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Structure-preserving Numerical Methods
for Engineering Applications

Harsh A. Sharma

(ABSTRACT)

This dissertation develops a variety of structure-preserving algorithms for mechanical systems

with external forcing and also extends those methods to systems that evolve on non-Euclidean

manifolds. The dissertation is focused on numerical schemes derived from variational princi-

ples – schemes that are general enough to apply to a large class of engineering problems. A

theoretical framework that encapsulates variational integration for mechanical systems with

external forcing and time-dependence and which supports the extension of these methods to

systems that evolve on non-Euclidean manifolds is developed. An adaptive time step, energy-

preserving variational integrator is developed for mechanical systems with external forcing.

It is shown that these methods track the change in energy more accurately than their fixed

time step counterparts. This approach is also extended to rigid body systems evolving on Lie

groups where the resulting algorithms preserve the geometry of the configuration space in

addition to being symplectic as well as energy and momentum-preserving. The advantages

of structure-preservation in the numerical simulation are illustrated by various represen-

tative examples from engineering applications, which include limit cycle oscillations of an

aeroelastic system, dynamics of a neutrally buoyant underwater vehicle, and optimization

for spherical shape correlation and matching.



Structure-preserving Numerical Methods
for Engineering Applications

Harsh A. Sharma

(GENERAL AUDIENCE ABSTRACT)

Accurate numerical simulation of dynamical systems over long time horizons is essential in

applications ranging from particle physics to geophysical fluid flow to space hazard analysis.

In many of these applications, the governing physical equations derive from a variational

principle and their solutions exhibit physically meaningful invariants such as momentum,

energy, or vorticity. Unfortunately, most traditional numerical methods do not account for

the underlying geometric structure of the physical system, leading to simulation results that

may suggest nonphysical behavior. In this dissertation, tools from geometric mechanics and

computational methods are used to develop numerical integrators that respect the qualitative

features of the physical system. The research presented here focuses on numerical schemes

derived from variational principles– schemes that are general enough to apply to a large

class of engineering problems. Energy-preserving algorithms are developed for mechanical

systems by exploiting the underlying geometric properties. Numerical performance compar-

isons demonstrate that these algorithms provide almost exact energy preservation and lead to

more accurate prediction. The advantages of these methods in the numerical simulation are

illustrated by various representative examples from engineering applications, which include

limit cycle oscillations of an aeroelastic system, dynamics of a neutrally buoyant underwater

vehicle, and optimization for spherical shape correlation and matching.
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Chapter 1

Introduction

1.1 Background and Motivation

Scientists at NASA’s Jet Propulsion Laboratory (JPL) [1] recently announced that 2002

AJ129, a Potentially Hazardous Asteroid (PHA), would fly safely past earth on February

4, 2018. Based on their long-time simulation results, they also predicted that the asteroid

has zero chance of colliding with Earth any time over next 100 years. At a dramatically

different space and time scale, conditions at the subatomic level in the Large Hadron Collider

(LHC) are being numerically simulated at a resolution of trillionths of a second to answer

fundamental questions about the cosmos [2]. Beyond astrodynamics and particle physics, the

study of ocean currents and atmospheric clouds in geophysical fluid dynamics, of energy and

momentum transfer processes in plasma physics, and of molecular dynamics with disparate

time scales also require very accurate long-time simulation. In many of these applications, the

governing physical equations derive from a variational principle and their solutions exhibit

physically meaningful invariants such as momentum, energy, or vorticity.

As modern challenges in engineering and science grow in complexity and dimension, the need

for sophisticated numerical methods to support model-based design and analysis also grows.

With increasing computational power, numerical solutions to increasingly sophisticated prob-

lems can be computed over longer time intervals, with millions of time integration steps. For

such problems, the qualitative properties of the integrator are critical to the accuracy of the

1



2 Chapter 1. Introduction

numerical simulation and reliability of long range predictions. In engineering applications,

numerical methods for studying dynamical systems are usually designed to give rapid and

robust numerical solutions with small overall error. Traditional numerical schemes do not

account explicitly for the qualitative features of the underlying physical system, however,

incurring error that may suggest nonphysical behavior.

The field of geometric numerical integration (GNI) is concerned with numerical methods that

respect the fundamental physics of a problem by preserving the geometric properties of the

governing differential equations. Using ideas from geometric mechanics and differential ge-

ometry, the field of GNI has produced a variety of numerical methods for simulating systems

described by ordinary differential equations (ODEs), which respect the qualitative features

of the dynamical system. GNI methods appeal to physicists, mathematicians, and engineers

for many reasons. For physicists, the geometric structure of a dynamical system reveals

essential, qualitative features in the system’s evolution – features that should appear in an

accurate simulation. For mathematicians, numerical methods based on discrete variational

principles may exhibit superior numerical stability and structure-preserving capabilities. For

engineers, these methods can advance model-based design and analysis by preserving fidelity

to the physical, continuous-time system, enabling, for example, more accurate predictions of

the energy transfer between subsystems.

Since the emergence of computational methods, fundamental properties such as accuracy,

stability, convergence and computational efficiency have been considered crucial for deciding

the utility of a numerical algorithm. Recently, various aspects of structure-preservation have

emerged as an important addition to these fundamental properties. One of the key ideas of

the structure-preserving approach is to treat the numerical method as a discrete dynamical

system which approximates the flow of the governing continuous differential equation instead

of focusing on numerical approximation of a single trajectory. Such an approach allows a
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better understanding of the invariants and qualitative properties of the numerical method.

Mechanical systems, in particular, often exhibit physically meaningful invariants such as

momentum, energy, or vorticity; the behavior of these invariants in simulation provides an

important measure of accuracy. Most traditional numerical methods do not account for the

underlying geometric structure of the physical system, however, so these methods introduce

numerical dissipation and fail to preserve invariants of the system. A structure-preserving

numerical method, on the other hand, can ensure that qualitative features, such as invariants

of motion or the structure of the configuration space, are reflected in the simulation and they

can provide accurate numerical simulation over exponentially long times.

GNI emerged as a major thread in the development of numerical methods in the 1990s. The

field has grown steadily due to the efforts of mathematicians concerned with accurately sim-

ulating the behavior of solutions to differential equations, and thus with numerical methods

that respect the underlying problem structure. These methods have proven quite useful for

conservative Lagrangian/Hamiltonian systems; their numerical stability and accurate pre-

diction of the (constant) system energy make them useful tools for studying complicated

dynamical systems. In fact, research over the past two decades has produced GNI meth-

ods for finite-dimensional, time-invariant mechanical systems subject to conservative forcing

that are so accurate for long-time simulation that they are now used for benchmarking pur-

poses. Even for short-term simulations, it has been frequently observed that the structure-

preserving approach enjoys smaller errors per time step compared to traditional methods,

especially for problems involving finite-time singularities. Since its advent, the structure-

preserving approach has become the new benchmark in the simulation of ODEs, while also

making substantial progress in the numerical study of partial differential equations (PDEs).
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1.2 Research Objectives

Advances in GNI methods for finite-dimensional, time-invariant mechanical systems subject

to conservative forcing have produced algorithms so accurate for long-time simulation that

they are now used for benchmarking purposes. There is a present need and opportunity,

however, to extend these techniques to time-varying systems subject to non-conservative

external forcing. The overarching goal of the current research is to develop and disseminate

new structure-preserving numerical methods for mechanical systems with external forcing

and time-dependence, which are often found in engineering applications. The specific objec-

tives supporting this goal are:

1. Construct geometric numerical integration schemes based on variational principles –

schemes that are general enough to apply to a large class of engineering problems –

and investigate the advantages of these tools in comparison with traditional numerical

methods.

2. Develop a theoretical framework which encapsulates variational integration for me-

chanical systems with external forcing and time-dependence and which supports the

extension of these methods to systems that are constrained or that evolve on non-

Euclidean manifolds.

3. Taking selected engineering problems with different qualitative features as case studies,

apply a variety of structure-preserving numerical methods and investigate their relative

performance using relevant metrics (e.g., energy error, computational cost, solvability,

numerical stability).
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1.3 Summary of Contributions

The main contributions of this dissertation are summarized as follows.

Chapter 2

• Basic differential geometry and geometric mechanics concepts are introduced from a

variational point of view.

• A review of various structure-preserving numerical methods is given which covers the

basics of variational integrators, energy-momentum integrators and Lie group methods

in an accessible way.

• A survey of engineering applications of structure-preserving methods is given for broader

use by practitioners.

Chapter 3:

• Energy-preserving, adaptive time step variational integrators for forced Lagrangian

systems are derived by discretizing the Lagrange-d’Alembert principle.

• Detailed numerical results with a condition number study are provided.

Chapter 4:

• Hermite polynomial based one-step variational and Galerkin methods are derived for

C1– continuous numerical integration of mechanical systems.
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Chapter 5:

• Energy-preserving, adaptive time step Lie group variational integrators are derived for

rigid body attitude dynamics.

Chapter 6:

• Energy-preserving, adaptive time step Lie group variational integrators are derived for

rigid body motion in SE(3).

Chapter 7:

• Classical momentum method on Rn is demonstrated as a variational integrator of a

damped harmonic oscillator with a nonlinear potential.

• Symplectic accelerated gradient method on SO(3) is derived using the Lie group vari-

ational integrator framework.

Chapter 8:

• Backward stability of energy-preserving, adaptive time step variational integrators

is investigated by interpreting them as fixed time-step variational integrators on a

transformed space.

1.4 Publications

This dissertation draws upon the following papers that have or will be submitted for publi-

cation, but the contents from these papers have been modified to avoid repetition of material

and fit the general theme of this dissertation.
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ational and Galerkin Methods for Mechanical Systems” for International Journal for

Numerical Methods in Engineering (In preparation)
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Accelerated Optimization on SO(3) with Lie Group Variational Integrators”, American
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Chapter 2

Review of Literature

The main goal of this chapter is to encourage the broader use of structure-preserving numer-

ical methods in engineering applications by providing an overview of existing GNI methods

and their capabilities in an accessible way, while adding perspectives and application exam-

ples from the literature. In order to be able to use structure-preserving methods in practice,

it is necessary to understand their theoretical bases, numerical properties, limitations and

computational complexity. This chapter summarizes all these aspects as comprehensively

as possible without delving deep into the mathematical details. In the last two decades the

field of structure-preserving methods has grown considerably, with many points of view and

intricate subtleties. Since this work is intended to provide a gateway into the field for prac-

titioners, we have attempted to address the underlying principles and ideas in this survey,

rather than describing specific algorithms and their numerical implementation.

This chapter is organized as follows. In Section 2.1 we give an overview of the geometry

and qualitative features of continuous-time dynamical systems with special focus on La-

grangian/Hamiltonian mechanics and mechanical systems evolving on non-Euclidean man-

ifolds. The perspective taken here is to describe in broad brush strokes the different types

of qualitative features that can be preserved for mechanical systems found in engineering

problems. In Section 2.2 we provide a brief introduction to the formulation of a variety of

structure-preserving methods, including symplectic methods, variational integrators, energy-

momentum integrators, and Lie group methods. In Section 2.3 we give a selection of appli-

8
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cations from the literature, that may benefit from a structure-preserving approach based on

the requirements of a particular application.

2.1 Geometric Structure Underlying Continuous Sys-

tems

The geometric structure is a property of the governing differential equation which can be

defined independently of particular coordinate representations. The structure-preserving ap-

proach to numerical simulation views the numerical method as a discrete dynamical system

which inherits this geometric structure from the continuous system. Thus, for a better un-

derstanding of structure-preserving numerical schemes, we look at the continuous dynamical

systems, governing differential equations and their qualitative properties. Although a lot

of methods to be discussed in this chapter can be applied to a broader class of problems,

this work pays special attention to Lagrangian/Hamiltonian mechanical systems evolving on

manifolds as they are among the most important class of engineering systems in the context

of GNI.

2.1.1 Basic Concepts

The modern formulations of Lagrangian and Hamiltonian mechanics [3, 4, 5] utilize the

coordinate-free language of differential geometry [6, 7] to provide a unifying framework for

many disparate engineering systems. Apart from elegance and precise mathematical formu-

lation, use of differential geometry allows applications to mechanical systems evolving on

general manifolds. In this subsection we give a quick review of differential geometry con-

cepts used in the Lagrangian mechanics framework. We emphasize the fundamental concepts
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required for the variational mechanics while suppressing the technical details.

The concept of a smooth manifold is central to the geometric treatment of classical mechanics

as it generalizes ideas developed on linear vector spaces to non-Euclidean spaces. Manifolds

naturally arise as the configuration spaces for a variety of engineering applications, especially

for mechanical systems with restrictions on the allowed motion due to physical constraints.

For example, the unit sphere S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1} is the configuration

space of a spherical pendulum. The sphere S2 is a two-dimensional manifold embedded in

R3.

Mathematically, manifolds are topological spaces that are locally equivalent to Euclidean

spaces - such as Rn. In simple words, for each point on the n−dimensional manifold, the

points in the neighborhood can be labeled using n local coordinates. The important distinc-

tion from the vector spaces is that these coordinates are only valid in a small neighborhood

of each point and not globally on manifolds. For most of the mechanical systems evolving on

manifolds, the configuration manifolds are equipped with differentiable structure allowing

calculus on manifolds.

The Lagrangian and Hamiltonian mechanics formulations defined on vector spaces provide

local mathematical formulations of mechanics on manifolds using multiple coordinate maps.

From the Lagrangian mechanics perspective, there are two basic requirements for study-

ing the dynamics of mechanical systems. First, we need to identify the set of all possible

configurations of the system as the configuration manifold. The second requirement is to

develop a Lagrangian function which is a real-valued function defined on the state space.

For mechanical systems that are most commonly considered, the Lagrangian function is the

difference between the kinetic energy of the system and the potential energy of the system.

This Lagrangian function is then used in Hamilton’s principle to obtain Euler-Lagrange

equations. The Hamiltonian perspective on the other hand utilizes the phase space version
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of Hamilton’s principle to derive Hamilton’s equations.

Consider a mechanical system evolving on a configuration manifold Q. The tangent space

to Q at the configuration q ∈ Q is the set of all tangent vectors based at q, denoted by

TqQ. The dual space of TqQ, i.e. the set of all linear maps from TqQ to R, is called the

contangent space and is denoted by T ∗
qQ. For the path q(t) on the manifold Q, the velocity

q̇(t) at time t is a tangent vector to Q, based at the point q(t) ∈ Q. The tangent bundle

of Q, denoted by TQ, is the union of all of the tangent spaces to Q. The configuration

and velocity (q(t), q̇(t)) belong to the tangent space to Q at q(t) and hence the state space

is represented by the tangent bundle TQ. On the other hand, the configuration and the

momentum (q(t),p(t)) belong to the cotangent space, and hence the phase space can be

identified with the collection of all the cotangent spaces to Q, namely the cotangent bundle

T ∗Q. Subsequently, the Lagrangian L : TQ → R is defined on the tangent bundle TQ

whereas the Hamiltonian H : T ∗Q → R is defined on the cotangent bundle T ∗Q.

It is important to recognise that this geometric formulation can be used to describe and

analyze dynamical systems globally without resorting to local coordinate maps that may lead

to singularities. In fact this representation is both efficient and advantageous for studying

qualitative properties of complex dynamical systems but has not been widely used by the

engineering community.

2.1.2 Lagrangian Mechanics

In the late seventeenth century, Newton’s laws of motion [8] provided a way to study the

dynamics for free point masses but this approach didn’t work that well for more complicated

mechanical systems such as rigid bodies or connected bodies. Lagrange [9, 10] came up

with an elegant way of computing the dynamics of general mechanical systems; he derived
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a coordinate-invariant formulation of the equations of motion in terms of the Lagrangian.

A few decades later Hamilton [11, 12] simplified the structure of these equations using the

variational principle that bears his name. We closely follow [13] to revisit the variational

derivation of the Euler-Lagrange equations and their qualitative properties from the La-

grangian point of view.

Consider a time-invariant Lagrangian mechanical system with a finite-dimensional, smooth

configuration manifold Q, state space TQ, and Lagrangian L : TQ → R. Hamilton’s princi-

ple [14] states that: The motion of the system between two fixed points from ti to tf is such

that the action integral has a stationary value for the actual path of the motion. For a con-

servative Lagrangian system, Hamilton’s principle characterizes the path q(t) which passes

through q(ti) at t = ti and q(tf ) at t = tf as that which satisfies the following condition:

δB(q) = δ

∫ tf

ti

L(q(t), q̇(t)) dt =
∫ tf

t0

[
∂L(q(t), q̇(t))

∂q(t) · δq(t) + ∂L(q(t), q̇(t))
∂q̇(t) · δq̇(t)

]
dt = 0

(2.1)

Using integration by parts and setting the variations at the endpoints equal to zero gives the

Euler-Lagrange equations

∂L(q(t), q̇(t))
∂q − d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
= 0 (2.2)

Mechanical systems governed by equations (2.2) exhibit important qualitative features. For

autonomous Lagrangian systems i.e. no explicit time-dependence in the Lagrangian, the

energy is conserved along the solution trajectory. Second, by Noether’s theorem [15], there

exists an invariant of the motion corresponding to each symmetry that leaves the Lagrangian

invariant. Another interesting and useful property is that these Lagrangian mechanical sys-

tems conserve a skew-symmetric, bilinear form known as the symplectic Lagrangian form

along trajectories [3]. For mechanical systems with explicit time-dependence in the La-
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grangian, the governing equations and the qualitative features of the nonautonomous system

can be studied by utilizing the extended Lagrangian mechanics framework [13]. Unlike stan-

dard Lagrangian mechanics, the extended framework accounts for time variations in addition

to the configuration variable variations.

The governing equations (2.2) and their properties discussed above can also be derived from

the Hamiltonian point of view by considering Hamilton’s principle in phase space. Depend-

ing on the problem, some properties can be observed and understood from the Lagrangian

perspective and others are easier from the Hamiltonian perspective. For most engineering

applications, the Lagrangian is hyperregular and it is possible to obtain the governing equa-

tions in the Hamiltonian form from (2.2) via Legendre transformation. However, for some

applications such as interaction between point vortices [16], the Lagrangian is degenerate

and no corresponding Hamiltonian formulation exists. Apart from these two approaches,

the Hamilton-Jacobi viewpoint is also very important for developing structure-preserving

numerical methods. This theory describes the motion of the system by a characteristic func-

tion S that is the solution of a PDE, known as the Hamilton-Jacobi differential equation.

This approach is particularly useful in discovering invariants of the motion for mechanical

systems without solving the problem completely.

For an autonomous Lagrangian system with time-independent external forcing fL(q(t), q̇(t)),

the Lagrange-d’Alembert principle characterizes trajectories q(t) ∈ Q as those satisfying

δ

∫ tf

ti

L(q(t), q̇(t)) dt+
∫ tf

ti

fL(q(t), q̇(t)) · δq dt = 0 (2.3)

where the second term accounts for the virtual work done by the external forces when the

path q(t) is varied by δq(t). Using integration by parts and setting the variations at the
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endpoints equal to zero gives the forced Euler-Lagrange equations

∂L(q(t), q̇(t))
∂q − d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
+ fL(q(t), q̇(t)) = 0 (2.4)

Non-conservative external forcing fL violates the symplectic structure and the corresponding

Lagrangian system does not preserve the symplectic form. This external forcing will generally

break the symmetries of the Lagrangian and that will lead to the corresponding momentum

as well as the system energy not being conserved. In the special case that the forcing

is orthogonal to the symmetry, the corresponding conserved quantity can be derived from

the forced Noether’s theorem [13]. Although these forced mechanical systems do not, in

general, preserve the invariants or the symplectic form, the variational approach reveals

how the external forcing alters these properties over time. This is particularly important for

developing numerical methods that capture the evolution of energy or momentum accurately.

2.1.3 Variational Formulation of Different Problems

The variational methodology and the Lagrangian mechanics concepts discussed in Section

2.1.2 have been successfully extended to a variety of mechanical systems. In this subsection,

we summarize the qualitative features and the geometric properties of various classes of

mechanical problems that are important for engineering applications. To keep this treatise

as simple and direct as possible, we have skipped a lot of mathematical details and focused

mainly on the key ideas relevant to structure-preserving discretization. For a thorough expo-

sition, the interested reader may consult the standard textbooks [3, 4, 17] and the references

cited herein.
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Holonomic Constraints: The formulation can be extended to mechanical systems with

holonomic constraints, i.e. constraints on the configuration manifold, by the augmented

approach using the Lagrange multiplier theorem [17]. For a Lagrangian system with d holo-

nomic constraints ϕ : Q → Rd, the augmented Lagrangian L̄ is defined as L̄(q(t), q̇(t), λ(t)) =

L(q(t), q̇(t))− < λ(t), ϕ(q(t)) >. The configuration q(t) ∈ Q along with the Lagrange mul-

tipliers λ(t) ∈ Rd extremize the action integral corresponding to the augmented Lagrangian

L̄(q(t), q̇(t), λ(t)) which leads to constrained Euler-Lagrange equations [13].

Nonholonomic Constraints: The theory for mechanical systems with nonholonomic con-

straints [18], i.e. ϕ : TQ → R, uses theory of Ehresmann connections [19] to describe the

constraints. The basic idea is to consider a collection of linear subspaces Dq ⊂ TqQ for each

q(t) ∈ Q which together describe the velocities attainable by the system under the given con-

straints. The equations of motion for the mechanical system with nonholonomic constraints

are given by the Lagrange-d’Alembert principle where we apply (2.1) with variations of the

curve q(t) satisfying δq(t) ∈ Dq(t). The governing equations for the nonholonomic system

feature a forcing term which involves the curvature of the connection.

Nonsmooth Problems: The variational approaches discussed so far do not apply directly

to nonsmooth problems, such as collision and fragmentation models. This is due to the lack

of smoothness of trajectories which prevents the use of differential calculus on manifolds. Us-

ing concepts from nonsmooth analysis and extended mechanics framework, the variational

approach can be generalized to the nonsmooth setting [20]. Similar to the time-dependent

Lagrangian case, the key idea is to treat both configuration variables and time as functions of

a fixed parameter space which makes the relevant space of configurations a smooth manifold.

Uncertainty: For mechanical systems with uncertainties, a stochastic action can be defined
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based on the stochastic flow of randomly perturbed Hamiltonian systems. The stochastic

Hamiltonian systems [21] on manifolds extremize a stochastic action defined on the space

of manifold-valued semimartingales. Similar to the deterministic case, the stochastic flow is

also symplectic [22] and, by the stochastic Nother’s theorem [23], preserves the symmetries

as well.

Infinite-dimensional Systems: It is important to note that all the governing equations

and geometric properties discussed so far are only applicable to mechanical systems evolving

on finite-dimensional manifolds. For infinite-dimensional problems, the governing PDEs can

be derived thorugh a variational approach by using the covariant field theory [24] where

the dynamics is described in terms of finite-dimensional space of fields at a given event in

spacetime. The covariant analogue of the symplecticity property is the multisymplectic form

formula [25] and the covariant version of Noether’s theorem leads to conservation laws for

PDEs in the presence of symmetries.

Nonvariational Problems: An obvious limitation of the variational methodology is that

it can be only used for Lagrangian/Hamiltonian systems. Although all conservative [26] and

a wide variety of non-conservative problems can be modeled using the Lagrangian formalism,

it still excludes a lot of interesting systems, for example the problems found in fluid dynamics

and thermodynamics. The inverse problem of the calculus of variations [27] deals with the

existence and formulation of variational principles for systems of differential equations. The

method of formal Lagrangians [28] can embed certain nonvariational systems into a larger

system which admits a Lagrangian formulation. This approach extends the applicability

of Noether’s theorem [29] to a larger class of problems and is particularly useful for the

analysis of conservation laws of arbitrary nonvariational differential equations found in fluid

dynamics and plasma physics [30].
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2.2 Structure-preserving Methods

Traditional numerical integrators for studying dynamical systems usually take an initial

condition and move the dynamical system state in the direction specified by the governing

differential equations. This approach to numerical discretization ignores the qualitative prop-

erties of the continuous-time systems and hence may introduce spurious nonphysical effects

leading to incorrect results. On the other hand, GNI methods preserve the underlying geo-

metric structure and provide qualitatively correct numerical results. The philosophy behind

this structure-preserving approach is to identify geometric properties of the continuous-time

system and then design numerical methods which possess the same properties in the discrete

domain. We focus on mechanical integrators – numerical integration methods that preserve

some of the invariants of the mechanical system, such as, energy, momentum, or the sym-

plectic form. Other properties that can be important to preserve are phase-space volume,

continuous or discrete symmetries, time-reversibility, Casimirs, the correct physical form of

dissipation, etc.

In this section, we provide a brief introduction along with a summary of recent developments

in numerical integration of Lagrangian/Hamiltonian mechanical systems. Since our focus is

on Lagrangian/Hamiltonian systems, we first look at numerical methods which preserve the

symplecticity of the flow. In fact, most of the early developments in the field of GNI methods

were related to development of numerical integrators that preserved the symplectic nature

of the flow. We then look at the two most important classes of mechanical integrators: vari-

ational integrators and energy-momentum integrators. We also discuss Lie group methods

for mechanical systems evolving on manifolds.
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Figure 2.1: The taxonomy of structure-preserving methods based on the qualitative features
they preserve for a mechanical system.

2.2.1 Symplectic Methods

As mentioned in Section 2.1.2, the symplectic property has geometric implications regarding

the way in which the Lagrangian flow acts on a set of initial conditions. In simple words,

symplecticity describes how all motions starting close to the actual motion are constrained in

relation to each other. Based on this observation, Vogelaere [31] first developed numerical in-

tegrators that preserved this symplectic property of Hamilton’s equations in 1950s. Although

the symplectic methods for Lagrangian/Hamiltonian problems have a long history with dif-

ferent approaches, modern efforts can be traced to the generating function based methods

of Feng et al [26] and Ruth [32] where they constructed symplectic methods by computing

approximate solutions of the Hamilton-Jacobi equation. Later, Lasagni [33], Sanz-Serna

[34], and Suris [35] showed that certain Runge-Kutta methods preserve symplecticity and

they constructed symplectic Runge-Kutta methods from different perspectives. Reich [36]

showed that the symplectic Runge-Kutta methods conserve the momentum for Hamiltonian

problems with linear symmetries.
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These methods preserve the symplectic nature of Hamiltonian systems, conserve the mo-

menta and reproduce the dynamic behavior accurately for a long time. The excellent long-

time behavior of the symplectic methods can be explained by backward error analysis where

instead of asking “What is the numerical error for our problem?”, the focus is on “Which

nearby problem is solved exactly by our method?”. Through backward error analysis of

Hamiltonian ODEs, Reich [37] showed that symplectic methods solve a nearby Hamiltonian

problem exactly. Thus, despite not conserving the energy of the system exactly, computed

trajectories from symplectic methods always remain close to the solution and the energy

error remains bounded for an exponentially long time.

Ge and Marsden [38] showed that a fixed time step numerical integrator cannot preserve

the symplectic form, momentum, and energy simultaneously for non-integrable systems.

Consequently, the structure-preserving fixed time step mechanical integrators can be divided

into two categories: (i) energy-momentum and (ii) symplectic-momentum integrators.

2.2.2 Variational Integrators

In comparison to symplectic methods based on the generating functions, variational inte-

grators constitute a more recent approach toward the structure-preserving discretizations

of Lagrangian/Hamiltonian mechanical systems. These methods utilize concepts from dis-

crete mechanics, a discrete analogue to continuous-time Lagrangian/Hamiltonian mechanics.

Due to their variational nature, these methods can be easily extended to non-conservative

mechanical systems by discretizing the Lagrange-d’Alembert principle. The basic idea is

to construct a discrete-time approximation of the action integral called the discrete action.

Stationary points of this discrete action give discrete-time trajectories of the mechanical

system.
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Depending on the application, various authors have proposed different versions of discrete

mechanics. In fact, discrete-time versions of variational principles are of mathematical in-

terest in their own right. Based on the concept of a difference space, Maeda [39] presented

a discrete version of Hamilton’s principle and derived discrete Euler-Lagrange equations.

Using the same discretization, Maeda [40] later extended Noether’s theorem to the discrete

setting. Veselov [41, 42] pursued these ideas further in the context of integrable systems

and showed that these discrete-time systems preserve a symplectic form. Building on these

results, Moser and Veselov [43] presented discrete versions of several classical integrable

systems including the free rigid body system.

Based on these concepts, Marsden and West [44] developed a theory of discrete mechanics,

from both Lagrangian and Hamiltonian perspectives, and derived variational integrators

by considering the discrete analogue of variational principles. Although the derivation of

variational integrators from discrete variational principles was first given in [45], we closely

follow [44] to give a brief review of the construction of variational integrators from the

Lagrangian perspective. The idea behind variational integrators is simple: rather than

discretize the governing equations (2.2) or (4.2), one discretizes the underlying variational

principle (2.1) or (2.3).

Figure 2.2: A cartoon illustrating the continuous time variational mechanics (left) versus
the discrete time variational mechanics (right).

Consider a discrete Lagrangian system with configuration manifold Q and discrete state
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space Q × Q. For a fixed time step h =
tf−ti
N

, the discrete trajectory { qk }Nk=0 is defined

by the configuration of the system at the sequence of times { tk = ti + kh | k = 0, ..., N} .

We introduce the discrete Lagrangian function Ld(qk,qk+1), an approximation of the action

integral along the curve from qk to qk+1, which approximates the integral of the Lagrangian

in the following sense

Ld(qk,qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t)) dt (2.5)

The discrete analogue of Hamilton’s principle seeks curves { qk }Nk=0 that satisfy

δ

N−1∑
k=0

Ld(qk,qk+1) =
N−1∑
k=0

[
∂Ld(qk,qk+1)

∂qk

· δqk +
∂Ld(qk,qk+1)

∂qk+1

· δqk+1

]
= 0 (2.6)

which gives the discrete Euler-Lagrange equations

D2Ld(qk−1,qk) +D1Ld(qk,qk+1) = 0 k = 1, ..., N − 1 (2.7)

where Di denotes differentiation with respect to the ith argument of the discrete Lagrangian

Ld. Given (qk−1,qk), the above equations can be solved to obtain (qk,qk+1). Thus, the

discrete Euler-Lagrange equations can be seen as a numerical integrator of (2.2) and these

equations can be implemented as a variational integrator for autonomous Lagrangian sys-

tems. Using the discrete Legendre transform, we can re-write the discrete Euler-Lagrange

equations in the Hamiltonian form as follows

−D1Ld(qk,qk+1) = pk (2.8)

pk+1 = D2Ld(qk,qk+1) (2.9)

where the discrete momentum pk converges to its continuous counterpart as the fixed time

step h approaches zero. Given (qk,pk), the above equations (2.8)-(2.9) can be solved to
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obtain (qk+1,pk+1).

Since the governing discrete equations are derived from the discrete Lagrangian function, the

accuracy of trajectories depends on the order of approximation of the discrete Lagrangian.

Marsden and West [44] showed that a discrete Lagrangian of order r + 1 leads to a varia-

tional integrator of order r. Regardless of the choice of the discrete Lagrangian, the fixed

time step variational integrators are symplectic [46] and momentum-preserving [44, 47]. The

discrete Lagrangian system preserves a discrete symplectic form [45] and when the discrete

system has a symmetry, there is a corresponding conserved quantity at the discrete level.

While these fixed time step algorithms do not exactly preserve energy, backward error anal-

ysis [37, 48] shows that these methods, up to exponentially small errors, exactly integrate

a nearby Hamiltonian system. To be more precise, for a small enough fixed time step,

the discrete energy computed from the numerical integration will remain close to its initial

value for an exponentially long time [46, 49]. In practice, the energy error remains bounded

without exhibiting drift. As the fixed time step h decreases, the amplitude of energy er-

ror oscillations decrease and the discrete energy approaches the continuous system energy.

Because of their excellent long-time stability, these variational integrators – also known as

symplectic-momentum integrators – are ideal for long-time simulation of conservative dy-

namical systems.

Marsden and West [44] showed that the discrete Lagrangian function Ld(qk,qk+1) is a gen-

erating function for the discrete Lagrangian system. Thus, the discrete equations (2.8)-(2.9)

can be seen as a symplectic method with the corresponding discrete Lagrangian as the ap-

proximation to the continuous generating function. This way both symplectic methods and

variational integrators belong to the same class of structure-preserving methods but their

construction is very different. In contrast to symplectic methods, the variational approach

extends easily to non-conservative systems and has more theoretical appeal: the symplec-
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tic property as well as the conserved discrete quantities can be derived directly from the

variational nature of the algorithm as opposed to the trial and error method. In fact, the

variational approach has been useful in explaining the excellent numerical performance of

widely used integrators such as Newmark methods [50].

To introduce external forcing, we define two discrete forces f±d : Q × Q → T ∗Q which

approximate the continuous-time force integral that appears in (2.3) over one time step in

the following sense

f+d (qk,qk+1) · δqk+1 + f−d (qk,qk+1) · δqk ≈
∫ tk+1

tk

fL(q(t), q̇(t)) · δq dt (2.10)

The discrete Lagrange-d’Alembert principle seeks curves { qk }Nk=0 that satisfy

δ
N−1∑
k=0

Ld(qk,qk+1) +
N−1∑
k=0

[f+d (qk,qk+1) · δqk+1 + f−d (qk,qk+1) · δqk] = 0 (2.11)

which yields the following variational integrator for forced Lagrangian systems:

−D1Ld(qk,qk+1)− f−d (qk,qk+1) = pk (2.12)

pk+1 = D2Ld(qk,qk+1) + f+d (qk,qk+1) (2.13)

For forced Lagrangian mechanical systems, variational integrators (2.12)-(2.13) have been

shown to exhibit better energy behavior than traditional numerical integrators [44, 50] for

weakly dissipative systems. Since the external forcing fL(q(t), q̇(t)) modifies the symplectic

structure at every time step, unlike in the conservative case, there are no theoretical results

about long-time stable behavior. Despite the lack of theoretical guarantees, the numerical

results for a variety of dissipative and forced mechanical systems have demonstrated that
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variational integrators track the change in energy more accurately compared to traditional

methods. Similar to the continuous case, if the discrete forcing is orthogonal to the symmetry

of the discrete Lagrangian then the corresponding momentum is conserved based on the

discrete forced Noether’s theorem [44].

The variational approach to derive mechanical integrators has been successfully extended to

a broad class of problems such as:

• Energy-preserving, adaptive time step variational integrators: The strong

negative result of Ge and Marsden [38] – that integrators with a fixed time step cannot

simultaneously preserve energy, the symplectic structure, and conserved quantities for

non-integrable systems – led Kane et al [51] to develop energy-preserving variational

integrators with adaptive time stepping for conservative systems. Marsden and West

[44] derived the same integrators through a variational approach for a more general case

of time-dependent Lagrangian systems. Instead of obtaining the adaptive time step by

imposing an additional equation, as in [51], they treated time as a discrete dynamic

variable [52] and derived governing discrete equations in the extended Lagrangian me-

chanics framework. These adaptive time step variational integrators are energy and

momentum conserving while also preserving the extended symplectic form. These

energy-preserving integrators require solving a coupled, nonlinear, ill-conditioned sys-

tem of equations at every time step and existence of solutions for these discrete trajec-

tories is still an open problem. Shibberu [53] has discussed the well-posedness of these

adaptive algorithms and suggested ways to regularize [54] the system of coupled nonlin-

ear discrete equations. Recently, Sharma et al [55] derived energy-preserving, adaptive

time step variational integrators for forced Lagrangian systems and showed that these

adaptive algorithms, for forced Lagrangian systems, capture change in energy more

accurately than fixed time step variational integrators.
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• Variational integrators for constrained mechanical systems: Marsden and

West extended the variational integrator framework to account for holonomic con-

straints [44] and these methods have been utilized in applications ranging from molec-

ular dynamics to planetary motion. Their extension to mechanical systems with non-

holonomic constraints remained a challenge for some time though. Equations of motion

for a nonholonomic system are derived from the Lagrange-d’Alembert principle which

means that the nonholonomic flow does not preserve the symplectic flow [56]. Cortes

and Martinez [57] obtained nonholonomic integrators by discretizing the Lagrange-

d’Alembert principle and they also extended adaptive time step variational integrators

to nonholonomic systems using the extended Lagrangian mechanics framework from

[44]. Kobilarov et al [58] developed nonholonomic integrators for mechanical systems

with symmetries and applied them to robotic car and snakeboard examples to demon-

strate the advantages compared to standard methods.

• Stochastic variational integrators: Based on the foundational work in the field

of stochastic geometric mechanics by Bismut [22], Milstein et al [59, 60] developed

mean-squared symplectic integrators for stochastic Hamiltonian systems and showed

that these integrators capture the correct energy behavior even in presence of dissipa-

tion. Bou-Rabee and Owhadi [23] discretized the variational principle for stochastic

mechanical systems on manifolds to derive stochastic variational integrators. Similar

to their deterministic counterparts, these algorithms are symplectic and satisfy the

discrete analogue of Noether’s theorem in presence of symmetries. Bou-Rabee and

Owhadi [61] also derived constrained, stochastic, variational, partitioned Runge-Kutta

methods for stochastic mechanical systems with holonomic constraints. Holm and

Tyranwoski [62] utilized the Galerkin type of discretization to derive a more general

class of stochastic variational integrators.
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• Variational integrators for impact problems: Building on the nonsmooth vari-

ational mechanics principles, Fetecau et al [63] developed variational collision inte-

grators. In addition to the discrete trajectory points, this methodology introduces a

collision point and the corresponding collision time, which are solved variationally.

These algorithms retain the symplectic structure as well as the excellent energy be-

havior for nonsmooth cases. One of the drawbacks of this approach is that solving for

each individual collision becomes cumbersome in situations involving many bodies un-

dergoing collision sequences. For such complex multibody collisions, Johnson et al [64]

developed discontinuous variational integrators by incorporating incremental energy

minimization in the discrete mechanics framework.

• Hamiltonian variational integrators: As mentioned in Section 2.1.2, Lagrangian

and Hamiltonian dynamics are not equivalent when the system is not hyperregular.

For such cases, Lall and West [65] developed discrete Hamiltonian mechanics from

the Hamiltonian side, without recourse to the Lagrangian formulation. In contrast to

the Lagrangian approach to derive variational integrators, Leok et al [66] developed

Hamiltonian variational integrators from the Hamiltonian point of view by discretizing

the Hamiltonian. These Hamiltonian variational integrators are particularly useful for

mechanical systems with degenerate Hamiltonian, such as interacting point vortices.

In fact, Schmitt and Leok [67] investigated numerical properties of the Hamiltonian

variational integrators and showed that, even for the same approximation method, the

Lagrangian and Hamiltonian approach may lead to different symplectic-momentum

integrators.

• Multisymplectic variational integrators: Marsden et al [25] developed the geo-

metric foundations for variational integrators for variational PDEs. Using ideas from

multisymplectic geometry [68], they developed numerical methods that are multisym-
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plectic and preserve discrete momentum maps corresponding to symmetries. Lew et

al [69] developed asynchronous variational integrators for solid mechanics problems.

These asynchronous algorithms are based on the spacetime form of the discretized

Hamilton’s principle and allow the selection of independent time steps in each spatial

element. Recently Kraus and Maj [30] extended the variational integrator framework

to nonvariational PDEs by utilizing the method of formal Lagrangian.

2.2.3 Energy-momentum Integrators

Conventional numerical methods for ODEs when applied to Lagrangian/Hamiltonian sys-

tems conserve the total energy and momenta only up to the order of truncation error. These

invariants of motion capture important qualitative features of the long-term dynamics. Aside

from their physical significance, from a computational point of view conserved quantities of-

ten lead to enhanced numerical stability. For example, algorithmic conservation of energy

leads to unconditional stability for nonlinear structural dynamics [70]. In fact, the majority

of development on this topic was due to the discovery that numerical methods with uncon-

ditional stability for linear dynamics may lose this stability in the non-linear regime [71].

Energy-momentum integrators, in contrast to variational integrators (symplectic-momentum

integrators), are designed to preserve the momentum and total energy of the system simul-

taneously.

Labudde and Greenspan [72, 73, 74] developed discrete mechanics based on difference equa-

tions and developed energy-momentum conserving algorithms for particle mechanics prob-

lems. Simo et al [75, 76] developed a more general methodology to construct energy-

momentum integrators for a wide class of mechanical systems. We closely follow [76] to

explain the key idea behind these methods.
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Consider a finite-dimensional mechanical system with configuration manifold Q and canon-

ical phase space T ∗Q. For the simple case of a separable Hamiltonian/Lagrangian system

with constant mass matrix M , kinetic energy K(p) = 1
2
pTM−1p, and potential energy V (q),

the governing equations of motion are given by

q̇ = M−1p ṗ = −∇V (q) (2.14)

It is well-known that the system energy (i.e. the Hamiltonian H = K + V ) and momentum

J(q,p) (corresponding to symmetries) are conserved along the solution trajectory. Given

(qk,pk), the energy-momentum approach designs an approximation (qk+1,pk+1) such that

the system energy Hk+1 = Hk and momentum Jk+1 = Jk are conserved. The strategy

in the formulation of energy-momentum integrators is to first consider the class of exact

momentum conserving schemes and then enforce the additional constraint of exact energy

conservation. For the mechanical system described above, the family of exact momentum

conserving algorithms , with fixed time step h, given by

qk+1 = qk + hκ1M
−1
[
αpk + (1− α)pk+1

]
(2.15)

pk+1 = pk − hκ2∇V
(
αqk+1 + (1− α)qk

)
(2.16)

exactly conserve the momentum J corresponding to the symmetry for arbitrary real-valued

functions κ1 and κ2 and scalar parameter α ∈ [0, 1]. For exact energy conservation, we enforce

the law of conservation of energy on the momentum conserving algorithm (2.15)-(2.16).

As discussed in [76], this constraint can be implemented via a number of different ways.

The projection methods fix the collocation parameter to α = 1
2

and obtain κ1 and κ2 such

that the energy constraint is satisfied. From a geometric point of view, the resulting energy-

momentum integrator can be seen as an implicit projection of the mid-point rule from the
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Figure 2.3: A cartoon illustrating the use of energy-momentum method where conservation
of energy is achieved by an implicit momentum-preserving projection onto the surface of
constant energy H

level set of conserved momentum onto the constant energy surface. The collocation methods,

on the other hand, fix the real valued constants κ1 = κ2 = 1 and solve the energy constraint

equation for the collocation parameter α ∈ [0, 1].

It is important to note that the energy-momentum approach requires solving an implicit

equation and the stability of these methods depends on the solvability of the energy equa-

tion. Assuming the energy equation is solvable, the resulting algorithms are exactly energy

and momentum preserving. In addition to the favorable conservation properties, these algo-

rithms are unconditionally stable in the nonlinear regime. Simo and Gonzalez [77] showed

that the unresolved high frequencies are controlled by exact energy conservation whereas

the symplectic-momentum approach can lead to instability in such cases. These numerical

properties make the energy-momentum integrators ideal for numerical simulation of highly

oscillatory mechanical systems. Since the early development of energy-momentum integra-

tors was based on the idea of modifying the midpoint rule, all of the energy-momentum
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conserving algorithms were symmetric. Hairer et al [46] showed that the good long-time be-

havior of energy-momentum integrators was due to their reversibility and not the conserving

properties. They also numerically demonstrated that the non-symmetric energy-momentum

integrators do not exhibit good long-time behavior.

Betsch and Steinmann [78, 79] presented a unifying approach to derive energy-momentum

integrators by discretizing the weighted residual of Hamilton’s equations using continuous

Galerkin methods. Unlike the finite difference approach taken by Simo and colleagues,

they employed the finite element method for the temporal discretization process and devised

quadrature rules that lead to energy-momentum integrators. Betsch and Steinmann [80] also

extended this Galerkin-based approach to mechanical systems with holonomic constraints

by introducing the mixed Galerkin method based on mixed finite elements in time. Later,

Groß et al [81] modified the continuous Galerkin method and derived higher order energy-

momentum integrators for multi-dimensional mechanical systems.

For dynamic problems involving high frequency content such as constrained, flexible, multi-

body problems, the high frequency oscillations can lead to convergence issues for the energy-

momentum integrators due to their lack of high frequency numerical dissipation. Armero

and Petocz [82] introduced numerical dissipation in the energy-momentum integrators to

derive modified energy-momentum integrators. These energy decaying schemes eliminate

the energy associated with vibratory motions at high frequency while still preserving the

momentum. Instead of satisfying a discrete energy conservation law, the energy decaying

schemes are based on the energy decay inequality given by Hughes [83]. Kuhl and Crisfield

[84] proposed an alternate strategy based on controllable numerical dissipation to derive

generalized energy-momentum integrators. This generalization of the energy conserving/de-

caying algorithms allows larger time steps, due to numerical damping characteristics and

these algorithms are easier to extend to adaptive time-stepping.
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2.2.4 Discrete Gradient Methods

The construction of energy-momentum integrators is related to the concept of discrete gra-

dients. The discrete gradient method is a general technique for deriving integral-preserving

integrators. Gonzalez [85] introduced discrete Hamiltonian systems as formal abstractions

of conserving algorithms based on the idea of discrete directional derivatives. Using this

discrete derivative idea, McLachlan et al [86] developed the discrete gradient methods for

the more general case of dynamical stems with a Lyapunov function.

The discrete gradient methods are applicable to systems with differential equation ẏ =

A(y)∇H(y) where A(y) is a skew-symmetric matrix. For Lagrangian/ Hamiltonian mechan-

ical systems, the vector y = (q,p) belongs to the phase space with the constant symplectic

matrix J as the skew-symmetric matrix A(y) and the Hamiltonian of the system as the

energy function H(y). The discrete gradient methods are of the form

yk+1 = yk + hĀ(yk+1,yk)∇̄H(yk+1, yk) (2.17)

where Ā(ŷ, y) is a skew-symmetric matrix for all ŷ, y, and ∇̄H(ŷ, y) is the discrete gradient

satisfying

∇̄H(ŷ, y)T (ŷ − y) = H(ŷ)−H(y) ∇̄H(y, y) = ∇H(y) (2.18)

These numerical methods are symmetric and are both energy- and momentum-preserving.

It has been shown that the projection method approach to derive energy-momentum in-

tegrators is a special case of discrete gradient methods. In fact, the symmetric nature of

discrete gradient methods played an important role in explaining the good long-time behav-

ior of energy-momentum integrators. For Hamiltonian systems with holonomic constraints,

Gonzalez [87] applied the discrete gradient approach to the governing differential algebraic

equations to derive energy-momentum integrators for constrained mechanical systems. Re-
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cently, Celledoni [88] applied the discrete gradient approach to numerical integration of

nonholonomic systems. The resulting algorithms exhibit exact energy preservation while

ensuring the nonholonomic constraints are satisfied. For PDEs, McLachlan and Quispel [89]

showed that discrete gradient methods preserve energy conservation laws and conserve the

energy exactly when the symplectic structure is constant. Celledoni et al [90] applied these

methods to PDEs with constant dissipative structure and the numerical results demonstrated

that the algorithms capture the correct monotonic decrease in energy.

2.2.5 Lie Group Methods

In many engineering applications, the governing differential equations evolve on a non-

Euclidean manifold and there are two main numerical approaches for such problems, em-

bedded and intrinsic methods. In the first of these approaches, as the name suggests, one

embeds the manifold in Rn and applies a traditional numerical integration scheme. The

drawback of this approach is that, except in special cases, traditional numerical methods are

unlikely to provide solutions that remain exactly on the correct manifold. The alternative

approach uses intrinsic operations on the group to make sure the computed trajectories are

guaranteed to lie on the manifold.

A Lie group G is a group which is also a differentiable manifold, and for which the group

operation G×G → G and inverse operation are smooth maps. The tangent space g = TIG

at the identity of a Lie group G is closed under commutation of its elements making it an

algebra, the Lie algebra g of the Lie group G. For a differential equation on Lie group G,

the continuous trajectory remains on the Lie group for any initial condition on G and the

flow map of the system can be seen as group operation. For example, the attitude dynamics

of a rigid body can be described as differential equations on the special orthogonal group
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SO(3), the group of proper orthogonal linear transformations.

Consider a dynamical system whose configuration evolves on a differentiable manifold M

subject to the action of some Lie group G. Given an initial condition y0 ∈ M, rather than

ask “What is the the state y at time t?”, the Lie group approach asks an equivalent question

[91]: “What is the group action that takes the system from y0 to y(t)?”. Posing the question

in terms of the group action helps one relate it to the underlying Lie algebra, which is

a linear space. Thus, Lie group methods include an intrinsic and consistent strategy for

the parametrization of the nonlinear manifold M in their algorithmic structure. In simple

words: Instead of solving the original ODE on M, Lie group methods solve the corresponding

problem in the Lie algebra, ensuring that the solution remains on the manifold M.

Figure 2.4: A cartoon illustrating the use of a Lie group method (left) versus a conventional
method (right) in the case M = G. (The Lie algebra g is the tangent space to G at the
identity e ∈ G.)

For dynamical systems evolving on non-Euclidean manifolds, the governing differential equa-

tions are intimately connected to Lie groups. Although the mathematical properties of differ-
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ential equations on manifolds were well understood already by early twentieth century, it is

only in last few decades that numerical methods utilizing these aspects have been developed.

Crouch and Grossman [92] wrote an influential paper on numerical integrators for ODEs

on manifolds where they computed the numerical solution by computing flows of vector

fields in the Lie algebra. Munthe-Kaas [93] constructed generalized Runge-Kutta methods

on general Lie groups, now known as the Runge-Kutta-Munthe-Kaas (RKMK) methods, and

then derived RKMK methods of arbitrarily high order [94] on homogeneous manifolds. The

essential aspects of Lie group methods can be reviewed in [95] and a recent survey paper by

Celledoni et al [96] covers the more recent developments and potential applications.

Although the Lie group methods are applicable to any dynamical system evolving on a man-

ifold, for this particular review, we focus on Lie group methods in the context of mechanical

systems. The energy-momentum or variational integrators developed for mechanical systems

evolving on vector spaces in general will not retain their conservation properties when applied

to systems with nonlinear configuration space of a non-Euclidean manifold. For engineering

applications, there are two important classes of conserving schemes for mechanical systems

evolving on non-Euclidean manifolds: variational (symplectic-momentum) integrators and

energy-momentum integrators.

Simo et al [76] extended the exact energy-momentum methods to classical rigid body dy-

namics for which the configuration manifold is the rotation group SO(3). They exploited

knowledge of the Lie group’s role in rigid body motion, using the exponential map from the

Lie algebra to the Lie group in order to numerically integrate the dynamic equations. Lewis

and Simo [97] developed energy-momentum and symplectic integrators for the general case

of Hamiltonian systems evolving on Lie groups i.e. nonlinear configuration spaces with a

group structure.

Bobenko and Suris [98] extended the discrete mechanics ideas in [43] to the Lie group setting.
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Variational integrators for the reduced dynamics of a mechanical system with a Lie group

symmetry were first derived by Marsden et al [99]. By incorporating ideas from Lie group

methods in the variational integrator framework, Leok [66] developed the general theory of

Lie group variational integrators. Lee et al [100, 101, 102] adapted the Lie group variational

integrators to rigid body dynamics applications. As the name “Lie group variational inte-

grator” suggests, these methods essentially combine the structure-preserving features of Lie

group methods and variational integrators. The resulting integrators are thus symplectic

and momentum-preserving and they preserve the structure of the configuration space. Lie

group variational integrators have recently been extended to the infinite-dimensional setting

of beam and plate dynamics by Demoures et al [103, 104, 105].

Lie group methods discussed so far, in addition to preserving the nonlinear configuration

space structure and momentum, conserve either the energy or the symplectic form. These Lie

group methods can not preserve all three elements - energy, momentum and symplectic form

- simultaneously. For the special case of a rigid body system, Lewis and Simo [97] presented a

strategy for deriving algorithms that preserve energy, momentum and symplectic form while

also making sure the computed trajectory lies on the correct manifold. Based on the strong

negative result for fixed step algorithms by Ge and Marsden [38], we know that this approach

does not work for the more general case of non-integrable systems. Recently, Sharma et al

[106, 107] developed the extended Lagrangian mechanics framework on SO(3) and SE(3),

and derived energy-preserving, adaptive time step Lie group variational integrators for rigid

body dynamics.
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2.3 Science and Engineering Applications

The numerical methods covered in Section 2.2 have been successfully applied to a wide range

of problems in engineering. In this section, we give examples from the literature where these

structure-preserving methods have been utilized in physics, mechanics and dynamics.

2.3.1 Celestial Mechanics and Dynamical Astronomy

Celestial mechanics and dynamical astronomy apply the principles of classical mechanics

to solve problems concerning the motion of objects in space. These problems involve de-

termining long-term trajectories of bodies such as stars, planets, and asteroids as well as

computing spacecraft trajectories, from launch through atmospheric re-entry, including the

orbital maneuvers. Similarly, interplanetary trajectory and planetary protection applica-

tions also require accurate long-time numerical simulations. Symplectic methods due to

their symplectic and momentum-preserving nature along with long-time stability are ideal

for numerical simulation of such problems.

Based on the symplectic method proposed by Ruth [32], various symplectic algorithms for

canonical integration of Hamiltonian systems were proposed by Feng and Qin [108], Channell

and Scovel [109], and Forest and Routh [110]. Wisdom and Holman [111], building on the

previous work by Wisdom [112, 113], developed symplectic algorithms for N-body problems

with a large central mass such as planetary systems or satellite dynamics. Yoshida [114]

applied symplectic methods to study the motion of minor bodies in the solar system and the

long-term evolution of outer planets. These methods came to the attention of the celestial

mechanics [115] and dynamical astronomy [116] community in the early 1990s and have

now become the benchmark in the study of orbit propagation [117], close encounters [118],

asteroid [119, 120] dynamics, cometary orbits [121, 122], long-term formation flight dynamics
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[123] and N-body dynamics [111, 124].

Since the development of discrete mechanics and variational integrators, a variety of sym-

plectic algorithms, derived from the variational point of view, have been applied to celestial

mechanics, spacecraft dynamics and orbital propagation problems. Farr and Bertschinger

[125] developed adaptive variational integrators for N-body problems with superior sym-

plecticity and momentum preservation. Lee et al applied Lie group variational integrators

to study the complex dynamics of a tethered spacecraft system [126] and spacecraft with

imbalanced reaction wheels [127]. Hall and Leok [128] applied spectral variational integra-

tors to solar system simulation and obtained closed, extremely stable and precession free

orbits, even for large time steps. Recently, Palacios and Gurfil [129] developed variational

integrators for satellite relative orbit propagation including atmospheric drag.

2.3.2 Elastodynamics

Formulation of dynamic problems in nonlinear solid mechanics is built on energy and mo-

mentum conservation laws and these fundamental properties of the continuum dynamics

play a key role in many engineering applications. Customary temporal and spatial finite

difference/finite element discretizations of the continuum dynamics do not always inherit

the conservation properties. The construction of robust spacetime discretizations of these

problems has been a long-standing goal in the field of computational mechanics.

For nonlinear elastodynamics problems, especially stiff systems possessing high-frequency

contents, energy-momentum schemes are known to possess enhanced numerical stability

properties in the nonlinear regime [71]. In most of the applications, the semidiscrete equa-

tions resulting from a finite element discretization are viewed as a finite-dimensional Hamil-

tonian system with symmetry and are solved in time using energy-momentum integrators.
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In the context of nonlinear elastodynamics, Simo and Tarnow [75] first developed numer-

ical methods for Saint Venant-Kirchhoff model and later, Simo and Gonazalez [130, 131]

extended these methods to the more general case of hyperelastic materials. Based on this

pioneering work, a variety of energy-momentum algorithms have been designed for structural

elements such as beams [132], plates [133] and shells [134].

Unlike the energy-momentum integrator applications, variational integrators use the space-

time approach for elastodynamics problems. Lew et al [69] developed asynchronous varia-

tional integrators (AVI) for nonlinear elastodynamics that permit independent time steps in

each spatial element. Based on this work, Lietz et al [103] developed AVIs for geometrically

exact beam and plate dynamics. Lew [135] used AVIs to study rotor blade dynamics and

contained detonation of a highly-explosive material. Kale and Lew [136] developed scalable

parallel AVI algorithms and applied them to study the interaction dynamics involved in

atomic force microscopy.

2.3.3 Multibody Dynamics

Multibody dynamics applications often involve a system consisting of rigid bodies and elastic

bodies undergoing large displacements and rotations and the numerical simulation of these

systems require advanced modeling strategies. Space discretization for these problems usu-

ally results in stiff, nonlinear, differential-algebraic equations and energy-momentum schemes

are well-suited for such nonlinear systems due to their algorithmic conservation and numer-

ical stability properties. A variety of energy preserving/decaying schemes were presented in

the late 1990s by a number of authors for multibody systems.

Ordern and Goicolea [137] utilized discrete gradient ideas to develop energy-momentum in-

tegrators for constrained dynamics of flexible multibody systems. Betsch and Lyndecker
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[138] developed energy-momentum integrators in the discrete null space setting for multi-

body dynamics and later Leyendecker et al [139] applied these methods to flexible multibody

dynamics. Based on the work by Betsch and Steinmann [140], Betsch and Uhlar [141] devel-

oped a rotationless formulation for energy-momentum conserving integration of multibody

systems. Uhlar and Betsch [142] extended this method to non-conservative systems and

applied it to a double wishbone suspension of a car.

Although the multibody dynamics field has mainly used energy-momentum integrators for

computational studies, recently some researchers have also used variational integrators and

Lie group methods in the context of multibody dynamics. Leyendecker et al [143] adapted

the discrete null space method to the discrete mechanics framework and applied the varia-

tional discrete null space method to a kinematic chain of rigid bodies and flexible multibody

systems. Leyendecker and Ober-Blöbaum [144] applied multirate variational integrators to

study constrained systems with dynamics on strongly varying time scales. For systems with

large displacements and rotations, various Lie group methods for complex flexible multibody

dynamics have been developed by Bruls et al [145, 146], Park and Chung [147], and Terze

et al [148].

2.3.4 Fluid Dynamics

Computational methods for fluid dynamics problems typically discretize the governing equa-

tions through finite volume, finite element or finite difference methods and are rarely designed

with structure preservation in mind, leading to spurious numerical artifacts such as energy

and circulation drift. In sharp contrast to these traditional methods, structure-preserving

methods based on the geometric nature of Euler fluids (adiabatic and inviscid) have recently

become popular in the context of numerical methods for fluid dynamics. Perot et al [149]
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studied conservation properties of unstructured staggered mesh schemes and constructed

numerical methods that conserve kinetic energy, vorticity, and momentum in 2D. Elcott et

al [150] proposed numerically stable integrators for fluids that satisfy the discrete version of

Kelvin’s circulation theorem.

Based on the pioneering work by Arnold [151], Euler fluids have been extensively stud-

ied in the literature from the geometric-differential standpoint. Cotter et al [152] provided

multisymplectic formulation of fluid dynamics using the inverse map approach. In the vari-

ational description of fluid dynamics [153], the configuration space is defined as the volume-

preserving diffeomorphisms, and Kelvin’s circulation theorem is seen as a consequence of

Noether’s theorem associated with the particle relabeling symmetry. This variational for-

mulation provides a powerful framework to construct structure-preserving methods for fluid

dynamics.

Mullen et al [154] constructed time-reversible integrators that preserve energy for inviscid

fluids (or capture the correct energy decay for viscous fluids) and are particularly useful for

fluid animation by maintaining the liveliness of fluid motion without recourse to corrective

devices. Pavlov et al [155] derived fluid mechanics equations from Hamilton’s principle and

derived Lie group variational integrators for incompressible Euler fluids by constructing a

finite-dimensional approximation to the volume-preserving diffeomorphism group for the dis-

cretization. The resulting scheme exhibits energy conservation over long simulations, time

reversibility, and circulation preservation. Using similar ideas, Gawlik et al [156] derived

variational discretizations of continuum theories arising in fluid dynamics, magnetohydro-

dynamics (MHD), and the dynamics of complex fluids. Kraus and his colleagues [30] have

utilized the formal Lagrangian approach to develop variational integrators for a variety

of MHD models. Similarly, Desbrun et al [157] developed structure-preserving space-time

discretization schemes for rotating and/or stratified flows which are relevant for modeling
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large-scale atmospheric or oceanic flows. Recently, Bauer et al [158] have developed a frame-

work for geometric variational discretization of compressible fluids in the context of rotating

shallow water equations.

(a) Wheelbone suspension [142] (b) Tethered dynamics [127] (c) Rotor blade dynamics [69]

(d) Fluid flow animation [154] (e) Little dog robot [159]

Figure 2.5: GNI applications from literature

2.3.5 Optimal Control

The optimal control of a mechanical system is an important engineering problem in appli-

cation areas such space mission design, robotics and biomechanics. The numerical solution

to the optimal control problem involves the discretization of the infinite-dimensional opti-

mization problem and one has to repeatedly solve a sequence of nearby systems approxi-

mately. Using the discrete mechanics framework on the dynamic level in the optimal control

problem leads to structure-preserving time-stepping equations and these equations act as

equality constraints on the final finite-dimensional nonlinear optimization problem. Besides

the structure-preserving aspect, both optimal control and variational mechanics have their
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roots in calculus of variations. Junge et al [160] exploited this connection and developed the

Discrete Mechanics and Optimal Control (DMOC) method, in which both the dynamics and

optimization are discretized variationally.

Building on this work, Ober-Blöbaum et al [161] showed that the DMOC approach is equiv-

alent to time discretization of Hamilton’s equations using a symplectic method and utlilized

the structure-preserving nature of discretization to provide proof of convergence. Leyen-

decker et al [162] formulated the dynamics subject to holonomic constraints and controls

by applying a constrained version of Lagrange-d’Alembert principle for the optimal con-

trol of constrained systems. Kobilarov and Sukhatme [163] applied the DMOC framework

to nonholomonic mechanical systems using nonholonomic variational integrators and later

Kobilarov et al [58] also extended the framework to mechanical systems with symmetries.

Manns and Mombaur [164] showed that the DMOC method offers competitive performance

for complex models with large degrees of freedom by taking advantage of the parallel com-

puter architecture.

Although the DMOC method is relatively new, since its introduction it has been utilized in a

variety of problems from diverse fields. In spaceflight mechanics, the DMOC method has been

applied to problems like low thrust orbital transfer [165], attitude maneuvers of spacecraft

[166] and formation flying satellites [160]. For robotics applications, the DMOC method has

been applied successfully to simultaneous path planning and trajectory optimization [167],

periodic gait optimization [168, 169] and robot planning [170] problems. Manchester et al

[159, 171] have developed trajectory optimization algorithms using the DMOC framework

and applied them in handling the contact constraints found in robot planning problems.

Apart from these, the DMOC method has also been used for problems like hybrid systems

control [172], vibration suppression control of a film [169], and image analysis [173].



Chapter 3

Energy-preserving Variational

Integrators

The purpose of this chapter is twofold. First, we develop variational integrators for time-

dependent Lagrangian systems with non-conservative forces based on the discretization of

the Lagrange-d’Alembert principle in extended phase space. We modify the Lagrange-

d’Alembert principle to include time variations in the extended phase space and derive the

extended forced Euler-Lagrange equations. We then present a discrete variational princi-

ple for time-dependent Lagrangian systems with forcing and derive extended forced discrete

Euler-Lagrange equations. We use the extended discrete mechanics formulation to construct

adaptive time step variational integrators for nonautonomous Lagrangian systems with forc-

ing that capture the rate of energy evolution accurately. Second, we consider three numerical

examples to understand the numerical properties of the adaptive time step variational in-

tegrators and compare the results with fixed time step variational integrators to illustrate

the advantages of using adaptive time-stepping in variational integrators. We also study the

effect of initial time step and initial conditions on the numerical performance of the adaptive

time step variational integrators.

This chapter is organized as follows. In Section 3.1, we review the basics of extended

Lagrangian mechanics and discrete mechanics. We also discretize Hamilton’s principle to

derive adaptive time step variational integrators. In Section 3.2, we modify the Lagrange-

43
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d’Alembert principle in the extended phase space and derive extended forced Euler-Lagrange

equations. In Section 3.3, we derive the extended forced discrete Euler-Lagrange equations

and obtain adaptive time step variational integrators for time-dependent Lagrangian sys-

tems with forcing. In Section 3.4, we give numerical examples to understand the numerical

performance of the adaptive time step variational integrators. Finally, in Section 3.5 we

provide concluding remarks and suggest future research directions.

3.1 Background: Adaptive Time Step Variational In-

tegrators

In this section, we review the basics of Lagrangian mechanics and derivation of adaptive

time step variational integrators. Drawing on the work of Marsden et al [13, 44, 51], we first

derive equations of motion in continuous-time from the variational principle and then derive

variational integrators by considering the discretized variational principle in the discrete-time

domain. To this end, we first derive continuous-time Euler-Lagrange equations of motion

from Hamilton’s principle. After deriving equations of motion, we use concepts of discrete

mechanics developed in [44] to derive discrete Euler-Lagrange equations and then write them

in the time-marching form to obtain adaptive time step variational integrators for Lagrangian

systems.

3.1.1 Extended Lagrangian Mechanics

Hamilton’s principle of stationary action is one of the most fundamental results of classical

mechanics and is commonly used to derive equations of motion for a variety of systems.

The forces and interactions that govern the dynamical evolution of the system are easily
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determined through Hamilton’s principle in a formulaic and elegant manner. Hamilton’s

principle [174] states that: The motion of the system between two fixed points from ti to tf

is such that the action integral has a stationary value for the actual path of the motion. In

order to derive the Euler-Lagrange equations via Hamilton’s principle, we start by defining

the configuration space, tangent space and path space.

Consider a time-dependent Lagrangian system with configuration manifold Q and time space

R. In the extended Lagrangian mechanics framework [44], we treat time as a dynamic

variable and define the extended configuration manifold Q̄ = R×Q; the corresponding state

space TQ̄ is R× TQ. The extended Lagrangian is L : R× TQ → R.

In the extended Lagrangian mechanics framework, t and q are both parametrized by an

independent variable a. The two components of a trajectory c are c(a) = (ct(a), cq(a)). The

extended path space is

C̄ =
{
c : [a0, af ] → Q̄| c is a C2 curve and c′t(a) > 0

}
(3.1)

For a given path c(a), the initial time is t0 = ct(a0) and the final time is tf = ct(af ). The

extended action B̄ : C̄ → R is

B̄ =

∫ tf

t0

L(t,q(t), q̇(t))dt (3.2)

Since time is a dynamic variable in this framework, we substitute (t,q(t), q̇(t)) =
(
ct(a), cq(a),

c′q(a)

c′t(a)

)
in the above equation to get

B̄ =

∫ af

a0

L

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
c′t(a) da (3.3)
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We compute variations of the action

δB̄ =

∫ af

a0

[
∂L

∂t
δct +

∂L

∂q · δcq +
∂L

∂q̇ ·
(
δc′q(a)

c′t
−

c′qδc
′
t(a)

(c′t)
2

)]
c′t(a)da+

∫ af

a0

Lδc′t(a) da (3.4)

Using integration by parts and setting the variations at the end points to zero gives

δB̄ =

∫ af

a0

[
∂L

∂q c′t −
d

da

∂L

∂q̇

]
· δcq(a)da+

∫ af

a0

[
∂L

∂t
c′t +

d

da

(
∂L

∂q̇ ·
c′q
c′t

− L

)]
δct(a) da (3.5)

Using dt = c′t(a)da in the above expression gives two equations of motion. The first is the

Euler-Lagrange equation of motion

∂L

∂q − d

dt

(
∂L

∂q̇

)
= 0 (3.6)

which is the same as the equation obtained using the classical Lagrangian mechanics frame-

work. The second equation is

∂L

∂t
+

d

dt

(
∂L

∂q̇ · q̇ − L

)
= 0 (3.7)

which describes how the energy of the system evolves with time.

3.1.2 Energy-preserving Variational Integrators

For the extended Lagrangian mechanics, we define the extended discrete state space Q̄× Q̄.

The extended discrete path space is

C̄d = { c : { 0, ..., N} → Q̄| ct(k + 1) > ct(k) for all k} (3.8)
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The extended discrete action map B̄d : C̄d → R is

B̄d =
N−1∑
k=0

Ld(tk,qk, tk+1,qk+1) (3.9)

where Ld : Q̄ × Q̄ → R is the extended discrete Lagrangian function which approximates

the action integral between two successive configurations. Taking variations of the extended

discrete action map gives

δB̄d =
N−1∑
k=1

[
D4Ld(tk−1,qk−1, tk,qk) +D2Ld(tk,qk, tk+1,qk+1)

]
· δqk

+
N−1∑
k=1

[
D3Ld(tk−1,qk−1, tk,qk) +D1Ld(tk,qk, tk+1,qk+1)

]
δtk = 0 (3.10)

where Di denotes differentiation with respect to the ith argument of the discrete Lagrangian

Ld. Applying Hamilton’s principle of least action and setting variations at end points to zero

gives the extended discrete Euler-Lagrange equations

D4Ld(tk−1,qk−1, tk,qk) +D2Ld(tk,qk, tk+1,qk+1) = 0 (3.11)

D3Ld(tk−1,qk−1, tk,qk) +D1Ld(tk,qk, tk+1,qk+1) = 0 (3.12)

Given (tk−1,qk−1, tk,qk), the extended discrete Euler-Lagrange equations can be solved to

obtain qk+1 and tk+1. This extended discrete Lagrangian system can be seen as a numerical

integrator of the continuous-time nonautonomous Lagrangrian system with adaptive time

steps.
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In the extended discrete mechanics framework, we define the discrete momentum pk by

pk = D4Ld(tk−1,qk−1, tk,qk) (3.13)

We also introduce the discrete energy

Ek = D3Ld(tk−1,qk−1, tk,qk) (3.14)

Using the discrete momentum and discrete energy definitions, we can re-write the extended

discrete Euler-Lagrange equations (3.11) and (3.12) in the following form

−D2Ld(tk,qk, tk+1,qk+1) = pk (3.15)

D1Ld(tk,qk, tk+1,qk+1) = Ek (3.16)

pk+1 = D4Ld(tk,qk, tk+1,qk+1) (3.17)

Ek+1 = −D3Ld(tk,qk, tk+1,qk+1) (3.18)

Given (tk,qk,pk, Ek), the coupled nonlinear equations (3.15) and (3.16) are solved implicitly

to obtain qk+1 and tk+1. The configuration qk+1 and time tk+1 are then used in (3.17) and

(3.18) to obtain (pk+1, Ek+1) explicitly. The extended discrete Euler-Lagrange equations

were first written in the time-marching form in [44] and are also known as symplectic-

energy-momentum integrators.
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3.2 Modified Lagrange-d’Alembert Principle

The extended discrete Euler-Lagrange equations derived in Section 3.1.2 can be used as

energy-preserving variational integrators for Lagrangian systems. In order to extend this

energy-preserving variational integrator framework to Lagrangian systems with external

forcing, we need to discretize the Lagrange-d’Alembert principle in the extended Lagrangian

mechanics framework. We first present the Lagrange- d’Alembert principle in extended

phase space for time-dependent Lagrangian systems with forcing by considering the varia-

tions with respect to time t. Using the extended Lagrangian mechanics framework, we derive

the extended Euler-Lagrange equations for time-dependent Lagrangian systems with forcing.

The Lagrange- d’Alembert principle modifies Hamilton’s principle of stationary action by

considering the virtual work done by the forces for a variation δq in the configuration variable

q. Since the standard Lagrangian mechanics framework treats time only as an independent

continuous parameter, it does not account for time variations in the Lagrange-d’Alembert

principle. Thus, we need to modify the Lagrange-d’Alembert principle in the extended

Lagrangian mechanics framework to account for time variations.

We modify the Lagrange-d’Alembert principle by adding an additional term in the variational

principle that accounts for virtual work done by the external force fL due to variations in

the time variable

δ

∫ tf

t0

L(t,q(t), q̇(t)) dt+
∫ tf

t0

fL(t,q(t), q̇(t))·δq dt−
∫ tf

t0

fL(t,q(t), q̇(t))·(q̇δt) dt = 0 (3.19)

Using the extended Lagrangian mechanics framework discussed in Section 3.1.1 to derive the
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equations of motion, we first re-write the modified Lagrange-d’Alembert principle

δ

∫ af

a0

L

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
c′t(a) da+

∫ af

a0

fL

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
·(δcq−q̇δct) c′t(a)da = 0

(3.20)

Taking variations of the discrete action with respect to both configuration q and time t gives

∫ af

a0

[
∂L

∂t
δct +

∂L

∂q · δcq +
∂L

∂q̇ ·
(
δc′q(a)

c′t
−

c′qδc
′
t(a)

(c′t)
2

)]
c′t(a)da+

∫ af

a0

Lδc′t(a) da

+

∫ af

a0

(fL · δcq) c′t(a)da−
∫ af

a0

(fL · q̇) δct c′t(a)da = 0 (3.21)

Using integration by parts and setting variations at the end points to zero gives

∫ af

a0

[
∂L

∂q c′t −
d

da

∂L

∂q̇ + fL
]
·δcq(a)da+

∫ af

a0

[
∂L

∂t
c′t +

d

da

(
∂L

∂q̇ .
c′q
c′t

− L

)
− fL · q̇

]
δct(a) da = 0

(3.22)

Using dt = c′t(a)da in the above expression gives two equations of motion for the forced time-

dependent Lagrangian system. The first equation is the well-known forced Euler-Lagrange

equation for a time-dependent system

∂L

∂q − d

dt

(
∂L

∂q̇

)
+ fL = 0 (3.23)

whereas the second equation is the energy evolution equation

∂L

∂t
+

d

dt

(
∂L

∂q̇ q̇ − L

)
− fL · q̇ = 0 (3.24)

Thus, for the forced case, the energy evolution equation describes how the energy of the

Lagrangian system depends on the input power by the external force fL. If we consider an

associated curve q(t) satisfying the forced Euler-Lagrange equations and compute the energy
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evolution equation we get

∂L

∂t
+

d

dt

(
∂L

∂q̇ .q̇ − L

)
− fL.q̇ =

∂L

∂t
+

d

dt

(
∂L

∂q̇

)
.q̇ +

∂L

∂q̇ .q̈ − dL

dt
− fL.q̇ (3.25)

which after substituting d
dt

(
∂L
∂q̇

)
= ∂L

∂q + fL simplifies to

∂L

∂t
+

d

dt

(
∂L

∂q̇ .q̇ − L

)
− fL.q̇ =

(
∂L

∂t
+

(
∂L

∂q + fL
)
.q̇ +

∂L

∂q̇ .q̈
)
− dL

dt
− fL.q̇ = 0 (3.26)

which shows that (3.23) implies (3.24). Thus, for continuous-time forced Lagrangian systems,

the additional energy evolution equation obtained by taking the variation with respect to

time does not provide any new information concerning the forced Euler-Lagrange equations.

Remark 1. It should be noted that both (3.23) and (3.24) depend only on the associ-

ated curve q(t) and the time component ct(a) of the extended path cannot be determined

from the governing equations. Thus, the “velocity” of time, i.e. c′t(a), is indeterminate in

the continuous-time formulation of time-dependent Lagrangian systems with forcing.

3.3 Energy-preserving Variational Integrators

In this section, we derive the extended discrete Euler-Lagrange equations for time-dependent

Lagrangian systems with forcing by discretizing the modified Lagrange-d’Alembert principle

given in Section 3.2. The key difference from the extended discrete Euler-Lagrange equations

derived in Section 3.1.2 is that we will have additional discrete terms accounting for the

virtual work done by the external forcing.

The modified Lagrange-d’Alembert principle presented in Section 3.2 has two continuous-
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time force integrals in the variational principle. In order to derive the extended forced

discrete Euler-Lagrange equations, we define two discrete force terms f±
d : Q̄ × Q̄ → T ∗Q̄

which approximate the virtual work done due to variations in q in the following sense

f+
d (tk,qk, tk+1,qk+1)·δqk+1+f−

d (tk,qk, tk+1,qk+1)·δqk ≈
∫ tk+1

tk

fL(t,q(t), q̇(t))·δq dt (3.27)

We also define two discrete power terms g±d : Q̄ × Q̄ → R which approximate the virtual

work done due to time variations in the following sense

g+d (tk,qk, tk+1,qk+1)δtk+1 + g−d (tk,qk, tk+1,qk+1)δtk ≈
∫ tk+1

tk

−fL(t,q(t), q̇(t)) · (q̇δt) dt

(3.28)

For the time-dependent Lagrangian system with forcing, we seek discrete-time paths which

satisfy

δ
N−1∑
k=0

Ld(tk,qk, tk+1,qk+1) +
N−1∑
k=0

[f+d (tk,qk, tk+1,qk+1) · δqk+1 + f−d (tk,qk, tk+1,qk+1) · δqk]

+
N−1∑
k=0

[g+d (tk,qk, tk+1,qk+1)δtk+1 + g−d (tk,qk, tk+1,qk+1)δtk] = 0 (3.29)

Setting all the variations at the endpoints equal to zero in (3.29) gives the extended forced

discrete Euler-Lagrange equations

D4Ld(tk−1,qk−1, tk,qk)+D2Ld(tk,qk, tk+1,qk+1)+ f+d (tk−1,qk−1, tk,qk)+ f−d (tk,qk, tk+1,qk+1) = 0

(3.30)

D3Ld(tk−1,qk−1, tk,qk)+D1Ld(tk,qk, tk+1,qk+1)+ g+d (tk−1,qk−1, tk,qk)+ g−d (tk,qk, tk+1,qk+1) = 0

(3.31)

We modify the definitions of the discrete momentum and energy to account for the effect of
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forcing

pk = D4Ld(tk−1,qk−1, tk,qk) + f+d (tk−1,qk−1, tk,qk) (3.32)

Ek = −D3Ld(tk−1,qk−1, tk,qk)− g+d (tk−1,qk−1, tk,qk) (3.33)

Using the modified discrete momentum and energy definitions (3.32) and (3.33), the extended

forced discrete Euler-Lagrange equations can be re-written in the following form

−D2Ld(tk,qk, tk+1,qk+1)− f−d (tk,qk, tk+1,qk+1) = pk (3.34)

D1Ld(tk,qk, tk+1,qk+1) + g−d (tk,qk, tk+1,qk+1) = Ek (3.35)

pk+1 = D4Ld(tk,qk, tk+1,qk+1) + f+d (tk, qk, tk+1, qk+1) (3.36)

Ek+1 = −D3Ld(tk,qk, tk+1,qk+1)− g−d (tk,qk, tk+1,qk+1) (3.37)

Given a time-dependent Lagrangian system with external forcing, the extended discrete La-

grangian system obtained by solving (3.34)-(3.37) can be used as an adaptive time step

variational integrator for the continuous-time system.

Remark 2. The modified discrete energy (3.33) has a contribution from the external forcing

which accounts for the virtual work done during the adaptive time step. Thus, the discrete

trajectory obtained by solving the extended discrete Euler-Lagrange equations preserves a

discrete quantity which is not the discrete analogue of the total energy of the Lagrangian

system. This detail becomes important when we simulate a dissipative Lagrangian system

with an adaptive time step variational integrator in Section 3.4.3
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3.4 Numerical Examples

In this section, we implement the extended forced discrete Euler-Lagrange equations as nu-

merical integrators of continuous dynamical systems. We first consider a nonlinear conserva-

tive dynamical system studied in [51] and compare the fixed time step variational integrator

results with the corresponding results for the adaptive time step variational integrator. We

then study a forced harmonic oscillator, a time-dependent dynamical system, in order to in-

vestigate the numerical properties of the adaptive time step variational integrators for forced

systems. Finally, we simulate a damped harmonic oscillator to understand the numerical

performance of adaptive time step variational integrators for dissipative systems.

3.4.1 Conservative Example

We consider a particle in a double-well potential. The Lagrangian for this conservative one

degree of freedom dynamical system is

L(q, q̇) =
1

2
mq̇2 − V (q) (3.38)

where

V (q) =
1

2

(
q4 − q2

)
(3.39)

Fixed time step algorithm

For the fixed time step case, we choose a constant time step h. The discrete Lagrangian is

obtained using the midpoint rule

Ld(qk, qk+1) = hL

(
qk + qk+1

2
,
qk+1 − qk

h

)
(3.40)
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The discrete momentum pk+1 is given by

pk+1 = m

(
qk+1 − qk

h

)
+ h

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

(3.41)

For given (qk, pk) at the kth time step, the implicit time-marching equation for the fixed time

step method is

m

(
qk+1 − qk

h

)
− h

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

= pk (3.42)

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.1: Two initial conditions are studied for the particle in double-well potential. An
initial time step of h0 = 0.01 is used for the adaptive time step algorithm in both cases.
The fixed time step size is chosen such that number of total time steps is same as the
adaptive algorithm. Phase space trajectories for both fixed time step and adaptive time step
algorithms are compared to the benchmark trajectory. The trajectories in each figure are
indistinguishable verifying the equations.
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Adaptive time step algorithm

For the adaptive time step case, we have discrete time tk as an additional discrete variable.

We use the midpoint rule to obtain the discrete Lagrangian Ld

Ld(tk, qk, tk+1, qk+1) = (tk+1−tk)

[
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

− 1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)]

(3.43)

The discrete momentum pk and discrete energy Ek are obtained by substituting the Ld

expression in (3.17) and (3.18)

pk+1 = m

(
qk+1 − qk
tk+1 − tk

)
+ (tk+1 − tk)

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

(3.44)

Ek+1 =
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)

(3.45)

The implicit time-marching equations for the adaptive time step algorithm are

m

(
qk+1 − qk
tk+1 − tk

)
− (tk+1 − tk)

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

= pk (3.46)

1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)

= Ek (3.47)

Since the dynamical system being considered here is time-independent, we rewrite the time-

marching equations in terms of hk = (tk+1 − tk) and vk =
(

qk+1−qk
tk+1−tk

)

F (qk, pk, hk, vk) = mvk − hk

((
vkhk + 2qk

4

)
−
(
qk +

vkhk

2

)3
)

− pk = 0 (3.48)

G(qk, Ek, hk, vk) =
1

2
mv2k +

1

2

((
qk +

vkhk

2

)4

−
(
qk +

vkhk

2

)2
)

− Ek = 0 (3.49)
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These time-marching equations are solved using Newton’s iterative method with the restric-

tion hk > 0 to obtain discrete trajectories in the extended space. This extended discrete

system can be used as a variational integrator for the continuous-time dynamical system.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.2: Energy error plots for both fixed time step and adaptive time step algorithms
are compared for two different initial conditions. Each figure shows the superior energy
performance of the adaptive time step algorithm.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.3: Trajectory error plots for both fixed time step and adaptive time step algorithms
are compared for two different initial conditions. Each figure, especially the highly nonlin-
ear case (b), clearly shows the superior trajectory performance of the adaptive time step
algorithm.

Remark 3. In [51], an alternative optimization method has been implemented where in-
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stead of solving the nonlinear coupled equations (3.48) and (3.49), the following quantity is

minimized

[F (qk, pk, hk, vk)]
2 + [G(qk, Ek, hk, vk)]

2 (3.50)

over the variables vk and hk with the restriction hk > 0. The drawback of using this approach

is that numerically it violates the energy evolution equation and the underlying structure is

no longer preserved. In fact, due to this optimization approach, the energy plots given in

[51] do not clearly convey the advantage of energy-preserving variational integrators.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.4: Adaptive time step versus iteration number for both initial conditions.

Initial condition

We have considered two regions of phase space, similar to the numerical example in [51], to

understand numerical properties of the adaptive time step variational integrator for conser-

vative systems. Since our aim is to use these discrete trajectories as numerical integrators

for continuous dynamical systems, instead of starting with two discrete points we consider

a continuous-time dynamical system with given initial position q(0) and initial velocity q̇(0)
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and use the benchmark solution to obtain initial conditions for the adaptive time step vari-

ational integrator. Since the adaptive time step changes substantially from the initial time

step h0, for a fair comparison of trajectory accuracy and energy error, we have chosen the

fixed time step algorithm in such a way that both fixed and adaptive algorithms take same

number total time steps over the numerical simulation.

For a given set of initial conditions, i.e. (q(0), q̇(0)), we first decide the initial time step h0

and then use the benchmark solution to compute discrete configuration q1 at time t1 = h0,

configuration at first time step. Thus, we have obtained two discrete points in the extended

state space (t0, q0) and (t1, q1) and using these two discrete points we can find discrete

momentum p1 and discrete energy E1. After obtaining (t1, q1, p1, E1), we can solve the time-

marching equations (3.34)-(3.37) to numerically simulate the dynamical system.

Results

The discrete trajectories for both fixed and adaptive time step algorithms are compared with

the benchmark solution in Figure 3.1. The position q = qk+qk+1

2
and velocity q̇ = qk+1−qk

hk

are computed from the discrete trajectories for both fixed and adaptive time step algorithms

and compared with continuous time q and q̇. For both initial conditions, discrete trajectories

from the adaptive time step and fixed time step match the benchmark trajectory.

The energy error plots for both cases in Figure 3.2 show the superior energy behavior of adap-

tive time step variational integrators for conservative dynamical systems. Instead of using

the optimization approach discussed in Remark 3, we have obtained the discrete trajectories

by solving the nonlinear coupled equations exactly to preserve the underlying structure. The

energy error plots quantify the difference in energy accuracy for fixed time step and adaptive

time step method clearly. The energy-preserving performance was not evident in similar re-
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sults given in [51] because of the optimization approach used to obtain discrete trajectories

instead of solving the implicit equations directly. The energy error comparison in Figure

3.2a shows that the adaptive time step method has energy error magnitude around 10−14

whereas the fixed time step method has energy error around 10−8. In Figure 3.2b the energy

error for fixed time step increases to 10−6 while the adaptive time step method shows nearly

exact energy preservation(of the order of computer precision minus the condition number

of the equations). Although the magnitude of energy error for fixed time step method is

bounded, the magnitude of energy error oscillations depends on where the trajectory lies

in the phase space. Thus, for areas in phase space where the magnitude of energy error

oscillations is substantial for fixed time step method, the adaptive time step method can be

used to preserve the energy of the system more accurately.

Trajectory error plots shown in Figure 3.3 demonstrate the improved accuracy achieved

by adaptive time step variational integrators for both cases. In Figure 3.3a both methods

exhibit nearly same accuracy with adaptive time step performing marginally better. The

trajectory error comparison in Figure 3.3b shows the superior performance of adaptive time

step variational integrators for long time simulation. Based on the accuracy results, we be-

lieve adaptive time step variational integrators can provide benefits for numerical simulation

of regions of phase space which show significant changes in the underlying physics.

Figure 3.4 shows how the adaptive time step oscillates for both cases. The adaptive time

step doesn’t increase substantially compared to the initial time step of h0 = 0.01 for the first

case in Figure 3.4a, while Figure 3.4b indicates the adaptive time step increases by 4 times

the initial time step for the second case. The amplitude of adaptive time step oscillations

depends on the region of phase space in which the discrete trajectory lies. The adaptive time

step algorithm computes the adaptive time step such that the discrete energy is conserved

exactly. There is no upper bound on the size of the adaptive time step, but very large adap-
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tive time step values make the discretization assumption made in (3.43) erroneous leading

to inaccurate discrete trajectories.

Remark 4. It is important to understand that adaptive time step variational integra-

tors are fundamentally different from traditional adaptive time-stepping numerical methods

which compute the adaptive time step size based on some error criteria. Adaptive time step

variational integrators treat time as a discrete dynamic variable and the adaptive time step

is computed by solving the extended discrete Euler-Lagrange equations. Thus, the adaptive

time step is coupled with the dynamics of the system whereas, for most of the the adaptive

time-stepping numerical methods, the step size computation and dynamics of the system are

independent of each other.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.5: In these plots, an initial time step of h0 = 0.1 is used for the adaptive time step
algorithm to study the effect of initial time step on the accuracy of discrete trajectories.

Effect of initial time step

From the discrete energy definition it is clear that the initial time step value plays an impor-

tant role in the adaptive time step algorithm. We study the effect of initial time step on the

phase space and energy error plots by simulating the two cases considered in the previous
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subsection but with a larger initial time step h0 = 0.1 for the adaptive time step. The fixed

time step size is chosen such that number of total time steps is same for both fixed and

adaptive time step algorithm.

The phase space trajectories shown in Figure 3.5 show that even with an initial time step of

h0 = 0.1 discrete trajectories from both fixed and adaptive time step show good agreement

with the benchmark solution. In Figure 3.5a, the discrete trajectories lie on top of the bench-

mark solution for the first set of initial conditions. In Figure 3.5b, the fixed and adaptive

time step discrete trajectories give slightly inaccurate results near the turning point. The

discrete energy error plots in Figure 3.6 show that for fixed time step variational integrators,

the discrete energy errors increase with increase in the time step size but for the adaptive

time step variational integrators, increasing the time step size leads to accurate discrete

energy behavior. In fact, the accuracy of energy preservation is slightly better for this case.

This unexpected behavior is due to the ill-conditioned nature of the implicit extended dis-

crete Euler-Lagrange equations, which become more ill-conditioned for smaller time steps.

The plots of condition number in Figure 3.7 show that the implicit equations become more

ill-conditioned as the initial time step value is decreased. Thus, numerical computations

with finite precision will lead to higher errors in the solution.

It is important to note that for a conservative system, the continuous-time trajectory pre-

serves the continuous energy which is different from the discrete energy that adaptive time

step variational integrators are constructed to preserve. This explains why, despite the su-

perior energy behavior in Figure 3.6b compared to Figure 3.2b, the discrete trajectory in

Figure 3.5b is less accurate than the discrete trajectory in Figure 3.1b. We know that as

the time step value tends to zero the discrete energy and continuous energy become equal

but the condition number analysis and the energy error plots reveal that smaller initial time

steps for adaptive time variational integrators lead to ill-conditioning and finite precision



3.4. Numerical Examples 63

errors in energy. Thus, there is a trade-off between preserving discrete energy and ensuring

overall trajectory accuracy when choosing an initial time step for the adaptive time step

variational integrators.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.6: The energy error plots with an initial time step of h0 = 0.1 for the adaptive time
step algorithm.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3.7: The increase in condition number with decrease in initial time step for the
adaptive time step algorithm.

Remark 5. The discrete energy error plotted in Figure 3.2 and Figure 3.6 is different from

our traditional idea of energy error. We usually define energy error as the difference be-

tween the energy of the continuous-time system and the energy obtained from the discrete
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trajectories. This traditional energy error can be broken down into discrete energy error and

discretization error. The discrete energy error is the error in preserving the discrete energy

of the extended discrete Lagrangian system. The discretization error is the error incurred

by discretizing a continuous-time system. Thus, the discretization error is the difference

between the continuous energy and the discrete energy that our integrators aim to preserve,

whereas the discrete energy error is the error between the true and computed discrete energy.

Remark 6. For a conservative system, we expect discrete energy to be constant and thus

the discretization error is also constant. Since this constant discretization error is orders of

magnitude larger than the discrete energy error, traditional energy error plots do not show

the advantages of using adaptive time-stepping. We evaluate the performance of variational

integrators by comparing how well these integrators preserve the discrete energy.

3.4.2 Time-dependent Example

We consider a forced harmonic oscillator to study the numerical performance of the adaptive

time step variational integrator for forced Lagrangian systems with explicit time-dependence.

The (continuous) Lagrangian for the single degree of freedom system is

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2 (3.51)

and the external forcing is

f = F0cos(ωF t) (3.52)

where m is the mass, k is the stiffness, F0 is the magnitude of the force and ωF is the forcing

frequency. For discretization, we use the midpoint rule to obtain the discrete Lagrangian Ld

Ld(tk, qk, tk+1, qk+1) = (tk+1 − tk) L

(
qk + qk+1

2
,
qk+1 − qk
tk+1 − tk

)
(3.53)
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Similarly, we can write the discrete force f±
d as

f±
d =

1

2
F0(tk+1 − tk)cos

(
ωF (tk+1 + tk)

2

)
(3.54)

and the corresponding power term g±d as

g±d = −f±
d

(
qk+1 − qk
tk+1 − tk

)
= −1

2
F0(tk+1 − tk)cos

(
ωF (tk+1 + tk)

2

)(
qk+1 − qk
tk+1 − tk

)
(3.55)

The discrete momentum pk+1 and discrete energy Ek+1 expressions are

pk+1 = D4Ld(tk, qk, tk+1, qk+1) + f+
d

= m

(
qk+1 − qk
tk+1 − tk

)
− k(tk+1 − tk)

(
qk + qk+1

4

)
+

F0(tk+1 − tk)

2
cos

(
ωF (tk+1 + tk)

2

)
(3.56)

Ek+1 = −D3Ld(tk, qk, tk+1, qk+1)− g+d

=
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk + qk+1

2

)2

+
F0

2
cos

(
ωF (tk+1 + tk)

2

)
(qk+1 − qk)

(3.57)

For given (tk, qk, Ek, pk), the time-marching implicit equations for the forced harmonic oscilla-

tor are obtained by substituting the discrete Lagrangian (3.53) and discrete force expressions

(3.54)-(3.55) into (3.34) and (3.35)

m

(
qk+1 + qk
tk+1 − tk

)
+k(tk+1−tk)

(
qk+1 + qk

4

)
+
F0(tk+1 − tk)

2
cos

(
ωF (tk+1 + tk)

2

)
= pk (3.58)

1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk+1 + qk

2

)2

− F0

2
cos

(
ωF (tk+1 + tk)

2

)
(qk+1 − qk) = Ek (3.59)
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We re-write the above two coupled nonlinear equations in terms of the kth adaptive time

step hk = tk+1 − tk and vk =
(

qk+1−qk
tk+1−tk

)

F (qk, tk, pk, hk, vk) = mvk +
khk

4
(2qk + hkvk) +

F0hk

2
cos

(
ωF

(
tk +

hk

2

))
− pk = 0 (3.60)

G(qk, tk, Ek, hk, vk) =
1

2
mv2k +

1

2
k

(
qk +

hkvk
2

)2

− F0hkvk
2

cos

(
ωF

(
tk +

hk

2

))
− Ek = 0

(3.61)

(a) σ = 0.1 (b) σ = 0.5

(c) σ = 5

Figure 3.8: Three forcing frequency ratio values are studied for the forced harmonic oscillator
system. Discrete trajectories for both fixed time step and adaptive time step variational
integrators are plotted and compared with the analytical solution for an initial time step
h0 = 0.01 for the adaptive time step algorithm and natural frequency ωn = 2 rad/s.
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Results

We have studied the forced harmonic oscillator for three values of the forcing frequency ratio

σ = ωF

ωn
for ωn =

√
k
m

= 2 rad/s to understand the numerical performance of adaptive

time step variational integrators for systems with explicit time-dependence. The discrete

trajectories from both fixed and adaptive time step variational integrators are compared in

Figure 3.8 and both discrete trajectories agree favorably with the analytical solution for all

three cases.

Energy error plots for all three cases in Figure 3.9 show the superior energy behavior of

adaptive time step variational integrators for systems with explicit time-dependence. The

energy error comparison in Figure 3.9a shows that the adaptive time step method has energy

error magnitude around 10−4 whereas the fixed time step method has energy error around

10−2. In Figure 3.9b and Figure 3.9c the energy error for fixed time step increases to

10−1 with increase in forcing frequency while the adaptive time step method still shows an

energy error around 10−4. Thus, adaptive time step method predict change in energy more

accurately than fixed time step methods for systems with explicit time-dependence and can

be used to numerically simulate nonautonomous oscillatory systems with external forcing.

The trajectory error plots in Figure 3.10 show how both adaptive and fixed time step integra-

tors have similar accuracy for low forcing frequencies but, as the forcing frequency increases,

the fixed time step variational integrators show better trajectory accuracy. These trajectory

error results in Figure 3.10 are contrary to the trend of superior trajectory performance ob-

served for conservative example in Figure 3.3. In Figure 3.10a both fixed and adaptive time

step variational integrators show same trajectory error. The comparison in Figure 3.10b and

Figure 3.10c show how adaptive time step variational integrators start with more accurate

trajectory but, as we march forward in time, the fixed time step variational integrator ex-
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hibits lower trajectory error, especially in the case of σ = 5. This can be understood if we

look at the time step adaptation.

Figure 3.11 shows the change in adaptive time step over the simulation time for different

forcing frequencies. For all three cases, the adaptive time step starts from h0 = 0.01 but

oscillates significantly for higher σ. σ = 0.1 leads to a time step range of 0.0095 − 0.0105

which increases to 0.007 − 0.022 for σ = 5. Figure 3.11c shows the adaptive time step for

σ = 5 quickly rise to double its initial time step h0 = 0.01 and the trajectory error (see Figure

3.10c)also rises sharply during the increase in adaptive time step. Since the adaptive time

step algorithm captures the flux of energy over an oscillation accurately , the error comes

back to zero in every oscillation and hence the trajectory does deviate from the analytical

trajectories in Figure 3.10c.

3.4.3 Dissipative Example

We consider a damped harmonic oscillator in order to better understand the numerical

behavior of the adaptive time step variational integrator for forced Lagrangian systems.

Similar to the time-dependent example, the Lagrangian is given by (3.51) and the dissipative

force is

f = −cq̇ (3.62)

where c is the damping parameter of the single degree of freedom system. For the discrete

Lagrangian Ld, we use the midpoint rule which gives

Ld(tk, qk, tk+1, qk+1) = (tk+1 − tk) L

(
qk + qk+1

2
,
qk+1 − qk
tk+1 − tk

)
(3.63)
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(a) σ = 0.1 (b) σ = 0.5

(c) σ = 5

Figure 3.9: Energy error for fixed time step and adaptive time step variational integrators
are compared for three forcing frequencies. Analytical solution at the discrete time instant
is used to compute the continuous energy.

Similarly, we can write the discrete force f±
d as

f±
d = −1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)
(3.64)

and the corresponding power term g±d is

g±d = −f±
d

(
qk+1 − qk
tk+1 − tk

)
=

1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)2

(3.65)
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(a) σ = 0.1 (b) σ = 0.5

(c) σ = 5

Figure 3.10: Trajectory error for fixed and adaptive time step variational integrators for the
forced harmonic oscillator are compared for three forcing frequency values.

The discrete momentum pk+1 and discrete energy Ek+1 expressions are

pk+1 = D4Ld(tk, qk, tk+1, qk+1) + f+
d

= m

(
qk+1 − qk
tk+1 − tk

)
− k(tk+1 − tk)

(
qk + qk+1

4

)
− c

(
qk+1 − qk

2

) (3.66)

Ek+1 = −D3Ld(tk, qk, tk+1, qk+1)− g+d

=
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk + qk+1

2

)2

− c

2

(
(qk+1 − qk)

2

tk+1 − tk

) (3.67)

For given (tk, qk, Ek, pk), the time-marching implicit equations are obtained by substituting
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(a) σ = 0.1 (b) σ = 0.5

(c) σ = 5

Figure 3.11: Adaptive time step versus the time for the time-dependent example.

the discrete Lagrangian and discrete force expressions into (3.34) and (3.35)

m

(
qk+1 + qk
tk+1 − tk

)
+ k(tk+1 − tk)

(
qk+1 + qk

4

)
− c(tk+1 − tk)

(
qk+1 − qk

2

)
= pk (3.68)

1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk+1 + qk

2

)2

= Ek (3.69)

The above two coupled nonlinear equations in qk+1 and tk+1 are solved with the restriction

tk+1 > tk and substituted in (3.66) and (3.67) to obtain the discrete momentum pk+1 and

discrete energy Ek+1 for the next step. We re-write the above time-marching equations in
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(a) ζ = 0.001 (b) ζ = 0.005

(c) ζ = 0.01

Figure 3.12: Three damping ratio values are studied for the spring mass damper system.
Discrete trajectories for both fixed time step and adaptive time step variational integrators
are plotted and compared with the analytical solution. The analytical solution is used to
prescribe initial conditions for an initial time step h0 = 0.01 for the adaptive time step and
natural frequency ωn = 2 rad/s.

terms of hk = tk+1 − tk and vk =
(

qk+1−qk
tk+1−tk

)

F (qk, pk, hk, vk) = mvk +
hk

4
(2qk + hkvk) +

1

2
chkvk − pk = 0 (3.70)

G(qk, Ek, hk, vk) =
1

2
mv2k +

1

2
chkv

2
k +

1

2
k

(
qk +

hkvk
2

)2

− Ek = 0 (3.71)

Remark 7. Since the Lagrangian and the forcing for this example are both time-independent,

we can simplify the implicit equations by replacing tk+1 − tk by the kth adaptive time step

hk as shown above. For time-dependent mechanical systems with either time-dependent

Lagrangian or time-dependent forcing, this simplification cannot be made and discrete time

terms can not be eliminated from the implicit equations, as shown in forced harmonic oscil-
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lator numerical example in Section 3.4.2.

(a) ζ = 0.001 (b) ζ = 0.005

(c) ζ = 0.01

Figure 3.13: Energy error for fixed time step and adaptive time step variational integrators
are compared for three cases. Analytical solution at the discrete time instant is used to
compute the continuous energy.

Results

We have studied the damped simple harmonic oscillator for three small damping values

of the damping ratio ζ = c
2
√
km

for a single natural frequency ωn =
√

k
m

= 2 rad/s to

understand the numerical properties of adaptive time step variational integrators derived for

forced systems in Section 3.3. Just like the conservative case, our aim is to simulate the

continuous-time dynamical system using discrete trajectories obtained from the adaptive

time step variational integrator. The discrete trajectories from both fixed and adaptive time
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(a) ζ = 0.001 (b) ζ = 0.005

(c) ζ = 0.01

Figure 3.14: Trajectory error for fixed and adaptive time step variational integrators for the
damped harmonic oscillator are compared for three damping ratio values.

step algorithms are compared in Figure 3.12. Both are nearly indistinguishable from the

analytical solution for all three cases.

The energy error plots in Figure 3.13 show how both adaptive and fixed time step variational

integrators start with same energy accuracy for all three cases with adaptive time step

performing better initially. As we march forward in time, the fixed time step variational

integrator outperforms the adaptive time step variational integrator. The amplitude of the

energy error oscillations for the fixed time step algorithm decreases faster than it does for the

adaptive time step algorithm which suggests that for long-time simulations the energy behavior

of fixed time step variational integrator is better than the adaptive time step variational
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Figure 3.15: Adaptive time step versus the time for the dissipative example.

integrator. This is contrary to what we expected because the adaptive step variational

integrator solves an additional discrete energy evolution equation to capture the change in

energy of the forced system accurately.

These unexpected results can be understood by looking at the two components of the energy

error discussed in the Remark 5. Due to exact preservation of discrete energy, the discrete

energy error for adaptive time step variational integrators is orders of magnitude lower than

it is for the fixed time step variational integrator. Unlike the conservative system example

considered in Section 3.4.1, the continuous energy and the corresponding discrete energy,

for this dissipative system, are not constant. Thus, the energy errors are computed by

comparing the continuous energy with the discrete counterpart. The discrete energy for

forced Lagrangian systems has terms accounting for virtual work done by the external force

during the adaptive time step and hence the adaptive time step variational integrators are

preserving a discrete quantity which is not analogous to the continuous time energy. Since

the difference between continuous and discrete energy is orders of magnitude larger than
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the discrete energy error of the variational integrator, the resulting energy error plots do not

reflect the advantage of using adaptive variational integrators over fixed time step variational

integrators.

Another reason behind the higher energy error for adaptive time step variational integrators

is the monotonically increasing adaptive time step shown in Figure 3.15. The velocity ap-

proximation q̇ ≈ qk+1−qk
hk

used in computing the discrete energy becomes more inaccurate as

the adaptive time step increases. As we go forward in time, the adaptive time step hk keeps

on increasing leading to higher energy error for adaptive time step variational integrators.

Thus, the magnitude of energy error for adaptive time does not decrease as quickly as it

does for fixed time step variational integrators.

We believe the lower order midpoint approximation used for the discrete power term in (3.65)

is the reason behind monotonically increasing adaptive time step which leads to inaccurate

energy behavior in Figure 3.13. The discrete power terms g±d approximate the total work

done due to time variations over an adaptive time step. Since the external forcing (3.62)

is linearly proportional to the velocity q̇, the integrand in (3.28) will be second order in q̇.

The discrete power terms g±d in (3.65) approximate the integral by assuming the integrand

value is constant over the adaptive time step and is equal to the value of the integrand

at the midpoint tk+tk+1

2
. For cases where the integrand is linear in q̇, like in (3.55), the

midpoint approximation works quite well yielding bounded time adaptive time steps. For

the dissipative case the midpoint approximation does not capture the work done accurately

resulting in increasing adaptive time step. In future, we plan to employ a higher order

approximation for discrete power terms and study its effect on the adaptive time step and

energy performance.

The trajectory error plots for three cases in Figure 3.14 show the superior trajectory accuracy

of adaptive time step variational integrators for dissipative systems. Due to the discretization
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error and changing discrete error, the increase in accuracy is not as significant as in Figure

3.3. The comparison in Figure 3.14a shows that both fixed and adaptive algorithms have

almost same accuracy with adaptive method being marginally better. With increase in

damping ratio, Figure 3.14b and Figure 3.14c exhibit the improved accuracy achieved by

adaptive time step variational integrators. But again by the end, the accuracy of fixed time

algorithm becomes similar as the adaptive time step increases.

In Figure 3.15 the adaptive time step evolution over time for all three damping parameter

values is plotted. For all three cases, the adaptive time step was found to be monotonically

increasing. This is not good for a numerical algorithm as eventually it would lead to numer-

ical instability. We have also studied the damped harmonic oscillator system for negative

damping parameter values and the results for those systems showed a uniformly decreas-

ing adaptive time step. Thus, there seems to be some inverse relation between the rate of

change of energy and the rate of change of the adaptive time step. Again, a higher order

approximation of discrete power terms should be investigated to alleviate this adaptation.

3.5 Conclusions

We have presented adaptive time step variational integrators for time-dependent mechanical

systems with forcing. We have incorporated forcing into the extended discrete mechanics

framework so that the resulting discrete trajectories can be used as numerical integrators

for Lagrangian systems with forcing. We first presented the Lagrange-d’Alembert principle

in the extended Lagrangian mechanics framework and then derived the extended forced

discrete Euler-Lagrange equations from the discrete Lagrange-d’Alembert principle. We

demonstrated a general method to construct adaptive time step variational integrators for

systems with time-dependent forcing through a forced harmonic oscillator example. The
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results from the numerical example showed that the adaptive time step algorithm predicts

the change in the energy of the nonautonomus system more accurately than the fixed time

step method.

We have also presented results for a nonlinear conservative system by solving the discrete

equations exactly, as opposed to the optimization approach suggested in [51]. The energy

error results show the advantage of solving discrete equations exactly for adaptive time

step variational integrators. We have studied the effect of initial time step on energy error

and phase space trajectories and also shown how the discrete equations become more ill-

conditioned as the initial time step becomes smaller.

For the damped harmonic oscillator example, contrary to expectation, the fixed time step

variational integrator outperforms the adaptive time step variational integrator in energy

performance. The adaptive time step for the dissipative system was found to be mono-

tonically increasing which makes the algorithm unsuitable for long-time simulation. We

believe the lower order approximation used in discrete power term is the reason behind this

unexpected behavior.



Chapter 4

One-step Variational and Galerkin

Methods

The purpose of this chapter is twofold. First, we derive Hermite polynomial based C1–

continuous numerical integrators for mechanical systems from two different approaches. For

the variational methods, we discretize the variational principle over a single fixed time-step

and then use the discrete mechanics framework to develop variational methods. We also use

Galerkin’s method of weighted residuals of the governing equations over a single fixed time-

step to develop one-step Galerkin methods. Second, we study the numerical performance of

the developed methods for three different classes of mechanical systems. We also investigate

the numerical properties such as symplecticity and energy performance for both methods.

This chapter is organized as follows. In Section 4.1, we review the basic concepts from

variational integrators and Galerkin methods used later in this work. In Section 4.2 we

present Hermite polynomial based one-step variational and Galerkin methods. First, we

introduce cubic Hermite polynomials used for time-discretization in this work. In Section

4.2.2 we utilize the discrete mechanics approach to derive the one-step variational methods

for mechanical systems with external forcing. We then use the Galerkin approach to derive

one-step Galerkin methods. In Section 4.3 we study three numerical examples to understand

the numerical performance of the proposed one-step methods. Finally, in Section 4.4 we

provide concluding remarks and suggest future directions for this work.

79
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4.1 Background

The numerical integration of mechanical systems can be approached in different ways. Tra-

ditional methods apply time-discretization directly to the governing equations of motion to

obtain time-integration algorithms. Unfortunately, this approach does not account for the

qualitative properties of the dynamical system. In this section, we review the basic concepts

from variational mechanics and Galerkin methods used in the development of our one-step

variational and Galerkin methods.

Consider a time-invariant Lagrangian mechanical system with a finite-dimensional, smooth

configuration manifold Q, state space TQ, and Lagrangian L : TQ → R. For such an

autonomous Lagrangian system with time-independent external forcing fL(q(t), q̇(t)), the

Lagrange-d’Alembert principle characterizes trajectories q(t) as those satisfying

δ

∫ tf

ti

L(q(t), q̇(t)) dt+
∫ tf

ti

fL(q(t), q̇(t)) · δq dt = 0 (4.1)

where the first term considers the variation of the action integral and the second term

accounts for the virtual work done by the external forces when the path q(t) is varied by

δq(t). Using integration by parts and setting the variations at the endpoints equal to zero

gives the forced Euler-Lagrange equations

Meq =
∂L(q(t), q̇(t))

∂q − d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
+ fL(q(t), q̇(t)) = 0 (4.2)

where Meq denotes equations of motion written in a residual form. For a general mechanical

system with a separable Lagrangian of the form L(q(t), q̇(t)) = 1
2
q̇(t)TMq̇(t) − U(q), the
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equations of motion are given by

Meq = M
d2q
dt2

+
∂U(q)
∂q − fL(q(t), q̇(t)) = 0 (4.3)

where M is the mass matrix and U(q) is the potential energy of the mechanical system.

Galerkin methods are a class of methods used for converting continuous differential equation

problems to discrete problems. The basic idea behind these methods is to seek approximate

solutions to the differential equation in a finite-dimensional space spanned by a set of basis

functions, i.e. q ≈
∑N

i=1 qiΦi(t). For a finite number of basis functions, the Galerkin

methods lead to a system of equations with finite number of unknowns. Although the

Galerkin methods can be used for a wide variety of computational methods, we are only

interested in using ideas from Galerkin methods to develop one-step numerical integrators

for mechanical systems. For an ODE written in the residual form given by R, the Galerkin

method solves the following discrete problem

(R(q), wi) = 0, i = 1, 2, ..., N (4.4)

where (·, ·) is the inner product on the corresponding Hilbert space and wi are different

test functions. Depending on the choice of test functions, these methods can be classified

into different methods such as Bubnov-Galerkin, Petrov-Galerkin, collocation methods, least

squares method. For this work, we use Petrov-Galerkin method where the test functions are

different from the basis functions.
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4.2 One-step Time-integration Methods

The structural dynamics community has used time finite elements to derive numerical inte-

grators from the variational principle since the late 1960s. Argryis and Scharpf [175] used

cubic Hermite shape functions to formulate time finite elements and discretize Hamilton’s

principle to obtain numerical integrators for the initial value problems. Unlike the discrete

mechanics approach, the finite elements approach only considers the variational principle

over one time-step. Using Hermite polynomials for the configuration leads to C1–continuous

trajectories. Recently, Leok and Shingel [176] used Hermite polynomials in the discrete

mechanics setting to derive variational integrators that approximate time derivatives of the

trajectory with accuracy. Apart from their accuracy and computational stability, discretiza-

tion using Hermite polynomials also leads to numerical methods that are compliant to control

analysis since they naturally yield configuration states and velocities.

4.2.1 Hermite Polynomials

We discretize the continuous trajectory over one time-step using cubic Hermite polynomials

q(t) ≈ qd(t) = q0N1(t) + v0N2(t) + q1N3(t) + v1N4(t) (4.5)

where qd(t) is the discrete approximation and the Hermite polynomials are given by

N1(t) = 2

(
t

h

)3

− 3

(
t

h

)2

+ 1, N3(t) = −2

(
t

h

)3

+ 3

(
t

h

)2

,

N2(t) = h

[(
t

h

)3

− 2

(
t

h

)2

+

(
t

h

)]
, N4(t) = h

[(
t

h

)3

−
(
t

h

)2
]

(4.6)
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where h is the fixed time step. From the above expressions, it is clear that at initial time

t = 0, we have N1(0) = 1 along with N2(0) = N3(0) = N4(0) = 0 which leads to qd(0) = q0.

Similarly, we also have q̇d(0) = v0, qd(h) = q1 and q̇d(h) = v1. Using piecewise Hermite

polynomials for discretization in the one-step approach leads to numerical solutions that are

C1– continuous.

Figure 4.1: Cubic Hermite polynomials plotted over one time-step.

4.2.2 One-step Variational Methods

Unlike the discrete mechanics framework developed by Marsden et al [44], we only consider

the variational principle over one time-step h and derive one-step numerical integrators from

the discretized variational principle.

We use qd(t) from (4.5) to obtain a discrete Lagrangian which approximates the action
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integral in the following sense

Ld(q0,v0,q1,v1) =

∫ h

0

L(qd, q̇d) dt ≈
∫ h

0

L(q, q̇) dt (4.7)

Thus, we have used a cubic polynomial to obtain the discrete Lagrangian in terms of the

configuration and velocity at the endpoints. We introduce discrete forces corresponding to

displacement and velocity variations to approximate the virtual work

∫ h

0

fL(q(t), q̇(t)) · δq dt ≈
∫ h

0

fL(qd(t), q̇d(t)) · δqd dt

= f+d (q0,v0,q1,v1) · δq1 + f−d (q0,v0,q1,v1) · δq0

+ g+
d (q0,v0,q1,v1) · δv1 + g−

d (q0,v0,q1,v1) · δv0 (4.8)

Using δqd(t) = δq0N1(t)+ δv0N2(t)+ δq1N3(t)+ δv1N4(t), we can obtain the discrete forces

f±d corresponding to displacement variations

f+d (q0,v0,q1,v1) =

∫ h

0

fL(qd(t), q̇d(t)) N3(t) dt (4.9)

f−d (q0,v0,q1,v1) =

∫ h

0

fL(qd(t), q̇d(t)) N1(t) dt (4.10)

and discrete forces g±
d corresponding to velocity variations

g+
d (q0,v0,q1,v1) =

∫ h

0

fL(qd(t), q̇d(t)) N4(t) dt (4.11)

g−
d (q0,v0,q1,v1) =

∫ h

0

fL(qd(t), q̇d(t)) N2(t) dt (4.12)

The discrete Lagrange-d’Alembert principle using one-step variational approach seeks curves
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qd(t) = { q0,v0,q1,v1 } that satisfy

δLd(q0,v0,q1,v1) + [f+d (q0,v0,q1,v1) · δq1 + f−d (q0,v0,q1,v1) · δq0]

+ [g+
d (q0,v0,q1,v1) · δv1 + g−

d (q0,v0,q1,v1) · δv0] = 0

which gives

(
∂Ld

∂q0

+ f−d (q0,v0,q1,v1)

)
· δq0 +

(
∂Ld

∂v0

+ g−
d (q0,v0,q1,v1)

)
· δv0

+

(
∂Ld

∂q1

+ f+d (q0,v0,q1,v1)

)
· δq1 +

(
∂Ld

∂v1

+ g+
d (q0,v0,q1,v1)

)
· δv1 = 0

where Ld := Ld(q0,v0,q1,v1). Setting variations at endpoints to zero, i.e. δq0 = δq1 = 0,

gives
∂Ld

∂v0

(q0,v0,q1,v1) + g−
d (q0,v0,q1,v1) = 0 (4.13)

∂Ld

∂v1

(q0,v0,q1,v1) + g+
d (q0,v0,q1,v1) = 0 (4.14)

Given (q0,v0), these two coupled nonlinear equations can be solved to obtain (q1,v1). Thus,

for Lagrangian systems with external forcing the one-step variational approach can be used

to derive numerical integrators that are continuous in both configuration and velocities.

4.2.3 One-step Galerkin Methods

In this subsection, we consider the Galerkin method of weighted residuals to obtain numerical

integrators for mechanical systems with external forcing. For a given system of equations

we first write it in the residual form R(t, q, dq
dt
, ..., d

nq
dtn

) and this continuous system of ODEs
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is transformed into following discrete equations

(
R(t,qd,

dqd

dt
, ...,

dnqd

dtn
), wi

)
= 0, i = 1, 2, ..., N (4.15)

where qd(t) is the assumed solution form and wi are test functions. For our study, we

focus on time-integration of mechanical problems with R = Meq(q, q̇, q̈) where Meq are

the equations of motion for the mechanical system. Similar to the variational approach

discussed in previous section, we use cubic Hermite polynomials as solution functions for

approximating the continuous solution over one time-step. Our goal is to use the Petrov-

Galerkin approach to derive one-step methods so we consider the following shifted Legendre

polynomials as test functions

P0(t) = 1, P1(t) =
1

h
(2t− h) (4.16)

Given (q0,v0), the one-step Galerkin method yields

∫ h

0

Meq(qd) (1) dt = 0

∫ h

0

Meq(qd)

(
1

h
(2t− h)

)
dt = 0

Given (q0,v0), these two coupled nonlinear equations can be solved to obtain the configura-

tion q1 and velocity v1 at the next time-step. Just like the variational approach, this system

of nonlinear equations can be used as a one-step numerical integrator.
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4.2.4 Higher-order One-step Methods

In this subsection, we demonstrate how to derive one-step methods with higher-order Hermite

polynomials. The one-step methods presented so far have been based on cubic Hermite

polynomials which lead to numerical integrators that are continuous in both configuration

and velocities. For discretization using higher-order Hermite polynomials, we consider the

following discrete trajectory over one time-step

qd(t) =
n−1∑
j=0

(
q(j)
0 Hn,j(t) + q(j)

1 Hn,j(h− t)
)

(4.17)

where we have written the discrete trajectory in terms of Hermite basis functions and values

of q(t) and its derivatives q(j)(t) at endpoints. The Hermite basis functions are

Hn,j(t) =
tj

j!

(
1− t

h

)n n−j−1∑
s=0

n+ s− 1

s

( t

h

)s

(4.18)

Thus, the discrete trajectory qd is represented by 2n− 1 degree polynomial which satisfies

q(j)(0) = q(j)
d (0) q(j)(h) = q(j)

d (h) j = 0, ..., n− 1 (4.19)

It is clear from the above expression that for n = 1, the discrete trajectory simply reduces to

a linear interpolant between endpoints q0 and q1. For n = 2, the discrete trajectory is the

cubic interpolant discussed in Section 4.2.1. For discretization using higher-order Hermite

polynomials with n ≥ 3, the discrete trajectory qd over the fixed time-step is represented

by 2n− 1 degree polynomials with 2n unknown coefficients. For an initial condition of the

form (q0,v0), the numerical integration problem reduces to solving for the remaining 2n− 2

coefficients. The first n− 2 coefficients are qj(0) for j = 2, · · · , n− 1 and the other n coef-
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ficients are qj(h) for j = 0, · · · , n− 1.

Variational Approach: For conservative Lagrangian systems, the discrete Hamilton’s prin-

ciple after setting the configuration variations at the endpoints to zero (i.e. δq0 = δq1 = 0)

leads to the following discrete equations

∂Ld

∂q(j)(0)
=

∂Ld

∂q(j)(h)
= 0 j = 1, · · · , n− 1 (4.20)

Thus, solving these 2n− 2 coupled nonlinear equations gives the 2n− 2 coefficients and this

one-step method can be seen as a numerical integrator from (q0,v0) to (q1,v1) with a 2n−1

degree Hermite piecewise polynomial interpolating the configuration over every fixed time-

step. This approach can be extended to Lagrangian systems with forcing by discretizing the

Lagrange-d’Alembert principle.

Galerkin Approach: One-step Galerkin methods with discretization using higher-order

Hermite polynomials involve the use of shifted Legendre polynomials up to order 2n− 2 as

test functions. Given (q0,v0), the governing discrete equations are given by

∫ h

0

Meq(qd)Pj(t) dt = 0 j = 0, · · · , 2n− 3 (4.21)

where Pj(t) are shifted Legendre polynomials of degree j.

4.3 Numerical Results

In this section, we consider three examples to study the numerical performance of the pro-

posed Galerkin and variational one-step methods. We first consider a nonlinear conservative
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system to demonstrate the good energy performance of the proposed methods. We also

present an order analysis study to understand the convergence behavior of one-step vari-

ational and Galerkin methods. We then consider the Duffing oscillator to investigate the

numerical behavior of the proposed one-step methods in the presence of dissipative forces.

Finally, we consider a nonlinear aeroelastic system to study how the proposed methods

perform for a coupled nonlinear dynamical system.

4.3.1 Particle in a Double-well Potential

In this subsection, we apply the proposed methods to a particle in a double-well potential

with Lagrangian

L(q, q̇) =
1

2
mq̇2 − 1

2

(
q4 − q2

)
(4.22)

The Euler-Lagrange equation for this conservative system is given by

mq̈ − q + 2q3 = 0 (4.23)

We have compared the numerical results for m = 1 and fixed time-step h = 0.1 for two

initial conditions. The phase portrait comparisons in Figure 7.3 show how both variational

and Galerkin methods agree with the benchmark solution for both initial conditions. The

corresponding energy error plots in Figure 4.3 demonstrate the bounded energy error for

both one-step methods. For both cases, the energy performance for the Galerkin method is

substantially better than for the variational method. The energy error comparison in Figure

4.3a shows that the one-step variational method has energy error magnitude around 10−7

whereas the Galerkin method has energy error around 10−10. Similarly, in Figure 4.3b the

variational method has energy error magnitude around 10−5 and the Galerkin method has

energy error around 10−8.
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Figure 4.2: Phase space trajectory comparison for fixed time-step h = 0.1
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Figure 4.3: The energy error comparison for the two trajectories

In Figure 4.4, we have studied the numerical behavior of these algorithms for different

fixed time-step values to understand how the configuration, velocity and energy error values

decrease with decrease in the step size. We have also performed the convergence analysis for

variational integrators derived from the discrete mechanics framework to understand how

they compare to the proposed one-step methods. Since both one-step methods proposed

in this work require the solution of two coupled nonlinear equations at each time-step, we

have implemented variational integrators that require solving the same number of nonlinear

equations. Thus, we have considered a quadratic trajectory over one time-step in the discrete

mechanics framework by introducing an interior point and the resulting variational integrator

leads to two coupled nonlinear implicit equations at each time-step.

The configuration and velocity convergence plots in Figure 4.8a and Figure 4.8b show that

the one-step variational method has second order convergence whereas both the variational
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integrator and the one-step Galerkin method have fourth order convergence. For the en-

ergy error, both the one-step variational and the variational integrator show second order

convergence, and the one-step Galerkin method shows fourth order convergence. Thus, the

one-step Galerkin approach gives better trajectory and energy performance than both the

one-step variational method and the variational integrator.
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Figure 4.4: Convergence analysis of temporal error in configuration, velocity and energy for
the nonlinear conservative system.

4.3.2 Duffing Oscillator

In this subsection, we study the numerical performance of these algorithms in the presence

of dissipation. The governing second-order, nonlinear differential equation for the Duffing

oscillator is given by

ẍ+ δẋ+ αx+ βx3 = 0 (4.24)
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where x(t) is the displacement at time t, δ is the linear damping, α is the linear stiffness, and

β is the nonlinear stiffness coefficient. The Lagrangian and external forcing for this system

are given by

L(x, ẋ) =
1

2
ẋ2 − 1

2
αx2 − 1

4
βx4, f(ẋ, t) = −δẋ (4.25)

We have fixed the stiffness parameters to α = 1 and β = 0.5 and studied this dissipative

nonlinear dynamical system for three cases, i.e. δ = 0.025, 0.05, 0.1. With these specific

parameter values, the Duffing oscillator can be thought of as the double-well potential system

with dissipation. The numerically computed trajectories from both one-step methods are

compared with the benchmark solution in Figure 4.5. The plots in Figure 4.5 demonstrate

that both methods are able to capture the dissipation effect accurately. In fact, the discrete

trajectories are indistinguishable from the benchmark solution for all three cases.

The energy error plots in Figure 4.6 compare the energy performance for both one-step

methods and the Galerkin approach outperforms the variational approach in all three cases.

For all three cases, the energy error for the one-step variational method starts around 10−4

whereas the one-step Galerkin methods exhibit energy error around 10−6. The energy error

for both methods decreases over the time due to the presence of dissipative forces and the

rate of decrease in energy error increases with increase in the value of the damping parameter

δ. This decrease in energy error is seen clearly in Figure 4.6b and Figure 4.6c for higher δ

values.

4.3.3 Aeroelastic System

In this subsection, we consider open-loop behavior of the nonlinear aeroelastic system studied

by Shukla and Patil [177]. As shown in Figure 4.7, the model contains a flat plate supported

by a linear spring in the plunge degree of freedom and cubic nonlinear spring in the pitch
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Figure 4.5: Duffing oscillator numerical simulation with α = −1, β = 2 time-step h = 0.1

degree of freedom. The flat plate is free to move up and down along the plunge degree of

freedom and rotate about the pitch degree of freedom. The Lagrangian for this system is

given by

L(h, ḣ, α, α̇) = mT ḣ
2 + Iαα̇

2 +mWxαḣα̇− 1

2
khh

2 − 1

2
kα0α

2 − 1

3
kα1α

3 − 1

4
kα2α

4 (4.26)

where mW is the mass of the wing and mT is the total mass of the aeroelastic system. Iα

represents the moment of inertia about the elastic axis. The terms kh and kα{0,1,2} are the

stiffness functions along the plunge and pitch degrees of freedom respectively. The external

nonconservative forces are given by

fh = −chḣ+ ρU2bCLααeff (4.27)
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(a) δ = 0.025
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(b) δ = 0.05

0 10 20 30 40 50 60 70 80

Time

10
-10

10
-8

10
-6

10
-4

10
-2

E
n

e
rg

y
 E

rr
o

r

One-step Variational

One-step Galerkin

(c) δ = 0.1

Figure 4.6: Duffing oscillator numerical simulation with α = −1, β = 2 time-step h = 0.1

fα = −cαα̇ + ρU2b2CMααeff (4.28)

where ch and cα are damping coefficients, CLα and CMα are the derivatives of the lift and

moment coefficients, and αeff =
(
α + ḣ

U
+
(
1
2
− a
)
b α̇
U

)
is the effective angle of attack. The

equations of motion for this aeroelastic system are given by

mT ḧ+mWxαbα̈ + chḣ+ khh− ρU2bCLααeff = 0 (4.29)

Iαα̈ +mWxαbḧ+ cαα̇ + kα(α)α + ρU2b2CMααeff = 0 (4.30)

where k(α) = kα0 + kα1α + kα2α
2.

We have studied the dynamic behavior of the nonlinear aeroelastic system for initial con-

ditions (h0, ḣ0, α0, α̇0) = (0.01, 0, 0.1, 0) at freestream velocity U = 0.9Uf where Uf is the
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Figure 4.7: Sketch of a two degrees of freedom aeroelastic section model

linear flutter velocity. The phase space plots given in Figure 4.8 clearly demonstrate how

both one-step methods capture the subcritical limit cycle oscillations (LCOs) accurately.

The energy plot in Figure 4.9 shows how the total energy of the aeroelastic system evolves

over time. Initially there is a sharp decrease in energy followed by an increase, and eventually

when the system exhibits periodic motion with constant amplitude the total energy oscillates

around a fixed value. As shown in Figure 4.9, both one-step methods track the change in

energy accurately for the nonlinear aeroelastic system. The energy error comparison in

Figure 4.10 demonstrates how the Galerkin approach has better energy behavior than the

one-step variational approach. The one-step variational method has energy error magnitude

around 10−4 whereas the Galerkin method has energy error around 10−6.

4.3.4 Symplectic Nature

As mentioned in Section 4.2.2, the variational approach to one-step methods only considers

the action integral over one time-step whereas the variational integrators consider the action

integral over a finite number of fixed time-steps. We know that variational integrators
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(a) Plunge response (One-step Galerkin) (b) Plunge response (One-step variational)

(c) Pitch response (One-step Galerkin) (d) Pitch response (One-step variational)

Figure 4.8: Subcritical LCO simulation using proposed one-step methods

derived from the latter approach yield numerical algorithms that automatically preserve

the canonical symplectic form. For a Hamiltonian system with Hamiltonian H(p,q), the

symplectic flow map ϕt(p0,q0) = (p(t),q(t)) satisfies the following condition

(
∂ϕt

∂y0

)T

J

(
∂ϕt

∂y0

)
= J (4.31)

where y0 = (p0,q0) and J =

 0 I

−I 0

 is the symplectic matrix. Similar to this con-

dition, a given one-step method ϕh : (pk,qk) → (pk+1,qk+1) is symplectic if it satisfies
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Figure 4.9: Total energy of the aeroelastic system

(
∂ϕh

∂yk

)T
J
(

∂ϕh

∂yk

)
= J for yk = (pk,qk). The key step in this process is to compute the

following Jacobian matrix

∂ϕh

∂yk

=

∂pk+1(pk,qk)

∂pk

∂pk+1(pk,qk)

∂qk

∂qk+1(pk,qk)

∂pk

∂qk+1(pk,qk)

∂qk

 (4.32)

Since both proposed methods are generally implicit, the computation for the Jacobian matrix

involves differentiating the governing discrete equations and then solving a system of linear

equations for the entries in the Jacobian matrix. We study the symplectic nature of the

one-step algorithms for both linear and nonlinear conservative systems. It is important to

note that the one-step methods developed in this chapter are formulated on the state space.

In order to check the condition for symplecticity, we need to define pk = mvk to write these

algorithms on phase space. Instead of writing the algorithms on phase space, we pick m = 1

to simplify the expressions.

First, we check the condition for the simple harmonic oscillator with L(q, q̇) = 1
2
q̇2 − 1

2
q2
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Figure 4.10: Energy error comparison between one-step Galerkin and variational methods

where q(t) is the displacement. For a fixed time-step h, the Jacobians for one-step methods

are given by

∂ϕh,V

∂yk

=

 (44h5+143h4−700h3+189h2+1176h−882)
(7h(h4+9h2+210))

(8h5+33h4−224h3−217h2+1568h+294)
(7(h4+9h2+210))

−(66h5+169h4−434h3+1092h2+588h+1764)
(14h(h4+9h2+210))

−(12h5+39h4−224h3−56h2+784h−588)
(14h(h4+9h2+210))


∂ϕh,G

∂yk

=

 −(2(−h4+30h2+22h2−120))
h4+16h2+240

(h(h4−60h2−72h2+720+720))
6(h4+16h2+240)

−(h(h4−60h2−70h2+600+600))
5(h4+16h2+240)

−(h6−120h4−120h4+2640h2+3600h2−14400)
60(h4+16h2+240)


For this linear dynamical system, Jacobians from both variational and Galerkin one-step

methods satisfy the condition for symplecticity. For a general mechanical system with a

nonlinear potential energy U(q) and Lagrangian L = 1
2
mq̇2 −U(q), we find that none of the

one-step methods satisfy the required condition for symplecticity. It is important to note that

the above condition is only to check whether the algorithms preserve the canonical symplectic

form. In fact, at present, one can only check whether a given integration scheme exhibits a

specific symplectic structure; one cannot determine whether any such symplectic structure
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exists, in general. In the past, some of the well-known methods such as Newmark methods

have been shown to preserve a noncanonical symplectic form via nonlinear transformations

but it is not generally known how to test for the existence of a noncanonical symplectic form

for a given algorithm.

4.4 Conclusions

In this chapter we have developed Hermite polynomial based one-step variational and Galerkin

methods for mechanical systems with external forcing. We have utilized cubic Hermite poly-

nomials over one time-step for discretization and the resulting numerical algorithms are

continuous in both configuration and velocity. We showed that both one-step methods are

symplectic for linear dynamical systems but they do not preserve the canonical symplectic

form for general nonlinear dynamical systems. We also demonstrated an approach to obtain

one-step methods using higher-order Hermite polynomials.

We have studied the numerical behavior of these algorithms through three different numeri-

cal examples. The energy performance and convergence analysis results for the conservative

example showed how both one-step methods achieve superior numerical performance by ob-

taining C1–continuous trajectories. We have also presented results for a dissipative system

and the numerical plots show that both one-step methods capture the effect of the dissipative

forces accurately over exponentially long time intervals. Finally, numerical studies for the

coupled aeroelastic system show how both one-step methods capture the limit cycle oscilla-

tions accurately. The numerical results from all three examples showed that the Galerkin

approach has significantly better energy behavior. We believe the discrete equation corre-

sponding to the constant test function is the reason behind the superior energy performance

of the Galerkin method.
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In future work, we would like to investigate the connection between the one-step Galerkin

methods and energy-momentum integrators. It would also be desirable to apply these one-

step methods to discretizations of infinite-dimensional systems.



Chapter 5

Energy-preserving Lie Group

Variational Integrators on SO(3)

The goal of this chapter is to develop energy-preserving Lie group variational integrators for

attitude dynamics of a rigid body. First, we derive the equations of motion for a rigid body

and then use the extended discrete mechanics framework to construct energy-preserving

adaptive time step Lie group variational integrators. This integrator is used to study the

dynamics of a 3D pendulum under the influence of gravity and illustrate the advantages of

using adaptive time-stepping in Lie group variational integrators.

This chapter is organized as follows. In Section 5.1, we utilize concepts from extended La-

grangian mechanics to derive continuous-time equations of motion for rigid body attitude

dynamics. In Section 5.2 we derive energy-preserving, adaptive time step Lie group varia-

tional integrator. In Section 5.3 we study the dynamics of an uncontrolled 3D pendulum

moving under the effect of gravity. Finally, in Section 5.4 we provide concluding remarks

for this work.

5.1 Extended Lagrangian Mechanics on SO(3)

We consider attitude dynamics of a rigid body in presence of attitude dependent potential.

We derive the governing equations from Hamilton’s principle for a rigid body system with

101



102 Chapter 5. Energy-preserving Lie Group Variational Integrators on SO(3)

the following Lagrangian

L(R,ω) =
1

2
ωTJω − U(R) =

1

2
tr
[
S(ω)JdS(ω)

T
]
− U(R), (5.1)

where Jd =
1
2
tr[J ]I3×3 − J and S(·) : R3 → R3×3 maps a vector to a skew-symmetric matrix

such that S(x)y = x× y for x, y ∈ R3.

For a Lagrangian system evolving on Q = SO(3) and time space R, the extended configura-

tion manifold is Q̄ = R×SO(3). In the extended Lagrangian mechanics framework, the state

space TQ̄ = R×TSO(3) is represented by time t, rotation matrix R and angular velocity ω.

These three variables are parametrized by an independent variable a. For a given path c(a),

the initial time is t0 = t(a0) and the final time is tf = t(af ). The extended action B̄ is

B̄ =

∫ tf

t0

L(t, R, ω)dt =

∫ af

a0

L(t(a), R(a), ω(a)) t′(a) da, (5.2)

where t′(a) = dt(a)
da

denotes the derivative with respect to independent variable a. For deriving

governing equations we consider the following variation

Rϵ(a) = R(a)eϵη(a), tϵ(a) = t(a) + ϵδt(a), (5.3)

where ϵ ∈ R and η(a) ∈ so(3) defines a variation in the Lie algebra of skew symmetric

rotation matrices that vanishes at the endpoints. Hence,

δR =
dRϵ

dϵ

∣∣∣∣
ϵ=0

= R(a)η(a). (5.4)

Using the kinematic relationship Ṙ(a) = R(a)S(ω) the variation of the angular velocity ωϵ
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can be computed by

S(ωϵ) = RϵT (a)Ṙϵ(a) = RϵT (a)

(
Rϵ′(a)

tϵ′(a)

)
= e−ϵη(a)RT (a)

(
R′(a)eϵη(a) + ϵR(a)eϵη(a)η′(a)

t′(a) + ϵδt′(a)

)
, (5.5)

which after neglecting second order terms simplifies to

S(ωϵ) =
e−ϵη(a)S(ω)eϵη(a) + ϵη′(a)

t′(a) + ϵδt′(a)

=

(
1− ϵ

δt′(a)

t′(a)

)
(S(ω) + ϵ(η̇ + S(ω)η − ηS(ω))) . (5.6)

Thus, we have

S(ωϵ) = S(ω) + ϵ

(
η̇ + S(ω)η − ηS(ω)− S(ω)

δt′(a)

t′(a)

)
. (5.7)

From Hamilton’s principle we know that variation of the action integral is zero, i.e. δB̄ = 0.

Taking variation of (5.2) yields

δB̄ =

∫ af

a0

1

2
tr [−η̇S(Jω) + ηS(ω × Jω)] t′(a)da

+

∫ af

a0

((
1

2
ωTJω − U(R)

)
− tr

[
S(ω)JdS(ω)

T
])

δt′(a) da

+

∫ af

a0

tr
[
ηRT ∂U

∂R

]
t′(a)da, (5.8)
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which after setting variations at endpoints to zero yields

δB̄ =

∫ tf

t0

1

2
tr
[
η

(
S(Jω̇ + ω × Jω) + 2RT ∂U

∂R

)]
dt

+

∫ tf

t0

[
d

dt

(
ωTJω −

(
1

2
ωTJω − U(R)

))]
δt dt, (5.9)

and gives the following governing equations. The first is the equation of motion for a rigid

body evolving on SO(3) in Lagrangian form

Jω̇ + ω × Jω =
∂UT

∂R
R−RT ∂U

∂R
, (5.10)

which is the same as the equation obtained using the classical Lagrangian mechanics frame-

work. The second equation is

d

dt

(
1

2
ωTJω + U(R)

)
= 0, (5.11)

which indicates that the total energy of the rigid body system is a constant.

5.2 Adaptive Variational Integrator

Adaptive time step Lie group variational integrators are obtained by discretizing Hamilton’s

principle in the extended phase space. In this section extended discrete equations of motion

for a rigid body are derived using ideas from extended discrete mechanics and Lie group

methods.
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5.2.1 Extended Discrete Lagrangian Mechanics on SO(3)

In the extended discrete Lagrangian mechanics framework time tk is treated as a discrete

dynamic variable. For the extended discrete mechanics of the rigid body, let Rk ∈ SO(3)

denote the attitude of the rigid body at time tk. We define Fk ∈ SO(3) such that Rk+1 =

RkFk. Using the kinematic relationship Ṙ = RS(ω) we approximate S(ωk) by

S(ωk) = RT
k Ṙk ≈ RT

k

(
Rk+1 −Rk

tk+1 − tk

)
=

1

hk

(Fk − I3×3), (5.12)

where hk = tk+1 − tk is the kth adaptive time step.

We discretize the continuous time action integral (5.2) using the extended discrete action

B̄d =
N−1∑
k=0

Ld(tk, Rk, tk+1, Rk+1), (5.13)

where Ld : Q̄× Q̄ → R is the extended discrete Lagrangian function which approximates the

action integral between two successive configurations. For the rigid body system we consider

the extended discrete Lagrangian Ld

Ld(tk, Rk, tk+1, Rk+1) ≃ hk

(
L(tk, Rk, ωk) + L(tk+1, Rk+1, ωk)

2

)
=

1

hk

tr [(I3×3 − Fk)Jd]−
hk

2
U(Rk)−

hk

2
U(Rk+1). (5.14)

Just like the continuous case, the variations in Rk and tk can be expressed as follows

Rϵ
k = Rke

ϵηk , tϵk = tk + ϵδtk. (5.15)
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From Fk = RT
kRk+1 and hk = tk+1 − tk, F ϵ

k and hϵ
k are

F ϵ
k = RϵT

k Rϵ
k+1 = e−ϵηkFke

ϵηk+1 , hϵ
k = hk + ϵ(δtk+1 − δtk). (5.16)

Using above expressions we can write

B̄ϵ
d =

N−1∑
k=0

1

hϵ
k

tr
[
(I3×3 − e−ϵηkFke

ϵηk+1)Jd
]
−

N−1∑
k=0

{
hϵ
k

2
U(Rke

ϵηk) +
hϵ
k

2
U(Rk+1e

ϵηk+1)

}
. (5.17)

Taking variations of the extended discrete action gives

δB̄d =
N−1∑
k=0

1

hk

tr [(ηkFk − Fkηk+1)Jd]

+
N−1∑
k=0

hk

2
tr

[
ηkR

T
k

∂U

∂Rk

+ ηk+1R
T
k+1

∂U

∂Rk+1

]

−
N−1∑
k=0

(δtk+1 − δtk)

h2
k

tr [(I3×3 − Fk)Jd]

−
N−1∑
k=0

δtk+1
U(Rk) + U(Rk+1)

2
+

N−1∑
k=0

δtk
U(Rk) + U(Rk+1)

2
. (5.18)

Applying discrete Hamilton’s principle, i.e. δB̄d = 0 and setting variations at end points to

zero gives

N−1∑
k=1

tr
[
ηk

{
1

hk

FkJd −
1

hk−1

JdFk−1 +
hk + hk−1

2
RT

k

∂U

∂Rk

}]

+
N−1∑
k=1

[
1

h2
k

tr [(I3×3 − Fk)Jd] +
U(Rk+1) + U(Rk)

2

]
δtk

−
[

1

h2
k−1

tr [(I3×3 − Fk−1)Jd] +
U(Rk) + U(Rk−1)

2

]
δtk = 0, (5.19)
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which lead to the extended discrete equations of motion for the rigid body system evolving

on SO(3) in Lagrangian form:

1

hk

(
FkJd − JdF

T
k

)
− 1

hk−1

(
JdFk−1 − F T

k−1Jd
)
=

hk + hk−1

2

(
∂U

∂Rk

T

Rk −RT
k

∂U

∂Rk

)
, (5.20)

1

h2
k

tr [(I3×3 − Fk)Jd] +
U(Rk+1) + U(Rk)

2

=
1

h2
k−1

tr [(I3×3 − Fk−1)Jd] +
U(Rk) + U(Rk−1)

2
, (5.21)

Rk+1 = RkFk. (5.22)

Given (hk−1, Rk−1, Fk−1, Rk), the extended discrete equations of motion can be solved to

obtain Fk, Rk+1 and hk. This extended discrete Lagrangian system can be seen as a numerical

integrator of the continuous time rigid body system on SO(3) with adaptive time steps.

In the extended discrete mechanics framework, we define the discrete momentum Πk by

Πk = D4Ld(tk−1, Rk−1, tk, Rk), (5.23)

where Di denotes differentiation with respect to the ith argument of the discrete Lagrangian

Ld . We also introduce the discrete energy

Ek = D3Ld(tk−1, Rk−1, tk, Rk). (5.24)

Using the discrete momentum and discrete energy definitions, we can re-write the extended
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discrete equations of motion (5.20) and (5.21) in the Hamiltonian form as

FkJd − JdF
T
k = hkS(Πk +

hk

2
Mk), (5.25)

1

h2
k

tr [(I3×3 − Fk)Jd] +
U(Rk+1) + U(Rk)

2
= Ek, (5.26)

Rk+1 = RkFk, (5.27)

Πk+1 = F T
k Πk +

hk

2
F T
k Mk +

hk

2
Mk+1, (5.28)

Ek+1 =
1

h2
k

tr [(I3×3 − Fk)Jd] +
U(Rk+1) + U(Rk)

2
, (5.29)

where Mk ∈ R3 is defined such that S(Mk) = ∂U
∂Rk

T
Rk − RT

k
∂U
∂Rk

. Given (Πk, Rk, Ek), the

coupled nonlinear equations (5.25),(5.26) and (5.27) are solved implicitly to obtain Fk,Rk+1

and hk. The configuration Fk and Rk+1 along with the time step hk are then used in (5.28)

and (5.29) to obtain (Πk+1, Ek+1) explicitly.

5.2.2 Properties of Adaptive Lie Group Variational Integrator

Due to the variational nature of their derivation, adaptive time step variational integrators

have been shown to preserve the extended symplectic form and extended discrete Noether’s

theorem [44]. By choosing an extended discrete Lagrangian (5.14) that inherits all the

symmetries of the continuous Lagrangian, all the conserved momenta of the continuous time

dynamics are preserved in the discrete dynamics. In fact, since our rigid body system is

an autonomous Lagrangian system, the time-symmetry of the discrete Lagrangian leads to

conservation of discrete energy (5.24).

At every time step, the rotation matrix Rk is updated by Rk+1 = RkFk where we have

defined Fk ∈ SO(3). Since the Lie group SO(3) is closed under matrix multiplication, the

updated matrix Rk+1 remains on SO(3). Thus, the adaptive time step Lie group variational
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integrator (5.25)-(5.29) preserves symplectic form, energy and momentum and also preserves

the geometric features of configuration space.

5.2.3 Computational Approach

It is important to note that unlike the fixed time step case the governing discrete nonlinear

equations are coupled in Fk and tk+1. Instead of solving both equations simultaneously, we

take the sequential approach of first solving the discrete momentum equation (5.25) followed

by solving the discrete energy equation (5.26). In order to make sure Fk obtained from the

discrete momentum equation lies on SO(3), we use the Cayley transformation to transform

the matrix equation to an equivalent vector equation. The implicit equation (5.25) has the

following structure

F
(i)
k Jd − Jd(F

(i)
k )T = S(g

(i)
k ), (5.30)

where g(i)k = Πk+
h
(i)
k

2
Mk ∈ R3 with (F

(i)
k , h

(i)
k ) being the solution after ith sequential iteration.

We express F
(i)
k in terms of a vector f

(i)
k using the Cayley transformation

F
(i)
k =

(
I3×3 + S(f

(i)
k )
)(

I3×3 − S(f
(i)
k )
)−1

, (5.31)

which transforms the discrete momentum equation to the following vector equation

GCay(f
(i)
k ) = g

(i)
k + g

(i)
k × f

(i)
k + ((g

(i)
k )Tf

(i)
k )f

(i)
k − 2Jf

(i)
k = 0. (5.32)

The above equation is solved using the Newton method

f
(i)
kj+1

= f
(i)
kj

−∇GCay(f
(i)
kj
)−1GCay(f

(i)
kj
), (5.33)
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where

∇GCay(f
(i)
kj
) = S(g

(i)
k )− 2J + ((g

(i)
k )Tf

(i)
k )I3×3 + (f

(i)
k (g

(i)
k )T ). (5.34)

The solution obtained from Newton method is then used to solve (5.26) for h
(i)
k using

h
(i)
k =

√√√√√√ tr
[
(I3×3 − F

(i)
k )Jd

]
Ek −

(
U(R

(i)
k+1)+U(Rk)

2

) , (5.35)

where F
(i)
k is the Fk solution obtained after ith sequential iteration and R

(i)
k+1 = RkF

(i)
k .

5.3 Numerical Example of a 3D Pendulum

We apply the adaptive time step Lie group variational integrator developed in this chapter

to study the dynamics of an uncontrolled 3D pendulum, a rigid asymmetric body supported

by a frictionless pivot acting under the influence of gravity [100]. The potential due to the

gravitational force, acting in the vertical or e3 direction, is given by

U = −mgeT3Rρ, (5.36)

where ρ ∈ R3 is the vector from the pivot to the center of mass of the body expressed in the

body fixed frame.
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5.3.1 Adaptive Variational Integrator

For the motion of 3D pendulum under the influence of gravity, the governing discrete equa-

tions are given by

FkJd − JdF
T
k = hkS(Πk) +

h2
k

2
mg
(
RT

k e3ρ
T − ρeT3Rk

)
, (5.37)

1

h2
k

tr [(I3×3 − Fk)Jd]−mgeT3
Rk+1 +Rk

2
ρ = Ek, (5.38)

Rk+1 = RkFk, (5.39)

Πk+1 = F T
k Πk +

hk

2
F T
k mg

(
ρ×RT

k e3
)
+

hk

2
mg
(
ρ×RT

k+1e3
)
, (5.40)

Ek+1 =
1

h2
k

tr [(I3×3 − Fk)Jd]−mgeT3
Rk+1 +Rk

2
ρ. (5.41)

Left multiplying both sides of (5.40) by Rk+1 and using the definition of Fk = RT
k+1Rk

Rk+1Πk −RkΠk =
hk

2
mg
[
Rk

(
ρ×RT

k e3
)
+Rk+1

(
ρ×RT

k+1e3
)]

(5.42)

If we take dot product of the above equation with e3, the right hand side of the goes to

zero, which means that our integrator conserves eT3RkΠk which is the discrete analogue of

the vertical component of the angular momentum. In fact, the left hand side of (5.38) and

right hand side of (5.41) are same i.e. Ek+1 = Ek, which means that at every time step our

integrator conserves the discrete energy Ek.

5.3.2 Numerical Results

In this subsection, we implement adaptive Lie group variational integrator for the 3D pen-

dulum to study the uncontrolled dynamics. We consider the 3D pendulum parameters and

initial conditions first studied in [100] and compare the fixed time step Lie group variational
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integrator results with the results from the adaptive time step Lie group variational integra-

tor to demonstrate the superior numerical performance of the adaptive algorithm. The mass

properties of the 3D pendulum are

J = diag[1, 2.8, 2]kgm2, m = 1kg, ρ = [0, 0, 1]m. (5.43)

We present results for the following two initial conditions.

1. Small perturbation from the hanging equilibrium

R0 = I3×3, ω0 = [0.5,−0.5, 0.4]rad/s. (5.44)

2. Small perturbation from the inverted equilibrium

R0 = diag[−1, 1,−1], ω0 = [0.5,−0.5, 0.4]rad/s. (5.45)
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Figure 5.1: Adaptive time step behavior for both cases

For both cases, results from the adaptive algorithm for an initial time step of h0 = 0.001 are

compared with results from the fixed algorithm for a fixed step size of h = 0.001. Numerical

results for the first case are presented in Fig. 5.2, where Fig. 5.2a shows that time history

of the angular velocity for both algorithms are indistinguishable, and Fig. 5.2b compares
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the error in conserved quantities for both algorithms. The discrete energy error plot for the

first case shows that the adaptive time step algorithm has nearly exact energy preservation

whereas the fixed time step method has energy error around 10−7. The other two plots in

the Fig. 5.2b show that adaptive time step variational integrator preserves the first integrals

and the structure of the configuration space with the same accuracy as the fixed time step

variational integrator.

For the second case, the angular velocities in Fig. 5.3a are irregular, with the time histories

not matching for both algorithms. In Fig. 5.3b, energy error for the fixed time step algorithm

increases to 10−4 for the fixed time step algorithm as compared to 10−12 for the adaptive

time step algorithm. The angular momentum and orthogonality error plots for the second

case show a numerical performance similar to the first case.

Fig. 5.1 shows how the adaptive time step behaves differently for both cases. The adaptive

time step hk doesn’t decrease or increase substantially from the initial time step of h0 = 0.001

over the 3000 iterations. For the case with dynamics around the hanging equilibrium, the

adaptive time step is found to be decreasing whereas it increases irregularly for the second

case with chaotic behavior.

We have done an order analysis comparison between the fixed and adaptive time step vari-

ational integrators for different time step values to understand the effect of the time step

on the mean energy error and computational time. For the first case, in Fig. 5.4 we have

varied the time step from 0.001 to 0.1 to understand how the mean energy error and CPU

time change. Fig. 5.4a shows a second order convergence for the mean energy error for

decreasing time step whereas the mean energy error remains at the machine level accuracy

for the adaptive algorithm due to its energy-preserving nature. In Fig. 5.4b CPU time for

both algorithms converge with the same order with adaptive algorithm being 2-5 times more

expensive due to the additional discrete energy equation solved at every iteration.
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Table 5.1: Fixed and Adaptive Algorithm Comparison for the 3D Pendulum

Method Time step Mean |∆E| CPU time Mean ||I −RTR||
Adaptive 10−4 2.3× 10−13 72.5 1.2× 10−12

Algorithm 4× 10−3 1.6× 10−13 18.0 6.7× 10−14

10−3 1.7× 10−13 7.5 2.6× 10−14

Fixed 10−4 1.7× 10−7 48.8 4.1× 10−13

Algorithm 4× 10−3 3.1× 10−6 12.1 3.9× 10−14

10−3 1.7× 10−5 5.2 2.0× 10−14

In Table 5.1 we have compared numerical performance of fixed and adaptive algorithms

for the second case to demonstrate that adaptive algorithms are able to achieve orders of

magnitude better energy behavior with less CPU time. For example, the adaptive algorithm

achieves mean energy error around 10−13 with an initial step size of 0.001 and CPU time

of 7.5. On the other hand, the fixed time step algorithm with a smaller step size of 0.0001

and CPU time of 48.8 is only able to achieve mean energy error of around 10−7. Thus, the

adaptive algorithm gives orders of magnitude better energy performance with only 1/6th of

CPU time.

0 5 10 15 20 25 30
-1

0

1

0 5 10 15 20 25 30
-1

0

1

0 5 10 15 20 25 30

Time

0.2

0.4

0.6

(a) Angular velocity comparison

0 5 10 15 20 25 30
10

-20

10
-10

10
0

 
E

k
 
e

r
r
o

r

0 5 10 15 20 25 30
10

-16

10
-14

10
-12

e
3T
R

 
e

r
r
o

r

0 5 10 15 20 25 30

Time

10
-20

10
-15

10
-10

(b) Error in conserved quantities

Figure 5.2: Small perturbation from the hanging equilibrium. (Adaptive algorithm: solid.
Fixed algorithm: dashed)
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5.4 Conclusions

In this chapter, we present adaptive time step variational integrators for attitude dynam-

ics of a rigid body under the influence of attitude dependent potential. By developing the

extended Lagrangian mechanics framework on SO(3), we derive extended equations of mo-

tion for the rigid body system in continuous time. To derive energy-preserving variational

integrators, we use concepts from extended discrete mechanics, where in addition to the

configuration variables time is also considered a discrete dynamic variable. The govern-
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ing discrete equations are obtained from the discrete Hamilton’s principle in the extended

phase space, and resulting adaptive algorithm preserves the discrete energy in addition to

the symplectic and momentum preservation properties characteristic of the fixed time step

variational integrators.

The resulting adaptive time step Lie group variational integrator is used to study the dynam-

ics of uncontrolled 3D pendulum in presence of gravity. The adaptive time step algorithm

exhibits superior energy performance in both cases compared to the fixed time step al-

gorithm while maintaining the same level of accuracy for orthogonality error and angular

momentum conservation. The order analysis results show that, despite solving an additional

nonlinear equation at each time step, the adaptive algorithm takes - due to its superior

energy performance- less computation time than the fixed time step Lie group variational

integrator to achieve same level of energy accuracy.



Chapter 6

Energy-preserving Lie Group

Variational Integrators on SE(3)

The goal of this chapter is to develop adaptive time step Lie group variational integrators for

simultaneously rotating and translating rigid body motion. First, we derive the continuous

time equations of motion for a rigid body in SE(3) using extended Lagrangian mechanics.

We then use the extended discrete mechanics framework to construct adaptive time step

variational integrators from the discretized variational principle. This integrator is used to

study the dynamics of an underwater vehicle. The results demonstrate the superior energy

performance of adaptive time step Lie group variational integrators compared to their fixed

time step counterpart.

This chapter is organized as follows. In Section 6.1, we utilize concepts from extended La-

grangian mechanics to derive continuous-time equations of motion for rigid body motion in

SE(3). In Section 6.2 we derive energy-preserving, adaptive time step Lie group variational

integrator. In Section 6.3 we study the dynamics of a neutrally buoyant conservative under-

water. Finally, in Section 6.4 we provide concluding remarks and suggest future directions

for this work.

117
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6.1 Continuous Time Model

A rigid body that is simultaneously translating and rotating is said to undergo Euclidean

motion. For describing this Euclidean motion, we arbitrarily select an inertial frame and a

body fixed frame in the rigid body such that the origin is at the center of mass of the rigid

body. The configuration space of a rotating and translating rigid body in three dimensions is

the Lie group SE(3) and we represent the configuration (R, x) ∈ SE(3) by the homogeneous

matrix G =

R x

0 1

 where R ∈ SO(3) is the rotation matrix and x ∈ R3 is the position of

the center of mass in inertial frame. The rotational and translational kinematics for a rigid

body are described by (R, x, Ṙ, ẋ) ∈ TSE(3). The rotational and translational kinematics

equations can be written as

Ġ =

Ṙ ẋ

0 0

 =

R x

0 1


S(ω) v

0 0

 = GV, (6.1)

where ω, v ∈ R3 are the angular and translational velocity vectors in the body-fixed frame

and V is an element of the Lie algebra se(3). S(·) : R3 → R3×3 maps a vector to a skew-

symmetric matrix such that S(x)y = x× y for x, y ∈ R3.

6.1.1 Extended Lagrangian Mechanics on SE(3)

Consider a time-dependent Lagrangian system evolving on Q = SE(3) and time space R.

In the extended Lagrangian mechanics framework, time t, configuration G and velocity V

are parameterized by an independent variable a. For a given path c(a), the initial time is
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t0 = t(a0) and the final time is tf = t(af ). The extended action B̄ is

B̄ =

∫ tf

t0

L(t, G, V )dt =

∫ af

a0

L(t(a), G(a), V (a)) t′(a) da, (6.2)

where (·)′ = d
da
(·) denotes the derivative with respect to independent variable a. We consider

the following admissible variations

Gϵ(a) = G(a)eϵΓ(a), tϵ(a) = t(a) + ϵδt(a), (6.3)

where Γ is an admissible differentiable curve on se(3). Using the isomorphism S : R3×R3 →

se(3) we define Γ = S(η, χ) =

S(η) χ

0 0

 with the variations η, χ ∈ R3 vanishing at t0 and

tf . Using the Gϵ definition, we get

δG =
dGϵ

dϵ

∣∣∣∣
ϵ=0

= G(a)Γ(a) =

RS(η) Rχ

0 0

 . (6.4)

We obtain Ġϵ from the Gϵ and tϵ definitions (6.3)

Ġϵ =
dGϵ

da
dtϵ

da

=
G′(a)eϵΓ(a) + ϵG(a)eϵΓ(a)Γ′(a)

t′(a)
(
1 + ϵ δt

′(a)
t′(a)

) . (6.5)

Using the binomial expansion for the denominator gives

Ġϵ =
dGϵ

da
dtϵ

da

=
G′(a)eϵΓ(a) + ϵG(a)eϵΓ(a)Γ′(a)

t′(a)
(
1 + ϵ δt

′(a)
t′(a)

)
=
(
Ġ(a)eϵΓ(a) + ϵG(a)eϵΓ(a)Γ̇(a)

)(
1− ϵ

δt′(a)

t′(a)
+O(ϵ2)

)
= ĠeϵΓ + ϵGeϵΓΓ̇− ϵĠeϵΓ

δt′

t′
+O(ϵ2). (6.6)
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From Ġϵ and kinematic equation (6.1), we obtain δĠ

δĠ =
dĠϵ

dϵ

∣∣∣∣
ϵ=0

= ĠΓ +GΓ̇− Ġ
δt′

t′
= G

(
V Γ + Γ̇− V

δt′

t′

)
. (6.7)

Taking variations of the kinematic equation (6.1)

δĠ = δGV +GδV = GΓV +GδV, (6.8)

and equating it with δĠ from (6.7) gives δV

δV = V Γ− ΓV + Γ̇− V
δt′(a)

t′(a)
. (6.9)

Using S(a× b) = S(a)S(b)− S(b)S(a), we simplify

V Γ− ΓV =

S(ω × η) S(ω)χ− S(η)v

0 0


= S


S(ω) 0

S(v) S(ω)


η
χ


 , (6.10)

which gives

δV = S


S(ω) 0

S(v) S(ω)


η
χ


+ Γ̇− V

δt′(a)

t′(a)
. (6.11)

Taking variations of the extended action

δB̄ =

∫ af

a0

[
∂L

∂G
· δG+

∂L

∂V
· δV +

∂L

∂t
· δt
]
t′(a)da

+

∫ af

a0

L δt′(a) da. (6.12)
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Using (δR, δx) = R(S(η), χ), we compute

∂L

∂R
· δR =

3∑
i=1

∂L

∂ri
· δri = −

3∑
i=1

S(ri)
∂L

∂ri
· η, (6.13)

where ri is the i-th column of RT for i = 1, 2, 3. Thus,

∫ af

a0

(
∂L

∂G
· δG

)
t′(a) da =

∫ tf

t0

(
∂L

∂R
· δR +

∂L

∂x
·Rχ

)
dt

=

∫ tf

t0

S


−∑3

i=1 S(ri)
∂L
∂ri

RT ∂L
∂x


 · Γ dt. (6.14)

Similarly

∂L

∂V
· δV = S

(
∂L

∂ω
,
∂L

∂v

)
·
(
V Γ− ΓV + Γ̇− V

δt′(a)

t′(a)

)

= S


−S(ω) −S(v)

0 −S(ω)


∂L

∂ω

∂L
∂v


 · Γ

+
∂L

∂V
·
(
Γ̇− V

δt′(a)

t′(a)

)
. (6.15)

From Hamilton’s principle we know that for the actual path of the motion δB̄ = 0. Substi-

tuting all the computed terms in (6.12) and using integration by parts gives

∫ tf

t0

S


−S(ω) −S(v)

0 −S(ω)


∂L

∂ω

∂L
∂v

+

−∑3
i=1 S(ri)

∂L
∂ri

RT ∂L
∂x


 · Γdt

[
∂L

∂V
· Γ− ∂L

∂V
· V δt

]tf
t0

+

∫ tf

t0

− d

dt

∂L
∂ω

∂L
∂v

 · Γdt

+

∫ tf

t0

(
∂L

∂t
+

d

dt

(
∂L

∂ω
· ω +

∂L

∂v
· v − L

))
δtdt = 0. (6.16)
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Setting the variations at endpoints to zero leads us to the governing equations in the extended

mechanics framework. Equations of motion for a rigid body evolving on SE(3) are

d

dt

∂L
∂ω

∂L
∂v

+

S(ω) S(v)

0 S(ω)


∂L

∂ω

∂L
∂v

−

−∑3
i=1 S(ri)

∂L
∂ri

RT ∂L
∂x

 = 0. (6.17)

The second equation is the energy evolution equation

∂L

∂t
+

d

dt

(
∂L

∂ω
· ω +

∂L

∂v
· v − L

)
= 0, (6.18)

which describes how the energy of the rigid body system evolves with time.

6.1.2 Equations of Motion

We consider the special case with the following Lagrangian for the motion of a rigid body in

SE(3)

L(x, v, R, ω) =
1

2
vTMv +

1

2
ωTJω − U(x,R)

=
1

2
vTMv +

1

2
tr
[
S(ω)JdS(ω)

T
]
− U(x,R), (6.19)

where J is the standard inertia matrix, Jd = 1
2
tr[J ]I3×3−J is the nonstandard inertia matrix

and M is the mass matrix for the body. The governing extended equations of motion are

Mv̇ + ω ×Mv +RT ∂U(G)

∂x
= 0, (6.20)

Jω̇ + ω × Jω + v ×Mv +RT ∂U(G)

∂R
− ∂U(G)

∂R

T

R = 0, (6.21)
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d

dt

(
1

2
vTMv +

1

2
ωTJω + U(x,R)

)
= 0. (6.22)

We know that the linear and angular momenta of the rigid body are given by γ = Mv ∈ R3

and Π = Jω ∈ R3 in the body fixed frame. The extended equations of motion in the

Hamiltonian form are

γ̇ +Rω ×RTγ +
∂U(G)

∂x
= 0, (6.23)

Π̇ + ω × Π+ v ×RTγ +RT ∂U(G)

∂R
− ∂U(G)

∂R

T

R = 0, (6.24)

d

dt

(
1

2
γTRM−1RTγ +

1

2
ΠTJ−1Π+ U(x,R)

)
= 0. (6.25)

These linear and angular momenta are related to the momenta conjugate to ẋ and R, Pẋ ∈ R3

and PṘ ∈ R3×3, by

Pẋ = Rγ, PṘ − P T
Ṙ
= S(Π). (6.26)

6.2 Adaptive Variational Integrator

In this section adaptive time step Lie group variational integrators for rigid body motion in

SE(3) are obtained by discretizing Hamilton’s principle. Using ideas from extended discrete

mechanics and Lie group methods, extended discrete equations of motion are derived in both

Lagrangian and Hamiltonian form.
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6.2.1 Extended Discrete Lagrangian Mechanics on SE(3)

In the discrete domain, we treat the time tk as a discrete dynamic variable. By discretizing

the kinematic relation Ṙ = RS(ω), we obtain

Rk+1 −Rk

hk

= RkS(ωk), (6.27)

where hk = tk+1−tk. We define Fk ∈ SO(3) such that Rk+1 = RkFk. This gives the following

approximation to S(ωk)

S(ωk) ≈
1

hk

(Fk − I3×3) . (6.28)

Similarly discretizing the kinematic relation ẋ = Rv gives

xk+1 = hkRkvk + xk. (6.29)

We define the extended discrete Lagrangian Ld : Q̄ × Q̄ → R and discretize the extended

action

B̄d =
N−1∑
k=0

Ld(tk, xk, Rk, tk+1, xk+1, Rk+1). (6.30)

For the rigid body system, we consider

Ld ≃ hk

(
L(tk, Rk, xk, vk, ωk) + L(tk+1, Rk+1, xk+1, vk, ωk)

2

)
=

1

hk

tr [(I3×3 − Fk)Jd] +
hk

2
vTk Mvk −

hk

2
(Uk + Uk+1) , (6.31)

where Uk := U(xk, Rk). We consider the following variations

Gϵ
k = Gke

ϵΓk , tϵk = tk + ϵδtk. (6.32)
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The variation of Fk = RT
kRk+1 using δRk = RkS(ηk) yields

δFk = −S(ηk)Fk + FkS(ηk+1). (6.33)

Similarly variation of vk = RT
k

hk
(xk+1 − xk) gives

δvk =
RT

k

hk

(δxk+1 − δxk)− S(ηk)vk −
RT

k

h2
k

(xk+1 − xk)δhk. (6.34)

If we consider the variation of the kinetic energy term we get

δ

(
1

hk

tr [(I3×3 − Fk)Jd] +
hk

2
vTk Mvk

)
=

δhk

2
vTk Mvk+

1

hk

tr [(S(ηk)Fk − FkS(ηk+1))Jd]−
δhk

h2
k

tr [(I3×3 − Fk)Jd]

+ vTk M
(
RT

k (δxk+1 − δxk)− hkS(ηk)vk − vkδhk

)
. (6.35)

Similarly variation of the potential energy term gives

δ

(
−hk

2
(Uk + Uk+1)

)
= −δhk

2
(Uk + Uk+1)

− hk

2

k+1∑
j=k

(
∂Uj

∂Rj

· δRj +
∂Uj

∂xj

T

δxj

)
, (6.36)

where ∂U
∂R

·δR = ∂U
∂R[ij]

δR[ij]. Using δR = RS(η) and the identity ∂U
∂R

RS(η) = −tr
[
S(η)RT ∂U

∂R

]
we get

δ

(
−hk

2
(Uk + Uk+1)

)
= −δtk+1 − δtk

2

k+1∑
j=k

(Uj)

− hk

2

k+1∑
j=k

(
−tr

[
S(ηj)R

T
j

∂Uj

∂Rj

]
+

∂Uj

∂xj

T

δxj

)
. (6.37)
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Setting δB̄d and variations at endpoints to zero gives

0 =
N−1∑
k=1

[
vTk−1MRT

k−1 − vTk MRT
k − hk + hk−1

2

∂Uk

∂xk

T]
δxk

+
N−1∑
k=1

tr

[
S(ηk)

{
1

hk

FkJd −
1

hk−1

JdFk−1

}]

−
N−1∑
k=1

tr

[
S(ηk)

{
hkvkv

T
k M − hk + hk−1

2
RT

k

∂Uk

∂Rk

}]

+
N−1∑
k=1

[
tr[(I3×3 − Fk)Jd]

h2
k

+
vTk Mvk

2
+

Uk + Uk+1

2

]
δtk

−
N−1∑
k=1

[
tr[(I3×3 − Fk−1)Jd]

h2
k−1

−
vTk−1Mvk−1

2
− Uk + Uk−1

2

]
δtk. (6.38)

The above equation should be satisfied for all admissible variations ηk, δxk and δtk, and since

S(ηk) is skew-symmetric, the governing extended discrete equations on SE(3) in Lagrangian

form are

1

hk

(
FkJd − JdF

T
k

)
− 1

hk−1

(
JdFk−1 − F T

k−1Jd
)

= hk

(
vkv

T
k M −Mvkv

T
k

)
+

hk + hk−1

2

(
∂Uk

∂Rk

T

Rk −RT
k

∂Uk

∂Rk

)
, (6.39)

Mvk +
hk + hk−1

2
RT

k

∂Uk

∂xk

= F T
k−1Mvk−1, (6.40)

1

h2
k

tr[(I3×3 − Fk)Jd] +
vTk Mvk

2
+

Uk + Uk+1

2
=

1

h2
k−1

tr[(I3×3 − Fk−1)Jd] +
vTk−1Mvk−1

2
+

Uk + Uk−1

2
, (6.41)

xk+1 = xk + (hkRkvk), (6.42)
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Rk+1 = RkFk. (6.43)

Given (hk−1, xk, vk−1, Rk, Fk−1), above equations can be solved to obtain (hk, xk+1, vk, Rk+1, Fk).

Using the discrete Legendre transform, we can re-write the governing discrete equations in

the Hamiltonian form

1

hk

(FkJd − JdF
T
k )−

hk

2
S(Mk)− hk(vkv

T
k M −Mvkv

T
k ) = S(Πk), (6.44)

Mvk +
hk

2
RT

k

∂Uk

∂xk

= RT
k γk, (6.45)

Rk+1 = RkFk, (6.46)

xk+1 = xk + (hkRkvk), (6.47)

1

h2
k

tr[(I3×3 − Fk)Jd] +
vTk Mvk

2
+

Uk + Uk+1

2
= Ek, (6.48)

γk+1 = RkMvk −
hk

2

∂Uk+1

∂xk+1

, (6.49)

S(Πk+1) =
1

hk

(JdFk − F T
k Jd) +

hk

2
S(Mk+1), (6.50)

Ek+1 =
1

h2
k

tr[(I3×3 − Fk)Jd] +
vTk Mvk

2
+

Uk + Uk+1

2
, (6.51)

where Mk ∈ R3 is defined such that S(Mk) =
∂U
∂Rk

T
Rk−RT

k
∂U
∂Rk

. Given (hk−1, xk, Rk, γk,Πk, Ek),

the coupled implicit equations (6.44)-(6.48) are solved to obtain (Fk, vk, hk, xk+1, Rk+1) which

are used in the explicit equations (6.49)-(6.51) to obtain discrete momenta (γk+1,Πk+1) and

discrete energy Ek+1.
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6.2.2 Numerical properties of the adaptive algorithm

Adaptive time step variational integrators preserve the extended symplectic form and exhibit

a discrete analogue of Noether’s theorem [44] that leads to conservation of the discrete

momentum in presence of symmetries. Our choice of the discrete Lagrangian (6.31) inherits

all the symmetries of the continuous Lagrangian, therefore the adaptive algorithm preserves

all the conserved momenta of the continuous time system in the numerical simulation. The

discrete energy equation (6.41) ensures that the adaptive time step is chosen such that the

energy is conserved in the discrete dynamics.

Since we have defined Fk ∈ SO(3) and the Lie group SO(3) is closed under matrix multiplica-

tion, the rotational configuration at the next time lies on SO(3) i.e. Rk+1 = RkFk ∈ SO(3).

This way the configuration of the rigid body (Rk, xk) automatically remains on SE(3). Thus,

in addition to being symplectic as well as energy and momentum-conserving, the adaptive

time step Lie group variational integrator also preserves the geometry of the nonlinear con-

figuration space.

6.2.3 Computational Approach

Based on the structure of the coupled implicit discrete equations (6.44)-(6.48), we suggest

a computational approach for solving these equations sequentially instead of solving all

equations simultaneously. Given (hk−1, xk, Rk, γk,Πk, Ek) and an initial guess h
(0)
k = hk−1

for the adaptive time step hk, we start by solving the explicit discrete equation (6.45) to

obtain v
(i)
k which is used to solve (6.44) for F

(i)
k . The implicit discrete equation (6.44) can

be re-written as

F
(i)
k Jd − Jd(F

(i)
k )T = S(g

(i)
k ), (6.52)
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where S(g
(i)
k ) = S(Πk +

h
(i)
k

2
Mk) + h

(i)
k (v

(i)
k (v

(i)
k )TM −Mv

(i)
k (v

(i)
k )T ). To make sure Fk lies on

SO(3), we express it as the exponential of an element of its Lie algebra S(f) ∈ so(3) for

some f ∈ R3. We use the Cayley transformation

F
(i)
k =

(
I3×3 + S(f

(i)
k )
)(

I3×3 − S(f
(i)
k )
)−1

, (6.53)

to transform the matrix equation (6.52) to the following equivalent vector equation

GCay(f
(i)
k ) = g

(i)
k + g

(i)
k × f

(i)
k + ((g

(i)
k )Tf

(i)
k )f

(i)
k − 2Jf

(i)
k = 0. (6.54)

This vector equation is solved using the Newton method to obtain f
(i)
k which yields F

(i)
k .

This F
(i)
k along with v

(i)
k is substituted in the discrete kinematic relations (6.46) and (6.47)

to obtain (x
(i)
k+1, R

(i)
k+1). Finally, we solve the discrete energy equation (6.48) for h

(i)
k using

h
(i)
k =

√√√√ tr[(I3×3 − F
(i)
k )Jd]

Ek −
v
(i)
k

TMv
(i)
k

2
−

Uk+U
(i)
(k+1)

2

. (6.55)

6.3 Numerical Results

This section presents numerical simulation results for a conservative underwater vehicle. We

assume that dissipative forces are negligible and the mass is uniformly distributed. Under

these assumptions, the underwater vehicle can be modeled as a rigid body immersed in an

infinite volume of ideal fluid. In this numerical study, we use the mass and inertia parameters

first studied in [178]. Since the center of buoyancy and center of gravity are coincident for a

uniform rigid body, the kinetic energy is given by

T =
1

2
vTMv +

1

2
ωTJω. (6.56)
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The mass is m = 123.8 kg whereas the mass and inertia matrices are

M = m I + diag[65, 70, 75] kg, J = diag[5.46, 5.29, 5.72] kgm2, (6.57)

where the added masses are included in the mass matrix. The potential energy due to the

gravity, acting in the vertical or e3 direction (same as the positive b3 body axis), is given by

U = −(m− ρV)gx3, (6.58)

where m is the mass of the vehicle, ρ is the density of water, g is the gravitational acceleration,

V is the volume occupied by the vehicle. The weight of displaced water is ρVg = 1215.8 N.

We have considered the following three initial conditions

1. R0 = exp(S([1, 2, 3]T ))

x0 = (0, 0, 10)Tm

ω0 = (1.5, 1.0, 0.5)T s−1

v0 = RT
0 (0.1,−0.2, 0.1)Tms−1,

2. R0 = exp(S([1, 2, 3]T ))

x0 = (0, 0, 10)Tm

ω0 = (1.5, 1.0, 0.5)T s−1

v0 = RT
0 (0.1, 0.15, 0.1)

Tms−1,

3. R0 = exp(S([3, 2, 3]T ))

x0 = (0, 0, 10)Tm

ω0 = (1.0, 1.5, 0.5)T s−1

v0 = RT
0 (0.1, 0.15, 0.1)

Tms−1.
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Figure 6.1: Adaptive time step behavior for all cases
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Figure 6.2: Energy behavior comparison (Adaptive algorithm: red, solid. Fixed algorithm:
blue, dotted)

For all the cases, results from the adaptive algorithm for an initial time step of h0 = 0.01

are compared with results from the fixed algorithm for a fixed step size of h = 0.01. Energy

error comparison between fixed and adaptive time step Lie group variational integrator for

the three cases are presented in Fig. 6.2. The discrete energy error plot comparison for all

cases show that the adaptive time step algorithm has energy error around 10−13 whereas

the fixed time step method has energy error around 10−3. As expected, the fixed time step

integrator does not conserve energy exactly but because of its symplecticity the energy error

remains bounded. On the other hand, adaptive time-stepping allows our method to conserve

momentum, energy and symplectic structure while staying on the configuration manifold.

In Fig. 6.1, we have plotted the ratio of the adaptive time step hk and the initial time step h0

for all three cases. The adaptive time step hk behavior for this numerical example suggests

that adaptive time step hk remains bounded and doesn’t decrease or increase substantially
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from the initial time step of h0. This implies that our approximations of vk and ωk, which

depend on hk, remain sufficiently accurate. Since time is treated as a dynamic variable

in this framework, we know the adaptive time step hk is intimately connected with the

dynamics. Unlike the one or two degree of freedom examples considered in [51] and [55], the

state space for our numerical example is 12 dimensional and this multi-dimensional nature

of the problem makes it difficult to relate increase or decrease in adaptive time step to the

dynamics.

We have also studied the mean energy error and the CPU time for the first case for three

different initial time steps. As shown in Table 6.1, for all three initial time steps, the

mean energy error for adaptive algorithm remains around 10−13 whereas for fixed time step

algorithm the mean energy error increases with increase in the step size. The CPU time for

for adaptive algorithm is 2-4 times more than the fixed time step algorithm. Though it is

clear that if energy conservation is critical, we can use the adaptive algorithm to get energy

preserving solutions for high initial step size and low computational effort.

Table 6.1: Fixed and Adaptive Algorithm Comparison for the Underwater Vehicle

Method Time step Mean |∆E| CPU time
Adaptive 10−4 8.2× 10−13 54.8
Algorithm 10−3 1.5× 10−13 7.05

10−2 3.1× 10−14 3.08
Fixed 10−4 4.0× 10−6 25.7

Algorithm 10−3 4.7× 10−5 2.88
10−2 4.8× 10−4 0.86
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6.4 Conclusions

We have derived adaptive time step variational integrators for rigid body undergoing Eu-

clidean motion. By developing the extended Lagrangian mechanics framework for mechanical

systems evolving on SE(3), we derive extended equations of motion for the rigid body system

in continuous time. Using concepts from extended discrete mechanics, we discretize Hamil-

ton’s principle and derive the extended discrete equations of motion. The adaptive time step

Lie group variational integrators are derived in both Lagrangian and Hamiltonian forms.

The presented adaptive method is symplectic as well as energy and momentum-preserving

while also preserving the geometry of the configuration space.

The resulting adaptive time step Lie group variational integrator is used to numerically

study the motion of a conservative underwater vehicle in the presence of an attitude and

position dependent potential. The simulation results demonstrate that adaptive time step

algorithm exhibits superior energy performance for all three cases as compared to the fixed

time step algorithm. The numerical study for different time steps show that, for smaller

time step values adaptive algorithms are able to achieve significantly better energy behavior

compared to their fixed time step algorithms for a similar computational cost. These adaptive

time step Lie group variational integrators can be useful for applications where accurate

energy prediction is essential to the dynamics or for simulating the dynamics at a lower

computational cost using relatively large time steps without violating the geometric structure

and invariants of motion.



Chapter 7

Symplectic Accelerated Optimization

on SO(3)

A lot of problems in the field of machine learning, robotics or statistics can be formulated

as an optimization problem

x∗ = arg min
x∈X

f(x), (7.1)

where f : X → R is a differentiable function. In most of these optimization problems, the

unknown parameter x is assumed to lie in a vector space, i.e., X ⊆ Rd. However, a lot

of interesting problems in robotics or computer vision involve optimizing a scalar function

defined on set of rigid rotations. For example, robotic mapping problems [179] often require

finding the optimal rotation matrices on the special orthogonal group SO(3) for solving the

non-convex optimization problem in simultaneous localization and mapping.

For optimization on Rn, one of the most popular algorithms is the gradient descent technique.

This algorithm is easy to implement and it scales well to large problem sizes. However, the

convergence rate can be low. The gradient descent method achieves O( 1
n
) convergence for

general convex functions, where n is the number of iterations. Polyak [180] achieved faster

convergence by introducing momentum terms at each iteration. Later, Nesterov [181] used

successive gradients to achieve O( 1
n2 ) convergence for general convex functions. Both of these

accelerated gradient methods have gained popularity because of their ability to attain best

134
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worst-case complexity bounds. For optimization on non-Euclidean manifolds, the traditional

optimization methods often employ projection or Lagrange multipliers after each iteration

to ensure that the trajectories lie on the correct manifold.

Taylor and Kriegman [182] used local parametrizations instead of single global parametriza-

tions for minimization on SO(3). Plumbley [183] incorporated ideas from Lie group methods

to develop optimization algorithms for problems with orthogonality constraints. Abrudan et

al [184] utilized Riemannian geometry to develop optimization algorithms on the Lie group

of unitary matrices. Recently, Zhang and Sra [185] developed accelerated gradient methods

on Riemannian manifolds.

Recently, a promising research direction has emerged by relating continuous dynamical sys-

tems and their governing differential equations to optimization algorithms. Using well-

established results from the theory of ordinary differential equations (ODE), this approach

provides a clear interpretation of optimization algorithms and their continuous approxi-

mations. Su et al [186] developed a framework for continuous approximation analysis of

optimization algorithms and derived a second-order ODE corresponding to Nesterov’s accel-

erated gradient method under the limit of infinitesimal time step. Building on this work,

Wibisono et al [187] studied a more general class of ODE and corresponding accelerated

gradient methods by the Bregman Lagrangian framework. Yang et el. [188] developed a

unified framework to understand these optimization algorithms and provided a link to the

physical systems behind these methods. Instead of starting with an optimization algorithm

to derive an ODE via vanishing step size arguments, Muehlebach and Jordan [189] provided

a different perspective by deriving Nesterov’s accelerated gradient method by discretizing a

second-order ODE with curvature dependent damping. Recently, Franca et al [190] devel-

oped conformal symplectic optimization algorithms which preserve the underlying symplectic

geometry.
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In this chapter, we present an accelerated gradient method for optimization on the special

orthogonal group SO(3). First, we show that the classical momentum method on the Eu-

clidean space can be constructed by utilizing the variational integrator [44] to the continuous

approximation analysis of [186]. Next, in parallel to these results, it is shown that the gradi-

ent descent flow on SO(3) is also represented by the attitude dynamics of a rigid body. We

discretize it with a Lie group variational integrator [100, 191], which preserves the symplec-

ticity of Hamiltonian mechanics and Lie group structures of the configuration manifold, to

construct a symplectic accelerated gradient method for optimization on SO(3). Finally, we

apply the proposed accelerated gradient methods for two optimization problems on SO(3) to

illustrate the acceleration achieved by our methods compared to the conventional gradient

descent.

7.1 Optimization on Rn

We first formulate the optimization problem on Rn and review the existing gradient-based

optimization methods. We then use ideas from unified continuous approximation analysis to

connect the optimization algorithms to continuous physical systems. Finally, we show how

discrete mechanics and variational integrators framework can be used to derive the classical

momentum method from a nonlinear generalization of a damped harmonic oscillator.

7.1.1 Gradient-Based Optimization Techniques

Consider the following minimization problem

q∗ = arg min
q∈Rn

f(q), (7.2)
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for a real valued scalar function f : Rn → R.

We present a brief review of existing gradient-based optimization techniques for the mini-

mization problem on Rn formulated above.

1. Gradient descent method: a gradient descent method is a first order optimization

algorithm used for searching the minimum of a objective function. For objective func-

tion f : Rn → R, this algorithm searches for the local minimum by taking steps along

the negative of the gradient direction. The gradient descent method is given by

qk+1 = qk − ϵ∇f(qk), (7.3)

for ϵ > 0.

2. Classical momentum method: a gradient descent with additional momentum

terms, also known as classical momentum method, is given by

pk+1 = µpk − ϵ∇f(qk), (7.4)

qk+1 = qk + pk+1, (7.5)

where µ ∈ (0, 1) is the momentum factor, ϵ > 0 is the stepsize or the learning rate.

This reduces to the above gradient descent when µ = 0.

3. Nesterov’s accelerated gradient: the Nesterov’s accelerated gradient method is

constructed by evaluating the gradient of the above momentum method at a predicted
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point as follows.

pk+1 = µpk − ϵ∇f(qk + µpk), (7.6)

qk+1 = qk + pk+1. (7.7)

7.1.2 Dynamic System Interpretation

We now use the continuous approximation analysis approach [186], to derive a continuous

dynamical system corresponding to the classical momentum method. First we eliminate the

momentum variables by substituting pk+1 from (7.5) into (7.4) to obtain

(qk+1 − qk)− µ(qk − qk−1) + ϵ∇f(qk) = 0. (7.8)

Let t = kh for a stepsize h. Using the following Taylor series expansions

qk+1 − qk = hq̇(t) +
h2

2
q̈(t) + o(h3),

qk − qk−1 = hq̇(t)− h2

2
q̈(t) + o(h3),

equation (7.8) is converted into the following continuous differential equation:

(1 + µ)h2

2ϵ
q̈(t) +

(1− µ)h

ϵ
q̇(t) +∇f(q(t)) +O(h) = 0. (7.9)

If we consider the limit of h → 0, then the above equation can be seen as the equation of

motion for a spring-mass-damper system,

mq̈(t) + cq̇(t) +∇f(q(t)) = 0, (7.10)
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with the mass parameter m = (1+µ)h2

2ϵ
and the damping parameter c = (1−µ)h

ϵ
. Both of these

parameters are finite for h, ϵ → 0.

Gradient descent method The above reduces to the gradient descent method by taking

µ = 0 and h = o(ϵ), which lead to m = 0 and c = c0. Thus, the continuous dynamical

system corresponding to the gradient descent method is the following first order ODE,

q̇(t) +
1

c
∇f(q(t)) = 0. (7.11)

Nesterov’s accelerated gradient method For Nesterov’s method, take µ = o(
√
ϵ) and

h = o(ϵ) to yield m = m0 and c = c0
t
. Thus, the continuous dynamical system corresponding

to the Nesterov’s method is

q̈(t) +
c0
m0

q̇(t)

t
+

1

m0

∇f(q(t)) = 0, (7.12)

which shows that the damping coefficient is reduced over time.

7.1.3 Momentum Method as a Variational Integrator

Now we show that the classical momentum method can be constructed as a variational inte-

grator. Motivated by (7.10), we consider a Lagrangian system with the following Lagrangian

and the forcing term:

L(q, q̇) =
q̇2

2
− ηf(q), (7.13)

fL(q, q̇) = −γq̇ (7.14)
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for η, γ > 0.

We derive a variational integrators for the Lagrangian system described above. Use the

rectangle rule for the discrete Lagrangian to obtain

Ld(qk, qk+1) = h

[
1

2

(
qk+1 − qk

h

)2

− ηf(qk)

]
, (7.15)

along with the following discrete forces

f+
d (qk, qk+1) = 0, f−

d (qk, qk+1) = −γ(qk+1 − qk). (7.16)

Substituting these into forced discrete Euler-Lagrange equations

pk =
qk+1 − qk

h
+ hη∇f(qk) + γ(qk+1 − qk),

pk+1 =
qk+1 − qk

h
.

Rearranging these,

pk+1 =
1

1 + γh
pk −

η

1 + γh
∇f(qk), (7.17)

qk+1 = qk + hpk+1. (7.18)

Setting h = 1, the above variational integrator is equivalent to the classical momentum

method, (7.4)–(7.5), with the momentum factor µ = 1
1+γ

∈ (0, 1) and the step size ϵ =

η
1+γ

> 0.
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7.2 Optimization on SO(3)

In this section, we present a gradient-based optimization method on SO(3). Similar to

the previous section, we first formulate the optimization problem on SO(3) and review a

gradient descent method on SO(3). We use the continuous approximation analysis to derive

the continuous ODE on SO(3) corresponding to this gradient descent. This is discretized by

a Lie group variational integrator to construct a symplectic accelerated optimization scheme

on SO(3).

7.2.1 Mathematical Preliminaries

The special orthogonal group is defined by

SO(3) = {R ∈ R3×3|RTR = I3×3, det(R) = +1}.

The Lie algebra of SO(3), denoted by so(3), is the set of all 3× 3 skew-symmetric matrices,

i.e.,

so(3) = {ξ ∈ R3×3|ξT = −ξ}.

The hat map ∧ : R3 → R3 is defined such that x̂y = x× y for any x, y ∈ R3. The inverse of

the hat map is denoted by the vee map ∨ : so(3) → R3.

The tangent space of SO(3) at R ∈ SO(3) is given by TRSO(3) = {V ∈ R3×3|RTV + V TR =

0}. It is isomorphic to R3 via left trivialization by setting Vi = Rv̂i for i ∈ {1, 2} and

⟨V1, V2⟩ = vT1 v2 for any V1, V2 ∈ TRSO(3). Also, SO(3) is locally diffeomorphic to R3 from
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the exponential map:

exp η̂ = I3×3 + sin ∥η∥â+ (1− cos ∥η∥)â2,

for the unit vector defined as a = η
∥η∥ ∈ R3.

7.2.2 Gradient-Based Optimization on SO(3)

For a scalar function defined on the special orthogonal group SO(3), i.e. f : SO(3) → R, the

optimization problem is formulated as

R∗ = arg min
R∈SO(3)

f(R). (7.19)

The gradient descent method on SO(3) is constructed as follows. Using the left trivialization,

the infinitesimal variation of f at R along δR = Rη̂ for η ∈ R3 is given by

δf(R) =
d

dϵ

∣∣∣∣
ϵ=0

f(R exp(ϵη̂)). (7.20)

Let ∂f
∂R

∈ R3×3 be defined such that

[
∂f(R)

∂R

]
ij

=
∂f(R)

∂[R]ij
,

for i, j ∈ {1, . . . 3}, where [·]ij denotes the i, j-th element of a matrix. Since exp(ϵη̂) =

I3×3 + ϵη̂ +O(ϵ2), (7.20) can be rewritten as

δf(R) = tr
[
∂f(R)

∂R

T

Rη̂

]
.
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Using the identity, tr[Ax̂] = xT (AT − A)∨ for any x ∈ R3 and A ∈ R3×3, it is rewritten as

δf(R) = ηT∇Lf(R), (7.21)

where ∇Lf(R) ∈ R3 is defined as

∇Lf(R) =

(
RT ∂f(R)

∂R
− ∂f(R)

∂R

T

R

)∨

, (7.22)

which is defined as the left trivialized gradient of f(R).

Consequently, the gradient descent algorithm on SO(3) is given by

Rk+1 = Rk exp(−α∇Lf(R)), (7.23)

for α > 0, which is comparable to (7.3).

Analogous to (7.4)–(7.5), an accelerated, momentum method on SO(3) can be written as

Rk+1 = Rk exp(Ω̂k+1), (7.24)

Ωk+1 = µΩk − ϵ∇Lf(Rk). (7.25)

Similar to the classical momentum method (7.4)-(7.5), this accelerated gradient method on

SO(3) also uses momentum terms to update the rotation matrix Rk with acceleration. The

key difference between these methods is how the variable is updated. In contrast to the

optimization on Rn, here the rotation matrix is updated by the group operation, i.e., the

matrix multiplication with the exponential map, to ensure that the updated matrix, namely

Rk+1 also lie on SO(3).
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7.2.3 Dynamic System Interpretation

We apply continuous approximation analysis to derive the continuous ODE corresponding

to the above accelerated gradient method. Using Taylor series expansions for Rk+1,Ωk+1 and

exp(Ω̂k+1) in (7.24)-(7.25) along with t = kh,

Rk + hṘ(t) + o(h2) = Rk(I + hΩ̂k) + o(h2),

Ωk + hΩ̇(t) + o(h2) = µΩk − ϵ∇Lf(Rk).

Substituting these back to (7.24)–(7.25),

Ṙ = RΩ̂, (7.26)

Ω̇ =

(
µ− 1

h

)
Ω−

( ϵ
h

)
∇Lf(R). (7.27)

The first equation is the same as the kinematic equation for rigid body dynamics. The next

equation describes how the angular momentum changes over time.

Gradient descent Next, by setting µ = 0, (7.27) reduces to

hΩ̇ = −Ω− ϵ∇f(R). (7.28)

Further, h → 0 gives Ω = −ϵ∇Lf(R). Substituting, we obtain

Ṙ = R(−ϵ∇Lf(R))∧, (7.29)

which is the continuous ODE corresponding to the gradient descent method on SO(3).

Similar with the spring-mass-damper case discussed in Section 7.1.2, we study the connection
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between the continuous system of (7.27) and the attitude dynamics of a rigid body. We

consider the Lagrangian formulation for the attitude dynamics of a rigid body under the

influence of a potential energy f(R) and a linear dissipation. The Lagrangian and the

external moment from dissipation for such a system are chosen as

L(R,Ω) =
1

2
ΩTJΩ− ηf(R), (7.30)

τ(R,Ω) = −γΩ, (7.31)

for a symmetric, positive-definite inertia matrix J ∈ R3×3 and η > 0. From the Lagrange-

d’Alembert principle, the corresponding Euler-Lagrange equation is given by

JΩ̇ + Ω× JΩ = −η∇Lf(R)− γΩ, (7.32)

which along with the rotational kinematic equations Ṙ = RΩ̂.

If J = hI3×3, the cross term vanishes, i.e., Ω × JΩ = 0. Therefore, the above equation

reduces to (7.27), with η = ϵ and γ = 1− µ. Thus, the continuous system corresponding to

the accelerated gradient method (7.24)–(7.25) is a Lagrangian system with linear dissipation

and it can be interpreted as the attitude dynamics of a rigid body evolving on SO(3).

7.2.4 Symplectic Accelerated Optimization on SO(3)

In this subsection we discretize the continuous Lagrangian system (7.30) using Lie group

variational integrators to derive a symplectic, accelerated gradient methods on SO(3).

In geometric numerical integration, Lie group methods [95] are a class of structure-preserving

numerical methods that conserve the Lie group structures. This is achieved by utilizing the

group operation to update group elements. These Lie group methods were first adopted in
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the variational integrators framework in [192] to integrate the structure-preserving aspects

of Lie-group methods and variational integrators. This is applied to the rigid body dynamics

in [191]. They exhibit the desirable symplectic, momentum-preserving features of variational

integrators, while preserving the group structures. The basics of variational integrators and

Lie group methods can be reviewed in [193].

Similar with [191], let the discrete Lagrangian corresponding to (7.30) be

Ld(Rk, Fk) =
1

h
tr[(I3×3 − Fk)Jd]− hηf(Rk+1),

with the discrete toques

τ+d = 0, τ−d = hτ(Rk,Ωk),

Here, Fk ∈ SO(3) is defined as the relative attitude change between two steps, i.e., Fk =

RT
kRk+1.

The corresponding discrete Euler-Lagrange equations are given by

h(JΩk + hτk)
∧ = FkJd − JdF

T
k , (7.33)

Rk+1 = RkFk, (7.34)

JΩk+1 = F T
k (JΩk + hτk)− hη∇Lf(Rk+1). (7.35)

where Jd =
1
2
tr[J ]I3×3 − J ∈ R3×3.

Given (Rk,Ωk), the implicit equation (7.33) is solved for Fk, and then the updated position

Rk+1 and the angular velocity Ωk+1 are obtained from the explicit equations (7.34) and

(7.35), respectively. Thees yield a discrete flow (Rk,Ωk) → (Rk+1,Ωk+1) for accelerated

optimization. At (7.34), Rk+1 is constructed by the product of two rotation matrices. As

such, Rk+1 is guaranteed to be on SO(3) up to round-off errors.
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The implicit equation (7.33) can be solved by a numerical iteration on R3. However, as

discussed above, we can set the inertia matrix as a diagonal matrix J = jI3×3 for any j ∈ R.

Then, (7.33) reduces to

h(jΩk + hτk)
∧ =

j

2
(Fk − F T

k ),

which yields an explicit solution of

Fk = exp(sin−1 ∥hgk∥
∥gk∥

gk), (7.36)

with gk = Ωk +
h
j
τk = (1− γh

j
)Ωk.

Also, (7.35) is rewritten as

Ωk+1 = (1− γh

j
)F T

k Ωk −
hη

j
∇Lf(Rk+1). (7.37)

In short, the proposed symplectic accelerated gradient descent scheme on SO(3) is composed

of (7.34), (7.36), and (7.37). As constructed as a Lie group variational integrator, this

preserves the symplectic structure underlying the Lagrangian system evolving on SO(3), and

it ensures that the optimized rotation matrix remains on SO(3).

7.3 Numerical Examples

In this section, we consider two numerical examples to evaluate the numerical performance

of the proposed accelerated gradient methods. We have compared gradient descent (GD)

(7.23), accelerated gradient descent (AGD) (7.24)-(7.25) and symplectic accelerated gradient

descent (SAGD) (7.34)-(7.37).
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7.3.1 Trace Function

In this subsection, we study the numerical performance of our proposed accelerated gradient

methods for minimization of f(R) = −tr[XTR] for a given matrix X ∈ R3×3. This appears

in the attitude determination from vector measurements, and it has the following analytic

solution. The optimal rotation matrix is given by R∗ = UV T where U, V ∈ SO(3) are

obtained from the proper singular value decomposition of X given by X = USV T with a

diagonal matrix S ∈ R3×3 [194].

We choose

X =


45 1 0

0 20 0

0 0 2

 . (7.38)

The corresponding optimization results are illustrated at Figure 7.1, which shows that the

proposed SAGD algorithm achieves faster convergence than both AGD and GD algorithms

on SO(3). The step size α for GD has been tuned to find the optimal α = 0.024. Based

on that α, we set h = ϵ =
√
0.024 along with µ = 0.05 for AGD algorithm which leads to

faster convergence compared to GD. Finally, using j = h =
√
0.125, ϵ = 2h and γ = 0.9090

we achieve faster convergence than both AGD and GD algorithms.

We have studied the numerical performance of this choice of accelerated optimization pa-

rameters for a variety of X and SAGD performs better than AGD and GD for all those

cases. Depending on the particular case, these parameters can be tuned slightly to improve

the convergence even further but that may introduce oscillations.
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tion of f(R) = −tr[XTR]
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7.3.2 Spherical Shape Matching

In this subsection, we apply GD and AGD for spherical shape correlation and matching

considered in [195]. We consider an object (without holes) embedded in R3 whose shape can

be described by deforming the sphere. Specifically, let f(x) : S2 → R represent the shape,

as the elevation for each direction x on the unit-sphere S2 = {x ∈ R3 | ∥x∥ = 1}. Also, let

g(x) : S2 → R denote the shape function when the object is rotated.

The spherical shape matching problem involves finding the rotation matrix R ∈ SO(3) that

minimizes the discrepancy between g(x) and f(x) rotated by R, i.e.

J (R) =
1

2
∥g(x)− f(RTx)∥2S2 ,

where ∥ · ∥S2 denote the norm for the functions defined on S2. By expanding the norm,

J (R) =
1

2
∥g(x)∥2S2 +

1

2
∥f(x)∥2S2 −

〈
g(x), f(RTx)

〉
S2 ,

The objective is to find the true rotation matrix R that minimizes the cost function J (R),

or equivalently, maximizes the measure of correlation function C(R) =
〈
g(x), f(RTx)

〉
S2 .

A computational approach to evaluate the correlation function has been proposed in [195]

using harmonic analysis on SO(3), with a numerical example for an Earth elevation map.

Here, we adopt the same numerical example for spherical shape matching of the Earth

elevation map. But, we implement the presented AGD. For the numerical comparison, we

have used α = 0.0002 for GD and µ = 0.15 along with h =
√

(αoptimal) and ϵ = 1.2
√
(αoptimal)

for AGD algorithm. The comparison between the gradient descent and accelerated gradient

method in Figure 7.2 demonstrates how the AGD converges in fewer iterations. In Figure

7.2, we have shown how the correlation function and its gradient evolve over the iterations.
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Both plots show how for the first few iterations both methods give similar updates but as

the number of iterations increases, effects of the additional momentum term become visible

which results in faster convergence.
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Figure 7.3: Comparison of function and gradient value plots over iterations

7.4 Conclusions

We have presented accelerated gradient methods for optimization on SO(3). Similar to the

classical momentum method on Rn, we include additional momentum term in the standard

gradient descent on SO(3) to achieve faster convergence. Using continuous approximation

analysis tools, first we derived the continuous system corresponding to classical momentum

on Rn and then discretized the continuous system using variational integrators to show

that classical momentum method on Rn is a structure-preserving method. We also derived

the continuous systems corresponding to both gradient descent and proposed accelerated

gradient method on SO(3) and demonstrated that the continuous system is a Lagrangian

rigid body system evolving on SO(3) under the influence of potential forcing and dissipation.

We discretized the continuous time system on SO(3) using the Lie group variational integrator

framework and presented the symplectic accelerated gradient method.
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The proposed algorithms are used to numerically study two optimization problems on SO(3).

First, we have applied these methods to solve the benchmark problem of a trace function

to demonstrate that the symplectic accelerated gradient method converges faster than both

accelerated gradient descent and gradient descent on SO(3). We have also applied accelerated

gradient descent to the spherical shape matching of earth elevation map and the numerical

results show that the accelerated gradient method outperforms the gradient descent method.

For future works, we plan to study how the different choice of the discrete Lagrangian yield

a different form of optimization schemes.



Chapter 8

Performance Assessment of

Energy-preserving, Adaptive Time

Step Variational Integrators

The main goal of this chapter is to understand the numerical performance of energy-preserving,

adaptive time step variational integrators. First, we focus on the discrete energy error be-

havior from a computational perspective. We obtain a conservative bound on the discrete

energy error based on the error propagation from the residual of the discrete energy equation

and compare the energy performance of the adaptive algorithm with fixed time-step varia-

tional integrators. We then use variable precision arithmetic in the adaptive algorithm to

show how the energy performance can be further improved by using more significant digits

in the computation. Motivated by this improvement in energy performance, we approach

the problem from a theoretical perspective by investigating the stability of the adaptive al-

gorithm. We first use time-transformation to represent the adaptive algorithm as the fixed

time-step algorithm and then apply backward error analysis tools in the transformed setting.

The early development of backward error analysis in 1960s was motivated by numerical lin-

ear algebra applications and it was mainly used as a tool for evaluating the propagation

of rounding errors in matrix algorithms. Although Wilkinson [196] first used it in the con-

text of eigenvalue problems, the underlying idea of backward error analysis has been also

153
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applied to numerical integrators for dynamical systems. Truncation errors introduced by

the numerical integrator play the same role as rounding errors do in the numerical linear

algebra setting. The focus in the backward error analysis of a numerical integrator is the

question: what dynamical system does the numerical integrator solve? Thus, instead of

studying the difference between the trajectories obtained using the numerical integrator and

the exact solution, we look for a nearby dynamical system which would be solved exactly

by the numerical integrator. For dynamical systems with underlying geometric structure,

we would like the modified system to also possess similar features. The existence of such a

nearby dynamical system has direct implications for the accurate long-time behavior of the

long-time simulation.

Sanz-Serna [197] first applied tools from backward error analysis to symplectic integrators

and showed that numerical trajectories from symplectic integrators can be interpreted as

the exact solution of a perturbed Hamiltonian system. Reich [37] used a recursive definition

of modified vector fields to provide a unifying framework for the backward error analysis of

GNI methods. Hairer [198] developed variable time-step symplectic integrators and proved

backward stability of the adaptive algorithm by using time transformations. Recently, Ver-

meeran [199] studied the backward stability of variational integrators from the Lagrangian

perspective.

This chapter is organized as follows. In Section 8.1, we study the energy behavior of the

adaptive algorithm and the effect of variable precision arithmetic on the conservation prop-

erties. In Section 8.2, we present a time transformation to interpret the adaptive algorithm

as a fixed time-step variational integrator in the transformed setting. Finally, in Section

8.3, we provide concluding remarks and discuss remaining challenges in the backward error

analysis of adaptive algorithms.
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8.1 Energy Behavior

As shown in Section 3.1.2, the extended discrete equations for the adaptive time step vari-

ational integrators conserve the discrete energy Ek exactly. Unfortunately, numerically the

discrete energy equation is not solved exactly and the residual from this equation builds up

as the iterations increase. Such a build up of discrete energy error might lead to a sub-

stantial enough energy error and that can defeat the purpose of the adaptive time-stepping

algorithm. Thus, we need to investigate the long-term behavior of energy error.

For a given initial configuration (t0,q0,p0, E0), the discrete energy Ek after k adaptive time

steps can be written as

Ek = E0 +
k∑

i=1

(Ei − Ei−1) (8.1)

We can use this expression to obtain a conservative bound on the discrete energy error

|Ek − E0| ≤
k∑

i=1

|Ek − Ek−1| ≤ k max
i

|Ei − Ei−1| (8.2)

where maxi |Ei − Ei−1| is the maximum discrete energy error introduced in one iteration

during the whole numerical simulation. Using this conservative bound, we can compare the

energy behavior of fixed time-step variational integrators with the worst case scenario for

the adaptive algorithm. For example, if we consider an example where the fixed time-step

algorithm exhibits discrete energy error around 10−6 then the adaptive algorithm, with 10−18

accuracy in solving discrete energy equation, will exhibit better energy performance for 1012

steps

k =
10−6

maxi |Ei − Ei−1|
=

10−6

10−18
= 1012 steps (8.3)

It is important to note that the discrete energy error bound in (8.2) is very conservative

because it assumes the worst case scenario where at each time-step the energy error is of the
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same sign and maximum magnitude. The numerical results for a particle in a double-well

potential example shows how using Variable Precision Arithmetic (VPA) with 32 significant

digits results in exactly zero discrete energy error. The adaptive time step behavior also

matches with previous results. Based on these results, we have shown how increasing the

precision can lead to nearly exact energy behavior. It is important to note that using VPA

makes the adaptive algorithm computationally prohibitive. The key takeaway from these

results obtained using VPA is that, if solved with enough precision, the adaptive algorithm

can conserve the discrete energy. This also points to the importance of studying the numerical

stability of the adaptive algorithm.
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Figure 8.1: Discrete energy error results using VPA

8.2 Time Transformation

In this section, we introduce a time-transformation from the physical time t to a fictitious

time a and represent the energy-preserving, adaptive time step variational integrator as

a fixed time-step variational integrator in the transformed setting. Using ideas from the

extended Lagrangian mechanics, we interpret the parameterization of t = t(a) in terms of

the independent variable a as a time transformation. For such a time transformation, i.e.

t → a, the configuration in the transformed setting is given by q̄(a) = (q(a), t(a)). For this
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Figure 8.2: adaptive time step behavior using VPA

transformation, we introduce

L̄((q̄(a), q̄′(a))) = t′(a)L(q(t), q̇(t)) = t′(a)L

(
q(a),

q′(a)

t′(a)

)
(8.4)

where we have used q̇(t) = q′(a)
t′(a)

. The Euler-Lagrange equations in the transformed setting

are

∂L̄

∂q
− d

da

(
∂L̄

∂q′

)
= t′(a)

∂L

∂q
− d

da

(
t′(a)

∂L

∂q̇

1

t′(a)

)
= t′(a)

(
∂L

∂q̇
− d

dt

(
∂L

∂q̇

))
= 0 (8.5)

∂L̄

∂t
− d

da

(
∂L̄

∂t′

)
= − d

da

(
L

(
q(a),

q′(a)

t′(a)

)
+ t′(a)

∂L

∂q̇
(− q̇

t′(a)
)

)
= t′(a)

d

dt

(
∂L

∂q̇
· q̇ − L

)
= 0

(8.6)

Thus, the Euler-Lagrange equations in the transformed setting lead to the original Euler-

Lagrange equation along with the redundant energy equation. Although, these equations are

the same as the extended Euler-Lagrange equations, it is important to understand the above

equations as Euler-Lagrange equations in the transformed setting. This interpretation will

play a key role in the following Lemma about the equivalence of trajectories of the original
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Lagrangian system and the transformed system.

Lemma 1: Let (q(t), q̇(t)) and (q̄(a), ˙̄q(a)) be the solutions to the Euler-Lagrange equations

corresponding to the physical Lagrangian L and the extended Lagrangian L̄ respectively.

Then,

q̄(T ) = q(α(T ))

where α(T ) =
∫ T

0
t′(a)da.

Proof: This follows from the fact that q̄(T ) and q(α(T )) satisfy the original Euler-Lagrange

equation with same initial conditions.

Consider a discrete trajectory on the extended space with ∆a = ak+1 − ak. The discrete

extended action S̄d approximates the action integral

S̄d =
N∑
i=1

L̄d(q̄k, q̄k+1) ≈
∫ af

a0

L̄(q̄(a), ˙̄q(a))da (8.7)

where q̄k = (qk, tk) and the extended discrete Lagrangian is given by

L̄d = ∆a

[
L̄

(
q̄k + q̄k+1

2
,
q̄k+1 − q̄k

∆a

)]
≈
∫ ak+1

ak

L̄(q̄(a), q̄′(a)) da (8.8)

The resulting discrete Euler-Lagrange equations are given by

∂L̄d(q̄k−1, q̄k)

∂qk
+

∂L̄d(q̄k, q̄k+1)

∂qk
= 0 (8.9)

∂L̄d(q̄k−1, q̄k)

∂tk
+

∂L̄d(q̄k, q̄k+1)

∂tk
= 0 (8.10)

These variational integrators with a fixed time-step ∆a in the transformed setting are equiv-

alent to the energy-preserving, adaptive time step variational integrators. This equivalence
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will allow us to apply established results from backward error analysis of fixed time-step

variational integrators.

8.3 Conclusions

We have presented a performance assessment of energy-preserving, adaptive time step varia-

tional integrators in this chapter. From the extended discrete Euler-Lagrange equations, we

obtained a conservative bound on the discrete energy error. We also implemented adaptive

algorithm using VPA to demonstrate exact discrete energy conservation. Motivated by these

numerical results, we proposed a time transformation approach to investigate the numeri-

cal stability of the adaptive algorithm. Using equivalence of trajectories, we derived the

energy-preserving, adaptive time step variational integrators as fixed time-step variational

integrators in the transformed setting.

The interpretation of the adaptive algorithm as a fixed time-step algorithm in a transfomed

setting will allow us to use results from backward error analysis results from Vermeeren

[199]. Apart from the adaptive nature of the algorithm, backward error analysis of energy-

preserving, adaptive time step variational integrators has two challenges. First, these algo-

rithms are derived from Lagrangian perspective and hence, the governing Euler-Lagrange

equations are second-order. The second challenge is the unique nature of the adaptive al-

gorithm where the time transformation map t(a) is not explicitly given. In future work,

we plan to build on the work presented in this chapter to tackle these two challenges and

investigate the backward stability of the adaptive algorithm.



Chapter 9

Conclusions

9.1 Summary

In summary, this dissertation develops a variety of structure-preserving algorithms for me-

chanical systems. The key idea is to derive energy-preserving, adaptive time step variational

integrators from discretized variational principles in the extended Lagrangian mechanics

framework. These methods are applied to a variety of Lagrangian/Hamiltonian dynamical

systems.

A review of structure-preserving methods and their engineering applications has been pre-

sented in Chapter 2. We have provided an overview of existing GNI methods and their

capabilities in an accessible way, while adding perspectives and application examples from

the literature. This survey is intended to provide a gateway into the field for practitioners.

Energy-preserving variational integrators for forced Lagrangian systems are presented in

Chapter 3. We presented the Lagrange-d’Alembert principle in the extended phase space

and derived adaptive time step, energy-preserving variational integrators for time-dependent

Lagrangian systems with non-conservative forcing. In Chapter 4, we have used Hermite poly-

nomials to derive one-step variational and Galerkin methods. In addition to their excellent

energy behavior, these one-step methods are continuous in both configuration and velocity

which makes them compliant to control analysis.

160
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The energy-preserving, adaptive time step variational integrators have been extended to

rigid body systems evolving on SO(3) and SE(3) in Chapter 5 and Chapter 6, respectively.

These adaptive algorithms are symplectic as well as energy and momentum-preserving while

also preserving the geometry of the configuration space. The numerical studies from these

chapters demonstrate that, for smaller time step values adaptive algorithms are able to

achieve significantly better energy behavior compared to their fixed time step algorithms for

a similar computational cost.

In Chapter 7, discrete mechanics and Lie group variational integrators are used to develop

accelerated gradient methods on SO(3). Using continuous approximation analysis, we have

shown the connection between accelerated gradient methods and continuous dynamical sys-

tems and demonstrated that the classical momentum method on Rn is a variational inte-

grator. We also derived the continuous systems corresponding to both gradient descent and

the proposed accelerated gradient method on SO(3) and demonstrated that the continuous

system is a Lagrangian rigid body system evolving on SO(3) under the influence of potential

forcing and dissipation. We discretized the continuous time system on SO(3) using the Lie

group variational integrator framework and presented the symplectic accelerated gradient

method on SO(3).

In Chapter 8, the numerical performance of energy-preserving, adaptive time step varia-

tional integrators is studied from both numerical and theoretical point of views. Using the

residual from discrete energy equation, a conservative bound on the discrete energy error

was obtained. By considering variable precision arithmetic (VPA) in computations, almost

exact energy conservation was achieved. The numerical stability of the adaptive algorithm

was studied by representing it as a fixed time step algorithm in a transformed setting.
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9.2 Future Work

Based on the work presented in this dissertation, we have divided the future work section

in two categories. Based on our literature review in Chapter 2, we first discuss key future

thrust areas for broader use of structure-preserving methods in engineering applications. We

then talk about specific future research directions related to our original research work.

9.2.1 Key Thrust Areas for Broader Use

Based on the literature review, we find that prior research efforts in the field of geometric

numerical integration have demonstrated the advantage of structure-preserving integration

methods largely through comparison with traditional integrators (e.g., the non-structure-

preserving Runge-Kutta method) for “toy” problems. While this approach is useful to

demonstrate the advantages of structure-preservation, it does not provide a fair assessment

for practitioners.

We believe more work is needed on the applications of structure-preserving methods with

a focus on large-scale systems from specific engineering applications. Furthermore, it is of

interest to know how these methods compare with traditional methods in terms of the com-

putational cost. Recently, Johnson and Murphey [200] utilized the tree-based structure to

develop scalable variational integrators. Using ideas from the recursive Newton-Euler algo-

rithm and articulated body algorithm, Lee et al [201] developed a linear-time variational

integrator for multibody systems, and Fan et al [202] developed linear-time higher order

variational integrators. A key topic related to this is the issue of solvability of geometric

methods as most of these methods for nonlinear systems are implicit and require the so-

lution of a system of nonlinear equations at every iteration. The connection between time

step selection and solvability of implicit methods has not received enough attention in the
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context of structure-preserving methods. Kobilarov [203] studied the solvability of geomet-

ric integrators and developed bounds on the fixed time step which guarantee convergence

of the root-finding problem of the system of nonlinear equations. Future work along these

directions will play a key role in broader use of structure-preserving methods for engineering

applications.

From the reviewed literature, we also find that the majority of research published in the field

of geometric numerical integration compares the results of proposed/developed structure-

preserving methods with traditional methods that are not designed to respect the underly-

ing geometric structure. In the growing literature on structure-preserving methods, apart

from few exceptions [77, 204, 205], there is very little work focusing on comparison between

different classes of structure-preserving methods. For example, both variational (symplectic-

momentum) and energy-momentum integrators respect the qualitative features of mechan-

ical systems. On one hand, energy conservation guarantees, a priori, that the numerical

solution is restricted to a codimension 1 submanifold of the configuration manifold whereas

variational integrators through symplectic structure preservation, ensure a more global and

multi-dimensional behavior. From an engineering perspective, this points to a very important

question: For a given mechanical system, should one use variational (symplectic-momentum)

or energy-momentum methods to numerically simulate it? In order to answer this question,

a detailed comparison of the numerical performance of both methods for benchmark prob-

lems from various types of mechanical systems is required. We believe research work in this

direction will help practitioners understand which class of structure-preserving numerical

methods is best suited to a given mechanical system.

Finally, most of the mechanical systems in engineering applications are subject to non-

conservative external forcing. It is of interest to understand which class of methods performs

better for non-conservative systems where the external forcing drives the dynamics such
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as highly oscillatory systems found in biolocomotion or aeroelasticity applications. Also of

interest is the extent to which the long-time stability advantages of structure preservation for

conservative dynamical systems can carry over to mechanical systems with external forcing.

Most of the research so far has been done for PDEs with variational structure [25, 49]. Going

further the research challenge is to consider nonvariational PDEs [30] and develop/extend

structure-preserving algorithms for a wider class of PDEs.

9.3 Specific Future Research Directions

• Energy-preserving, adaptive time step variational integrator Despite their

excellent conservation properties, the utility of energy-preserving, adaptive time step

variational integrators for engineering applications is still an open question due to the

difficulties associated with their numerical implementation. These adaptive algorithms

require solving a coupled nonlinear implicit system of equations at every time step to

update the configuration variables and time variable. Unlike traditional adaptive al-

gorithms, the adaptive time step computation in these methods is inherently coupled

with the discrete dynamics. In fact, existence of solutions for these discrete trajec-

tories is not always guaranteed. Shibberu [53] has discussed the well-posedness of

these adaptive algorithms and identified points in the extended state space where the

adaptive algorithm has no solutions. Even for the points with existence of solution,

the governing update equations are ill-conditioned. Due to the ill-conditioned nature,

discrete energy error is introduced at every iteration which can lead to inaccurate nu-

merical behavior in long-time simulations. Due to these various challenges involved

with numerical simulation using energy-preserving, adaptive time step variational in-

tegrators, the numerical properties of these algorithms needs to be investigated from
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an analysis point of view. Backward error analysis of these algorithms will be helpful

in understanding the long-time behavior of energy error. Apart from the numerical

stability, it would also be interesting to develop variational order analysis framework

for these algorithms.

• Optimal control: Based on the discrete variational principles, the Discrete Mechanics

and Optimal Control (DMOC) framework is used for optimal control of mechanical

systems. It would be natural to utilize the energy-preserving, adaptive time step

variational integrators developed in the DMOC setting for path following problems.

Since a lot of these problems evolve on Lie groups, this would also involve extending the

energy-preserving, adaptive time step Lie group variational integrators to mechanical

systems with external control forcing. These algorithms can be derived by discretizing

the Lagrange-d’Alembert principle on Lie groups in the extended Lagrangian mechanics

setting.

• Optimization: With growing interest in machine learning and robotics applications,

there is a need to develop understanding about optimization algorithms. Apart from

the classical momentum method studied in Chapter 7, it would be interesting to study

the Nesterov’s accelerated gradient method from a dynamical systems perspective.

Better understanding of Nesterov’s accelerated gradient method from this approach

can be particularly useful for developing Nesterov-like accelerated gradient methods

on nonlinear manifolds.
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