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DEMONSTRATION OF VULNERABILITIES IN GLOBALLY 

DISTRIBUTED ADDITIVE MANUFACTURING 

Charles Norwood 

Abstract 

Globally distributed additive manufacturing is a relatively new frontier in the field of 

product lifecycle management.  Designers are independent of additive manufacturing services, 

often thousands of miles apart.  Manufacturing data must be transmitted electronically from 

designer to manufacturer to realize the benefits of such a system.  Unalterable blockchain legers 

can record transactions between customers, designers, and manufacturers allowing each to trust 

the other two.  Although trust can be established, malicious printers or customers still have the 

incentive to produce unauthorized parts.  To prevent this, machine instructions are encrypted and 

electronically transmitted to the printing service, where an authorized printer decrypts the data 

and prints an approved number of parts or products. The encrypted data may include G-Code 

machine instructions which contain every motion of every motor on a 3D printer.  Once these 

instructions are decrypted, motor drivers send control signals along wires to the printer’s stepper 

motors.  The transmission along these wires is no longer encrypted.  If the signals along the 

wires are read, the motion of the motor can be analyzed, and G-Code can be reverse engineered. 

This thesis demonstrates such a threat through a simulated attack on a G-Code controlled 

device.  A computer running a numeric controller and G-Code interpreter is connected to 

standard stepper motors.  As G-Code commands are delivered, the magnetic field generated by 

the transmitted signals is read by a Hall Effect sensor.  The rapid oscillation of the magnetic field 

corresponds to the stepper motor control signals which rhythmically move the motor.  The 

oscillating signals are recorded by a high speed analog to digital converter attached to a second 

computer.  The two systems are completely electronically isolated.   

The recorded signals are saved as a string of voltage data with a matching time stamp.  

The voltage data is processed through a Matlab script which analyzes the direction the motor 

spins and the number of steps the motor takes.  With these two pieces of data, the G-Code 

instructions which produced the motion can be recreated.  The demonstration shows the exposure 

of previously encrypted data, allowing for the unauthorized production of parts, revealing a 

security flaw in a distributed additive manufacturing environment.   
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General Audience Abstract 

Developed at the end of the 20th century, additive manufacturing, sometimes known as 

3D printing, is a relatively new method for the production of physical products.  Typically, these 

have been limited to plastics and a small number of metals.  Recently, advances in additive 

manufacturing technology have allowed an increasing number of industrial and consumer 

products to be produced on demand.  A worldwide industry of additive manufacturing has 

opened up where product designers and 3D printer operators can work together to deliver 

products to customers faster and more efficiently.  Designers and printers may be on opposite 

sides of the world, but a customer can go to a local printer and order a part designed by an 

engineer thousands of miles away.  The customer receives a part in as little time as it takes to 

physically produce the object.  To achieve this, the printer needs manufacturing information such 

as object dimensions, material parameters, and machine settings from the designer.  The designer 

risks unauthorized use and the loss of intellectual property if the information is exposed.   

Legal protections on intellectual property only go so far, especially across borders.  

Technical solutions can help protect valuable IP.  In such an industry, essential data may be 

digitally encrypted for secure transmission around the world.  This information may only be read 

by authorized printers and printing services and is never saved or read by an outside person or 

computer.  The control computers which read the data also control the physical operation of the 

printer.  Most commonly, electric motors are used to move the machine to produce the physical 

object.  These are most often stepper motors which are connected by wires to the controlling 

computers and move in a predictable rhythmic fashion.  The signals transmitted through the 

wires generate a magnetic field, which can be detected and recorded.  The pattern of the 

magnetic field matches the steps of the motors.  Each step can be counted, and the path of the 

motors can be precisely traced.  The path reveals the shape of the object and the encrypted 

manufacturing instructions used by the printer.  This thesis demonstrates the tracking of motors 

and creation of encrypted machine code in a simulated 3D printing environment, revealing a 

potential security flaw in a distributed manufacturing system.   
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CHAPTER 1 

 

INTRODUCTION 

 Over the past three centuries, product development and manufacturing have undergone 

several radical changes, revolutionizing economies and standards of living.  Before the industrial 

revolution, goods were created by individual craftsman who often manufactured a single product 

from start to finish [1].  These craftsmen had to develop manufacturing skills and techniques 

over years of practice and apprenticeship.  Even the most highly skilled craftsmen could not 

reliably form identical parts or products at a large scale.  The first industrial revolution 

introduced reliable, repeatable manufacturing techniques, interchangeable parts, and the 

foundation of today’s product development and manufacturing systems.  The large central 

factory became a staple of society and drove the development of today’s cities and ways of life 

[1]. 

Decentralized manufacturing transformed the way products are engineered, produced, 

and sold.  Today it is common for a product to be manufactured on the opposite side of the world 

from where it was engineered.  Manufacturers can find the most cost-effective location to 

produce a product depending on labor, material, or energy costs.  Modern technological advances 

may allow manufacturing to move out of large factories and may once again revolutionize the 

industry.  Additive manufacturing and the internet can free industry from the limitations of the 

central factory [1].  

With the rapid development of additive manufacturing technologies, increasingly 

complex products can be produced autonomously and on demand.  Additive manufacturing, also 

known as 3D printing, uses complex machines to repeatedly form thin layers of material.  The 

shape of each layer depends on the topology of the product and as layers are added, the product 

is formed.   

The development process for additive manufacturing starts with the creation of a 3D 

virtual model of the product in computer aided design (CAD) software.  The 3D model is then 

“sliced” into horizontal layers.  The shape of these layers is translated into machine readable 

code and sent to the additive manufacturing system, which deposits the successive layers, 

producing a real object.   
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Industrial parts are increasingly produced by additive manufacturing [2].  Several studies 

have shown the potential for additive manufacturing to improve supply chains for spare parts[3] 

[4, 5].  With advances in additive manufacturing and the rise of globally distributed 

manufacturing, the logical step is to combine the two into globally distributed additive 

manufacturing.  In one potential model of this system, designers and manufacturers would be 

two different entities in different places in the world.  A design firm could engineer and develop 

a product, then hire an independent manufacturer to produce it.  Designers could have as much or 

as little manufacturing capability as they need, and manufacturers could function solely to 

produce parts [6]. 

With such a system, the major advantages of globally distributed manufacturing are 

realized.  If a consumer decides to purchase a product, the original design firm could find the 

manufacturer closest to the consumer and have it produced.  With additive manufacturing, 

products can be produced on demand, so an ideal system could effectively eliminate the need to 

keep stocks of parts or products.  Consequently, it would reduce all associated costs such as 

warehouses and logistics for part organization [7].  With local manufacturing, the cost of 

shipping a part from manufacturer to consumer could be significantly reduced.  Transportation 

costs and emissions are lessened [6].  Also, outdated or very low volume parts could become 

much cheaper as they can be stored as computer data, not physical products [7].  As additive 

manufacturing develops, more and more products could utilize such a system.  

Many potential drawbacks must be accounted for.  If a manufacturer is independent of a 

product designer, it may have no ownership over the intellectual property (IP) it is printing.  A 

malicious manufacturer could represent a threat to the original IP owner if it steals the designs 

and manufactures unauthorized parts.  Practically speaking, this threat would only be present 

across borders.  An American company giving IP access to an American manufacturer knows 

that IP theft would be punishable under U.S. law.  However, countries like China are notorious 

for their disregard for intellectual property laws [8].  There could be little legal recourse for 

international IP theft.  Rather than legal solutions, technological solutions could help protect IP 

when transmitted across international borders.   

A key requirement in a globally distributed additive manufacturing system is the 

transmission of data.  All information necessary for successful manufacturing of a part must be 

transmitted from the creator of that information to the printing service.  This information can 
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include model data ranging from original CAD files to AM machine instructions known as G-

code.  It can also include manufacturing parameters, materials, or other instructions. To ensure 

the secure transmission of this data, it may be encrypted by the creator and transmitted over the 

internet to the printing service, which can decrypt and manufacture the part [9]. However, 

transmission of data, even if encrypted, presents a potential weakness in the security of a 

distributed additive manufacturing system.  A break in this system could lead to intellectual 

property theft.  If an unauthorized entity gets ahold of CAD files or other manufacturing data, 

that entity could potentially manufacture pirated copies of a part or product.  Such an 

unauthorized entity could even be the manufacturer.   

Several proposals exist to prevent the production of unauthorized or pirated parts.  The 

most common is the use of fingerprinting or watermarking.  During the printing process a unique 

geometry, label, or other identifier is manufactured into the product.  Only one specific part can 

have that specific “fingerprint”, so unauthorized parts can be identified more easily.  These 

fingerprints can take the form of unique structures within the part, radio frequency identification 

(RFID) tags, and patterned materials, among many others [10].  Fingerprints must not interfere 

with the function of the part, must be manufactured in the same process as the part, and must be 

difficult to replicate.  They also must be readable by someone verifying a legitimate part.   

Data encryption and part fingerprinting are two components necessary to secure a 

distributed additive manufacturing system against unauthorized parts and IP theft.  The 

information flow of all manufacturing data, customers, sellers, fingerprints, and part histories 

must also be tracked.  This information can be recorded and held in what is known as a smart 

contract [10].  This smart contract would allow a designer, part manufacturer, and customer to 

work together throughout the product lifecycle.  Even though they may not know and may not 

trust each other, if each trusts the smart contract and the technology that secures it, business can 

be done.   

 Ideally, encryption of manufacturing data could be secure enough that it would not be 

financially viable to steal the data during transmission from the designer to the printer.  Modern 

encryption is effectively un-hackable.  However, once the secure printer decrypts the printing 

information, the information becomes vulnerable.  The decrypted data is converted to machine 

instructions, which control the operation of the printer.  The G-Code instructions control the 

paths of the motors, heaters, and other processes of the printer.  Printer software converts the G-
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Code to stepper motor control signals, which motor drivers use to operate the stepper motors.  

Motor drivers send power signals along wires to the stepper motors, which control the physical 

motion of the printer as it prints parts.  These power signals present vulnerability for a secure 

additive manufacturing system.  This thesis will attempt to investigate this vulnerability through 

a demonstrated attack.   

 

1.1 Problem Statement 

The objective of this research is to demonstrate an attack where electrical signals used to 

control a stepper motor can be measured, recorded, and analyzed to recreate the G-Code needed 

to manufacture a 3D printed object.  If one can extract the G-Code from a secure system, a high 

value object may be printed without the authorization of the designer or owner of the intellectual 

property. 

 

1.2 Proposed Solution 

Manufacturing data for 3D printing can be securely encrypted up to the point of the 3D 

printer controller.  Once decrypted, the printer controller sends signals to motor drivers which 

control operation of the 3D printer.  Motor drivers send electronic pulses down wires to stepper 

motors, which turn based on the pulses received.  Coordinated rotation of the stepper motors 

physically moves the print head and other components along the path necessary to create the 

desired product.  If one can independently recreate and synchronize the movement of all motors 

in a printer, one may be able to reproduce a 3D printed object. 

The pulses in the wires connecting the motor drivers to the stepper motors will create an 

induced magnetic field according to established electromagnetic principles.  These pulses are 

transmitted in a regular, rhythmic pattern due to the fundamental operating principles of a 

stepper motor.  Without removing or destroying any components of the 3D printer, one can 

detect these induced magnetic fields and record the pattern of pulses being transmitted.  Once the 

pattern of pulses is recorded and interpreted, the motion of the stepper motor can be reverse 

engineered.  With the intended motion known, the G-Code which commanded the motor motion 

can be recreated.  With correctly reverse-engineered G-Code, a manufacturer could subsequently 

build as many parts as he or she wishes.   
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This type of attack would typically only be possible in a globally distributed 

manufacturing setting.  A successful attack would require a high level of access to a secure 

printer.  An attacker would need to work in and around a machine to properly detect 

electromagnetic signals from stepper motor wires.   

The attack proposed by this thesis must be demonstrated to be considered a legitimate 

security threat.  The demonstration will use two separate systems:  a simulated secure additive 

manufacturing device, and a hacking device.  The AM device will consist of a computer and an 

X and Y motor.  The computer will use software to interpret and deliver G-Code.  It will not 

actually be delivering encrypted data; it will merely produce the motor signals that would be 

found in a secure additive manufacturing machine.  The hacking device will consist of current 

sensors attached to a data recording device.  These current sensors will detect the magnetic field 

produced by motor pulses.  The sensors will output a signal which is filtered and recorded by the 

hacking device.  Finally, the data recorded by the hacking device will be exported to a PC 

running Matlab which will process the data and return important information such as motor steps 

and motor direction.  The PC will use the motor steps and direction information to reproduce 

sequences of G-Code instructions.  A variety of G-Code commands will be issued and recorded 

to ensure the hacking device can reproduce G-Code for any distance and direction.  A successful 

demonstration will prove the viability of an attack using stepper motor control signals. 

 

1.3 Thesis Outline 

 This thesis will demonstrate an attack on a 3D printer.  The attack will reverse engineer 

manufacturing instructions by analyzing electrical signals transmitted between motor drivers and 

stepper motors.  The attack will be verified by comparing the motion of the original motor and 

the reconstructed signal.  The thesis will consist of the following sections. 

 Chapter 1 provides a background on the history of distributed manufacturing and the 

foundations of globally distributed additive manufacturing.  It also covers proposed security 

solutions and background for the vulnerability this thesis will attempt to expose. 

 Chapter 2 reviews work already completed in the field of AM security and demonstrated 

attacks on 3D printers.  This chapter will also provide a background on the technology and 

computer controls utilized by 3D printers which provide the opening for the demonstrated attack. 
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 Chapter 3 covers the technical aspects of performing the attack as well as the 

experimental setup to verify a successful attack. 

 Chapter 4 discusses the results of the performed experiment and analyzes the degree of 

success a malicious actor in the real world may have with a similar attack. 

 Chapter 5 concludes the thesis and provides suggestions for further work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

As additive manufacturing technology improves, there are increased opportunities for 

distributed manufacturing applications.  Information security is a primary concern in a 

distributed manufacturing environment.  Section 2.1 will provide an overview of the state of 

distributed manufacturing as it relates to 3D printing.  Section 2.2 will highlight some known 

threats to information security and proposed solutions.  Section 2.3 gives a background on 

underlying 3D printing technologies.  Section 2.4 covers the fundamentals of G-Code.  Section 

2.5 discusses stepper motors and section 2.6 includes information on electromagnetic principles 

which will provide a basis for understanding the attack proposed by this thesis.   

 

2.1 Distributed Manufacturing 

 The scope of distributed manufacturing can be understood through an analysis of possible 

industries and applications.  Srai et al. [11] collected a panel of experts to discuss implications 

and applications for distributed manufacturing, then compiled and organized the results.  The 

study proposes five key characteristics of distributed manufacturing:  digitalization, 

personalization, localization, new enabling technologies, and enhanced user and producer 

participation[11].  They then apply these characteristics to specific case studies such as 3D 

printing, health care, and consumer goods.  Srai et al. identify one of the key advantages of 

distributed manufacturing as production when needed and production closer to the point of 

consumption.  This will ultimately reduce warehousing and transportation costs.  The study 

highlights several advantages of distributed manufacturing, but acknowledges, “glaring IP 

implications in terms of ownership, necessitating a framework for IP sharing.  IP protection will 

be necessary for the prevention of copyright infringement for design and development work.” 

 IP protection only becomes a concern when a manufacturer is independent of the 

intellectual property holder.  Durão et al. [12] demonstrate such a distributed manufacturing 

environment within a laboratory setting.  In the study a real part (a section of a pneumatic 

cylinder) was manufactured in Brazil upon authorization by computers in Germany.  The group 

in Germany can be considered the “owner” of the IP and the part designer, while the 
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manufacturer in Brazil can be considered an independent manufacturing firm close to the end 

user.  These two entities will henceforth be referred to as the designer and the manufacturer.  The 

study demonstrates four use cases of varying levels of control.  They range from nearly all 

manufacturing control happening in Brazil on the manufacturer’s end, to nearly all control 

performed and monitored in Germany on the designer’s end.  This study was performed with 

relatively inexpensive equipment and open source software.  It provides a comprehensive list of 

information that must be tracked and recorded by the designer, such as machine temperature, 

machine motion, and visual feedback.  Successful implementation of a simulated distributed 

manufacturing environment is the first step to real world implementation.   

 

2.2 Distributed Manufacturing Security 

A distributed manufacturing system will require a large network of computers sharing 

large amounts of data.  As with any such network, cybersecurity is a major concern.  

Manufacturing data such as CAD models, G-Code, and machine parameters, as well as customer 

information, payments, and product lifecycle management (PLM) data may be transmitted.  

Significant amounts of research have been performed on cybersecurity concerns for additive 

manufacturing.  Yampolskiy et al. [13] provide a comprehensive survey of AM security research 

and proposes a taxonomy for AM security threats.  The paper focuses on the threats of AM 

sabotage and the theft of technical data.  AM sabotage is typically understood as a malicious 

actor attacking an AM system such that the output of the AM system is improperly produced.  

Sturm et al. [14] study cyber-attacks on an AM system producing voids, protrusions, or other 

physical imperfections into printed parts and analyzing the effect of these imperfections on part 

strength.  This is just one of many analyses of AM sabotage.  Theft of technical data includes the 

unauthorized access to 3D model data necessary to produce counterfeit parts.  Yampolskiy et al. 

acknowledge “eavesdropping and side-channel analysis” as a method for reconstructing a 3D 

model and cites some examples which will be addressed further on.   

 Theft of technical data from an AM workflow has been demonstrated by attacking the 3D 

printers themselves to access the data transmitted to them.  Miller et al. [15] surveyed the 

available landscape of desktop 3D printers to understand “residual data” left from 3D printing 

processes.  This involves an analysis of how data is transmitted to 3D printers, and potential 

avenues for accessing printing data.   
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Do et al. [16] demonstrate in detail an attack on a desktop 3D printer using relatively 

inexpensive tools.  In this study, an attacker was able to steal printing data and trigger the printer 

to make incorrect prints if it could access the same wireless network as the printer.  An AM 

system or workflow which encrypts print data would be less susceptible to this type of attack.   

Nevertheless, these studies demonstrate the need for a secure additive manufacturing 

system to prevent print data and intellectual property from being accessed by unauthorized users.  

The two most apparent approaches to a secure AM system are to secure the system itself and to 

secure the parts once they leave the system.  Systems can be secured by what is often referred to 

as “smart contracts” where all actions within the AM process workflow, including design, 

payments, manufacture, and delivery, are securely traced.  Parts may be secured by 

“watermarking” where a unique identifier for each individual part is created and applied to the 

part without interfering with the part’s function.  These two approaches will be discussed below. 

 

2.2.1 Smart Contracts and Blockchain 

 One proposed solution to additive manufacturing security issues is to place the entire AM 

workflow into a secure system.  Because security across borders is a concern, a system could not 

be fully secured by storing data on a server in a single country.  A decentralized security 

platform on a blockchain network has been proposed and studied.  A blockchain is a system in 

which messages, transactions, and other data are recorded on an unalterable ledger.  The ledger is 

written and assembled by computers around the world.  Individual “blocks” containing data are 

created and added to previous blocks creating a “chain” which holds a record of all previous 

transactions.  A significant amount of computing power is required to create a block and created 

blocks must be verified by other computers [17].  The collective consensus of large numbers of 

computers prevents a single entity from creating or altering blocks.  Therefore, the ledger is 

effectively unchangeable and presents a secure way to record AM workflow information.    

 An additive manufacturing workflow secured by the blockchain has been demonstrated in 

laboratory settings.  Holland et al. [10] have developed a “Secure Additive Manufacturing 

Platform” or SAMPL which proposes a model for a distributed manufacturing system involving 

several parties.  The parties are labeled as the customer, the printing service provider, and the 

licenser.  Each does not trust the other two.  In this model, the customer purchases a license from 

the licenser (IP owner) and the transaction is recorded in the blockchain.  The customer can then 
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sell the license to a printing service provider of the customer’s choosing.  The printing service 

provider then has access to data necessary to print the device.  Each step in the transaction is 

recorded on the blockchain, so that each participant can verify proper transactions.  The licenser 

can verify the customer has purchased a license and has sold it to a printing service provider, the 

printing service provider can verify the customer has purchased a valid license, and the customer 

will receive a product with a paper trail of legitimate transactions and correct manufacturing 

history. 

 A similar model for secure outsourcing has been proposed by another paper by 

Yampolskiy et al. [18] but adds another participant to the 3D printing process chain.  This 

participant is defined as a Manufacturing Process Tuning Expert which serves to consult with the 

original object designer to determine the ideal manufacturing parameters for a given design.  The 

ideal parameters are then used in manufacturing by a separate 3D printing service.  Yampolskiy 

highlights economic advantages for all parties involved.  The participants are less bound to each 

other, allowing each to work with more cost effective or otherwise preferred parties.  However, 

the work acknowledges that with more participants, IP protection becomes a greater challenge.   

 Yampolskiy then provides a risk assessment for the model, and names several areas 

which could present security vulnerabilities.  The paper acknowledges side channel analysis of 

3D printing equipment as a threat, particularly from a malicious 3D printing service provider.  

Yampolskiy does acknowledge that the 3D printing service would have unrestricted access to the 

equipment, which leaves it vulnerable to the type of side channel analysis being investigated by 

this thesis.   

 

2.2.2 Watermarking and Fingerprinting 

 One of the core security questions arising from distributed manufacturing is how to 

prevent the unauthorized production of parts.  As discussed with respect to smart contracts, 

customers may purchase licenses which allow production of a specific number of parts.  A valid 

license is needed to print each object and every printed part can be accounted for.  If 3D model 

and other print data is properly protected and only decrypted at the point of printing, 

unauthorized copies cannot be made.  However, if a malicious manufacturer is able to find a flaw 

in the system and acquire the data necessary for printing, the printer may be able to produce 

pirated copies of parts.  These could be sold at a price lower than a legitimate part, hurting the IP 
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owner.  They could also contain flaws or otherwise not meet requirements, hurting the customer.  

One proposed solution is the use of watermarks or fingerprints in individual parts.  Every part 

would contain a unique identifier which could be scanned or read to show information such as 

the manufacturer, original IP owner, or print license.  It could also identify all product lifecycle 

information so users could know exactly how long and where a part had been used.  These 

fingerprints must be legible, must last the life of the part, must not interfere with part 

performance, and must not be easily reproduced.  Extensive research has been done on this topic 

and several fingerprinting systems have been proposed. 

 A study by Chen et al. [19] demonstrates a fingerprinting strategy of embedding quick 

response (QR) codes into 3D printed parts.  A QR code is a two dimensional tag consisting of 

light and dark squares which can be scanned by a camera.  In this study a sample QR code was 

embedded by inserting small voids into a CAD file where the dark squares of the QR code would 

normally be.  The voids were moved axially throughout the part at various depths.  Therefore, 

the QR code can only be viewed by scanning the part along the axis the voids were moved.  This 

essentially turns the two dimensional QR code into a 3D fingerprint.  This fingerprint is inserted 

during the design stage, and relies on proper processing and printing to display a valid code.  

Specific parameters must be followed when slicing the part to reproduce the correct code in a 

print.  Chen uses this as an advantage and embedded a second, invalid QR code in a different 

orientation.  When default slicing parameters are used, the invalid QR code is displayed and a 

counterfeit part can be identified. 

 This proposal assumes incorrect slicing by a malicious user will mark a part as invalid.  A 

valid part could be produced with proper slicing and proper machine code.  The attack proposed 

in this thesis would read the motor controls given by proper machine code.  A valid QR code 

may then be reproduced in two separate parts.  One part would be valid, and one part would be 

counterfeit, but in a large enough industry, part multiples may be difficult to detect.  However, 

this proposal does outline an effective way to tag parts without interfering with mechanical 

properties.   

 A few of the same authors propose in Gupta et al. [20] another method for protecting 

against counterfeiting in additive manufacturing.  Gupta proposes the deliberate insertion of 

discontinuities, voids, or other imperfections into CAD models of parts.  If the parts are 

processed and printed correctly, these imperfections will not appear or not interfere with the 



12 
 

performance of the part.  But again, improper slicing will reveal them and potentially 

compromise the part.  With this proposal, counterfeit parts simply will not function as intended, 

rather than requiring scans to identify invalid parts.  However, the proposal suffers from the 

same issue as Chen’s with respect to this thesis.  If reverse engineering occurs during the print 

process, a correctly processed and printed part could potentially be copied and reproduced. 

 Another proposed solution from Peng, et al. [21] utilizes the inherent instability in the 3D 

printing process to validate parts.  Peng identifies printing noise as slight, non-problematic errors 

in printed parts resulting from typical inconsistencies in the mechanical performance of the 

printer or properties of the printing material.  This noise can be used advantageously to validate 

parts.  To identify printer noise, a small two dimensional authentication mark in the shape of a 

quarter of a circle is printed on a part.  This shape is then scanned by a microscope and 

measured.  Printing noise creates slight errors in the shape, which can be seen when scanned.  

These errors are used as features in the generation of a unique QR code.  The QR code is then 

applied to the part after manufacturing to identify the signature of the part.  The QR code is 

merely useful in verifying parts, and is not necessary to validate correct parts.  The original 

authentication mark will remain on the part.   

 This security scheme is highly resistant to counterfeiting.  Peng suggests the printing 

noise is effectively random, so it cannot be recreated in a counterfeit part.  Reverse engineering 

during the print process could almost certainly not reproduce the exact authentication mark.  But 

as printers become more advanced, printing noise and variability in prints will likely decrease.  

Therefore, it will take more and more sophisticated scanning equipment to identify small errors 

in the print.  This could be a drawback as an individual wishing to verify a part may not have the 

capability to authenticate a print.  These considerations all depend on the level of security 

required by the manufacturer, printer, and customer. 

 

2.2.3 Secure Printers 

 An essential piece in the secure additive manufacturing workflow is the security of a 

printer itself.  Smart contracts and blockchains ensure a record of all the details of an AM part, 

but to rely on these records, every manufactured part must be accounted for.  One approach is to 

secure manufacturing instructions such as G-Code and machine parameters.  Manufacturing 

instructions can only be authorized and delivered when all other licensing requirements have 
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been met.  Once they are met, the instructions are encrypted so they can be sent along unsecure 

channels, then decrypted by the secure printer.  An architecture proposed by Shaabany et al. [9] 

outlines how such a system would work.  Shaabany et al. describe a Technology Data 

Marketplace (TDMP) where a technology data provider (TDP) interfaces with a customer 

through the marketplace and a market manager.  A customer purchases technology data from the 

TDP and it is encrypted and delivered by the TDMP.  The customer’s machine is equipped with 

a device known as a Trusted Platform Module (TPM) which verifies the customer and provides 

the cryptographic key to decrypt the technology data.  The TPM is a security standard [22] 

developed to authorize communication between distributed systems using cryptographic keys.   

 Carrying this proposed system further, in another paper, Shaabany et al. [23] developed a 

secure device using a TPM.  A secure fluid mixing machine was developed by integrating a TPM 

into a Raspberry Pi which controlled the device.  The TPM served to identify the machine and 

allow for secure data transmission.  The design of the hardware acts as another security layer by 

attempting to obfuscate the functions of the machine and prevent reverse engineering of product 

delivery.  A similar security infrastructure could be applied to an additive manufacturing 

machine.  In a 3D printing device, a TPM could secure manufacturing information including 

CAD, G-Code, and manufacturing parameters sent to the customer.  Hardware could potentially 

be designed to further secure the machine as Shaabany did for the fluid mixing device.  This 

thesis attempts to investigate how vulnerable the hardware is once manufacturing information 

has been decrypted.   

 

2.2.4 Demonstrated Side Channel Analysis 

 Vulnerability of additive manufacturing machines has already been demonstrated through 

side channel attacks.  Al Faruque et al. [24] demonstrated an acoustic side channel attack on an 

AM system.  Al Faruque asserts that the stepper motors which control an FDM printer emit a 

characteristic frequency based on motion and direction.  The electromagnetic characteristics of 

the stepper motors and their controllers produce an acoustic signature.  The signature can be 

recorded, and through a series of analysis algorithms, the motion of the motor can be deduced.  

The motion of the motor is then translated back into machine code.  Al Faruque was able to track 

a motor with an average axis prediction accuracy of 66.29%.  This is nowhere near the accuracy 

necessary to reproduce a high precision part, but it serves as a very impressive benchmark for an 
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attack using only acoustic information.  A similar demonstration by Kubiak et al. [25] used high 

precision recording equipment and sound isolation techniques to measure the audio signature of 

stepper motors for a number of distinct motor motions.  The acoustic signals can be analyzed to 

determine the motion of the motors.   

This thesis will investigate an attack similar to these types of side channel analysis, but 

using electromagnetic fields rather than acoustic data.  A demonstration by Gatlin et al. [26] 

measured electromagnetic emissions from a 3D printer, but used the information to secure the 

printer rather than demonstrate an attack.  The expected electromagnetic pattern can be compared 

to the measured electromagnetic pattern to determine if the printer executed the print correctly.  

This technique could be used to prevent attack like that demonstrated in Sturm et al.  This thesis 

proposes an attack to steal data using a similar approach.  A key difference between these types 

of attacks is an acoustic attack could be performed by any malicious actor who could place an 

audio recording device within range of the AM device.  Analysis of electromagnetic fields 

requires closer access to the AM device and would be more likely performed by a malicious 

machine owner wishing to steal confidential IP.   

 

2.3 Additive Manufacturing 

 The technology known as additive manufacturing or 3D printing encompasses a wide 

array of distinct techniques for manufacturing parts.  Common among these technologies is that 

every object is built by adding successive thin layers of material until the final shape is 

completed.  In the standard additive manufacturing workflow, an object is first created in 3D 

modeling software.  The computer model is then “sliced” into several thin horizontal layers.  The 

AM machine is programmed to create each successive layer.  The layers are formed, and the 

physical object is created.  Several approaches exist for the deposition of these layers.  The 

earliest AM technology, known as stereolithography, uses a directed laser to harden the surface 

of a vat of liquid photopolymer.  The hardened pattern is lowered into the liquid and another 

layer is added.  Successive layers are hardened and lowered until the desired shape is created.  

Another technique, classified as discrete particle manufacturing, [27] joins small, disconnected 

particles together to create the shape of each layer.  In some cases, a directed laser can be used to 

melt small plastic particles together.  In others, the particles are joined by selective application of 

a binding material.  This technique allows plastics as well as some metals to be additively 
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manufactured.  One of the most common AM technologies is fused deposition modeling (FDM) 

where a thermoplastic filament is melted, then deposited through a nozzle onto a build surface.  

The layers of deposited plastic correspond to the layers created during the slicing of the original 

CAD model.   

 A typical FDM printer consists of a build surface, stepper motors, and a heated nozzle.  

The stepper motors can move both the build surface and the nozzle according to machine 

instructions created during the AM workflow.  These machine instructions are generated in a 

standardized form known as G-Code.  Most slicing software products also function to generate 

G-Code instructions.  The fundamentals of G-Code will be explained further in the next section.  

As the FDM printer moves through the machine instructions it either deposits material along a 

prescribed path or moves the tool to a new location without depositing.  The stepper motors 

control every movement of the printer.  Typically, a single stepper motor controls motion in the 

X-direction, and another controls motion in the Y-direction.  These two motors work in tandem 

to create the shape of each layer.  A motor or motors moving the build surface or the tool in the 

Z-direction are only used to create the next layer of material.  Another motor is used to control 

the extrusion of the melted material.   

 All the information necessary to create a 3D object via additive manufacturing must be 

transmitted to these stepper motors.  They must be able to move freely, and the build surface 

must be readily accessible to retrieve completed parts.  Therefore, anyone who has access to an 

FDM machine has access to these motors.  If the 3D object or the machine instructions are 

proprietary, motor access could present a potential security flaw.   

 

2.4 G Code 

 Before an additive manufacturing machine can create an object, it must be given 

instructions on how to do so.  After a 3D model is sliced and the topology of each layer is 

defined, a toolpath is generated to tell a machine how to create that topology.  A standardized 

method for delivering machine instructions known officially as the NIST RS274GC Interpreter 

[28] is more commonly referred to as G-Code.  The standard was originally developed for 

numerically controlled traditional manufacturing operations such as milling, but was later 

applied to additive manufacturing systems.  An example of a piece of G-Code can be seen below. 

 
G1 F1800 X44.933 Y47.831 E0.02945 
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G1 X45.674 Y47.203 E0.07791 
G1 X46.301 Y46.723 E0.11731 
G1 X46.974 Y46.31 E0.1567 
G1 X47.521 Y46.038 E0.18718 
G1 X48.407 Y45.64 E0.23564 
G1 X49.143 Y45.353 E0.27505 
G1 X49.904 Y45.142 E0.31445 
G1 X50.47 Y45.038 E0.34316 
G1 X51.444 Y44.895 E0.39227 
G1 X52.577 Y44.812 E0.44895 
 

G-Code instructions for printing a single object follow a typical format: 

1. Machine setup 

2. Toolpath for depositing each layer 

3. Machine shutdown 

The NIST standard includes over one hundred specific machine instructions to encompass the 

entirety of computer numeric control (CNC) machine technology.  Commands like spindle 

speeds, coolant application, drilling, and tapping rarely apply to AM.  Machine setup instructions 

like build plate or extrusion temperature are necessary, but the most commonly used commands 

in AM applications are G0 and G1.  These commands tell the extruder or other processing tool 

where to move.  Each command provides an X coordinate and a Y coordinate.  When a machine 

executes these commands, it merely moves the tool on a direct line to the given coordinates.  G0 

commands indicate where the tool should move without depositing any material.  They are 

necessary for repositioning to start a new layer or discontinuous area of a layer in process.  G1 

commands include an instruction for how much material should be extruded over the course of 

the movement of the tool.  G1 commands must also be given a feed rate to define how fast the 

tool should move, however this rate must only be given at the start of a sequence of G1 

commands, or when the feed rate needs to be changed.   

 Before slicing, 3D objects are represented in a file format called STL, where the shape of 

the object is approximated by tiny tessellations.  True curves are effectively eliminated as they 

become represented by thousands of small line segments.  Therefore, the tool of an AM machine 

is only required to travel in straight lines.  G-Code commands (G2 and G3) for rounded edges or 

arcs are not necessary in an additive manufacturing environment.   

 Even a small object can require thousands of lines of G-Code commands, but contained 

within these commands is the entire shape of an object.  Anyone with access to these standard 

machine instructions can replicate the object.  A secure AM platform must protect machine 

commands as securely as the 3D CAD file. 
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2.5 Stepper Motors 

 Most standard fused deposition modeling AM machines use stepper motors to move the 

machine along the specified tool path.  Stepper motors are designed to rotate an output shaft a 

specific amount or “step”.  These motors are highly precise and common inexpensive motors are 

capable of reliably turning a shaft in increments 1.8 degrees or two hundred steps in one 

revolution.  This precision is necessary for additive manufacturing as tools must move along 

tight tolerances to create fine details of 3D objects.  Stepper motors can be attached to belts, 

gears, lead screws, or any other variety of power transmission devices to move the AM tool as 

programmed.   

 The precise control of a stepper motor is created by selectively charging stationary coils 

of wire inside the motor.  These charged coils create a magnetic field which changes the position 

of a freely rotating permanent magnet.  This permanent magnet is attached to the shaft of the 

motor, so as the magnet moves, the shaft moves.  The coils are charged in a prescribed sequential 

pattern which causes the shaft to rotate.  Each step in the pattern of charging the coils creates a 

step in the motor.  The specific orientation of these coils and magnets can vary among motor 

designs.  A wide variety of designs exist for stepper motors and one of the most common is the 

bipolar stepper motor.  A bipolar stepper motor consists of two coils and a permanent magnet 

attached to the motor shaft.  As current is sent through one coil (coil A), a magnetic field is 

created and the permanent magnet aligns itself with the field.  Current is then sent through the 

other coil (coil B), a field is generated, and the permanent magnet aligns itself, turning the shaft.  

Then, the direction of the current through coil A is reversed, reversing the polarity of the 

magnetic field and once again turning the motor shaft.  The current direction in coil B is 

reversed, the motor steps, and the cycle starts over, with the current in coil A returning to its 

original direction.  The design of the permanent magnet attached to the shaft allows for precise 

1.8 degree turns each time the current is reversed through each coil.   

 The specific inner workings of the stepper motor are not relevant to AM process security, 

but the method of controlling it is.  The inner coils of the motor are connected via external wires 

to the driving circuit controlling the motor.  Every time the current in the wire is reversed and the 

motor makes a step, a “signal” is sent along the wire.  If this signal can be read and timed, the 
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motion of the stepper motor can be known.  The precision and simplicity of the stepper motor 

allows for such signal interpretation.   

 

2.6 Electromagnetics 

 A foundation of the electromagnetic principles used to achieve the demonstrated attack is 

established in the following sections.  These fundamental properties of electromagnetism must 

be understood to read the stepper motor control signals.   

 

2.6.1 Magnetic Fields 

 Any current or moving charge produces a magnetic field around the current conductor.  

This magnetic field propagates outside the current carrying wire, so no direct electrical 

connection is necessary to detect the presence of current.  Several basic electrical components 

such as transformers, motors, and inductors function based on this property.  Other devices such 

as current clamps utilize the property to measure the current flowing through a wire.  The 

magnetic field serves as a window into the current in the wire and the sequence of signals being 

sent to the stepper motor.  

The intensity of this magnetic field depends on the magnitude of current as well as the 

shape, direction, and proximity to the current.  It can be determined with two fundamental laws 

of electromagnetism:  Biot Savart’s Law and Ampere’s Law [29]. 

Biot Savart’s Law governs how a moving charge produces a magnetic field and is defined 

by the following equation: 

𝑑𝑯 =  
𝐼 𝑑𝒍 𝑥 𝑹

4𝜋𝑅3
 

Where dH is a differential element of the magnetic field, I is current, dl is a differential element 

of the vector along the current path, and R is the vector from dl to dH.  Therefore, the magnetic 

field generated by a line current is given by: 

𝑯 =  ∫
𝐼 𝑑𝒍 𝑥 𝒂𝑅

4𝜋𝑅2
𝐿

 

Where aR is a unit vector from dl to the point of interest. The units of H are Ampere/meter. 

Ampere’s Law broadly states that the line integral of H around a closed path is the same as the 

net current Ienc enclosed by the path.  Ampere’s Law is a special case of Biot-Savart’s Law.  It is 

broadly defined by the following equation:  
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∮ 𝑯 ⋅ 𝑑𝒍 = 𝐼𝑒𝑛𝑐 

It is more usefully defined for an infinite line current by: 

𝑯 =
𝐼

2𝜋𝜌
𝒂𝛷 

Where aΦ is a unit vector along the “Amperian path”, which in this case is concentric circles 

surrounding the infinite line current. 

Finally, magnetic flux density, B, is given by: 

𝑩 =  𝜇𝑜𝑯 

Here µo is a constant known as the permittivity of free space with a value of µo = 4π x 107 H/m.  

Magnetic flux density defines how magnetic forces act and is more useful for specific 

applications necessary for current detection.  The units of B are Tesla (T) which equals kg/s2A in 

SI base units. 

 

2.6.2 Inductance and Capacitance 

 Two passive circuit elements, inductors and capacitors, can alter the current and voltage 

in a circuit over time affecting the functionality of components like stepper motors and current 

sensors.  In its most basic form, an inductor is a coil of wire.  As current flows through the wire, 

a magnetic field is generated according to the principles previously described.  This induced 

magnetic field influences the current flow through the wire.  A capacitor is an element which 

collects and discharges electrical charge.  It also changes the flow of current through a circuit.  In 

conjunction with a resistor, these circuits, known as RL (Resistor-Inductor) and RC (Resistor-

Capacitor) circuits, can be used to change the behavior of a larger circuit.  They can be used in 

signal filtering, amplification, and a wide variety of other applications.  The coils of wire in a 

stepper motor behave as an inductor. 

 The time response of these circuits is defined by a “time constant”, or how quickly an RL 

or RC circuit builds or decays.  The time constants are defined by the following equations and 

correspond to how long it takes for a circuit to increase to 63.2% of its final value [30].  Units for 

a time constant are in seconds. 

𝑅𝐶 𝐶𝑖𝑟𝑐𝑢𝑖𝑡: 𝑇𝑐 = 𝑅𝐶 

𝑅𝐿 𝐶𝑖𝑟𝑐𝑢𝑖𝑡: 𝑇𝑐 = 𝐿/𝑅 
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These circuit elements will be useful in reading the stepper motor signals.  The other 

foundational electromagnetic principles provide a starting point for the demonstrated attack.  

They can be applied to any motor or system vulnerable to an attack. 
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CHAPTER 3 

 

EXPERIMENTAL SETUP 

 Chapter 3 will demonstrate the setup of the attack through the following sections.  

Section 3.1 introduces the general simulation.  Section 3.2 covers the simulation of the 3D 

printer. Section 3.3 describes the attacking device.  Section 3.4 outlines the technique for 

interpreting voltage data.   

3.1 Simulation and Demonstration of an Attack 

 The focus of this thesis is to determine the possibility of an attack on a secure additive 

manufacturing machine by detecting and measuring control signals sent to the stepper motors of 

the machine.  The possibility will be demonstrated through a simulated attack on an additive 

manufacturing type system.  If this simulated attack is successful it will provide a proof of 

concept for attacks on more secure machines which are closer to real production systems.  This 

will allow designers and manufacturers to find vulnerabilities and openings within their secure 

system.  They can then find technical solutions to close these gaps and improve security. 

 The demonstration will consist of two systems:  the simulated AM machine and the 

attacking device.  The simulated AM machine will be able to take standard G-Code instructions 

and control stepper motors accordingly.  In a successful attack, the attacking device will be able 

to read the current passing through the stepper motor wires and translate the current signals back 

into G-Code.  This experiment will only demonstrate G-Code recreation on one motor.  

However, because G-Code instructions operate in two dimensions independently, translation to 

two dimensions would not require significant changes.   

 

3.2 3D Printer Simulation 

 Standard state of the art 3D printers use several stepper motors to translate a build area in 

the X, Y, and Z directions.  Stepper motors are also used to extrude the build material.  Rather 

than assemble an entire 3D printer, this demonstration will replicate just the Y-motor of a 3D 

printer.  The Y-motor controls motion of the build area in the Y direction.  The X and Y motors 

of a 3D printer typically work in conjunction.  A single line or block of G-Code typically 

contains instructions for motion in both X and Y.  It can contain instructions in the Z direction, 
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but standard 3D printers only move in the Z direction when adding a new layer.  Complex 

motion in the Z direction is possible and is an area of study within additive manufacturing, but is 

not a focus of this simulation.  The Y motor was chosen for analysis to leave the X motor 

available as a control for analysis of the simulated AM machine.  

 The simulated AM machine consists of four main components:  the controlling computer, 

the motor drivers, motors, and an external 24V power supply.  There is no set standard for 

specific components of a 3D printer.  Different components may require slightly different 

approaches or techniques to attack, but the components selected in the demonstration are 

common components similar to those found in a wide array of AM systems.  

 

3.2.1 3D Printer Control 

 The central controller of the 3D printer is a Raspberry Pi 3 Model B V1.2.  The 

Raspberry Pi is a small, single board computer capable of performing a wide variety of 

computational tasks.  It costs less than $50 and is easily found in several online electronics 

stores.  It is an easily configurable, low cost solution which provides external power, general 

purpose input-output (GPIO) pins, a user interface, programming capabilities and a large open 

source user community.  It can interface with monitors, keyboards, mice, and any other standard 

computer peripherals and can control computer numeric control machines and programs.   

 Attached to the Raspberry Pi is an add-on board called the Raspberry Pi CNC board 

version 2.58 from Protoneer.  The Protoneer CNC board runs an on board CNC microcontroller 

running GRBL [31], an open-source G-Code and CNC control program.  The Protoneer board 

includes sockets for four separate stepper motor drivers and screw terminals for each stepper 

motor.  Screw terminals for power, spindle control, and other CNC features like end stops are 

also included.  A CNC control board functions in place of a standard off-the-shelf 3D printer 

board.  Functionally, these devices work identically for reading G-Code instructions and turning 

motors as commanded.  This board does not include stepper drivers which must be purchased 

additionally.  The CNC board gives more control and a better interface than would be found in 

an off-the-shelf 3D printer.  The CNC board will allow testing of specific motor movements and 

single lines of G-Code.  This will help verify the success of the attacking device.   

 The interface of the CNC control is through the standard Raspberry Pi desktop.  

Protoneer supplies a user interface SD Card image V4.10 [32] which includes bCNC [33], a user 
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interface for controlling CNC operations which can be seen below.  BCNC can receive and send 

single G-Code commands and can also be used to create and execute entire blocks of G-Code.   

 

Figure 3.1: bCNC user interface for sending G-Code commands to stepper motors 

  

3.2.2 Motors and Drivers 

 The motors used in this demonstration are model 42HB34F08AB stepper motors made by 

Changzhou Bo Hong Electric Appliance Co.  They are bipolar stepper motors with two coils, and 

four wire leads, the same type of stepper motors found in a typical 3D printer.  The motors travel 

a standard 200 steps per revolution, or 1.8 degrees per step.  They have a phase resistance of 6.2 

Ω, and a phase inductance of 10 mH.   

 The motors are driven by external stepper drivers mounted to the Protoneer controller.  

The drivers are Pololu DRV 8825 high current stepper motor drivers.  These drivers are known 

as “chopping drivers”.  The most basic motor control is to send current through the motor coils, 

charging each coil in the pattern necessary to achieve the desired speed and direction.  The 

alternating charges are typically visualized as a square wave.  Rather than producing these full 

alternating charges, a chopping driver splits each charge period into several much smaller spikes 

in voltage.  These particular drivers chop at a frequency of 30 kHz.  A visualization of the 
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chopping signal can be seen below.  Figure 3.2 shows the chopping signal at slow speed.  Figure 

3.3 shows the chopping signal at a higher motor speed.  The lower voltage in yellow is the signal 

delivered to the motor.  One can see the characteristic spikes in voltage produced by the 

chopping driver.  The upper purple signal is the output of the current sensor filtered through the 

RC circuit.   

 

 

Figure 3.2: Comparison of stepper motor signal and current sensor signal at low speed 
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Figure 3.3: Comparison of stepper motor signal and current sensor signal at high speed 

 

The chopping signal allows a high voltage to be applied to the motor coils while keeping the 

induced current in the coils low.  The high voltage is necessary for faster steps and higher torque, 

while the current must be kept low to prevent damage to the motor.  The chopping technique 

relies on the inductance of the motor coils to resist the frequent change in current.  With the 

motor inductance, the voltage spikes effectively become one continuous signal, similar to a basic 

motor control pattern.   

The stepper drivers can be adjusted to allow a maximum amount of current to pass 

through the coils of the stepper motor.  The stepper motors have a current rating of 0.8 Amperes, 

so the drivers are adjusted to only deliver this maximum current.  The current is further limited 

by the driver.  In full step mode, the current windings are only set to receive 71% of the limited 

current.  This is strictly due to the construction of the driver and cannot be adjusted.  Therefore, 

the current in the motor coils and wires is 0.57 A alternating at a frequency of 30 kHz.  

 The drivers, the motors, and the wires which connect them are the key pieces in reverse 

engineering the stepper motor control signals.  This thesis assumes that a signal may be securely 

transmitted up until the control computer of the 3D printer, here represented by the 
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Protoneer+Raspberry Pi system.  Everything beyond the control computer is the target of an 

attack.  The motors and the attached wires must be free to move in an AM system.  They cannot 

be deeply hidden within the machine or easily obscured.  That leaves them vulnerable. 

 

3.3 Attacking Device 

The demonstrated attack will be carried out by an external device capable of reading 

control signals sent to the stepper motors, recording them, then externally processing them to 

translate the recorded signals back into G-Code.  The control signals are read by current sensors 

detecting current passing through the stepper motor wires.  The current sensor data is filtered 

through a passive circuit, then read by an analog to digital converter (ADC).  The ADC is 

connected to a Raspberry Pi, which records and saves the digital signals.   

 

3.3.1 Current Sensors 

 As explained in the previous chapter, the current passing through the stepper motor wires 

creates a magnetic field around the wire.  The presence of a magnetic field indicates current, and 

the lack of a magnetic field indicates no current.  The magnitude of the magnetic field 

corresponds to the magnitude of the current.  These characteristics are the key to reading the 

stepper motor control signals without interrupting the stepper motor circuit.   

 The current sensors used in this application are ACS723 High Accuracy, Galvanically 

Isolated Current Sensor ICs integrated into a chip called the Sparkfun Current Sensor Breakout 

(Low Current) produced by Sparkfun.  The ACS723 is a Hall Effect sensor, a very common 

device used to detect the magnitude of a magnetic field.  This particular sensor is designed 

specifically as a current sensor, utilizing the known relationship between current and magnetic 

field.  The sensor has a listed sensitivity of 400 mV/A, meaning for every ampere passing 

through the sensor, the output signal will increase by 400 mV.  Therefore, for 0.57 A, the current 

sensor will output approximately 0.23 V above the reference voltage.  The reference voltage at 

zero current is listed as half of the supply voltage of the sensor.  Supply voltage is 5V, so the 

reference voltage is 2.5V.  However, the sensor IC is integrated into a breakout chip with more 

advanced features.  Two integrated potentiometers can adjust the reference voltage and the 

sensitivity of the output.   
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 The current sensor must be directly integrated into the circuit of the stepper motor signal.  

Realistically, this means cutting wires or removing them from the screw terminals of the 

Protoneer controller.  While a malicious machine operator with unlimited access to a machine 

could potentially do this, it may not be possible in a true attack scenario.  However, there is still 

electrical isolation between current being sensed (the stepper motor wires) and the current sensor 

power supply and output signal.  This setup still proves the concept of an external sensor 

detecting the presence of a magnetic field to measure current.  Expensive, high precision sensors 

such as current clamps are capable of measuring current without cutting the wires.  Construction 

of such a sensor may be an avenue for future research.   

 

3.3.2 Raspberry Pi and AD Converter 

 The main computer for powering the current sensors and reading and storing the data is a 

second Raspberry Pi with an integrated analog to digital converter.  It runs on the default 

Raspbian image.  Programming is possible in multiple languages.  For this specific application, 

the control code was written in C++ to handle the speed required to rapidly read voltage signals 

from the current sensors.   

 The analog to digital converter used is a Raspberry Pi High-Precision AD/DA Expansion 

Board from Waveshare.  It serves to translate the analog output of the current sensors to digital 

signals readable by the Raspberry Pi.  The expansion board directly mounts to the pins of the 

Raspberry Pi and provides external pins and screw terminals for sensor integration.  It has eight 

separate channels for analog input, an output voltage of 5V and a ground terminal.  The current 

sensors can directly connect to the analog input of the board and can run off the supplied 5V.  

The board primarily serves as a usable interface for the mounted ADS1256 analog to digital 

converter integrated circuit from Texas Instruments.  The ADS1256 is an eight channel delta 

sigma analog to digital converter which can output 24 bits of data at speeds up to 30,000 samples 

per second.  The ADS1256 cannot read all eight channels at 30,000 samples per second due to 

time delays when cycling through channels.  When reading one channel, the sampling rate can be 

increased as the converter does not need to use the time required to switch between channels.  

The high precision and speed of this ADC are necessary to read the rapidly changing signals of 

the current sensors and deliver that data to the Raspberry Pi. 
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 The code used to run the ADC through the Raspberry Pi was modified code produced by 

Waveshare [34] to accompany the board.  The default code starts up the board, then enters a 

function which instructs the ADC to cycle to a channel, issuing the necessary commands to 

retrieve one conversion, then returns that data to the interface.  It then moves on to the next 

channel and does the same until all eight channels have been read.  It then restarts.  A new data 

retrieval function was written which issues the necessary channel commands to a single channel.  

The continuous data command is issued, and the code continuously outputs the converted data 

into a text file with a corresponding time stamp.  The board is programmed to operate at the 

maximum 30,000 samples per second.  However, as instructed by the datasheet of the ADS1256, 

a settling time of 5 “DRDY” periods is necessary for continuous conversion of data.  One DRDY 

period is equal to the inverse of the programmed sampling rate, so the settling time required is 

approximately 5 ∗ (
1

30,000
) = 1.67𝜇𝑠.  This programmed settling time significantly slows the 

sampling rate of the board to around 5,500 samples per second.  However, this is still fast enough 

to read the stepper motor steps at full speed.  The main execution file and new continuous data 

read command can be found in Appendix B.  

 

3.3.3 RC Circuit 

 The current sensors are integrated directly into the wires of the stepper motor and detect 

every fluctuation in current through those wires.  The chopping driver charges the stepper coils at 

30 kHz which means current is sent through the current sensor at that rate.  As previously stated, 

the inductive properties of the stepper motors smooth out this high frequency, but the output of 

the current sensor appears as a highly noisy signal.  The current sensor signal is passed through a 

filtering RC circuit to remove spikes in the output voltage.   

 The resistor and capacitor values required for the RC circuit were determined through 

analysis and experimentation.  As a starting point, the stepper motors were treated as an RL 

circuit with a time constant determined by 𝑇𝑐 =
𝐿

𝑅
=

10 𝑚𝐻

6.2 𝛺
= 1.6 𝑚𝑠.  An ideal RC circuit will 

approximate the behavior of the RL circuit and the filtered output of the current sensor will 

appear as a traditional stepper motor control signal.  The values found to be most effective for 

proper filtering were a resistor of R = 330 Ω and a capacitance of C = 1 µF for a time constant 

given by 𝑇𝑐 = 𝑅𝐶 = 0.33 𝑚𝑠.  A smaller time constant ensures that the RC circuit used to filter 
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the current sensor signal will respond faster than the RL circuit of the stepper motor.  Some of 

the noise from the chopping drivers is still present, but it is reduced to a level where it is no 

longer an issue for later data processing.  

 

3.3.4 Integration 

 Combining these components into one system is the final step in developing the hardware 

for the hacking device.  The thesis demonstrates an attack on one motor.  One motor has two 

motor coils and each change in the current direction in a motor coil corresponds to one step.  To 

count each step of the motor, a current sensor must be integrated with the circuit for each coil.  

This means two separate sensor signals must be read simultaneously.  The ADC integrated with 

the Raspberry Pi cannot cycle between channels fast enough to read the sensor voltages for the 

motor at high speed, but it can read one channel fast enough.  The solution is to combine the two 

motor signals into one, using a passive differential amplifier circuit.  In a differential amplifier, 

the two signals are fed into the positive and negative inputs of an operational amplifier or “op 

amp” and all the inputs and outputs are connected via a specific resistor configuration.  The 

resulting output is equal to the voltage on the positive input minus the voltage on the negative 

input.  The configuration can be seen in Figure 3.4. 

 

Figure 3.4: Differential amplifier circuit [35] 

 The voltage outputs of the current sensors must be adjusted, so that the difference 

between the two sensors displays four distinct levels.  The integrated reference voltage and gain 

potentiometers of the current sensors allow easy adjustment and provide the desired output of the 

difference amplifier.  The voltage data from Coil A is fed into the positive terminal of the op 

amp and has a reference voltage of approximately 2.8 V and a gain of 0.8 V when the coil is 

energized.  The data from Coil B is fed into the negative terminal of the op amp and has a 
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reference voltage of 0.8 V and a gain of 0.4 V when the coil is energized.  The input and output 

voltages are summarized in the following table.  High and low indicate whether the voltage 

passing through the stepper coils is positive (high) or negative (low).  The sequence of coil 

charging is controlled by the stepper motor driver.  The “state” column refers to the state of the 

stepper motor.  As the motor turns, it progresses through four distinct states depending on the 

voltage of the coils.  The numbers for the state value have been chosen to match the progression 

of states defined by the stepper driver datasheet.   

 

Table 3.1: Voltage Levels for Current Sensors and Differential Amplifier Output 

State Coil A Coil B Output 

Off Off 2.8 V Off 0.8 V 2.0 V 

1 High 3.6 V High 1.2 V 2.4 V 

2 Low 2.0 V High 1.2 V 0.8 V 

3 Low 2.0 V Low 0.4 V 1.6 V 

4 High 3.6 V Low 0.4 V 3.2 V 

 

 The resulting data from the differential amplifier circuit can be read into the single 

channel of the analog to digital converter.  The difference in voltage and gain gives four distinct 

voltage levels corresponding to the four states of the stepper motor.  Each state corresponds to a 

single step, so each time a new state is reached, a step can be counted.  It is important to note that 

these reference levels and gains are relatively arbitrary.  All that matters is that the reference 

voltage and gains of the two sensors are different from each other so that the output of the op 

amp gives the four distinct voltage levels.  A full diagram of the attacking device can be seen in 

Figure 3.5. 
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Figure 3.5: Full attacking device diagram [35] 

 

 The voltage output by the sensors and the voltage output by the op amp for a step 

sequence can be seen in Figure 3.6.  When Coil A and B are high, state 1 is output.  When Coil B 

stays high but Coil A goes low, the output enters state 2, etc.   

 

 

Figure 3.6: Current sensor outputs compared to output of differential amplifier 
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The physical layout of the entire setup can be seen in Figure 3.7. 

 

Figure 3.7: Full experimental setup 

 

3.4 Data Interpretation 

The final step in demonstrating the attack is to process the voltage data collected by the 

Raspberry Pi.  The Raspberry Pi program outputs a column of voltage data into a text file 

alongside the time each data point is recorded.  The clock starts when the program to record data 

begins, it does not correspond to global time.  This voltage data represents the output of the 

differential amplifier as it is read by the ADC integrated with the Raspberry Pi.  The data is 

saved to an external drive and moved to a PC where it is processed using Matlab.  The data is 

processed in Matlab to use the increased computing capability of a PC and minimize the 

computing required by the Raspberry Pi so that it can run the ADC as fast as possible.  A sample 

of the output code for a motor translation of 0.1 mm plotted in Excel can be seen in Figure 3.8.  

An equal motion in reverse is seen in Figure 3.9.  The four voltage levels corresponding to motor 

states 1, 2, 3, and 4 as well as no motor motion can be seen.   
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Figure 3.8: Sample reading of 0.1 mm forward motion 

 

Figure 3.9: Sample reading of 0.1 mm reverse motion 

3.4.1 Interpretation sequence 

 Each line of G-Code corresponds to one continuous movement in one direction.  It is 

delivered to the machine as a destination, and the interpreter on board the CNC machine (GRBL) 

takes the current location of the machine, and translates this new destination into a direction and 

a distance.  Therefore, the code interprets the voltage data through two main loops:  direction 

determination and step counting.  Each loop begins by reading each voltage point and 

determining the state of the motor (1 – 4, or no motion).  The motor states are processed until 

two consecutive states are known and direction can be determined.  The code then restarts at the 
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beginning of the data and counts each step.  When the end of the data is reached, or the direction 

changes, the line of G-Code which commanded that movement is printed.  

The code relies on the acceleration and deceleration of the motors to properly interpret 

the data.  The GRBL G-Code processor accelerates and decelerates the motor according to its 

internal programming.  An additive manufacturing machine cannot change direction 

instantaneously, the motors must be accelerated and decelerated for accurate material deposition.  

The same is true for CNC machines.  At the beginning and end of a single motor movement, the 

motor is moving relatively slowly.  However, it moves much faster in the middle, as seen in 

Figures 3.8 and 3.9.  The effect is much more pronounced in longer motions, as the motor has 

more distance to accelerate.  It can be fast enough that the four distinct states cannot be read 

accurately.  Voltage data at high speed is seen in Figure 3.10.  The voltage signal effectively 

becomes a sinusoidal wave with a peak and a trough.  The RC circuit which filters the noise of 

the current sensors causes this loss of information.  The time constant of the RC circuit is too low 

for the rapid change in current to charge and discharge the capacitor.  This loss of information is 

accounted for in the step counting technique.     

 

Figure 3.10: Sample of data recorded at high motor speed 

  

3.4.2 Direction Processing 

 The first step in analyzing the data is to determine the direction the motor is moving.  The 

sequence of motor steps changes based on the direction of the motor.  As seen in Figure 3.8, a 

forward motion of 0.1 mm, the first state after no motion is state 3, followed by state 4, and then 
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state 1.   The subsequent figure, Figure 3.9 shows the motor progressing through states 2, 1, 4, 3, 

which corresponds to a reverse motion.  The entire sequence of data does not need to be read to 

determine direction.  Only two consecutive motion states are needed.  When direction is 

determined, the loop is exited.   

 

3.4.3 Step Counting 

Step counting is the key to determining the distance traveled by the stepper motor.  As 

shown in the voltage data table, the four distinct voltage levels correspond to each motor step.  

At high speed the four distinct voltage levels can no longer be read, but the voltage data is still 

useful for counting steps.  The slow steps at the beginning of the motion are used for state 

determination.  Then, the state information is used to determine a separate “step state”.  The step 

state still has four distinct states, but is not determined entirely by voltage ranges.  Instead, the 

program contains an upper and a lower voltage threshold.  When the voltage is greater than the 

upper threshold, the step state is advanced, and a step is counted.  When the voltage then drops 

below the upper threshold, the step state is advanced, and another step is counted.  The same 

occurs for the lower threshold.  For example, state 3 (1.6 V) is the first state recorded in Figure 

3.8.  The code then sets the step state to 3 and begins looking for step state 4.  Step state 4 is 

reached when the voltage crosses above the upper threshold.  The code begins looking for step 

state 1, which is reached when the voltage drops below the upper threshold.  If the direction is 

reversed, the sequence of step states is reversed.  The voltage thresholds are set so the step 

counting works at high and low speed.  The upper voltage threshold is 2.7 V and the lower is 1.3 

V. 

 

3.4.4 Interpretation Techniques 

 State determination is inaccurate when the motor is traveling quickly or transitioning 

between states.  The state is only determined when an accurate reading can be ensured.  This is 

performed by calculating the standard deviation of 20 points surrounding the current data point 

being read.  If the standard deviation is above a threshold, the motor must be traveling quickly or 

in a transition between two states.  If so, the state is not determined and the code progresses until 

it finds a point where state can be read accurately.   
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 The code can also process transitions between multiple lines of G-Code.  As the machine 

transitions to the next line of G-Code instruction, the motor must change direction and 

decelerate, which means the motor state can once again be determined accurately.  Motor state is 

checked continuously with the next state in the progression always known.  If a state different 

than the anticipated state is reached, a direction change has occurred.  For example, as seen in 

Figure 3.11, if the motor is moving forward and the state is 1, state 2 will be expected.  If state 4 

is recorded, the motor has changed direction.  If this occurs, the script processes a line of G-Code 

and resets the step counter for the next line.  Direction determination does not need to happen 

again because it is merely switched from the known previous direction.   

 

 

Figure 3.11: Sample of voltage data for motor directional change 

3.4.5 Translation to G-Code 

Three pieces of information are needed to reverse engineer the G-Code instructions: 1) 

direction, 2) distance, and 3) previous motor location.  A single line of G-Code gives a target 

location and sometimes a speed or feed rate.  If feed rate is not given, the G-Code interpreter just 

uses the last commanded feed rate.  If every step from a single line of G-Code is recorded, the 

exact distance and direction traveled by the motor can be determined if machine parameters are 
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known.  For example, in Figure 3.8, 26 discrete changes in voltage are visible, corresponding to 

25 steps.  The first change in voltage is the initial state of the motor when it is powered on.  It 

does not move for this first step.  This state matches the final state from the motor’s previous 

motion.  The machine is set to translate 0.004 mm for one step, so 25 steps corresponds to a 

translation of 0.1 mm.  Therefore, the G-Code instruction for a 0.1 mm translation in the positive 

direction would be G1 Y0.1, assuming the machine was started from Y = 0.  The original 

position must be known to recover the target position from distance and direction traveled.  In a 

full G-Code program for an entire part each line must be correctly processed to track the location 

of the motor and process the new successive line.  When a direction change is processed as 

described previously, the current line of G-Code is printed, and the new Y location is recorded.  

The Y location is updated each time a line of G-Code is printed and processed.  Lines of G-Code 

are printed continuously until the end of the voltage data is reached.    
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

To validate the hacking system and prove the possibility of this type of attack, several 

different tests are conducted.  Step counting and direction determination are the keys to 

reconstructing G-Code, so the tests will validate both factors.  The system must properly 

recognize direction and count steps in any scenario a 3D printer may run its motors.  Chapter 4 is 

divided into the following sections.  Section 4.1 covers the validation of the device for all types 

of movement.  4.2 describes the success of G-Code reconstruction.  Finally, section 4.3 addresses 

G-Code information that cannot be recovered. 

 

4.1 Validation 

 The primary variable one could encounter is the start and end state of a programmed 

movement.  If the motor is turned to state 1, it will begin at state 1.  The same could occur for 

states 2-4.  The motor can also end on any state.  Therefore, the hacking system must correctly 

determine steps and direction beginning on each state and ending on each state traveling in each 

direction.  For example, a motor can begin on state 1 and end on state 1.  The motor can begin on 

state 1 and end on state 2, etc.  Four start and end states in two directions requires a total of 32 

tests.  The testing procedure uses the following sequence: 

1. The simulated 3D printer is set to location Y = 0 

2. The hacking device begins recording data to a unique text file. 

3. A G-Code command is issued to the machine. 

4. The command is executed 

5. The hacking device stops recording. 

After each test, the machine is reset to the starting point and the next test is run.  The starting 

point for each test depends on the start state desired.  For example, at a starting point of Y = 0, 

the start state recorded for this validation was state 3.  It could be any state depending on 

previous motor motion.  As long as all four states are verified, matching state 1 to Y = 0 is not 

necessary.  The G-Code command issued is intended to have the machine travel beyond 25 steps 

or 0.100 mm.  The G-Code commands issued instruct the motor to travel 0.104 mm, 0.108 mm, 
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0.112 mm, and 0.116 mm, so each end state can be validated.  Once all four end states are 

validated for a single start state, the start state is moved by 0.004 mm and all four end states are 

tested.  The G-Code command distances must be increased by 0.004 mm to achieve the desired 

travel.  The voltage data for each test is recorded and transferred to the Matlab interpreter to 

validate the steps counted and direction.  The data is also plotted in Excel so the start and end 

states can be verified visually.  An example of the plotted data is seen in Figure 4.1.  The plot for 

every test can be found in Appendix A. 

 

 

Figure 4.1: Sample of voltage data for testing 

 The test parameters and results are summarized in the following two tables showing the 

parameters for each test conducted.  There are eight total tables for each starting state in each 

direction.  Each is labeled with a starting state and a starting location.  Each table displays the 

following information for each of the four end states:  the G-Code command issued, expected 

distance traveled, expected steps traveled, the steps counted, and the G-Code command returned.  

The steps counted should match the expected steps traveled, and the G-Code command returned 

should match the distance traveled.  It does not match the G-Code command issued because the 

G-Code command necessary to cover the intended distance varies based on the starting point. 
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Forward: 

Start State: 3 

Start Distance: 0 

Table 4.1: Tests 1-4 

Test End State 
G-Code 
Command 

Steps 
Expected 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

1 1 Y.104 26 26 0.104 Y0.104 

2 2 Y.108 27 27 0.108 Y0.108 

3 3 Y.112 28 28 0.112 Y0.112 

4 4 Y.116 29 29 0.116 Y0.116 

 

Start State: 4 

Start Distance: 0.004 

Table 4.2: Tests 5-8 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

5 1 Y.120 29 29 0.116 Y0.116 

6 2 Y.108 26 26 0.104 Y0.104 

7 3 Y.112 27 27 0.108 Y0.108 

8 4 Y.116 28 28 0.112 Y0.112 

 

Start State: 1 

Start Distance: 0.008 

 

Table 4.3: Tests 9-12 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

9 1 Y.120 28 28 0.112 Y0.112 

10 2 Y.124 29 29 0.116 Y0.116 

11 3 Y.112 26 26 0.104 Y0.104 

12 4 Y.116 27 27 0.108 Y0.108 
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Start State: 2 

Start Distance: 0.012 

Table 4.4: Tests 13-16 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

13 1 Y.120 27 27 0.108 Y0.108 

14 2 Y.124 28 28 0.112 Y0.112 

15 3 Y.128 29 29 0.116 Y0.116 

16 4 Y.116 26 26 0.104 Y0.104 

 

 

Reverse: 

Start State: 3 

Start Distance: 0 

Table 4.5: Tests 17-20 

Test End State 
G-Code 
Command 

Steps 
Expected 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

17 1 Y.-104 26 26 -0.104 Y-0.104 

18 2 Y.-116 29 29 -0.116 Y-0.116 

19 3 Y.-112 28 28 -0.112 Y-0.112 

20 4 Y.-108 27 27 -0.108 Y-0.108 

 

Start State: 2 

Start Distance: 0.004 

Table 4.6: Tests 21-24 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

21 3 Y-.112 27 27 -0.108 Y-0.108 

22 4 Y-.108 26 26 -0.104 Y-0.104 

23 1 Y-.120 29 29 -0.116 Y-0.116 

24 2 Y-.116 28 28 -0.112 Y-0.112 
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Start State: 1 

Start Distance: 0.008 

Table 4.7: Tests 25-28 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

25 1 Y-.120 28 28 -0.112 Y-0.112 

26 2 Y-.116 27 27 -0.108 Y-0.108 

27 3 Y-.112 26 26 -0.104 Y-0.104 

28 4 Y-.124 29 29 -0.116 Y-0.116 

 

Start State: 4 

Start Distance: 0.012 

Table 4.8: Tests 29-32 

Test End State 
G-Code 
Command 

Steps 
Traveled 

Steps 
Returned 

Distance 
Traveled 

G-Code 
Returned 

29 3 Y-.128 29 29 -0.116 Y-0.116 

30 4 Y-.124 28 28 -0.112 Y-0.112 

31 1 Y-.120 27 27 -0.108 Y-0.108 

32 2 Y-.116 26 26 -0.104 Y-0.104 

 

 For each test, all steps are counted properly and the expected G-Code command is 

returned.  The only errors encountered in testing were human errors like sending the command 

before the hacking device had begun recording.  If the test is run properly, the hacking device 

and the code worked flawlessly.  Therefore, the hacking device and code can be expected to 

work for any motor start and end state in either direction. 

 

4.2 G-Code Reconstruction 

 The true purpose of this demonstration is to recreate sequences of G-Code commands 

like those found in 3D printing data.  A secure AM system would encrypt these G-Code 

commands and they would not be accessible by the printer operator.  Therefore, if they can be 

recreated from stepper motor signals, they could potentially be stolen by a malicious printer 

operator.  As shown in the previous validation section, recreation of single lines of G-Code is 

successful.  Multiple consecutive commands must also be validated.   
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4.2.1 Multiple Commands 

 The strategy for decoding multiple commands is illustrated in section 3.4.4 and 3.4.5 and 

relies on changes in motor direction to identify the ends of G-Code commands.  When an 

unexpected step is recorded, a direction change has occurred and the line of G-Code is calculated 

based on direction, steps, and previous Y location.  The steps are then reset and the direction is 

changed.  A similar testing strategy as before has been taken for these transitions.  A transition 

can occur on any motor state, so a transition on each must be recorded and verified.  This must 

be performed in both directions to ensure any type of motor motion is decryptable.  A similar 

testing procedure was performed as in section 4.1.  Each test began at Y = 0 and two G-Code 

commands were sent to the motors.  The first was a command to travel to a point, the second to 

return to the origin at Y = 0.  The point each traveled to was increased by 0.004 mm to verify 

that a transition on each motor state was possible.  Tables summarizing the testing follow. 

 

Forward: 

Table 4.9: Tests 33-36 

Test 
Transition 
Step Direction 

Steps 
Traveled 

Steps 
Returned 

G-Code 
Command 

G-Code 
Returned 

33 1 Forward 26 26 Y.104 Y0.104 

    Reverse 26 26 Y0 Y0.000 

34 2 Forward 27 27 Y.108 Y0.108 

    Reverse 27 27 Y0 Y0.000 

35 3 Forward 28 28 Y.112 Y1.112 

    Reverse 28 28 Y0 Y0.000 

36 4 Forward 29 29 Y.116 Y1.116 

    Reverse 29 29 Y0 Y0.000 
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Reverse: 

Table 4.10: Tests 37-40 

Test 
Transition 
Step Direction 

Steps 
Traveled 

Steps 
Returned 

G-Code 
Command 

G-Code 
Returned 

37 1 Reverse 26 26 Y.-104 Y-0.104 

    Forward 26 26 Y0 Y0.000 

38 4 Reverse 27 27 Y.-108 Y-0.108 

    Forward 27 27 Y0 Y0.000 

39 3 Reverse 28 28 Y.-112 Y-0.112 

    Forward 28 28 Y0 Y0.000 

40 2 Reverse 29 29 Y-.116 Y-0.116 

    Forward 29 29 Y0 Y0.000 

 

Each contains the transition state, direction of travel, expected steps traveled, steps counted and 

returned, the G-Code commands issued, and the G-code commands returned.  With this testing 

procedure the returned G-Code matches the delivered G-Code because each test begins from Y = 

0, the default start for the interpretation code.  Again, each test is successful in returning the 

exact number of steps traveled and the expected G-Code, so the system accurately tracks any 

direction transition.  

 

4.2.2 Several Commands 

 The final demonstration of the attack is to recreate several consecutive lines of G-Code.  

To do so, a sequence of multiple G-Code instructions are programmed to run on bCNC.  The 

instructions range from long to short traverses in alternating directions.  Like the previous test, 

the hacking device starts recording to a text file, and the G-Code program is run.  The data is 

then processed in Matlab to recreate the G-Code commands.  The G-Code programmed to run 

uses the following ten instructions: 
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Table 4.11: Test G-Code Instructions 

G90 

G21 

G1 Y6 

G1 Y4 

G1 Y5 

G1 Y1 

G1 Y2.5 

G1 Y0 

G1 Y0.004 

G1 Y0 

G1 Y0.1 

G1 Y0 

 

G90 was included to set the dimensions to absolute rather than incremental.  G21 was added to 

set the units to mm.  These are purely for formatting and will not be read by the device.  The test 

was conducted 20 times and in all but four, the G-Code was output with 100% accuracy.  The 

four incorrect readings produced the following lines with the incorrect reading highlighted in 

red: 

 

Table 4.12: Test G-Code Results 

Test 2 Test 3 Test 6 Test 10 

G1 Y6.000 G1 Y6.000 G1 Y5.984 G1 Y6.000 

G1 Y4.000 G1 Y4.048 G1 Y3.984 G1 Y4.000 

G1 Y5.000 G1 Y5.048 G1 Y4.984 G1 Y5.000 

G1 Y1.016 G1 Y1.048 G1 Y0.984 G1 Y1.032 

G1 Y2.516 G1 Y2.548 G1 Y2.484 G1 Y2.532 

G1 Y0.016 G1 Y0.048 G1 Y-0.016 G1 Y0.032 

G1 Y0.020 G1 Y0.052 G1 Y-0.012 G1 Y0.036 

G1 Y0.016 G1 Y0.048 G1 Y-0.016 G1 Y0.032 

G1 Y0.116 G1 Y0.148 G1 Y0.084 G1 Y0.132 

G1 Y0.016 G1 Y0.048 G1 Y-0.016 G1 Y0.032 
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In each case, only one error occurred, but it caused the subsequent G-Code commands to all be 

incorrect as well.  This is because the location derived from each step count is based on the old 

location, so the error in location remains throughout the data processing.   

 The errors all occurred because too few steps were counted for the intended motion.  Test 

2 missed four steps (0.016 mm), test 3 missed twelve, test 6 missed four, and test 10 missed 

eight.  Notably these are all multiples of four.  The motor cycles through four states and the 

counting cycle looks for each progressive state when counting steps.  Due to this, if a step state is 

not counted, the counting function will not look for the next state in the cycle.  For example, if 

the counting function is looking for state 1, and state 1 is missed, the motor must cycle through 

states 2, 3, and 4 before it finds state 1 again.  That means all four of these steps will be missed.   

 The raw data recorded by the hacking device can be inspected to understand why these 

errors occur.  The data is plotted in Excel, where individual steps can be counted.  In test 2, 

around data point 24,793, the voltage data goes from step state 2 to step state 1, then back to step 

state 2 without ever crossing the upper threshold of state 3.  This missed step triggers the four 

missed steps seen in line four of test 2.  The hacking device also records a time stamp for each 

data point and the time stamp of data point 24793 occurs 0.000443 seconds after data point 

24792.  The typical time between data points is around 0.000182 seconds.  This indicates that 

data points were not recorded during the time delay and the time the motor entered state 3 was 

not recorded.  It is unclear why this extra time delay occurred.  A delay of this magnitude is 

extremely rare.  In test two, a delay twice the typical 0.000182 seconds happened only three 

times, and a delay 1.5 times the standard 0.000182 seconds happened eight times in 50,000 

samples.  Unfortunately, this delay can have a significant effect on the final outcome as errors 

due to missed steps are never corrected.  Perhaps the relatively simple, low cost hacking device 

is to blame.  More time spent ensuring a consistent sample rate could eliminate this error. 

 The other three failed tests were inspected by counting the individual steps in each 

incorrectly calculated line of G-Code.  A hand count gives the exact same tally of steps counted 

by the Matlab program.  Occasional time delays occur, but inspection of the data shows these did 

not have an effect on step counting and the proper progression of step states occurs.  The GRBL 

program used to send the G-Code commands contains a complex algorithm for accelerating and 

decelerating motors to reach the desired locations.  It is possible that GRBL is subtracting steps 
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to compensate for the accelerations and decelerations.  There could also be unknown issues with 

the hacking device causing the improper recording of voltage data.  

 Despite these errors, a total of four lines of G-Code out of 200 total lines (10 per test for 

20 tests) had errors for an error rate of 2%.  Each test includes 4302 steps, for a total of 86040 

steps across all twenty tests.  In total 28 steps were not counted.  This is an error rate of 0.03 %.  

The largest error was a miscount of twelve steps corresponding to a linear error of 0.048 mm.  A 

linear error of this magnitude could be significant depending on the application.   

Even basic 3D printed parts require thousands of lines of G-Code, so this error rate may 

be unacceptable.  More time spent investigating these errors may eliminate them.  More 

expensive and complex voltage recording devices may also help.  However, this demonstration is 

a promising start to the ultimate goal of stealing an entire part from motor signals.   

 

4.3 Missing Information 

In addition to the errors in recording, some pieces of manufacturing information cannot 

be determined from the recorded data.  A feed rate must be defined for G1 commands.  

Typically, the feed rate is given in the first G1 command in a sequence and is only given again if 

it changes or a repositioning G0 move occurs.  It is not completely necessary for each line.  One 

approach to determining feed rate could be to measure the frequency at which a certain step state 

is triggered.  For example, each time a peak at state 3 is reached, the time stamp accompanying 

the data point would be recorded.  When the peak occurs again, the time difference between the 

two peaks can be used to determine the speed of the motor.  However, depending on the 

controller, the fastest speed recorded may not match the desired feed rate.  If the motor is 

accelerated like it in this example, the max speed may not be reached if the traverse distance is 

too short.  A careful analysis of GRBL internal programming may reveal that feed rates can be 

determined from acceleration rates and travel distances, but this is beyond the scope of this 

thesis. 

Furthermore, knowledge of feed rate is not entirely necessary.  Normally, the maximum 

possible feed rate is used to maximize throughput of a 3D printer.  The limiting factor in many 

cases is the material being deposited.  A 3D printing service would typically know the feed rate 

for a particular material, so the machine’s feed rate is not essential information. 
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This method also fails to detect consecutive G-Code commands in the same direction.  

For example, a command of G1 Y3 followed by G1 Y6 would be read only as G1 Y6.  A 

reversal in motor direction is needed to detect the end of a line of G-Code.  This typically would 

not be an issue as the final destination of the motor would still be recorded.  In a more advanced 

demonstration of an attack, two motors would be tracked to outline two dimensional shapes.  A 

reversal in one motor would indicate the end of a command in two motors.  For example, 

consider two commands issued in succession starting from X0 Y0:  G1 X3 Y3, G1 X0 Y6.  The 

direction reversal in X to go from 0 to 3 back to 0 would indicate a new line of G-Code.  

Therefore, the Y data recorded at the same time of the reversal would indicate the end of the line 

of code.   

Recording multiple motors is necessary to recreate the entirety of the G-Code.  The same 

technique for one motor could be repeated for any number of motors.  This experiment was 

limited to the recording capability of a low-cost AD converter.  However, a more sophisticated 

and expensive data acquisition device would be able to record the streams of data from several 

motors.  Time synchronization of all the data would be essential.  In a typical FDM system, the 

X, Y, and extruder motors all work simultaneously, so their coordination would need to be 

perfect.   

This demonstration is just a start, but these experiments and the analysis of the hacking 

device and interpretation code suggest that a side channel attack of stepper motor signals is 

possible.  Simulated encrypted machine instructions have been hacked by reading the magnetic 

field generated by the current passing through stepper motor wire.   
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CHAPTER 5 

 

CONCLUSION 

This thesis has outlined the state of the industry for a distributed manufacturing system 

and the potential advantages of such a system as additive manufacturing technology advances.  It 

has also highlighted some of the current security threats to a distributed manufacturing 

environment, specifically unauthorized reproduction of parts.  It then demonstrated the 

possibility of a side channel attack to access encrypted manufacturing information for an additive 

manufacturing machine.  The demonstration presented within this thesis circumvents one 

approach to preventing unauthorized reproduction:  the encryption of manufacturing instructions.   

 

5.1 Concluding Remarks 

 The attack demonstrated in this thesis was to determine motor motion based on magnetic 

fields generated by stepper motor control signals.  This motor motion was then translated into G-

Code manufacturing instructions.  The system of sensors, data recorders, and processers 

successfully recreated a comprehensive series of tests to ensure the system will work for any 

forward and reverse motor motion.  It will also work for any transition between forward and 

reverse motion.  Finally, a sequence of G-Code instructions similar to what is used for a real 3D 

printed part was reproduced.  While not 100% successful, the success rate was high enough to 

conclude that this method could be used for a long sequence of data.  Chapter 4 presented some 

suggestions for why these errors occurred and future refinement of the system may lead to a 

100% success rate.  Investigation of the errors did not necessarily show that all the errors were 

caused by the hacking device.  The errors could be caused by processes within the simulated 3D 

printer itself.   

 

5.2 Contributions 

 A fully secure distributed manufacturing system must prevent any type of attack.  Data 

theft is one of many types of attacks that could occur.  Prevention of data theft is the only way to 

ensure widespread adoption of distributed manufacturing in advanced technology areas.  

Intellectual property is too valuable to be left vulnerable.  The attack demonstrated in this thesis 
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is very far from a full theft of advanced technology data.  However, it proves that encryption of 

manufacturing data up to the computer of a 3D printer is not fully secure.  Therefore, those 

wishing to build fully secure systems must account for the information contained in wire signals.  

An obvious approach would be to encase the wires so that their external magnetic fields cannot 

be read.  It may be difficult to do so, as the wires must still freely translate along with their 

motors.  Repairs would also be difficult in an encasement.  Perhaps a motor controller with a 

trusted platform module could be integrated directly into the motors themselves.  This would 

eliminate the long stretches of wire needed to detect the signals.   

 However engineers decide to solve this problem, they must be aware that a system with 

hardware costs totaling less than $100 was able to present a successful rudimentary attack on a 

simulated secure system.  In theory, every system can be hacked with enough resources.  A 

system is only secure when the costs to hack it exceed the financial benefit.  More advanced 

sensors, data recorders, and processors would not be prohibitively expensive.  Advanced 

technology intellectual property can be worth millions of dollars, so it must be protected.   

 

5.3 Recommendations for Future Work 

This demonstration required motor control wires to be cut and run through the current 

sensors.  The circuit to the motor coils was not interrupted, but an attack like this could leave 

evidence of tampering.  An ideal attack would leave the wires as they are, with a sensor merely 

attached to the exterior of the wire.  This would require more sensitive, expensive sensors, but it 

would more accurately demonstrate the type of attack a secure system is vulnerable to.   

The motors used in the demonstration were not physically connected to any load.  In a 

real FDM system, they would drive the motion of a print head, print bed, and the object being 

printed.  A load on a stepper motor can alter the current draw of that motor.  Since the attack 

relies on detecting motor current, an attack in a real scenario may be affected by these loads.  

Implementing this attack on a motor carrying a load could give more insight into this question.  

The current measurement technique here does not rely on extremely precise current 

measurements.  It only needs to detect whether a motor coil is in a binary high or low state.  

While significant loading may alter the current draw of a motor, minor fluctuations in loading 

conditions would likely produce only a minor fluctuation in current.  Experiments would need to 

be run to determine how much loading would be necessary to move current outside of its binary 



51 
 

ranges.  If this loading is within the realm of possibility for a 3D printer this type of attack may 

not be possible.  Variable motor loading could also be used to thwart such an attack. 

Another avenue for exploration would be the effect of micro stepping.  Micro stepping is 

a motor control technique in which stepper motor coils are powered to increments of their full 

value to turn the motor shaft to a state between full steps.  More precise motor control can be 

achieved, but at the cost of motor torque.  An attack on a motor using micro stepping would 

require a more precise current detection technique.  However, if the variable current could be 

properly recorded, it is likely that steps could be counted just as demonstrated in this thesis.  This 

could pose a problem to the “binary” interpretation technique explained in the previous 

paragraph.  Smaller steps and smaller variations in current could be more susceptible to motor 

loading.  A fully robust system would have to account for micro stepping and motor loading.   

Also, in this demonstration, the motion of only one motor was reconstructed.  In reality, 

the motion of one motor is useless in an additive manufacturing environment.  A standard FDM 

system uses several motors to translate the print head and extrude material.  The X and Y motors 

work together to move the print head in a standard cartesian coordinate system while the Z motor 

moves the print head to deposit each new layer.  Extruder motors push filament through the 

extruder nozzle along the path the X and Y motors generate.  All of these motors would need to 

be recorded to properly reconstruct an entire part.  Typically, these are all similar stepper motors, 

so the approach to hacking any one motor is the same as hacking the others.  More sensors and a 

more complex data processing system would be necessary but would not present a significantly 

different problem.  Time synchronization of the motors would be essential, so a hacking device 

capable of recording four high speed channels simultaneously would be required.  To perform a 

full system test, one would not need to perform significant research and development of the 

attacking system.  The approach for one motor could be repeated for all other printer motors, the 

data synchronized, and a full G-Code program recovered.  The techniques presented in this thesis 

merely need to be repeated on more precise, advanced equipment to demonstrate a full system 

attack.   
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APPENDIX B: ADC RECORDER CODE 

Instructions for recorder code: 

The base source code was taken from the maker of the AD converter, Waveshare, found 

at the link in citation number 32.  The file path for the source code is High Precision AD DA 

Board Code > RaspberryPi > AD-DA > bcm2835.  The code is compiled by issuing a “make” 

command in the terminal and executed by issuing  “sudo ./main” in the terminal.  Output data 

can be saved by issuing “sudo ./main > filename.txt”  This will output the data to a text file in the 

bcm2835 folder. 

Inside the bcm2835 folder is a folder titled obj.  Inside obj is the main file (main.c) which 

can be replaced with the code under “Main file for recorder code execution”.  Also in the obj file 

is a file (ADS1256.c) which consists of several functions.  The function displayed below 

“function for continuous data recording” must be added to these functions.  This function is 

called in the altered main file.   

Main file for recorder code execution 

#include <stdlib.h>     //exit() 
#include <signal.h>     //signal() 
#include <time.h> 
#include <string.h> 
#include "stdio.h" 
 
#include "ADS1256.h" 
#include "DAC8532.h" 
 
void  Handler(int signo) 
{ 
    //System Exit 
    printf("\r\nEND\r\n"); 
    DEV_ModuleExit(); 
    exit(0); 
} 
 
int main(void) 
{ 
    UDOUBLE ADC[8],i; 
    int steps; 
    DEV_ModuleInit();     
    // Exception handling:ctrl + c 
    signal(SIGINT, Handler); 
 
    if(ADS1256_init() == 1){ 
        printf("\r\nEND\r\n"); 
        DEV_ModuleExit(); 
        exit(0); 
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    }     
    while(1){               
        int steps = ADS1256_GetChannalValueCont(7);  //Call continuous read 
function         
        break; 
    } 
    return 0; 
} 
 
 
 
 

Function for continuous data recording 

/****************************************************************************
** 
function:  Read ADC data continuously 
parameter:  
Info: 
*****************************************************************************
*/ 
static UDOUBLE ADS1256_Read_ADC_Data_Cont(void) 
{ 
    int i;                                //Initialize Counter 
    UDOUBLE read = 0;                     //Initialize Read 
    UBYTE buf[3] = {0,0,0};               //Initailize Buffer 
    float timestamp;                      //Initialize Timestamp Variable 
    ADS1256_WaitDRDY();                   //Wait for DataReady Pin to go low 
    DEV_Delay_ms(1);                      //Delay 
    DEV_Digital_Write(DEV_CS_PIN, 0);     //Set Pin Low 
    DEV_SPI_WriteByte(CMD_RDATAC);        //Issue Continuous Data Read 
Command 
    DEV_Delay_ms(1);                      //Delay 
    for (i=1; i<=10000; i++)      //For loop where i value is samples taken 
    { 
    read = 0; 
    UBYTE buf[3] = {0,0,0};   
    DEV_Delay_micro(167);                 //Delay 167 microseconds 
    ADS1256_WaitDRDY();                   //Wait for Dataready 
    buf[0] = DEV_SPI_ReadByte_Cont(); //Read first eight digits of conversion 
    buf[1] = DEV_SPI_ReadByte_Cont(); //Read second eight digits of  

  conversion 
    buf[2] = DEV_SPI_ReadByte_Cont(); //Read third eight digits of conversion 
    timestamp = clock();                 //Note clock time 
    read = ((UDOUBLE)buf[0] << 16) & 0x00FF0000; //Shift first eight digits 
    read |= ((UDOUBLE)buf[1] << 8);  ///* Pay attention to It is wrong   read  

 //|= (buf[1] << 8) *///shift second      
//eight digits 

    read |= buf[2];                  //Set third eight digits 
    printf("%f %f\r\n", read*5.0/0x7fffff, timestamp/CLOCKS_PER_SEC);   

//Record reading and timestamp 
 
    }    
    DEV_Digital_Write(DEV_CS_PIN, 1);     //Set CS Pin low 
} 
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APPENDIX C: MATLAB INTERPRETATION CODE 

function g_code_writer(data) 
%The main function for writing out g-code consists of two main loops with 
%several sub functions.  Each loop starts at the beginning of the 
%voltage data and reads line by line. At each voltage the state of the 
%motor is checked.  This motor state corresponds to a voltage state defined 
%by values 1-5 corresponding to the five states of the motor (HH, LH, LL, 
%HL, off). The first loop uses the voltage states to determine direction. 
%The second loop uses the voltage states to count the steps the motor has 
%taken.  At the end of each section of data corresponding to a single line 
%of g-code, the line of g-code is printed.  

  
global v v_data v_diff i i_old v_ave 
global direction direction_known direction_trigger 
global steps state state_known step_state step_state_known state_old state_old_dir 
global v_low v_high v_mid_low v_mid_high 
global y_loc steps_line mmperstep 
%initiate variables% 
direction = 0;                    %initial direction set to 0 trigger direction finder 
direction_trigger = 0;            %direction trigger starts direction finder 
v_low = 1.15;                     %Low Voltage threshold for state identification 
v_high = 2.9;                     %High voltage threshold for state identification 
v_mid_low = 1.85;                 %Mid-low voltage for state identification 
v_mid_high = 2.3;                 %Mid-high voltage for state identification 
state_known = 0;                  %variable for if the state of the motor is identified 
steps = 0;                        %initiate steps at zero 
steps_line = 0;                   %initiate steps per line of g-code at zero 
y_loc = 0;                        %initiate y location at zero 
step_state_known = 0;             %variable for if the state of the motor for step counting is known 
state = 0;                        %initiate state of the motor at zero 
direction_known = 0;              %variable for if motor direction is known 
mmperstep = 0.004; 
%import the text data and identify length% 
v_data = importdata(data,' ');          %import voltage data from a text file 
samples = length(v_data);               %find the number of data samples taken 
%loop to determine direction% 
%The direction determination loop runs through each voltage in the data and 
%checks the state of the voltage (1-5) corresponding to the five states of 
%the motor (HH, LH, LL, HL, off).  It does not check the state in a 
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%transition between voltages.  This is determined by checking the standard 
%deviation for twenty points surroudning the current voltage.  Once the 
%state has been identified, the direction identifier can be run.  The 
%direction identifier needs two consecutive states to determine direction. 
%The state_old_dir is the variable for storing the previous state. 
for i = 11:samples-10                   %starts at 11 to allow for stddev calculation 
v = v_data(i,1);                        %identify voltage at desired instance 
v_diff = std(v_data(i-10:i+10,1));      %calculate stddev for 20 samples surrounding  
v_ave = mean(v_data(i-10:i+10,1));      %calculate average for 20 samples surrounding  
if (v_mid_low < v) && (v < v_mid_high)  %if the voltage is in the "stopped" threshold the code returns to 

the top of the for loop 
    continue 
end 
if (v_diff < 0.1)                       %if the stddev is below the threshold, it performs functions  
    state_old_dir = state;              %the state identifier for the direction detection is updated 
    state_identifier()                  %the state identifier function is run 
else                                    %if the stddev is too high, the code does not check the state 
    continue 
end 
if (direction == 0) && (state_old_dir <= 4) && (state_old_dir >= 1)         %If the direction is unknown  

and the state has been  

identified 
    direction_identifier()        %the direction identifer is run 
elseif (direction_known == 0)     %if the direction is unknown and the state has not been identified, the  

code returns to the top of the for loop 
    continue 
else                                                                         
    break                                       %The for loop ends when the direction has been identified 
end 
end                                                                        
state = 0;           %The state is reset at zero for the counting loop 
%step counting loop%    
%The step counting loop operates similarly to the direction determination 
%loop.  Two state variables are used.  State the state as defined before.   
%Step_state is a variable for motor state used for counting steps. 
%The state is used to set the initial value of step_state, so initially  
%they match, but as the motor speeds up, the state calculator 
%would not be able to count the states properly, so they may differ at full 
%speed.  After each step is counted t 
for i = 11:samples-10                   %starts at 11 to allow for stddev calculation 
v = v_data(i,1);                        %identify voltage at desired instance 
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v_diff = std(v_data(i-10:i+10,1));      %calculate stddev for 20 samples surrounding  
v_ave = mean(v_data(i-10:i+10,1));      %calculate average for 20 samples surrounding  
if (v_diff < 0.1)                       %if the stddev is below the threshold, the state is   
                                        %not transitioning and can be read reliably     
    if (i-i_old) > 30                   %if the state has not been read in 30 data points 
        state = 0;                      %the motor has entered a rapid step pattern and the old     
    end                                 %state information is lo longer accurate 

     
    state_old = state;                  %The previous state is recorded 
    state_identifier()                  %state identifier function is run 
    i_old = i; 
end 

  
if (step_state_known == 0) && (state ~=10)       %if the step state is known and the state is not state 10 
    step_state = state;                                    %step state is set to the known state 
    step_state_known = 1;                                  %step state is known 
end 

  
if (direction == 1) && (step_state_known == 1)       %if the direction detected is forward the forward step  

counter is run 
    step_counter_forward() 
end 
if (direction == 2) && (step_state_known == 1)        %if the direction detected is reverse the  

reverse step counter is run 
    step_counter_reverse() 
%    step_counter_reverse_skip() 
end 
check_state()                                           %the state checker function is run% 
end 
end 

  
%The state identifier function checks the average voltage of 20 points 
%surrounding the current data point.  The average voltage will fall within 
%one of the five states.  The five states cover the entire range of the 
%voltage output.  Once the state has been identified, the code records the 
%state as having been identified 
function state_identifier() 
global v_mid_high v_high v_mid_low v_low state state_known v_ave 
if (v_mid_high < v_ave) && (v_ave < v_high)       %voltage range for upper middle threshold 
    state = 1;                                    %state set to 1                   
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    state_known = 1;                              %the state is known so state_known is set to 1 
end 
if (v_ave < v_low)                                %voltage range for lower threshold 
    state = 2; 
    state_known = 1; 
end 
if (v_low < v_ave) && (v_ave < v_mid_low)         %voltage range for lower middle threshold 
    state = 3; 
    state_known = 1; 
end 
if (v_high < v_ave)                               %voltage range for lower threshold 
    state = 4; 
    state_known = 1; 
end 
if (v_mid_low < v_ave) && (v_ave < v_mid_high)    %voltage range for middle threshold of no motion 
    state = 10;                                   %state value of 10 is used to aid direction determination 
end 
end 

  
%The direction identifier function checks the difference between the old 
%state and the new state to determine the sequence of states.  Once the 
%sequence of two consecutive states is known, direction can be determined. 
%If the motor is moving forward, the states will progress 1-2-3-4 so the 
%difference between the old and new will either be 1 or -3 (1-4).  The 
%opposite occurs for reverse motor motion.  Once the direction has been 
%identified, the function signals that the direction is known and the 
%direction identifier is no longer necessary. 
function direction_identifier() 
global  state direction direction_known state_old_dir 

  
if ((state - state_old_dir) == 1) || ((state - state_old_dir) == -3)  
    direction = 1; %forward 
    direction_known = 1; 
end 
if ((state - state_old_dir) == -1) || ((state - state_old_dir) == 3) 
    direction = 2; %reverse 
    direction_known = 1; 
end 
end 
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%The forward step counter function follows a simple progression. 
%Step_state is a variable used similar to the state for counting steps, 
%except it is defined by fewer parameters and changes each time a new step 
%is recorded.  When the state is identified the step state is set to match 
%the state.  As soon as the voltage passes the threshold to move to the 
%next state a step is counted and the step state is redefined.  Steps are 
%the total number of steps in the entire sequence of g-code commands. 
%Steps_line is the number of steps in one g-code command.  These steps are 
%necessary in determining the distance traveled for each step.  Voltage 
%thresholds are set so that the maximum and minimum voltage recorded at 
%high speed will always cross the threshold and trigger the new state.  The 
%step state sequence follows 1-2-3-4-1... 
function step_counter_forward() 
global v steps step_state steps_line 
v_step_low = 1.3;                           %Lower voltage threshold 
v_step_high = 2.7;                          %Upper voltage threshold 
if (step_state == 4) && (v < v_step_high)   %If the voltage drops below the upper threshold, state 4 has 

been left 
    steps = steps + 1;                      %steps are incremented 
    steps_line = steps_line + 1;            %steps_line are incremented 
    step_state = 1;                         %The step state is changed 
end 
if (step_state == 1) && (v < v_step_low) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 2; 
end 
if (step_state == 2) && (v > v_step_low) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 3; 
end 
if (step_state == 3) && (v > v_step_high) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 4; 
end 
end 

  
%The step counter reverse function works identically to the forward 
%version, but the sequence of step states is reversed. 
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function step_counter_reverse() 
global v steps step_state steps_line  
v_step_low = 1.3; 
v_step_high = 2.7; 
if (step_state == 4) && (v < v_step_high) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 3; 
end 
if (step_state == 3) && (v < v_step_low) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 2; 
end 
if (step_state == 2) && (v > v_step_low) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 1; 
end 
if (step_state == 1) && (v > v_step_high) 
    steps = steps + 1; 
    steps_line = steps_line + 1; 
    step_state = 4; 
end 
end 

  
%The check state function is called after each data point is read and 
%serves to identify transitions between lines of code and the end of the 
%code.  If the direction is known the sequence of steps is known.  If the 
%sequence recorded does not match the sequence expected, the end of a line 
%of code has been reached and the motor has reversed direction or completed 
%the sequence of instructions.  If this case is reached, the steps are 
%tranlated into a distance traveled and the line of g-code which commanded 
%those steps is printed out.  The steps_line is reset for the next line and 
%the program continues to the next command or the end of the dataset. 
function check_state() 
global state state_old direction y_loc steps_line step_state_known mmperstep 
if (direction == 1) && (((state - state_old) == -1) || ((state - state_old) == 3)) && (state_old ~=0) %The 

state is checked to verify the end of a line 
    if (state_old == 2) || (state_old == 4)  %If the old state was one of the peaks or troughs of the 

voltage level and extra step is incorrectly counted 
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        steps_line = steps_line - 1;         %The extra step is removed 
    end 
    y_dist = steps_line*mmperstep;               %The distance traveled is calculated based on the number  

of steps and the distance per step.   
    y_loc = y_loc + y_dist;                  %The new location is determined by adding the new distance to  

the old location. 
    fprintf('G1 Y%f\n',y_loc)                %The G code instruction is printed 
    %fprintf('Steps in Line %i\n',steps_line) 
    step_state_known = 0;                    %The step state is reset so it can be properly determined by  

the state determination 
    steps_line = 1;                          %The steps per line is set to 1, because for the transition to  

occur, the first step in the new sequence must occur 
    direction = 2;                           %The direction is changed, but the direction identifier is not  

needed  
end 
%The following if statement is the same as above, except the new y location 
%is determined by subtracting the y distance because the travel is in the 
%negative direction.  The direction is changed to forward as well. 
if (direction == 2) && (((state - state_old) == 1) || ((state - state_old) == -3)) && (state_old ~=0) 
    if (state_old == 2) || (state_old == 4) 
        steps_line = steps_line - 1; 
    end 
    y_dist = steps_line*mmperstep; 
    y_loc = y_loc - y_dist; 
    fprintf('G1 Y%f\n',y_loc) 
    %fprintf('Steps in Line %i\n',steps_line) 
    step_state_known = 0; 
    steps_line = 1; 
    direction = 1; %forward 
end 
%The followin if statement occurs at the end of the step sequence, when the 
%voltage state returns to no motion (state 10).  The same sequence of 
%calculations and lines printed is followed as before.  
if (state == 10) && (state_old <= 4) && (state_old >= 1) 
    if (state_old == 2) || (state_old == 4) 
        steps_line = steps_line - 1; 
    end 
    y_dist = steps_line*mmperstep; 
    if (direction == 1) 
        y_loc = y_loc + y_dist; 
    end 
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    if (direction == 2) 
        y_loc = y_loc - y_dist; 
    end 
    y_loc = round(y_loc,3); 
    %fprintf('steps %d\n',steps) 
    fprintf('G1 Y%f\n',y_loc) 
    %fprintf('Steps in Line %i\n',steps_line) 
    steps_line = 0; 
    step_state_known = 0; 
    direction = 0; 

    
end 

  
end 

     

  

 


