These fea-
tures are critical to PrivacyScope, given that pointer operation is commonplace in C/C++
code and composite structs are widely used in all C/C++ software including data analytic
modules.

4.3 Threat Model And Assumptions

The goal of PrivacyScope is to discover deterministic leakage of user private data of an ML
application. The threat model follows that of TEE-based secure computation. User private
data are encrypted for storage outside the environment, and when they are used for training
the mode, the data is decrypted only inside the container for consumption. With recent
advances in machine learning, along with the packaging, it is becoming increasingly accessible
to the general public, even to those without a machine learning background. As privacy
concerns continue to grow, it is likely that the majority of the computation on user data will
be conducted in a privacy-preserving manner. And the security of the applications running
in the container, which are granted unlimited access to user private data, will be crucial in
user privacy protection. However, with new customizations of individual training methods
for various application domains, it can be very challenging for an individual user of the ML
system, potentially without any expertise on programming language, information flow and
machine learning to recognize subtle ways the ML applications can deterministically leak user
data. As a result, we assume that there can be unintentional or intentional logic in the TEE-
protected application that will leak contents deterministically. PrivacyScope is a detection
framework that can take user-defined privacy leakage rules written as PRIML language
extension detailed in Section 4.5.1, and automatically analyze TEE-protected programs to
see if there is any deterministic information flowing from the input (such as user private
data) to the output (such as ML models).

Although PrivacyScope aims at preventing the TEE-protected application from leaking user’s
private data in a deterministic manner. It is not designed to detect potential information
leakage due to various side channels or covert channels. We provide a brief discussion in Sec-
tion 4.8.1 on potential extension to protect against side/covert channel information leakage.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 51

4.4 Nonreversibility Property

In traditional definition of secret leakage, for a user to keep her data confidential, she would
define a policy stating that change of her confidential data cannot affect any publicly ob-
servable data. This policy allows programs to perform manipulation and modification on
secret data, as long as any observable outputs of these programs do not reveal information
about the secret data. Since this policy states that no visible public data is interfered with
confidential data, this sort of policy is called a noninterference policy [120]. Intuitively, non-
interference for programs guarantees that “a variation of confidential (high) inputs does not
cause a variation of public (low) outputs” [121].

However, noninterference policy is not suitable for our scenario. In our scenario, machine
learning algorithm sits in enclave. We view secret inputs received by enclave as high and
the training output to the cloud server as low. In traditional definition, any change of high
data would not interfere with low data. But output trained model changes according to
received input secret data. In this case, noninterference policy is always violated in machine
learning algorithm. Thus, we need a finer grade policy. In contrast to noninterference, we
define nonreversibility to guarantee that a variation of a single confidential (high) input could
cause a variation of public (low) outputs, but keeping this single confidential (high) input and
(low) inputs unchange will not always lead to the same public (low) outputs. We provide the
formalization of nonreversibility in the following.

We extend notations from [121] and rigorously formalize noninterference and nonreversibility
using the machinery of programming-language semantics. We assume that computation
starts in an input state s = (sH , sL). sH and sL contain the initial values of variables of
high and low, respectively. sh represents any single variable inside sH and sl represents any
single variable inside sL. The program either terminates in an output state s′ = (s′H , s

′
L)

with output values for the high and low variables, or diverges. Thus, the semantics [[P]] of a
program P is a function [[P]] : S → S⊥ (where S⊥ = S ∪⊥ and ⊥ /∈ S) which maps an input
state s ∈ S either to an output state [[P]]s ∈ S, or to ⊥ if the program fails to terminate.
We define equivalence relations =L and =h. =L means two states are the same if they are
equal on all the low variable (i.e. s =L s′ if and only if ∀sl ∈ sL and ∀s′l ∈ s′L, sl = s′l).
=h means there exists one variable inside the high variables are the same for two states (i.e.
s =h s

′ if and only if sh = s′h). We characterize the observation power of an attacker by a
relation ≈L on behaviors such that two behaviors are related by ≈L if and only if they are
indistinguishable to the attacker. Relation ≈L implies that the attacker can observe the low
variables. For a given semantic model, noninferference is formalized as follows. P is secure
if and only if ∀s1, s2 ∈ S, s1 =L s2 =⇒ [[P]]s1 ≈L [[P]]s2. This reads “if two input states
share the same low values, then the behaviors of the program executed on these states are
indistinguishable by the attacker.” Whereas, nonreversibility is formalized as below. P is
secure if and only if

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 52

∀s1, s2 ∈ S

s1 =L s2

s1 =h s2

∃h′ 6= h, s1h′
6= s2h′

=⇒ [[P]]s1 6≈L [[P]]s2

which reads “if two input states share the same low values and the same value of one single
high variable, then there exists one other high variable that when it is different for the
two input states, attacker will observe different behaviors of the program executed on these
states.” If this other high variable does not exist, then one single high variable will be leaked
and P will not be secure. Because, an attacker would be able to look at P and reverse
the related computations of that single high variable. According to the formal definition of
nonreversibility, the program l := h1 + 4 is insecure and the value of h1 can be inferred by
attacker by observing l. However, the program l := h1 + 4 + h2 is secure because if h2 is
changed, l observed by attacker will also be changed. And attacker cannot infer value of h1

without knowledge of h2. Note that, the probability distribution of inferring h1 from l will
thus be determined by h2 in this case.

4.5 PrivacyScope Static Analyzer

4.5.1 A General Language: PRIML

For precise declaration of how PrivacyScope works under the hood, we extend notations
in [122] and introduce a language called PRIML: PRivacyscope InterMediate Language.
PRIML is used for precise declaration purpose, while no compiler or symbolic execution
engine is implemented for PRIML. We create PRIML because of the complex semantic model
of C/C++ language. PRIML captures the primal semantic model of C/C++. We describe
how PrivacyScope analyzes programs written in PRIML to reveal the core ideas. In addition
to the PRIML examples in this section, we also show how PrivacyScope is implemented on
top of Clang Static Analyzer and is applied to C/C++ enclave modules in section 4.6.

The Backus normal form grammar for PRIML is presented below. A PRIML program is
composed of a sequence of statements. Statements consist of assignments and conditional
branches. By design, all PRIML expressions are free from any side effects - they do not change
the program state. We use “�b” and “�u” to represent binary (e.g. addition, subtraction and
etc.) and unary operators (e.g. logical negations, XOR and etc), respectively. The statement
get_secret(secret) retrieves high variable from secret while the statement declassify(exp)
uncovers a value to the outside world (this is potentially observable for a malicious actor).

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 53

For simplicity, we only consider expressions (constants, variables, etc.) which evaluate to 32-
bit integer values. We also omit type-checking semantics of PRIML and assume all program
under evaluation are well typed, e.g. binary operands are integers or variables.

stmt s ::= skip | var := exp | s1; s2

| if exp then s1 else s2

exp e ::= exp �b exp | �u exp | var
| get_secret(secret) | v | declassify(exp)

�b ::= typical binary operators
�u ::= typical unary operators
value v ::= 32-bit unsigned integer

The operational semantics of a language specify unambiguously how the program should
be interpreted in that language. We first define the base operational semantics before we
specify program analysis. Each statement rule is of the form:

computation
< current state >, stmt < end state >, stmt’

Rules are read from bottom up and left to right. Given a statement, PRIML interpreter
pattern-matches at statement to find an applicable rule. For instance, the statement x := e
is interpreted according to ASSIGN rule. Then the interpreter evaluates the computation
given on the top of the rule, and if successful, transitions to the end state. If no rule matches,
then the machine halts abnormally. ∆ maps a variable to its value for a given execution
context, e.g. ∆[x] denotes the current value of variable x. We denote updating a context
variable x with value v as x← v. Thus, updating the value of variable x to the value 10 in
context ∆ is denoted as ∆[x← 10]. We denote evaluation of an expression e to a value v in
the context of ∆ by ∆ ` e ⇓ v. PRIML interpreter evaluates expression e by matching e to
an expression evaluation rule and performing the corresponding computation.

The complete operational semantics for PRIML are shown below. In addition, the context
and statement ∆, skip indicates a termination.

v is input from secret

∆ ` get_secret(secret) ⇓ v
INPUT

∆ ` var ⇓ ∆[var]
VAR

∆ ` e ⇓ v, v′ = �uv
∆ ` �ue ⇓ v′

UNOP
∆ ` v ⇓ v

CONST

∆ ` e1 ⇓ v1, ∆ ` e2 ⇓ v2, v
′ = v1 �b v2

∆ ` e1 �b e2 ⇓ v′
BINOP

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 54

∆ ` e ⇓ v,∆′ = ∆[var ← v]

∆, var := e ∆′, skip
ASSIGN

∆ ` e ⇓ 1

∆, if e then s1 else s2 ∆, s1

TCOND

∆ ` e ⇓ 0

∆, if e then s1 else s2 ∆, s2

FCOND

∆′ = ∆, s1

∆, s1; s2 ∆′, s2

COMP
∆, skip; s ∆, s

SKIP

∆ ` e ⇓ v, declassify v
∆, declassify(e) ∆, skip

DECLASS

4.5.2 PrivacyScope Program Analysis

In this section, we describe how PrivacyScope analyzes programs written in PRIML language.
We present how PrivacyScope works for PRIML to shed light upon how PrivacyScope works
for C/C++. The objective of the analysis is to detect any violation of nonreversibility
property in PRIML programs. PrivacyScope achieves this by combining taint tracking and
forward symbolic execution. Taint tracking is used to track the flow of high information from
its sources to its sinks. Forward symbolic execution is used to reason about the behavior of
the program under analysis given initial inputs. PrivacyScope represents the path condition
of program execution as a logical formula, thus reducing the reasoning of a program’s behav-
ior to domain of logic. PrivacyScope represents variables symbolically and thus can examine
program execution spanning multiple input space of the program at one time.

We express PrivacyScope in terms of the operational semantics of PRIML. To keep track
of the taint status of each program value, we redefine values in PRIML to be tuples of the
form < v, τ >, where v is a value in the initial language, and τ is the taint status of v.
τ is modeled by a security semi-lattice with join operation only shown in Fig. 4.1. In this
semi-lattice, sensitive data is labeled by t1, t2 and more. If a variable is labeled by ⊥, it
means it is not sensitive. While if a variable is labeled by >, it means it is tainted by two
or more taint sources, so revealing it would not break nonreversibility. We also introduce a
new mapping τ∆ which maps variables to taint status.

To enable forward symbolic execution in PRIML, we introduce the following changes to

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 55

>

t1 t2 t3 tn

⊥

Figure 4.1: Security semi-lattice for taint status

Component Policy Check
Pget_secret(secret) tn

Pconst() ⊥
Punop(t), Passign(t) t

Pbinop(t1, t2), Pcond(t1, t2) see Fig. 4.2
Pdeclassify_check(v, t, π, τ∆[π]) see Alg. 3

Table 4.1: PrivacyScope’s policy for nonreversibility violation.

PRIML.

value v ::= 32-bit unsigned integer | exp
π ::= Contains current constraints on symbolic

variables due to path branches

These changes make partially evaluated symbolic expressions valid for a value in PRIML.
Thus, when get_secret(secret) is evaluated symbolically, it can return a symbol instead of
a concrete value.

t1 t2 Pbinop(t1, t2), Pcond(t1, t2)
> > >
> t2 >
t1 > >
t1 t2 > if t1 6= t2 else t1
t1 ⊥ t1
⊥ t2 t2
⊥ ⊥ ⊥

Figure 4.2: Truth table for Pbinop(t1, t2) and Pcond(t1, t2)

1¬ operator negates the most recent added path constraint in π

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 56

Algorithm 3
Pdeclassify_check

1: if t 6= ⊥ or > then
2: abort and report explicit leakage;
3: end if
4: if τ∆[π] 6= ⊥ or > then
5: if π is in hashmap hm then
6: if v 6= hm[π] then
7: abort and report implicit leakage;
8: else
9: remove π in hm
10: continue program analysis
11: end if
12: else
13: hm[¬1π] := v
14: continue program analysis
15: end if
16: else
17: continue program analysis
18: end if

Statement ∆ τ∆ abort
h1 := 2∗ get_secret(secret) {h1 → 2 ∗ s1} {h1 → t1} false
h2 := 3∗ get_secret(secret) {h1 → 2 ∗ s1, h2 → 3 ∗ s2} {h1 → t1, h2 → t2} false

x := h1 + h2 {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} false
declassify(x) {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} false
declassify(h1) {h1 → 2 ∗ s1, h2 → 3 ∗ s2, x→ 2 ∗ s1 + 3 ∗ s2} {h1 → t1, h2 → t2, x→ >} true

Table 4.2: Simulation of PrivacyScope detecting explicit leakage

After introducing the aforementioned changes, Table 4.1 presents PrivacyScope policy for
detecting nonreversibility violation. It introduces taint status into the system by marking
up all values returned by get_secret(secret) with different tainted status. Taint is then
propagated through the program according to propagation rules. For constants, they are
labeled as insensitive. For assignment and unary operations on a variable, they keep the same
taint label for the variable. Fig. 4.2 shows taint label propagation rule for binary operation
and conditional branches. The policy checks if declassify(e) leaks secret whenever a value
is revealed. Alg. 3 depicts declassify(e) process. It first checks if the variable is labeled as
sensitive. If yes, it reports an explicit leakage. If no, it then checks if the path constraint is

Statement ∆ π τ∆ hm abort

h := 2∗ get_secret(secret) {h→ 2 ∗ s} true
{π → ⊥
h→ t1}

{∅} false

if h− 5 == 14 then declassify(0) else declassify(1) {h→ 2 ∗ s} [(2 ∗ s)− 5 == 14]
{π → t1
h→ t1}

{¬[(2 ∗ s)− 5 == 14]→ 0} false

if h− 5 == 14 then declassify(0) else declassify(1) {h→ 2 ∗ s} ¬[(2 ∗ s)− 5 == 14]
{π → t1
h→ t1}

{¬[(2 ∗ s)− 5 == 14]→ 0} true

Table 4.3: Simulation of PrivacyScope detecting implicit leakage

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 57

sensitive. It uses a hashmap hm to assist with checking whether the revealed variable differs
in distinct branches. Finally, at the end of the last path’s interpretation, declassify(e)
checks if there is any item in hashmap hm. If so, it concludes that there is an implicit
violation of nonreversibilitity. Note that, this last step is omitted in Alg. 3 to simplify the
explanation. We summarize the PrivacyScope operational semantics as following.

v is a fresh symbol
τ∆,∆ ` get_secret(secret) ⇓< v, Psecret(secret) >

PS-INPUT

τ∆,∆ ` var ⇓< ∆[var], τ∆[var] >
PS-VAR

τ∆,∆ ` e ⇓< v, t >, < v′, t′ >= �u < v, t >

τ∆,∆ ` �ue ⇓< v′, Punop(t) >
PS-UNOP

τ∆,∆ ` v ⇓< v, Pconst() >
PS-CONST

τ∆,∆ ` e1 ⇓< v1, t1 >, τ∆,∆ ` e2 ⇓< v2, t2 >

τ∆,∆ ` e1 �b e2 ⇓< v1 �b v2, Pbinop(t1, t2) >
PS-BINOP

τ∆,∆ ` e ⇓< v, t >,∆′ = ∆[var ← v],

τ ′∆ = τ∆[var ← Passign(t)]

τ∆,∆, var := e τ ′∆,∆
′, skip

PS-ASSIGN

τ∆,∆ ` e ⇓< e′, t′ >, π′ = π ∧ (e′ = 1),

τ ′∆ = τ∆[π ← Pcond(t
′, τ∆[t])]

π, τ∆,∆, if e then s1 else s2 π′, τ ′∆,∆, s1

PS-TCOND

τ∆,∆ ` e ⇓< e′, t′ >, π′ = π ∧ (e′ = 0),

τ ′∆ = τ∆[π ← Pcond(t
′, τ∆[t])]

π, τ∆,∆, if e then s1 else s2 π′, τ ′∆,∆, s2

PS-FCOND

τ ′∆,∆
′ = τ∆,∆, s1

τ∆,∆, s1; s2 τ ′∆,∆
′, s2

PS-COMP

τ∆,∆, skip; s τ∆,∆, s
PS-SKIP

τ∆,∆ ` e ⇓< v, t >, Pdeclassify_check(v, t, π, τ∆[π])

τ∆,∆, declassify(e) τ∆,∆, skip

PS-DECLASS

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 58

Next, we present two simplified code segments written in PRIML to further explain the
program analysis function of PrivacyScope.

Example 1. Consider the following program:

h1 := 2 ∗ get_secret(secret)

h2 := 3 ∗ get_secret(secret)

x := h1 + h2

declassify(x)

declassify(h1)

We can easily see that declassifying x does not violate nonreversibility property. Knowledge
of the value of x does not immediately reveal the value of the first secret. However, declas-
sifying h1 allows an attacker to infer the value of the first secret by dividing the observed
value with 2. Table. 4.2 presents a simulation of how PrivacyScope detects a leakage. Row
5 shows a leakage since the taint status of h1 is t1, while row 4 does not because the taint
status of x is >.

Example 2. Consider the following code snippet:

h := 2 ∗ get_secret(secret)

if h− 5 == 14 then declassify(0) else declassify(1)

By observing the declassified output, an attacker can easily infer if h is equal to 19 or not
and, ultimately recover the secret. Table. 4.3 illustrates how PrivacyScope detects implicit
leakage. Row 3, for instance, reports a leakage since the taint status for π is t1, and the value
retrieved from the hashmap hm is 0 which is different from what declassify is outputting
(1). Row 2 of Table. 4.3, on the other hand, does not report a leakage even though the taint
status for π is t1. Because nothing is stored in the hashmap hm before the interpretation.

4.5.3 Incorporating PrivacyScope in an Intel SGX enclave

Intel SGX enclave modules are typically written in C/C++. Therefore, the following part
incorporates aforementioned core ideas written in PRIML and presents how PrivacyScope
is integrated into Intel SGX ecosystem. Each Intel SGX enclave declares one or more entry
points into the enclave. Referred to as ECALLS by the Intel SGX SDK, these interfaces allow
untrusted outside applications access trusted code running inside the enclave. An enclave
may also have OCALLS, which allow trusted enclave code to call out to the untrusted
application. To configure an application to run in an Intel SGX enclave, an enclave interface
definition file is created. An EDL file resembles a traditional C header file and contains

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 59

prototype declarations for all ECALL and OCALL interfaces. The enclave EDL file defines
how data is marshalled between enclaves trusted code and the outside untrusted applications.

To pass secret data to enclave code for further processing, enclave uses ECALL type inter-
face. Similar to C function prototypes, the ECALL interface parameters are annotated with
attributes like [in] and/or [out]. A parameter with [in] attribute is used for marshalling
data from outside untrusted application into the enclave. So in our example, secret data is
passed into enclave via [in] parameter(s). Interface parameters with [out] attribute are used
to marshal data from inside the enclave to the outside untrusted application. The Intel SGX
SDK abstracts out the details of the data marshalling by generating the necessary proxy
code. In short, [in] parameters correspond to get_secret(secret) in the previous section.

Prior to performing code analysis, PrivacyScope processes an XML configuration file, pro-
vided by user, containing function names that the user is interested in evaluating. Priva-
cyScope also extracts information included in the SGX EDL configuration file. Following a
quick initialization step, PrivacyScope analyzes program code using the approach outlined
in the previous section and generates a report summarizing the outcome of the code analysis
including any violations of nonreversibility property. For explicit information leakage cases,
the report describes how program output can be used to infer its (secret) input thus assisting
developers in securing their code. For implicit information leakage, the report provides path
conditions and returns results which can result in leakage of secret data.

4.6 Evaluations on PrivacyScope Prototype

4.6.1 Implementation

For our proof-of-concept prototype, we use the Intel SGX SDK version 2.0 to construct a
trusted application running in a SGX enclave powered by an Intel NUC, running under
Ubuntu 14.04 TLS. Built on top of Clang v7.0.0, we build a prototype of PrivacyScope by
adding over 1 KLOC. We have evaluated the prototype of PrivacyScope by porting open
source machine learning programs written in C/C++ to Intel SGX enclaves and analyzing
the enclave modules for data leakage.

4.6.2 Illustration: a Leakage Example in C

To illustrate PrivacyScope operation on real Intel SGX enclave module written in C, we
provide an illustrative example here. For simplicity, our example neglects decryption of
secret data. However, PrivacyScope does consider decryption of encrypted secret data, it
records decryption function names from Intel SGX IPP library in a predefined list. And
when PrivacyScope meets predefined decryption functions, it assigns the symbolic value of

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 60

Execution State Line # stmt env σ π
A 2 int temporary = secrets[0] + 100; ∅ ∅ True

B 3 output[0] = temporary + 1;
secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100

reg0 → SymRegion
reg1 → reg0[0]

True

C 4 if (secrets[1] == 0)

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
True

D 5 return 0;

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101
secrets[1]→ reg3

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
reg3 → reg0[1]

reg0[1] == 0

E 7 return 1;

secrets→ reg0

secrets[0]→ reg1

temporary → reg1 + 100
output→ reg2

output[0]→ reg1 + 101
secrets[1]→ reg3

reg0 → SymRegion
reg1 → reg0[0]

reg2 → SymRegion
reg3 → reg0[1]

reg0[1] 6= 0

Table 4.4: Exploration of illustrative example

secret data to decrypted secret data. For illustration, we define ECALL function in EDL
file for processing secret data as int enclave_process_secret([in] secrets, [out] output).
Source code of enclave_process_secret function is shown in Listing 4.1. In this simplified
example, we can easily see that secrets[0] is explicitly leaked and secrets[1] is implicitly
leaked.

1 i n t enclave_process_data (char ∗ s e c r e t s , char ∗output) {
2 i n t temporary = s e c r e t s [0] + 100 ;
3 output [0] = temporary + 1 ;
4 i f (s e c r e t s [1] == 0)
5 re turn 0 ;
6 e l s e
7 re turn 1 ;
8 }

Listing 4.1: Code snippet of illustrative example in C

Next we show how PrivacyScope explores the illustrative example and identifies explicit and
implicit privacy leakage using the symbolic execution engine of Clang Static Analyzer. First,
we need to define the state that the symbolic execution engine must maintain. We define
the state as a 4-tuple (stmt, env, σ, π) similar to [119] where:

• stmt represents the next statement in source code to be evaluated. In our illustrative
example, a stmt can be an assignment, a conditional branch, or a return statement.

• env is the environment which maps from lvalue (an lvalue is an expression with an
object type according to C standard [123]) expressions to memory regions (abstract

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 61

representation of memory objects) regi. A memory region can be the subregion of
another region. And when a variable of array type is defined, it has subobjects called
elements. For array elements, we have ElementRegion like regi[0] with its super region
regi to represent the array region. As for when a pointer is pointing to some unknown
memory block, we have SymRegion for representing the memory block pointed to by
the symbolic pointer. SymRegion represents a region that serves as an alias for either
a real region, a NULL pointer, etc. It essentially is used to map the concept of symbolic
values into the domain of regions.

• σ is a store which maps from memory regions to concrete values, symbolic values αi or
memory regions regi.

• π denotes path constraints on symbolic values. At the beginning of a symbolic ex-
ecution, π is set to True. As the symbolic execution engine explores the program
statements, π grows when branches are met and assumptions on taking any branch are
recorded in π as a formula. This formula indicates how execution can reach any stmt
in the program code under analysis.

Depending on stmt, the symbolic engine of Clang Static Analyzer changes states as following:

• The evaluation of an assignment x = e updates the environment env and store σ.
e can be any legal expression involving unary or binary operators over symbolic or
concrete values. If e contains unknown lvalue expressions in the context of current
execution state, new regis are initialized for the unknown expressions in updated env
and mapping between newly initialized regi and context of current execution state is
created in updated σ. Assuming es is the symbolic expression of evaluating e, es is
associated with x in updated env.

• The evaluation of a conditional branch if e then stmtstrue else stmtsfalse affects the
path constraints π. When a conditional branch is met, the symbolic engine will fork and
create two new execution states, one with path condition πtrue = π ∧ es and the other
with πfalse = π ∧ ¬es, where es is the symbolic expression by evaluating e. Symbolic
engine will follow the two newly created execution states one by one.

Table 4.4 presents the symbolic exploration of our illustrative example. Initially (execution
state A), the path condition is set to true and env and σ are null. During the evaluation
of line 2 right-hand side (RHS), the first evaluated expression is secrets, so a new region
reg0 is generated and associated with secrets in env and reg0 is mapped to SymRegion in
σ. Then it follows the evaluation of secrets[0] which leads to a new expression region map
of secrets[0] to reg1 in env. σ is also updated with a new map of reg1 to reg0[0]. After the
evaluation of RHS, the result, reg1 + 100, is associated with temporary. Next (execution
state B), the evaluation of RHS of line 3 returns reg1 +101 within the execution context and

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 62

Open Source ML Code Size (LoCs) Execution Time (sec.)
LinearRegression 161 2.549s

Kmeans 179 4.654s
Recommender 117 1.758s

Table 4.5: Performance evaluation

the result is associated with the evaluation of line 3’s left-hand side (LHS). The evaluation
of line 3’s LHS brings a new region reg2 and it is associated with output in env. Meanwhile,
reg2 is mapped to SymRegion in σ. Besides, the result of line 3’s RHS, reg1 + 101, is
associated with output[0] in env. When a conditional branch is met (execution state C),
the engine will fork into two execution states (D and E) with opposite path constraints on
the comparison statement. During execution of state C, a new region reg3 is assigned to
secrets[1] in env and reg3 is an ElementRegion of reg0. By evaluating the comparison
statement, two opposite path conditions, reg0[1] == 0 and reg0[1]¬ = 0, are added into π of
execution states D and E. The evaluation of return statement calls the procedure of policy
check similar to previous Pdeclassify_check.

When PrivacyScope starts exploring the target function enclave_process_data, it first goes
into EDL file and fetches parameters as specified by user predefined rules. If no rules are
predefined, the default action is to mark [out] attribute parameters as potential leaking point,
and [in] attribute parameters as secrets. Then PrivacyScope starts exploration of source code
as described in previous paragraphs. During the exploration, PrivacyScope introduces taint
status to secret variables and propagates the tainting as mentioned in program analysis
for PriML. When enclave_process_data function returns or ends, PrivacyScope performs
a policy check similar to Pdeclassify_check. For explicit privacy leakage check, PrivacyScope
checks [out] parameters to see their taint status. In the illustrative example case, output[0] is
tainted by t1, so output[0] explicitly leaks the value of secrets[0]. For implicit privacy leakage
check, PrivacyScope utilizes hashmap hm and find that the returned values are different for
different π which branch on subobject of secrets. The warning report generated for the
illustrative example is shown in Box 1.

4.6.3 Performance Evaluation

Our primary objective is to detect any violation of nonreversibility property in a trusted code
executing inside a SGX enclave. However, current version of SGX SDK does not support

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 63

Approach Target Leakage
Target SystemType Dynamic Static Explicit flow Implicit flow

System Analysis Analysis NonInt* NonRev* NonInt* NonRev* Termination Timing Probability
Taintdroid[124] X X Android

HDL Checker[125] X X X Hardware Design
Panorama[126] X X Windows OS

Androidleaks[127] X X Android
Covert Flow Checker[128] X X An Imperative Language

Timing Leaks Transformer[129] X X An Imperative Language
Multithread Possibilistically NonInt*[130] X X A Concurrent Language

Jflow[15] X X X Java
Moat[113] X X X Intel SGX Enclave
This work X X X Intel SGX Enclave

* NonInt is short for noninterference, NonRev is short for nonreversibility.

Table 4.6: Systematic approaches for detecting secret leakage

easy migration of legacy application even if it is written in C/C++ and there is no existing
open source implementation of ML algorithms implemented inside enclave using the Intel
SGX SDK. Thus, we had to port open source ML algorithms so that they can be executed
inside a SGX enclave. We selected three popular open source ML projects from the public
Github repository and ported them using Intel SGX SDK. They included LinearRegresssion,
Kmeans and Recommender [131, 132, 133]. To evaluate the efficacy of PrivacyScope, we
inserted malicious code inside the ported ML code. The results were examined by the authors
and the efficacy of PrivacyScope solution was verified by the authors manually. During this
process, we also detected multiple preexisting secret leakage in the open source Recommender
implementation. We provide a detailed explanation of these findings in the next section.
Table 4.5 summarizes performance data, including the PrivacyScope code analysis time for
each of the three open source ML projects. The analysis time was measured using the Linux
OS built-in time utility. The total execution time was computed by summing up the usr and
sys times.

4.6.4 Case Studies

The goal of PrivacyScope is to assist users and developers in identifying potential information
leakage vulnerabilities in program code intended to run in a TEE-protected environment.
PrivacyScope accomplishes this objective by identifying any violations of the nonreeversibil-
ity property. In this section, we present two case studies to demonstrate PrivacyScope’s
capabilities by analyzing the behavior of two open source ML programs. These two exam-
ples by no means cover all the possible scenarios. In the first case, PrivacyScope uncovers
implementation defects caused by inadvertent coding errors during software development.
In the second case, we illustrate how PrivacyScope can detect malicious code inserted into
the codebase by a malicious actor.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 64

Finding information leakage in Recommender

Our first case study is the analysis of a C library for product recommendations/suggestions
using collaborative filtering (CF) [134]. Recommender analyzes and learns from collective
feedback of a large number of users. It then uses user preference to predict and recom-
mend the most appropiate products for a particular user. We found 6 violations of the
nonreversibility property in this open source ML project.

In a normal workflow, Recommender first selects a learning method for its learning process.
After that, Recommender grabs users’ id and their grading of preference for products to
train the model. After training procedure, the resulting model can be used to predict how
much a user may like a product previously ungraded for this user. In our scenario, we are
concerned of service provider knowing the exact grading for products of a single user. As a
matter of fact, we find several learning methods implemented in Recommender would lead
to leakage of user’s grading (e.g. learn_mf_bias, learn_basic_mf, learn_mf_neighbor and
learn_social). In the following paragraphs, we go through the leakage in learn_mf_bias and
learn_basic_mf and how we find them with the help of PrivacyScope in detail.

We start with an easy to understand leakage in learn_mf_bias and followed by a more com-
plicated leakage in learn_basic_mf. In the learn_mf_bias learning method, when the hyper
parameter of the learning algorithm is set to particular value, sensitive data can be reversed
from the output. According to current setting in machine learning as a service[135], it is com-
monplace for service provider to control the hyper parameters of a learning algorithm. List-
ing 4.2 shows the function called when Recommender selects learn_mf_bias as its learning
method. The sensitive data is transferred into this function through learning_param. The
outcome of this function is data struct lfactors which contains the learnt model. During the
process inside function learn_mf_bias, it calls another function calculate_average_ratings
with sensitive data tset and output data struct lfactors as in Listing 4.3. With help of
PrivacyScope, we find out that the ratings_average field of lfactors could potentially leak
sensitive data.

PrivacyScope reports an explicit leakage because it finds out tset->ratings_sum labeled as
sensitive input crosses security boundary and is transferred out through lfactors->ratings_average.
The authors manually verify the finding and figure out tset->ratings_sum contains sum of
the first user’s rating if training_set_size is set to 1. What’s more, if the service provider set
the hyper parameter to receive one rating at a time and use it to train a model, the service
provider can infer all the individual ratings for every user through simple computation on
the lfactors->ratings_average.

1 s t r u c t l ea rned_fac to r s ∗ learn_mf_bias (learning_algorithm_params_t∗
learning_param)

2 {
3 /∗ learning_param conta in s s e c r e t input in i t s member t s e t ∗/
4 s t r u c t t ra in ing_se t ∗ t s e t = learning_param−>t s e t ;
5 /∗ l f a c t o r s conta in s r e s u l t i n g l e a r n t model∗/

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 65

6 s t r u c t l ea rned_fac to r s ∗ l f a c t o r s = in i t_ l ea rned_fac to r s (¶ms) ;
7 . . .
8 ca l cu la te_average_rat ings (t s e t , l f a c t o r s) ;
9 . . .

10 re turn l f a c t o r s ;
11 }

Listing 4.2: function learn_mf_bias

1 ca l cu la te_average_rat ings (s t r u c t t ra in ing_se t ∗ t s e t , l earned_factors_t ∗
l f a c t o r s)

2 {
3 /∗ t ra in ing_se t_s i z e i s a hyper parameter s e l e c t e d by s e r v i c e prov ide r ∗/
4 double average_rat ing = (double) t s e t−>ratings_sum / ((double)

t ra in ing_se t_s i z e) ;
5 average_rat ing = (average_rat ing − 1) / 4 . 0 ;
6 /∗ rat ings_average l eak s e n s i t i v e data ∗/
7 l f a c t o r s−>rat ings_average = log ((double) average_rat ing / (1 −

average_rat ing)) ;
8 }

Listing 4.3: function calculate_average_ratings

In learn_basic_mf, it does not have ratings_average issue, however, during our porting of
Recommender to Intel SGX enclave, we find out that it contains improper usage of random
generator. And this leads to same initial matrix values for a new model training. We have
reported this bug to the Github code owner and he has confirmed the bug. We further
investigate will any leakage happens if the bug is intentional planted by service provider.
By assuming this, PrivacyScope finds out logics hidden inside this function which leads to
sensitive data leakage.

We explain the improper usage of random generator here first. Normal use of srand() function
should output a random number like srand(time(0)), however, Recommender use srand(0)
to set the seed of the random number generator to 0 every time. This causes the random
generator to create the same output everytime. For example, in Listing 4.4, we uses srand(0)
to set the seed of random number generator to 0. And we print out the random number it
generates with rand(). Every time this program will print the same number sequence.

1 srand (0) ;
2 f o r (i n t i = 0 ; i <5; i++)
3 p r i n t f (" %d " , rand ()) ;
4 re turn 0 ;

Listing 4.4: improper srand usage

Recommender uses generate_random_matrix to create random matrix for initial training
state, however, generate_random_matrix sets seed to 0 always and uses box_muller to get
random number. The number sequence box_muller generates is always the same because of
the same seed is used. We show generate_random_matrix and box_muller in Listing 4.5and
Listing 4.6 respectively.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 66

1 double ∗∗ generate_random_matrix (i n t nrow , i n t ncol , i n t seed)
2 {
3 . . .
4 srand (seed) ;
5 . . .
6 /∗ normal random va r i a t e generator ∗/
7 matrix [i] [j] = box_muller (0 , 0 . 1) ;
8 . . .
9 re turn matrix ;

10 }

Listing 4.5: function generate_random_matrix

1 double box_muller (double m, double s)
2 {
3 . . .
4 x1 = 2 .0 ∗ rand () /RAND_MAX − 1 . 0 ;
5 x2 = 2 .0 ∗ rand () /RAND_MAX − 1 . 0 ;
6 . . .
7 }

Listing 4.6: random generator

Now we know the generate_random_matrix in Recommender always create the same ini-
tial state for training, we can continue to see how PrivacyScope find sensitive data leak-
age. We first set all the initial states set by generate_random_matrix to a manmade
concrete value. For example, in Listing 4.7, lfactors->item_factor_vectors and lfactors-
>user_factor_vectors are generated by function generate_random_matrix, so we set con-
crete values for them. After this, we run the program analysis on the learning method.

1 s t r u c t l ea rned_fac to r s ∗ in i t_ l ea rned_fac to r s (s t r u c t model_parameters ∗ params
)

2 {
3 . . .
4 l f a c t o r s−>item_factor_vectors = generate_random_matrix (params−>items_number

, params−>dimens iona l i ty , params−>seed) ;
5 l f a c t o r s−>user_factor_vectors = generate_random_matrix (params−>users_number

, params−>dimens iona l i ty , params−>seed) ;
6 . . .
7 re turn l f a c t o r s ;
8 }

Listing 4.7: initialization function of learning model

PrivacyScope reports item_factors and user_factors fields of data struct lfactors leak sensi-
tive data. After manual verification of function learn_basic_mf in Listing 4.8, we confirm the
leakage. We find r_iu stores sensitive data and it is passed to e_iu because r_iu_estimated
is a concrete value. For the loops, the symbolic execution engine unrolls them to a limit and
the limit is set to 4. The sensitive e_iu then is passed to function compute_factors as pre-
dicted_error in Listing 4.10. Sensitive predicted_error is computed with concrete values and

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 67

service provider selected hyper parameters to set the value of item_factors and user_factors.
However, item_factors and user_factors are labeled as output, thus this breaks the rule set
by PrivacyScope. In the case where service provider controls the hyper parameters and
knows the number sequence of random number generator, he can choose to take user ratings
one at a time and inferring the rating by knowing item_factors and user_factors.

1 s t r u c t l ea rned_fac to r s ∗ learn_basic_mf (learning_algorithm_params_t∗
learning_params)

2 {
3 s t r u c t l ea rned_fac to r s ∗ l f a c t o r s = in i t_ l ea rned_fac to r s (&learning_params−>

params) ;
4 . . .
5 /∗ every f i e l d o f data s t r u c t params are hyper parameters s e l e c t e d by

s e r v i c e prov ide r ∗/
6 f o r (k = 0 ; k < learning_params−>params . iteration_number ; k++)
7 {
8 f o r (r = 0 ; r < learning_params−>params . t ra in ing_se t_s i z e ; r++)
9 {

10 /∗ r_iu s t o r e s the s e n s i t i v e input ∗/
11 r_iu = learning_params−>tse t−>rat ing s−>en t r i e s [r] . va lue ;
12 . . .
13 /∗ r_iu_estimated i s conc r e t e va lue as shown in L i s t i n g 9∗/
14 r_iu_estimated = estimate_item_rating (item_factors , user_factors ,

learning_params−>params . d imens i ona l i t y) ;
15 /∗ e_iu i s l ab e l ed s e n s i t i v e ∗/
16 e_iu = r_iu − r_iu_estimated ;
17 compute_factors (i tem_factors , user_factors , learning_params−>params .

lambda , learning_params−>params . step , e_iu , learning_params−>params .
d imens i ona l i t y) ;

18 . . .
19 re turn l f a c t o r s ;
20 }

Listing 4.8: function learn_basic_mf

1 double est imate_item_rating (double ∗ user_vector , double ∗ item_vector , s i z e_t
dim)

2 {
3 double sum = 0 ;
4 /∗ item_factors , u s e r_fac to r s are s e t as conc r e t e va lue s because they are

generated by generate_random_matrix ∗/
5 f o r (s i ze_t i = 0 ; i < dim ; i++)
6 sum += user_vector [i] ∗ item_vector [i] ;
7 re turn sum ;
8 }

Listing 4.9: function estimate_item_rating

1 void compute_factors (double ∗ item_factors , double ∗ user_factors , double
lambda , double step , double pred icted_error , s i z e_t d imens i ona l i t y)

2 {

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 68

3 /∗ step , lambda , d imens i ona l i t y are hyper parameters s e l e c t e d by s e r v i c e
prov ide r ∗/

4 f o r (s i ze_t i = 0 ; i < d imens i ona l i t y ; i++)
5 {
6 /∗ i tem_factors and use r_fac to r s l eak s e n s i t i v e data ∗/
7 i t em_factors [i] = item_factors [i] + step ∗ (pred i c t ed_error ∗ use r_fac to r s

[i] − lambda ∗ i tem_factors [i]) ;
8 use r_fac to r s [i] = use r_fac to r s [i] + step ∗ (pred i c t ed_error ∗ i tem_factors

[i] − lambda ∗ use r_fac to r s [i]) ;
9 }

10 }

Listing 4.10: function compute_factors

Verifying effectiveness of PrivacyScope in Kmeans

Our second case study is mimicking a malicious enclave writer and embedding sensitive data
leakage logic inside enclave programs. We add explicit and implicit leakage logic to open
source machine learning program Kmeans [133].

In the normal workflow of Kmeans, it first sets up hyper parameters like maximum iteration
number, number of objects, number of centroid points, method to calculate distance. Then,
it populates objects into data struct config. After that, Kmeans performs kmeans algorithm
on the data struct config and output the learnt centroid points. as in Listing 4.11.

1 void enclave_kmeans (char ∗ ob j ec t s , char ∗ r e s u l t) {
2 . . .
3 /∗ populate ob j e c t s ∗/
4 f o r (i = 0 ; i < con f i g−>num_objs − 1 ; i++)
5 {
6 con f i g−>obj s [i] = &(ob j e c t s [i]) ;
7 }
8 . . .
9 /∗ a lgor i thm converges when the ass ignments no longe r change or

max_iteration i s reached ∗/
10 whi le (1)
11 {
12 . . .
13 /∗ Assignment s tep : Assign each obse rvat i on to the c l u s t e r whose mean has

the l e a s t squared Eucl idean d i s t anc e ∗/
14 update_r (c on f i g) ;
15 /∗ Update s tep : Ca l cu la t e the new means to be the c en t r o i d s o f the

obs e rva t i on s in the new c l u s t e r s ∗/
16 update_means (c on f i g) ;
17 . . .
18 }
19 . . .
20 }

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 69

21 }

Listing 4.11: Kmeans code snippet

In this case, the sensitive data we want to protect is the objects. We verify effectiveness
of PrivacyScope by inserting assignment statements of objects to result explicitly before
the enclave ends at line 19 of Listing 4.11. We also embed implicit leakage at line 19 of
Listing 4.11 to verify the effectiveness of PrivacyScope. PrivacyScope reports leakage in
both cases. What worth mentioning here is that PrivacyScope is built on top of Clang static
analyzer’s symbolic engine, so PrivacyScope inherits its unsoundness. The symbolic engine
unrolls the loop with a default limit of 4. Although this value is configurable, an enclave
writer can bypass the detection easily and this is a well-known challenge in finding bugs with
symbolic execution.

4.7 Related Work

4.7.1 Information Flow Analysis Methods

Use of information flow analysis to detect information leakage within programs has been the
subject of much research in the past decades. Language-specific methods typically augment
type systems so that they can statically check the flow of private data within programs that
manipulate the data. [15], for example, integrates information flow analysis into the Java
language type system, while [129, 15, 130] propose innovative analysis methods for imperative
and concurrent language. [125] detects security vulnerabilities in hardware design written in
HDL. In these solutions, they focus on addressing the noninterference property in programs.

In addition to aforementioned information flow analysis, a plethora of methods have fo-
cused on detecting, measuring and understanding the nature of privacy leakage on different
platforms. Static and dynamic tainting analysis are two major categories of methods for
detecting privacy leakage. Dynamic methods typically monitors the system at runtime and
examine the system as it executes the code. Static methods on the other hand use compile
time analysis to predict the impact of code execution on private data. Static methods can
have a higher false positive rate as compared to dynamic methods [127]. [124] leverages dy-
namic tainting to detect intentional leakage of private data in the Android operating system
environment while [126] examines system-wide information flow for malware detection in
the Windows platform. Finally, [113] uses model checking to verify the information flow
properties of code running in a trusted enclave. Table 4.6 summarizes key recent research
work in the area of information analysis methods, highlighting the target environment for
each approach.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 70

4.7.2 Secure Systems on Trusted Hardware

There have been many recent advances in the area of trusted hardware platforms including
the development of commercial off-the-shelf secure processors. ARM TrustZone [136] offers
a processor capable of executing in a secure world as well as a normal world with isolated
address spaces. TPM+TXT [137] provides attestation on the execution state of a platform,
but all privileged software must execute in the trusted computing base. SGX [138, 71, 139,
140], an extension to the Intel Architecture, offers confidentiality and integrity guarantees
via a trusted processor without requiring any trust on the part of infrastructure software.

Multiple secure systems have been recently built on top of these trusted hardware plat-
forms [12, 88, 111, 11, 135]. VC3 [12] and Opaque [111] offer SGX-protected data processing
platform, assuming that, the code executing inside each enclave is trusted. Thus, their con-
fidentiality guarantee is based on the assumption that enclave code does not leak secrets.
In these cases, PrivacyScope can be used to confirm this assumption. Ryoan [11] and Ch-
iron [135] utilize sandboxing to prevent untrusted enclave module from leaking secret data
from side channels. To be adopted, these methods require a certain level of trust to be
established between users, service providers and their solution. PrivacyScope can strengthen
users’ trust in these scenarios. All of these methods require a modicum of trust between the
user and the trusted computing platform. PrivacyScope is designed to address this concern
in the Intel SGX architecture.

4.7.3 Privacy Leakage in Machine Learning

Using ML to train models on big data poses many privacy challenges. ML models can uncover
and expose surprising and unexpected personally identifiable information such as relation-
ships and associations violating privacy. [141, 142, 143] take a first step to conceptualize
privacy in the new era and enforce data use rules through designing new policy specification
languages and corresponding enforcing systems. [142] creates a language for specification of
origin-based privacy rules and implements a prototype of a type system to enforce such poli-
cies. In [143], the authors present LEGALEASE - a language to specify privacy specifications
and restrict how private data must be handled. [141] presents Thoth which provides data
use policies enforcement through a kernel-level compliance layer. PrivacyScope can integrate
such policies and enforce more rules other than nonreversibility in the future.

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 71

4.8 Discussion and future work

4.8.1 Covert and Side Channels

In this section, we briefly highlight potential covert channels that can be exploited to leak
private data in the Intel SGX computing environment. Each covert channel compromises
PrivacyScope’s security goals. We will address mitigation techniques to safeguard against
these attacks in future works.

• Timing channel : Malicious actor can infer secret through recording the time spent for
program executions. PrivacyScope can be extended to simulate the execution time for
program paths and detect if execution time depends on secret in the future.

• Probabilistic channel : Malicious actor can infer secret through observing probability
distribution of declassified data.

• Power channel : Malicious actor can measure the power consumption cost for program
executions and infer secret.

PrivacyScope does not address side channels brought by hardware limitations on Intel SGX
processor itself. We consider these limitations orthogonal to PrivacyScope and we list them
as following.

• SGX page faults : Privileged software, e.g. OS or hypervisor, can maliciously control
page tables of an enclave to observe a memory access pattern of enclave program
execution.

• Cache timing : Side channel exists for two processes running on the same core. These
two processes can use cache timing to infer knowledge of the other.

• Address bus monitoring : While all processed data is encrypted prior to exiting the
SGX processor package, a malicious user using sniffer or a modified RAM chip can
monitor the address bus and achieve a memory access pattern side channel.

4.8.2 Prior Knowledge on User Data

When the adversary has prior knowledge of user private data (e.g. knows the distribution
of variable values), PrivacyScope requires that knowledge to be incorporated in the model
specification to ensure the soundness of the privacy leakage analysis. For instance, given
the function F (A,B) = A + B, where A is a privacy-sensitive scalar variable and B has
a value of zero 99% of the time, and 1 otherwise. Then the attacker can conclude with

Ruide Zhang Chapter 4. Hardening Trusted Hardware Ecosystem 72

a high degree of confidence (i.e. 99%) that the output value is the same as the value of
the privacy-sensitive input variable A. To mitigate this problem, the users of PrivacyScope
are required to incorporate that knowledge by extending PRIML language and the analysis
engine so that it can handle with new semantics.

4.8.3 Limitations and Future Work

PrivacyScope is built on top of symbolic execution engine and symbolic execution is known
to have limitation on scalability. Although enclave code does not have large size, they will
become larger in the future. Also, our design needs enclave writer and cloud service provider
to send user the source code of enclave for validation. This may hurt the intellectual property
of cloud service provider. In the future, we plan to analyze on binary enclave code directly
instead of C/C++ source code. This would protect the intellectual property of cloud service
provider.

4.9 Summary

In this work, we formally define new nonreversible property on top of classical noninter-
ference property, which is more suitable for machine learning programs. Using our newly
proposed language, PRIML, we describe our innovative program analysis approach using for-
mal semantics. PRIML’s formal semantics can be extended by users who wish to introduce
their own specialized notion of nonreversibility. We design and implement PrivacyScope, a
prototype static analysis tool that implements the rules as defined in PRIML to detect non-
reversibility violation in programs executing inside Intel SGX enclave. We show the efficacy
of our prototype by applying PrivacyScope to find sensitive data leakage and maliciously
embedded code in open source machine learning programs.

Acknowledgment

This work was supported in part by the Office of Naval Research under grant N00014-19-
1-2621, US National Science Foundation under grant CNS-1837519, and Virginia Common-
wealth Cyber Initiative.

Chapter 5

Protecting the Physical World

5.1 Continuous Attestation for Unmanned Vehicles

With the breakthroughs in wireless and battery technology, networked CPS are increasingly
integrated into our society nowadays. From the perspective of safety and security, CPS is
fundamentally different from the traditional IT system due to its ability to affect the physical
environment. Among these CPS, unmanned vehicles are particularly interesting due to their
ability to move in the physical space, this ability breaks the assumption on physical perimeter
safety made by the system.

While traditionally only available in military applications [144], unmanned vehicles are in-
creasingly common in our daily lives, and is expected to be fully ubiquitous available in
our household and around the blocks [145]. Several companies have started commercializing
drones to for package and pizza delivery [146], or even to transport passengers [147]. When
these systems fail, human lives can be at stake rather than financial lost.

Recognizing the importance of unmanned vehicles, the security of these CPS has attracted
significant amount of interest. The crucial question in this topic is that whether a unmanned
vehicle is trustworthy. To answer this question, we have to satisfy the following two require-
ments. First, we need to be able to verify the integrity of its current system running state.
Second, we have to know the continuous status that this unmanned vehicle has experienced
during a mission. Take food delivery as an example, we need to first know that the unmanned
vehicle does not contain malicious logic to attack people and second, we need to know that
it is not compromised during its way and potentially has changed the food.

Remote attestation is a powerful security service for verifying the integrity of certain runtime
property of a remote system. It is composed of two parties, the verifier and the prover. The
verifier can verify the integrity of the prover. Through verifying the runtime integrity of the
prover [18, 19, 20], existing remote attestation can satisfy the first requirement. However,

73

Ruide Zhang Chapter 5. Protecting the Physical World 74

existing remote attestation solutions can not satisfy the second requirement. Because one of
the fundamental drawbacks in existing remote attestation schemes is that remote attestation
allows the verifier to assess the prover system for an instance of time. While the common
assumption behind attestation is that if the system has an initial trusted state, and with
sufficient isolation and protection algorithm, the system will stay secure. However, this gives
rise to a well known problem in remote attestation with the time of check versus time of use
attack (TOCTOU), where programs are compromised between the attestations. With recent
attacks such as water holing [148] attacking and ROP, attacker can gain and maintain control
of the target system not only without changing the static code pages that the attestation
routine verifies but also maintain access without leaving any footprint. Thus, existing remote
attestation cannot attest on recent past that a unmanned vehicle experienced.

In order to tackle this problem, we desire a continuous attestation system. One straightfor-
ward way to build continuous attestation is for the prover to record its control flow sequences
continuously, then it presents verifier the report when prompted [18]. As a result, the con-
trol flow sequence between attestation would serve as the evidence for behavior between
attestation, therefore achieving the the continuous attestation. However, we identify three
problems of this straightforward plan. First, the performance overhead is prohibiting. In our
preliminary experiment with the ArduPilot [149] control system, the performance overhead
for such control flow recording is as high as 200 times. This heavy burden overwhelms the
ArduPilot scheduler, breaks the assumption of real-time constraints and leads to a unre-
sponsive system. Second, the constant recording of control flow sequence generate complex
trace information. In order for a verifier to verify the integrity of this complex trace, it must
maintain a huge database and conduct heavy-weighted computation. As the continuous
attestation time span grows, this problem grows exponentially. Third, the control flow se-
quence cannot defend against data-only attacks like non control data attacks. [20] propose to
use def-use data flow on manually annotated critical values to solve this problem. However,
this further increases the performance burden on runtime.

To solve the aforementioned challenges, we propose ConAttest. ConAttest is the first con-
tinuous attestation scheme for unmanned vehicles. In ConAttest, we bring in the ideas in
the memory isolation research area [150]. In the memory isolation research area, they focus
on the compartmentalization of the software. By separate the memory into segments for
different modules of the software, they can quarantine the vulnerability in one module to
prevent it from affecting other modules. And the transition between memory view of differ-
ent modules is called view switch. This way, the power of the data-only attack is shrunken
into a quarantined area instead of the whole system. In ConAttest, we also take advantage
of compartmentalization to prevent against data-only attack. Other than that, we extend
compartmentalization and propose a new runtime property, view switch sequence, for the
purpose of continuous attestation. ConAttest uses view switch sequence as an indicator of
the continuous behavior integrity of an autopilot system. We call this new runtime property
View-Flow Integrity (VFI). VFI requires significantly less amount of performance overhead
to achieve, and it can detect malicious control flow attacks or data-only attacks across mod-

Ruide Zhang Chapter 5. Protecting the Physical World 75

ules by comparing VFI to its reference model. Note that, we support control flow recording
for each module in ConAttest. If a user is concerned about particular highly vulnerable
module, she could choose to integrate control flow sequence attestation for that particular
module. By offer this option, ConAttest brings a tradeoff between fine-grained control flow
monitoring and coarse-grained view switch monitoring. This enables a trade-off between
mission time-scale and behavior monitoring granularity, which contributes to the continuity
goal.

To enable VFI, ConAttest inspects the source code of an autopilot system and identify
vulnerable modules and critical modules. ConAttest takes a description of compartments
and uses LLVM to automatically separate the modules within an autopilot system. After
the separation, ConAttest instruments the modules with a jump to a ViewSwitch trampoline
whenever the module is about to transmit the control to or read the global data from another
module. The ViewSwitch trampoline traps into kernel space and changes the MMU for access
control of page tables. At the same time, it traps into secure world and records the view
switch activity inside the secure world. This way, ConAttest enables VFI attestation by
sending the VFI report stored in the secure world to a remote verifier.

Furthermore, we include a secure timer design in our ConAttest to satisfy the continuous
requirement. As described in [151], attestation can be conducted probabilistically. This
creates a trade-off between infection detection rate, trace record generation, and energy
consumption. We create a secure timer to enable the self-initiated feature. This allows our
system to create the same trade-off for reducing energy consumption and relieve the verifier
to verify on the over-complicated report. This further approaches the continuity goal by
providing another tradeoff between mission time-scale and infection detection granularity.

In summary, ConAttest provides a continuous attestation capability to autopilot systems.
This requires tackling several challenges that form our individual technical contributions:

• We provide customizable compartmentalization and memory isolation for autopilot
software. This feature adds another defense layer against runtime attacks.

• We propose VFI property to accomplish continuous attestation. VFI allows us to
continuously monitor system running state to detect across view runtime attacks.

• We propose and implemented a secure timer design to support self-initiated runtime
property recording. This allows us to tailor the security-energy trade-offs for a different
level of infection detection rate.

• We port ARM Trustzone to a commercial drone platform, Navio2. And we implement
ConAttest prototype on Navio2 platform and conduct evaluations.

Ruide Zhang Chapter 5. Protecting the Physical World 76

5.2 Background

5.2.1 Compartmentalization

Memory isolation is a fundamental and powerful security property. It ensures that no ap-
plication can have read, write or execute permission on memory locations outside of its own
assigned area. In modern systems, the Memory Management Unit (MMU) is provided for
high-end platforms and Memory Protection Unit (MPU) is provided for embedded devices
to support memory isolation. However, existing autopilot systems do not take advantage of
the memory isolation feature. One reason is that most autopilot systems aim at working on
an embedded system. In order to ease the porting effort among embedded systems, autopilot
systems tend to not use the advanced memory isolation provided by a high-end desktop sys-
tem. The other reason is that current autopilots are developed without a focus on security.
Lack of memory isolation makes protecting the autopilot system even harder. Because now
all code can access all data and peripherals without any active mitigation. And a runtime
exploit is able to access every single component on an autopilot system.

A line of research [150] tries to tackle this issue. Their main idea is to partition the software
into several segments and put each segment into an allocated location. During the executing
of one segment, it has no or limited access permission on other segments. [150] starts
with analyzing the source code of an embedded application and identifying code and data
that should be put into the same segment. This way, the transition between segments can
be reduced and this mitigates runtime overhead. View switch instrumentation is added to
support secure view switch among segments. Fig. 5.1 illustrates the memory view during
the execution of each segment.

In ConAttest, we integrate the idea of memory isolation and view switch instrumentation.
Memory isolation is proven to be effective against data-only attacks and a continuous record
of view switch activity is used to prove the running state of a system for a continuous
time span. The runtime overhead of switching between segments depends on the number of
segments and the frequency of segment switch. This brings us the capability to tailor the
security-performance trade-off and also the opportunity to optimize the system.

5.2.2 Runtime Attestation

Software remote attestation can be divided into two categories, static remote attestation
and runtime attestation. Conventional static attestation approaches targets at proving that
the software under attest loaded is unmodified during its initialization [96, 97, 94, 95, 84,
152, 153, 91, 154, 155, 156, 90, 85, 83, 157, 158, 159]. However, static attestation cannot
detect runtime attacks including code-resuse attacks [18] and data-only attacks [20]. Recent
progress in remote attestation aims at tackling this issue by attesting on runtime properties.

Ruide Zhang Chapter 5. Protecting the Physical World 77

Figure 5.1: Illustration of memory view switch process.

[18] is the first work working on the runtime property attestation track. They propose to
use the control flow sequence of the prover program as a runtime property to be attested.
The main idea is to record the control-flow paths during an attestation snapshot. As we
know, the program is composed of the control-flow graph (CFG). Each CFG node is a basic
block which contains a set of assembly instructions. For each basic block, it ends with a
branching instruction which transits the control flow to another location instead of going to
the next instruction. [18] instruments the binary to record each control flow transition and
includes ARM Trustzone to safely store the control flow path record for future reporting.
This control flow attestation allows a remote verifier to detect runtime attacks based on
code-reuse techniques. However, the main drawback of this method is the scalability and
incapability of detecting non-control data attacks.

Following this research direction, [20] is the most recent work. It tries to tackle the afore-
mentioned two drawbacks by proposing operation-scoped control flow integrity and critical
variable integrity. [20] separate the functionality of a program into operations. They narrow
down the full program control flow monitoring to operational grade. This way, the scalabil-
ity issue can be mitigated. They also allow a developer to annotate critical data values in
an operation. This critical value may be a value that is critical for physical operation, for
example, to what degree a robot arm moves. By adding instrumentation to enforce define-
use consistency for critical value, they can detect data-only attacks. However, this method
requires manual annotation from the developer side and requires rewriting of software.

Existing attestation schemes share common characteristics. They aim at attesting either
the load time integrity or runtime integrity of a remote system at a snapshot. They do not
consider the integrity for a time scale of a mission for a CPS. With the advance in unmanned
vehicles, future applications rely on a CPS to finish a mission, for example, unmanned Uber
vehicle pickup. The verifier not only needs to attest the current state of a system but also
a continuous state of a system. ConAttest bare this in mind and targets at bringing this
capability.

Ruide Zhang Chapter 5. Protecting the Physical World 78

5.2.3 ARM TrustZone and Attestation

ConAttest depends on ARM TrustZone as the Trusted Computing Base (TCB). TrustZone
is an optional security feature for ARM architectures. It is a hardware security extension and
it includes support from ARM processor, bus fabric, and system peripherals on a System on
Chip (SoC). TrustZone is available on both Cortex-A processors (for mobile phones and high-
end embedded systems) and Cortex-M processors (for low-end IoT systems). The high-level
idea of TrustZone is to partition the whole SoC into two worlds: secure world and normal
world. In a typical use case of TrustZone, the normal world will run normal applications
and OS as usual like Linux kernel, while the secure world runs security-related applications
or a tiny trusted OS. The two worlds run in parallel. The secure world contains a small
code base and has a higher privilege level than the normal world. The normal world is
restricted by hardware barriers from accessing resources allocated to the secure world like
tagged caches, banked registers, and secure peripherals. Whenever a normal want to access
the functionalities provided by the secure world, it needs to use special instruction to trap
into the secure world and then secure world responses to the requests.

ConAttest uses OPTEE as a trusted OS in the secure world. A typical use of OPTEE is
to design and implement code in the normal world called client application (CA) and code
in the secure world called trusted application (TA). CA is responsible for invoking the TA
in the secure world, while TA is responsible for the execution of any security-critical tasks.
In ConAttest, the VFI measurement engine is implemented as a TA in OPTEE. Thus, the
record of VFI is protected from the potentially malicious normal world. Another security
feature of TrustZone is that it provides provisions of per-device private keys and trusted
certificates. This feature allows us to perform straightforward authentication and secure
communication between a TrustZone equipped prover device and a remote verifier.

5.2.4 Ardupilot

ConAttest use an autopilot software called Ardupilot [149] for evaluation. Ardupilot enables
the creation and use of unmanned vehicle systems. Coupled with ground control software,
unmanned vehicles running Ardupilot can have advanced functionality including real-time
communication with operators. Ardupilot supports Copter, Plane, Rover, Submarine, and
Antenna Tracker. Ardupilot software is composed of three parts, shared library, vehicle-
specific flight code, and hardware abstraction layer code. During compilation, external li-
braries like MAVLink is also linked into the final binary. MAVLink library is used for parsing
MAVLink messages sent and received from the ground station. In ConAttest, we consider
external libraries untrustworthy, especially the MAVLink library. Since the MAVLink li-
brary can receive messages through radio remotely. Meanwhile, the trustworthiness of other
libraries and code is customizable by the user.

Two essential differences between CPS and other applications are that: First, they have strict

Ruide Zhang Chapter 5. Protecting the Physical World 79

real-time constraints; Second, they are composed of control loop tasks. In a typical CPS,
control tasks at various time-scale are implemented to interact with the physical world. And
for each control task, it usually has a strict time constraint on when it should be run again.
Ardupilot also has this CPS property. Ardupilot uses a setup-loop structure to implement
control tasks. During the setup phase, each control task is assigned both a frequency and
a maximum execution time. During the loop phase, the frequency is used in timer callback
to decide if that control task runs when it is called. The maximum execution time is used
by the scheduler of Ardupilot. If the remaining time of a loop is less than the maximum
execution time, the processing task won’t be executed and will be delayed to the next loop.
However, because of this design choice, Ardupilot becomes unresponsive if it cannot finish
all tasks in a loop in most cases. In our preliminary experiment on adopting the control flow
recording of Ardupilot, the system stops responding. This is because the runtime overhead
overwhelmed the system and it cannot finish it control loop tasks in time. Such a situation
further motivates the necessity of VFI.

At runtime, Ardupilot is a single process. Depending on the board it is built for, Ardupilot
may support single or multithreading (Linux and PX4). However, in Linux, all threads
of a process share the same memory view. So compromising any control task inside any
thread can lead to accessing all code and data of all control tasks. Such circumstance
motivates the importance of memory isolation in Ardupilot software runtime. In ConAttest,
we support user-defined compartments to enable a different degree of memory isolation. Note
that, ConAttest is built on the Linux system and can take advantage of MMU, while the
methodology of ConAttest can also be applied to a system with MPU and trusted hardware,
for example, new ARM Cortex-M chips with MPU and TrustZone.

5.3 Problem Setting for ConAttest

Runtime attacks exploit vulnerabilities in software during its execution. A vulnerability
is an exploitable bug hidden in the software during its development. The prerequisite of
runtime attacks is an exploitable bug in programs. Thus, one way to defend against runtime
attacks is to create a bug-free program. However, the software is developed by human
beings, and human makes mistakes. Static and dynamic tools are developed to help humans
find their mistakes. static analysis tools like Model checking and Symbolic execution are
developed to find bugs, also dynamic tools like fuzzing help. However, static methods have
a state explosion challenge and usually have to make a trade-off between soundness and
completeness. While dynamic methods have the challenge of exploring all the possible inputs
to cover all execution states. A large program could have close to infinite input space, and
dynamic methods have trouble in traversing all input space. How to develop the bug-free
program is still an open research problem.

Bugs seem to be inevitable in the program. Another direction is to investigate on runtime
attacks mitigation methods. Memory isolation is one of the most common and effective

Ruide Zhang Chapter 5. Protecting the Physical World 80

techniques among computer system security services and can mitigate runtime attacks by
separate the memory space of the program. For example, process memory isolation isolates
each process’s memory space from other processes. If an attacker has compromised one
victim process, she cannot use this victim process to launch an attack on other processes
according to this memory access control. Efficient in-process memory isolation is a recent
topic, [160] uses Intel MPK to facilitate such capability. Runtime attacks mitigations in
the same memory space are also developed to make a bug harder to exploit for an attacker.
Basic mitigations include Data Execution Prevention (DEP) to stop code injection, Stack
Canaries to stop stack smashing, and Address Space Layout Randomization (ASLR) to
probabilistically make attacks harder. However, they can be bypassed through information
leaks or code reuse attacks. Advanced mitigation such as Control-Flow Integrity (CFI)
restrict the control flow to only jump to allowed target addresses for indirect control-flow
transfers. But it has its own pitfall. First, CFI is stateless, thus an attacker can choose
any of the targets in the allowed ones for each dispatch. Second, data-only attacks allow
an attacker to affect the program within the allowed control flow. [18] use the control flow
sequence to provide states in control flow and use it for attestation. Their method subjects
to non-control data attacks.

In our perspective, instead of detecting runtime attacks in single memory space, we focus
attacks that cross memory isolation boundaries to achieve their goal. These attacks include
control-flow hijacking, code reuse, and data-only attacks. Fig. 5.2 shows a generic boundary-
crossing runtime attack example on a program. In this graph, there are five basic blocks
(i.e. the circles). Bx is a function that writes on target data. B2 contains an arbitrary
write vulnerability and B3 contains a control-flow vulnerability. The attacker’s goal is to
write on target data (shown in the black box). The attacker can achieve it by exploiting the
control-flow vulnerability in B3 to call Bx and indirectly writes on target data, or he can use
arbitrary write vulnerability in B2 to directly write on target data. Note that, both these
two ways need to cross the memory isolation boundary. This memory boundary crossing
activity alone does not indicate malicious activity. However, this view switch activity in a
continuous record of view switches indicates that an attack is launched. This is similar to
statelessness in CFI comparing to statefulness in control flow sequence attestation [18].

5.4 Threat model and Assumptions

We assume the platform contains trusted hardware like ARM TrustZone. We assume the
code running inside secure world is trustworthy and we assume the attackers cannot launch
hardware attacks to break the protection of TrustZone. We assume the platform is equipped
with MMU or MPU to support hardware-based memory isolation. We assume the platform
contains a secure timer in TrustZone. We assume the autopilot software is running in a sin-
gle address space. We assume the availability of autopilot source code. ConAttest performs
analysis and instrumentation on source code. We assume that the autopilot software itself is

Ruide Zhang Chapter 5. Protecting the Physical World 81

Figure 5.2: Abstract view of boundary crossing runtime attacks.

trustworthy which means it may contain exploitable bugs but not malicious. We assume that
attackers could find a memory corruption vulnerability in any of the compartments of the
autopilot software except security-critical compartments and they are capable of exploiting
memory corruption. Once the attackers have successfully launched their exploit, they can
further reuse existing code in the compartment to achieve their goal. We assume the attacker
can also launch a data-only attack. Since the autopilot only has one address space, with-
out ConAttest, the attackers can maliciously utilize the code, data and peripheral devices
mapped to the memory space. We assume the attacker’s goal is to temper with security-
sensitive data in a security-critical compartment. We assume the attackers cannot tamper
with the instrumented ViewSwitch trampoline. We assume the attacker cannot dynamically
inject code. These can be achieved by taking advantage of MMU or MPU.

ConAttest applies defenses to (1) isolate memory corruption vulnerability in a compartment
and prevent it from affecting the entire system: (2) record the view switch activity continu-
ously to allow a remote verifier to detect malicious system state for a recent past. (3) launch
self-initiated view switch monitoring with the help of a secure timer to achieve practical
continuous VFI attestation.

5.5 ConAttest Design

ConAttest has one main goal which is to enable continuous attestation. To achieve this goal,
ConAttest brings in two essential mechanisms. The first one is a new runtime property VFI.
VFI introduces dramatically lower runtime overhead comparing to control-flow runtime prop-

Ruide Zhang Chapter 5. Protecting the Physical World 82

erty. The runtime overhead of VFI also depends on the granularity of compartments. Users
can further reduce the runtime overhead by tailoring the partition of software. The second
one is secure timer enabled self-initiated VFI monitoring. This security feature brings in a
trade-off between attack detection rate versus energy consumption and verification difficulty.
Another goal of ConAttest is to defend against code reuse attacks or data-oriented attacks
across compartment boundaries. To accomplish this goal, ConAttest separate the compart-
ments’ data and code segments in the memory map and enforce that each compartment can
only access its corresponding code and data during execution. If a compartment wants to
cross the boundary, it is trapped into ViewSwitch trampoline and ViewSwitch trampoline
switches memory view securely and tells ARM TrustZone to store this activity.

5.5.1 ConAttest System Model

Fig. 5.3 shows our system model. The verifier is pre-distributed with a database of valid VF
paths. The prover is equipped with ARM TrustZone and a secure timer. We consider the
case when a drone flies out of its base and reach proximity to the verifier. The verifier wants
to attest the drone for if it has been compromised during its flight. The flight could easily
last from minutes to hours.

In ConAttest, after the drone takes off, VF recording is initiated by a secure timer according
to the user-defined parameter during the mission (1). The prover starts monitoring the
VF path of autopilot once initiated (2). After a while, the secure timer times up and fire
an interrupt to ask prover to stop recording and generate a hash of current recorded VF
path and store it in secure storage (3 and 4) . The V F -Pathi is accumulated into an
authenticator Auth by hashing the view switch activities (4). During the flight, the secure
timer continuously triggers the prover for the aforementioned activity. Once the flight is
finished and the drone reaches its destination, the verifier starts to attest the continuous
VFI of the autopilot software on a drone. She sends a challenge c that includes the autopilot
software ID and a nonce to ensure freshness to prover (1). Then the prover replies all
the reports generated by stored VFI hash starting from the takeoff (2 and 3). Prover
generates the attestation report r = SigK(Auth, c) by signing the previous authenticator
Auth and received challenge c with a key K known only to the prover (3). In the end, the
verifier queries its local valid VF database and verifies all ri she received from the prover.
The verifier only trusts the drone if all the queries succeeded (4). The valid VF database
is generated offline by measuring each possible VF path. This needs to be done once per
autopilot software. We delegate this task to the vendor of the autopilot software. We assume
the verifier receives the database from a trusted source.

Note that we are aware that exploration of all possible execution paths of a generic program
is an open problem. However, in this paper, we are focusing on autopilot software. An
essential property for autopilot software is that it is composed of control loops. And their
behavior tends to have a periodic pattern. In this case, the amount of valid VF path for an

Ruide Zhang Chapter 5. Protecting the Physical World 83

Figure 5.3: Overview of ConAttest

autopilot software is limited.

5.5.2 Compartmentalization

In this paper, a compartment is defined as an isolated code and data region. Each instruction
and data belongs to exactly one compartment. Fig. 5.4 shows three compartments, where
each compartment has read/write permission on its data region and read/execute permission
on its code region. When a compartment tries to call a function or access data in another
compartment, a view switch activity is performed. For example, as shown in Fig. 5.4(b),
MsgRec() is a function in compartment B for receiving the message. Here, compartment B
is the library for processing messages. When MsgRec() receives a command from the ground
station to fly higher, it first enters compartment A, which is a library for status estimation
and flight control. Then EKF() function takes over the control and starts estimating alti-
tude. After that, EKF() pass control to RateCTL() to calculate motor rates. In the end,
compartment C is entered and motor speeds up. This whole process includes the view switch
from compartment B to compartment A and compartment A to compartment C. ConAttest
securely record such view switch flow and use it as VFI runtime property for attestation
purpose. ConAttest uses MMU to set permissions on each region while MPU could also
satisfy ConAttest’s requirement in theory.

The starting point of our workflow is to partition the autopilot software. We partition the
autopilot software by its functionalities. Autopilot software is normally composed of four
categories of libraries. They include hardware abstraction layer libraries for easier porting
purposes, sensor libraries for extracting sensor information, core libraries for piloting and

Ruide Zhang Chapter 5. Protecting the Physical World 84

Figure 5.4: Illustration of ConAttest’s concept of compartments. (a) ConAttest isolates
memory with access permissions shown in columns. (b) ConAttest records view switch
activities.

navigating, and communication layer libraries for sending and receiving messages to the
ground station. Note that, communication layer library is usually an external project (e.g.
MAVLink). ConAttest requires communication libraries to be put in a single compartment,
while other libraries are optional and depend on the user’s specification. We argue that
external libraries may not be as trustworthy. ConAttest offers a compartment policy config-
uration feature to users. The compartment policy defines how libraries should be grouped
into compartments. If a user has a security-sensitive code or data region, she can use the
compartment policy configuration feature to group them into a single compartment and thus
provides a higher security level for this region. The policy affects the performance and isola-
tion of compartments which also means the security of the autopilot software. For example,
if two code regions that frequently call each other are placed in different code compartments
then view switch will occur frequently. From a security point of view, if a security-sensitive
global variable is placed in the same compartment with an untrustworthy external library,
then an activity of malicious attack on this global variable cannot be recording in VFI attes-
tation. ConAttest enables the user to explore the performance-security trade-offs for meeting
their requirements.

5.5.3 Program Instrumentation and View Switch

ConAttest relies on MMU to isolate the address space of individual compartments. During
the linking phase, the linker maps compartments into the various memory region. The

Ruide Zhang Chapter 5. Protecting the Physical World 85

Figure 5.5: Randomized VFI measurement.

MMU is set up so that each compartment cannot access the memory region occupied by
other compartments. ConAttest inserts trampoline code into autopilot software during the
compilation pass to support view switches. Invocation to the trampoline code is instantiated
by instrumenting the autopilot software. Every function call between compartments and
every return instruction is instrumented to invoke a view switch routine. Also, every data
access across the compartment is instrumented. Upon invoked, the trampoline code in user
space traps into a kernel module. The kernel module configures the MMU properly and
further trap into secure world. Then the measurement engine in the secure world is invoked
and the view switch activity is recorded.

To instrument all function call and return between compartments, static program analysis is
used to identify all the functions a compartment has. Then by finding out the functions who
call functions in another compartment, the instrumentation on function calls can be achieved.
For instrumenting return instruction, the call graph is utilized. If a function is not called
by any function in another compartment, then the return instruction in this function does
not need instrumentation. The return instruction needs instrumentation when the opposite
happens. We use static analysis conservatively and leave issues like indirect function calls to
dynamic analysis. The dynamic analysis gives only true view switch points with the trade-
off that it needs to be determined during execution. We manually add instrumentation
according to the results from dynamic analysis.

5.5.4 Secure Timer Initiated VF Recording

We propose a further trade-off of security by enabling probabilistic measurement with secure
timer initiated VFI recording. We set a secure timer in TrustZone to randomly initiate the
VFI recording during a mission, so an attack can be detected if, at that temporal moment,
VFI recording is turned on. While when VFI recording is turned off, the attack activity is
missed.

We also seek to answer the fundamental question in randomized continuous attestation,

Ruide Zhang Chapter 5. Protecting the Physical World 86

which is how to trade-off between security and energy. More specifically, the security is
measured by Pd - the probability of detecting an intrusion and the energy can be measured
by the additional energy, Ea, consumed by the device in recording VF. One of method
to optimize for best utility is to formulate the utility as function combination two factors,
where U = F(Pd, Ea). More specifically, let TM be the time for conducting a mission by
an attested unmanned vehicle. Let Ts be the average time interval between two distinct
secure-timer initiated randomized measurements. We assume during a secure timer initiated
measurement, the average recording time is tr. We assume within a TM period, there are
in average I non-overlapping injections and for each injection, each takes an average time
of ti to conduct. The overview of randomized continuous attestation is shown in Fig. 5.5,
the injection would only be detected if it overlaps with randomized attestation in the time.
The probability of injection detection Pd can be calculated as following: Pd =

Ts∗
∑

I ti
TM∗tr

. The
energy cost can be written as a function of mission time span, recording frequency, and
average time for each recording where Ea = FEa(TM , Ts, tr). Then to formulate this problem
is to examine the probability of detecting an adversary per energy cost, thus the utility can
be expressed as

U =
Pd
Ea

where
Pd = FPd

(TM , Ts, ti, I, tr) =
Ts∗

∑
I ti

TM∗tr
Ea = FEa(TM , Ts, tr)

5.6 Implementation of ConAttest

This section presents our prototype implementation of ConAttest on a Navio2 drone.

5.6.1 ConAttest Prototype

To demonstrate the efficacy of ConAttest, we prototyped it on a popular drone platform,
Navio2. Navio2 platform includes two essential parts, a Raspberry Pi 3 (RPI3) board for
running autopilot software (i.e. ArduPilot) and a Navio2 daughterboard for providing various
sensing capabilities. The reason why we choose this platform is that RPI3 is equipped
with ARM’s TrustZone-A. ARM TrustZone-A can provide security services to meet the
requirements of the trusted prover. Also, commercially available drones based on ARM
TrustZone-M is not there yet. ConAttest can also be applied to future autopilot platform
equipped with ARM TrustZone-M and MPU. On the Navio2 platform, a customized Real-
time preemptible kernel based on Linux kernel v 4.14.95 is running on RPI3. Device drivers
to communicate with Navio2 daughterboard is also included in the customized Linux kernel.
The Linux distribution used is Raspbian GNU/Linux 9 (stretch) 64 bit. For assembling and
soldering up the drone, we list the essential parts as following: 4S 6000mAh 14.8V 55C LiPo

Ruide Zhang Chapter 5. Protecting the Physical World 87

Figure 5.6: Our prototype of ConAttest implemented on Navio2

RC Battery, S500 Quadcopter Frame, 70A ESC, D3548 1100kV Motor and 1260 carbon fiber
propellers. The reason we pick these parts to show is that designing a drone needs to consider
lifting power versus weight. And the parts we show is crucial to this balance. And picking
wrong parts may lead to a drone that can’t take off. We show our prototype in Fig. 5.6.
In addition, program analysis and program instrumentation are implemented as new passes
in LLVM 4.0 [161]. Call graph analysis is implemented in Python leveraging the NetworkX
graph library [162]. Trampoline is provided in the form of a C runtime library.

5.6.2 Porting OPTEE to Navio2 Platform

Although the RPI3 hardware offers the capability of ARM TrustZone, the original Navio2
platform does not utilize it. Thus, the first challenge for implementing ConAttest on Navio2
platform is to build up secure world. We choose to port a popular open-source trusted OS,
OPTEE, to Navio2 platform. OPTEE is a Trusted Execution Environment (TEE) designed
as a companion to a non-secure Linux kernel running on ARM Cortex-A cores using the
TrustZone technology. OPTEE is a companion with ARM Trusted Firmware (ATF) which
provides a reference implementation of secure world software for Armv8-A and Armv8-M.

In order to port OPTEE to RPI3 with Linux kernel, we first need to know the normal
boot process of RPI3. There are some important files in the FAT32 filesystem on the SD
Card. They are second-stage bootloader bootcode.bin, third stage bootloader start.elf, and
a config.txt file containing configuration parameters for both the VideoCore and loading of
the Linux Kernel (load addresses, device tree, uart/console baud rates and etc.). Note that,
RPI3 has a VideoCore and an ARM processor. Starting from power on, the VideoCore is
responsible for booting the system. It loads the first stage bootloader from a ROM embedded
within the SoC. The first stage bootloader is designed to load the second stage bootloader
(i.e. bootcode.bin). The second stage bootloader is executed on the VideoCore and loads

Ruide Zhang Chapter 5. Protecting the Physical World 88

the third stage bootloader (i.e. start.elf). The third stage bootloader is where all the action
happens. It starts by reading config.txt. Once the config.txt file has been loaded and parsed,
the third stage bootloader will load kernel image into the shared memory allocated to the
ARM processor, and release the ARM processor from reset. The Linux kernel then starts
booting.

To port OPTEE, we add a boot stage before the third stage bootloader loads kernel. First,
we compile ATF, OPTEE, and U-boot. U-boot is an open-source, primary boot loader used
in embedded devices to packaging the instructions to boot the device’s operating system
kernel. We combine ATF, OPTEE, and U-boot into a single image. ATF is the starting
point of this image. And ATF starts its trusted boot process when it gets the control. After
ATF finishes its own initial boot stages and set up of OPTEE, it passes control to U-boot
for it to set up and load Linux kernel. Then we tweak config.txt to make it load this image
instead of Linux kernel image. The OPTEE runtime footprint in memory is set up by trusted
boot in this stage and the U-boot will load kernel image to memory and transfer control to
the Linux kernel booting process. This solves the first challenge of porting OPTEE to the
Navio2 platform.

Figure 5.7: Overview of ConAttest development Workflow.

5.6.3 Enabling Secure Timer on Navio2 Platform

OPTEE does not support secure timer on RPI3 and RPI3 is not using Generic Interrupt
Controller (GIC). All the GICv1 to v4 implementation in OPTEE does not work on RPI3. In
this situation, we have to set up the interrupt control and secure timer in ATF and OPTEE.

Ruide Zhang Chapter 5. Protecting the Physical World 89

So the second implementation challenge is to set up a secure timer during ATF trusted boot
and implement the secure timer interrupt routing and handling in ATF and OPTEE.

The SoC model RPI3 uses is BCM2837, and the architecture of it is the same as BCM2836 [163].
From the Linux source of RPI3 using the bcm2836-l1-intc device tree, we know that the
BCM2836 has a per-CPU interrupt controller for the timer. It is clear the next step is to
find a secure timer source and route its interrupt line to secure world. So we need to first
identify a secure timer source and second, set up interrupt routing.

For the BCM2837 SoC, RPI3 has a system timer (part of GPU core) and a local timer (part
of ARM core), these two timers are implemented by sp804 module [164, 165]. Besides, an
ARM clock is derived from the GPU core clock. RPI3 uses ARM Cortex-A53 which has four
cores. And Cortex-A53 core timers can use external crystal timer or local peripheral (APB)
clock source [166]. In our setting, Cortex-A53 core timers use an APB clock source. APB
clock is half the speed of the ARM clock. Thus essentially, the GPU code can potentially
affect the core timer. Note that, here we trust the GPU code since it is distributed by RPI3
vendor. A more secure way would be using a secure external crystal timer. For each Cortex-
A53 core, there are 4 timers, an EL1 Non-secure physical timer, an EL1 Secure physical
timer, an EL2 physical timer, and a virtual timer [10]. We are using EL1 Secure physical
timer in our timer interrupt for self-initiated VF recording. Here EL means Exception level,
and both the normal world and secure world have their own ELs. The higher the number,
the more privileged the mode is.

Now that we have a secure timer source, we can now set up interrupt routing. RPI3 is not an
open hardware platform, so it lacks of hardware documentation. We base our development
on an unofficial document for the previous version of RPI [167]. The goal for us in this part
is to set core0 EL1 Secure physical timer interrupt to the route as FIQ to core0 before control
is transferred to the normal world. To achieve this, we conduct the following steps: 1 Set
core0 FIQ source to EL1 Secure physical timer of core0. 2 Route EL1 Secure physical timer
of core0 to FIQ interrupt type. 3 Set counting time for EL1 Secure physical timer of core0.
4 Enable EL1 Secure physical timer of core0. Then we set up the secure timer interrupt
handlers. For each interrupts coming, depends on which world a core is working in, it has
a different outcome. For FIQ in the normal world, it traps into secure EL3 and forwards to
secure world. For fiq in secure world, the secure world handles it directly. In our case, we
write a handler in both secure EL3 and secure EL1.

5.6.4 Compartmentalization Development Flow

As shown in Fig. 5.7, the first step of development flow is to create a user-defined ConAttest
Policy file. This file specifies which libraries or source code should be put into the same
compartment and where the memory region is for each compartment. This file is used for
partitioning the ArduPilot software, generate linker script and supply compartment meta
information to ViewSwitch trampoline. In the next step, each compartment is compiled into

Ruide Zhang Chapter 5. Protecting the Physical World 90

Figure 5.8: Overview of ConAttest runtime.

LLVM bitcode file. Our first IR pass performs program analysis on each compartment’s
bitcode file. It extracts each function and data names in each compartment. The Analysis
aggregation step is an aggregated JSON file with function and data name information for all
compartments. Our second IR pass takes in the JSON file created in the previous step and
inserts calling to trampoline into each compartment’s bitcode file before direct function calls
to another compartment. We notice that indirect function calls lead to segment faults in our
case. So we manually identify and fix the segment faults through dynamic analysis later. For
the return instructions, we use NetworkX to analyze the call graph generated by LLVM and
insert the trampoline as described in Section 5.5.3. After the instrumentation, compartments
are compiled into object files. In the meantime, ViewSwitch Trampoline is also compiled to
object file. ViewSwitch Trampoline traps into kernel space when a view switch is needed.
A linker script is used to link all the compartments’ object files and the view switch object
file to a single binary. The linker script tells the linker to put each compartment into its
assigned memory region.

5.6.5 ConAttest Runtime

Fig. 5.8 shows the runtime for ConAttest. Note that we omit the communication software
and procedure for the verifier to connect to the attestation module in the measurement
engine in this figure for simplicity. During the flight, a secure timer initiates a runtime
VFI trace request from time to time. It does so by generates a secure timer interrupt (1)
and the handler for this interrupt in OPTEE OS would pick it up, clear the interrupt flag,
set the finish recording time, and turns on the VFI recording switch in ViewSwitch kernel
module (2). Then the ViewSwitch kernel module starts to monitor view switch activity in
ArduPilot software. Within the ArduPilot, for each compartment crossing activity, the soft-

Ruide Zhang Chapter 5. Protecting the Physical World 91

ware instrumentation calls into ViewSwitch Trampoline (3). The ViewSwitch Trampoline
then traps into the ViewSwitch kernel module (4). If the recording switch is turned on,
then ViewSwitch kernel module traps into secure world and pass view switch activity data
to Hash engine (5) through OPTEE OS besides configuring MMU. After the Hash engine
hash the view switch activity data with existing data, it passes the control back to OPTEE
OS which in turn returns control back to the ViewSwitch kernel module (6). In the end,
the ViewSwitch kernel module passes control to the ViewSwitch trampoline (7) which then
gives control back to the target function in the target compartment (8). Right before the
drone arrives at its destination, the verifier securely connects to the Attestation module in
the measurement engine and requests for VFI attestation report. The attestation module
extracts the reports generated by the Hash engine along the way (9) and sends it back to
the verifier through a secure channel.

Besides, we also support control flow monitoring in our measurement engine. We allow a
user to optionally specify modules they want to monitor control flow on. We use CSI frame-
work [168] to instrument selected modules and allows them to trap into measurement engine
and record the control flow similar to [18]. We highly suggest to only use this feature for
security-critical tiny modules, because it generates large runtime overhead on the ArduPilot
software and requires large database and computation power for the verifier.

5.7 Evaluation on ConAttest Prototype

In this section, we evaluate ConAttest prototype on the Navio2 platform to answer the
following questions:

• What is the performance impact of control flow instrumentation on real time con-
straints of real-time ArduPilot software in Sec. 5.7.1?

• What is the performance impact of ConAttest on real time constraints of real-time
ArduPilot software in Sec. 5.7.2?

5.7.1 Performance Impact of control flow instrumentation

As a concrete demonstration of the negative impact of control flow instrumentation to
ArduPilot software runtime, we use [168] to implement control flow instrumentation in the
software. More specifically, we randomly selected a number of real-time tasks in ArduPilot
and measured the impact of control instrumentation on their real-time constraints. Our
control-flow instrumentation traps into secure world and uses a trusted application to do the
CF recording.

Ruide Zhang Chapter 5. Protecting the Physical World 92

From our preliminary result, the control flow instrumentation increases the runtime overhead
of ArduPilot software to an average of 168 times. We observed that the control flow instru-
mentation severely break the real-time constraints of the system. And the system becomes
unresponsive with control flow instrumentation. This motivates the necessity of ConAttest.

5.7.2 Performance Impact of ConAttest

Fig. 5.9 shows the performance of 12 real-time tasks in comparison with their correspond-
ing real-time constraints, with and without the instrumentation added by ConAttest. We
utilize the high-resolution performance counter on the RPI3 hardware to generate the mea-
surements. As described in Sec. 5.2.4, the main thread of ArduPilot software sets up the
scheduling, and all tasks are assigned a deadline real-time constraint. If the deadline real-
time constraint is not met, then the system could potentially become unresponsive. This is
because not all tasks can be processed. Thus, the performance overhead of ConAttest must
be small enough for real-time tasks to meet the deadlines. Notice that, in this figure, we
use two compartments, one is the MAVLink library and the other one is the remained ones.
We put SITL on RPI3 for this evaluation. And the data access instrumentation and return
instruction instrumentation are not implemented.

Figure 5.9: Performance impact of ConAttest on real-time tasks with deadline constraints.
The overhead introduced by ConAttest is marked on top of every bar that represents the
execution time with ConAttest. The results are the average of more than 100 runs.

Ruide Zhang Chapter 5. Protecting the Physical World 93

5.8 RELATED WORK

Remote Attestation Tab. 5.1 summaries recent advancements in remote attestation area.
For single device attestation, conventional attestation [96, 97, 94, 95, 84, 152, 153, 91, 154,
155, 156, 90, 85, 83, 157, 158, 159] use integrity of program memory during loading time to
build up attestation report for verification. [96, 97, 94, 95] propose static property attestation
based network-wide attestation, while [155, 156, 85, 83, 157] propose extending hardware
support to improve the performance of static property attestation.

However, conventional defense mechanism cannot detect runtime attacks such as ROP or
data-only attack. More recent efforts focus on runtime control flow property to build an
attestation report. And this control flow mechanism can defend against control data attack
and partial non-control data attack. [18] is the first work to introduce this control flow
attestation. They enable a prover to attest the exact control-flow path of an executed
program to a remote verifier. In these two years, researchers further include data flow to
defend against data-only attacks with attestation [19, 20]. Besides the attestation contents
change, the researcher also includes hardware change to either improve the performance of
the current scheme or to avoid necessity of halting [169, 170]. [171] also consider TOCTOU
attack through hardware changes.

Nonetheless, all of the aforementioned runtime attestation schemes put their attention on
runtime attack in the same memory space, without taking advantage of modern memory
isolation techniques. Also, they introduce heavy runtime overhead to the instrumented
software or platform. And the computation burden of verification on the verifier is nontrivial.
In addition, they are based on verifier initiated on-demand attestation which requires the
prover to respond to attestation requests anytime. While in our case, unmanned vehicles
during a mission might not have this luxury. In this paper, we consider runtime attacks
across memory isolation. We hide the security-critical variables in its own compartment.
Besides, we use a secure timer to allow the prover to securely self-initiate view flow recording
continuously. The ConAttest prototype shows the practical side of our methodology.

Memory Isolation and Compartmentalization A line of research focuses on enabling
light-weight memory isolation. Memory isolation requires two fundamental supports, the
memory isolation support and the switching support. Techniques for isolation and switching
can be based on operating systems [172], hypervisors [173], language runtimes [174], Intel
MPK [160] and more. In ConAttest, we use software instrumentation to switch and MMU
to isolate the memory. However, our method requires frequent switch into kernel space and
has high overhead. Existing research on light-weight memory isolation could potentially be
integrated and improve the performance of ConAttest.

There has been a body of research focusing on decomposing programs into multiple iso-
lated compartments and reduce the attack surface in a system. [175] proposes Privtrans
which partitions an application into privileged and unprivileged processes using static anal-
ysis. Glamdring [176] allows a developer to annotate on sensitive data and applies data

Ruide Zhang Chapter 5. Protecting the Physical World 94

Table 5.1: Remote Attestation Research in Recent Years

Project Year Target Attested Property Runtime Attack Detection Hardware Property Required Change ContinuumControl data Non-control data
Seda [96] 2015 Software/Network static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
SANA [97] 2016 Software/Network static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
DARPA [94] 2016 Software/Network static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
Us-aid [95] 2018 Software/Network static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
PUF [84] 2014 SoC Circuit N N Hardware-assisted Hardware On-Demand: Verifier Initiated
BoardPUF [152] 2015 PCB Circuit N N Hardware-assisted Hardware On-Demand: Verifier Initiated
VM [153] 2004 Software static memory N N Software-only N On-Demand: Verifier Initiated
Swatt [91] 2004 Software static memory N N Software-only N On-Demand: Verifier Initiated
Pioneer [154] 2005 Software static memory N N Software-only N On-Demand: Verifier Initiated
ReDAS [155] 2009 Software static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
TrustVisor [156] 2010 Software static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
VIPER [90] 2011 Software static memory N N Software-only N On-Demand: Verifier Initiated
Timing [85] 2012 Software static memory N N Hardware-assisted N On-Demand: Verifier Initiated
SMART [83] 2012 Software static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
TrustLite [157] 2014 Software static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
TyTAN [158] 2015 Software static memory N N Hardware-assisted Hardware On-Demand: Verifier Initiated
Drive [159] 2017 Software static memory N N Software-only N On-Demand: Verifier Initiated
C-flat [18] 2016 Software Control flow Y Partial Hardware-assisted Software Instrumentation On-Demand: Verifier Initiated
Lo-fat [169] 2017 Software Control flow Y Partial Hardware-assisted Hardware On-Demand: Verifier Initiated
Atrium [171] 2017 Software Control flow Y Partial Hardware-assisted Hardware On-Demand: Verifier Initiated
Litehax [170] 2018 Software Control flow/ Data flow Y Y Hardware-assisted Hardware On-Demand: Verifier Initiated
DIAT [19] 2019 Software/Network Control flow Y Partial Hardware-assisted Software Instrumentation On-Demand: Verifier Initiated
OEI [20] 2020 Software Control flow/ Data flow Y Y Hardware-assisted Software Instrumentation On-Demand: Verifier Initiated
This paper 2020 Software View flow Y Y Hardware-assisted Software Instrumentation Continuously always on

and control-flow analysis to partition an application into security-sensitive and non-sensitive
compartments. The security-sensitive compartment is put in an Intel SGX enclave for execu-
tion. [177] proposes to partition Android applications into compartments and put security-
sensitive compartments in ARM TrustZone environment for execution. ACES [150] parti-
tions a single bare-metal system with MPU into multiple compartments. In addition, ACES
enables intra-process compartmentalization and creates compartment creation automation.
Minion [178] implements partitioning and efficient real-time memory view switching on a
commercial drone, 3DR IRIS+. 3DR IRIS+ also uses ArduPilot as its autopilot software. In
this paper, ConAttest uses static analysis to create the compartments of ArduPilot software
and allows the user to define compartment policy.

5.9 Discussion

In this section, we first investigate the control model of autopilots. The control model shows
that view switch behavior has periodic characteristics. Second, we explore how to apply
ConAttest to Paparazzi autopilot based unmanned vehicles.

5.9.1 Control model of autopilots

Real-time aspects of autopilots are mostly defined by requirements for low latency sensor
acquisition and control responses and specialized low-level interfaces, such as I2C, SPI, CAN,
and PWM outputs. To satisfy these requirements, autopilots separate control tasks based
on the time scale as shown in Fig. 5.10. Control tasks can generally be modeled as a set
of nested control loops. Each control loop has a reference setpoint and the current vehicle

Ruide Zhang Chapter 5. Protecting the Physical World 95

Figure 5.10: The general dynamical model and nested control architecture for autopilots.
Different levels have different update frequency and latency requirements.

state as input. It generates the reference for the next inner loop. Even more, advanced
control structures often can be described as a set of nested control loops. The outer loops
generally have less strict timing requirements compared to the innermost control loops, thus
giving the system designer more flexibility on which platform to implement the outer layers.
In ConAttest, the compartment policy is configurable and any control loop can be isolated
as a control loop. Because of the nested loop structure, enter and exit of the compartment
is happening periodically. Thus, the view switch flow follows the periodic characteristics of
control loops. And this insight can be further used for computation complexity reduction of
VFI for the verifier. We leave this optimization to future works.

5.9.2 ConAttest on Paparazzi

In this section, we discuss how to apply ConAttest to another autopilot system. Paparazzi
is an open-source drone hardware and software project encompassing autopilot systems and
ground station software for multi-copters/multi-rotors, fixed-wing, helicopters, and hybrid
aircraft. The Paparazzi autopilot typically runs an RTOS or bare-metal on a small micro-
controller (MCU), such as Lisa/M or Pixhawk, and has limited memory and computational
power. The autopilot code is written in C. Onboard code is split between periodic tasks and
event tasks. Periodic tasks are scheduled time-sensitive tasks executed at specific periodic
intervals. Examples include navigation actions, control loops, and periodic telemetry mes-

Ruide Zhang Chapter 5. Protecting the Physical World 96

sages. Event tasks are carried out in response to something. For example, receiving new
GPS data or a datalink message. Thus, ConAttest here needs to put periodic tasks and
event tasks in two separate compartments.

Paparazzi autopilot is normally a single process on embedded systems or bare metal. So
there is no mechanisms to isolate the memory view of different control tasks. So to apply
ConAttest, we must choose a method to isolate the memory space and put compartments
into each isolated memory space. MPU could be used for this purpose. Also, Paparazzi does
not support a secure world, so the integration of ARM TrustZone is needed for the secure
recording of VF.

5.10 Summary

Existing remote attestation focuses on a snapshot of integrity and lacks continuum. It is
challenging to provide continuum due to the fine-grained granularity characteristics of current
schemes. Besides, the runtime overhead of existing schemes introduce too much burden for
a real-time unmanned vehicle, which leads to unresponsiveness. Thus, to balance between
performance and security requirements of a unmanned vehicle is necessary for achieving
continuum. In order to solve aforementioned problems, we present a new runtime property,
VFI. Comparing to control flow sequence integrity, VFI relax the granularity while in the
meantime, offers certain degree of attack detection capability. We have presented ConAttest,
a new security architecture that introduces security-performance trade-off to continuous
remote attestation based on VFI. ConAttest is able to detect view crossing runtime attacks
instead of to detect runtime attack in a single address space. ConAttest also allows user
to configure attack detection rate versus energy consumption. At the end, we show that
ConAttest maintains the responsiveness of real-time unmanned vehicle at its original level by
implementing it on a commercial drone platform and evaluating the performance overhead.

Chapter 6

Conclusion

With the coming of IoT, people enjoy an easier and more convenient life. Yet this new
paradigm of everything going online also brings the serious concern of security and privacy
issues. With more attack surfaces exposed by newly coming IoT frameworks, it is of utmost
importance to perform security review on the IoT architecture as a whole. IoT is not only
about the devices, but also about the networking and cloud computing supports.

6.1 Research Summary

In this dissertation, we explore security in IoT architecture spanning a broad spectrum
including sensing capabilities, networking, cloud computing, and endpoint devices. Solutions
for unique security and privacy challenges are proposed to further our understanding of IoT
as a whole. We present our perspectives of security and privacy to shape the future of IoT.
Specifically, we have the following findings.

• In [9], we study the potential privacy leakage in a newly coming commercial gesture
control device, Myo. We discuss the privacy concern on the unique property, always-
on sensing capabilities, of IoT devices. With more and more sensors equipped on IoT
devices, it requires serious privacy inspection for them. Otherwise, the new sensors
might leak crucial information from the user. In this work, we show that by applying
digital signal processing techniques, EMG signal collected from Myo can be used to
infer a password typed on a keyboard or a PIN pressed on a mobile phone. We build a
prototype on Myo and demonstrate that the inference is practical and it is important
to consider the privacy implication when introducing a new sensor to an IoT device.

• In PriRoster [13], we turn our attention to the networking layer. Comparing to the
central data center, edge BS does not have the same level of security level. However,
large scale radio context attestation requires edge BS to be trustworthy. In this work,

97

Ruide Zhang Chapter 6. Conclusion 98

we propose to utilize Intel SGX to build up trust in Edge BS. Meanwhile, we design a
trust transfer protocol to significantly reduce the Intel SGX remote attestation time.
Also, we consider memory access side-channel attacks on Intel SGX ecosystem. We
defend against the side-channel leakage by implementing oblivious comparing functions.
We build up a prototype of PriRoster and show both the microbenchmark evaluation
and oblivious memory access patterns. By this work, we aim to provide a trustworthy
networking architecture to prepare for the IoT era.

• In PrivacyScope, we focus on the cloud layer, which is also the brain of IoT architec-
ture. Cloud computing stores all the sensitive data collected from IoT users, however,
data breakage happens constantly on cloud providers. TEE is a new solution to solve
this issue and Intel SGX is one of the most promising TEE technologies. Nonetheless,
although Intel SGX can guarantee the integrity of running an enclave program, the en-
clave program itself might have information leakage bug or code injected by a malicious
enclave writer. In this work, we propose PrivacyScope to automatically discover infor-
mation leakage logic in the enclave program, especially ML programs. We implement
the PrivacyScope prototype and integrate it into Intel SGX ecosystem. PrivacyScope
allows a user to analyze on enclave program before she trusts a remote cloud provider
and submits her sensitive information to him.

• In Conattest, we focus on the continuous system state integrity of IoT devices. Un-
manned vehicle is an essential part of the incoming IoT world. It is important for
people to know if an unmanned vehicle is trustworthy or not. For example, when a
food delivery service is conducted by a drone, the drone needs to prove to the user
that there is no suspicious behavior during the flight. In this work, we propose VFI
to allow proving a continuous benign system state of an unmanned vehicle to a veri-
fier. We combine the advance in both memory isolation line of research and runtime
remote attestation line of research to achieve practical continuous VFI attestation. We
implement Conattest prototype on a commercial drone platform and demonstrate its
efficacy.

6.2 Future Work

Many topics explored in this dissertation can be further extended as follows.

• [9] identifies the privacy leakage of EMG signal. With more IoT devices coming to the
market, more sensing capabilities are also on their way. For example, a smartwatch
introduces a bunch of new sensors, including an ambient light sensor used for monitor-
ing heart rate. It would be interesting to extract the activity pattern of a user using
this heart rate monitor. Also, people’s emotional status is correlated with heart rate.
Thus, potentially this sensor can be used to detect the emotion a user keeps. With

Ruide Zhang Chapter 6. Conclusion 99

the workflow provided in [9], this sensor can be extended to other privacy leakage
scenarios.

• [13] provides a new paradigm for IoT architecture, which is trustworthy edge comput-
ing. We believe by applying TEE to edge nodes, a lot of applications can be thought
of. Besides, [13] proposes a general method for setting up large-scale trustworthy
edge nodes. This method can be further specialized according to application scenarios.
Also, we investigate the memory side channel of Intel SGX enclaves. This is not the
only side channel. Other architectural drawbacks in TEEs might also be considered.

• PrivacyScope focuses on the information leakage inside enclaves. PrivacyScope uses
static analysis on enclave source code to achieve its goal. It would be interesting if
the same goal could be achieved without source code but only the binaries. Another
interesting topic would be to extend the privacy policy specified in PrivacyScope. For
example, one can add more information flow policies to enforce the flow of information
inside the enclave.

• Conattest proposes to use VFI in runtime attestation. The VFI record generation is
not optimized in Conattest. Techniques like multi-set Hash, hashmap count can be
used to further tradeoff between security and performance. Also, Conattest focuses on
ARM Cortex-A processors, while ARM Cortex-M processors are coming to the market.
ARM Cortex-M processors are specially designed for IoT and offer MPU and ARM
TrustZone-M. To extend the methodology of Conattest to newly IoT devices is another
interesting research path.

Bibliography

[1] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7, pp. 97–114, 2009.

[2] https://www.gartner.com/newsroom/id/2905717.

[3] https://www.digitaltrends.com/home/why-hackers-hack-security-cameras/.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno,
et al., “Comprehensive experimental analyses of automotive attack surfaces.,” in USENIX Security Symposium, pp. 77–92,
San Francisco, 2011.

[5] B. Gardiner, “In spectrum auction, winners are at&t, verizon and openness,” Wired, 2008.

[6] G. Wang and T. E. Ng, “The impact of virtualization on network performance of amazon ec2 data center,” in Infocom,
2010 proceedings ieee, pp. 1–9, IEEE, 2010.

[7] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes evil: Keystroke inference with smartwatch,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1273–1285, ACM,
2015.

[8] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe?: Your wearable devices reveal your personal pin,” in
Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 189–200, ACM, 2016.

[9] R. Zhang, N. Zhang, C. Du, W. Lou, Y. T. Hou, and Y. Kawamoto, “From electromyogram to password: Exploring the
privacy impact of wearables in augmented reality,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 9, no. 1, p. 13, 2017.

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen,
J. Pagter, et al., “Secure multiparty computation goes live,” in International Conference on Financial Cryptography and
Data Security, pp. 325–343, Springer, 2009.

[11] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox for untrusted computation on secret
data.,” in OSDI, pp. 533–549, 2016.

[12] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “Vc3: Trustworthy
data analytics in the cloud using sgx,” in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 38–54, IEEE, 2015.

[13] R. Zhang, N. Wang, N. Zhang, Z. Yan, W. Lou, and Y. T. Hou, “Priroster: Privacy-preserving radio context attestation
in cognitive radio networks,” in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN),
pp. 1–10, IEEE, 2019.

[14] “Insider threats.” https://www.uscybersecurity.net/insider-threats-2018-statistics/.

[15] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp. 228–241, ACM, 1999.

[16] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,” Journal of computer security, vol. 4,
no. 2-3, pp. 167–187, 1996.

100

Ruide Zhang Chapter 6. Conclusion 101

[17] R. Zhang, N. Zhang, A. Moini, W. Lou, and Y. T. Hou, “Privacyscope: Automatic analysis of private dataleakage
in tee-protected applications,” in To appear in the IEEE International Conference on Distributed Computing Systems
(ICDCS), 2020.

[18] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow
attestation for embedded systems software,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 743–754, ACM, 2016.

[19] T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A.-R. Sadeghi, and M. Schunter, “Diat: Data integrity attestation for
resilient collaboration of autonomous systems.,” in NDSS, 2019.

[20] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oei: operation execution integrity for embedded devices,” arXiv preprint
arXiv:1802.03462, 2018.

[21] “Microsoft’s hololens is super limited – and hella magical.” https://www.cnet.com/products/
microsoft-hololens-hands-on/, April 2016. [Online; posted 1-April-2016].

[22] “Goldman sachs has four charts showing the huge potential in virtual and augmented reality.” https://www.pinterest.
com/pin/389561436498667612/, Jan 2016. [Online; posted Jan-13-2016].

[23] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, “Smartwatch-based keystroke inference attacks and context-aware pro-
tection mechanisms,” in Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security,
pp. 795–806, ACM, 2016.

[24] “Myo.” https://www.myo.com/, 2016.

[25] E. N. Marieb and K. Hoehn, Human anatomy & physiology. Pearson Education, 2007.

[26] J. V. Basmajian and C. De Luca, “Muscles alive,” Muscles alive: their functions revealed by electromyography, vol. 278,
p. 126, 1985.

[27] C. J. De Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab, “Decomposition of surface emg signals,” Journal of
neurophysiology, vol. 96, no. 3, pp. 1646–1657, 2006.

[28] M. Khalil and J. Duchêne, “Uterine emg analysis: a dynamic approach for change detection and classification,” IEEE
Transactions on Biomedical Engineering, vol. 47, no. 6, pp. 748–756, 2000.

[29] Y. Al-Assaf, “Surface myoelectric signal analysis: dynamic approaches for change detection and classification,” IEEE
transactions on biomedical engineering, vol. 53, no. 11, pp. 2248–2256, 2006.

[30] W. El Falou, M. Khalil, and J. Duchene, “Ar-based method for change detection using dynamic cumulative sum,” in 7th
IEEE Internat. Conf. on Electronics, Circuits and Systems, ICECS, vol. 1, pp. 157–160, 2000.

[31] O. Mustapha, D. Lefebvre, M. Khalil, G. Hoblos, and H. Chafouk, “Filters bank derived from the wavelet transform for
real time change detection in signal,” in Information and Communication Technologies: From Theory to Applications,
2008. ICTTA 2008. 3rd International Conference on, pp. 1–6, IEEE, 2008.

[32] O. Mustapha, D. Lefebvre, G. Hoblos, H. Chafouk, and M. Khalil, Fault Detection Algorithm Based on Filters Bank
Derived from Wavelet Packets. INTECH Open Access Publisher, 2008.

[33] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction myoelectric control,” IEEE Transactions on
Biomedical Engineering, vol. 40, no. 1, pp. 82–94, 1993.

[34] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to platt’s smo algorithm for svm
classifier design,” Neural Computation, vol. 13, no. 3, pp. 637–649, 2001.

[35] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in IEEE Symposium on Security and Privacy, vol. 2004,
pp. 3–11, 2004.

[36] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone: decoding vibrations from nearby keyboards using
mobile phone accelerometers,” in Proceedings of the 18th ACM conference on Computer and communications security,
pp. 551–562, ACM, 2011.

Ruide Zhang Chapter 6. Conclusion 102

[37] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using keyboard acoustic emanations,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 453–464, ACM, 2014.

[38] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on keyboard input from video,” in 2008 IEEE Sympo-
sium on Security and Privacy (sp 2008), pp. 170–183, IEEE, 2008.

[39] F. Maggi, S. Gasparini, and G. Boracchi, “A fast eavesdropping attack against touchscreens,” in Information Assurance
and Security (IAS), 2011 7th International Conference on, pp. 320–325, IEEE, 2011.

[40] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks through smartwatch sensors,” in Proceedings of the
21st Annual International Conference on Mobile Computing and Networking, pp. 155–166, ACM, 2015.

[41] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen from smartphone motion.,” HotSec, vol. 11,
pp. 9–9, 2011.

[42] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury, “Tapprints: your finger taps have fingerprints,” in
Proceedings of the 10th international conference on Mobile systems, applications, and services, pp. 323–336, ACM, 2012.

[43] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smartphone touchscreens using on-board motion sensors,”
in Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, pp. 113–124,
ACM, 2012.

[44] F. H. Chan, Y.-S. Yang, F. Lam, Y.-T. Zhang, and P. A. Parker, “Fuzzy emg classification for prosthesis control,” IEEE
transactions on rehabilitation engineering, vol. 8, no. 3, pp. 305–311, 2000.

[45] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, “Classification of the myoelectric signal using time-frequency
based representations,” Medical engineering & physics, vol. 21, no. 6, pp. 431–438, 1999.

[46] G. Tsenov, A. Zeghbib, F. Palis, N. Shoylev, and V. Mladenov, “Neural networks for online classification of hand and finger
movements using surface emg signals,” in 2006 8th Seminar on Neural Network Applications in Electrical Engineering,
pp. 167–171, IEEE, 2006.

[47] K. A. Farry, I. D. Walker, and R. G. Baraniuk, “Myoelectric teleoperation of a complex robotic hand,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 5, pp. 775–788, 1996.

[48] C. Jorgensen, D. D. Lee, and S. Agabont, “Sub auditory speech recognition based on emg signals,” in Neural Networks,
2003. Proceedings of the International Joint Conference on, vol. 4, pp. 3128–3133, IEEE, 2003.

[49] C. L. Fancourt and J. C. Principe, “On the use of neural networks in the generalized likelihood ratio test for detecting
abrupt changes in signals.,” in IJCNN (2), pp. 243–252, 2000.

[50] M. Barkat, Signal detection and estimation. Artech house, 2005.

[51] M. Khalil and J. Duchêne, “Dynamic cumulative sum approach for change detection,” IEEE TRANSACTIONS ON
SIGNAL PROCESSING, vol. 47, no. 4, p. 1205, 1999.

[52] O. A. Grigg, V. Farewell, and D. Spiegelhalter, “Use of risk-adjusted cusum and rsprtcharts for monitoring in medical
contexts,” Statistical methods in medical research, vol. 12, no. 2, pp. 147–170, 2003.

[53] C. K. Chui, An introduction to wavelets, vol. 1. Academic press, 2014.

[54] “Learn how to touch type..” http://www.ratatype.com/learn, 2016.

[55] R. Lewand, Cryptological mathematics. MAA, 2000.

[56] M. Vuagnoux and S. Pasini, “Compromising electromagnetic emanations of wired and wireless keyboards.,” in USENIX
security symposium, pp. 1–16, 2009.

[57] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard acoustic emanations,” in Proceedings of the 13th
ACM conference on Computer and communications security, pp. 245–254, ACM, 2006.

[58] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 3, 2009.

Ruide Zhang Chapter 6. Conclusion 103

[59] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm, “ispy: automatic reconstruction of typed input
from compromising reflections,” in Proceedings of the 18th ACM conference on Computer and communications security,
pp. 527–536, ACM, 2011.

[60] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your hands reveal your secrets!,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 904–917, ACM, 2014.

[61] “From radiotelegraphy to worldwide wireless: How itu processes and regulations have helped shape the modern world
of radiocommunications.” https://www.itu.int/itunews/manager/display.asp?lang=en&year=2006&issue=03&ipage=
radiotelegraphy&ext=html.

[62] “Optimising leds for wireless communication.” https://compoundsemiconductor.net/article/99050/Optimising_LEDs_
for_wireless_communication/feature.

[63] A. Ghasemi and E. S. Sousa, “Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-
offs,” IEEE commun. Mag., vol. 46, no. 4, 2008.

[64] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, “Spectrum access system for the citizen broadband radio service,” IEEE
Commun. Mag., vol. 53, no. 7, pp. 18–25, 2015.

[65] G. Coker, J. Guttman, P. Loscocco, and et al., “Principles of remote attestation,” Int. J. of Inf. Security, vol. 10, no. 2,
pp. 63–81, 2011.

[66] N. Zhang, W. Sun, W. Lou, and et al., “Roster: Radio context attestation in cognitive radio network,” in 2018 IEEE
CNS, pp. 1–9, 2018.

[67] X. He, R. Jin, and H. Dai, “Camouflaging mobile primary users in database-driven cognitive radio networks,” IEEE
Wireless commun. Letters, 2018.

[68] “He strava heat map and the end of secrets.” https://www.wired.com/story/
strava-heat-map-military-bases-fitness-trackers-privacy/.

[69] S. Jajodia, “Adversarial and uncertain reasoning for adaptive cyber defense: Building the scientific foundation,” 2015.

[70] B. Bahrak, S. Bhattarai, A. Ullah, J.-M. J. Park, J. Reed, and D. Gurney, “Protecting the primary users’ operational pri-
vacy in spectrum sharing,” in 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN),
pp. 236–247, IEEE, 2014.

[71] V. Costan and S. Devadas, “Intel sgx explained.,” IACR Cryptology ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[72] F. Brasser, U. Müller, A. Dmitrienko, and et al., “Software grand exposure: Sgx cache attacks are practical,” arXiv
preprint arXiv:1702.07521, p. 33, 2017.

[73] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side channels for untrusted operating sys-
tems,” in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 640–656, IEEE, 2015.

[74] W. Sun, R. Zhang, W. Lou, and Y. T. Hou, “Rearguard: Secure keyword search using trusted hardware,” IEEE INFORM,
2018.

[75] M. Palola, M. Höyhtyä, P. Aho, M. Mustonen, T. Kippola, M. Heikkilä, S. Yrjola, V. Hartikainen, L. Tudose, A. Kivinen,
R. Ekman, J. Hallio, J. Paavola, M. Mäkeläinen, and T. Hänninen, “Field trial of the 3.5 ghz citizens broadband radio
service governed by a spectrum access system (sas),” 03 2017.

[76] M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, “Spectrum access system for the citizen broadband radio service,” IEEE
Communications Magazine, vol. 53, pp. 18–25, July 2015.

[77] A. ARM, “Security technology building a secure system using trustzone technology (white paper),” ARM Limited, 2009.

[78] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij, “Integrating remote attestation with transport layer
security,” arXiv preprint arXiv:1801.05863, 2018.

[79] O. Ohrimenko, F. Schuster, C. Fournet, and et al., “Oblivious multi-party machine learning on trusted processors.,” in
USENIX Security Symp., pp. 619–636, 2016.

Ruide Zhang Chapter 6. Conclusion 104

[80] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels through obfuscated execution.,” in USENIX
Security Symp., pp. 431–446, 2015.

[81] “Optee.” https://github.com/OP-TEE/optee_os.

[82] V. J. Reddi, A. Settle, D. A. Connors, and et al., “Pin: a binary instrumentation tool for computer architecture research
and education,” in 2004 workshop on Computer architecture education: held in conjunction with the 31st Int. Symp. on
Computer Architecture, p. 22, ACM, 2004.

[83] K. Eldefrawy, G. Tsudik, A. Francillon, and et al., “Smart: Secure and minimal architecture for (establishing dynamic)
root of trust.,” in NDSS, vol. 12, pp. 1–15, 2012.

[84] J. Kong, F. Koushanfar, P. K. Pendyala, and et al., “Pufatt: Embedded platform attestation based on novel processor-
based pufs,” in 51st Annu. Design Automation Conference, pp. 1–6, ACM, 2014.

[85] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth, “New results for timing-based attesta-
tion,” in 2012 IEEE Symposium on Security and Privacy, pp. 239–253, IEEE, 2012.

[86] H. Park, D. Seo, H. Lee, and et al., “Smatt: Smart meter attestation using multiple target selection and copy-proof
memory,” in Computer Science and its Applications, pp. 875–887, Springer, 2012.

[87] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper: Lightweight remote attestation using physical functions,” in
4fourth ACM Conf. on Wireless network security, pp. 109–114, 2011.

[88] N. Zhang, K. Sun, W. Lou, and et al., “Case: Cache-assisted secure execution on arm processors,” in 2016 IEEE S&P,
pp. 72–90, 2016.

[89] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote computer systems.,” in USENIX Security Symp.,
pp. 295–308, 2003.

[90] Y. Li, J. M. McCune, and A. Perrig, “Viper: verifying the integrity of peripherals’ firmware,” in 18th ACM CCS, pp. 3–16,
2011.

[91] A. Seshadri, A. Perrig, L. Van Doorn, and et al., “Swatt: Software-based attestation for embedded devices,” in null,
p. 272, IEEE, 2004.

[92] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key establishment in sensor networks,” in Int.
Conference on Distributed Computing in Sensor Systems, pp. 372–385, Springer, 2008.

[93] A. Vasudevan, J. McCune, J. Newsome, and et al., “Carma: A hardware tamper-resistant isolated execution environment
on commodity x86 platforms,” in 7th ACM Symp. on Information, Computer and commun. Security, pp. 48–49, 2012.

[94] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and et al., “Darpa: Device attestation resilient to physical attacks,” in 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, pp. 171–182, 2016.

[95] A. Ibrahim, “Aid : Autonomous attestation of iot devices,” 2018.

[96] N. Asokan, F. Brasser, A. Ibrahim, and et al., “Seda: Scalable embedded device attestation,” in 22nd ACM SIGSAC
CCS, pp. 964–975, 2015.

[97] M. Ambrosin, M. Conti, A. Ibrahim, and et al., “Sana: secure and scalable aggregate network attestation,” in 2016 ACM
SIGSAC CCS, pp. 731–742, 2016.

[98] X. Jin, J. Sun, R. Zhang, and et al., “Specguard: Spectrum misuse detection in dynamic spectrum access systems,” IEEE
Trans. on Mobile Computing, 2018.

[99] X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Safedsa: Safeguard dynamic spectrum access against fake secondary users,” in
22nd ACM SIGSAC CCS, pp. 304–315, ACM, 2015.

[100] V. Kumar, J.-M. Park, and K. Bian, “Blind transmitter authentication for spectrum security and enforcement,” in 2014
ACM SIGSAC CCS, pp. 787–798, ACM, 2014.

[101] Y. Liu, P. Ning, and H. Dai, “Authenticating primary users’ signals in cognitive radio networks via integrated crypto-
graphic and wireless link signatures,” in 2010 IEEE S&P, pp. 286–301, 2010.

Ruide Zhang Chapter 6. Conclusion 105

[102] Y. Dou, K. C. Zeng, Y. Yang, and et al., “Madecr: Correlation-based malware detection for cognitive radio,” in 2015
IEEE INFOCOM, pp. 639–647, 2015.

[103] C. Li, A. Raghunathan, and N. K. Jha, “An architecture for secure software defined radio,” in Conference on Design,
Automation and Test in Europe, pp. 448–453, 2009.

[104] M.-W. Shih, S. Lee, T. Kim, and et al., “T-sgx: Eradicating controlled-channel attacks against enclave programs,” in
2017 NDSS, 2017.

[105] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory primitives from intel sgx,” in NDSS, 2017.

[106] E. Stefanov, M. Van Dijk, E. Shi, and et al., “Path oram: an extremely simple oblivious ram protocol,” in 2013 ACM
SIGSAC CCS, pp. 299–310, ACM, 2013.

[107] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged side-channel attacks in shielded execution with
déjá vu,” in 2017 ACM on Asia CCS, pp. 7–18, 2017.

[108] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache side-channel information leakage from the secure
world on arm devices.,” IACR Cryptology ePrint Archive, vol. 2016, p. 980, 2016.

[109] S. Lee, M.-W. Shih, P. Gera, and et al., “Inferring fine-grained control flow inside sgx enclaves with branch shadowing,”
in 26th USENIX Security Symp., pp. 16–18, 2017.

[110] C. Gentry and D. Boneh, A fully homomorphic encryption scheme, vol. 20. Stanford University Stanford, 2009.

[111] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Opaque: An oblivious and encrypted
distributed analytics platform.,” in NSDI, pp. 283–298, 2017.

[112] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and C. A. Gunter, “Leaky cauldron on the
dark land: Understanding memory side-channel hazards in sgx,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 2421–2434, ACM, 2017.

[113] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying confidentiality of enclave programs,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1169–1184, ACM, 2015.

[114] F. Liu, H. Wu, and R. B. Lee, “Can randomized mapping secure instruction caches from side-channel attacks?,” in
Proceedings of the Fourth Workshop on Hardware and Architectural Support for Security and Privacy, p. 4, ACM, 2015.

[115] J. C. King, “Symbolic execution and program testing,” Communications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[116] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a formal system for testing and debugging programs by symbolic
execution,” ACM SigPlan Notices, vol. 10, no. 6, pp. 234–245, 1975.

[117] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,” Acta Informatica, vol. 7, no. 3, pp. 305–317,
1977.

[118] F. E. Allen and J. Cocke, “A program data flow analysis procedure,” Communications of the ACM, vol. 19, no. 3, p. 137,
1976.

[119] Z. Xu, T. Kremenek, and J. Zhang, “A memory model for static analysis of c programs,” in International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, pp. 535–548, Springer, 2010.

[120] J. A. Goguen and J. Meseguer, “Security policies and security models,” in Security and Privacy, 1982 IEEE Symposium
on, pp. 11–11, IEEE, 1982.

[121] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on selected areas in communi-
cations, vol. 21, no. 1, pp. 5–19, 2003.

[122] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in Security and privacy (SP), 2010 IEEE symposium on,
pp. 317–331, IEEE, 2010.

[123] “Understanding lvalues and rvalues in c and c++.” https://eli.thegreenplace.net/2011/12/15/
understanding-lvalues-and-rvalues-in-c-and-c.

Ruide Zhang Chapter 6. Conclusion 106

[124] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[125] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh, “Verification of a practical hardware security architecture
through static information flow analysis,” in ACM SIGARCH Computer Architecture News, vol. 45, pp. 555–568, ACM,
2017.

[126] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-wide information flow for malware
detection and analysis,” in Proceedings of the 14th ACM conference on Computer and communications security, pp. 116–
127, ACM, 2007.

[127] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: automatically detecting potential privacy leaks in android
applications on a large scale,” in International Conference on Trust and Trustworthy Computing, pp. 291–307, Springer,
2012.

[128] D. Volpano and G. Smith, “Eliminating covert flows with minimum typings,” in Computer Security Foundations Work-
shop, 1997. Proceedings., 10th, pp. 156–168, IEEE, 1997.

[129] J. Agat, “Transforming out timing leaks,” in Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 40–53, ACM, 2000.

[130] D. Volpano and G. Smith, “Probabilistic noninterference in a concurrent language 1,” Journal of Computer Security,
vol. 7, no. 2-3, pp. 231–253, 1999.

[131] “Recommender.” https://github.com/GHamrouni/Recommender.

[132] “Linearregression.” https://github.com/aluxian/CPP-ML-LinearRegression.

[133] “Simple c routines for generic k-means implementations.” https://github.com/pramsey/kmeans.

[134] “Recommender.” https://github.com/GHamrouni/Recommender/tree/master/src.

[135] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron: Privacy-preserving machine learning as a service,”
arXiv preprint arXiv:1803.05961, 2018.

[136] T. Alves and D. Felton, “Trustzone: Integrated hardware and software security-enabling trusted computing in embedded
systems (july 2004).”

[137] D. Grawrock, Dynamics of a Trusted Platform: A building block approach. Intel Press, 2009.

[138] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for cpu based attestation and sealing,” in 2nd
Int. workshop on hardware and architectural support for security and privacy, vol. 13, ACM New York, NY, USA, 2013.

[139] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo, “Using innovative instructions to create trustworthy
software solutions.,” HASP@ ISCA, vol. 11, 2013.

[140] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innovative
instructions and software model for isolated execution.,” HASP@ ISCA, vol. 10, 2013.

[141] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Druschel, “Thoth: Comprehensive policy compliance
in data retrieval systems.,” in USENIX Security Symposium, pp. 637–654, 2016.

[142] H. Nissenbaum, S. Benthall, A. Datta, M. C. Tschantz, and P. Mardziel, “Origin privacy: Protecting privacy in the
big-data era,” tech. rep., NEW YORK UNIVERSITY New York United States, 2018.

[143] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Tsai, and J. M. Wing, “Bootstrapping privacy compliance in big data
systems,” in Security and Privacy (SP), 2014 IEEE Symposium on, pp. 327–342, IEEE, 2014.

[144] D. L. Haulman, “Us unmanned aerial vehicles in combat, 1991-2003,” 2003.

[145] https://www.businessinsider.com/drone-technology-uses-applications.

[146] https://www.businessinsider.com/drone-delivery-services.

Ruide Zhang Chapter 6. Conclusion 107

[147] https://www.uber.com/us/en/atg/technology/.

[148] https://securelist.com/holy-water-ongoing-targeted-water-holing-attack-in-asia/96311/.

[149] “Ardupilot.” https://ardupilot.org/.

[150] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “{ACES}: Automatic compartments for embedded systems,”
in 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 65–82, 2018.

[151] X. Carpent, G. Tsudik, and N. Rattanavipanon, “Erasmus: Efficient remote attestation via self-measurement for unat-
tended settings,” in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1191–1194, IEEE,
2018.

[152] L. Wei, C. Song, Y. Liu, J. Zhang, F. Yuan, and Q. Xu, “Boardpuf: Physical unclonable functions for printed circuit board
authentication,” in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 152–158,
IEEE Press, 2015.

[153] V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation: a virtual machine directed approach to trusted
computing,” in USENIX Virtual Machine Research and Technology Symposium, vol. 2004, 2004.

[154] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla, “Pioneer: verifying code integrity and enforcing
untampered code execution on legacy systems,” in ACM SIGOPS Operating Systems Review, vol. 39, pp. 1–16, ACM,
2005.

[155] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote attestation to dynamic system properties: Towards
providing complete system integrity evidence,” in 2009 IEEE/IFIP International Conference on Dependable Systems &
Networks, pp. 115–124, IEEE, 2009.

[156] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “Trustvisor: Efficient tcb reduction and
attestation,” in 2010 IEEE Symposium on Security and Privacy, pp. 143–158, IEEE, 2010.

[157] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A security architecture for tiny embedded devices,”
in Proceedings of the Ninth European Conference on Computer Systems, p. 10, ACM, 2014.

[158] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl, “Tytan: tiny trust anchor for tiny devices,”
in Proceedings of the 52nd Annual Design Automation Conference, p. 34, ACM, 2015.

[159] A. Rein, “Drive: Dynamic runtime integrity verification and evaluation,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pp. 728–742, ACM, 2017.

[160] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and D. Garg, “{ERIM}: Secure, efficient
in-process isolation with protection keys ({MPK}),” in 28th {USENIX} Security Symposium ({USENIX} Security 19),
pp. 1221–1238, 2019.

[161] “Llvm.” http://llvm.org/.

[162] “networkx.” https://networkx.github.io/.

[163] https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md.

[164] https://www.studica.com/blog/raspberry-pi-timer-embedded-environments.

[165] https://www.raspberrypi.org/forums/viewtopic.php?t=9882.

[166] https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf.

[167] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500d/BABIGHII.html.

[168] T. B. Schardl, T. Denniston, D. Doucet, B. C. Kuszmaul, I.-T. A. Lee, and C. E. Leiserson, “The csi framework for
compiler-inserted program instrumentation,” Proceedings of the ACM on Measurement and Analysis of Computing Sys-
tems, vol. 1, no. 2, pp. 1–25, 2017.

Ruide Zhang Chapter 6. Conclusion 108

[169] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-
overhead control flow attestation in hardware,” in Proceedings of the 54th Annual Design Automation Conference 2017,
p. 24, ACM, 2017.

[170] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax: Lightweight hardware-assisted attestation of program
execution,” in 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2018.

[171] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi, “Atrium: Runtime attestation
resilient under memory attacks,” in Proceedings of the 36th International Conference on Computer-Aided Design, pp. 384–
391, IEEE Press, 2017.

[172] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, B. Bhattacharjee, and P. Druschel, “Light-weight contexts:
An {OS} abstraction for safety and performance,” in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 49–64, 2016.

[173] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory disclosure with efficient hypervisor-enforced intra-
domain isolation,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 1607–1619, 2015.

[174] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based fault isolation,” in Proceedings of the
fourteenth ACM symposium on Operating systems principles, pp. 203–216, 1993.

[175] D. Brumley and D. Song, “Privtrans: Automatically partitioning programs for privilege separation,” in USENIX Security
Symposium, vol. 57, 2004.

[176] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers,
R. Kapitza, et al., “Glamdring: Automatic application partitioning for intel {SGX},” in 2017 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 17), pp. 285–298, 2017.

[177] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoudhury, “Automated partitioning of android applications for trusted
execution environments,” in 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 923–
934, IEEE, 2016.

[178] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Securing real-time microcontroller systems through
customized memory view switching.,” in NDSS, 2018.

