
The Design of the Node for the
Single Chip Message Passing (SCMP) Parallel Computer

by

Mark Bucciero

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University

in a partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Engineering

James M. Baker, Chairman
Jim Armstrong
Thomas Martin

March 23, 2004

Blacksburg, Virginia

Keywords: Processor, parallel, node, system on chip, single chip computer, SCMP

Copyright 2004, Mark Bucciero

The Design of the Node for
the Single Chip Message Passing (SCMP) Parallel Computer

Mark Bucciero

James M. Baker, PhD, committee chair

Bradley Department of Electrical and Computer Engineering

Abstract

Current processor designs use additional transistors to add functionality that improves
performance. These features tend to exploit instruction level parallelism. However, a
point of diminishing returns has been reached in this effort. Instead, these additional
transistors could be used to take advantage of thread level parallelism (TLP). This type
of parallelism focuses on hundreds of instructions, rather than single instructions,
executing in parallel. Additionally, as transistor sizes shrink, the wires on a chip become
thinner. Fabricating a thinner wire means increasing the resistance and thus, the latency
of that wire. In fact, in the near future, a signal may not reach a portion of the chip in a
single clock cycle. So, in future designs, it will be important to limit the length of the
wires on a chip.

The SCMP parallel computer is a new architecture that is made up of small processing
elements, called nodes, which are connected in a 2-D mesh with nearest neighbor
connections. Nodes communicate with one another, via message passing, through a
network, which uses dimension order worm-hole routing. To support TLP, each node is
capable of supporting multiple threads, which execute in a non-preemptive round robin
manner. The wire lengths of this system are limited since a node is only connected to its
nearest neighbors.

This paper focuses on the System C hardware design of the node that gets replicated
across the chip. The result is a node implementation that can be used to create a
hardware model of the SCMP parallel computer.

Acknowledgements
An extra special thanks goes to Dr. James M. Baker and his family. Dr. Baker, you
always gave me the freedom to work on what I wanted, when I wanted. This approach
taught me to become self motivated in my work. It may have taken me a little longer to
realize what was happening, but I do appreciate your style and patience. You always
listened to my research opinions, good or bad. We talked about them, and you always
made sure I understood what I had not considered. Thanks for always inviting me and
whomever I wanted to bring to tailgate with you before football games. The food and
company was always outstanding.

To all those who have worked on or are currently are working on the SCMP project,
thank you for keeping me in the loop and making sure I was thinking about all aspects of
the problem, rather than just my own.

Thanks to Brian Gold for not being shy about telling me what I did wrong. I am a much
humbler person having worked with you. I always enjoyed our days working and our
nights out.

To Alicia Petta for always being supportive of my work/life and empathetic about my
complaining even when I did not work enough to complain about it. You always make
me think about things other than work, and make sure I keep the big picture in mind.

I would like to thank Alison Lazarevich for her listening ear and constant encouragement.
You inspire me to be more than I think I can be.

Special thanks go to Michael Carr for keeping me sane and always making the time for
video games. I feel better knowing there is someone out there with similar problems to
mine.

Thanks to Marie Dotson for her constant friendship and loving me just the way I am. My
college years would not have been nearly as good without you.

To my mother, for making me feel special no matter what she had going on in her life.
To my father, for his constant wisdom and for reading the technical babble that follows.
Thanks to Paul and Sarah for always making sure I sharpen the saw by attending their
holiday parties.

 iii

Table of Contents
Acknowledgements.. iii

Table of Contents .. iv

Table of Figures ..v

Table of Tables .. vi

Chapter 1 Introduction .. 1
1.1 Motivation .. 1
1.2 Overview of SCMP .. 2
1.3 Significance of Thesis .. 3
1.4 Thesis Organization... 4

Chapter 2 The SCMP Node ... 5
2.1 Description ... 5
2.2 Hardware Partitioning .. 9
2.3 Instruction Set.. 10

Chapter 3 Hardware Implementation ... 14
3.1 Memory... 14
3.2 Memory Controller.. 16
3.3 Instruction Cache... 19
3.4 ALU... 20
3.5 NIU.. 21

Chapter 4 Contexts and Context Management... 25
4.1 Shared Hardware... 25
4.2 Context Management Table and Control .. 26

4.2.1 Find a Context to Execute.. 33
4.2.2 Find a Free Context.. 34

4.3 Context Register File and Control.. 35
Chapter 5 Additions to the Basic SCMP Node.. 39

5.1 Floating Point Support .. 39
5.2 Exception Handling ... 42

Chapter 6 Software Support and Simulation.. 47
6.1 Hardware Simulation of the Block of the SCMP Node .. 47
6.2 Results... 49

Chapter 7 Summary and Future Work ... 52
7.1 Summary .. 52
7.2 Future Work .. 53

References .. 56

Appendix A The SCMP Instruction Set Architecture... 58

Vita.. 60

 iv

Table of Figures
Figure 1.1: The SCMP parallel computer connects nodes in a 2-D mesh with nearest

neighbor connections. ... 3
Figure 2.1: The bold wires show the additional wires needed and the longest wire length

added in a shared memory system. ... 5
Figure 2.2: Images (a), (b), and (c) show the different parts of a message in the SCMP

network. .. 6
Figure 2.3: The CMT contains the information needed to determine if a context is ready

to execute and where that execution should begin.. 7
Figure 2.4: A block diagram of the SCMP node. ... 10
Figure 2.5: The left figure shows how the nodes are numbered on the SCMP parallel

computer. The right figure depicts how a message would be routed from node 3 to
node 2.. 12

Figure 3.1: A block diagram of the memory on the SCMP processor.............................. 15
Figure 3.2: A block diagram of the memory controller. ... 16
Figure 3.3: When a read request is made, the acknowledge signal is received on the next

clock edge. If the acknowledge signal is positive, the actual data is valid two cycles
after the request was made.. 18

Figure 3.4: A block diagram of the instruction cache for the SCMP parallel computer. . 19
Figure 3.5: A block diagram of the ALU.. 21
Figure 3.6: A block diagram of the Network Interface Unit (NIU).................................. 22
Figure 4.1: A block diagram of the context management scheme.................................... 25
Figure 4.2: A visual representation of a CMT entry... 27
Figure 4.3: The timing of a context switch. .. 27
Figure 4.4: A block diagram of the CMT & control part of the context management

scheme... 28
Figure 4.5: Shows how to find the location of a node on the SCMP parallel computer... 31
Figure 4.6: The registers of a node are organized in a matrix to allow single cycle

accesses. .. 35
Figure 4.7: A block diagram of the Contexts and Control section of the context

management scheme. .. 36
Figure 5.1: A bit was added to the flits to indicate whether or not floating point data was

being used. .. 40
Figure 5.2: The bit assignment in the EMASK register.. 44
Figure 5.3: The timing of an exception between the ALU and the pipeline..................... 46
Figure 6.1: A general case of how individual blocks were tested. 47
Figure 6.2: A timing diagram from the ALU test bench... 48
Figure 6.3: A timing diagram of the test for the memory controller. 49

 v

Table of Tables
Table 2.1: The hardware division of an SCMP node.. 9
Table 3.1: The input and output ports and descriptions of the memory block’s signals. . 15
Table 3.2: The signal names with corresponding descriptions of the memory controller

block. The other signals are those of a memory interface (See Chapter 3.1) with the
appropriate naming convention... 17

Table 3.3: The signal names and descriptions for the instruction cache block................. 19
Table 3.4: Input and output signals for the ALU. ... 21
Table 3.5: The signal names and descriptions for the NIU of the SCMP node................ 22
Table 4.1: Describes the interface between the CMT and the memory controller. 29
Table 4.2: Signals that control pipeline accesses to the CMT. ... 30
Table 4.3: A description of the interface between the NIU and the CMT and its control.32
Table 4.4: Description of the interface between the pipeline and the contexts. 37
Table 4.5: Description of the interface between the NIU and the contexts. 38
Table 5.1: Exceptions handled in the SCMP node. .. 42
Table 6.1: The program used to test the SCMP node with a portion of its results. (This

program was created and tested by Priyadarshini Ramachandran.) 51

 vi

Chapter 1 Introduction
Will processor speeds continue to increase with Moore’s Law? Will a paradigm shift in
processor design be necessary to make full use of shrinking technologies and increasing
clock speeds? This thesis presents a portion of a new processor architecture that will
hopefully allow processor speeds to continue to increase with Moore’s Law.

This thesis begins by discussing the limitations of current processor technology and
introduces a new architecture that can work within these limitations, while extending the
bounds of processor speeds that can be achieved. The significance of this research and a
brief outline of the remainder of this document are also given.

1.1 Motivation
Today’s processor designs use reduced transistor sizes to improve processor performance
in two ways. First, as the transistor has gotten smaller, its switching speed has increased.
Faster switching speeds allow for the same processor design to execute the same program
in less time. Second, when a smaller transistor technology is introduced, more transistors
can be placed on a die of the same size. In fact, the International Technology Roadmap
for Semiconductors (ITRS) estimates that a chip will contain one billion transistors by the
year 2007 [1]. These additional transistors are used to add functionality to a design to
make a program execute in fewer clock cycles. However, these design techniques cannot
continue to improve processor performance at the rate of Moore’s law.

With these smaller transistors, the cross sectional area of the wires on a silicon die will be
reduced. This thinner wire leads to increased resistance per unit area. One study projects
that when transistor technology reaches 70 nm, less than 20% of a chip could be reached
in a single clock cycle [2]. Eventually, processor speeds will be determined by the
lengths of the wires on the chip and not by the switching speed of a transistor [3].

One effect of making smaller transistors is that a larger number of them can be placed on
the same die. Current processor architectures use these extra transistors to add new
features to a design. However, the extra logic needed to support the new features tends to
use the additional transistors, so the wire lengths still span the entire chip. Thus, a more
complex processor design will have wire latency issues in the near future [3][4][5].

The additional transistors on a chip tend to be used to exploit instruction level parallelism
(ILP). It makes sense because if more instructions can be executed at once, then the
program will execute faster. The additional hardware necessary to increase performance
by exploiting ILP creates additional design and test time. The design of a new algorithm
to make use of ILP must first be tested on a number of applications to determine its worth.
Then, a hardware implementation of that algorithm needs to be developed and tested.
Finally, when the new design is fabricated, it must also be tested. The process of creating
and testing a new design has shown little improvement in ILP performance for a general
application. Thus, the concern is that exploiting ILP has reached a point of diminishing
returns [5].

 1

This concern has lead to an increased interest in thread level parallelism (TLP). TLP
takes small groups of instructions and executes them in parallel. Therefore, its concept is
coarser than ILP, which exploits the finest grain of parallelism, a single instruction.
Diefendorff believes that coarser grained parallelism will become the dominant force in
microprocessor design [6].

Processor designs of the future will also need to consider the ‘Memory Wall’ effect [7].
The basic idea is that memory speeds will not continue to increase with processor speeds.
Thus, the processor will have to delay for long periods of time during an off chip memory
access. One way to counter this effect would be to put all the memory needed by the
processor on the chip itself. This configuration would allow the memory speed to be the
same as level 1 cache, which is orders of magnitude faster than an off chip memory
access.

1.2 Overview of SCMP
One possible architecture alternative is the single chip message passing (SCMP) parallel
computer. The SCMP architecture supports thread level parallelism and attempts to
minimize the length of the wires on the chip [8]. This architecture uses the transistors on
the chip to create a number of simple processing elements, called nodes. The individual
nodes are small and global signals are avoided to limit the lengths of the wires on the
chip. Thus, the clock speed of the SCMP processor can be determined by transistor
switching speed rather than the wire latency.

The nodes on the chip exploit TLP and, to keep them simple, provide no support for ILP.
Each node can maintain multiple threads, with each thread being on the order of tens to
hundreds of instructions. The threads on a node execute in round robin non-preemptive
fashion. These threads are used to keep a node busy so context switches occur while one
thread is waiting for data. Some multimedia applications, such as videoconferencing,
contain enough TLP to use up to 64 nodes for processing [6]. Current parallel
architectures cannot efficiently support thread level granularity because of the cost of
communication. Also, the uniprocessors used in other parallel architectures were
designed to make use of ILP instead of TLP.

Nodes on the chip each have their own local memory to counter the ‘Memory Wall’
effect [7]. Memory is distributed on the chip to keep the wire lengths as short as possible.
When a program is loaded, the same image of that program is copied into the memory on
each node. This fact simplified programming for SCMP since one node could write data
values to known locations on another node.

The SCMP parallel computer is a message passing system similar to that of the Pica and
the J-Machine [9][10]. The nodes on the chip are connected in a 2-D mesh, so each node
is connected to its four nearest neighbors. Messages are sent between nodes using
dimension order worm-hole routing. Since each node is only connected to its nearest
neighbors, the wire lengths on the chip remain short. Thus, communication between
nodes can happen in less than one clock cycle. In addition, there is only one physical
channel between nodes. Therefore, messages that attempt to use the same physical

 2

channel can be multiplexed over the single link using virtual channels [11]. For more
information on the network, see “Balancing Performance, Area, and Power in an On-
Chip Network” by Brian Gold [12].

Figure 1.1: The SCMP parallel computer connects nodes in a 2-D mesh with nearest neighbor connections.

1.3 Significance of Thesis
The major parts of the SCMP parallel computer are the node that is replicated across the
chip and the network that connects the nodes. The crux of this thesis effort was the
design and implementation of a single node for the SCMP architecture. Some aspects of
the SCMP node were determined before this thesis effort began. These features will be
explained later in this document and include: the instruction set, the message format, and
the Context Management Table (CMT) format. The goal of this research was to design
the node around these requirements and still have the node function properly.

Without nodes, the SCMP chip becomes a network back plane with no computational
abilities. The design includes everything from formatting messages for the network, to
thread management, to memory access and control. The goal was to create a fully
functional 32 bit RISC processor that would fully support all of the needs of the SCMP
instruction set.

Currently, the SCMP software simulator assumes a certain number of clock cycles per
instruction. Once this work is completed, the simulator can be modified to mimic the
actual hardware design. Thus, a clock cycle accurate software simulator would be
created. This new simulator could then be used to test a set of benchmarks on the SCMP

 3

parallel processor. These benchmarks were chosen so that the performance of the SCMP
processor could be compared to others like it.

1.4 Thesis Organization
The requirements for the SCMP node must be defined before its design and
implementation can be discussed. Chapter 2 of this thesis gives a detailed description of
all of the parts of a node. Chapter 3 presents the implementation of the majority of the
SCMP node. Chapter 4 discusses the implementation of the context and context
management portion of the node. A full chapter was dedicated to this topic because of its
complexity.

After the node was initially designed, some changes in the requirements for the node
were identified. The design was changed to include floating point support and exception
handling. These changes and their implementation are discussed in Chapter 5.

Once the hardware was designed and implemented, it was necessary to test its
functionality. Chapter 6 describes the software used and the hardware simulation support
created for a SCMP node. This software includes a test bench that creates a node and a
module to load a program into memory and start the simulation. After it completed, the
simulation results were verified. Finally, a summation and some possibilities for future
work are given in Chapter 7.

 4

Chapter 2 The SCMP Node
The node that is replicated across the SCMP parallel computer needs to be simple enough
so up to 64 nodes can be included on a single chip. Also, the wire lengths need to be
short enough so that a node can perform all of its operations in one clock cycle. However,
it is complex enough to support thread level parallelism, message passing, and memory
management [8]. Since each node also has its own local memory, support is necessary to
share data between nodes. To support these extra features, the SCMP node has a unique
instruction set (see Chapter 2.3). This chapter describes what is required of an SCMP
node and how it was subdivided for hardware development.

2.1 Description
Each node of the SCMP parallel computer acts as a generic processor, so it must be
designed to handle any general task. To satisfy this requirement, the node supports all
types of operations. These operations include but are not limited to: arithmetic, logic,
memory, thread access, thread management, and networking. In addition, a central
control unit, in this case a pipeline, is needed to manage all of these operations.

This processor architecture is proposed as a design alternative to combat the problems of
wire latencies and unmanageable complexity. In order to minimize the wire latency,
global signals are not allowed in the SCMP design. Therefore, the on chip memory must
be distributed to each node rather than being shared between nodes, which would require
wires to be as long as the chip. Figure 2.1 depicts the shared memory design approach.
For example, the IBM Power4 takes this approach to placing two 64 bit nodes on a single
chip [13]. Similarly, the MAJC [14], Hydra [15], Blue Gene [16], and CMP [17]
architectures also use this configuration.

Figure 2.1: The bold wires show the additional wires needed and the longest wire length added in a shared

memory system.

 5

The SCMP parallel computer is a MIMD system because each node can operate
independently on its own data stream. Therefore, it is important to have an easy way to
share data among the processors on the chip. The SCMP network uses an active message
passing scheme. When a message reaches its destination node, it enters through the
network interface unit (NIU). The NIU, then, determines the type of message from the
information contained in the message header. The incoming message is either a thread
message, which creates a new thread to execute, or a data message, which writes directly
to memory.

Messages in the SCMP network are sent in small pieces, called flits (flow control digits).
A message consists of a header flit, an address flit, numerous data flits, and a tail flit.
The header flit, shown in Figure 2.2, contains which type of message (thread or data) is
being sent; the destination node (given in x and y coordinates); and the bit that signals it
is a header flit set to one. In the case of a thread message, the address flit contains the
instruction pointer at which a thread is to begin execution. On the other hand, the address
flit of a data message contains the memory address at which data will be written. The
data for the data flits is generated directly from the registers or from the memory. This
method limits the amount of data that is copied when creating a message, which should
improve message throughput. There can be any number of data flits following the
address flit. The tail flit is the last data flit of a message and is signified by the tail bit
being set to one.

Figure 2.2: Images (a), (b), and (c) show the different parts of a message in the SCMP network.

 6

The routing of messages between nodes is done through an on chip router that uses
dimension order worm-hole routing. This type of routing means that the header flit
makes a path through the network for the rest of the message to follow. In addition,
messages are always routed first in the x direction, then in the y direction. Routing
messages in this pattern ensures that dead lock will not occur in the network.

When a thread message arrives at the NIU of a node, a space to store the thread, called a
context, is requested. Since the SCMP node is designed to handle multiple threads, there
are multiple contexts (currently 16). Each context contains 32 32-bit general purpose
registers that are used to store data. The context management table (CMT) keeps track of
those contexts that are in use and those that are free. Each CMT entry has four main
fields: the Alloc bit – set to one if a context is in use; the Thread bit – set to one if this
context was to be scheduled for execution; the Data Context Register (DCR) – an
identifier that points to the context that can be used as additional data storage; and the
instruction pointer – the memory address for the thread to begin its execution. It is
important to note that the IP value in a CMT field is only valid when a thread begins
execution or restarts after a suspension. There is an IP register within the node pipeline
that keeps track of the actual instruction that is executing. depicts a CMT
entry with the named fields.

Figure 2.3

Figure 2.3: The CMT contains the information needed to determine if a context is ready to execute and
where that execution should begin.

Once a CMT entry is assigned to the incoming message, the address flit value is written
to the IP value of the CMT entry. The data flits following the address flit are written
directly in to the register block for that context. Therefore, only 32 data values can be
sent in a thread message. If more flits are sent, the data values did not have a place to be
stored. As a result, if a thread message contains more than 32 data flits, the additional
flits are ignored.

A context is scheduled for execution when both its Alloc and Thread bits are set in the
CMT entry for that context. Threads are scheduled in round robin non-preemptive

 7

fashion. This type of scheduling ensures that no thread will be starved as long as one of
them does not enter an infinite loop. The Active Thread Register (ATR) acts as a pointer
in to the CMT for the currently executing context. When a thread ends or suspends, a
search occurs for the next thread that is ready to execute. If the thread suspends, the ATR
is used to identify which CMT entry should be modified to save the suspended thread
information. The IP field of the CMT entry is updated with the address of the instruction
that will begin its execution the next time the thread is scheduled.

All of the context switches occur in hardware. This design allows for minimal delay
from the end/suspend operation on one context to the start of the next.

Once a thread begins execution, it runs until it either completes or suspends. A thread
can be suspended specifically with a suspend instruction or due to failure of an
instruction in the pipeline. For example, the send instructions are used to inject messages
into the network. If the network buffers are full, then the send instruction fails, and the
thread suspends.

When a data message arrives at a node, the address flit contains the first address in
memory to which data is written. The appropriate values are extracted from the data flits
and written sequentially into memory. This message type is used frequently when large
blocks of data need to be transferred from one node to another. Unlike the thread
message, the data message type does not have a limitation on the number of data flits that
can be sent.

In addition, no memory space on the SCMP node is protected. A careless programmer
could easily write into the code space of a program. In this situation, the outcome of the
program would be unknown. Therefore, it is very important that space be allocated for
the incoming message before it arrives. Since all addresses used are physical addresses,
space cannot be dynamically allocated for an incoming message.

Now that the SCMP parallel computer has been described, let us consider other similar
projects currently being researched. As previously noted, the SCMP node does not
support instruction level parallelism within a thread. The SCMP node is different from
the RAW architecture [18], which does support ILP in addition to coarser levels of
parallelism. The RAW processor also uses a message passing model between nodes and
distributes memory among the nodes. However, only a small amount of memory is
included on the chip, so many memory accesses will need to access off chip memory.
Therefore, the RAW architecture may still suffer the Memory Wall effect. Also, unlike
SCMP, the compiler for the RAW machine is allowed to access some of the hardware
features on the chip. This permission allows the compiler to statically schedule certain
events. For example, the compiler can insert an instruction to set a switch to allow a
certain message to pass through that router.

The focus of the IRAM project [19] is to integrate DRAM on the chip with a single
processing element. It is different from SCMP since SCMP uses many processing

 8

elements. However, the IRAM venture is nearly identical to a single SCMP node. The
difference is in the network capabilities provided to the SCMP node.

An SMT system [20] uses a different paradigm than the systems described above, but it
does exploit thread level parallelism. The chip of an SMT processor contains many
functional units. Each thread in the system is given the capability to use as many of these
units as possible. In other words, in a given clock cycle, instructions from different
threads are executing at the same time in different functional units. This design, however,
does not account for either the Memory Wall effect or the wire latency phenomenon
expected in smaller transistor technologies.

2.2 Hardware Partitioning
This design of an SCMP node lends itself to a hardware partitioning. The partitioning of
such a large design effort made it more manageable, since the different parts could be
developed, modified, and tested individually. The division was done with the objective
of decreasing design time, while increasing design accuracy. A single node of the SCMP
parallel computer was divided into the following blocks: ALU, contexts and context
management, instruction cache, memory management, network interface unit (NIU), and
pipeline. Table 2.1 lists these blocks with a short description of the responsibilities for
each unit.

Table 2.1: The hardware division of an SCMP node.

Block Name Description
Arithmetic Logic Unit (ALU) Responsible for calculations, comparisons, and shifting
Contexts and Context Management Manages the registers and threads running on a given

processor
Instruction Cache Stores instruction words for faster execution times
Memory Management Controls accesses to the node’s local memory
Network Interface Unit (NIU) Injects and ejects messages to and from the network
Pipeline Acts as the node controller

One major concern about partitioning the hardware design was creating and maintaining
the interfaces between the blocks. This concern arose because if one block had its
interface changed, the affected block must also change its interface. Therefore, it was of
paramount importance to create interfaces that covered the scope of the required
operations but allowed the flexibility to add or change the functionality. Creating the
interfaces in this way eliminated the above concern because the interfaces were not
required to change or accommodate change in the functionality of a block in a node.
Figure 2.4 depicts an SCMP node with its interconnections. The connections show which
blocks interact with which other blocks but not the actual interface that was developed.

 9

Figure 2.4: A block diagram of the SCMP node.

The pipeline is modeled after the MIPS 32 processor core and consists of five stages:
fetch, decode, execute, memory access, and write back. Documentation for this
processor family can be found at MIPS Technologies, Inc. [23]. The MIPS pipeline
functionality was modified to accept the SCMP instruction set and to control the various
blocks of the node.

The interfaces and operations that each block performs are considered the hardware
implementation of the node. These descriptions are given in Chapter 3, for the ALU,
instruction cache, memory management, NIU, and pipeline. In Chapter 4, the details of
the contexts and context management are given. The contexts and CMT are described in
a separate chapter because of their complexity. The testing and verification of each block
and the complete node are presented in Chapter 6. Please refer to the appropriate chapter
for further information

2.3 Instruction Set
With the extra hardware support required for the SCMP node, special instructions were
needed in the instruction set to make use of these features. The special instructions are
discussed here. The full list of instructions is given in Appendix A.

In addition to the NIU, the node pipeline can also manipulate the CMT. The pipeline can
perform a memory write to the CMT or use the alloc instruction. A memory write could
succeed in allocating a context, but there is a potential conflict if the NIU requests a new
context in the same clock cycle. In this case, both the pipeline and the NIU viewed the
context as free, and thus both allocate it. Therefore, an instruction, alloc, was required to
atomically allocate a context to the pipeline. Using the alloc instruction, if both the
pipeline and the NIU request a context in the same cycle, the pipeline would be given
priority and succeed, while the NIU request would fail. The alloc instruction is used to
set the Alloc bit of a free context to one. The return value of this instruction is a pointer
to the CMT entry that has been allocated. This command effectively removes a context

 10

from the list of available contexts for use by the NIU or the pipeline. After the alloc
instruction succeeds, the user can write to the Thread bit, the DCR, and the IP fields in
the CMT entry. The free instruction is used to clear the Alloc bit of the designated CMT
entry. However, a thread cannot use the free instruction on its own CMT entry.

If a thread contains an intensive amount of processing, it is able to give up control of the
processor and let the other active threads have execution time. The suspend instruction is
used to accomplish this operation. Since the contexts are not preemptive, operations are
guaranteed to be atomic. Therefore, the suspend instruction also allows for
synchronization to take place. For example, let us say a thread is waiting for a memory
location to change from zero to one. The value in the designated memory location is
accessed and its value checked. If the value is zero, then the thread would use the
suspend instruction to allow other threads to execute. The likely case is that one of the
other threads will change the value at that memory location to one. Then, when the
original thread checked the memory value again, if it changed to one, the thread would
continue its execution. If it had not changed, the thread would repeat the suspend
instruction until the value changed.

The last instruction of any thread is the end instruction. This instruction signals the CMT
to clear the Alloc bit of the entry pointed to by the ATR. The freed CMT entry is then
added back to the list of contexts available for use by the NIU or the pipeline. Then, the
next context to execute can begin its execution. As previously stated, contexts are
scheduled in round robin fashion, and both the Alloc and Thread bits must be set for a
context to be scheduled.

The other special SCMP instructions involve sending a message. As previously
described, a message begins with the header and address flits. Both of these flits can be
generated using the sendh instruction, which has two variations. The first type takes the
form: sendh <register>, type, address. The register operand contains the destination node
number. Nodes on the SCMP chip are numbered from left to right and top to bottom.

 shows such a numbering scheme. Since there are two types of messages, the
type field names the message type (thread or data). The third operand is an address. If it
is a thread message, then the context begins execution at this address. The address is the
location to start writing to memory, if it is a data message.

Figure 2.5

 11

Figure 2.5: The left figure shows how the nodes are numbered on the SCMP parallel computer. The right

figure depicts how a message would be routed from node 3 to node 2.

The second form of the sendh instruction is as follows: sendh <register1>, type,
<register2>[, stride]. The first three values are the same as before, but the address is
contained in the second register reference rather than in an immediate value. The stride
value is optional and signifies how far apart values should be stored in memory for a data
message. The first value will be stored at the address given in register2, and the second
value will be stored at <register2>+4*stride. For example, if a data message writes to a
column in a matrix, the addresses written to would be spaced evenly, but by more than
one address, in memory.

After the header and address flits are sent, data follows. There are three different ways to
send data. The first two are very similar and take the forms: send <register> and send2
<register1>, <register2>. Both of these instructions send data directly from a register(s)
into the network. This procedure limits the amount of data copying that occurs, with the
objective being that messages will reach their destination faster. The worm-hole routing
allows the header flit to pave the way for the other flits of the message, which do not
have specific knowledge of the destination node. The third way to send data is the sendm
instruction. It takes the form, sendm <register1>, <register2>. This instruction copies
bytes from memory and injects them directly into the network. As before, this tactic
minimizes the copying that occurs before a message is sent. The first register contains
the address of the first four bytes to copy from memory. The second register contains the
number of four byte values to copy and the stride between the values.

To end a message, a tail flit needs to be sent. Similar to the above, there are three
different ways to end a message: sende, send2e, and sendme. A bit is contained in each
flit to indicate if this one is the tail flit. The data is sent in the same fashion as described
above for the send instructions, but the tail bit is set in the flit with the last data value to
indicate it is the end of the message.

 12

The discussion of the instruction set for the SCMP node completes the description of its
operational design and functional requirements. The major components of the node were
introduced in this chapter. The design objectives of the SCMP node and the hardware
partitioning used to optimize its design were presented. The required messaging and
message formats used by the SCMP components were described, along with the
instruction set developed to provide the expected functionality. The next 2 chapters will
discuss the hardware implementation of the SCMP node that was developed for this
thesis.

 13

Chapter 3 Hardware Implementation
After the functionality of each block of the node had been designed, the interfaces
between the blocks were created. A specific naming convention was developed so that
each signal between blocks could be identified quickly and easily. If a signal was an
input to a block, it began with a lower case ‘i’. Similarly, a block output signal started
with a lower case ‘o’. The name of the signal took the following form:
<source block name><description>To<destination block name>.

The description of each signal was intended to be straightforward enough so that the
purpose of the signal would be understood. For example, if an enable signal was
generated from the pipeline to the memory, then its signal name would be
PipelineEnableToMemory. The signal name at the pipeline would start with an ‘o’, and
at the memory, it would start with an ‘i’.

Once the interfaces were defined, each block was implemented in System C. System C is
a hardware modeling language, like VHDL or Verilog, but with C++ syntax. System C is
a good example of a system description language that can be used to model Systems-On-
a-Chip [21]. This chapter and the one following describe in detail the interface and
implementation of each of the SCMP blocks. Research for this thesis focused on the
design and implementation of the SCMP memory controller, the Network Interface Unit,
and the ALU. SystemC models of the on-chip memory and instruction cache were also
developed.

3.1 Memory
The memory block of the SCMP node was created for simulation purposes only. It is
expected that a synthesized SCMP chip will use a third party vendor static RAM or
embedded DRAM chip, if the latter technology continues to improve. However, there are
restrictions that must be considered when choosing a third party chip. The memory must
be synchronous, byte addressable, and allow accesses of 1, 2, and 4 bytes on even
boundaries.

Since the SCMP parallel computer attempts to store everything it needs for a program on
the chip, the memory access time becomes paramount. Therefore, it is assumed that the
local on chip memory for each node is fast enough to be accessible in one clock cycle.
However, there is not a guaranteed response time for gaining access to the memory space
of another node. The response time depends on things like network traffic, if the
destination node is already receiving a message, and accessibility to the actual memory.
Three units in a node can access the memory: the pipeline, the instruction cache, and the
network interface unit. See Chapter 3.2 to learn how each unit can gain access to
memory.

The implementation of this block is straightforward. The memory is single ported, so no
collision avoidance is required. Each memory address is 32 bits wide with the bytes
stored in big endian format. The inputs and outputs of this block are depicted in

. Access to the memory is accomplished through a request/acknowledge sequence.
Figure

3.1

 14

That is, the unit that wishes to access memory makes a request and then waits one clock
cycle for the acknowledge signal. If the acknowledge is set, the data is valid, but if not,
the access is denied.

clk

reset
 iReqToMemory

oMemoryData
iReadWriteToMemory Memory oMemoryAck
iWriteDataToMemory

iAddressToMemory

iMemoryOpToMemory

Figure 3.1: A block diagram of the memory on the SCMP processor.

The reset of this block is asynchronous and sets the oMemoryAck line to ‘0’. Any
request made to memory during a reset is ignored. A request is made on a rising clock
edge, if the iReqToMemory signal is set. Then, a read or a write operation is performed,
based on the input iReadWriteToMemory, on the number of bytes given by
iMemoryOpToMemory. For the appropriate setting of the signals to this block, see

.
Table

3.1

Table 3.1: The input and output ports and descriptions of the memory block’s signals.

Signal Name Type Bit Width Description
clk In 1 Rising Edge active clock
reset In 1 Asynchronous reset to put the unit into a known state
iReqToMemory In 1 Signal is a 1 if a request is made to read or write to

memory, 0 otherwise
iReadWriteToMemory In 1 Signal is a 1 to signify a read, 0 for a write. Is only

used when a request is made.
iWriteDataToMemory In 32 If a write request is made, this bus contains the data

that will be written.
iAddressToMemory In 23 The address in memory that is to be manipulated
iMemoryOpToMemory In 2 If set to “00”, do a 4 byte operation

If set to “01”, do a 1 byte operation
If set to “10”, do a 2 byte operation
If set to “11”, do a 8 byte operation (See Chapter 5)

oMemoryData Out 32 If a read request is made, this bus contains the data.
The data is valid the cycle after the address
was presented.

oMemoryAck Out 1 Set to 1 if the oMemoryData bus is carrying valid
data for the pipeline, 0 otherwise.

If a 1 or 2 byte read access is made, the result is shifted to the least significant bits, so the
correct value would be stored in a register. Similarly, on a write operation, the 1 or 2
byte value to be written is given in the least significant bits and shifted to the appropriate
location in the 32-bit value. The output on a read would be valid on the next rising clock

 15

edge. This data is also signified when the oMemoryAck line is set. On a write operation,
the acknowledge signal signifies success.

3.2 Memory Controller
Since multiple units need access to the memory, their requests must be arbitrated. The
pipeline needs memory access to retrieve/modify data values. The instruction cache
needs to read instructions from memory. The NIU also needs to read or write data values
to memory. However, the pipeline is not deep enough to allow this unit to be
synchronous. If it is activated by a clock edge, then the pipeline would not receive the
read value until after it should be written to a register. Therefore, this block is
asynchronous and is triggered whenever a request signal changes or the acknowledge
signal from memory changes. Figure 3.2 below shows the inputs and outputs to each of
the three blocks and to memory.

iN
IU

M
em

oryO
pToM

em
ory

iN
IU

R
eadW

riteToM
em

ory

iN
IU

W
riteD

ataToM
em

ory

iN
IU

A
ddressToM

em
ory

oM
em

oryD
ataToN

IU

oM
em

oryA
ckToN

IU

iN
IU

R
eqToM

em
ory

 reset
oReqToMemory iPipelineReqToMemory
oReadWriteToMemory

iPipelineReadWriteToMemory
Memory oWriteDataToMemory

iPipelineWriteDataToMemory
Controller oAddressToMemory

iPipelineAddressToMemory
oMemoryOpToMemory

iPipelineMemoryOpToMemory
iMemoryData

oMemoryDataToPipeline
iMemoryAck

oMemoryAckToPipeline

iIC
acheR

eqToM
em

ory

iIC
acheR

eadW
riteToM

em
ory

iIC
acheW

riteD
ataToM

em
ory

iIC
acheA

ddressToM
em

ory

iIC
acheM

em
oryO

pToM
em

ory

oM
em

oryA
ckToIC

ache

oM
em

oryD
ataToIC

ache

Figure 3.2: A block diagram of the memory controller.

 16

If two or three blocks request access at the same time, a method is needed to determine
which block has the highest priority. The priorities are chosen with the objective of
limiting the number of clock cycles that the pipeline has to stall. This measure is used
because contexts are executed in non-preemptive fashion. Therefore, the faster one
thread finishes, the faster the next one can start/continue its execution. As a result, the
pipeline receives the highest priority, so its operations are unaffected. Then, the
instruction cache has the next highest priority. The only time the cache can access
memory is on a cache miss, since the pipeline needs an instruction to continue thread
execution. Finally, the NIU received the lowest priority. When the NIU accesses
memory, it cannot affect the execution of a context unless it wrote to a synchronization
variable. If so, the context waiting for a sync would suspend, and the NIU would be able
to access the memory before the pipeline could restart after a context switch. In addition,
a message can back up in the network for a few cycles without harming overall
performance.

The implementation of this block multiplexes the three inputs over one channel. The
interesting part of this implementation is in the acknowledgement execution. See

 for a list of the acknowledge signals and refer to Table 3.1 for a reference to the
memory interface. Since this unit is asynchronous and its outputs are stable by the next
rising clock edge, the acknowledge signal is not used to indicate valid data, but is used as
an indicator of the acceptance of the request. depicts the timing of a memory
operation through the memory controller.

Table
3.2

Table 3.2: The signal names with corresponding descriptions of the memory controller block. The other
signals are those of a memory interface (See Chapter 3.1) with the appropriate naming convention.

Figure 3.3

The Context Management Table (CMT) is memory mapped to addresses 0xFFFFFF00 -
0xFFFFFFFF. Therefore, the port from the memory controller to the memory is also split
to the context logic. When the address is in the appropriate range, the CMT logic
responds with the appropriate value while the memory ignores the request.

Signal Name Type Bit Width Description
Reset In 1 Asynchronous reset to put the unit into a

known state
oMemoryAckToICache Out 1 Set to 1 if the oMemoryData bus is carrying

data for the instruction cache, 0
otherwise.

oMemoryAckToNIU Out 1 Set to 1 if the oMemoryData bus is carrying
data for the NIU, 0 otherwise.

oMemoryAckToPipeline Out 1 Set to 1 if the oMemoryData bus is carrying
data for the pipeline, 0 otherwise.

oMemoryAck Out 1 Set to 1 if the oMemoryData bus is carrying
data for the pipeline, 0 otherwise.

 17

Figure 3.3: When a read request is made, the acknowledge signal is received on the next clock edge. If the

acknowledge signal is positive, the actual data is valid two cycles after the request was made.

If the request is accepted, the operation is completed by the next rising clock edge. In
other words, it is known if the memory operation is permitted on the clock edge after it is
requested, but would not be completed until two clock edges later. This design also
means that requests to memory did not need to be buffered since a unit can request again
as soon as it is denied.

The acknowledge signal from memory triggers the memory controller. On a read
operation, data is passed back to the appropriate unit and the acknowledge signal to the
requesting unit is set to ‘0’. Once the requester knows the operation is permitted, data is
known to be valid on the next clock cycle.

Another feature of the memory controller is that it abstracts away the memory interface
from the three requesting units. When a third party vendor memory design is used, only
the memory interface from the controller to the memory will need to change. The three
requesting units can keep the same interface, and the memory controller can be changed
to translate the current interface to the new one

 18

3.3 Instruction Cache
Even though a data value can be read from the memory in one cycle, the memory is not
designed to be dual ported. If the memory has two separate access points with collision
control, then one port can be dedicated to be the instruction cache and the other to the
pipeline and the NIU. Since that is not the case, a separate storage space is needed for the
instructions since one needs to be read each clock cycle for an executing context.
Therefore, an instruction cache was created with the interface shown in Figure 3.4 and
described in Table 3.3.

clk
 oICacheAckToPipeline

reset
oICacheInstrToPipeline

iPipelineAddressToICache Instruction
iPipelineReqToICache

Cache oICacheAddressToMemory
iMemoryDataToICache

oICacheReqAddressToMemory
iMemoryAckToICache

Figure 3.4: A block diagram of the instruction cache for the SCMP parallel computer.

When it is possible to fabricate the SCMP parallel computer, this block will probably be
substituted with a third party instruction cache. Thus, this block was used for simulation
and testing of the hardware and the interfaces. It was important, for simulation purposes,
that the instruction cache be flexible so the different types of cache line replacement
could be attempted. Therefore, the instruction cache was implemented so that it could be
direct mapped, x-way set associative, and fully associative by changing the constants in
the icacheconf.h header file.

The constants that control the instruction cache are as follows: iCacheSizeLength,
controlled the size of the instruction cache in bytes; iCacheLinesPerSetLength,
determines the associativity of the cache; and iCacheInstPerLineLength, sets the number
of instructions that are in each cache line. Each of these cache parameters determines its
actual value by shifting a ‘1’ to the left the number of times indicated in these constants.
For example, if iCacheSizeLength is 15, then iCacheSize would be 32 KB, or 215.

Table 3.3: The signal names and descriptions for the instruction cache block.

Signal Name Type Bit Width Description
clk In 1 Rising Edge active clock

reset In 1 Asynchronous reset to put the unit into a
known state

iPipelineAddressToICache In 23 The address of the instruction the pipeline is
trying to fetch.

iPipelineReqToICache In 1 When set to a ‘1’, the pipeline is making a
request for an instruction. On a ‘0’, no
request is made.

iMemoryDataToICache In 32 On a cache miss, the data for the cache line

 19

will come back on this port.
iMemoryAckToICache In 1 When set to a ‘1’, the data coming from

memory is valid. When a ‘0’, the data is
not valid.

oICacheAckToPipeline Out 1 Set to a ‘1’ when there is a cache hit. ‘0’
otherwise.

oICacheInstrToPipeline Out 32 The instruction that was fetched.
oICacheAddressToMemory Out 23 On a cache miss, this is the address of the 4

byte value being fetched.
oICacheReqAddressToMemory Out 1 Set to a ‘1’, when cache needs to fill a line.

The signal is a ‘0’ otherwise.

The important part of the instruction cache implementation is to understand what a set
consists of and how many sets are in the cache. When a cache is x-way set associative, it
means that there are x lines in a set. Those lines are filled associatively. Each line in the
set has a valid signal to indicate when a line is full. And a line identifier is associated
with each line to identify which instructions are in that line. Line replacement for each
set is done in round robin fashion. The hope is that a context contains few enough
instructions so that there would be a high locality of reference and adjacent lines could be
reused often. Therefore, each set also needs a reference to which line was to be filled
next.

The other important aspect of the instruction cache is how to calculate the number of sets
needed to create the cache. For example, if the cache is 32 KB in size, it could hold 8 K
of instructions (4 bytes per instruction). Assuming that each cache line has 8 instructions
and the cache is 4-way set associative, then the number of sets in this cache is calculated
as follows:

setsor
lines
set

nsinstructio
line

B
ninstructioKB 2562

4
1*

8
1*

4
1*32 8=

Therefore, 8 bits are needed to identify a set in the cache. An address in the SCMP node
is currently 23 bits (8MB of addressable space). The lowest 2 bits of an address must be
0 so that a request is made on an even 4 byte boundary. The next 3 bits are needed to
identify which instruction is referenced from the cache line. Therefore, the line identifier
needs to be 23-8-3-2=10 bits.

When a request is made to the instruction cache, its implementation accesses the
appropriate set and queries all of the lines in that set for a valid line ID match. If the line
is present, then it is a cache hit. On a cache miss, the address requested and the address
of the start of the corresponding line are saved. The nextLineToFill value is used to
determine which line should be replaced in the set. The cache uses the
request/acknowledge sequence described in Chapter 3.2 about the memory controller.
Once the line is filled, the instruction can be positively acknowledged the next time it
gets requested.

3.4 ALU
The Arithmetic Logic Unit (ALU) is a synchronous logic block, triggered by the falling
edge of the clock, used for any integer based mathematical function. On a reset, this unit

 20

sets the acknowledgement signal to ‘0’. The figure below depicts the ALU as a black
box with its inputs and outputs labeled. then describes the use of each of the
signals.

Table 3.4

Table 3.4: Input and output signals for the ALU.

clk

reset oALUAckToFwdPipeline

 ALU iPipelineOpSelectToALU
oALUExceptionToPipeline

iFwdReg1DataToALU
oALUOutputToFwdPipeline

iFwdReg2DataToALU

Figure 3.5: A block diagram of the ALU.

Signal Name Type Bit Width Description
clk In 1 Rising Edge active clock
reset In 1 Asynchronous reset to put the unit into a known

state
iPipelineOpSelectToALU In 7 The instruction opcode tells the ALU which

operation to perform. Only one can be
calculated at a time.

iFwdReg1DataToALU In 32 Data on which operation is performed
iFwdReg2DataToALU In 32 Data on which operation is performed
oALUOutputToFwdPipeline Out 32 The result of the operation performed.
oALUExceptionToPipeline Out 32 Set to the ESTATUS value of the corresponding

exception.
oALUAckToFwdPipeline Out 1 Acknowledge that was set when the data and

exception values were valid. ‘0’ otherwise.

The pipeline controls when the ALU performs an operation via the OpSelect input. The
pipeline identifies which operations the ALU is responsible to perform since all ALU
opcodes occurred sequentially in the instruction set. For a complete list of instructions,
see Appendix A.

The ALU is a simple block because it is synchronous and each ALU function is
implemented behaviorally without optimizations. When an opcode that the ALU is
responsible for is present at the OpSelect input, the appropriate operation is performed on
Reg1 and Reg2. It is assumed that all operations except multiply, divide, and modulo
take only one clock cycle to execute. The other instructions took 5, 19, and 19 cycles
respectively. Once an operation begins, the pipeline must wait until the acknowledge
signal is set to be sure that the output data is valid. Since the pipeline does not execute
instructions out of order, it is forced to stall until the ALU operation is completed.

3.5 NIU
The Network Interface Unit (NIU) is used to create flits to inject into the network and to
accept and perform operations on flits from the network. Both the inject and eject

 21

functions of the NIU are further divided into two parts. When sending a message into the
network, it can be generated from either the pipeline, using register values, or from the on
chip memory, reading data. When a message arrives at a node, it can either create a new
context, using the CMT/context interface or write values to memory, using the memory
interface. Figure 3.6 below is a block diagram of the NIU.

oN
IU

M
em

oryO
pToM

em
ory

oN
IU

R
eadW

riteToM
em

ory

oN
IU

W
riteD

ataToM
em

ory

oN
IU

A
ddressToM

em
ory

iM
em

oryD
ataToN

IU

oN
IU

R
eqToM

em
ory

iM
em

oryA
ckToN

IU
clk

 oNIUReqNewIntContextToCMT
reset oNIUReqNewFloatContextToCMT

 iPipelineReg1ToNIU oNIUAddressToCMT

iPipelineReg2ToNIU oNIUSetThreadToCMT
NIU

iCMTAckNewContextToNIU iPipelineCmdToNIU

iPipelineReqToNIU oNIUDataToContext

oNIUAckToPipeline oNIUValidIntDataToContext

oNIUValidFloatDataToContext

oN
IU

FlitToR
outer

oN
IU

R
eqToR

outer

iR
outerA

ckToN
IU

iR
outerFlitToN

IU

iR
outerR

eqToN
IU

oN
IU

A
ckToR

outer

Figure 3.6: A block diagram of the Network Interface Unit (NIU).

The signals from the NIU to the memory controller are identified in Chapter 3.1, which
describes the memory interface. Similarly, those signals between the NIU and the
context management logic will be discussed in Chapter 4. Since those signals are
described elsewhere, they will not be discussed here. This section describes the operation
of the NIU in terms of the NIU/pipeline and NIU/router signals. Table 3.5 describes
these signals in detail.

Table 3.5: The signal names and descriptions for the NIU of the SCMP node.

Signal Name Type Bit Width Description
clk In 1 Rising Edge active clock
reset In 1 Asynchronous reset to put the unit into a

known state

 22

iPipelineReg1ToNIU In 32 A data value from a register to be sent in a
message.

iPipelineReg2ToNIU In 32 A second value from a register to be sent in
a message.

iPipelineCmdToNIU In 7 The command tells the NIU which data
values are valid and what operation to
perform on the data.

iPipelineReqToNIU In 1 When set to ‘1’, the input command and
data are valid. ‘0’ otherwise.

oNIUAckToPipeline Out 1 Set to a ‘1’ when the request is satisfied. If
a ‘0’, the requesting thread will
suspend.

oNIUFlitToRouter Out 34 A flit contains a 32 bit data value, a bit to
indicate the start of a message, and a
bit to specify the end of a message.

oNIUReqToRouter Out 1 When set to a ‘1’, the flit data is valid. ‘0’
otherwise.

iRouterAckToNIU In 1 If set to a ‘1’, the router has stored the flit in
a buffer successfully. ‘0’ otherwise.

iRouterFlitToNIU In 34 A flit arriving at the node.
iRouterReqToNIU In 1 When set to a ‘1’, the flit data is valid. ‘0’

otherwise.
oNIUAckToRouter Out 1 Set to a ‘1’ when the NIU accepts the flit.

When a ‘0’, the flit remains buffered
in the network.

When the pipeline executes any of the send instructions, data is sent to the NIU from the
pipeline. The type of instruction is identified by the <iPipelineCmdToNIU> signal,
which is the opcode decoded by the pipeline. One instruction can send up to two flits.
To accept two flits per clock cycle, either two flits need to be sent in one clock cycle or
flits need to be buffered in the NIU. For this implementation, it is assumed that the router
is capable of receiving two flits in one clock cycle. Therefore, a flit could be sent out on
the rising and falling edge of the node clock and no buffering is necessary. If this method
is found not to be realistic, then buffers can be added to this unit.

Only one message at a time can be constructed by the NIU and injected into the network.
This limitation means that once a sendh instruction is received, a sende instruction is
required before another sendh. In other words, after a message begins, any other request
to start a new message is denied. Both the send and sendm instructions have a version of
the instruction that indicates the tail flit of a message. The end of a message is known by
the opcode passed to the NIU.

When a sendh instruction is detected, the <iPipelineReg1ToNIU> bus contains the
address needed by either the thread message or the data message. The
<iPipelineReg2ToNIU> signal contains the following data: the type of message is in the
highest bit position, the destination node is in the next 6 most significant bits (for 64
nodes), and the lowest 11 significant bits contain the immediate stride value, if needed.
The sendh instruction generates two flits. First, the header flit contains the type of
message and the routing information needed to reach the destination node. Second, the
address flit contains the starting place for either type of message.

 23

When a sendm instruction is detected, then the <iPipelineReg1ToNIU> bus contains the
start address to read from memory. Also, the stride value between memory accesses and
the number of values to read are given by the <iPipelineReg2ToNIU> signal. Only one
flit is injected into the network per clock cycle because the memory can only process one
request per clock cycle.

On a send instruction, <iPipelineReg1ToNIU> contains the register value to inject in to
the network. Similarly, when a send2 instruction is detected, both the
<iPipelineReg1ToNIU> and <iPipelineReg2ToNIU> buses contain register values to
send as part of a message.

A message is guaranteed to be sent in the same order the instructions are issued. For
example, if a sendm is followed by a send2 instruction, then the sendm must complete its
execution before the send2 instruction is accepted by the NIU.

Similar to the inject portion of the NIU, the eject section can only accept one message at
a time. When a header flit arrives at the NIU from the router, the type of message is
determined and, if necessary, the stride value is stored. Once the address flit arrives at
the NIU, the incoming message manipulates the appropriate interface, either the memory
interface or the CMT/context interface. If a data flit arrives at the NIU before its
associated header and address flits are successfully written to memory or allocated to a
context, then the data flit is denied access, and the flit will be buffered by the router.

With the completion of the NIU implementation, the major components of the SCMP
node were designed and implemented, and the messaging, sequencing, and interfaces
between the various components were defined. System C models of the on-chip memory
and instruction cache were also developed. The heart of the SCMP node and the focus of
this thesis were the design and implementation of the SCMP memory controller, the
Network Interface Unit, and the ALU. The remaining components of the SCMP node, the
CMT and the contexts, are responsible for managing the threads on a node and are
described in the next chapter.

 24

Chapter 4 Contexts and Context Management
As was previously explained, the context management scheme is broken up into two
main blocks: the Context Management Table (CMT) and control, and the Context
Register File (CRF) and control. This division of hardware allows for the parts to be
developed and tested both individually and concurrently. Figure 4.1 depicts the overall
context management scheme with the CMT and CRF sub-blocks.

The Context Management Scheme

ATR
CMT & CONTEXTS

CONTROL & CONTROL
DCR

Figure 4.1: A block diagram of the context management scheme.

The CMT and Control block is responsible for allocating and deallocating contexts and
for scheduling threads. Meanwhile, the Contexts and Control block is in charge of
accessing the registers of each context. These blocks cannot, however, be separated
because both interact with the same control registers. This chapter presents a detailed
implementation of the hardware for each of the sub blocks and the shared hardware
between the two. The Contexts and Control block was designed and both the CMT and
Contexts were implemented in System C as a part of this research effort.

4.1 Shared Hardware
There are two main registers that are shared between the CMT control and the CRF
control: the Active Thread Register (ATR) and the Data Context Register (DCR). Each
of these registers is 4 bits long in order to access the 16 possible contexts. The actual
length is determined by the constant that set the number of contexts in the node.

The ATR contains the context identifier of the currently executing thread. The CMT
needs this value for many of its commands (see Chapter 4.2). For example, when a
thread ends, the CMT control needs to modify the CMT entry corresponding to that
thread. Therefore, the ATR is used as an index into the CMT so the end instruction can
be executed. Similarly, the CRF control uses the ATR as an index into its register set
(see Chapter 4.3). As an example, if an instruction reads or writes to a register(s), then
the ATR is used to access the appropriate register set in the CRF. The ATR requires a
valid signal to ensure that a context is currently executing. If the ATR is not valid, then a
context to execute cannot be found and one is searched for during each clock cycle.

 25

A context may increase the number of registers it uses through the DCR. If a program
requires more that its own 32 registers, it can allocate a second context to itself and use
these registers in its own calculations. In this case, the DCR is used as the context
identifier of this second context. When a register in this extended range (32-63) is
accessed, the DCR is used as the index into the CRF. Unlike the ATR, the DCR does not
require a valid signal because context 0 cannot be used as a data context (see Chapter 5.2).
Although the CMT and contexts cannot be separated, the following sections describe
each block’s implementation in detail.

4.2 Context Management Table and Control
Each entry in the context management table has four parts:

• The Alloc bit - If the context is allocated, this bit is set to 1. The context is free
for use as a data context or a thread context, if this bit is set to 0.

• The Thread bit – If the context was allocated and this bit is a 1, the context is a

thread and will be scheduled for execution. When the context is allocated and this
bit is a 0, the context is currently being used as a data context, or is being filled by
the Network Interface Unit (NIU).

• The DCR - A 4 bit value that stores the context ID of a thread’s data context. If

the value is 0x0, the context does not have a data context. (The number of bits in
this field is determined by a constant, which is based on the number of contexts
on each processor.)

• The IP Address - A 23 bit value that contains the instruction pointer of a thread

context. This value does not have meaning if the context is a data context. (The
number of bits in this field is determined by a constant, which is based on the size
of memory for each processor.) It is important to note that the 2 lowest
significant bits will always be “00” because instructions are 4 byte aligned.

There are a total of 29 bits in each CMT entry. Each CMT entry is chosen to be 32 bits
wide to allow easy expansion of either the IP, if the memory size increases, or DCR field,
if the number of contexts on a processor is increased. Figure 4.2 shows the breakdown,
by bit, of these fields in a CMT entry.

 26

Figure 4.2: A visual representation of a CMT entry.

Hardware support is used to manage the threads of a node to minimize the number of
clock cycles during a context switch [9]. In theory, from the time the pipeline detects an
end or a suspend instruction to the time when the pipeline receives another valid
instruction from the instruction cache, it takes four clock cycles. This calculation
assumes that there is another context ready for execution and the instruction requested is
already in the instruction cache. shows the timing of this ideal context switch
from the pipeline’s perspective.

Figure 4.3

Figure 4.3: The timing of a context switch.

Both the pipeline and the NIU can control the bits of a CMT entry. The pipeline can
control any entry in the CMT. The CMT is memory mapped, so the pipeline can read

 27

and write to an entry in the CMT. However, a context cannot change its own entry. Also,
the pipeline can use the alloc and free instructions to modify the CMT. The Network
Interface Unit (NIU) can also allocate a context by using a thread message. Figure 4.4
depicts the CMT and control with the interfaces to each of the units that could access it.
Then, the input and output signals of the CMT control are described in the sections that
follow.

The Context Management Scheme
ATR

CMT & CONTEXTS
CONTROL & CONTROL

DCR

clk

reset iPipelineCmdToCMT
 iPipelineCmdReqToCMT
 iNIUReqNewIntContextToCMT

iPipelineDataToCMT CMT &
CONTROL iNIUReqNewFloatContextToCMT

oCMTDataToPipeline
iNIUAddressToCMT

oCMTCmdAckToPipeline
iNIUSetThreadToCMT

oCMTDCRValidToPipeline
oCMTAckNewContextToNIU

iM
em

oryC
trlD

ataToC
M

T

iM
em

oryC
trlA

ddressToC
M

T

iM
em

oryC
trlO

pToC
M

T

iM
em

oryC
trlR

eadW
riteToC

M
T

iM
em

oryC
trlR

eqToC
M

T

oC
M

TA
ckToM

em
oryC

trl

oC
M

TD
ataToM

em
oryC

trl

Figure 4.4: A block diagram of the CMT & control part of the context management scheme.

Signal Name Type Bit Width Description
clk In 1 Rising Edge active clock
reset In 1 Asynchronous reset to put the unit into a known state

Memory Controller Accesses to the CMT
The CMT is memory mapped to addresses 0xFFFFFF00 - 0xFFFFFFFF. Since it is
memory mapped, the pipeline is able to read from and write to the CMT just as if it was
memory. Table 4.1 below defines the interface between the memory controller and the
CMT control.

 28

Table 4.1: Describes the interface between the CMT and the memory controller.

Signal Name Type Bit Width Description
iMemoryCtrlReqToCMT In 1 Set to a ‘1’ when a read or write request is

made to the CMT. ‘0’ otherwise.
iMemoryCtrlReadWriteToCMT In 1 When a request is made, set to a ‘1’ for a

read, a ‘0’ for a write.
iMemoryCtrlOpToCMT In 2 If set to “00”, do a 4 byte operation

If set to “01”, do a 1 byte operation
If set to “10”, do a 2 byte operation
If set to “11”, do nothing

iMemoryCtrlAddressToCMT In 23 The address that is read from or written to
when a request is made.

iMemoryCtrlDataToCMT In 32 The data written to the CMT.
oCMTAckToMemoryCtrl Out 1 The active high acknowledge signal when a

request is made to read/write to the
CMT.

oCMTDataToMemoryCtrl Out 32 The data read from the CMT.

The CMT control checks for a valid memory access each clock cycle. If a request was
made, <iMemoryCtrlReqToCMT> is set to ‘1’, the read or write operation, determined
by <iMemoryCtrlReadWriteToCMT>, occurred from the address specified on the
<iMemoryCtrlAddressToCMT> bus. The above table defines the different values for
<iMemoryCtrlOpToCMT>, which controls how many bytes of the CMT are accessed.
The CMT is byte addressable and allows 3 types of reading/writing: 1-byte, 2-byte, and
4-byte. Therefore, CMT entry 0 is represented by addresses 0xFFFFFF00 through
0xFFFFFF03, inclusive. Thus, there are enough addresses to expand to 64 contexts.
Currently, only 16 of these 64 possible entries are used, so some of these addresses are
unused and invalid. However, the number of contexts per node is configurable, so the
remainder of the address space can be used. If an address is outside the bounds of the
CMT, all 0’s are returned. All memory exceptions, out of the bounds of the CMT or bus
alignment, are handled by the memory controller and will not be discussed here.

However, there is one type of memory access that is not allowed. If a write occurs to the
currently executing thread (context ID found in the ATR), it cannot change either the
Alloc or Thread bit. This write is not allowed since the pipeline would continue its
execution even though the context had been freed or the type of the context had changed
from thread to data. In addition, the pipeline can change these bits directly via the end
instruction (see the following section on Pipeline Accesses to the CMT). The other bits
of the CMT entry for the currently executing thread can be modified. Since there are
unused bits, additional information about a thread can be written to the CMT. For
example, a thread can write to an unused bit in its CMT entry to indicate if it is sending a
message or not. This information can be useful, in the future, if contexts could be
temporarily stored in memory to allow the network to inject another thread context. If a
thread is sending a message, it could be detrimental to remove it from those being
scheduled since no other thread could send a message until that one finished.

 29

Pipeline Accesses to the CMT
The pipeline can perform the following operations on the Context Management Table:
allocate context, free context, end context, suspend context, read special register, and
write special register. Each of these operations is given a command code. Table 4.2
below shows the signal names that control the pipeline accesses to the CMT and its
control. The command code is 3 bits long since there are 6 commands to perform. The
logic for allocating a context is discussed later since both the pipeline and the NIU can
perform that particular function.

Table 4.2: Signals that control pipeline accesses to the CMT.

Signal Name Type Bit Width Description
iPipelineCmdToCMT In 3 ‘000’ – nothing

‘001’ – alloc instruction
‘010’ – free instruction
‘011’ – end instruction
‘100’ – suspend instruction
‘101’ – read special register instruction
‘110’ – write special register instruction
‘111’ – nothing

iPipelineCmdReqToCMT In 1 Set to a ‘1’ to indicate a valid command. ‘0’
otherwise.

iPipelineDataToCMT In 32 When a writesr instruction, a free
instruction, or a context suspends, this
data is valid.

oCMTDataToPipeline Out 32 When data is valid, this bus contains the IP
address of the next context to execute
or the data from the readsr instruction.

oCMTCmdAckToPipeline Out 1 Set to a ‘1’ when a command is successful
or data is valid. ‘0’ otherwise.

oCMTDCRValidToPipeline Out 1 Set to a ‘1’ when a context has a valid DCR.
‘0’ otherwise.

When the free command is sent to the context management control, the pointer to the
context that is to be freed is read from <iPipelineDataToCMT>. If the value read is not
the same as the currently executing thread, then the Alloc bit of the context ID is set to 0
and <oCMTAckCmdToPipeline> is set to 1 for success. If the value read is the same as
the executing context ID, then the request is denied and <oCMTAckCmdToPipeline> is
set to 0 for failure.

The end command is used as the free command for the currently executing thread. The
Alloc bit of the currently executing thread is set to 0 and <oCMTAckCmdToPipeline> is
set to 0 until a new thread to execute is found. If there is not a thread executing, then no
action is taken in the CMT, and <oCMTAckCmdToPipeline> is set high when a new
thread is found for execution. When the end command is acknowledged,
<oCMTDataToPipeline> is set to the IP address of the thread that is starting/resuming its
execution.

A suspend instruction from the pipeline to the CMT is similar to the end instruction.
Both types of commands use the same method to find the next thread to execute and

 30

acknowledge the command to the pipeline. However, the CMT is modified differently.
The Alloc and Thread bits both remain set at ‘1’. The DCR is copied from its shared
register back to the CMT entry. When the suspend instruction is sent, the IP address of
the next instruction to execute when the context is rescheduled is sent from the pipeline
to the CMT control on the <iPipelineDataToCMT> signal. This input is written to the
appropriate bits in the suspending context’s CMT entry. See Figure 4.2 above for the bit
locations of the DCR and IP address in a CMT entry.

The pipeline also has the ability to manipulate the shared registers and read some
constant information about a node. A program can read both the ATR and DCR and
write to the DCR. The ATR is read, for example, so a program would not write to that
CMT entry and mistakenly free it. The DCR can be read to determine if the appropriate
data context will be accessed by an instruction referring to registers 32 through 63. Since
the alloc instruction returns the context ID of the allocated context, the DCR can be
written so that a context can allocate as many contexts as it needs.

There are some constant registers that are stored in the context management control that
can be read. The node identification register (NIR) stores the numeric value of the
processor. For example, in an SCMP system with 64 processors, the node IDs range
from 0 through 63. When a processor sends a function to execute on another processor, it
must include the node ID so the remote function can reply to the appropriate processor.
The number of nodes in each row is given in the xDim register. Similarly, the register for
the number of nodes in the y-direction is called yDim. These values can also be read
using the read special register hardware. The NIR is used with xDim and YDim to locate
a node on the chip. As an example, in the Figure 4.5 below xDim is 4 and yDim is 4.
The NIR of this processor is 14, and the SCMP processor has 16 nodes.

Figure 4.5: Shows how to find the location of a node on the SCMP parallel computer.

 31

NIU Accesses to the CMT
The Network Interface Unit (NIU) accesses the Context Management Table when a
thread message arrives at a node. See for an explanation of the interface
between these components. When a message arrives at a node,
<iNIUReqNewIntContextToCMT> is set to ‘1’. The
<iNIUReqNewFloatContextToCMT> signal is discussed in Chapter 5.1, which refers to
floating point operations. If a request is made and there is a free context available, the
Alloc bit of that context’s entry in the CMT is set to ‘1’, and <iNIUAddressToCMT> is
the instruction pointer for the new context. Its value is copied into the appropriate bits in
the CMT entry and <oCMTAckNewContextToNIU> is set to ‘1’.

Table 4.3

Table 4.3: A description of the interface between the NIU and the CMT and its control.

Signal Name Type Bit Width Description
iNIUReqNewIntContextToCMT In 1 Set to a ‘1’ if the NIU receives a thread

message and needs to allocate a
context. ‘0’ otherwise.

iNIUReqNewFloatContextToCMT In 1 Set to a ‘1’ if the NIU has knowledge that
floating point data will be received
(see Chapter 5). ‘0’ otherwise.

iNIUAddressToCMT In 23 The IP address from the address flit of a
message. This value is written to the
CMT entry which was allocated for
integer data.

iNIUSetThreadToCMT In 1 When the tail flit of a thread message is
received, this flag is set to indicate the
end of the message, so the context can
be scheduled for execution.

oCMTAckNewContextToNIU Out 1 Set to a ‘1’ to indicate that a context(s) is
successfully allocated. ‘0’ otherwise.

This request for a free context creates a potential problem. If the pipeline and the NIU
request to allocate a context at the same time, what happens? Let us consider the
following possibilities: (1) the NIU receives access to the free context and (2) the pipeline
receives access to the free context.

First, if the NIU is granted permission to access the free context, the pipeline command
would be denied access until another free context can be found. When the pipeline
command is denied access to a context, that context will suspend and re-execute the alloc
instruction when that context is restarted.

Second, if the pipeline is granted the free context, the NIU would be left without a free
context to use until another is found. However, the network has buffers to hold the
requesting message. These buffers allow the NIU and router to receive messages and
store them without slowing down the network. The worst case is if a free context is not
found, and messages do back up in the network. In the case when a free context can be
found, the message would only back up in the network for a cycle or two. The pipeline
continues its execution, since it is able to allocate a free context. This method is used
because it provides continued pipeline execution and minimal delay to the NIU.

 32

After the NIU receives a positive acknowledgement that a free context is allocated for the
thread message, the incoming flits are written to the register block associated with that
context. Once the NIU receives the tail flit, the <iNIUSetThreadToCMT> signal is set to
‘1’. This active high signal signifies that the thread message is finished accessing the
register block and is ready for execution. The thread bit of the CMT entry that was
allocated to the NIU is set to ‘1’, and the context is scheduled for execution the next time
around in the round robin.

To prepare itself for an access from the pipeline or the NIU, two basic operations are
performed in the background by the CMT: (1) find the next context to execute and (2)
find the next free context. It is important to find the next thread to execute in order to
minimize the amount of time it takes to switch contexts. Similarly, finding the next free
context limits the number of cycles that it takes to allocate a new context when one is
requested. These two processes will be discussed in the following sections.

4.2.1 Find a Context to Execute
When the currently executing thread ends, a different thread is able to execute in the
processor’s pipeline. An algorithm for finding the next context to execute is needed for
use in the CMT control. Threads are scheduled in a round robin, non-preemptive fashion.
This type of scheduling prevents thread starvation unless a thread enters an infinite loop,
which is the programmers fault.

Two ways to locate the next thread to execute were considered during the design effort.
First, a counter is used to locate the next thread available for execution. The counter, or
next thread to execute register (NTE), starts at the current thread ID, and increments itself
until a context is found that has both the Alloc bit and Thread bit set to ‘1’. When such a
thread is found, a valid signal for the NTE register is set. The counting occurs once per
clock cycle to avoid a race condition between the NTE and its associated valid signal.
An overflow of the counting register causes the scheduling to continue in a round robin
manner by making the counter be just wide enough to cycle through all the contexts once.
The problem with this approach is the amount of time it potentially takes to find the next
executable thread. In the worst case, if a context is ready to execute, it could take up to
the <number of contexts> clock cycles to find the next thread to execute. Therefore, with
a small number of contexts the time delay will be short, but it will increase linearly with
the number of contexts.

To overcome this potential time delay, a second design approach to finding the next
thread to execute was developed and implemented. This method needed to be fast and
not dependent on the number of contexts in the processor. A new register was added to
the CMT management logic that latched a boolean value for each of the contexts in the
node. This register, called activeContexts, contains one bit for each entry in the CMT. If
a context is available to execute, its corresponding bit in the register is set to ‘1’. For
example, if context 5 has its Alloc and Thread bits set to ‘1’, then in the latched register,
bit 5 would be set to 1. Conversely, if context 3 did not have both its Alloc and Thread
bit set to ‘1’, then bit 3 of activeContexts is a ‘0’. Context 0 occupies the lowest

 33

significant bit of the latched values. Now, if this register is an integer and its value is 0,
then there is not a context to execute and values are re-latched. If the activeContexts
register value is 1, then context 0 is executed. If its value is 2 or 3, then context 1 is
executed. If its value is in the range 4-7, then context 2 is executed, and so on. Once a
context is chosen for execution, its bit in activeContexts is set to 0. This assignment
assures that all threads have the chance to execute before a thread has the chance to
execute a second time. Thus, it keeps the scheduling in a round robin fashion.

Since the activeContexts register contains latched values, the thread that is scheduled to
execute may no longer have both its Alloc and Thread bits set to ‘1’. For example, if
activeContexts is latched and context 6 is scheduled as the next context to execute, the
currently executing thread frees context 6 by setting its Alloc bit to ‘0’, even though it is
still scheduled as the next context to execute. Therefore, before a thread actually begins
to execute, both its Alloc and Thread bits must be verified to still be ‘1’.

A second potential problem was thought to be identified in using this context scheduling
method. If the activeContexts register is latched, a new context cannot be scheduled to
execute until the activeContexts register is re-latched. This situation does not create any
deadlock or process starvation, as initially thought, since the thread is scheduled the next
time through the round robin scheme. So even though this situation exists, it does not
create a scheduling problem.

This type of scheduling, in the average case, takes just one clock cycle. In the worst case,
when the Alloc bit or the Thread bit changed, it can take up to two more clock cycles to
find a thread to execute. One cycle is used to latch new values, if necessary, and a
second cycle is used to find the next thread to execute. However, this delay, in the worst
case, is still less than the potential delay of the counter method. Therefore, this approach
was implemented.

4.2.2 Find a Free Context
To allocate a context, the context management control needs to keep track of the next free
context. The same two methods discussed for finding the next context to execute were
also considered for finding the next free context. The counter method used the same
theory, but with a different counter. For the latched method, only the Alloc bits were
latched in a register called freeContexts.

When a free context is found, the context ID is stored in a register, called
nextFreeContext, and nextFreeContextValid is set to ‘1’. If a request for a free context is
made and nextFreeContextValid is ‘1’, as before, the entry in the CMT must be verified
because nextFreeContext is set based on a latched value. If the context had not been
allocated (the Alloc bit was ‘0’), then the context was allocated and
nextFreeContextValid was set to ‘0’. Again, similar to finding the next context to
execute, if a context is freed, it would not be found as a free context until freeContexts is
latched again. This glitch does not cause any problems since the newly freed context will
be used, but is delayed until the round robin scheme gets back to the freed context. The
latch method is used since the delay in the worst case is less than the delay of the counter

 34

method. These two operations allow the CMT to be used as a hardware context scheduler
and allocation unit.

4.3 Context Register File and Control
Each entry in the CMT has its own set of 32 32-bit all purpose registers. These registers
are not part of main memory, but are stored in their own register file. In the initial SCMP
design, this file was used in a hierarchy, so when a register was referenced, it was loaded
into a context cache. The context cache stored the register value, the register ID, and the
context ID from which the register was loaded. This cache was the size of one context,
32 32-bit registers, so that each register of a context could be loaded, if necessary. Using
a context cache presented one large problem; when there was a context cache miss, the
pipeline of the SCMP processor had to stall until the proper value(s) was loaded. An
objective of the revised design was to find an approach that would minimize or eliminate
the register access delay. To eliminate the delay from a context cache load, the registers
needed to be accessed directly. For this to be possible, register accesses needed to be
atomic. Therefore, the potential methods that could be used to access the registers of
each context needed to be analyzed.

Two functional units have access to the register file: the pipeline and the network
interface unit (NIU). The pipeline accesses registers in the currently executing thread
(the context ID is found in the ATR) and possibly its second data context (the context ID
is found in the DCR). However, the CMT entries of the ATR and DCR have their Alloc
bits set and they are guaranteed to be different register sets. As a result, accesses to the
ATR and DCR are atomic.

The NIU also has access to the registers in the register file. The question is could the
NIU ever access the ATR’s and/or the DCR’s registers? The answer is no. The NIU,
first, accesses the CMT to start a new thread. Therefore, it would only access a context
where the Alloc and Thread bits are initially 0. Again, register operations are atomic.

Thus, a context cache was not needed and the registers could be accessed directly. The
register file, then, became as fast as a cache and its ‘hierarchy’ became one level.

 depicts the implemented register file.
Figure

4.6

Figure 4.6: The registers of a node are organized in a matrix to allow single cycle accesses.

 35

Each row represents the registers in a context. Each column is a register. To read or
write a register, two values are needed: (1) a context ID - from the ATR, the DCR, or the
NIU - and (2) a register ID. Using this implementation, there is no delay required in the
pipeline to access the registers of any context. shows the interfaces to the
register file. An access from the ATR or DCR comes from the pipeline, so only the
pipeline and NIU can write to the registers in a node. This implementation takes
advantage of the fact that register references are made with locality to the registers in the
rows indexed by the ATR, DCR, and possibly the NIU.

Figure 4.7

Figure 4.7: A block diagram of the Contexts and Control section of the context management scheme.

A vertical register file was also considered when implementing the context register file.
This file contains 512 (16 contexts * 32 registers per context) general purpose registers.
The ATR or DCR entry serves as a pointer to access the base location for a context’s
register block. The incoming register identifier is used as an index from the base location.
This method resembles a paging system in that access to a register requires a base address
and an offset. For example, if the ATR refers to context 3, and register 12 is requested,
the following operations would occur. The ATR value is multiplied by 32 to obtain the
base address (register 0 of context 3). Then, an offset of 12 is added to base address to
complete the register reference. These operations can be summarized in the equation:
ATR<<5+regID. When compared to the multiplexers used in the 2-D implementation,
however, these calculations could increase the critical path to retrieve a register value.
Therefore, this method was discarded.

The Context Management Scheme
ATR

CMT & CONTEXTS
CONTROL & CONTROL

DCR

clk iPipelineReg1ReqToContext

reset iPipelineReg2ReqToContext
iPipelineRegReqToContext

 oContextReg1DataToPipeline
CONTEXTS &

CONTROL iNIUDataToContext oContextReg2DataToPipeline

iNIUValidIntDataToContext oContextRegAckToPipeline

iPipelineWriteDataToContext iNIUValidFloatDataToContext

iPipelineRegWriteReqToContext

iPipelineReqWriteToContext

Signal Name Type Bit Width Description

clk In 1 Rising Edge active clock
reset In 1 Asynchronous reset to put the unit into a known state

 36

Now that the register organization has been discussed, the methodology of accessing the
registers is presented. This block is sensitive to the positive edge of the clock. Therefore,
unless otherwise stated, all references to action occur on the rising edge. As mentioned
earlier, the contexts are accessible to the pipeline and the NIU.

Pipeline Accesses to the Contexts
The interface between the pipeline and the contexts is through two read ports and one
write port. All three ports are necessary in order to read two values and write one in one
clock cycle. Table 4.4 below describes the interface between the two units.

Table 4.4: Description of the interface between the pipeline and the contexts.

Signal Name Type Bit Width Description
iPipelineReg1ReqToContext In 6 A reference to a register in the currently executing context.

It is 6 bits because there are up to 64 registers to
choose from.

iPipelineReg2ReqToContext In 6 A reference to a register in the currently executing context.
It is 6 bits because there are up to 64 registers to
choose from.

iPipelineRegReqToContext In 1 When set to a ‘1’, a request is made for registers with
column numbers Reg1Req and Reg2Req. ‘0’
otherwise.

oContextReg1DataToPipeline Out 32 The register value read from register Reg1Req.
oContextReg2DataToPipeline Out 32 The register value read from register Reg2Req.
oContextRegAckToPipeline Out 1 Set to a ‘1’ when data is valid on ports Reg1Data and

Reg2Data. ‘0’ otherwise.
iPipelineWriteDataToContext In 32 The data to write to a register of the currently executing

context.
iPipelineRegWriteToContext In 6 The register reference to write the data to.
iPipelineReqWriteToContext In 1 Set to a ‘1’ when the incoming WriteData is valid. ‘0’

otherwise.

The names of these signals are given based on the conceptual place of origin rather than
the actual place. These signals breech the protocol set up in Chapter 3 but arranging the
signals this way made more sense. The <iPipelineReg1ReqToContext>,
<iPipelineReg2ReqToContext>, and <iPipelineRegReqToContext> signals are taken
from the output of the instruction cache. The register references in each instruction are
always made in the same bit locations of the instruction words. Therefore, the register
references are split off from the instruction word to go to both the pipeline and the
contexts. The acknowledge signal from the instruction cache is used as the register
request. Therefore, when a valid instruction word is sent to the pipeline, a request is
made for registers from the contexts. The other signals in this interface use the proper
naming convention.

Once a request is made, the data values requested are valid before the falling edge of the
current clock cycle. This speed is necessary, so the pipeline can forward the register data
to the appropriate unit. Therefore, the delay of this unit may be the critical path for half a
clock cycle of work.

 37

A data value is written back to a register using the signals with the term ‘Write’ in them.
The data, <iPipelineWriteDataToContext>, is written to register
<iPipelineRegWriteToContext> when <iPipelineReqWriteToContext> is set to a ‘1’.

A potential design problem in this unit occurs when the register being written to is also
being read. However, this case was simple to fix. If a value is being written to a register
that was being requested, the new value is forwarded to the pipeline.

NIU Accesses to the Contexts
The NIU cannot successfully access the context register block whenever it wants. First,
the NIU has to receive a positive acknowledge that a context has been allocated for its
use. As described above, the context register block needs two values to be accessed: a
context identifier and a register number. If no allocation is made, then all of these data
values could be lost because no context ID can be given.

When a context is allocated for use by the NIU, the ID for that context is stored in a
temporary register. In addition, a 5 bit counter, which is used as the next register number
to write, is reset to 0. Table 4.5 below describes the interface used by the NIU to access
the contexts.

Table 4.5: Description of the interface between the NIU and the contexts.

Signal Name Type Bit Width Description
iNIUDataToContext In 32 The data to be written to a register.

iNIUValidIntDataToContext In 1 Set to a ‘1’ to indicate valid integer data is present on the
data bus. ‘0’ otherwise.

iNIUValidFloatDataToContext In 1 Set to a ‘1’ to indicate valid floating point data is present on
the data bus (See Chapter 5). ‘0’ otherwise.

The active high <iNIUValidIntDataToContext> signal is used to indicate the data bus
contains a value to be written to the next register. The counter is incremented to the next
register, so the next data value will be written to a different location. It is important to
note that only 32 data values can be sent in a thread message, since the values are written
directly to the registers of one context from the network.

Once the NIU to context interface was finalized, the design and implementation of the
Context Management Table (CMT) and the Context Register File (CRF) were complete
for the basic SCMP node. Together, the CMT and CRF control units are capable of
managing multiple threads and accessing the registers associated with each thread. This
chapter identified the signal interfaces between the contexts and the memory controller,
the pipeline, and the NIU. The strategies for context management to locate the next
thread to execute or the next available context for data storage were also presented and
explained. The alternative design approaches that were considered as part of the context
interface development were also presented and discussed, and the reasons for including
or discarding these alternative designs were explained. With the completion of the design
and implementation of the basic the SCMP node, it is now capable of executing any fixed
point application. The next chapter presents some changes to this basic node design.

 38

Chapter 5 Additions to the Basic SCMP Node
After the basic node had been designed and implemented, its operational shortcomings
were brought to the forefront. For example, there was no construct in place to handle a
divide by zero. Also, any thread could write to the CMT and stop another thread without
reason. These examples lead to the addition of an exception handler.

Another inadequacy of the basic SCMP node was identified to be that floating point
operations were not supported. For example, image rendering algorithms rely heavily on
floating point calculations. Since one of the main targets of the SCMP parallel computer
is image processing, the node needed to support functions necessary for that type of
computation.

This chapter presents the implementation of floating point support and exception
handling for the SCMP node as a part of this research.

5.1 Floating Point Support
A floating point unit was added to each SCMP node so that the processor could support a
wider variety of applications. The design conformed to IEEE Standard 754-1985 for
binary floating point arithmetic. It is important to note that the implementation described
in this section has not been thoroughly tested, and thus, has not been verified.

One of the first considerations when adding the float point capability to the SCMP node
was how the values would be stored. Single precision values (32 bits) map directly to the
current hardware design. For example, a register could store the entire floating point
value, since the registers were also 32 bits. However, double precision values (64 bits)
required additional design effort, since each double required two registers for storage.
Thus, each context could only store up to 16 double precision values, since there were 32
registers in each context. To keep the design changes and implementation as simple as
possible, a maximum of 16 floating point values (singles and doubles) could be stored in
one context, registers labeled f0 – f15. In addition, the buses that carry register data
from/to the contexts to/from the pipeline were expanded to 64 bits, so that two doubles
could be retrieved and one written in one clock cycle.

Rather than designing a system that could intermix integers and floating point values, a
second context was allocated to a thread to store floating point values. The SCMP
system already had the capability to use two contexts in one thread via the DCR register.
Any reference to f0 - f15 in a program would require a valid DCR value so a second
context could be accessed. This arrangement allowed the user to use the SCMP
processor for integer calculations, and extend a thread’s capabilities to floating point
arithmetic when needed.

The second context could be allocated to a thread in one of three ways. First, the user can
specifically allocate a context for floating point operations by using the alloc instruction.
The new context identifier is returned to the pipeline and is written to the DCR for the
currently executing thread. If a free context is not available, the context will suspend,

 39

and the next thread scheduled to execute will gain control of the processor. When the
suspended thread executes again, the alloc instruction will be executed again. The
process will repeat until a context is successfully allocated to the thread.

Second, an exception occurs to allocate a floating point context if a reference is made to
f0 – f15, but the DCR value is invalid. The exception handler will allocate a context, if
one was free. Similar to the first case, if a free context is not available, then the
exception handler will exit, and the next thread scheduled to execute will gain control of
the processor. When the suspended thread executes again, the exception routine will be
triggered to run again. This process will continue until a context is successfully allocated
to the thread. However, even after the exception handler succeeds the next thread to
execute still gains control of the processor because of how exceptions are implemented
(see Chapter 5.2).

Third, if a context is going to send a thread message with floating point data in it, the
header of the message indicates that the receiving node’s NIU must request two contexts
from the CMT, one for integer data and one for floating point data. See Figure 5.1 for a
description of the modified message format. If the contexts cannot be allocated, the NIU
must continue to request both contexts until it succeeds. If both contexts are allocated,
then a bit, which was added to each flit, indicates if the data will be stored in a register as
integer data or floating point data.

Figure 5.1: A bit was added to the flits to indicate whether or not floating point data was being used.

 40

Now, when a thread message arrives at the NIU of a node, the ‘F’ bit in the header flit is
used to determine whether or not floating point data is present in this message. If not,
then the ‘F’ bit is ‘0’, and would be ignored for the remainder of the message. When the
‘F’ bit is a ‘1’, a second context needs to be allocated for floating point data storage. This
case is the third one described above. An active high signal, called
<NIUReqNewFloatContextToCMT>, was added between the NIU and the CMT to
accommodate the request of a second context. Because a float context cannot be
requested without an integer context, the CMT control assumes this signal is valid only
when the <NIUReqNewIntContextToCMT> signal is a ‘1’. Therefore, the case when
ReqNewIntContext is ‘0’ and ReqNewFloatContext is ‘1’ is ignored. The CMT control
uses two registers to store the context identifiers of the integer context and the floating
point context so each can have its registers written to with the flits that followed the
header.

Once two contexts have been allocated for the message, the
<NIUValidFloatDataToContext> and <NIUValidIntDataToContext> signals are used
between the NIU and the contexts to determine which context the incoming data will be
stored. The values of these signals are determined by the ‘F’ bit in the incoming data flit.
If the ValidIntData signal is high and the ValidFloatData signal is low, then the data is an
integer. Conversely, if ValidIntData is low and ValidFloatData is high, then the data is
stored as a float. If both signals are high or both low, then the data between the NIU and
the contexts is invalid. When the tail flit is received, the integer context is scheduled for
execution and its DCR value is set to the identifier of the floating point context. This
feature was added to help support floating point, but it also provides a way for a node to
send a thread message with 64 data values rather that just 32.

It is important to note that the ‘F’ bit has no meaning in a data message. A data message
contains a number of 32 bit values that are written to memory starting at a specified
location. The type of data does not matter until the values are read by the pipeline. In
other words, the memory unit does not care about the type of data, just that bits are being
written to a location.

Since the NIU can request two contexts at once, the next two free contexts need to be
known. The same logic is used to find a free context, but a test is done to see if another
free context needs to be found. For example, when a node is reset, no free context is
known. On the next clock edge, the first free context is found. On the second edge, the
second free context is found. On the third clock cycle, there is no need for another free
context to be found since two were already discovered. Then, at some cycle in the future,
one of these free contexts will be allocated. On the next clock edge, the second free
context will become the first. Then, in the next cycle, a second free context is found, if
one is available. This additional logic also allows the pipeline to allocate a context and
the NIU to request an integer context at the same time. Being able to service both units at
once potentially decreases the amount of delay in the network since the NIU is always
able to request one context, if one is available.

 41

The other form of required storage is local memory. Again, support for double precision
values caused a change in the hardware. Since the memory is used just for simulation, it
was modified to output two 32 bit values at once. This change also meant that the buses
between the pipeline and the memory controller and between the memory and the
memory controller were expanded to 64 bits. In addition, the <MemoryOpToMemory>
signal was modified to include an 8 byte operation to accommodate floating point
accesses.

Finally, a floating point arithmetic unit (FPU) was added to the node. The FPU performs
the operations set forth in the IEEE standard. These operations have yet to be optimized
for hardware and are assumed to execute in one cycle. The FPU was implemented like
the ALU, with the same interface except 64 bits wide instead of 32, so its block will not
be discussed in detail.

The addition of floating point support makes each SCMP more versatile. Thus, each
node is capable of executing more complex algorithms, and hopefully, in less time than
on a uniprocessor.

5.2 Exception Handling
When an exception occurs, a software routine is required to manage the error. The way
SCMP executes software, either a dedicated thread context or user provided software is
necessary to handle the exception. It is unreasonable for everyone who writes a program
for SCMP, to write all of the exception handlers in addition to the program itself.
Therefore, a software library routine to handle each exception was written by Dr. James
Baker. A list of exceptions is given in Table 5.1.

Table 5.1: Exceptions handled in the SCMP node.

Exception Description When It Occurs ESIGNAL values
No Exception 0x00000000
Integer Overflow If result is > INT_MAX

If result is < INT_MIN
If INT_MIN/-1
Or Negate INT_MIN

0x00000001

Integer Divide By 0 If second source operand is 0 0x00000002
Floating Point Underflow CA:QA, 3rd edition, Appendix H, pp. H-36 -

H-37
0x00000004

Floating Point Overflow For single-precision, exponent is 128 or
greater

For double-precision, exponent is 1024 or
greater

0x00000008

Floating Point Divide By 0 If second source operand is 0 0x00000010
Floating Point Inexact Occurs if result overflows or must be rounded 0x00000020
Floating Point Invalid Result does not have a natural representation

as a number or +/- ∞
sqrt(-1), 0/0, ∞ - ∞, etc.

0x00000040

Bus Alignment Occurs when memory accesses are not on an
even boundary

0x00000080

Bus Invalid Load or store to invalid address: Valid 0x00000100

 42

addresses are 0x00000000 to
MEM_SIZE-1 for RAM, 0xffffff00 to
0xffffffff for CMT

Or Instruction fetch from a non-word-aligned
address

Opcode Invalid The instruction opcode does not exist 0x00000200
No Free Context All entries in the CMT have the ALLOC bit

set to 1, and the NIU requests a free
context

0x00000400

Invalid Context Attempt to access a context that was not
allocated

0x00000800

No Data Context (DCR Invalid) Reference to R32-R63 is made before the
DCR is valid

0x00001000

When an exception occurs, the pipeline is flushed so that no operation occurs after the
error. This stall is necessary since the exception condition is not known a priori. Since
the pipeline is flushed, the exception code gains control of the processor, just as a thread
context would. Also, the IP address of the routine and the context identifier that caused
the exception must be known. If one entry in the CMT is dedicated to the exception
handler, it would be a thread context; and the IP address of the routine could be stored in
the IP field of the CMT entry. Therefore, the exception handler is given a context and is
always resident for use. Context 0 was chosen arbitrarily.

The method of scheduling the error handling routine was considered. Either the
exception handling routine could run as usual, in a round robin fashion, or it could
execute out of order. If context scheduling continued in round robin fashion, a second
context could throw an exception before the exception handler was executed. The main
question becomes, which exception would be handled? If it was the first exception, then
the second context would have to recognize that an exception was already pending, and
suspend rather than throwing the exception before suspending. While this solution is not
complex, it could keep other threads from executing. For example, assume the thrown
exception ended thread execution (e.g. divide by 0) and there were no free contexts. If
the exception was handled in round robin fashion, a thread message would wait in the
network until the exception was handled since there was not a free context. However, if
the exception was handled immediately, this delay would not occur.

Conversely, if context 0 executed out of order, then whenever an exception is raised, it
would be handled. The trick is not to modify the value in the next thread to execute
register (NTE). When the exception handler finishes its execution, the next context that
received control of the processor is the context pointed to by the next thread to execute
register (NTE). This implementation allows execution to continue in round robin fashion
and ensures that no context is starved. A potential negative of this implementation is that
a thread will execute until it completed or raised an exception, at which time the thread
gives up the processor until the next time it is scheduled. This scenario only involves a
check when a context suspends, to determine if an exception needed to be handled or not.
If so, then context 0 is executed. If not, then the next thread to execute gains control of
the processor.

 43

There was one major concern about adding exceptions to the SCMP node. In general,
processors on a parallel system work towards a common goal. The processors in a
parallel system communicate, either to share results or synchronize with another node, to
achieve that goal. If a synchronization thread threw an exception and was killed by the
handler, then the waiting processor will hang indefinitely and the program would never
finish. In the SCMP simulator, an error message was output when a thread was killed by
an exception. Then, the simulator exited. In hardware, the exception handler could reset
the entire processor, since the algorithm failed to complete.

As stated above, context 0 is used as the exception handling context. The following
registers are used to identify when an exception is thrown, by which context, and if
handling is necessary: EHANDLER, EMASK, ESIGNAL, ESTATUS, and ETHREAD.
All of the registers and logic needed to support error handling were added to the context
management logic of the processor, since that is where threads are created, ended,
suspended, and scheduled. The values of the registers can be read by using the readsr
instruction and written, if possible, using the writesr instruction.

EHANDLER contains the starting address of the exception handler. When an exception
occurs, this value is copied into the IP field of CMT entry 0 (the exception handling
context). This strategy allows the user to write an exception handler and use it by writing
to this register. The default value of this register can be set in contexts.h

The EMASK register is used to determine which exceptions would cause the handler to
execute. A zero bit value means the exception is disabled, while a one means it is
enabled. The organization of the register is shown in Figure 5.2.

Figure 5.2: The bit assignment in the EMASK register.

ESIGNAL is a read-only register used to determine, if any, the most recent exception that
was thrown. Table 5.1 includes the ESIGNAL value for each exception. The encoding
for this register is a one to one match with the EMASK register. This uniform
management is more readable and faster to debug since register comparison is not
necessary.

The ESTATUS register contains all of the exceptions that have been thrown, whether
enabled or disabled. The bits in this register are ‘sticky’ and, as before, match the
positions in the EMASK register. Sticky bits remain at the current value until cleared
using the writesr instruction. As a general rule, the exception handler will clear the

 44

corresponding bit in this register when it completes. However, if an exception is disabled,
once thrown, the value in the ESTATUS register will remain a one. The user can use the
readsr instruction to obtain the status of the exceptions for the node. This read could be
useful if the user desires to handle the exception within the program without giving up
the processor.

ETHREAD is a read-only register that identifies which context caused the exception. In
addition, this value is used to read/write register values to the correct context during the
exception handler. In other words, this register acts like the DCR register for another
context. It could also be used to access the CMT entry of the context that caused the
exception and use/change its values. For example, assume that context 1 caused a divide
by 0 exception, and CMT entry 1 contains context 10 in its DCR field. Then, the
exception handler needs to free both context 1 and context 10 since neither could
continue execution.

The following describes how the new hardware will handle an exception. When an
exception occurs, the corresponding bit is set in the ESTATUS register. If the
corresponding bit in the EMASK register is a zero, then the exception is disabled and
thread execution continues uninterrupted. If the exception is enabled in EMASK, then
throw the exception. In CMT entry 0, the THREAD bit is set to ‘1’, EHANDLER is
copied to the IP field, and the DCR is set to 0. The current ATR value is copied into
ETHREAD, and ESIGNAL is set to the exception identifier. The current thread suspends
and context 0 begins to execute. After the exception is handled, the corresponding bit in
the ESTATUS register is cleared, and the next thread to execute after the thread that
caused the exception is given control of the processor.

In addition to the hardware changes necessary to handle the exception, extra hardware is
necessary to identify when an exception occurs. For example, the memory controller is
responsible for identifying bus alignment errors to memory. Therefore, the signal
MemoryExceptionToPipeline was added between the memory controller and the pipeline.
This signal is as wide as the ESIGNAL register, and the signal value corresponds to the
appropriate exception. Similar signals were added as outputs for all blocks of the
processor that could cause exceptions: ALU, memory controller, and pipeline. The other
units indicate an exception through a negative acknowledge. For example, assume that
the alloc instruction is executed but no free context is available. The CMT control would
indicate an exception of ‘no free context’ by using a negative acknowledge. The pipeline
recognizes the negative acknowledge and throws the ‘no free context’ exception.

The pipeline receives these signals after each instruction is executed. If an exception
occurs, the corresponding ESIGNAL value is sent to the context management control so
the exception can be thrown.

The major problem that arose with the addition of exceptions to the design was if a write
to memory occurred the instruction after an exception was thrown. However, the SCMP
pipeline is able to catch each exception before the write to memory began. This new
requirement is achievable since all ALU operations end on the falling edge of the execute

 45

stage of the pipeline. There is a half cycle to stop memory from being written.
 depicts the timing diagram to illustrate this point. For bus alignment errors, the

memory controller replies in the same cycle since it is asynchronous. Therefore, the
pipeline detects the error before the setup for the next instruction is complete.

Figure
5.3

Figure 5.3: The timing of an exception between the ALU and the pipeline.

Adding exceptions to each node creates a safer environment for programs to execute.
The structure that was put in place creates a context priority scheme where context 0
executes whenever it needs to and the other contexts execute in a round robin non-
interruptible fashion.

With the addition of floating point support and exception handling, the SCMP node can
support any target application as well as any application error. The floating point design
allows for utilization of single precision and double precision floating point values.
Extending the node hardware capabilities to accommodate floating point values had the
extra benefit of doubling the amount of data that a node could pass in a thread message to
64 values. Now that the SCMP node design and implementation is complete, its
operation needs to be tested and verified.

 46

Chapter 6 Software Support and Simulation
Now that the hardware was designed and behaviorally implemented in System C, it
needed to be tested to ensure that all the parts work separately and together. This
research effort was responsible for all of the testing and verification presented in this
chapter. Once the design was verified, the software simulator for the SCMP parallel
computer could be updated to match the hardware design.

6.1 Hardware Simulation of the Block of the SCMP Node
Each block of the SCMP node was tested individually and then as an integrated part of
the node. All of the blocks were tested in a similar fashion. A new object was created
for each block that instantiated the unit it was testing and was triggered on the
appropriate clock edge. gives a general block diagram of this testing scenario. Figure 6.1

Figure 6.1: A general case of how individual blocks were tested.

Testing Object
clockI/O

Test
Bench

SCMP Node
Block

The testing object was responsible for controlling the test cases. This control was
accomplished by a finite state machine, which manipulated the inputs and displayed the
appropriate valid outputs. The testing unit also created a trace of the signals of a block.

A test bench was created for each unit. The test benches created the testing object and
then controlled the clock so the test could proceed. After the simulation was complete,
the output from the tester and the signal traces were used to verify the design of a unit in
the node.

Let us consider the testing object for the ALU as an example. When the testing unit,
called aluTEST, was instantiated, a reset object and an ALU object were created. The
positive edge triggered reset unit controlled the reset signal. The ALU, however, was
negative edge triggered because of how the pipeline performed its operations. On the
reset object’s first event, the reset signal was set high. The opcodes that signaled the
ALU to perform an operation were arranged consecutively in the instruction set.
Therefore, when the testing object was reset, the OpSelect lines were set to the first value
that signaled an ALU operation. The two inputs to the ALU were set to the same value

 47

for the entire test since the outputs of the operation could easily be calculated. On the
next reset event, the reset signal was set low, so the test could begin.

The aluTEST object waited for the acknowledge signal from the ALU to go high. If, on
an ALU event, the acknowledge signal was low, a NOP (0x00) was sent to the ALU
because it did not pipeline the operations. The acknowledge event indicated that the
ALU had finished its calculation and the output was valid. When a valid output signal
was received, the ALU value was output, and the next opcode was sent on the OpSelect
lines. The process repeated until all ALU operations were tested. This operation can be
seen in Figure 6.2, which depicts a portion of the results of the test on the ALU.

Figure 6.2: A timing diagram from the ALU test bench.

In Figure 6.2, when the reset signal was set high, the ALU inputs were set to 4 and 30,
and the OpSelect lines were set to the add instruction (0x01). On the falling clock edge
after the reset signal went low, the ALU performed the addition of 4 and 30. Because the
acknowledge signal was low on the same edge, a NOP (0x00) was sent on the OpSelect
lines. The first time the acknowledge signal was high on a falling clock edge, the result
was 34 (0x22) signifying success. After the result was read, the next ALU operation to
perform was sent out on the OpSelect bus. If all the ALU operations were completed,
then the test was complete and the simulation exited.

The asynchronous memory controller was the only block that was not tested individually.
After the memory unit and the context management table had their memory interfaces
tested, both were used to test the memory controller. These extra blocks simplified the
testing unit since the memory and CMT became responsible for the acknowledge signals
and data handling. The testing block was only accountable for the interfaces to the
requesting units. There were six test cases for access to the memory: when zero units
requested access, when only the pipeline requested access, when only the instruction
cache requested access, when only the NIU requested access, when all three units
requested access, and when the instruction cache and NIU requested access. The test
when all three blocks requested access to memory also covered the missing two cases:
when the pipeline and the instruction cache requested access, and when the pipeline and
the NIU requested access. This deduction was made because it was shown that the
pipeline received priority over both of the other units when all three units made a request
to memory. Figure 6.3 illustrates part of the test of the memory controller.

 48

Figure 6.3: A timing diagram of the test for the memory controller.

In the diagram above, the request and acknowledge signals for each of the three units that
access the memory through the memory controller are shown. The six test cases that
were described above can be seen in this figure. As expected, when only one unit
requested access to the memory, it received a positive acknowledgement. The cases
when more than one unit had a memory request are shown at the right end of the image.
Again, as expected, when all three units requested memory access, the pipeline received
the positive acknowledge. Similarly, when the instruction cache and the NIU requested
access to memory, the cache received the positive acknowledgement.

Of the blocks that make up the SCMP node, only the pipeline was not fully tested. The
remaining blocks of the node were tested and their operation was verified. Within the
pipeline, the interfaces from the pipeline to the CMT/contexts and from the pipeline to
the NIU still need to be implemented and tested. Once this work is completed, the
pipeline can be completely analyzed.

6.2 Results
After each of the blocks of the SCMP node were tested, they were put together to
simulate a single node of the SCMP parallel computer. This simulation excluded the
router, as it was not within the scope of this portion of the research project. Also, these
tests were conducted without the implementation of floating point or exception handling.

It was not possible to simulate a node’s operation without executing a program on the
node. Therefore, it was important to consider how a program was created for the SCMP
parallel computer. A programmer could write a program for this architecture either using
C or assembly. The C-compiler was developed by Sidney Bennett [24] and Dr. James
Baker. It was based on the SUIF toolkit developed at Stanford [22].

The C program is first translated into a general assembly language provided by SUIF.
Each of these general assembly instructions was implemented in the SCMP instruction
set. Then, the SUIF code is translated into SCMP instructions. Next, the SCMP
assembler was used to generate the actual machine code for a node. Finally, library code,
which provided general functionality, could be linked into the program using the SCMP
linker. This explanation is vastly oversimplified, but gives the reader a general idea of
how it works.

 49

Once the executable had been generated, it was necessary to test the program. A
software simulator was developed to execute SCMP programs. It was written in C, by Dr.
James Baker, but it was not cycle accurate. Thus, the operations were performed
correctly, but they did not use the correct amount of clock cycles.

Similar to a single unit, a testing object was created that instantiated the entire node with
its interconnections. To simulate a program on a node, the tester loaded an executable
into the memory on the node. An executable program for the SCMP chip was in the ELF
file format. Dr. James Baker wrote a C converter that took an executable file as an input
and extracted the bytes that need to be stored in memory. These bytes were then written
to the memory of a node. Also, the start address for the program was saved so that a
context could be created on the node to start the execution. Once the memory contained
the necessary information, the testing object, then, wrote to the Alloc bit, the Thread bit,
and the IP address of an entry in the CMT using the memory mapped interface of the
CMT. The IP address came from the saved start address indicated by the executable file.
The tester could accomplish these tasks because it instantiated all of the units in the node,
and thus could control any interface it wanted. After the initial thread was created in the
CMT, the testing object waited for the simulation to complete.

The simulation was complete after all of the contexts in the node had finished execution.
This case was true when every entry in the CMT had its Alloc bit set to ‘0’. A done
signal was added between the CMT and the node tester to indicate when all of the
contexts were free. The tester used this signal to indicate the end of the simulation.
However, this scenario will not work when multiple nodes were simulated at once. All of
the nodes could have completed execution, but there may be a thread message in the
network that could start a new thread on one of the nodes. Therefore, when the entire
SCMP parallel computer is simulated in hardware, a mechanism will be needed to detect
if there are any messages in the network.

Once the program finished its execution, the operation of the node needed to be verified.
Similar to the individual unit testing, the simulation generated a trace file of the
appropriate signals so the timing of the units could be analyzed. In addition, a function
was added to the CMT/context control and the memory that allowed its contents to be
output to a monitor screen. The CMT/context output function accepted a single integer,
which was used as an index to the CMT and the contexts. The CMT value at the given
location was output, and all of the register values for the given context were output.

When considering the memory unit output function, it was not reasonable to output the
entire contents of memory. Therefore, two values were sent to the memory output
function. These parameters served as the start and end addresses of the values to output
from memory. Using these additional functions and the signal trace, the operation of the
SCMP node was verified.

Currently, the pipeline only supports instructions that involve the ALU, instruction cache,
and memory. The test program that was executed in the SCMP node hardware simulator

 50

and a portion of its results are given in below. For an assembly instruction
reference guide, see Appendix A.

Table 6.1

Table 6.1: The program used to test the SCMP node with a portion of its results. (This program was
created and tested by Priyadarshini Ramachandran.)

Test Code Result
main:
 llo r3, 5
 llo r2, 4
 stw 1(r2), r3
 ldw r4, 1(r2)
 mul r1, r4, r3
 llo r5, 9
 llo r6, 8
 addi r7, r5, 89
 idiv r8, r6, r2
 ldw r9, 1(r2)
 stw 1(r2), r1
 ldw r5, 1(r2)
 idiv r6, r5, r9
 bra Skip1
 mulh r7, r1, r2
 mulu r8, r3, r5
 mului r9, r7, 1
Skip1:
 sub r1, r3, r2
 bgt r1, Skip2
 muli r0, r0, 0
 mul r1, r2, r3
Skip2:
 llo r3, 2
 end

<PIPE.ID1> Decoding: 0x6e180005 (LLO)
<ALU> LLO: in1 = 0 in2 = 5, Result:5
<PIPE.ID1> Decoding: 0x6e100004 (LLO)
<ALU> LLO: in1 = 0 in2 = 4, Result:4
<PIPE.ID1> Decoding: 0x7e004181 (STW)
<ALU> STW: in1 = 4 in2 = 1, Result:5
<PIPE.ID1> Decoding: 0x78204001 (LDW)
<ALU> LDW: in1 = 4 in2 = 1, Result:5
<PIPE.ID1> Decoding: 0x12088180 (MUL)
<PIPE.ID1> Is a RAW Hazard
<PIPE.ID1> Decoding: 0x12088180 (MUL)
<ALU> MUL:
<ALU> MUL:
<ALU> MUL:
<ALU> MUL:
<ALU> MUL: in1 = 5 in2 = 5, Result:25
<PIPE.ID1> Decoding: 0x6e280009 (LLO)
<ALU> LLO: in1 = 0 in2 = 9, Result:9
<PIPE.ID1> Decoding: 0x6e300008 (LLO)
<ALU> LLO: in1 = 0 in2 = 8, Result:8
<PIPE.ID1> Decoding: 0x638a059 (ADDI)
<ALU> ADDI: in1 = 9 in2 = 89, Result:98
<PIPE.ID1> Decoding: 0x2240c100 (IDIV)
<ALU> IDIV:
<ALU> IDIV:
etc.

The results section of Table 6.1 shows when each instruction was identified and then
executed. In the case of the first multiply instruction (MUL), one of the inputs was read
from memory in the previous instruction. Therefore, the pipeline must stall for one cycle
to wait for the valid data to return from memory. Once the data returned, the multiply
instruction was performed. It is assumed that it will take 5 clock cycles to execute a
multiply, which is the reason for the blank <ALU> MUL: lines in the output.

The results of these simulations demonstrate that the current SCMP node has been
implemented successfully. As the pipeline begins to support the other portions of the
processor, test programs will be executed in the simulator to verify the operation of the
node. Also, testing for utilization of the floating point features and the exception
handling must also be performed to complete the testing and verification of the SCMP
node.

 51

Chapter 7 Summary and Future Work
The goal of this research was to create a hardware model of a node for the SCMP parallel
computer. This hardware model will be used to modify the existing software simulator to
become cycle accurate.

7.1 Summary
An SCMP node was designed and implemented as a 32 bit RISC, integer based, multi-
threaded processor with local memory. Up to sixteen threads could be simultaneously
scheduled to execute on a node. These threads were scheduled in round robin, non-
preemptive fashion. The node was designed to communicate with other nodes on the
SCMP chip. To meet this requirement, an active message passing system was used. Two
types of messages, thread and data, were supported. A thread message was sent to
another node on the chip to start a new thread on that node. Data messages were handled
much like DMA transfers. The data was read from one node’s memory and written
directly to another node’s memory. These requirements were provided prior to the
beginning of this thesis research.

After the prerequisites for the node had been identified, this research began by
partitioning the node into a number of hardware units. The design and behavioral
implementation, in System C, of each of the basic units was then created.

The five stage pipeline was modeled after the MIPS32 [23]. Three of the components of
the node - the ALU, the memory, and the instruction cache – were created for simulation
only, and the design of each was common to those found in many other processors. The
memory controller was an asynchronous unit responsible for arbitrating requests to
memory. Priorities were given to the units that could access memory so that the pipeline
would stall as few cycles as possible. Therefore, priority was given in the following
order: the pipeline, the instruction cache, and the NIU. As a possible point of
improvement, the memory may not need to know how many bytes of data are being
operated on. The memory controller could read out the maximum number of bytes and
modify the memory value to the appropriate number of bytes. The NIU was responsible
for creating messages and injecting them into the network between the nodes on an
SCMP chip. It accepted data, either from the pipeline or the memory, generated the flits
for the message, and sent them in to the network.

With those units, the SCMP node could run a single thread, if it was given an address to
start. Since this processor was multi-threaded, support was added to accomplish this goal.
A context was responsible for the execution of one thread. The context management
table was created to provide a framework for handling multiple threads. Each thread was
given its own set of 32, 32 bit, registers for its use. Special instructions were available to
expand to 64 registers, if necessary. Contexts were scheduled for execution in round
robin non-preemptive fashion. This algorithm guaranteed that no process would be
starved unless one entered an infinite loop.

 52

Once the initial design was implemented, two major features were added to the node:
floating point support and exception handling. Floating point for the SCMP node
adhered to IEEE Standard 754-1985. The major concern when adding this feature was
data storage. When a context manipulated floating point values, it was forced to allocate
a data context for those calculations. Since the registers were only 32 bits wide, two of
them were used when a double precision value was stored in a context. This register
usage meant that a context could only manipulate 16 double precision values at once. As
a result, for simplicity sake, a data context could only hold 16 floating point values.

Exception handling is an important feature of any program. For example, what happens
when the denominator of a fraction is a zero? It was unreasonable to have everyone that
wrote a program for the SCMP parallel computer also write an exception handler.
Therefore, a general one was created for the SCMP node. Context 0 was dedicated to
handling exceptions. When a context threw an exception, the context would suspend and
context 0 would gain control of the processor. Then, the exception was handled, and the
next thread to execute was given control of the processor. Therefore, contexts 1 through
15 used round robin scheduling and context 0 only executed when an exception was
thrown.

Only the initial design, without floating point and exceptions, was verified. First, each
individual unit was tested. Then, an entire node was assembled and a short sample
program was executed to test its operation.

7.2 Future Work
Although significant progress was made as part of this research effort toward developing
a node for the SCMP chip, there is still a considerable amount of work to be done. For
example, the processor that was verified was only capable of integer calculations. A
design for the addition of floating point operations has been presented, but its
implementation and verification have not been completed. Similarly, the exception
handling scheme for the node has been designed and implemented, but it needs to be
verified.

The hardware model of the SCMP node that was developed should also be used in the
future to modify the software simulator to become cycle accurate. The same sample
programs used to verify the hardware should be tested in the software simulator. If the
results of the two simulators do not match, the software simulator has not yet been
correctly modified to match the hardware.

Outside of the information presented in the thesis, there are many additions or changes
that can be implemented on the SCMP node to possibly improve performance. These
items can include the following: give priorities to threads, allow pre-emptive scheduling,
optimize the operations in the ALU, and exploit instruction level parallelism within a
thread.

 53

It is conceivable that giving priorities to the threads on a node could speed up its
performance. When synchronization between nodes occurs, short thread messages are
sent so a semaphore value can be decremented. These messages do not require many
instructions, but at least one other thread will be waiting for the synchronization thread to
execute. So if this thread is given priority, it would have two advantages. First, the
thread waiting for the synchronization could continue uninterrupted. Second, since the
thread was short, it could free its context quickly so another thread could use it.

Along the same lines, pre-emptive round robin scheduling would prevent one context
from monopolizing the processor. The time slice given to each thread would be an
important feature to consider. It should be long enough to allow one synchronization
thread to execute from start to finish so the benefits described above can still be achieved.

Another alternative would be to allow simultaneous execution of threads on a node. This
change would turn the SCMP node in to something like the SMT architecture [20].

Optimizing the operations of the ALU may help to increase performance. Currently, it is
assumed how many cycles each operation will take. Designing each of the ALU’s
operations would give a definite answer to how many clock cycles each operation will
take.

One of the motivations to create the SCMP parallel computer was to exploit thread level
parallelism since instruction level parallelism had reached a point of diminishing returns.
However, it may be possible to exploit some ILP within a thread without drastically
increasing the complexity of an SCMP node.

As a complete design change, it may be worthwhile to go to a 64 bit processor instead of
a 32 bit one. This change should be considered if most of the applications being
developed for the SCMP chip use floating point operations. Most of the buses in the
system expanded to 64 bits with the addition of a floating point unit, so 32 bit operations
only make use of half of the provided ports.

After the node becomes a stable unit, the entire SCMP parallel computer should be tested.
This testing would be accomplished by including a router in the instantiation of a node.
Then, the nodes would be connected through the routers and a program could be tested
with hardware simulation.

Another future consideration for SCMP would be to design an I/O scheme for the chip.
Currently, it is assumed that everything the chip will need is on chip before the program
begins execution. In a real system, however, data will likely need to be loaded onto the
chip before program execution.

Finally, in considering a real system, the synthesis of the SCMP parallel computer will
become important. A transistor count of the chip could be obtained and be used to verify
the projected fabrication year for SCMP. One possible way to create a physical system
before that date would be to use a stack of FPGAs. Each FPGA could represent one node,

 54

and the pins could be connected to form the network. Once the chip is fabricated, it can
be installed as a system processor or a co-processor.

 55

References
[1] Semiconductor Industry Association, "The International Technology Roadmap for
Semiconductors 2003 Edition,” 2003.
[2] V. Agarwal et al., “Clock Rate versus IPC: The End of the Road for Conventional
Microprocessors.” Proc. 27th Ann. Int’l Symp. Computer Architecture, New York: ACM
Press, 2000, pp. 248-259.
[3] D. Matzke, "Will Physical Scalability Sabotage Performance Gains?," Computer, vol.
30, no. 9, September 1997, pp. 37-39.
[4] P. Ghosh, R. Mangaser, C. Mark, and K. Rose, "Interconnect-Dominated VLSI
Design," 20th Conference on Advanced Research in VLSI (ARVLSI 99), March 1999.
[5] W.J. Dally and S. Lacy, "VLSI Architecture: Past, Present, and Future," 20th
Conference on Advanced Research in VLSI (ARVLSI 99), March 1999.
[6] K. Diefendorff and P. Dubey, "How Multimedia Workloads Will Change Processor
Design," Computer, vol. 30, no. 9, September 1997, pp. 43-45.
[7] W.A. Wulf and S. A. McKee, "Hitting the Memory Wall: Implications of the
Obvious," Computer Architecture News, vol. 23, no. 1, March 1995, pp. 20-24.
[8] J. M. Baker et al., “SCMP: A Single-Chip Message Passing Parallel Computer,” Proc.
Parallel and Distributed Processing Techniques and Applications, PDPTA’02, CSREA
Press, 2002, pp. 1485-1491.
[9] D.S. Wills, H.H. Cat, J. Cruz-Rivera, W.S. Lacy, J.M. Baker, Jr., J.C. Eble, A. Lopez-
Lagunas, and M. Hopper, "High-Throughput, Low-Memory Applications on the Pica
Architecture," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 10,
October 1997, pp. 1055-1067.
[10] W. Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and G.
Fyler, "The Message-Driven Processor: A Multicomputer Processing Node with Efficient
Mechanisms," IEEE Micro, vol. 12, no. 2, April 1992, pp. 23-39.
[11] W. Dally, “Virtual-Channel Flow Control,” IEEE Transactions on Parallel and
Distributed Systems, vol.3, no. 2, March 1992, pp. 194-205.
[12] Gold, Brian, "Balancing Performance, Area, and Power in an On-Chip Network,"
M.S. Thesis, Virginia Polytechnic Institute and State University, July 2003.
[13] K. Diefendorff, "Power4 Focuses on Memory Bandwidth," Microprocessor
Report, vol. 13, no. 13, October 6, 1999.
[14] M. Tremblay, J. Chan, S. Chaudhry, A.W. Conigliaro, and S.S. Tse, “The MAJC
Architecture: A Synthesis of Parallelism and Scalability,” IEEE Micro, vol. 20, no. 6,
November-December 2000, pp. 12-25.
[15] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, "The Case
for a Single-Chip Multiprocessor," Seventh International Symp. Architectural Support for
Programming Languages and Operating Systems (ASPLOS VII), October 1996, pp. 2-11.
[16] F. Allen, et. al., "Blue Gene: A Vision for Protein Science Using a Petaflop
Supercomputer," IBM Systems Journal, vol. 40, no. 2, 2001, pp. 310-327.

 56

[17] V. Krishnan and J. Torrellas, "A Chip-Multiprocessor Architecture with
Speculative Multithreading," IEEE Transactions on Computers, vol. 48, no. 9, September
1999, pp. 866-880.
[18] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, "Baring It All to
Software: Raw Machines," Computer, vol. 30, no. 9, September 1997, pp. 86-93.
[19] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick, "A Case for Intelligent RAM," IEEE Micro, vol. 17, no. 2,
March/April 1997, pp. 34-44.
[20] S. Eggers, J. Elmer, H. Levy. J. Lo, R. Stamm, and D. Tullsen, “Simultaneous
Multithreading: A Platform for Next-Generation Processors,” IEEE Micro, vol. 17, no. 5,
September/October 1997, pp. 12-19.
[21] Mahajan, R.; Govindarajulu, R.; Armstrong, J.R.; Gray, F.G., “A multi-language
goal-tree based functional test planning system,” Proceedings of Test Conference, Oct.
2002, pp. 472 – 481.
[22] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M.
Lam, "Maximizing Multiprocessor Performance with the SUIF Compiler," Computer,
vol. 29, no. 12, December 1996, pp. 84-89.
[23] MIPS Technologies, Inc., "MIPS32 4K Famly,"
http://www.mips.com/content/Products/Cores/32-
BitCores/MIPS324KFamily/ProductCatalog/P_MIPS324KFamily/productBrief, March
17, 2004.
[24] Bennett, Sidney, "Designing a Compiler for a Distributed Memory Parallel
Computing System," MS Thesis, Virginia Polytechnic Institute and State University,
November 2003.

 57

Appendix A The SCMP Instruction Set Architecture

Instruction Operands Opcode Description
ADD rd, rs1, rs2 0000001 Adds two registers
ADDI rd, rs, imm 0000010 Adds a register and immediate
ADDUI rd, rs, imm 0000011 Adds register and immediate (unsigned)
AND rd, rs1, rs2 0010110 Logical AND of two registers
ANDI rd, rs, imm 0010111 Logical AND of register and immediate
ASH rd, rs1, rs2 0011110 Arithmetic shift, register operands
ASHI rd, rs, imm 0011111 Arith. shift, register and immediate
IDIV rd, rs1, rs2 0001111 Signed division, register operands
IDIVI rd, rs, imm 0010000 Signed division, register & immediate
IDIVU rd, rs1, rs2 0010001 Unsigned division, register operands
IDIVUI rd, rs, imm 0010010 Unsigned division, reg. & immediate
LSH rd, rs1, rs2 0011100 Logical shift, register operands
LSHI rd, rs, imm 0011101 Logical shift, register & immediate
MOD rd, rs1, rs2 0010011 Modulo, register operands
MODI rd, rs, imm 0010100 Modulo, register & immediate
MUL rd, rs1, rs2 0000111 Signed multiplication (lower word)
MULH rd, rs1, rs2 0001011 Signed multiplication (high word)
MULHI rd, rs, imm 0001100 Signed multiplication (high word)
MULHU rd, rs1, rs2 0001101 Unsigned multiplication (high word)
MULHUI rd, rs, imm 0001110 Unsigned multiplication (high word)
MULI rd, rs, imm 0001000 Signed multiplication (lower word)
MULU rd, rs1, rs2 0001001 Unsigned multiplication (lower word)
MULUI rd, rs, imm 0001010 Unsigned multiplication (lower word)
NEG rd, rs 0010101 Negate (two’s complement)
OR rd, rs1, rs2 0011000 Logical OR, register operands
ORI rd, rs, imm 0011001 Logical OR, register & imm.
ROT rd, rs1, rs2 0100000 Rotate, register operands
ROTI rd, rs, imm 0100001 Rotate, register & immediate
SGT rd, rs1, rs2 0100110 Set if greater than, signed
SGTI rd, rs, imm 0100111 Set if greater than imm., signed
SGTU rd, rs1, rs2 0101000 Set if greater than, unsigned
SGTUI rd, rs, imm 0101001 Set if greater than imm., unsigned
SLT rd, rs1, rs2 0100010 Set if less than, signed
SLTI rd, rs, imm 0100011 Set if less than imm., signed
SLTU rd, rs1, rs2 0100100 Set if less than, unsigned
SLTUI rd, rs, imm 0100101 Set if less than imm., unsigned
SUB rd, rs1, rs2 0000100 Subtraction, register operands
SUBI rd, rs, imm 0000101 Subtraction, reg. & imm.
SUBUI rd, rs, imm 0000110 Subtraction, unsigned imm.
XOR rd, rs1, rs2 0011010 Logical XOR, register operands
XORI rd, rs, imm 0011011 Logical XOR, reg. & imm.
BEQ reg, disp 0101011 Branch if = 0
BGE reg, disp 0101110 Branch if >= 0
BGT reg, disp 0101101 Branch if > 0
BLE reg, disp 0110000 Branch if <= 0

 58

BLT reg, disp 0101111 Branch if < 0
BNE reg, disp 0101100 Branch if != 0
BRA disp 0101010 Branch always, imm. disp.
BRA reg 0110011 Branch always, reg. address
BSR reg, disp 0110010 Branch to subroutine
BSR reg1, reg2 0110001 Branch to subroutine
RSR reg 0110011 Return from subroutine
LDB rd, imm(rs) 0110110 Load signed byte
LDBU rd, imm(rs) 0110111 Load unsigned byte
LDH rd, imm(rs) 0111000 Load signed halfword
LDHU rd, imm(rs) 0111001 Load unsigned halfword
LDW rd, imm(rs) 0111010 Load word
LHI reg, imm 0110100 Load high 16 bits of register
LLO reg, imm 0110101 Load lower 16 bits of register
STB imm(rd), rs 0111011 Store byte in memory
STH imm(rd), rs 0111100 Store halfword in memory
STW imm(rd), rs 0111101 Store word in memory
SEND rs1 1000010 Send 1 data word
SEND2 rs1, rs2 1000011 Send 2 data words
SEND2E rs1, rs2 1000101 Send 2 data words and end message
SENDE reg 1000100 Send 1 data word and end message
SENDH reg, type, imm 1000001 Send msg. header, imm. operand
SENDH reg1, type, reg2 1000000 Send msg. header, reg. operand
SENDM reg1, reg2, reg3 1000110 Send data words from memory
SENDME reg1, reg2, reg3 1000111 Send data words and end message
ALLOC reg 1001010 Allocates a context
END 1001001 Ends the current thread
FREE reg 1001011 Frees a context
SUSPEND 1001000 Suspends current thread
NOP 0000000 No operation
OSCALL reg, type 1001110 Simulate OS functions
READSR reg, rs 0111110 Read special register
WRITESR rs, reg 0111111 Write special register

 59

 60

Vita
Mark Benjamin Bucciero was born on January 19, 1979 in Lansdale, PA. In 1997, he
graduated from Centreville High School in Clifton, VA. Mark enrolled in Virginia
Tech’s Computer Engineering program following his high school graduation. He
received his bachelor’s degree from Virginia Tech in the Spring of 2001.

Mark will complete his Master of Science degree in Computer Engineering in the
Summer of 2004. His research was sponsored by the NSF and by Virginia Tech’s
Bradley Fellowship. Mark will start his career after graduation at Argon Engineering in
Fairfax, VA, where he now resides.

	Table of Contents
	Table of Figures
	Table of Tables
	Introduction
	Motivation
	Overview of SCMP
	Significance of Thesis
	Thesis Organization

	The SCMP Node
	Description
	Hardware Partitioning
	Instruction Set

	Hardware Implementation
	Memory
	Memory Controller
	Instruction Cache
	ALU
	NIU

	Contexts and Context Management
	Shared Hardware
	Context Management Table and Control
	Find a Context to Execute
	Find a Free Context

	Context Register File and Control

	Additions to the Basic SCMP Node
	Floating Point Support
	Exception Handling

	Software Support and Simulation
	Hardware Simulation of the Block of the SCMP Node
	Results
	Summary
	Future Work

	References
	Appendix A The SCMP Instruction Set Architecture
	Vita

