
Measuring the Software Development Process to Enable Formative
Feedback

Ayaan M. Kazerouni

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

Clifford A. Shaffer, Co-chair
Stephen H. Edwards, Co-chair

Francisco Servant
Dennis Kafura
Jaime Spacco

March 23, 2020
Blacksburg, Virginia

Keywords: Computing education, software engineering, software testing, self-regulation,
procrastination

Copyright 2020, Ayaan M. Kazerouni

Measuring the Software Development Process to Enable Formative
Feedback

Ayaan M. Kazerouni

(ABSTRACT)

Graduating CS students face well-documented difficulties upon entering the workforce, with
reports of a gap between what they learn and what is expected of them in industry. Project
management, software testing, and debugging have been repeatedly listed as common “knowl-
edge deficiencies” among newly hired CS graduates. Similar difficulties manifest themselves
on a smaller scale in upper-level CS courses, like the Data Structures & Algorithms course
at Virginia Tech: students are required to develop large and complex projects over a three to
four week lifecycle, and it is common to see close to a quarter of the students drop or fail the
course, largely due to the difficult and time-consuming nature of the projects. My research
is driven by the hypothesis that regular feedback about the software development process,
delivered during development, will help ameliorate these difficulties. Assessment of software
currently tends to focus on qualities like correctness, code coverage from test suites, and
code style. Little attention or tooling has been developed for the assessment of the software
development process. I use empirical software engineering methods like IDE-log analysis,
software repository mining, and semi-structured interviews with students to identify effec-
tive and ineffective software practices to formulate. Using the results of these analyses, I have
worked on assessing students’ development in terms of time management, test writing, test
quality, and other “self-checking” behaviours like running the program locally or submitting
to an oracle of instructor-written test cases. The goal is to use this information to formulate
formative feedback about the software development process. In addition to educators, this
research is relevant to software engineering researchers and practitioners, since the results
from these experiments are based on the work of upper-level students who grapple with
issues of design and work-flow that are not far removed from those faced by professionals in
industry.

Measuring the Software Development Process to Enable Formative
Feedback

Ayaan M. Kazerouni

(GENERAL AUDIENCE ABSTRACT)

Graduating CS students face well-documented difficulties upon entering the workforce, with
reports of a gap between what they learn and what is expected of them as professional soft-
ware developers. Project management, software testing, and debugging have been repeatedly
listed as common “knowledge deficiencies” among newly hired CS graduates. Similar dif-
ficulties manifest themselves on a smaller scale in upper-level CS courses, like the Data
Structures & Algorithms course at Virginia Tech: students are required to develop large and
complex software projects over a three to four week lifecycle, and it is common to see close
to a quarter of the students drop or fail the course, largely due to the difficult and time-
consuming nature of the projects. The development of these projects necessitates adherence
to disciplined software process, i.e., incremental development, testing, and debugging of small
pieces of functionality. My research is driven by the hypothesis that regular feedback about
the software development process, delivered during development, will help ameliorate these
difficulties. However, in educational contexts, assessment of software currently tends to fo-
cus on properties of the final product like correctness, quality of automated software tests,
and adherence to code style requirements. Little attention or tooling has been developed
for the assessment of the software development process. In this dissertation, I quantitatively
characterise students’ software development habits, using data from numerous sources: us-
age logs from students’ software development environments, detailed sequences of snapshots
showing the project’s evolution over time, and interviews with the students themselves. I
analyse the relationships between students’ development behaviours and their project out-
comes, and use the results of these analyses to determine the effectiveness or ineffectiveness
of students’ software development processes. I have worked on assessing students’ devel-
opment in terms of time management, test writing, test quality, and other “self-checking”
behaviours like running their programs locally or submitting them to an online system that
uses instructor-written tests to generate a correctness score. The goal is to use this informa-
tion to assess the quality of one’s software development process in a way that is formative
instead of summative, i.e., it can be done while students work toward project completion as
opposed to after they are finished. For example, if we can identify procrastinating students
early in the project timeline, we could intervene as needed and possibly help them to avoid
the consequences of bad project management (e.g., unfinished or late project submissions).
In addition to educators, this research is relevant to software engineering researchers and
practitioners, since the results from these experiments are based on the work of upper-level
students who grapple with issues of design and work-flow that are not far removed from
those faced by professionals in industry.

Dedication

To my family, friends, and mentors.

iv

Acknowledgments

It may not look like it, but a PhD is a group effort. The friendship, influence, and support
of several people and institutions are what got me to this finish line, and I am eternally
grateful. I attempt to name them here, and I am certain that I have forgotten a few. If you
are among that number, accept my apologies!

First, I owe thanks to my advisors and advisory committee. I am eternally grateful to my
advisor Cliff Shaffer for taking me on as a doctoral student in my first semester at Virginia
Tech. I could not have asked for a better advisor—his work ethic and careful attention
to detail have been monumentally important in my development as a researcher, science
communicator, and mentor to future researchers. I owe thanks to my co-advisor, Steve
Edwards, for countless brainstorming sessions that led to much of the research presented
herein. Both Dr. Shaffer and Dr. Edwards have an incredible commitment to impactful
research, and everything we worked on (within and without this dissertation) was done with
that impact in mind. This was a huge motivating factor during the inevitably hard parts of
a PhD. I’d like to thank my committee member Francisco Servant for the many discussions
in his office that led to more complete research, and for his Software Engineering course,
which fundamentally changed the way I thought about my work in particular and research
in general. I am grateful to the other members of my committee, Dennis Kafura and Jaime
Spacco, for asking important questions that forced me to question my assumptions about
computing education.

A PhD would be a bleak affair without an army of friends. Five years is a long time, and there
are many names to name. First, I would like to thank Jamie Davis for his friendship, sage
advice about life, research, and the pursuit of happiness, and one racquetball championship.
I owe enormous thanks to Chandani Shrestha and Nidhi Menon for becoming my family
here in Blacksburg and for making the hard part of this ride feel like a breeze. Thanks
also to Thomas Lux and Tyler Chang who made dreary work days seem, well, less dreary;
Moe Mondays will always hold a special place in my heart. Other friends I owe gratitude to
are Tuna Önder, Prashant Chandrasekar, Daniel Chiba, Aakash Gautam, Satyajit Upasani,
Anika Tabassum, Apratim Mukherjee, and my fellow members of Panda Bag—Ethan Smith,
Wenhui Lee, Greg Lambert, Han Chen, Saikat Mukherjee, and Kirk Broadwell. I am thankful
for the Torgersen 2000 crowd, past and present, for their companionship and impromptu
discussions about various topics. Additionally, I am grateful to Cory Bart for providing
helpful perspectives from having experienced each PhD milestone a few years ahead of me.

Last and certainly not the least, I thank my family, whose support is unequivocally what got
me through this journey. I would like to thank my parents, Sharmeela and Mehdi Kazerouni.
I am forever grateful for their courage and foresight in making the impossible decision to
part with their children as they left to pursue higher education on the other side of the

v

world. Their love and support can move mountains, and has continued to do so from a few
thousand miles away.

I would like to thank my uncle and aunt, Beheruz and Madhavi Sethna, for becoming like
a second set of parents to my brothers and me, and for accepting us into the fabric of their
daily thoughts and lives. This was immensely important when we left home behind and I
count myself incredibly fortunate to be a continued recipient of their love. I am also grateful
for the monthly cookie deliveries.

I owe huge thanks to my virtual graduate school support group: my brothers Amaan and
Ameen, and my soon-to-be sister-in-law Anum. Hard days were softened and good days
brightened, and I will always be grateful. Amaan and Ameen have been my best friends
from my first moments, and everything I do is owed in huge part to them. In no uncertain
terms, none of this would have been possible without them.

Finally, many institutions have played a role in supporting this effort. I thank the faculty
and staff at the CS Department at the University of West Georgia for welcoming me into
the computing community and whose teaching was instrumental in moulding my research
interests. I thank the now defunct Advanced Academy of Georgia, where I obtained a
willingness to admit ignorance that is essential for an endeavour such as this. I also owe
thanks to the National Science Foundation and the Department of Computer Science at
Virginia Tech for providing financial support that allowed me to focus on academics, and
the students and instructors of CS 3114 at Virginia Tech for being such a good test bed for
research.

This material is based upon work supported by the National Science Foundation under
Grants DUE-1245334, DUE-1625425, and DLR-1740765. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Literature Review 5

2.1 Self-Regulation in Software Development . 5

2.2 Programming Process Tracking Systems . 8

2.3 Software Testing . 10

2.3.1 Empirical Studies on Software Testing Practices 11

2.3.2 Evaluating Software Test Quality . 13

2.3.3 Software Testing in the Undergraduate CS Curriculum 14

2.4 The Academia–Industry Gap . 16

3 Data Collection Infrastructure: DevEventTracker 18

3.1 Description of Collected Data . 18

3.2 DevEventTracker in Virginia Tech Coursework 20

3.3 My Contributions to DevEventTracker . 21

4 Time Management in Intermediate Programming Projects 22

4.1 Research Method . 23

4.1.1 Research Questions . 23

4.1.2 Study Context . 23

4.2 Proposed Metrics of Time Management . 24

4.2.1 Working Early and Often . 24

4.2.2 Test Writing . 26

vii

4.2.3 Incremental Program Executions . 26

4.3 Research Question 1 . 27

4.3.1 Interviews With Students . 27

4.3.2 Manual Inspection of Snapshot Histories 29

4.4 Research Question 2 . 30

4.5 Research Question 3 . 32

4.5.1 Working Early and Often . 32

4.5.2 Test Writing . 36

4.5.3 Program and Test Executions . 37

4.6 Discussion . 38

4.7 Threats to Validity . 40

4.8 Summary . 40

5 Incremental Testing in Intermediate Programming Projects 41

5.1 Research Method . 43

5.1.1 Research Questions . 43

5.1.2 Study Context . 43

5.1.3 Data Collection and Preprocessing 44

5.2 Proposed Metrics of Testing Effort . 45

5.2.1 Balance of Testing Effort . 47

5.2.2 Sequence of Testing Effort . 48

5.3 Research Question 1 . 49

5.4 Research Question 2 . 50

5.5 Discussion . 53

5.6 Threats to Validity . 54

5.7 Summary . 54

6 Improving the Assessment of Software Test Quality 55

6.1 Background . 56

viii

6.1.1 Test Adequacy Criteria . 56

6.1.1.1 Structural Testing . 56

6.1.1.2 Fault-Based Testing . 57

6.1.2 Mutation Analysis—A Silver Bullet? 58

6.1.2.1 Underlying Assumptions 58

6.1.2.2 Efforts to Reduce the Cost of Mutation Analysis 60

6.1.3 Test Adequacy Criteria in Education and Their Limitations 61

6.2 Research Method . 63

6.2.1 Research Questions . 63

6.2.2 Study Context . 64

6.3 Research Question 1 . 66

6.3.1 Method . 67

6.3.2 Result . 67

6.4 Research Question 2 . 68

6.4.1 Method . 68

6.4.2 Result . 69

6.5 Research Question 3 . 70

6.5.1 Method . 71

6.5.2 Result . 72

6.6 Research Question 4 . 73

6.6.1 Method . 73

6.6.2 Result . 75

6.7 Discussion . 76

6.7.1 Choosing a Subset of Operators . 77

6.7.2 Operationalising Feedback . 79

6.8 Threats to Validity . 80

6.9 Summary . 81

7 Conclusions and Future Work 82

ix

7.1 Summary of Findings and Conclusions . 82

7.1.1 Process Metrics . 82

7.1.2 Mutation Analysis . 84

7.2 Future Work . 85

7.2.1 Development Process Interventions 85

7.2.2 Mutation Analysis . 87

7.2.3 Long-Term Research Plans . 88

7.3 Final Remarks . 89

Bibliography 91

Appendices 111

Appendix A Research Materials 112

x

List of Figures

4.1 Distribution of work from a student on the first CS3 project in the Fall 2018
semester. 25

4.2 Aggregated and actual distribution of work days. Edit Day 0 is the due date. 31

4.3 The 95% correctness mark splits the class roughly into half. 33

4.4 Comparison of solution edit times between projects that correctly solved an
assignment, and those that did not. 34

4.5 When students successfully solved projects, they worked approximately 2 days
earlier than they did when they were unable to solve projects. 34

4.6 Within-subjects difference between edit mean times between early and late
submissions. 35

4.7 An example of a project with unsatisfactory test writing. 37

4.8 An example of a project with a intermediate score for test writing. 37

4.9 An example of a project with model scores for test writing. 38

4.10 Students spent a median 34.45 hours on each project. 39

5.1 Example: Testing effort on individual methods in a representative project. . 45

5.2 An example sequence of developer activity. 46

5.3 Measures to be derived from a programming activity event stream. Each
row depicts a different method of aggregating the programming events from
Figure 5.2. 46

5.4 Distributions of testing effort metrics as defined in §5.2. 49

6.1 Our corpus contains submissions to assignments of increasing sizes (source
lines of code). Whiskers indicate the 5th and 95th percentiles. 65

6.2 Accuracy and cost of the DELETION, SUFFICIENT, and FULL subsets of muta-
tion operators. 71

6.3 Goodness of variance fit (GVF) for increasing values of k using Jenks natural
breaks optimization. 74

6.4 Groups of submissions based on SLoC. Dashed lines indicate group boundaries. 75

xi

6.5 Effectiveness of incremental subsets used to predict FULL coverage for sub-
mission groups. 76

6.6 Accuracy and cost of the DELETION, 2-op, and 1-op subsets of mutation oper-
ators. This figure is a “zoomed in” version of Figure 6.2, with the FULL and
SUFFICIENT sets no longer included. 78

xii

List of Tables

3.1 Key event types collected by DevEventTracker, the actions that trigger them,
and the accompanying meta-data. 19

5.1 ANCOVA model summary for overall testing effort. 51

5.2 ANCOVA model summary for process-based testing effort (only including
metrics that take time into account.) . 52

6.1 Test evaluation techniques used in CS education and their strengths and weak-
nesses. ? = Addressed in this chapter. 63

6.2 Programming tasks undertaken by students in our sample, and descriptions of
their implementations. # Mutants indicates the number of mutants generated
under the FULL set. Projects 1–4 are CS2 projects, and 5–7 are CS3 projects. 64

6.3 Selective mutation approaches evaluated for use in an AAT in this chapter,
including the incremental subsets evaluated in §6.6. The Ref. column refers
to the first proposal of the specified subset. ? = Proposed in this chapter. . 66

6.4 Difference effect sizes in accuracy and cost between operator subsets. Accu-
racy and cost both decrease in the order FULL → SUFFICIENT → DELETION.
The decrease in cost is more pronounced. 70

6.5 Forward selection on the entire corpus of submissions, choosing DELETION
operators. Highlighted cells contain values from the final model. Other cells
contain cumulative values for intermediate models, after adding each operator. 72

6.6 Median running times (in seconds) using incremental subsets of operators, for
each submission group, and for the entire corpus normalised by program size. 77

xiii

Chapter 1

Introduction

Graduating CS students face numerous difficulties in their first software development jobs,
with reports of gaps between what they learn and what is expected of them in indus-
try [16, 17, 141, 142]. In addition to difficulties with the human aspects of professional
software engineering—e.g., effective written and oral communication, collaboration and mul-
tidisciplinary teamwork, and knowing when to seek help [16, 28]—reports indicate that stu-
dents struggle with elements of the personal software development process, such as project
management, software testing, and debugging [141, 142]. These knowledge deficiencies are
not a recent phenomenon: based on the results of a 1998 survey of practitioners, Lethbridge
examined the differences between knowledge after education and current knowledge [110]. A
positive difference indicates on-the-job learning, and a large difference might suggest a need
for formal education to improve its coverage of that topic. Analysis indicated that on-the-job
learning was commonly reported for project management, software testing, and debugging.

Perhaps an early manifestation of these difficulties is the challenges faced by intermedi-
ate Computer Science students while trying to complete large and complex programming
projects. Every CS student eventually reaches a point in their coursework where they must
begin using good program development practices if they are going to successfully complete
these assignments. When this happens may depend on the individual’s ability or prior ex-
perience. Some may face these difficulties in a typical undergraduate CS1 or CS2 course.
Others successfully pass CS1 and CS2 without developing the necessary software develop-
ment skills, but reach the limits of undisciplined development practices when they are faced
with large and complex software projects like those found in mid-to-upper level CS courses.
For example, the Data Structures & Algorithms course at Virginia Tech involves the devel-
opment of major software projects over a three to four week lifecycle. Relative to projects
encountered in previous courses, these projects involve far more complicated design choices,
and far greater need for a rigorous testing and development process. As a possible conse-
quence, it is common to see large numbers of unsuccessful attempts at the course: in Fall
2016, 22% of enrolled students ended up withdrawing from or failing the course. For Fall
2018, that number is 28%. Typical prerequisite coursework does not prepare students to
develop software of this scale or complexity. In other words, they are expected to learn these
skills on the job, as it were, as part of this course.

This work is driven by the hypothesis that a stronger pedagogical focus on the software de-
velopment process will help ameliorate the challenges faced during and after undergraduate

1

2 Chapter 1. Introduction

CS education. Learning any skill requires practice, and to maximise learning gains and skill
acquisition, this practice must be accompanied by formative feedback [23]. Effective feed-
back about the software development process could improve students’ self-awareness about
their development habits, promoting meta-cognition and self-regulation, both of which have
been linked to numerous benefits such as increased productivity and improved project out-
comes [68, 114]. Changing student behaviour relating to software development practices will
require changing the way this material is taught, practised, and assessed. However, with-
out a mechanism to capture the necessary details about a developer’s personal development
process (as opposed to outcomes of the final product), such feedback is impossible.

I propose the following thesis:

Measurable differences in students’ software development habits can explain dif-
ferences in their project outcomes.

The focus of this dissertation is therefore to capture, characterise, and determine the ef-
fectiveness of the software development processes undertaken by students, with the goal of
providing them with feedback about their process during development. I use data from
numerous sources to arrive at quantitative characterisations of students’ software develop-
ment habits, focusing on two specific aspects: time management and software testing. Both
have commonly been cited as deficiencies displayed by newly graduated software profession-
als [110] as well as introductory and experienced undergraduate students [71]. Data sources
include click-stream data from students’ integrated development environments (IDE), qual-
itative data from interviews with students, and information about outcomes like correctness
and code quality from an automated assessment tool (AAT). With these data in hand, I
determine the effectiveness or ineffectiveness of development habits by empirically investi-
gating their relationships with eventual project outcomes like correctness, test suite quality,
total time taken, and on-time/late submission status.

Procrastination is a pervasive problem in undergraduate education, and we believe it is a
contributing factor to the difficulties faced by intermediate-to-advanced software developers.
I developed metrics to understand when students tend to work on software projects, and I
used these metrics to investigate the degree to which they procrastinated while completing
these tasks. Software testing, an important aspect of software development, has long been
denied the attention it is due in the typical undergraduate CS curriculum. To effectively
teach this skill, we need to identify and encourage effective software testing and test quality.
I developed methods to measure students’ engagement with software testing during their
project lifecycles at varied levels of granularity, and measured their relationships with project
correctness and test suite quality.

Using the metrics described above, we can conduct observational studies to learn the current
software development behaviour of students. Empirical studies help us determine how these
habits relate with outcomes like project correctness, test suite quality, time taken to complete
projects, and the likelihood of late submissions. In this dissertation, I describe observational

3

and empirical studies, whose results allow us to understand the specific characteristics of
student software development habits we ought to be encouraging or discouraging. In the
future, the metrics I describe in this dissertation will help us to measure the impact we might
have on student software development habits through improved pedagogy, interventions, or
feedback mechanisms.

In addition to measuring students’ time management and software testing processes, I worked
on improving the assessment of software tests using mutation analysis, a more robust mea-
surement of test adequacy. I did this by addressing its primary limitation—its computational
cost—in the common educational context of using AATs to provide feedback to students
about their software tests. This work enables the deployment of improved feedback about
software test suites, enabling students to reason more robustly about deficiencies in their
testing and to produce more reliable project implementations.

The studies described above enable us to automatically identify effective or ineffective ele-
ments of students software development. With this information in hand, we are set up to
design and deploy interventions that can provide developers with formative feedback about
their development habits, i.e., as they work on software projects.

My research methods and findings are relevant to software engineering researchers, practi-
tioners, and managers. My dataset comprises IDE click-streams and program snapshots for
hundreds of implementations of relatively large and complex software projects, along with
“ground truth” outcome data about correctness, style, test coverage, and time-to-completion.
The size and scale of this corpus has allowed for the design of robust experiments, controlling
for differences between students and programming tasks (projects). Experiments are based
on the work of students who are only two or three semesters removed from professionals
entering the workforce, who deal with design and work-flow issues that are comparable to
what professionals face in the industry.

This dissertation follows the outline below:

• Chapter 2: I situate my work in its broader context, reviewing and connecting liter-
ature related to self-regulation, procrastination, software development, and testing.

• Chapter 3: I give an overview of infrastructure that was deployed at Virginia Tech
to collect the data necessary for experiments.

• Chapters 4 and 5: I describe metrics we developed to measure students’ time man-
agement and software testing practices, and experiments we conducted to learn to their
relationships with project outcomes.

• Chapter 6: I explore various test adequacy criteria, investigate the feasibility of using
mutation analysis to give students automated feedback about their software tests, and
propose new mutation approaches that are more feasible for the autograding context.

• Chapter 7: I conclude with a summary of our findings and explore avenues for future
work that are revealed by the work presented herein.

Statement of attribution. Following the “manuscript” dissertation format, the chapters

4 Chapter 1. Introduction

that follow draw material from published or in-preparation manuscripts on which I am the
main contributor and author. I have reorganised some content to form a coherent document.

The papers are:

• DevEventTracker: Tracking Development Events to Assess Incremental Development
and Procrastination [98]

• Quantifying Incremental Development Practices and Their Relationship to Procrasti-
nation [99]

• Assessing Incremental Testing Practices and Their Impact on Project Outcomes [100]
• Scaling Automated Feedback for Students’ Software Tests Using Selective Mutation

Analysis (in preparation)

Chapter 2

Literature Review

In this section, I review some related work in self-regulation, software testing, and data min-
ing efforts as they pertain to the practice and assessment of software development. I start
in §2.1 with a review of literature relating to self-regulation and its connections with disci-
plined personal software process. In addition, I briefly summarise Piers Steel’s meta-analysis
on the nature of procrastination [161], focusing on its causes, correlates, and suggested in-
tervention types. In §2.2 I give a brief overview of literature on tools for educational data
mining, focusing on systems developed to track the programming process and metrics that
researchers have developed from the collected data. Next, I explore issues relating to the
pedagogy of software testing (§2.3), including empirical studies on effective and ineffective
software testing practices (§2.3.1), methods to evaluate the quality of software tests (§2.3.2),
and efforts to include software testing in the undergraduate CS curriculum (§2.3.3). Finally,
I briefly touch upon the reported gaps between what students learn in university and what
is expected of them in industry (§2.4).

2.1 Self-Regulation in Software Development

Robillard posits that the development of software involves the use of topic knowledge, e.g., the
meanings of words or concepts [145]. It also involves episodic knowledge—knowledge based
on experience and practice, typically applied once the topic knowledge has been acquired.
Software development methodology can then be viewed as application of episodic knowledge,
after gaining the required topic knowledge (e.g., the syntax of a programming language).1
It follows that practice is important for developing good episodic knowledge of effective
software development process. For practice to be constructive, it needs to be accompanied
by feedback [24] that can be reflected upon and reacted to.

A self-regulating learner is able to observe, critique, and adjust their own practice. Social cog-
nitive theorists have codified this cycle of self-observation, self-judgement, and self-reaction
as sub-processes involved in self-regulation [177]. A student’s ability to self-regulate is highly
predictive of their academic performance [65]. To be self-regulated, a student’s learning must
“involve the use of specified strategies to achieve academic goals on the basis of self-efficacy

1These knowledge categories are dependent on the learner, e.g., a for loop is episodic knowledge to a
novice programmer who has just learned about variables (topic knowledge).

5

6 Chapter 2. Literature Review

perceptions” [177]. The development of self-regulatory skills is important for novices to
achieve expertise within a specified domain, and programming and software development
are no exception [70, 113, 114].

Self-regulatory failures in software development. Unfortunately, novice program-
mers (typically, those in first-year CS classes) lack meta-cognitive awareness. That is, they
are unable to think about their problem-solving process [140], and are therefore unable to
“plan, set goals, organise, self-monitor, and evaluate” [177]. Novices in any discipline tend
to lack this ability, often because they hold a limited store of discipline-specific episodic
knowledge [145] that they can draw from. As a result, considerable effort has been devoted
to scaffolding meta-cognition and self-regulation for novices as they work on programming
problems [113, 114, 139, 140, 170]. Falkner et al. found that training software engineer-
ing students to follow specified strategies improved their task performance [70]. Loksa et
al. found that providing students with explicit strategies to solve programming problems
improved their productivity, self-efficacy, and performance [114]. Prather et al. [139] and
Wrenn et al. [170] found that scaffolding to ensure that students had correctly interpreted
problem prompts improved their ability to produce correct solutions, and to produce a more
thorough set of test cases.

Developing self-regulatory skills is difficult for novices in any discipline. Novice software
engineers (as opposed to novice programmers), when they first encounter larger and more
complex software development tasks, are faced with self-regulatory challenges that manifest
in different ways. For example, they engage in “opportunistic and arbitrary design and
implementation” [69], or procrastination [120]. Falkner states that while expert student
developers are more likely than novices to use discipline-specific self-regulatory strategies
while developing software, they are still only 50% likely to engage in software testing, and
they nearly universally reported problems with time management [71].

One might look at software testing as a type of self-regulation in software development.
Composing and writing tests offers the developer the opportunity to reflect on the func-
tionality they are about to implement or have just implemented, allowing them to come
up with explicit task-specific strategies that they can follow. Indeed, test-oriented develop-
ment methodologies like test-driven development (TDD) or incremental test last develop-
ment (ITL) prescribe sub-processes that align with the stated sub-processes involved in self-
regulation [177]: a cycle of writing a little solution code and little test code (self-observation),
running the test (self-judgement), and fixing or refactoring the code (self-feedback). Edwards
argues that software testing will encourage students to reflect on their development, help
improve their analytical skills, and lead them away from trial-and-error methods of software
development [59].

Procrastination. Procrastination is a pervasive and well-studied phenomenon that Steel
called the “quintessential self-regulatory failure” [161]. In his meta-analysis of the nature
of procrastination, he defines procrastination by stating that “to procrastinate is to volun-
tarily delay an intended course of action despite expecting to be worse off for the delay”.

2.1. Self-Regulation in Software Development 7

Researchers have investigated various causes and correlates for procrastination, summarised
in full in Steel’s study.

Sufficient evidence exists to suggest that a person’s proclivity to procrastinate may be driven,
to an extent, by personality traits. In particular, individuals’ procrastination tendencies are
considerably stable across long periods of time as well as in different situations [8]. In terms of
individual differences, low self-efficacy and self-esteem have been identified as common causes
for procrastination [10], a relationship confirmed by meta-analysis of the literature [161]. If
an individual does not feel prepared or able to complete a task, they are more likely to delay
starting it or avoid continuing work on it. Additionally, impulsiveness and distractibility
were identified as personality traits that contribute to procrastination.

Task characteristics have also been determined to be a cause of procrastination. In particular,
tasks whose outcomes are farther in the future are more likely to invite procrastination than
tasks with more immediate value [2]. Additionally, the more averse one is to a task, the more
likely one is to avoid it (i.e., to procrastinate) [124]. Tasks that offer more frequent choices
or opportunities for decision-making are also more likely to invite procrastination [156].

From the lens of task-related procrastination, we can look at the failure to practise software
testing as a manifestation of procrastination on the perceived low-value task of software
testing. After all, novice developers are often unable to see the benefits of testing [11,
35, 158]. The frequent use of AATs in undergraduate CS education [136] complicates the
situation further: the incentive for students to test their own work is largely removed by the
availability of an oracle of instructor-written test cases (e.g., in a system like Web-CAT [60],
ASSYST [88], or others.). This leads to software testing losing its perceived value, which
could (in theory [8]) lead to students procrastinating on testing.

Interventions to encourage self-regulation. Steel suggests flavours of interventions
that might reduce procrastination by specifically targeting a given cause or correlate. For
example, he describes expectancy-related interventions as those that increase the procrastina-
tor’s expectancy of success. Bandura has argued that one’s efficacy expectancy is susceptible
to persuasive measures [10] like visual or verbal feedback. Indeed, this was borne out in Buf-
fardi’s study of influences on undergraduate students’ software testing habits [35]. Of the
feedback students received, they indicated that the red–green bars showing the thoroughness
of their testing were the most important and effective at swaying their testing practices.

Steel also describes value-related interventions that could be used to reduce procrastination
when an individual believes that a task has low value, either because they are averse to
the task or because the task’s outcomes are not immediately apparent. In this situation,
one might reduce the time until the individual sees value from completing the task, e.g., by
setting sub-goals and rewarding their completion. The Data Structures & Algorithms course
at Virginia Tech has used this strategy to reduce procrastination in its month-long software
development assignments, with some success. Starting in the Fall semester of 2016, projects
included three milestones—increments of functionality that had to be completed by specified
deadlines. Failure to complete milestones by their specified due dates resulted in penalties

8 Chapter 2. Literature Review

applied to the project grade. Additionally, the project increments represented an explicit
strategy that students could use to complete project requirements. Since many students were
encountering projects of this size for the first time, this may have helped reduce instances
of procrastination stemming from students not knowing where to start [156]. It also may
have increased students’ sense of self-efficacy regarding the completion of smaller milestones
(as opposed to the entire project) [10]. Similarly, procrastination interventions could be
deployed to address students’ disinclination to write and run their own software tests.

CS educators have deployed other interventions to address procrastination [86, 120], the lack
of software testing [58, 158], and students’ meta-cognitive difficulties [114, 140]. Subsequent
challenges have led researchers to recognise the need for more granular interventions, leading
to the development of numerous data mining tools to better observe students’ development
processes [84]. This dissertation in particular is concerned with using data from such systems
to model aspects of students’ software development habits—particularly their time manage-
ment and testing practices. Once a student’s development process can be characterised at a
low level of granularity, the next step is to devise effective, theoretically grounded feedback
mechanisms that can act at the right time for the right student.

2.2 Programming Process Tracking Systems

In their ITiCSE working group report on educational data mining and learning analytics in
programming, Ihantola et al. describe a spectrum of granularity at which programming data
can be collected, defined roughly in terms of the size or frequency of data points [84]:

• Key strokes—smallest/most frequent
• Line-level edits
• File saves
• Compilations
• Executions
• Submissions—largest/least frequent

AATs typically collect data at the lowest level of granularity, i.e., submissions. Web-CAT [60]
is an AAT that allows students to make multiple submissions to an assignment and receive
immediate feedback. This feedback can be about correctness, code style, or code coverage by
student-written tests. Web-CAT interacts with a custom Eclipse plugin that allows students
to make submissions and download starter projects directly from within the IDE. This model
of multiple submissions affords the ability to gather information about the student’s devel-
opment process, such as when a student started submitting it to get feedback and when they
finished. It also provides an opportunity for analysis of the differences between submissions,
giving a rough idea of a project’s development trajectory. What it does not do is provide
enough insight to answer questions such as are students practising incremental development?
The frequency with which students make submissions can vary considerably. For example,

2.2. Programming Process Tracking Systems 9

in Fall 2016, students made an average of 54 submissions per assignment (σ = 39), with
an average of 9 hours (σ = 17) passing between submissions. Using submission-level data
for assessments of development process would require reliance on a data stream of relative
sparseness, depending in large part on a given student’s propensity to make frequent sub-
missions. To obtain an accurate assessment, we need smaller and more frequent data points
collected during development, rather than at submission time.

Numerous systems have been developed to collect programming process data at various lev-
els of granularity. Vihavainen et al. developed the Test My Code (TMC) plugin for the
NetBeans programming environment in order to capture how students go about develop-
ing software [165]. It records events whenever the student saves, runs, or tests code using
instructor-provided tests. Hosseini et al. used TMC to explore the common problem-solving
paths undertaken by novice Java programmers at the University of Helsinki [82]. Hackys-
tat [94] is an open-source project from the University of Hawaii that provides product and
process measurements in software engineering situations in education and industry. Mar-
moset [159] is an automated grading system developed at the University of Maryland. It
uses an Eclipse plugin to collect student code and store it in a Concurrent Versioning System
(CVS) repository each time a file is saved. Spacco et al. have used Marmoset to analyse stu-
dents’ software testing habits in an effort to better understand the challenges associated with
teaching test-driven development [158]. Blackbox is an ongoing data-collection project [31]
that collects data about Java compilations by worldwide users of the BlueJ IDE—a program-
ming environment designed for novice programmers. Blackbox remains one of the largest
corpuses of programming snapshot data available to computing education researchers today.
It has been used in numerous studies [29], including to study novice compilation activity [3],
the effects, occurrences, and affordances of compiler errors and error messages [30, 123, 144],
and code quality issues in student-written programs [101].

The computing education and educational data mining communities have frequently used
data from these systems to develop quantitative metrics for various aspects of programming
Most of these systems and their data are used to measure novice propensity for syntactic or
semantic errors and their proficiency at recovering from them. Jadud used the compilation
behaviours of users of BlueJ to gain a “rough sketch” of novice programming behaviour in
the classroom, describing the errors they commonly run into, the time they typically spend
programming before re-compiling, and the ways in which they respond to error messages
from the IDE [89]. He also developed the Error Quotient, which examines consecutive pairs
of compilation events and assigns a score to each pair [90]. The score increases if both
compilations include an error, and again if those errors are of the same type. Watson et
al. built on the Error Quotient with the Watwin Score, which evaluates a student based on
their ability to resolve a specific type of error, compared to the time taken by their peers.
It does this by taking into account the time taken to resolve errors, error locations, and
the complete error message [167]. Evaluation showed it to be a good predictor of perfor-
mance, and an improvement over Jadud’s Error Quotient. To further improve on the Error
Quotient, Becker developed the Repeated Error Density metric as a less context-dependent

10 Chapter 2. Literature Review

alternative, particularly for shorter programming sessions where the Error Quotient might
be less accurate [15].

A significant portion of previous work attempts to model the programming process—based
on compilation (syntactic) errors, semantic errors, or both—for novice programmers. The
Normalized Programming State Model (NPSM), developed by Carter et al., models the pro-
gramming process in much finer detail than the work described above, and has been used to
model the programming process of CS2-level students [39]. The NPSM forms a holistic repre-
sentation of the programming process, using sequences of state transitions and time spent in
certain states (editing, test editing, debugging, etc.). It has been used to develop predictive
models for various outcomes like assignment performance and overall course performance,
that were shown to be improvements over previous measures like the Error Quotient or the
Watwin score. Carter et al. also used the NPSM to determine patterns of developer activity
in the four days leading up to an assignment deadline [41], finding differences in editing and
debugging behaviours between A-, B-, and C-level students. Blending NPSM with mod-
els of students’ interactions with an online social learning environment revealed that the
combination provided higher predictive power than either of its parts [40]. A broader liter-
ature review on tools and techniques for educational data mining and learning analytics in
programming may be found in [84].

Targeting professional and open-source software developers, Beller et al. developed Watch-
Dog, a family of IDE plugins that collect fine-grained programming snapshots in order to
capture and characterise software testing habits [20]. Research regarding measurements of
software testing practices, software test quality, and the pedagogy of software testing are
presented in §2.3.

2.3 Software Testing

I use Andreas Zeller’s definition of testing [174]: Testing is the process of executing a program
with the intent of producing some problem.

In other words, testing attempts to uncover an as-yet-unknown problem. This is in contrast
to debugging, where the goal is to uncover a known problem, or “testing for debugging”
where software tests are used as a method of debugging, e.g., to reproduce and localise a
reported bug.

Software testing is an important aspect of software development, and one that is widely
recognised to contribute to software quality [95, 126]. Unfortunately, students in many US
universities display a disinclination to practice regular software testing as they work toward
project completion [35], and they often show poor testing ability both in the classroom [60,
158] and in their first jobs in industry [42, 142]. Still, testing is not a formal part of the typical
CS undergraduate curriculum [95, 154] due in part to the numerous challenges that hinder
the pedagogy of software testing. These include a lack of focus on process (Chapter 1),

2.3. Software Testing 11

a lack of consensus in the software engineering community on what that process should
look like (§2.3.1), and widespread use of weak test adequacy criteria to drive assessments
(§2.3.2). We cannot give students effective feedback without validated assessments of their
software testing process and the thoroughness of their software tests. In this section, I review
the literature related to different test-oriented development methodologies (§2.3.1), various
methods of evaluating the quality of software tests (§2.3.2), and efforts and challenges related
to integrating software testing into CS and software engineering education (§2.3.3).

2.3.1 Empirical Studies on Software Testing Practices

Test-driven development (TDD) [9, 14] is an agile software development technique popu-
larised in the early 2000s, with a key focus on the writing and running of automated unit
tests. As TDD grew in popularity with practitioners, it garnered interest from academia
as well, inviting empirical studies into its effectiveness (e.g., [21, 66, 75, 122]). Studies
investigating the effectiveness of TDD tend to focus on its “key aspect”, test-first develop-
ment [66, 75]. Test-first development involves writing a failing test case before writing the
relevant solution code to make it pass [14]. This is in contrast to the traditional incremental
test-last (ITL) style of development, which involves writing a small amount of solution code
and then testing it [67]. This dichotomy between TDD and ITL is prevalent in both industry
and academia [7, 75, 81, 106].

The software engineering research community has long disagreed about the effectiveness of
TDD, particularly in comparison to ITL methods of development. Over the years, there have
been numerous case studies [21, 118, 122, 168] and experiments [66, 75, 76, 83] observing
the effectiveness of TDD. Numerous meta-analyses and literature reviews discuss the fact
that these studies tend to produce conflicting results [57, 76, 83, 106, 143]. There are
a number of possible reasons for this. Hammond describes TDD as not having a clear
definition in practice [81], and Aniche et al. report evidence of misconceptions about and
non-conformance to TDD in practice [7]. Kollanus [106] describes the interesting trend that
controlled experiments—particularly those in an academic setting—tend to find that TDD
has no effect on product quality, while industrial case studies tend to find that practising
TDD improves software quality. Differing study contexts could be another contributing
factor to these conflicting results. Case studies tend to focus on a single implementation of a
large project that is difficult to compare to other projects, since implementations are rarely
replicated. Findings based on such small sample sizes may not be widely generalizable. On
the other hand, experiments involve many implementations of the same programming task,
using multiple prescribed development methods in a heavily controlled setting. However,
process conformance in an experimental setting is difficult to enforce ([66, 118, 157]), and
artificially controlling the environment in which software is developed could introduce threats
to validity.

Case studies [21, 47, 81, 122] have found TDD to be an effective method of software de-

12 Chapter 2. Literature Review

velopment, demonstrating significant defect-reduction in final products. In an industrial
case study at IBM, TDD was found to reduce the defect rate by about 50% as compared
to a “similar” system built using a different testing approach [122]. Bhat et al. [21] found
similar results in two case studies at Microsoft, though they also found that TDD decreased
productivity (measured by speed of development). Of course, there is an exception to this
trend [118], i.e., a case study that showed no difference in quality after implementing TDD.

On the other hand, several controlled experiments found TDD to be less effective than tra-
ditional test-last approaches at reducing defects. Erdogmus et al. [66] designed a controlled
experiment in an academic setting to evaluate the effectiveness of the Test-First approach.
They found that subjects practising Test-First development showed increased productivity,
but no significant difference in average quality of the code produced. Fucci et al. [75] con-
ducted an experiment with professional programmers to determine how external quality and
developer productivity are impacted by certain process characteristics. They found that con-
sistently shorter programming cycles were correlated with higher product quality. Notably,
the order in which test code and solution-code were written was irrelevant to product qual-
ity and developer productivity. Multiple rigorous replication studies also did not show any
significant effect of TDD on external quality [74, 76, 146] compared with ITL. For example,
in 2020 Santos et al. ran a replication of a 2005 study by Erdogmus et al. ([66]) in which
they accounted for various threats to validity from previous studies evaluating TDD (e.g.,
they had participants solve four different tasks instead of one, and had them apply both
TDD and ITL) [146]. Results suggested that the interaction between development approach
(TDD or ITL) and the specific programming task had a significant effect on external quality,
with the development approach showing no effects by itself. External quality was positively
related to TDD and ITL on two each out of four tasks.

Other empirical studies have simply characterised how much and when developers tend to
write software tests (as opposed to determining how effective these practices are). Beller
et al. instrumented IDEs to collect fine-grained event data, and used the data to answer
some useful questions about how software developers go about writing software tests. Their
findings suggest that most professional and student developers do not practice testing ac-
tively, they spend less time testing than they think they do, and that solution code and test
code do not co-evolve gracefully [18, 19]. Levin et al. [111] conducted repository mining and
found that solution code fixes are often unaccompanied by complementary test code mainte-
nance. Lubsen [115] and Marsavina [119] have conducted case studies to quantitatively and
qualitatively characterise the co-evolution of test and solution code using association rule
mining techniques. Others have leveraged software visualisation in order to characterise the
evolution of software tests in a project [46, 150, 173]. Zaidman et al. attempt to understand
how test code and solution code co-evolve by mining software repositories and creating vi-
sualisations of version history [173]. In a series of case studies, they characterised different
approaches to testing: 1) periodic phases of heavy testing, 2) periods of synchrony between
test code and solution code, and 3) consistent co-evolution of test code and solution code.

2.3. Software Testing 13

2.3.2 Evaluating Software Test Quality

In addition to the process used to develop a test suite, it is also important to assess its
quality. By quality one typically means the test suite’s defect-detection capability, i.e., its
adequacy. Defined by Goodenough & Gerhart in 1975, a test adequacy criterion is a predicate
that defines “what properties of a program must be exercised to constitute a ‘thorough’
test, i.e., one whose successful execution implies no errors in a tested program” [79]. For
example, a test is considered “adequate” by the statement coverage adequacy criterion when
all statements in the program are exercised by the test [126]. Zhu et al. provide a thorough
treatment of available test adequacy criteria and comparisons between them [176].

Test adequacy criteria help guide software testers in three ways:

• to know which elements of the program to execute (e.g., statements, conditions);
• to know when to terminate testing (e.g., when all statements are executed by tests);
• to quantify test suite thoroughness (e.g., what percentage of statements were exe-

cuted?)

Numerous test adequacy criteria have been proposed for use in education [1, 58, 78], but they
have been limited in terms of their effectiveness [61, 85], their ability to provide incremental
feedback [63, 78], or their running time cost [1, 61]. They are briefly described below, with
a more thorough treatment in §6.1.1.

Code coverage is a test adequacy criterion that measures the proportion of solution code that
was executed at least once by a test suite [126]. This is measured based on different kinds
of program constructs (e.g., conditions, statements, methods), with some methods being
stronger than others.

An advantage of code coverage criteria is that they are easy to reason about and fast to
compute. This is particularly true for its simpler formulations, like statement or decision
coverage. However, code coverage measures tend to be generally weaker than other available
test adequacy criteria. This can be attributed to the fact that they are only sensitive to the
execution of testable code constructs, but not to the surfacing of output or program state
from those constructs to test outcomes. As a result, code coverage is not correlated with the
test suite’s actual defect-detection capability [85] and is easily game-able by students [1], with
classrooms-full of students routinely achieving code coverage near the 100% mark, regardless
of the adequacy of their test suites [151].

All-pairs execution [78] involves running all students’ tests against all other students’ code
and vice-versa. Students’ tests are evaluated on their ability to detect known defects in other
student’s implementations. It is not amenable to incremental feedback, since it would require
students to have completed their work before feedback can be computed [63]; it depends on
students writing “correct” tests (i.e., those with high positive verification ability) [37, 171];
and relies on each student’s code compiling against every other student’s tests [63].

Mutation analysis [51] is a fault-based test assessment technique in which small changes

14 Chapter 2. Literature Review

(mutations) are made to the target program, creating incorrect variants of the original, called
mutants. For example, a mutant might be created by negating a conditional expression (e.g.,
changing a > b to a <= b). Alternatively, a mutant might be created by simply replacing
a > b with a Boolean literal (i.e., true or false). The different kinds of mutations that
can be applied are called mutation operators.

A primary challenge associated with mutation analysis is its considerable computational
cost. The process could involve running a test suite possibly hundreds of times, depending
on the number of mutants that are generated. Significant scholarly effort has been devoted
to reducing the cost of mutation analysis [54, 121, 131, 132, 155, 162]. A detailed review of
these works may be found in §6.1.2.2.

There have been few efforts to apply mutation analysis in an educational setting [1, 61, 152].
Studies have generally found it to be a much stronger method of test evaluation, but one
that exacts an intolerable computational cost.

Other work has attempted to judge test suite quality along axes other than defect-detection
and positive verification capabilities. Bowes et al. worked with industry partners and com-
piled a core list of testing principles [25], e.g., the requirement for a test to have a single point
of failure. They also discuss possible methods for quantifying adherence to these principles
for the purpose of assessing test quality.

2.3.3 Software Testing in the Undergraduate CS Curriculum

There have been significant efforts to integrate software testing into all or parts of the
undergraduate Computer Science curriculum [43, 58, 95, 154, 159]. Unfortunately, most
prior work in this area tends to focus on novice programmers working on small projects,
where the benefits of testing are not readily apparent [11], and on “after-the-fact” feedback
that focusses on assessing test quality but mostly ignores the testing process [1, 59, 78].

Many have argued against the notion of treating software testing as an isolated topic in
the CS curriculum [43, 57, 95]. Jones calls for a holistic inclusion of software testing in
the curriculum [95], stating that students absorb testing concepts more readily when they
are presented in small doses. Echoing this recommendation, Desai notes that regular, re-
inforced learning of testing might be better than only an introduction to it at the start of
the semester [57]. Christensen argues further that “Systematic testing is not a goal in itself.
Reliable software is the goal” [43]. He argues that software engineering education consists
of “core knowledge” (e.g., programming), and “topics” (e.g., concurrency), and argues that
systematic software testing, though generally treated as an independent topic, should be
treated as “core knowledge” in the curriculum.

The benefits of testing are often not readily apparent to students [11]. Buffardi & Edwards
suggest that the frequent conflation of testing and debugging might contribute to students’
view that testing is a process for reactively fixing faults, rather than for proactively avoiding

2.3. Software Testing 15

them [35]. Spacco & Pugh argue that requiring students to submit software tests along
with their solutions could be counter-productive [158]. For example, in their study, it led
students to produce tests toward the end of their project lifecycles, only to fulfil what they
perceived as an arbitrary requirement. There is a need for pedagogical methods that make
clear to students the value added by software testing. Aniche et al. have made strides in
this regard by appealing to authenticity: in their dedicated software testing course at the
Delft University of Technology [5], industry experts talk to students about the “real-world”
importance of testing and their experiences with it. Other educators have led students in
studying high profile software faults—like those connected to the 2009 and 2019 Boeing 737
plane crashes—and how or if software testing techniques might have avoided them.

The automated assessment tool Web-CAT [58, 60] has been used extensively to include
testing in the curriculum [136] by requiring that students submit software tests along with
their solutions. Students are rewarded or penalised based on the strength of their tests,
using metrics such as code coverage. Edwards argued that an emphasis on software testing
would help CS students to develop strong comprehension, analysis, and hypothesis-testing
skills [59]. It would also lead novice programmers away from trial-and-error (or “impasses
and local fixes” [164]) to arrive at correct solutions. Web-CAT’s submission model allows
students to continue making submissions until they arrive at a working solution, and allows
instructors to reveal or withhold hints based on the thoroughness of the student’s own
software testing. This encourages students to conduct their own testing before using an
instructor-provided oracle of test cases to reveal faults. A pilot study showed that, when
students were encouraged to practise testing in this way, they produced code with fewer
defects per source line of code. Since these effects were observed in an upper-level CS
course, Web-CAT has been used throughout the CS curriculum at Virginia Tech [61, 62].
Web-CAT’s model of multiple submissions enforces that students include criterion-adequate
test suites with each submission.

However, this model has two limitations. First, the test adequacy criteria currently used
by Web-CAT are code coverage-based; the tests submitted by students might only serve
to fulfil the criterion used, without actually checking the solution code it accompanies. In
theory, this would allow a student to write a test that invokes most of the codebase, e.g.,
by using a battery of inputs but not making assertions about their expected outputs. This
is possible because of the weak nature of coverage-based adequacy criteria (see §2.3.2).
Second, submission-level data gives only a rough idea of the evolution of project’s tests,
since submissions might be few and far between. More granular data is required to make an
accurate determination of the student’s adherence to incremental software testing. Spacco
& Pugh [158] and Baumstark & Orsega [13] have made progress in this regard by examining
students’ version control histories for evidence of iterative or test-driven development. In
the next chapter, I describe software developed at Virginia Tech to collect such data about
students’ software development practices, and in Chapter 5 I describe how we used it to
measure adherence to incremental testing.

16 Chapter 2. Literature Review

2.4 The Academia–Industry Gap

Numerous researchers have studied scope and possible causes of a perceived “gap” between
what students learn during an undergraduate CS degree and what is expected of them
in industry (e.g., [16, 17, 42, 110, 141, 142, 163]). Researchers have found that novices
struggle with non-technical and collaborative aspects of software engineering [16], testing
and debugging [42, 137], and tools for modern software engineering [142]. Others have
investigated this from the lens of students’ objectives for obtaining a computer science degree
and faculties’ perspectives on the purpose of the degree [110, 163].

An early investigation into this gap (as it relates to software engineering) was conducted by
Lethbridge in 1998 [110]. Reporting on a survey of 181 software practitioners, Lethbridge
investigated knowledge gained through education, current knowledge, and the importance of
various topics. Initially, Lethbridge measured importance as an average of the usefulness of
a topic’s details and the amount of influence that the topic had on the respondent’s career
or life. Additionally, he considered the positive difference between current knowledge and
knowledge gained through education to be a measure of on-the-job knowledge change. If a
topic was not learned during education, but the practitioner was forced to learn it during
employment (i.e., on-the-job knowledge change was high), this suggests that forced learning
took place, and might suggest that the topic is of high importance. Results indicated that—
on a list of 75 topics ordered by the mean amount of forced learning—the topics Testing,
verification, and quality assurance and Project management placed 4th and 5th, respectively.

More recent gaps in new hires’ testing and project management abilities have also been fre-
quently reported. This is perhaps not surprising when one considers the numerous challenges
associated with the pedagogy of software testing (see §2.3). Radermacher reports that hiring
managers have lamented new engineers’ lack of software testing ability and their inability to
estimate task size and the time required to complete tasks [142]. Unfortunately, in addition
to presenting difficulties for newly hired software engineers, these skill deficiencies may be
influencing hiring practices and decisions [137, 141].

Begel & Simon have reported new hires’ difficulties with non-technical aspects of software
engineering [16]. They conducted a case study during which they shadowed eight new soft-
ware developers at Microsoft during their first six months on the job. They found that
students struggled with inter-disciplinary teamwork and knowing when to ask for help.

In a 2020 survey of CS faculty, Valstar et al. explored faculties’ perspectives on the academia–
industry skills gap and the role of an undergraduate CS degree. They report that a possible
reason for the skills gap is the lack of authenticity of undergraduate project experiences [163],
which results in students graduating without appropriate project experience. This is a per-
sistent problem because industry practices change much faster than pedagogy [16], and
faculty tend to be wary of overtaxing students or course staff with elaborate project experi-
ences [163]. Further, some faculty confided that they had limited industry experience, and
that their ideas of industrial software engineering may not align completely with reality, or

2.4. The Academia–Industry Gap 17

may have become outdated.

In this dissertation, I propose methods to mitigate the issues described above that relate
to technical software development skills. In particular, I explore ways to improve the way
we impart time management and software testing skills during a CS education, by enabling
formative feedback mechanisms that help students adhere to good practices as they work
on assigned projects. The primary hypothesis is that good software process leads to good
software outcomes, and that formative feedback about this process can help to improve it.

Chapter 3

Data Collection Infrastructure:
DevEventTracker

3.1 Description of Collected Data

In this section I describe the data collected by DevEventTracker, an Eclipse plugin built on
Hackystat [94]. To provide the reader with context for the rest of this dissertation, I briefly
describe all aspects of the system. However, my contributions to the DevEventTracker
codebase are a portion of a larger effort. See §3.3 for a listing of my contributions.

At Virginia Tech, students use a custom Eclipse plugin to make submissions to Web-CAT and
to download starter projects provided by the instructor. We added functionality to the plugin
that continuously collects data from (consenting) students’ IDEs, not limited by when they
make submissions. This continuous data-stream enables us to develop deeper insights about a
typical student’s programming process. DevEventTracker collects timestamped development
events as well as automated snapshots of the project using the Git version control system.
Data collected by DevEventTracker are described in detail below (key events are described
in Table 3.1).

Edit events. DevEventTracker collects Edit events in real time as a student programs. An
Edit event is recorded each time a student saves their work. For each event, some meta-data
is included. Each event is accompanied by the current size of the edited source file, in terms
of the number of characters, statements, and methods. We also determine if the edit was
made to solution code or test code, using a number of static analysis heuristics. For example,
a source file is identified as a test file if it contains a Java class whose name ends in Test.
This naming scheme is enforced by Web-CAT to enable identification of student-written
tests, and is therefore a reliable heuristic for our context. For more general cases, a file is
deemed a test file if it contains test methods which can be found by their method signatures,
the @Test JUnit annotation, or the fact that they contain JUnit assertions.

Launch events. Software testing typically involves executions of automated tests, or in-
teractive launches of a program followed by manual examination of its output or resulting
program state. DevEventTracker monitors Launches within Eclipse, collecting and record-
ing meta-data about each launch. It records the type of the Launch (execution of test cases
vs. interactive execution of the program); whether the Launch terminated normally or with

18

3.1. Description of Collected Data 19

Table 3.1: Key event types collected by DevEventTracker, the actions that trigger them,
and the accompanying meta-data.

Event Type Triggering Action Meta-data Included

Edit events Save a file in the IDE File size (in characters,
statements, and methods)

On test code? (Yes | No)

Any program execution (normal,
test, or debug)

Termination state (Normal |
Error)

Launch events Standard output

Execute tests in the IDE Test names

Test outcomes
(Pass | Fail | Error)

Debugger events Set/unset debugger breakpoints Line number + file

Step into/step over Program constructs being
stepped into or over

Program snapshots Save a file in the IDE Git commit

an error code; and for unit test executions, the names of the tests that were run and their
outcomes (passed, failed, or errored out). Finally, Launch events include any printed output
that might have been sent to stdout during execution, truncated to 80 characters per line
and 500 lines to avoid transmission of giant events.

The sequence of tests passing or failing over the course of development provides a represen-
tation for how testing aids the successful implementation of a project. This information can
be provided to students, who will benefit from an external view of how regular testing would
help them successfully complete projects.

Debugger events. DevEventTracker collects data about a student’s use of the Eclipse
debugger. It records when breakpoints are added or removed, when a debug session is
started, a student’s actions during that session (step into, step over, etc.), and when the
debugger session is terminated.

Git snapshots. Each student’s project has a Git repository associated with it, with the

20 Chapter 3. Data Collection Infrastructure: DevEventTracker

remote repository residing on the Web-CAT server. When a student saves a file, a Git
snapshot is automatically captured and sent to the server. This provides us with the ability
to make further fine-grained observations about the changes to a project over time, allowing
static or dynamic analyses on versions of the source code at arbitrary points in time. Git
repositories are maintained separately from the project’s working directory, so as to not
hinder the student’s ability to use Git version control as part of their own development
process.

The fact that Git snapshots are saved automatically and invisibly mitigates some of the
“perils” of software repository mining [22]. That is, project histories cannot be “re-written”
using git rebase or amend commands.

Work sessions. We defined work sessions based on DevEventTracker data. Work sessions
are sequences of activity that are delimited by one hour or more of inactivity. In this
context, ‘activity’ refers to automatically captured events, and they are grouped based on
their timestamps. Grouping DevEventTracker into work sessions helps give a better idea of
the actual time spent on task (i.e., actively working on the project).

3.2 DevEventTracker in Virginia Tech Coursework

DevEventTracker has been used in numerous CS courses at Virginia Tech, and has collected
millions of development events from thousands of students over several semesters. Data
collected by DevEventTracker is fine-grained—using the spectrum of granularity from Ihan-
tola et al. [84], it falls between keystroke-level and line-level edit events. This has enabled
the quantitative measurements of software development processes described in subsequent
sections.

The experiments described in this dissertation are based on the work of students in the Data
Structures & Algorithms course at Virginia Tech (CS 3114), which I will refer to hereafter
as CS3. For the semesters in which we collected data, the class syllabus required students
to program all of their projects in the Eclipse IDE, using the Web-CAT submission plug-in
to submit assignments and download starter code. This has been the standard setup for
many programming courses at Virginia Tech for several years. The only difference for this
research was that the plugin was augmented with data-collection functionality, and students
were prompted for consent when they first installed it.

The act of downloading starter code or making a submission creates a link between Web-CAT
and a specific project in a student’s Eclipse workspace, and this allows Web-CAT to begin
receiving data for that project. However, we did not wait until the first submission to begin
receiving data. To ensure that we received data from the moment work began on a project,
we provided starter code for each project. The starter file did not provide students with any
scaffolding in the form of method or class stubs. It only contained a driver method that
printed the text ‘Hello world!’, used to invoke the project. This ensured that we obtained

3.3. My Contributions to DevEventTracker 21

information about how students approached assigned projects, from start to finish.

3.3 My Contributions to DevEventTracker

The following functionality existed before I started working on DevEventTracker:

• Capturing Edit, Debug, and Build events
• Capturing Git snapshots
• Other plugin functionality (submitting assignments to Web-CAT, downloading starter

projects, etc.)

Implementation details are described in Joseph Luke’s master’s thesis [116].

I contributed the following:

• Capturing launch and termination events, including detailed information about printed
output, test cases, and their outcomes

• A mechanism for maintaining Git histories that did not hinder students who wished
to use Git as part of their independent work flow

• Data reporting was batched and moved to background tasks, so that students would
not experience slowdowns while using Eclipse when the Web-CAT server was slow to
respond

• Optimised and secured offline storage of data when server connections were unavailable
• Various minor modifications to peripheral functionality

The source code can be found at the plugin’s GitHub repository1, on the DevEventTracker-
Addition branch. My contributions may be found starting on September 5, 2015.

1http://github.com/web-cat/eclipse-plugins-importer-exporter/tree/
DevEventTrackerAddition

http://github.com/web-cat/eclipse-plugins-importer-exporter/tree/DevEventTrackerAddition
http://github.com/web-cat/eclipse-plugins-importer-exporter/tree/DevEventTrackerAddition

Chapter 4

Time Management in Intermediate
Programming Projects

In a previous study, Edwards et al. [62] provided convincing evidence of the expected effects
of procrastination on task outcomes ([161])—it led to lower project scores, and increased rates
of late submissions. They analysed five years of submissions from the first three programming
courses at Virginia Tech. Assignment results were partitioned into two groups: scores above
80% (A/B), and scores below 80% (C/D/F). Students who consistently received either A/B
scores or C/D/F scores were excluded from the study, leaving students with projects with
both outcomes. Analysis yielded important results. When students received A/B scores,
they started earlier and finished earlier than when the same students received C/D/F scores.
After normalizing for program length, there was no significant difference in the amount of
time spent on each project stemming from starting earlier vs. later.

These findings led to another study [120] that administered three different types of interven-
tions to prevent procrastination, driven in part by Steel’s temporal motivation theory [161].
The interventions were short reflection essays after each project, a requirement to set and
track scheduling information and progress throughout the assignment, and e-mail alerts re-
garding progress toward completion. Only e-mail alerts were associated with significantly
reduced rates of late program submissions and significantly increased rates of early program
submissions. The promise shown by this method was credited to the fact that the emails
were relevant to individual students, generated using data from that student’s latest submis-
sion to Web-CAT. These studies provided encouraging evidence that: 1) Procrastination has
a causal effect on lower project scores, and 2) Regular, automatic, and adaptive feedback
helps reduce procrastination, and might help change other programming practices.

The studies above, while providing valuable evidence about the effects of various time man-
agement strategies, were carried out using submission-level data. With data from DevEvent-
Tracker in hand, we are in a position to build upon these results using more fine-grained
analysis of development behaviours to determine effective and ineffective time management
behaviours. In this chapter, I describe the context in which I conducted experiments (§4.1.2);
I define my research questions (§4.1.1); and I describe metrics developed to help answer them
(§4.2). Then I describe my analyses and results (§4.3–§4.5) and close with a discussion of
results and their implications (§4.6).

Future work can build upon these results to design interventions that are grounded in both

22

4.1. Research Method 23

empiricism and theory, i.e., by targeting the specific self-regulatory software development
habits that are associated with improved project outcomes.

This chapter is based on two research papers that were published at the ITiCSE ([98]) and
ICER ([99]) conferences in 2017. I was the main contributor on both papers.

4.1 Research Method

4.1.1 Research Questions

Students procrastinate for a variety of reasons (§2.1), and it would be a worthwhile en-
deavour to determine common reasons for procrastination on software development projects.
However, to enable formative feedback, it is important to first identify when undesirable
behaviours (like procrastination) are actually taking place. Therefore, we focused on quanti-
fying the extent to which procrastination manifests, and on determining how this relates with
project outcomes. We measure procrastination on various (observable) aspects of software
development—writing and executing solution code and test code.

We are driven by the following research questions.

RQ1: How accurate are our measurements of students’ development habits?
Before making inferences based on our measurements of students’ time management habits,
it is necessary to evaluate the accuracy with which we quantified them. We qualitatively
evaluated our metrics by triangulating our measurements with data from interviews with
students about their development habits, and manual inspection of automatically collected
Git snapshots (§4.3).

RQ2: When do students tend to work on a project, relative to its deadline?
Before attempting to change the behaviours of a population, it is necessary to understand
the population’s current behaviours. We use descriptive statistics to characterise how and
when students tend to go about working on their software projects (§4.4).

RQ3: How are time management behaviours related to project outcomes? Be-
fore designing interventions or instructional improvements based on student development
habits, it is important to empirically determine their effectiveness or ineffectiveness. We use
quantitative analyses to characterise the relationship between students’ incremental software
development habits and their project outcomes (as they pertain to time management) (§4.5).

4.1.2 Study Context

The data analysed in this chapter were collected from two sections of the CS3 course at
Virginia Tech. Students developed their projects in Java using the Eclipse IDE, and were

24 Chapter 4. Time Management in Intermediate Programming Projects

given 3–4 weeks to complete each one. Projects were relatively large, with a median 892
lines of solution code and test code. We include data from all completed project submissions,
including data from students who might have withdrawn from the course after completing
a project. On the first day of class, we collected informed consent from students. Data
from students who did not give consent (less than 4% of the total) were excluded from the
analysis. The consent form can be found in Appendix A.

Processing and filtering. Some preprocessing and filtering were necessary to only include
data generated while students were actually working toward project completion. During
preliminary interviews with students, we found that some students tend to open Eclipse and
make changes to their projects several days after final work had been submitted and graded.
While there might be educational value to such activities, they are not considered part of the
development of a student’s final solution. We excluded these edits from our analyses. We
also excluded projects that were worked on for less than 1 hour (that is, projects started by
students but with no meaningful attempt to finish). After filtering, the dataset consists of
the work of 162 students working on 545 programming projects turned in to four assignments.
Not every student completed every assignment, since some students dropped the course, and
others may have missed an assignment for personal reasons.

4.2 Proposed Metrics of Time Management

4.2.1 Working Early and Often

Before measuring how early and often students work on projects, we must define what it
means to “work” on a software project. Software development involves a mixture of cognitive
tasks (e.g., designing a solution) and physical actions (e.g., typing code). For example, a
student might work on a project by designing a solution on a whiteboard or discussing the
problem with peers. To observe all aspects of development, one would need to observe the
student in a controlled lab environment. However, it is infeasible to observe hundreds of
students in this way. Therefore, the students we study work in uncontrolled conditions, e.g.,
in their homes or lab spaces. The only actions we can observe at this scale are those that are
captured by DevEventTracker. Therefore, we say that a student is working on the project
when they are actively taking actions in the IDE. It is important to note that this is an
approximation of the actual time the student truly spends working on the project.

With this definition in mind, we can develop measures for when students tend to work on
assigned projects. We can consider the student’s work as a collection of uniformly-sized
edits.1 Each edit is represented as a timestamp—the time at which it occurred. The mean

1In practice, Edit Events as collected by DevEventTracker are typically not uniformly-sized. For ease of
conceptualisation, we “expand” each event into a series of single-character Edit events. This is mathemati-
cally equivalent to weighting an edit event by its size.

4.2. Proposed Metrics of Time Management 25

of this distribution of edit times gives us a sense of when the student tended to work on the
project. If we represent each edit as the number of days before the deadline it took place,
then the mean tells us how many days before the deadline the student tended to work on
the project. Mathematically, if E is the set of all edits, then:

earlyOften(E) =
∑

e∈E daysToDeadline(e)

|E|
(4.1)

Therefore, if a student tends to work several days or weeks before the deadline, this metric
will have a larger value; and if a student tends to procrastinate until the project deadline is
close, this metric will have a smaller value (or possibly negative, if work was done after the
project deadline). We use this metric as a quantitative assessment of time management on
a software project, and a larger value indicates less procrastination.

For example, consider Figure 4.1, which shows how a (real) student distributed their work
across the days on which they worked on a given project. This student’s Early/Often “score”
is 6, because their mean edit time was September 8, which is 6 days before the project dead-
line on September 14. A sizeable portion of work was done within the period of September
1 to September 8, and daily work was much higher during the last three days of the project
lifecycle. This leads the mean edit time to be roughly in the middle of those time periods.
The student’s score is therefore sensitive to not only the days on which was done, but also
to the amount of work that was done on those days.

Au
g
28

Au
g
29

Au
g
30

Au
g
31

Se
p
 1

Se
p
 2

Se
p
 3

Se
p
 4

Se
p
 5

Se
p
 6

Se
p
 7

Se
p
 8

Se
p
 9

Se
p
10

Se
p
11

Se
p
12

Se
p
13

Se
p
14

Date

0

500

1000

1500

2000

2500

Lin
es
 e
di
te
d

Figure 4.1: Distribution of work from a student on the first CS3 project in the Fall 2018
semester. The red vertical line on September 14 indicates the project deadline. The black
vertical line on September 8 indicates the student’s mean edit time for this project.

26 Chapter 4. Time Management in Intermediate Programming Projects

4.2.2 Test Writing

Using Equation 4.1, we can also measure how early and often students conduct software
testing by examining when students tend to write and run their software tests. One can
measure this by implementing a modified Early/Often Index, applied specifically to Edit
events made to test code, or to Launch events involving test cases. Going further, we can
measure the difference between the mean time of solution edits and the mean time of test
edits. A small number indicates that the central tendency for test editing somewhat closely
follows the central tendency for solution editing, while a larger value indicates that the
majority of test writing occurred after the bulk of the solution code was written. If SE ⊂ E
is the set of all solution edits, and TE ⊂ E is the set of all test edits, then this can be
measured as:

testWriting = earlyOften(SE)− earlyOften(TE) (4.2)

This gives a coarse-grained idea of when students tended to conduct their software testing.
A more detailed analysis of how that testing is interspersed with solution implementation is
presented in Chapter 5.

4.2.3 Incremental Program Executions

Another key notion of working incrementally is self-checking one’s work periodically, as each
small chunk nears completion. This might be done by writing and running software tests
as one develops, for students who practice incremental testing. Alternatively, it might also
involve interactively running a program to confirm its behaviour manually. While proponents
of test-driven development argue persuasively that interactive execution is not as effective for
checking behaviours, in designing our incremental development metrics we chose to include
both possibilities.

The DevEventTracker plugin tracks both interactive program launches and software test
executions, and also records the pass/fail outcomes of software tests, providing all of this
information in the logged data for analysis. Using these data, we defined the Incremental
Checking metric as a measure of how often a student self-checks their code by launching
it. Here, “launches” are defined as either regular program executions or test executions.
First, we represent each uniformly-sized program edit as the number of hours until the next
program execution takes place. Then we find the mean of this distribution. So, if E is the
set of all single-character edits:

programExecutions =
∑

e∈E hoursToNextLaunch(e)

|E|
(4.3)

One could apply Equation 4.3 to approximate the students’ reliance on their own software

4.3. Research Question 1 27

tests for program checking. A smaller result would indicate a higher reliance on
program or test executions. Equation 4.3 could also be applied to different combinations
of solution or test edits, and program or test executions.

In the next section, I evaluate the signal obtained from these measurements in terms of
its accuracy (measured qualitatively) and their relationships with various project outcomes
(measured quantitatively).

4.3 Research Question 1

RQ1: How accurate are our measures of students’ development habits?

Quantifying software development habits is a non-trivial problem. A primary concern is
that there is no readily available “ground truth” against which one can test such a metric.
We qualitatively evaluated our measurements by interviewing students and by manually
inspecting the snapshot histories captured by DevEventTracker. This work was published
and presented at the 2017 conference on Innovation and Technology in Computer Science
Education (ITiCSE) [98].

4.3.1 Interviews With Students

In order to evaluate the validity of our measurements, we interviewed students to gather their
opinions about their software development habits. We implemented Equations (4.1)–(4.3),
and used them to calculate scores for students on the projects they had worked on so far. Ten
students representing a range of scores were selected and invited to participate in interview
sessions. Of those ten, seven agreed to participate.

We followed a semi-structured interview script (see Appendix A). We asked students in-depth
questions about their development habits, focusing on when they tended to work on the
project, and when and how they went about testing their programs (e.g., using JUnit tests,
manually executing and checking the program, or instructor-written tests). The interviewers
were not involved in grading the students in any way, to avoid the possibility of students
believing that their answers would affect their course grades. At the end of the interview,
students were shown our assessment of their development practice, and were asked what they
thought about its accuracy and potential utility in helping them to change their software
development habits in the future.

Six of the seven students found our assessment to be accurate. The descriptions that follow
use feminine pronouns for students 1–7 (S1–S7), regardless of the gender of the participant.

• S1 stated that she found the model’s assessment to be accurate.

28 Chapter 4. Time Management in Intermediate Programming Projects

• S2 mentioned that she had been ill and started Project 1 late and worked past the
deadline. When the assessment was revealed, we saw that our model had been able to
detect this and had given her a low Early/Often score. When the interviewee saw the
scores, she agreed with the overall assessment.

• S3 acknowledged that she and her partner had gotten a late start on Project 1, but
that she had worked alone on Project 2 and started relatively earlier. Our model was
able to detect this—the interviewee was given a low Early/Often score for one project,
and a higher score for the next.
The student also mentioned that she “didn’t write the best tests during the beginning
of [Project 1]”; she relied mostly on simple diagnostic print statements for testing and
“wrote tests at the end”. This is in contrast to Project 2, where she “[brought] in
formal testing”, since she now had some experience with it. The model’s assessment
recognized this difference—the student received a poor score for Test Writing (Equation
4.2) on the first project, but a much better score for the second project.

• S4 received a much lower score for Test Writing on Project 2 than she did on Project 1.
Project 2 was almost universally cited as the hardest project that the students worked
on this semester (at the time of the focus group, they were starting work on Project
4). The student mentioned that, because the project was so hard, she found herself
getting caught up in trying to implement it correctly and ended up writing “more code
before testing” than she did on Project 1. This was reflected in our assessment. Also
seen was a lower score for Program Executions, which intuitively makes sense—if she
was not writing tests until the end, she was not running them, either. Curiously, on a
hard project where testing would be most useful, the student brushed it aside in favour
of going straight ahead with the implementation.

• S5 thought the model was mostly accurate. Her answers to questions about writing
tests did not agree with her failing score for Incremental Test Writing on Project 2.
After initially expressing surprise, she backtracked on what she had said earlier by
saying that the project involved a lot of recursion, and she tends to test recursive
algorithms using iterative print statements rather than formalized testing strategies.
This was the only occurrence of a student volunteering new information to explain a
score provided by our metric.

• S6 was the only student who did not find the metrics accurate. The interview revealed
disconnects between our assessment and the student’s description of her programming
practice. However, further investigation revealed transient issues with this student’s
data reaching the server, which would lead to inaccuracies during metric calculation.

• S7 received high scores on all metrics, except Test Writing for Project 2. She expressed
surprise at her low score for this. The remaining scores were in keeping with her
description of her programming practices.

4.3. Research Question 1 29

4.3.2 Manual Inspection of Snapshot Histories

While our focus group provided student validation of the measures, we also wanted to di-
rectly investigate the edits students were performing in their projects. A second type of
evaluation was carried out by manually inspecting the Git repositories maintained by De-
vEventTracker. Twelve projects were randomly sampled from the pool of submissions. The
inspection focused on checking whether our assessment of incremental development matched
the “actual programming process” of the student (as seen in the Git revision histories).

Working early and often. Eight of the twelve projects had low scores (< 80 on a normal-
ized 100-point scale) for working early and often. Stepping through commit histories showed
that seven of these projects had multiple breaks of several days where no work was done,
leading to the project being completed within the last few days before the due date. The
remaining project with a low Early/Often score was worked on the day before the project
deadline, in a marathon session taking up most of the day. One out of the remaining four
projects received a surprisingly high Early/Often score, since the project was started within
the last two days. However, it was worked on steadily without breaks, possibly contributing
to its high Early/Often score.

Program executions. Most projects received middling or good scores (> 80 on a nor-
malised 100-point scale) for these metrics, but one project received a low score. This project
was not launched for the first 10 days in its lifecycle, and launches took place after large
amounts of code were written. To evaluate the metrics, we examined a combination of raw
DevEvent data and Git snapshots. For two consecutive Launch events, we stepped through
revisions for commits made between the two launches. Doing this for several random pairs of
launches gives an idea of the usual amount of work done by that student before the program
is launched.

Test writing. Five projects received failing scores (< 70) for test writing. Inspecting
the file changes over time showed that a majority of testing was done on the last few days
of work. Three projects received middling scores (70 to 90) for this metric. Inspection of
their commit histories showed that regular testing began after a few days of regular work on
the project, but was fairly regular for the rest of the project. The remaining four projects
received high scores (≥ 90) for this metric. Their commit histories showed that testing began
on the first day of work and continued consistently until the end of the project. Also clear
was the fact that test classes were usually created and edited within a few minutes of their
corresponding solution class.

This method of validation, carried out on a separate set of projects by manually inspecting
the code edits of students through Git snapshots, produced a similar result as the interviews:
our metrics do track the incremental development behaviours they were designed to capture,
although there is certainly room for improvement of accuracy.

30 Chapter 4. Time Management in Intermediate Programming Projects

4.4 Research Question 2

RQ2: When do students tend to work on software projects, relative to their deadlines?

Changing aspects of a population’s behaviour necessitates knowing the current behaviours
of that population. In addressing this question, I establish what the software development
habits of the current population of CS3 students look like. The work for this and the
next research question were published and presented at the 2017 International Computing
Education Research (ICER) conference [99].

Students tend to work on projects less than 10 days before the deadline, even
though they are given nearly 30 days to work on projects (see Figure 4.2). Figure 4.2a
depicts the distribution of students’ mean edit times for solution code (µ = 8.48, σ = 6.44)
and test code (µ = 7.78, σ = 7.04). Test code tends to be edited slightly closer to the project
deadline, but this difference seems negligible. We can explore this further by comparing the
actual distributions of work in Figure 4.2b. The horizontal axes represent days in the project
timeline in terms of the number of days before the deadline, and the vertical axes represent
the work done by all students on the given work day. Blue bars represent edits made to
solution code and orange bars represent edits made to test code. Naturally, each work
day involves more solution code editing than test code editing. To facilitate comparisons
between their edit times, Figure 4.2b depicts standardised distributions: the bars represent
the proportion of the total amount of (solution or test) code editing that took place on that
day. Like Figure 4.2a, Figure 4.2b also suggests that test code and solution code tended to be
edited on the same days, a trend which is more or less consistent across all four assignments.

Using Equation 4.2, we confirmed that the “edit day” difference between solution code editing
and test code editing was insignificant (µ = 0.68, σ = 2.96). Indeed, analysis revealed a high
correlation between the two distributions (R = 0.91). Recall that this is at the “day”
level of granularity—a more detailed analysis of students’ incremental test writing habits
can be found in Chapter 5. Similar distributions were observed for program executions
(µ = 8.86, σ = 8.82) and test executions (µ = 7.09, σ = 7.10).

Experience led us to expect that students would tend to use interactive program executions
(as opposed to test executions) to check their work. However, we were surprised to find
that students used software test executions much more commonly than interactive program
executions. Test executions were significantly more frequent than normal solution executions
(t = 13.977, p < 0.0001, test = 229.23, normal = 55.66). 83% of projects had more test
executions than solution executions, and test executions made up approximately 80% of
all executions across projects. Using Equation 4.3 with respect to solution code edits and
any kind of program launch, we found that, on average, 1.37 hours (σ = 3.31) passed
between edits and executions (largely dominated by test executions due to their much higher
frequency).

4.4. Research Question 2 31

−3−2−101234567891011121314151617181920212223242526272829
Mean Edit Day

(days before the deadline)

Sol tion
Code

Test
Code

(a) On average, students tend to write code less than 10 days before the project deadline. Note
that the horizontal axis decreases from left to right, to facilitate comparison with Figure 4.2b.

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4
0.00

0.05

0.10

0.15

0.20

0.25

Pr
op
or
tio

n
of
 to

ta
l e
di
ts

(fr
om

 a
ll
st
ud

en
ts
)

Project 1
Solution Code
Test Code

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4
0.00

0.05

0.10

0.15

0.20

0.25

Pr
op
or
tio

n
of
 to

ta
l e
di
ts

(fr
om

 a
ll
st
ud

en
ts
)

Project 2

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4
0.00

0.05

0.10

0.15

0.20

0.25

Pr
op
or
tio

n
of
 to

ta
l e
di
ts

(fr
om

 a
ll
st
ud

en
ts
)

Project 3

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4
Edit Day

(days before the deadline)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op
or
tio

n
of
 to

ta
l e
di
ts

(fr
om

 a
ll
st
ud

en
ts
)

Project 4

(b) The proportion of work done (edits made) by students on each day of the project timeline, from
the start of the timeline to the last acceptable late day.

Figure 4.2: Aggregated and actual distribution of work days. Edit Day 0 is the due date.

32 Chapter 4. Time Management in Intermediate Programming Projects

4.5 Research Question 3

RQ3: How are time management behaviours related to project outcomes?

In previous sections, I defined measures of when different programming behaviours were
undertaken (§4.2), evaluated them qualitatively (§4.3), and examined the behaviour of our
student sample using descriptive statistics (§4.4). In this section, I describe quantitative
analyses we conducted to learn the relationships between measured behaviours and the
following project outcomes:

• Project correctness: The percentage of instructor-written reference tests passed by
a student-written solution. This excludes point bonuses or penalties due to early or
late submissions, and points gained for the strength of the student’s test suite.

• Finish time: The time when the project was completed (i.e., the timestamp of the
last event transmitted before the project was submitted for grading).

• Time spent: The amount of time spent on the project. To measure this, we used the
total length of all work sessions (as defined in §3.1). This ensured that idle time spent
(i.e., not interacting with the IDE) did not inflate time on task estimates.

Results for all statistical tests presented herein use α = 0.05 to determine significance.

We do not make inferences by comparing the behaviours of different students with each
other. Different student’s behaviours and outcomes could be symptoms of some other un-
known factor (e.g., differing course loads or prior experience), making such inferences weaker.
To test for relationships with the outcome variables, we used a linear mixed-effects AN-
COVA [12]. Students were subjects, and assignments served as repeated measures (with
unequal variances), allowing within-subjects comparisons in the ANCOVA. In other words,
each student’s software development habits were measured repeatedly (assignments), and
differences in outcomes for the same student were analysed.

4.5.1 Working Early and Often

Project correctness. We found that solution mean edit times were significantly related
to project correctness (F = 16.2, p < 0.0001). In other words, students who worked on
their solution earlier were more likely to produce more correct programs. This is consistent
with the earlier result from [62], but now using actual development log data instead of just
submitted work.

We illustrate this relationship below. First, notice in Figure 4.3—which shows the distri-
bution of correctness scores—that there is a clear trough just under a perfect score, with
approximately half (47%) of the class scoring very close to perfect, and the remainder (53%)
scoring noticeably lower. By choosing a cutoff of 95%, we can partition the class into projects
that have successfully “solved” the behaviour required for an assignment, and those that have

4.5. Research Question 3 33

0.0 0.2 0.4 0.6 0.8 1.0
Project Correctness Score

0

50

100

150

200

250

Pr
oj
ec

ts
Distribution of correctness scores

Figure 4.3: The 95% correctness mark splits the class roughly into half.

imperfect solutions. As a result, we will examine differences in key metrics between projects
that achieve this threshold and those that do not. Figure 4.4 shows the distribution of solu-
tion mean edit times for projects with greater than 95% correctness scores versus those with
lower scores.

Note however, that Figure 4.4 includes all students, and is therefore affected by inherent
student traits, unlike our mixed-effect model. To address this, we consider the within-
subjects difference in Early/Often scores (edit mean time) between when students solved
the project (scored ≥ 95%) and when they didn’t. Students who consistently fell into
one of the groups—i.e., those that scored ≥ 95% on all assignments, and those that scored
< 95% on all assignments—are excluded, leaving behind 84 students, each of whom produced
submissions that appear in each group at least once. For each of these students, the average
Early/Often score for their “unsolved” projects is subtracted from their average Early/Often
score for their “solved” projects This gives us an idea of the typical difference between a
given student’s mean edit time between successful and unsuccessful project attempts.

The distribution of these differences is in Figure 4.5. The figure indicates that when students
successfully solved an assignment, they tended to work approximately 2 days earlier than
they did on other assignments that they did not successfully solve (median difference = 2.11
days). Note also that there are the exceptions to this trend: 19 students (22.62% of these
84) showed a negative difference in mean time between solved and unsolved projects, i.e.,
they worked later on solved projects than they did on unsolved ones.

Though §4.2.1 uses only the mean to characterise the distribution of a student’s work, we
can also use other measures of central tendency, like the median. However, the mean is more
sensitive to potential skew in the data, which can play an important role in cases where
procrastination leads to more work being done late in the lifecycle.

When both the solution edit mean and median times were considered, the median was not

34 Chapter 4. Time Management in Intermediate Programming Projects

< 0.95 >= 0.95
Project Correctness Score

0

5

10

15

20

Ea
rly

/O
fte

n
In
de
x

 (S
ol
ut
io
n
Co

de
)

Figure 4.4: Comparison of solution edit times between projects that correctly solved an
assignment, and those that did not.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
Within-subjects difference in edit mean time (in days before the deadline)

 between solved and unsolved submissions.

0

1

2

3

4

5

6

7

8

St
ud

en
ts

Figure 4.5: When students successfully solved projects, they worked approximately 2 days
earlier than they did when they were unable to solve projects.

4.5. Research Question 3 35

significant (F = 0.73, p = 0.39). However, the same ANCOVA indicated that the test edit
median time was also significantly related to project correctness (F = 10.0, p = 0.0018; the
mean was not significant: F = 0.06, p = 0.80). These differences were present even when
controlling for student variability using a within-subjects test, indicating that they are not
simply due to individual student traits.

−4 −2 0 2 4 6 8 10 12 14 16 18 20
Within-subjects difference in edit mean time (in da s before deadline)

 between on-time and late submissions.

0

2

4

6

8

10

12

St
ud

en
ts

Figure 4.6: Within-subjects difference between edit mean times between early and late
submissions.

Finish time. We used the number of hours before the deadline when the student’s final
work was submitted as a dependent variable in a mixed-effects ANCOVA. We found that
both solution mean edit times (F = 55.9, p < 0.0001) and solution median edit times (F =
28.7, p < 0.0001) were significantly related to finish time, with earlier early/often scores
corresponding to earlier finish times. This is as one would expect, since working earlier does
allow a greater opportunity to finish earlier. This is also similar to the results in [62], where
earlier submission times were associated with earlier completion times.

Figure 4.6 illustrates this relationship by showing the distribution of differences in Ear-
ly/Often index between projects that were completed on time and those that were completed
late. Like Figure 4.5, this figure only includes the 61 students who produced projects that
that were on time and projects that were late, and the differences depicted are within sub-
jects. The figure indicates that when students ended up submitting their projects on time
(i.e., before the deadline), they tended to work about 3 days earlier than when they submit-
ted their projects late (median difference = 3.09 days). Again there are the exceptions: 9
students (14.75% of these 61) worked later on the projects that they were able to submit on
time.

Total time spent. Using the number of hours spent as the dependent variable in the AN-
COVA, we found that only the test edit time median (F = 10.8, p = 0.001) was significantly

36 Chapter 4. Time Management in Intermediate Programming Projects

related to total time spent, with earlier edit times associated with slightly longer total time
spent.

To sum up, when projects had higher Early/Often scores (i.e, earlier solution edit mean
times), 1) they tended to be more correct, 2) they tended to be finished earlier, 3) with no
difference in the amount of time spent on the project. A similar repeated measures ANCOVA
revealed no evidence of a significant relationship between time spent and project correctness
(F = 1.9, p = 0.17).

4.5.2 Test Writing

As with the early/often means and medians, for incremental test writing we used the same
mixed model ANCOVA with assignments as repeated measures over students as subjects.
With the incremental test writing metric as a continuous independent variable, we found
no evidence for a relationship with project correctness (F = 2.54, p = 0.11), finish time
(F = 0.17, p = 0.68), or time spent (F = 0.29, p = 0.59). It appears that the median time of
test edits is more important than that test edits be “close” to solution edits, since test edit
median time is significantly associated with project correctness.

At the same time, the DevEventTracker data can be used to provide visual analysis of
a student’s programming process. Helping students to visualize their own programming
process and to compare that against their peers might encourage them to introspectively
consider where improvements could be made. This could provide useful feedback during
project life cycles. Figures 4.7, 4.8 and 4.9 show “skyline plots” of the programming process
for projects with varying levels of incremental test writing and procrastination. The plots
depict step-functions for the amount of test code and solution code written over time. The
width of each step is the length of the work session, and the height (from the x-axis) is the
amount of code written in each work session. Each work session is separated by at least 3
hours of inactivity.2 Therefore, work sessions that look as though they lasted multiple days
(particularly in Figures 4.7 and 4.8), appear because the student settled down to work on
the project multiple times, without stopping for a period of at least 3 hours.

The dashed vertical lines represent project milestone due dates (M1, M2, and M3). These
milestones are intermediate due dates, with minor grade penalties attached if a given mile-
stone’s requirements are not met by the due date. Typically, milestones are defined in terms
of some number of reference tests passed, and percentage of solution code lines covered by
student unit tests. Dashed vertical lines are also shown for (E), the “early bonus deadline”
(students who make their final submission by this deadline are given a bonus in their total
project score), and the actual project deadline (F).

2This is a larger threshold than the threshold of 1 hour used to calculate time spent on projects, which
results in more dense skyline plots that are harder to understand.

4.5. Research Question 3 37

Figure 4.7: An example of a project with unsatisfactory test writing—notice the spike in
the amount of test code written as the due date approaches. This project was in the 45th
percentile for Incremental Test Writing, and in the 49th percentile for the Early/Often Index.

Figure 4.8: An example of a project with an intermediate metric score for test writing, with
room for improvement. Notice the irregular bursts of test code writing, and that work started
after the first Milestone was due. This project was in the 64th percentile for Incremental
Test Writing, and in the 69th percentile for the Early/Often Index.

4.5.3 Program and Test Executions

When examining the relationships between the program executions and the identified out-
come variables, we found no evidence for a significant relationship with project correctness,
finish time, or time spent. We explored alternative measures, including mean and median
times for both interactive program launches and software test executions relative to the due
date, and also found no significant relationships.

38 Chapter 4. Time Management in Intermediate Programming Projects

Figure 4.9: An example of a project with model scores under the test writing metric—notice
how the test code and solution code follow similar patterns over time. This project was in
90+ percentile for both Incremental Test Writing and the Early/Often Index.

4.6 Discussion

If students are working on projects primarily during the last third of a 30 day timeline, do
they really need all 30 days? Figure 4.2 indicated that students tend to do their work within
the last 10 days of a typically 30-day project timeline. While it is possible that students do
not need 30 days to complete projects, we must consider the fact that students are putting
in roughly 35 hours of work on each project (see Figure 4.10). I believe that we should
encourage students to spread out these 35 hours of work. In other words, I think a 30
day timeline may still be appropriate, and we as educators should work to encourage more
productive usage of that timeline. This is particularly important since results presented
in §4.5 suggested that working early and often may lead to improved project correctness.

Why are earlier median test edit times associated with higher amounts of time spent on
projects? In §4.5, we found that when students had an earlier test edit median time (as
described in §4.2.1), they tended to spend more total time on the project. It is notable
that the median (not mean) was significant in this case, since the median is less sensitive to
skewing when there are outliers very early in the development process but more editing occurs
in a smaller time frame closer to the deadline. The median edit time marks the point at
which half of the edit activity has already been completed, regardless of its distribution over
time. This might mean that students who do a significant portion of the work earlier have
more opportunities to invest time on the project later. Or, instead, it may be that students
who start very early have to spend more time figuring out details that are only clarified in
the assignment specification for everyone else at a later date. e.g., due to frequently asked
questions on a class forum.

Why does performance on the Test Writing not reveal a significant relationship with project

4.6. Discussion 39

0 25 50 75 100 125 150 175
Total time spent (hours)

0

20

40

60

80

Pr
oj
ec

ts
Distribution of hours spent on the project

Figure 4.10: Students spent a median 34.45 hours on each project.

outcomes? The Test Writing metric (§4.2.2) measures the difference between the solution
edit mean time and the test edit mean time, in terms of days before the deadline. Scores
on this metric were not significantly associated with better or worse project outcomes. My
conjecture is that this metric is too coarse to paint an accurate picture of a student’s test
writing habits. The metric might be missing students’ cycles of development and testing,
which could be much shorter than complete days. It is also possible that the “day distance”
between development and test writing activities does not explain variance in project cor-
rectness because students might be testing using other methods, e.g., manual executions or
submissions to Web-CAT. However, in §4.5 we found that the mean time between code-
writing and program executions was not a significant predictor of project outcomes, either.
I explore students’ test writing activities at a more fine-grained level in Chapter 5.

How might we use these metrics to operationalise feedback about incremental development
and time management? Using the metrics described above to change students’ development
habits requires the development of interventions or feedback mechanisms based on them.
For example, a predictive model based on these metrics could aid in early identification of a
procrastinating student during a project lifecycle.

As a first step, we conducted a response surface using the project correctness score as the
continuous dependent variable to be predicted. Because both solution edit mean times
and test edit median times were related to project performance, we used them as continuous
independent variables. This model was statistically significantly related to correctness scores.
We used its prediction equation as the input to generate a partition model to classify students’
solutions as either “solved” (in the group scoring greater than 95% correctness) or not. This
predictive model was 69% accurate at classifying the projects in our sample (where SE

40 Chapter 4. Time Management in Intermediate Programming Projects

represents all solution edits and TE represents all test edits):

(0.733 + 0.022 ∗ earlyOften(SE)− 0.007 ∗medianTime(TE)) > 0.83

While this is by no means a validated prediction model, it suggests that such models can
achieve some degree of accuracy. Developing and validating appropriate feedback mecha-
nisms is important future work, and this chapter lays the necessary groundwork by identi-
fying the most appropriate measures on which to base feedback.

4.7 Threats to Validity

Internal. Without control and experimental groups, we do not claim causality between
our process measurements and project outcomes. However, our sample of students and
assignments is large and does not suffer from selection bias, since the course is a required
part of the CS curriculum and we included all consenting students in the study (>96%).
Additionally, our within-subjects experimental makes it unlikely that our findings were due to
traits inherent to students, like prior computing experience, course loads, or other demands.

External. Our findings may not be generalisable to all junior level student programmers.
However, we take advantage of the intuitive and well-known nature of the effects of procras-
tination to lend legitimacy to our findings. We observe that the CS 3 course and the sample
of students it provided seemed typical of our long experience with the course.

Construct. Interviews with students and data anomalies (e.g., projects whose solution
edit median time was earlier than their start date, or entire projects that were completed
in one or two edits) indicated that there were transient data transmission issues during the
semester. They seemed to have affected fewer than 10 students out of 157, so we do not
believe this to be a serious threat to validity.

4.8 Summary

Working earlier and more often was related to earlier final submission times, reduced like-
lihood of late submissions, and improved project performance. There was no significant
relationship with the total time spent on the project. Together, these findings strongly
suggest that working earlier and more often, while not resulting in more time spent on a
project, can result in more constructive time spent on a project. Our experimental design
further strengthens this conclusion, since factors unique to individual students (like work
habits, competing demands on time, or others) were controlled for by the within-subjects
analysis. Finally, earlier median test edit times were associated with more time spent on the
project in total, and the time or frequency of program or test executions had no significant
relationships with any project outcomes.

Chapter 5

Incremental Testing in Intermediate
Programming Projects

In the previous chapter, I described analysis into students’ time management habits on
software projects and their relationships with project outcomes. This included understanding
when students engaged in different development activities: when they programmed, when
they tested, and when they launched their programs and their tests. In this chapter, we dive
deeper into students’ test writing habits, drawing inspiration from the literature on software
engineering and testing to help form our hypotheses and research questions.

Ideal incremental development requires that small chunks of solution code are written, tested,
and debugged in an iterative fashion. The order in which these take place largely determines
whether the development is categorised as test-driven development (TDD) or incremental
test last (ITL) development. In §2.3.1, I described conflicting results from case studies and
controlled experiments that presented arguments for, against, or ambivalent toward test-
driven development (TDD)—the general trend being that case studies tend to fall in favour
of TDD (e.g., [21, 118, 122, 168]) and controlled experiments tend to be inconclusive (e.g.,
[66, 75, 76]). Differences and challenges in study contexts have been cited as possible reasons
for these conflicting findings.

Controlled experiments often take the following steps: 1) develop a large project using TDD,
or some other test-oriented development methodology, 2) gather product measures such
software quality and developer productivity, and 3) compare product measures with a “com-
parable” project.

This approach is not without limitations. Sample sizes are necessarily small, since implemen-
tations are rarely replicated for the sake of experimentation. Additionally, it is difficult or
nearly impossible to accurately compare work done on different projects, possibly worked on
by different teams, under different managers. Finally, it is sometimes unclear what TDD is
being compared to (for example, “a more traditional, ad hoc unit testing approach” in [122]),
making it difficult to interpret results.

Case studies typically include: 1) A controlled lab setting of some kind, 2) A control group
developing a piece of software using a “traditional” development approach, 3) An experimen-
tal group developing the same piece of software using the development methodology that is
being evaluated (often TDD).

41

42 Chapter 5. Incremental Testing in Intermediate Programming Projects

There are numerous challenges associated with observing and measuring testing process in a
controlled lab or workshop setting. It is difficult to enforce process conformance [67, 118, 157]
in such a setting, which casts a certain level of doubt on conclusions. Programming tasks
are often “toy” problems which can be completed in a few hours, in which the effects of
TDD (or any other test-oriented development methodology) may not become apparent.
Finally, measurements could be affected by the observer effect—subjects’ testing processes
may change if they know that they are being observed.

If we are to teach software testing process to students, and we need to assess their testing
process in order to formulate feedback, then we need more solid findings on which to base
our hypotheses. In this chapter, I describe an empirical study we conducted to examine
the testing habits of intermediate-to-advanced undergraduate students and their impacts on
project quality. The study avoids many of the challenges faced by both controlled experi-
ments and case studies. Like many controlled experiments, our sample size is large—over
400 project implementations from over 150 students. We avoid the pitfalls of trying to en-
force process conformance by not assigning specific development approaches to groups of
students (aside from the requirement that they practice some testing). Instead, we examine
the natural and uncontrolled programming behaviours of our students. Like most case stud-
ies, the projects we study are relatively large, complex, and long-running. Finally, we make
“apples-to-apples” comparisons, since we compare multiple implementations of each project,
and multiple projects implemented by the same developers, by using a crossed random effect
experimental design.

In our study, we found that both project correctness and code coverage were positively
related to higher testing effort in each work session for a project, and to higher total testing
effort on the project. Additionally, we found that when more test code was written for
recently changed solution code (i.e., in the same work session), the project tended to have
higher code coverage. Both findings provide evidence that supports the conventional wisdom
about continuously writing tests alongside solution code. While we do not strictly measure
adherence to test-first development, we found that writing more test code before finalizing
the relevant solution code was irrelevant to project correctness, and negatively related to
code coverage. Finally, these behaviours explained a statistically significant but ultimately
small percentage of variance in project quality, with inherent variation among students and
programming tasks accounting for a larger proportion.

This chapter provides the following contributions:

• A family of metrics to faithfully capture the extent to which students achieve balance
and sequence of testing and solution coding effort

• An empirical study that measures the extent to which these metrics are related to
successful project outcomes (correctness and test suite coverage)

This chapter is based on a research paper that was published the SIGCSE Technical Sym-
posium in 2019 ([100]). I was the main contributor on the paper.

5.1. Research Method 43

5.1 Research Method

5.1.1 Research Questions

In our empirical study, we study the relationship of eventual software quality with the balance
balance of effort devoted to writing solution and test code (a key tenet of test-oriented
development [67, 75]), and the sequence of effort devoted to solution code and test code (a
key concern of researchers and practitioners interested in test-first development [14]).

We study the following research questions:

RQ1: To what extent are students practising incremental test writing? We use
descriptive statistics to characterise students’ test writing practices in terms of how it is
spread out over time (work sessions) and space (portions of the project).

RQ2: How do software project outcomes relate to the balance and sequence of
effort devoted to writing test code and solution code? A virtually universally agreed
upon tenet of effective software engineering is incremental or test-oriented development [67].
Where existing work presented evidence for or against TDD, we are primarily interested in
finding concrete evidence for or against incremental test-oriented development, be it test-first
or test-last. Additionally, test-first development, a key aspect of TDD, has frequently been
extolled as a beneficial way to practice test-oriented development. However, experiments
and case studies have found conflicting evidence regarding how exactly testing first affects
software quality and project outcomes.

In §5.2 I describe the set of metrics we developed to help answer these research questions.

5.1.2 Study Context

Similar to the studies presented in Chapter 4, we studied the software development habits
of students enrolled in the CS3 course at Virginia Tech. Students in this course have taken
several prerequisite programming courses, most of them in Java. Subjects became acquainted
with the JUnit testing framework in a previous course, and in the data structures course were
taught material about project management and incrementally writing and testing code by
one of the authors of the paper described in this chapter ([100]). We examined 157 students’
programming habits as they work on four course projects over the course of the semester,
for a total of 415 observations. Our design is unbalanced because not all students completed
all 4 projects, typically because they withdrew from the course.1

Subjects were given about four weeks for each project. Each project asked the subjects to
implement one or more data structures, along with its standard operations. Students were
required to write JUnit tests for their code. In addition to correctness, students were graded

1A manifestation of the problem that this dissertation aims to address.

44 Chapter 5. Incremental Testing in Intermediate Programming Projects

on the percentage of conditions covered by their test-suites, providing strong incentive to
eventually write test suites with near-total code coverage.

5.1.3 Data Collection and Preprocessing

We collected and preprocessed data about the code-writing activities that students performed
while working on their projects. We used DevEventTracker (see Chapter 3) for data collec-
tion. As described in Table 3.1, a Git repository is automatically created for each student’s
project. A commit is saved each time the student clicks the “save” button in the IDE. This
rich data set captures the detail and nuance of test-writing behaviour that is necessary to
assess the student’s engagement with software testing over the project lifecycle. Repositories
were mined using the open-source tool RepoDriller [6].2

Work sessions. Similar to the work in Chapter 4, we split the event stream for a subject
working on a project into work sessions.

Capturing test code and solution code modifications. To determine when changes
affected test code vs. solution code, and when test code changes were related to solution
code changes, we extracted developer activity on a per-method basis, and call these events
method-modification events.

Recall that project snapshots were captured as Git commits, which can be looked at as a
sequence of software patches or snapshots. Using git diff output and an abstract syntax
tree (AST) of the current patch, we determine which solution methods and which tests
for such solution methods were modified in each commit. This was done by 1) using git
checkout to restore the project to a given historical state; 2) comparing the line numbers
in the patch’s diff output with line number information provided in the AST for the given
patch; and 3) determining which solution methods and test methods were modified in the
given patch. A test for a solution methodm is modified in a commit if the test directly invokes
m. Therefore, we magnify the commit history into a series of method-specific events, meaning
we expand commits into a series of method-specific MODIFY_SELF or MODIFY_TEST_FOR_SELF
events.

Data filtering. We filtered out some solution methods from analysis. We excluded getters,
setters, and printing methods. Exploratory analysis showed that 93% of projects in our
dataset directly invoked at most 60% of all solution methods in test code.3 To illustrate the
challenge this poses, consider Figure 5.1 which shows the distribution of testing effort on all
methods in a representative subject’s implementation of the fourth project assigned during
the semester. The horizontal shows the percentage of changes related to a method that were
test changes. Notice that most solution-methods saw zero testing effort. Both the mean

2Now PyDriller [160]
3Note that this is not the same as code coverage, which includes constructs that are invoked further down

the call stack.

5.2. Proposed Metrics of Testing Effort 45

% of Changes Related to a Method

That Were Test Changes

N
u

m
b

e
r

o
f

M
e

th
o

d
s

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0

Figure 5.1: Example: Testing effort on individual methods in a representative project.

(0.27) and median (0) for this example are highly influenced by the skewed distribution, and
would result in a misleading ‘score’ of method-specific testing effort. To account for this,
we only examine the top 60% most tested solution-methods in each project, where methods
were ordered by the testing effort they were given. By examining only these most tested
methods, we are robust to the highly skewed distribution of testing effort across methods.

5.2 Proposed Metrics of Testing Effort

Consider Figures 5.2 and 5.3. Figure 5.2 shows an example sequence of developer activity,
created from synthetic data. Each group of blocks represents a work session, and each
individual block represents test code (shaded) or solution code (solid) written for a given
method. Notice that the work done on individual methods or during individual work sessions
cannot be clearly characterised as TDD or ITL. That is, current notions of TDD and ITL
would not be able to characterise this example.

This non-conformance is common among practitioners [7] and students [34]. In a series of
case studies, Zaidman et al. found that projects can have varying amounts of effort devoted
to testing at different points in the lifecycle (for example, periods of heavy testing before a
release, or non-contiguous periods of synchrony between test code and solution code) [173].

46 Chapter 5. Incremental Testing in Intermediate Programming Projects

Work Session 1 Work Session 2 Work Session 3 Work Session 4
… … …

Production code written for
method A

Test code written for
method A

Production code written for
method B

Test code written for
method B

Production code written for
method C

Test code written for
method C

Legend

Figure 5.2: An example sequence of developer activity.

Project-wide Overall Balance of Testing effort (POB)
Proportion of overall effort devoted to testing (regardless of order, method, and work session)

Method-specific Overall Balance of Testing Effort (MOB)
Proportion of effort devoted to testing, per method (regardless of order and work session)

Project-wide per-Session Balance of Testing Effort (PSB)
Proportion of effort devoted to testing, per work session (regardless of order and method)

Method-specific per-Session Balance of Testing Effort (MSB)
Proportion of effort devoted testing, per method and work session (regardless of order)

Method-specific Overall Sequence of Testing Effort (MOS)
Proportion of effort devoted to testing before a method was completely implemented, per method and work session

Effort devoted to production code Effort devoted to test code

Total overall effort

… … …

Production code written for
method A

Test code written for
method A

Production code written for
method B

Test code written for
method B

Production code written for
method C

Test code written for
method C

Production code written for any
method

Test code written for any
method

… … …

Legend

Figure 5.3: Measures to be derived from a programming activity event stream. Each row
depicts a different method of aggregating the programming events from Figure 5.2.

This is seemingly at odds with the notion that software development behaviour can be cleanly
bucketed into TDD or ITL.

We would like to avoid this dichotomy. In this section, we propose a new family of metrics
to measure the balance and sequence of test and solution code writing effort in a continu-
ous fashion. That is, we measure the extent to which students followed beneficial practices
within a work increment––as opposed to measuring whether or not they followed them. As
a result, we measure more faithfully the varying levels of student engagement with testing
at different times in the project lifecycle. These conceptualisations are useful “in the wild”,
where it is difficult to automatically infer adherence to TDD or other development method-
ologies without artificially controlling the programming environment (for example in a lab
or workshop setting).

We define our metrics of testing effort according to the two factors with which practitioners
seem most concerned with when recommending testing practices: the balance of testing
effort (a common idea behind TDD and ITL [67]), and the sequence of testing effort (the
main idea behind test-first development [14]). Figure 5.3 depicts the metrics we describe in

5.2. Proposed Metrics of Testing Effort 47

the following sections, in terms of the example activity from Figure 5.2. Metrics are defined
in terms of the balance of testing effort and the sequence of testing effort. Our raw
data were Git histories of project snapshots captured using DevEventTracker (see §5.1.3).

5.2.1 Balance of Testing Effort

We examine project snapshots in the raw event stream in terms of time and location in the
source code. That is, snapshots may be bucketed based on the work session in which they
took place, or the methods they were related to.

Project-wide Overall Balance of Testing Effort (POB). This metric is depicted in
the first row of Figure 5.3. It represents the test effort in the entire project regardless of the
solution methods being tested or the session in which test code was written. That is, notice
how the visual dimensions for colour (method), ordering, and block-group (sessions) have
been eliminated for this metric.

“Effort” is measured as the number of line-level code-changes (additions, removals, or inline
modifications) as captured by the git diff command (see §5.1.3). We define “testing
effort” as the percentage of effort that was devoted to writing test code. By traversing
the code changes for a project, we compute the total size of all changes to test code T and
the total size of all changes to solution code S. Then we can calculate testing effort as a
percentage of overall effort spent writing test code:

POB =
T

S + T
(5.1)

Note that this is not equivalent to the percentage of source code that is test code. Additions,
removals, and line-changes are included in this measure, as opposed to simple line counts in
each snapshot or in the final product. Therefore, this is a measure of testing effort, rather
than a measure of amount of test code.

Method-specific Overall Balance of Testing Effort (MOB). This metric is depicted
in the second row of Figure 5.3. In this metric, we determine testing effort while taking
location into account, i.e., we measure the testing effort devoted to individual methods. We
use the method-modification stream described in §5.1.3, and apply Equation 5.1 to each
method in the project to compute the testing effort devoted to each method. Let this set of
method-level test effort values be POBm. Then we calculate the MOB metric as the median
of the distribution of testing effort measured for all methods (after filtering as described
in §5.1.3).

MOB = P̃OBm (5.2)

Project-wide per-Session Balance of Testing Effort (PSB). This metric is depicted
in the third row of Figure 5.3. To determine testing effort while taking time into account, we

48 Chapter 5. Incremental Testing in Intermediate Programming Projects

compute project-wide per-session balance (PSB) of solution code and test code. We grouped
snapshots into work sessions as described in §4.5, and calculated the testing effort devoted
to each work session using Equation 5.1.

Therefore, if POBw is a set of values of testing effort devoted in each work session, this
measure of testing effort over time (PSB) can be defined as the median testing effort across
all work sessions:

PSB = P̃OBw (5.3)

Why use the median? Each project will certainly include some testing effort, because subjects
were required to include test suites. Using the mean testing effort, there would be no way
to gauge whether this testing effort is put in gracefully over time. That is, the paucity of
testing effort early on would be counteracted by an increase in testing effort at the end of
the project, or vice versa.

Method-specific per-Session Balance of Testing Effort (MSB). This metric is de-
picted in the fourth row of Figure 5.3. MSB determines testing effort while taking both
time and location into account. That is, for the solution code that is written in a given work
session, we would like to know if the student tends to write related test code. We compute
method-specific balance over time (MSB) of solution code and test code. To do this, we use
method-modification events and divide them into work sessions based on their timestamps
(see §5.1.3).

Therefore, for all changes related to a given method that were made in a given work session,
we may measure the testing effort using Equation 5.1. We are left with test effort values at
two levels of grouping: work session and method. To compute MSB, we first find the
project-wide per-session testing balance for individual methods, and call it PSBm. Then we
find the median per-session testing balance across all methods. Therefore, this metric can
be represented as a “median of medians”:

MSB = P̃SBm (5.4)

5.2.2 Sequence of Testing Effort

Method-specific Overall Sequence of Testing Effort (MOS). Students did not prac-
tice test-first development. In our entire dataset, only one method was invoked in a test
before it was defined in the solution. It is possible that students defined method stubs or
increments of functionality before conducting relevant testing, but it is difficult or impossible
to automatically infer this using static analysis and repository mining with any degree of
certainty. However, what we can tell for certain is when work was completed for a given
solution method, i.e., when it was modified for the last time. That is the basis for the MOS
metric.

5.3. Research Question 1 49

This metric is depicted in the last row of Figure 5.3. We measure sequence as the percentage
of test code that was written for a solution method before the method was finalised. This
gives an idea of the extent to which the student tended to write tests before completing
the solution code under test. Therefore, if m is a solution method, then Tb is the total size
of changes to test code before m was finalised, and Ta is the total size of changes to test
code after m was finalised. Note than Tb and Ta only include changes to test methods that
directly invoke m. Then we compute the percentage of test code for m that was written
before m was finalised as:

MOSm =
Tb

Tb + Ta

We compute the median MOSm over all methods to get an overall measure for a student
working on a project (MOS):

MOS = M̃OSm (5.5)

5.3 Research Question 1

RQ1: To what extent did students practise incremental test writing?

POB MOB PSB MSB MOS
Measure of Balance or Sequence of Testing Effort

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
Ef
fo
rt

Balance
Sequence

Figure 5.4: Distributions of testing effort metrics as defined in §5.2.

50 Chapter 5. Incremental Testing in Intermediate Programming Projects

Figure 5.4 depicts distributions for all of the metrics described in §5.2. Since all the metrics
are proportions and therefore on the same scale, they are plotted together. The blue box-
plots represent measurements of the balance of test writing effort, and the orange boxplot
represents the measurement of the sequence of test writing effort.

Balance of testing effort. The figure indicates that, over the course of the entire project,
students tended to devote about 25% of their effort to writing test code (median POB =
25.08%). The situation seems to be a bit worse when one considers the amount of testing
effort applied in individual work sessions. The boxplot indicates that a majority of students
devoted less than 20% of their effort toward writing tests in most of their work sessions
(median PSB = 17.29%). This could mean that students are not testing as much as they
should. This would be in keeping with other work that finds that test code and solution
code do not co-evolve gracefully for students or for professionals [18, 19].

The higher values for method-specific balance of testing effort indicate that most methods
received a considerable amount of testing effort. This is evident across the entire project
timeline (median MOB = 88.24%) as well as in individual work sessions (median MSB =
88.01%). These high proportions are perhaps not surprising when one recalls testing effort
was considered devoted to a given method when that method was directly invoked in the test
(see §5.1.3). Therefore, for a given unit of testing effort, the event stream possibly contained
MODIFY_TEST_FOR_SELF events for several solution methods, driving up the proportion of
“effort” devoted to testing specific methods (see §5.6).

Sequence of testing effort. In terms of the sequence of testing effort, the figure indicates
that in a majority of project implementations (85%), students put in less than 50% of their
testing effort before the relevant production code was finalised (median MOS = 23.45%).
This suggests that subjects in our study tended to put in more testing effort for a given
method after it was finalised.

Whether the behaviours outlined above can be considered effective or ineffective is explored
in the next research question.

5.4 Research Question 2

RQ2: How do software project outcomes relate to the balance and sequence of effort devoted
to writing test code and solution code?

Once we characterised the balance of writing test code and solution code as a series of
continuous independent variables, we used linear models to determine their effects on the
following project outcomes:

• Semantic Correctness (C): Measured as the percentage of tests passed from a suite
of automated acceptance tests written by the course teaching staff.

5.4. Research Question 2 51

• Test Suite Coverage (T): Measured as the percentage of condition coverage achieved
by the student’s own test suite, measured using the JaCoCo4 plugin. While subjects
were required to submit test suites with nearly 100% code coverage, that might not
happen until near the end of the development cycle.

We use linear mixed-effects ANCOVAs [12], with students and projects as crossed random
effects. Experience suggests that no two students are the same, and this inherent variation
might confound the model. Further, it is difficult to compare the programming process on
different projects, even if they are assignments in the same course. Mixed-effects models
allow us to control for the variation from these unaccounted-for effects.

Results presented herein use α = 0.05 to determine significance.

We present marginal and conditional R2 values [127] that describe the amount of variance
in project outcomes explained by our models. Marginal R2 values refer to the amount of
variance in the outcome variable described by fixed effects only (in this case, our process
measurements). Conditional R2 values refer to the amount of variance in the outcome
variable described by the entire model (in this case, the process measurements as well as
individual students and assignments).

We fit the following linear mixed models for semantic correctness (C) and test suite
coverage (T), using our metrics as fixed effects.5

C ∼ POB +MOB + PSB +MSB +MOS + (1|student) + (1|project)
T ∼ POB +MOB + PSB +MSB +MOS + (1|student) + (1|project)

Table 5.1: ANCOVA model summary for overall testing effort.
C T

Measure Estimate p Estimate p

POB 0.30 < 0.001∗ 0.23 < 0.001∗

MOB NA 0.12 NA 0.41

PSB NA 0.83 NA 0.97

MSB NA 0.97 0.08 0.01*

MOS NA 0.74 -0.06 0.03*
Residual Std. Err. = 0.23
Marginal R2 = 0.05
Conditional R2 = 0.39

Residual Std. Err. = 0.11
Marginal R2 = 0.10
Conditional R2 = 0.17

4https://www.eclemma.org/jacoco/
5The notation (1|factor) means that factor was used as a random effect.

52 Chapter 5. Incremental Testing in Intermediate Programming Projects

The models are summarised in Table 5.1. Estimates suggest that project-wide overall balance
(POB) of test code and solution code is positively related with semantic correctness and test
coverage. Additionally, test coverage has a positive relationship with method-specific per-
session balance (and MSB) of test and solution code, and a significant but weak negative
relationship with the amount of testing effort put in before finalizing solution code (MOS).

To gain a more fine-grained understanding of our measures and their effects, we fit another
“process-based” model for each outcome, only including the time-based measures:

C ∼ PSB +MSB +MOS + (1|student) + (1|project)
T ∼ PSB +MSB +MOS + (1|student) + (1|project)

The models are summarised in Table 5.2. Notice that PSB is significantly related to both
outcomes in the process-based model, but not in the overall model in Table 5.1.

Table 5.2: ANCOVA model summary for process-based testing effort (only including metrics
that take time into account.)

C T
Measure Estimate p Estimate p

PSB 0.30 0.005* 0.12 0.008*
MSB 0.11 0.10 0.09 0.002*
MOS -0.03 0.62 -0.06 0.02*

Semantic correctness (C) and test coverage (T) were positively related to project-wide per-
session balance of test and solution code (PSB). That is, project implementations tended to
be more semantically correct, and their test-suites tended to have higher condition coverage,
when students wrote more test code each time they sat down to work on the project. Test
coverage was also positively related to the balance of testing effort devoted to individual
methods in each work session (MSB), i.e., condition coverage tended to be higher when
more testing effort was devoted to methods that were edited during the same work session.

The MOS metric measures the percentage of testing effort that tends to be put in before
the relevant solution method has been finalised. Whether testing effort took place more
predominantly before or after the relevant solution code was finalised was irrelevant to se-
mantic correctness. On the other hand, test coverage had a negative relationship with MOS,
suggesting that implementations tended to have stronger tests when a higher proportion of
the testing effort devoted to a method was expended after the method was finalised.

5.5. Discussion 53

5.5 Discussion

Why is semantic correctness not associated with writing test code for relevant solution code?
Notice that method-specific per-session balance of test code and solution code (MSB) was
not significantly related to semantic correctness (Table 5.2). Does this mean that it does not
matter what test code a developer writes, only that they write some test code? It would be
surprising and counter-intuitive to think so. However, it may be that, for this population,
the variance in correctness explained by the specificity of test code written is subsumed by
the variance explained by simply writing test code consistently.

Why is PSB significantly related to outcomes in the process-based model (Table 5.2), but
not in the overall model (Table 5.1)? It may be that the variance explained by consistently
writing software tests in each work session is subsumed by the variance in explained by
maintaining an overall balance of testing effort.

How does one balance test code and solution code over time, while also writing more test code
after the relevant solution methods have been finalised? In §5.4, we saw that a better balance
of solution code and test code over time (PSB) was related to better project outcomes, and
that writing a higher proportion of test code before the relevant solution is finalised led
to less thorough test suites. These findings together suggest that while regular, balanced
testing is important to test coverage, it is also important to put in testing effort after pieces
of functionality have been completed.

Why are higher amounts of “test last code” related to test suites with higher code coverage
scores? It is possible that students were able to better compose tests for existing (“finalised”)
functionality—that is, they may have found it easier to identify untested conditions or state-
ments after the relevant code had already been written. It is also possible that students,
being incentivised to maximise the code coverage achieved by their test suites, went about
systematically increasing their code coverage scores after they had finalised the work for a
project. If this happened, they would be driving up their code coverage with test code writ-
ten after the relevant code had been finalised, contributing to the MOS metric’s negative
relationship with test suite thoroughness.

What do the low marginal R2 values suggest? The process measurements show significant
relationships with semantic correctness and test suite coverage. Marginal (fixed effects only)
R2 values [127] for both models suggest that this effect size is small (5% for C and 10%
for T). There are likely to be numerous unexplained sources of variation when measuring
human behaviour. In other words, any number of unaccounted-for factors could affect the
quality of software produced by student developers. Those factors are not under study. The
goal of this study was to determine the impact of balancing solution and test coding effort
on project quality, and the models are able to answer our research questions with statistical
confidence. It could also be that the assignments in this CS3 course do not “hit the right
switches”, i.e., success did not demand strict incremental testing. After all, they were not
explicitly designed to do so. Future work should involve a similar study using semester-long

54 Chapter 5. Incremental Testing in Intermediate Programming Projects

projects from software engineering courses, more closely imitating real-world scenarios.

5.6 Threats to Validity

Internal. Since we do not have strictly defined experimental and control groups, we do not
claim direct causality between process measurements and project outcomes. Our sample of
student developers is sufficiently large and does not suffer from a selection bias.6 Therefore,
we do not believe that this is a serious threat to validity. Subjects had mechanical experience
with the JUnit testing framework from a previous course. Multiple class periods were devoted
to teaching material about project management skills, including incremental software testing,
before the first project was assigned, possibly mitigating threats from differential experience.

External. Findings based on this particular population of students and assignments might
not generalise to all junior level student programmers. Further, student behaviour is often
motivated by a number of unknown external factors (for example, deadlines and responsibil-
ities from other courses). It is unclear if or how this might have affected our findings, other
than to observe that this semester seemed typical of our long experience with the course.

Construct. The largest threat to construct validity is related to the computation of the
event stream described in §5.1.3. Specifically, we link test methods and solution methods
if a given test method directly invokes a given solution method. However, it could be that
the solution method was not the ‘focal point’ [77] of the test method, and was only being
invoked to set up the test case, or to gain access to the method that was actually being
tested. This could have increased the number of MODIFY_TEST_FOR_SELF events for some
solution methods, affecting our process measurements. However, if a solution method is
directly invoked in a test, it is reasonable to claim that the method is being tested, regardless
of developer intent. Indeed, this is the basis for code coverage, which treats methods (or
statements, branches, etc.) as “covered” upon invocation “somewhere in the call stack”.

5.7 Summary

All in all, our findings support the conventional wisdom about the virtues of incremental
testing. We can tell with some confidence that students do not consistently practice testing
as they work on projects, and that this behaviour has the potential to negatively affect their
project outcomes. We did not find support for the notion that writing tests first leads to
improved project outcomes. The balance metrics described in §5.2.1— particularly PSB—
put us in a position where we should be able to determine during development whether a
student is engaging in these counter-productive behaviours.

6The course we study is a required part of the CS undergraduate curriculum, and we included all con-
senting students (>96%) enrolled in the course as subjects.

Chapter 6

Improving the Assessment of Software
Test Quality

Software testing is an important aspect of software engineering, but students struggle with
writing effective tests [60, 158]. Too often, students seem disinclined to practice software
testing [35] and display poor testing abilities [60, 158]. As incorporating software testing into
programming courses has become routine practice [5, 95, 158], educators have considered how
best to evaluate student-written software tests [61, 78, 171]. Computer science departments
are increasingly interested in providing incremental feedback about students’ test suites using
automated assessment tools (AATs) [136]. Examples of these systems [135, 158, 166] include
Web-CAT [60] and ASSYST [88]. Of these, Web-CAT is the most widely used [136], serving
over 120 institutions in the US. Feedback provided by these systems is usually expected to
be immediate.

Numerous strategies have been proposed [1, 60, 78] for giving feedback on software test suites,
but they are limited in terms of their strength as test adequacy criteria [1, 85], their ability to
give incremental feedback on intermediate submissions [63, 78], or their high computational
cost [1, 152]. We consider one such approach, mutation analysis, as a candidate for evaluating
the quality of students’ software tests. Mutation analysis is widely considered a strong test
adequacy criterion whose use is limited largely by its computational cost. For our uses in
particular, it may be untenable to enable automated mutation-based feedback in an AAT
like Web-CAT. In this chapter, we evaluate various mutation analysis approaches for their
suitability for deployment into an AAT. We propose our own approaches that appear to
drastically reduce the cost of mutation analysis while preserving its effectiveness as a strong
test adequacy criterion.

I begin with a general discussion of test adequacy criteria (§6.1.1), mutation analysis and
its related literature (§6.1.2), and the use of test adequacy criteria in educational contexts
(§6.1.3). Following this, I motivate and state my research questions (§6.2.1), context (§6.2.2)
and results (§6.3–§6.6). I close with a discussion of results (§6.7) and threats to validity
(§6.8), and conclude (§6.9).

The work presented in this chapter is based on an as-yet-unpublished manuscript. I am the
main contributor and will be the first author on the resulting research paper.

55

56 Chapter 6. Improving the Assessment of Software Test Quality

6.1 Background

In the following section, I discuss various test adequacy criteria and their limitations, and how
mutation analysis addresses these limitations (§6.1.1). I then discuss the primary challenge
associated with mutation analysis—its computational cost—and existing efforts to mitigate
it (§6.1.2.2).

6.1.1 Test Adequacy Criteria

A test adequacy criterion is a predicate that defines the program constructs that should be
executed and the conditions that must be met for a given test or set of tests to be considered
“adequate”. Numerous forms of testing criteria are in use today. In this section, I discuss
various methods of testing a program and their related adequacy criteria. For the purposes of
this discussion, I partially conform to the categorisation from Zhu et al. [176], which describes
structural testing and fault-based testing criteria. Zhu also defines error-based testing, which
is somewhat limited to numerical software or software with limited input domains. Further,
there is a distinction between test adequacy based on a program and based on a specification;
this discussion focuses on the testing of a program.

6.1.1.1 Structural Testing

Structural testing aims to satisfy the requirement that certain elements or constructs of
a program or specification have been exercised. A program can typically undergo struc-
tural testing using two types of test-adequacy criteria (independently or in concert with one
another): control-flow or data-flow adequacy criteria.

Control-flow adequacy criteria. First, a control-flow graph (CFG) for a program is
computed. A CFG is a directed graph in which each node is a linear sequence of com-
putations [176] (or a basic block, i.e., “a maximal sequence of simple statements with one
entry point such that if the first statement is executed, all statements in the block will be
executed” [130]). Each directed edge represents a transfer of control from one basic block to
another. Possible execution paths through the program can be computed by starting at the
CFG’s entry point and following edges until a termination.

The CFG forms the basis of code-coverage test adequacy criteria [126]. Statement coverage
is the most basic form of code coverage, and requires that all statements in the program (or
basic blocks in the graph) be executed by the test suite at least once. This is known to be
a weak test adequacy criterion.

Decision coverage is a stronger control-flow adequacy criterion that requires that each edge in
the CFG be executed at least once. For the program, this translates to the requirement that
all decisions (one or more conditions joined by AND or OR operators) be made to evaluate

6.1. Background 57

to both true and false at least once. This can be strengthened further by taking into
account the (possibly multiple) conditions that make up decisions in the programs. Condition
coverage requires that all conditions in all decisions evaluate to true and false at least once.
Decision / condition coverage (DCC) requires that both condition coverage and decision
coverage are satisfied. Modified condition / decision coverage (MCDC) requires that DCC is
satisfied and that every condition has been shown to affect its decision’s outcome. MCDC
is the criterion used by the FAA to ensure test adequacy for safety critical software in
aircraft [72]. Multiple condition coverage requires that the entire truth table for all decisions
be satisfied. This is typically not a practically feasible option due to the high redundancy
between execution paths that is likely to occur.

Data-flow adequacy criteria. In data-flow adequacy [73], information about the flow of
data is introduced into the CFG for a program. That is, nodes are characterised in terms of
the variables that are defined and used in them. The definition of a variable occurs when a
value is assigned to it. The use of a variable occurs when an already-defined variable’s value
is used during execution. Uses can be computation uses—those that affect a computation
or output—or they can be predicate uses—those that affect control flow of the program.
Incorporating this into the CFG, computation uses exist on the nodes of the CFG, and
predicate uses exist on the edges. A def-use pair for some variable x is a pair of nodes in
which the first contains a definition of x, and second contains a use of x.

Data-flow adequacy is satisfied when all def-use pairs for all variables are executed by the
tests. Like control-flow adequacy, data-flow adequacy can be measured in different ways,
i.e., by considering only computation uses, predicate uses, or both.

6.1.1.2 Fault-Based Testing

In fault-based testing, test suites are evaluated on their ability to detect defects that manifest
in program state or output. This is typically done by seeding artificial errors into otherwise
“correct” programs and evaluating the test suite’s ability to detect them. Fundamentally,
this is advantageous over structural testing methods since they are satisfied only by exercis-
ing specific constructs, whereas fault-based testing is sensitive to the propagation of faulty
program state or output to the tests. In terms of automated tests, fault-based criteria are
sensitive to the assertions in the tests.

All-pairs execution. In an educational setting, we can take advantage of the fact that we
have access to multiple “real” implementations for the same program specification (i.e., as-
signments completed by multiple students). The all-pairs approach, proposed by Goldwasser
as a “fun way to incorporate aspects of software testing” in the classroom [78], involves run-
ning each student’s test cases against every other student’s implementation. The adequacy
score of the student’s test cases is determined by measuring the percentage of known faults
(in other students’ programs) the test cases are able to uncover. The approach has been
implemented in multiple contexts and flavours [27, 36, 61, 171], and evaluations have been

58 Chapter 6. Improving the Assessment of Software Test Quality

found it to be effective at revealing deficiencies test suites. It affords a diverse set of “real”
edge cases available in tests and solutions from classrooms-full of students.

Mutation analysis. In mutation analysis, artificial defects are injected into a program,
creating faulty variants of the original. Test adequacy is measured by the percentage of
faulty variants that are detected by the test suite, i.e., by a failing test. Ignoring the fact
that mutation analysis was first developed many years before Goldwasser’s experiment, one
can look at it as an automated and autonomous way of implementing all-pairs execution.

In the following section, I describe mutation analysis in some detail and discuss its strengths
and its primary weakness—its computational cost.

6.1.2 Mutation Analysis—A Silver Bullet?

Proposed in the 1970s by DeMillo et al. [51], mutation analysis is a fault-based test adequacy
criterion in which small defects (mutations) are injected into a program, creating faulty
versions of the original—called mutants. Mutations are typically small syntactic changes.
The types of mutations that can be made are called mutation operators. While the number
of possible mutation operators is essentially infinite in principle, mutation operators have
more or less been designed based on years of knowledge of and experience with human-made
errors in programming [102]. If a mutant is detected by the test suite, i.e., by a test that
fails after introducing the mutant, it is said to be killed. Likewise, if a mutant is not killed,
it is said to have survived. The test suite’s mutation adequacy score can then be measured
as the percentage of mutants that were killed. Mutation analysis can be used to assess the
adequacy of a test suite, or to guide a tester such that they know when a program is “tested
enough”.

Mutation analysis is the strongest test adequacy criterion currently available. Offutt showed
that it subsumes the structural testing criteria described in §6.1.1.1. That is, a test set
that satisfies the mutation adequacy criterion is theoretically proven to also satisfy strong
condition coverage and data-flow testing criteria [130]. Separately, Wong & Mathur showed
that mutation analysis subsumes data-flow testing criteria [169]. Mutation analysis is also
flexible, i.e., it can be and has been applied in a variety of programming languages (e.g.,
Java [45, 96, 117, 147], C [50], C# [55], JavaScript [125], and FORTRAN [102]), paradigms
(e.g., object-oriented [172], functional [109]), and can be used for other testable artefacts like
design specifications.

6.1.2.1 Underlying Assumptions

The validity of mutation analysis as a test-adequacy criterion relies on two fundamental as-
sumptions: the competent programmer hypothesis and the coupling effect [33]. The soundness
of these assumptions is not self-evident, and researchers have theoretically and empirically

6.1. Background 59

evaluated their veracity.

The Competent Programmer Hypothesis. Proposed by DeMillo et al., this hypothesis
states that developers tend to produce programs that are mostly correct, i.e., their programs
require a few syntactic changes to reach correctness [51]. Therefore, if we generate mutants
by making small syntactic changes to the program, we are producing faulty versions that
are close to those that are likely to occur “naturally”. This hypothesis has been tested
with varying levels of rigour (e.g., [53]1, [4, 80, 97]). Andrews et al. found that the ease
with which real faults and hand-seeded faults were detected were approximately similar [4].
Gopinath et al. note that since this study is based only on eight C programs, and since the
conclusion was drawn from a single program, the findings are not quite convincing [80]. In
their larger study involving projects in C (n = 1850), Java (n = 1128), Python (n = 1000),
and Haskell (n = 1393), Gopinath et al. measured the edit distance from “real” faults and
the patches that fixed them. They found that real faults had a mean token distance of three
to four, i.e., it would take 3–4 character replacements to turn a fault into a correct program
or vice-versa. Papadakis et al. interpret this to be partial confirmation of the Competent
Programmer Hypothesis [134]. However, Gopinath stresses that, since the vast majority of
mutation operators make single-edit mutations, their findings increase the dependence of
mutation analysis on the Coupling Effect.

The Coupling Effect. Also proposed by DeMillo et al., the coupling effect states that “test
data that distinguishes all programs from a correct one by only simple errors is so sensitive
that it also implicitly distinguishes more complex errors” [51]. Offutt further distinguished
between the “Coupling Effect” and the “Mutation Coupling Effect“ [129]. Say that simple
faults (or mutants) are made by making a single syntactical change, and complex faults (or
mutants) are created by making more than one change. Then the Coupling Effect states that
“complex faults are coupled to simple faults in such a way that a test data set that detects all
simple faults in a program will detect a high percentage of complex faults”. And the Mutation
Coupling Effect says “complex mutants are coupled to simple mutants in such a way that
a test data set that detects all simple mutants in a program will detect a high percentage
of complex mutants”. If this holds true, then Gopinath’s fears regarding the prevalence of
single-character mutation operators can be alleviated. Theoretically and empirically, the
Coupling Effect and the Mutation Coupling Effect have been found to be true. Offutt found
that test data designed to kill all first order (single-edit) mutants killed over 99% of second
and third order mutants [129].

Other work investigating these two underlying assumptions is summarised in the survey of
mutation testing research between 1970 and 2008 from Jia & Harman [93].

1Technical report, no evidence of peer review.

60 Chapter 6. Improving the Assessment of Software Test Quality

6.1.2.2 Efforts to Reduce the Cost of Mutation Analysis

While the exact number of mutants generated is dependent on the mutation operators used,
it is also proportional to elements of program size. In 1979, Acree et al. claimed that the
number of mutants is in O(Lines× Refs), where Lines is the number of lines of code, and
Refs is the number of data references, going on to say that this is O(Lines×Lines) for most
programs. In 1980, Budd claimed that it is in O(V als × Refs), where Vals is the number
of data objects. Offutt et al. tested these claims statistically, finding that Lines was only a
modest predictor of the number of mutants, but that Vals and Refs were strong predictors.

The computational cost of mutation analysis comes from the fact that it requires the ex-
ecution of a test suite potentially hundreds or thousands of times, i.e., for each generated
mutant. Exacerbating this situation is the likelihood of generating trivial mutants, equivalent
mutants [132], and subsumed mutants [133], which can artificially drive up or down a test
suite’s mutation score, while simultaneously increasing cost:

• Trivial mutants are trivially easy to kill, and are nearly always killed by a test suite.
• Equivalent mutants [132] are functionally equivalent to the source code, and therefore

impossible to kill. These mutants tend to artificially drive down a test suite’s mutation
adequacy score.

• Subsumed mutants [133] are those mutants that are killed by a superset of the tests that
kill some other mutant. That is, when the subsuming mutant is killed, the subsumed
mutant is also killed.

• Duplicate mutants are functionally equivalent to other killable mutants.

Considerable effort has been devoted to reducing the cost of mutation testing (e.g., [49, 51,
54, 107, 131, 132, 155, 175]). Jia & Harman’s survey [93] clusters these efforts into two
categories:

• Do fewer approaches, those that reduce the number of generated mutants, and
• Do faster approaches, those that reduce the execution cost using other system or

compiler level optimisations, e.g., by mutating byte code in memory instead of source
code on disk [45]

In this chapter, we are concerned with mutant reduction techniques. Specifically, we in-
vestigate the practicality of selective mutation approaches [121, 131], i.e., approaches that
generate a subset of all possible mutation operators that significantly reduce cost without
incurring a significant loss in effectiveness.

In a seminal example of selective mutation, Offutt et al. experimentally determined a suf-
ficient set of operators [131]. They found that of the 22 operators originally used in
Mothra [52, 102], one of the first mutation analysis systems, a subset of just 5 key operators
performed nearly as well as the complete set (99.5% mutation adequacy), with considerable
cost savings (77.56% fewer mutants generated). Namin et al. [155] later used a statistical
procedure to extract a subset of 28 sufficient operators out of the 108 operators available in

6.1. Background 61

a newer alternative system called Proteum [50].

Reducing the number of mutants further, Untch [162] proposed producing mutants simply
by systematically deleting statements from the target program, instead of applying a (full
or selective) set of several mutation operators. This initial evaluation of statement deletion
(SDL) yielded positive results, prompting Offutt et al. to carry out an empirical evaluation
of SDL [54] and other deletion operators [49]. SDL eliminated 81% of mutants that would
otherwise have been generated using Offutt’s sufficient set of 5 operators, with only a small
but acceptable loss in accuracy. At the same time, SDL was found to be much less likely to
produce equivalent mutants (mutants that are functionally the same as the original program,
and thus impossible to kill) or duplicate mutants (mutants that are functionally the same as
other mutants). These studies provide convincing evidence that mutation by deletion offers
a possible path toward practical and scalable mutation testing.

In an educational context, Shams & Edwards [152] identified and partially solved key prob-
lems associated with introducing mutation analysis into a CS2 course. Selective mutation
was identified as a practical choice for applying mutation testing in the classroom. They
compared the effectiveness of various selective mutation approaches with other measures of
test quality [61]. Of the mutator subsets evaluated, mutation by deletion was identified as
the most effective in terms of cost and effectiveness as a test adequacy criterion.

6.1.3 Test Adequacy Criteria in Education and Their Limitations

Many strategies have been proposed [1, 60, 78] for giving feedback on software test suites,
but they have multiple limitations [1, 61, 63]. There are primarily three approaches for
giving students feedback about the quality of their software tests: code coverage, all-pairs
execution, and mutation analysis (see Table 6.1).

Code coverage. Code coverage measures are the most widely used test adequacy criteria,
in both education [60, 88, 159] and industry [87, 138]. They are inexpensive to compute
and easy to reason about, and so are a popular choice in AATs that aim to provide students
with rapid feedback. However, code coverage measures have been shown to be weak test
adequacy criteria [1, 61, 85]. A key reason is that criterion satisfaction is not sensitive to the
propagation of output or program state to the test output (i.e., through the use of assertions);
they are satisfied as long as code is executed (“covered”) by the test suite. Inozemtseva et
al. showed that code coverage does not have a high correlation with test suite effectiveness
after test suite size has been controlled for [85]. Elbaum et al. studied the impact of software
evolution on code coverage [64] They found that small changes to the code base lead to
relatively large deteriorations in code coverage, and that consequently code coverage is not
likely to stay stable throughout a project’s evolution. In the classroom, code coverage has
been shown to be an easily “game-able” measurement, in the sense that students can directly
manipulate it without substantively changing the quality of their tests [1]. Indeed, including
coverage measures in project grading encourages students to maximise their adequacy of

62 Chapter 6. Improving the Assessment of Software Test Quality

their test suites as measured by the criterion, rather than focusing on the actual quality
of their test suites (i.e., its defect detection capability). The result is that code coverage
distributions tend to cluster around the 100% mark [1, 151], regardless of the actual quality
of students’ test cases.

All-pairs execution. Edwards observed that a naive implementation of all-pairs ap-
proaches in the classroom would either require students to exclusively practice a form of
black-box testing, or it would depend on students’ solutions and tests compiling together.
This assumption cannot be relied upon when students are given the freedom to create al-
ternative designs, as is the case in most upper-level CS courses. The all-pairs approach also
depends on all students having completed their projects and tests, precluding the possibility
of feedback for intermediate submissions. Additionally, others have considered measuring
the positive verification ability of a test, i.e., its ability to accurately identify correct solu-
tions. Wrenn et al. [171] describe the problem of over-zealous tests, which make assertions
about implementation details that are not part of the requirement specification. In all-pairs
execution as described above, it is important to eliminate such tests from the corpus of avail-
able test cases, or to help students produce correct test cases as they work toward project
completion [27, 170].

Buffardi highlights the importance of unit test accuracy, which considers both defect de-
tection and positive verification ability when assessing student-written test suites [36, 37].
However, measuring unit test accuracy requires the use of a known-good reference solution
against which student-written tests must compile. Like other all-pairs methods, these as-
sessments cannot easily be applied in assignments where students are free to design their
own solutions.

Mutation analysis. Mutation analysis mitigates the limitations of both code coverage and
all-pairs approaches. As a test adequacy criterion, it subsumes strong forms of structural
testing criteria described in §6.1.1.1 ([130]). It also does not require students to have complete
solutions before they can receive feedback, mitigating the limitations associated with all-pairs
methods. Aaltonen et al. compared code coverage and mutation testing in terms of their
ability to effectively evaluate student-written tests [1]. Students found it easier to fool code
coverage tools, and more difficult to achieve a high mutation score. However, this work
only examined the accuracy of the scores, without exploring the cost of deployment or the
feasibility of using the approach for providing incremental feedback to students.

Mutation analysis is well known for its high run-time cost (e.g., Section 3 in Jia & Harman’s
survey [93]). The process may involve creating potentially hundreds of mutants from the
original program and then running the test suite against all of them. Cost is a significant
concern in an educational context, since it reduces the opportunity to provide incremental
feedback to students as they work, say, using an AAT like Web-CAT. In this chapter, we
explore approaches to reduce this cost using selective mutation.

6.2. Research Method 63

Table 6.1: Test evaluation techniques used in CS education and their strengths and weak-
nesses. ? = Addressed in this chapter.

Technique Strong test
adequacy criterion?

Supports
incremental feedback?

Fast
response?

Code coverage
[60, 158] × X X
All-pairs execution
[37, 63, 78, 171] X × ×
Mutation analysis
[1, 152] X X ×?

6.2 Research Method

6.2.1 Research Questions

We performed an empirical study to provide educators with an efficient, scalable mechanism
to evaluate student test suites using mutation analysis. We study the following research
questions:

RQ1: How efficient is mutation analysis at providing automated feedback on test
suites? We study whether it is necessary to improve the efficiency of mutation analysis at
all for student code. It may be that the smaller size of these projects allows mutation
analysis to scale “as is”. We evaluate the efficiency of using mutation analysis for automated
feedback, in terms of the time taken for individual submissions to generate mutation results.
We interpret results in terms of running time under typical and peak submission loads faced
by the AAT server at our institution, which runs Web-CAT [60].

RQ2: Is mutation by deletion [49, 54] a cost-effective alternative to comprehen-
sive mutation for educational software projects of varying complexities? Shams’
evaluation [151] found statement deletion to be a cost-effective approach for evaluating the
test suites produced by novice CS students. We believe this result is promising, so we con-
duct an evaluation of deletion operators set on a more general corpus of student-produced
codebases.

RQ3: Can the cost of mutation by deletion be reduced further? Even though
mutation by deletion represents notable runtime savings over comprehensive mutation, it
may be possible to reduce this cost further. We evaluate whether cost-effective subsets of
the deletion set of operators can perform comparably well at evaluating the thoroughness of
a test suite.

RQ4: Are the benefits of different mutation strategies project dependent? Our
analyses were conducted on a diverse set of programs, based on size and complexity (and

64 Chapter 6. Improving the Assessment of Software Test Quality

therefore in terms of the mutants produced). We investigate whether our chosen selective
mutation strategies vary in terms of cost-effectiveness based on the size of the projects under
test. This would allow educators to make a more informed choice of operator subset to use
for test suite evaluation.

Table 6.2: Programming tasks undertaken by students in our sample, and descriptions of
their implementations. # Mutants indicates the number of mutants generated under the
FULL set. Projects 1–4 are CS2 projects, and 5–7 are CS3 projects.

Description n LoC Cyc. Comp. # Mutants

(data structures implemented) µ σ µ σ µ σ

1 Bag 350 139.20 13.84 26.87 1.61 470.16 32.60

2 Linked stack 321 204.29 22.85 38.50 2.94 421.44 38.05

3 Array-based queue 259 448.00 39.71 104.00 7.58 1651.54 126.83

4 Linked list 89 718.02 221.53 147.38 53.78 2988.94 1491.91

5 Hash table, doubly-
linked list 128 724.26 142.33 152.38 32.40 3377.76 776.02

6 Hash table,
sparse matrix 133 946.56 178.69 202.17 38.77 3244.17 785.65

7 Bintree, skip-list 109 1263.18 303.22 261.96 73.89 6095.79 1952.25

Total 1389 650,515 136,763 2,521,871

6.2.2 Study Context

We studied Java projects developed by students enrolled in the CS2 and CS3 courses at
Virginia Tech. These students have taken several prerequisite programming courses, most
of them in Java, and are acquainted with the JUnit testing framework and writing their
own unit tests. Students were required to write unit tests for their projects, and part of
their grade depended on the thoroughness of their test suites (as measured by code coverage
criteria).

The CS2 corpus included submissions to four programming assignments in which students
were asked to implement and test a simple data structure, including: 1) an array-based bag;
2) an array-based stack; 3) an array-based queue; and 4) a linked list. Students in this course
produced 1019 distinct submissions. In total, these submissions comprised 294,230 source
lines of code (SLoC) and led to the generation of 993,602 mutants.

The CS3 corpus included submissions to three large and complex programming assign-
ments. Students were given four weeks to work on each assignment. Each project asked the
students to implement one or more data structures, including: 1) a memory management
package with a hash table; 2) a sparse matrix; and 3) a Bintree, which is a kind of binary

6.2. Research Method 65

tree designed for storing and querying spatial data. Students in the CS3 course produced
370 distinct submissions. These submissions together made up 356,285 SLoC, and led to the
generation of 1,528,269 mutants.

Together these comprise 1389 submissions to seven programming assignments of increasing
size (Figure 6.1). Descriptions of the assignments and their submissions are presented in
Table 6.2.

P1 P2 P3 P4 P5 P6 P7
Project #

200

400

600

800

1000

1200

1400

1600

So
ur
ce

 L
in
es

 o
f C

od
e
(S
Lo

C) CS 2
CS 3

Figure 6.1: Our corpus contains submissions to assignments of increasing sizes (source lines
of code). Whiskers indicate the 5th and 95th percentiles.

Language and tooling. We focus on testing Java programs, since Java is widely used
in introductory and advanced programming courses at the secondary and post-secondary
levels. We used PIT [45], the state-of-the-art mutation testing system for the JVM, to
conduct mutation analysis. The Java language has attracted the development of a mature
collection of mutation testing tools [45, 96, 117, 147]. Of these, µJava [117] has received the
most attention in the software testing literature [48, 93, 103]. PIT [45] and MAJOR [96]
are newer tools, still under active development. PIT was found to be the most robust and
easy-to-use mutation tool for Java programs [48]. It is designed to be highly scalable, which
makes it suitable for practical mutation testing to drive incremental feedback. It has seen
much academic scrutiny in recent years [50, 103, 104, 108, 175], and the current version has
undergone empirically motivated improvements. Laurent et al. empirically compared PIT
with two well-known mutation analysis systems for Java—µJava and MAJOR—in terms
of their defect-detecting capabilities [104, 108], using all possible mutation operators for
each system. PIT was extended with additional operators based in research on mutation
testing [45] (added in v14.4.4). Subsequent evaluation established that, as of this writing,
mutation adequacy under the full set of PIT operators is the most stringent mutation-based
measure of test suite thoroughness for Java programs [104, 108].

66 Chapter 6. Improving the Assessment of Software Test Quality

Building on the past performance of deletion operators (§6.1.2.2) in other languages and
tools, and on PIT’s current dominance of the Java mutation testing space in terms of effec-
tiveness [104] and performance [61], we have analysed selective mutation using PIT with the
goal of reducing the cost of mutation testing while maintaining performance on par with the
comprehensive set of PIT operators.

Table 6.3: Selective mutation approaches evaluated for use in an AAT in this chapter,
including the incremental subsets evaluated in §6.6. The Ref. column refers to the first
proposal of the specified subset. ? = Proposed in this chapter.

Approach PIT Operators Ref. Practical for
an AAT?

FULL See Table 2 in [108] [52] RQ1

SUFFICIENT AOR, ROR, ABS , UOI [131] RQ2

DELETION RemoveConditionals, AOD, Non-
VoidMethodCalls, VoidMethodCalls,
MemberVariable, ConstructorCalls

[49] RQ2, RQ3

2-op Subset RemoveConditionals, AOD ? RQ4

1-op Subset RemoveConditionals ? RQ4

6.3 Research Question 1

RQ1: How efficient is mutation analysis at providing automated feedback on test suites?

AATs tend to handle substantial throughput, particularly when they provide students with
intermediate feedback on incremental submissions. This typically results in many dozens of
students making submissions in close temporal proximity to each other. It is imperative that
any mutation analysis strategy used in an AAT supports a reasonable response time so that
students can make appropriate use of intermediate feedback. To provide context for this
study, I provide concrete running times for mutation analysis on our AAT server, which runs
Web-CAT. During peak submission times, the Web-CAT server at Virginia Tech receives
39 submissions per minute, or a submission every 1.5 seconds. The sustained throughput
is 652 submissions per hour, or a submission about every 5.5 seconds. With these numbers
in mind, we would ideally like to produce feedback from mutation analysis in under 5 or 10
seconds.2 It is worth noting that: 1) Virginia Tech researchers created Web-CAT and deploy
its updates; 2) the Virginia Tech Web-CAT server serves 20–30 institutions in the US; and

2Of course, it is possible but expensive to scale horizontally and reduce running time. However, selective
mutation helps to reduce the asymptotic cost of mutation analysis.

6.3. Research Question 1 67

3) 100 or so other institutions with their own installations of Web-CAT would presumably
adopt any improvements we made as a result of this research. As such, our motivations are
driven by more than just the needs of Virginia Tech educators.

In this section we evaluate the efficiency of applying a comprehensive set of mutations to our
corpus of target programs, in terms of the time taken to generate feedback on their tests.

6.3.1 Method

We define the FULL set of PIT operators to be all those used in the comparison of PIT
with µJava and MAJOR by Laurent et al. [108] (see Table 2 in the reference), with some
improvements. We omitted operators that would, by definition, duplicate mutants created
by other operators. The ROR operator, which was added to PIT by Laurent et al., replaces
occurrences of comparison operators with all other comparison operators. For example, the
< operator would be systematically replaced by <=, >, >=, ==, and !=, for a total of
5 mutants. On the other hand, the ConditionalsBoundary operator would only replace it
with <=, and NegateConditionals would only replace it with its negation (>=). Clearly, the
mutants produced by these operators are duplicates of those created by ROR. We omitted the
PrimitiveReturns and FalseReturns operators, which duplicate mutants that are produced
by NonVoidMethodCalls. We also omitted the InvertNegatives operator, which duplicates
mutants that are produced by the ABS operator. Finally, we omitted a subclass of the
AOR operator (AOR1, according to PIT’s nomenclature), which would duplicate mutants
produced by the Math operator. The FULL set of operators as described here is currently the
strongest set of mutation operators available for Java programs [103, 108].

Mutation analysis was run on 1389 submissions, and results and running times were collected
for each submission. Analysis was run on a machine with two 16-core 2.60 GHz Intel Xeon
Gold 6142 CPUs and 256GB RAM running CentOS 7. This machine specification is similar
to what is used to run our Web-CAT server.

6.3.2 Result

Mutation analysis using the FULL set is not efficient enough for incremental
feedback. Mutation analysis took a median of 0.51 minutes to run per submission in the
CS2 course, and 5.04 minutes per submission in the CS3 course. Feedback times that are this
slow might result in intolerable slowdowns on the Web-CAT server that would be experienced
by a sizeable community of users. Effects would be exacerbated during peak submissions
times, when the server handles up to 40 submissions a minute. Additionally, consider the
fact that students receive feedback about correctness in 5–10 seconds. To a student that
already displays a disinclination to practice regular testing [95], testing feedback that is this
much slower may not motivate or help the student to actively identify weaknesses in their

68 Chapter 6. Improving the Assessment of Software Test Quality

test suites as they work on projects.

6.4 Research Question 2

RQ2: Is mutation by deletion a cost-effective alternative to comprehensive mutation for edu-
cational software projects of varying complexities?

Having found that the FULL set of PIT operators is not efficient enough for incremental
feedback in AATs, in this section we evaluate the cost-effectiveness of mutation by deletion,
i.e., mutating the program by systematically removing statements or constructs. Statement
deletion been found to be an efficient mutation analysis approach in other educational con-
texts [151]. However, the efficiency of the deletion set has so far not been evaluated for the
common educational context of automated assessment systems, and its effectiveness has only
been evaluated on codebases produced by novice CS students. We compare the performance
of deletion operators with that of the FULL set of operators (§6.3) and a key operator subset
from the literature, the SUFFICIENT set.

6.4.1 Method

Mutation results for each operator can be determined from output generated by PIT. A
single PIT run emits rich data for each generated mutant, including the type of operator
used and its survival status. This allows information—like mutation coverage and number of
mutants generated—to be determined for arbitrary subsets after a single run using all PIT
operators.

We define the DELETION set to be a subset of PIT operators that approximates the statement
deletion (SDL) and operator deletion (ODL) mutation operators for Java [49, 54]. Since PIT
operates on Java bytecode, a precise replication of those deletion operators is not practical.
We use 6 operators as our DELETION set (Table 6.3).3

We define the SUFFICIENT set of PIT operators as a research-based subset intended to pro-
duce significantly fewer mutants while maintaining effectiveness. In 2017, Laurent et al. [108]
extended PIT with operators from the literature, including most of Offutt’s experimentally
determined sufficient set [131].4 The SUFFICIENT set of mutation operators in PIT is Ta-
ble 6.3.

We define two dependent variables:
3We did not use the OBBN mutation operator—variants of which mutate by deleting bitwise operators

and operands—because only 5.7% of submissions contained bitwise operations at all.
4The Logical Connector Replacement (LCR) operator does not exist in PIT. The && and || logical

connectors do not translate to single bytecode instructions, but instead to branching instructions which are
mutated by ROR.

6.4. Research Question 2 69

• Cost: The number of mutants per thousand lines of code (KSLoC)
• Accuracy: A measure of deviation of a subset’s coverage from coverage that would

be achieved using the FULL set, defined as follows:

Accuracy = 1− squared err.
= 1− (FULL cov.− Subset cov.)2

Accuracy is measured against the FULL set because it is the strongest form of mutation
testing currently available for Java projects (§6.2.2).

We measured the cost and accuracy for the FULL, SUFFICIENT, and DELETION subsets of
operators, for our corpus of 1389 submissions. We used an ANOVA followed by posthoc
pairwise comparisons to determine the differences between the cost and accuracy of individual
subsets. Results are summarised in Table 6.4 and Figure 6.2.

6.4.2 Result

Mutation by DELETION is a cost-effective alternative for smaller codebases, but
its running time still presents challenges for more larger codebases. A one-way
ANOVA indicated a statistically significant difference in cost measured in mutants per
KSLoC (F(2, 4164)=5110.50, p < 0.01) between the DELETION (µ = 678.09), SUFFICIENT
(µ = 1594.68) and FULL (µ = 3430.56) operator sets. Similarly, a one-way ANOVA also indi-
cated a statistically significant difference in accuracy (F(2, 4164)=630.46, p < 0.001) between
the DELETION (µ = 0.995), SUFFICIENT (µ = 0.997), and FULL (µ = 1.00) sets. Posthoc anal-
ysis using Tukey’s HSD test showed statistically significant pairwise differences between the
subset groups in terms of both cost and accuracy (p < 0.01 for all pairs), and indicated that
both cost and accuracy decreased in the order FULL → SUFFICIENT → DELETION. Effect
sizes calculated using Cohen’s d [44] showed that cost decreased much more precipitously
than accuracy (Table 6.4).

This is visually apparent in Figure 6.2, which shows the accuracy of coverage and the cost of
using the DELETION, SUFFICIENT, and FULL subsets. Note that there is no distribution for
the accuracy of the FULL set, only a line, since accuracy was measured against the FULL set.

Although accuracy seems to be slightly lower for DELETION operators, observe that the
accuracy axis is lower-bound at 0.94. This suggests that, though weaker than the FULL or
SUFFICIENT sets, the DELETION set still provides an effective evaluation of a test suite’s
thoroughness. The difference in accuracy could possibly be attributed to the FULL and
SUFFICIENT sets producing more equivalent mutants (mutants that are functionally identical
to the original program, and thus impossible to kill) than the DELETION set.5 This would

5We do not omit equivalent mutants in this analysis. Automatic identification of equivalent mutants is
an impossible task [32], and manual inspection would render incremental feedback impossible in practice.
See §6.8.

70 Chapter 6. Improving the Assessment of Software Test Quality

Table 6.4: Difference effect sizes in accuracy and cost between operator subsets. Accuracy
and cost both decrease in the order FULL → SUFFICIENT → DELETION. The decrease in cost
is more pronounced.

Subset Pair Accuracy Cost

µ
Cohen’s d

(w.r.t. FULL) µ
Cohen’s d

(w.r.t. FULL)
FULL 1.00 — 3430.56 —

SUFFICIENT 0.997 1.14 1594.68 2.07

DELETION 0.995 1.25 678.09 3.63

be consistent with previous findings that the SDL operator tends to generate few equivalent
mutants (< 4%) [54]. It is also intuitive, since equivalent mutants under the DELETION set
would indicate redundant code.

The running time cost of the DELETION set shows notable savings over the FULL set (§6.3).
However, there is still a need for improvement if one were to use the DELETION set to of-
fer automated feedback in an AAT. This is particularly true for larger and more complex
projects, i.e., those in the CS3 corpus. The DELETION set took a median of 4.75 seconds to
run per submission in the CS2 course, and 1.11 minutes per submission in the CS3 course.

Using the DELETION set is considerably cheaper than using the SUFFICIENT set, which in
turn is cheaper than using the FULL set. These sizeable differences in cost coupled with
relatively smaller differences in accuracy suggest that the PIT DELETION set is a promising
path forward for cost-effective mutation analysis.

This analysis can be seen as a replication study that gathers more support for previous work
evaluating deletion operators. We found support for findings from Untch [162], Offutt et
al. [49, 54], and Dereziǹzka et al. [56] that found mutation by deletion to be highly cost-
effective, and partial support for Shams [151], who found that statement deletion (SDL)
represented a promising path toward the use of mutation testing in an educational context.

6.5 Research Question 3

RQ3: Can the cost of mutation by deletion be reduced further?

In this section, we investigate whether a subset of the DELETION set performs comparably
well at approximating FULL coverage.

6.5. Research Question 3 71

FULL SUFFICIENT DELETION
Subset

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Accuracy = 1 - (FULL cov. - Subset cov.)2
Cost = # Mutants per KSLoC

0

2000

4000

6000

8000

10000

Co
st

Figure 6.2: Accuracy and cost of the DELETION, SUFFICIENT, and FULL subsets of muta-
tion operators (n = 1389). All three subsets have high accuracy, but the DELETION set is
considerably cheaper than the FULL and SUFFICIENT sets.

6.5.1 Method

We formulate our problem as a regression problem:

• Independent variables: Coverage percentage achieved under individual operators
• Dependent variable: Coverage percentage achieved under the FULL set of PIT opera-

tors.
• Data points: Project submissions (Table 6.2)

We used a forward-selection procedure to select a subset of mutation operators out of an
initial superset. We fit linear models in each step using the statsmodels [149] Python
module. The goal is to produce a subset of operators while incurring acceptable losses in
effectiveness, which is a form of selective mutation.

Forward selection [26] is a statistical model selection method. Starting with an empty model,
(i.e., with no features), we consider features one at a time, checking to see how much each
one improves the model. The best-performing feature is added and the procedure is repeated
for all remaining features. This process repeats until the model stops improving, or until
there are no more features. Forward selection is generally used when the initial number of
features is large, and one wishes to select a small subset.

Our features are individual mutation operators. However, each feature carries with it a con-
siderable computational cost. Therefore, forward selection is an appropriate feature selection
strategy since it will (theoretically) help reduce the number of operators while maintaining
overall effectiveness.

72 Chapter 6. Improving the Assessment of Software Test Quality

Table 6.5: Forward selection on the entire corpus of submissions, choosing DELETION opera-
tors. Highlighted cells contain values from the final model. Other cells contain cumulative
values for intermediate models, after adding each operator.

Step Operator Added # Mutants Generated Adj. R2 Coeff. Std.
Error

Median % of
DELETION

% of
FULL

(intercept) — — — — 0.03 0.008

1 RemoveConditionals 102 36.04% 7.04% 0.78 0.35 0.011

2 AOD 140 49.47% 9.67% 0.88 0.19 0.007

3 NonVoidMethodCalls 236 83.39% 16.30% 0.91 0.28 0.012

4 VoidMethodCalls 240 84.81% 16.57% 0.92 -0.04 0.005

5 MemberVariable 271 95.76% 18.72% 0.92 0.06 0.009

6 ConstructorCalls 283 100.00% 19.54% 0.92 0.04 0.007

We start with no operators, and at each step we add the operator that minimises the Bayesian
Information Criterion (BIC) [148]. If two operators perform equally well when added to the
model, we select the one with lower cost, i.e., the one that produces fewer mutants. BIC was
chosen over R2 since it is better at predicting model performance on future, unseen data.
It was chosen over the closely related Akaike Information Criterion (AIC) [26] because BIC
penalises additional features more heavily than AIC and might result in a simpler model.
This benefits our aim of reducing the number of mutation operators. The procedure stops
when none of the remaining operators reduce BIC any further.

We used the procedure described above to incrementally choose operators in order of decreas-
ing value-added. Since our goal is to minimise cost, we chose operators from the cheapest
known-good subset of mutation operators, the DELETION set. At each step, we add the next
best operator that further improves the model according to BIC.6

6.5.2 Result

A small subset of DELETION operators is responsible for most of the DELETION
set’s value, indicating that its cost can be reduced further. Applying this process
to the entire corpus of 1389 submissions yielded DELETION operators in the order described
in Table 6.5. Highlighted cells indicate estimates, errors, and cost from the final model,
and other cells indicate cost and performance from intermediate models considered during

6We report adjusted R2 for the sake of interpretability.

6.6. Research Question 4 73

forward selection. Notice that all the DELETION operators were included in the final model,
suggesting that each of them brings some additional explanatory power to the model.

The DELETION operators explained 92% of the variance in mutation coverage achieved under
the FULL set (see the highlighted R2 value in Table 6.5), while doing just under 20% of the
work. This is in keeping with previous work [49, 54, 56, 162] that found mutation by deletion
to be highly effective, and lends further support to our findings regarding RQ2 (§6.4).

Additionally, a small subset of DELETION operators is responsible for most of its effective-
ness. Model improvement tended to plateau after the first three operators were selected.
The RemoveConditionals and AOD operators alone performed reasonably well at predicting
coverage under the FULL set (adj. R2 = 0.88). NonVoidMethodCalls was selected next,
bringing with it a slight increase in effectiveness: R2 goes from 0.88 to 0.91. The addition of
subsequent operators resulted in moderate successive increases in cost, and the model never
improved beyond adj. R2 = 0.92. These diminishing returns suggest that, after a certain
point, additional DELETION operators are not worth the cost they incur.

6.6 Research Question 4

RQ4: Are the benefits of different mutation strategies project dependent?

Recall that our goal is to select a cheaper subset of the DELETION set that provides a good
approximation of coverage achieved under the FULL set. The models presented in Table 6.5
are based on the entire corpus of 1389 submissions. Observe that this is a considerably
heterogeneous corpus of programs, in terms of both size and complexity (see Table 6.2).
We hypothesise that the choice of DELETION operators differs based on the actual programs
under test. Specifically, we hypothesise that the larger a program is, the fewer operators
it requires to make this approximation. If this is true, then we may be able to avoid doing
unnecessary work to evaluate test suites present in larger programming projects (e.g., those
found in upper-level CS courses).

6.6.1 Method

Clustering projects by size. To test this hypothesis, we split the corpus of submissions
based on the number of source lines of code (SLoC). Splitting was performed using Jenks
natural breaks optimization [92].7 The main idea behind this splitting technique is to 1)
maximise the variance between groups, and 2) minimise the variance within groups.

We used goodness of variance fit (GVF) [91] to determine the appropriate number of splits.
GVF is a 0 → 1 measure that is directly proportional to between-group variance, and

7Can be seen as a variation of K-Means clustering [112] applied to 1-dimensional data.

74 Chapter 6. Improving the Assessment of Software Test Quality

inversely proportional to within-group variance. Therefore, we would like to maximise it. To
determine the appropriate number of splits k, we applied the Jenks algorithm for increasing
values of k from 2 to 7 and plotted the GVF for each splitting. The diminishing improvements
in GVF (Figure 6.3) indicated k = 4 to be an appropriate number of splits for this dataset.
The four submission groups SG1–SG4 and their intervals are depicted in Figure 6.4.

2 3 4 5 6 7
Number of splits (k)

0.75

0.80

0.85

0.90

0.95

Go
od

ne
ss
 o
f v

ar
ia
nc

e
fit
 (G

VF
)

Figure 6.3: Goodness of variance fit (GVF) for increasing values of k using Jenks natural
breaks optimization.

Incremental subsets. We incrementally built “n-operator” subsets of DELETION operators
for increasing values of n. Operators were selected one at a time in the order obtained
through forward selection (Table 6.5), and the resulting subset was evaluated separately
against all groups of submissions using linear regressions.

The running time for each incremental subset was approximated by obtaining a “time-per-
mutant” multiplier TPM for each submission. This was obtained using the following ratio
(where mFULL is the number of mutants produced under the FULL set, and tFULL is the total
running time for the FULL set):

TPM =
tFULL

mFULL

Then for a given subset of operators S, its running time tS for a submission was approximated
as:

tS = TPM ×mS

Normalizing by program size, we obtain a composite measure of running time cost for a given
subset of operators, in seconds-per-KSLoC (Table 6.6).

6.6. Research Question 4 75

0 250 500 750 1000 1250 1500 1750
Source Lines of Code (SLoC)

0

20

40

60

80

100

120

140

160

of
 S
ub

m
iss

io
ns
 (n

=
13

89
)

34
1
SL
oC

66
6
SL
oC

10
97

 S
Lo
C

Submission Groups
SG1 (n=672) SG2 (n=353) SG3 (n=245) SG4 (n=119)

Figure 6.4: Groups of submissions based on SLoC. Dashed lines indicate group boundaries.

6.6.2 Result

Mutation adequacy on larger projects can be approximated with fewer mutation operators.
Results are summarised in Figure 6.5. Each bar indicates the submission group under test,
and each group of bars indicates the incremental subset being evaluated. The y-axis in-
dicates the percentage of variance in FULL coverage that can be explained by the specified
subset, for the given submission group. The incremental subsets proposed are included in Ta-
ble 6.3. Median subset running times for each submission group and for the entire corpus
are presented in Table 6.6.

1-op Subset. The first subset comprises only the RemoveConditionals operator, which
removes conditionals by replacing them with boolean literals (true or false).

The 1-op Subset shows poor performance for SG1, the group of small submissions (see
the first bar in the first group in Figure 6.5). For the groups in the middle, SG2 and
SG3, RemoveConditionals is able to explain 88% and 86% of the variance in FULL coverage,
respectively. It is able to explain 90% of the variance in FULL coverage for group SG4 (the
group containing the largest submissions).

2-op Subset. This subset contains the 1-op Subset plus the AOD operator, with removes
arithmetic operators from statements by systematically removing each operand.

This subset does better at predicting FULL coverage for all submission groups, with a to-
be-expected increase in cost. Two operators—RemoveConditionals and AOD—are able to
explain over 92% of the variance in FULL coverage for groups SG2–SG4. The subset still

76 Chapter 6. Improving the Assessment of Software Test Quality

1-op Subset 2-op Subset 3-op Subset
Incremental Subsets

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac
cu
ra
cy

(A
dj
. R

2 p
re
di
ct
in
g
FU
LL
 c
ov
er
ag
e) R2=0.9

Submission Groups
SG1 SG2 SG3 SG4

Figure 6.5: Effectiveness of incremental subsets used to predict FULL coverage for submission
groups.

performs relatively poorly for SG1, with adjusted R2 = 0.80.

3-op Subset. This subset contains the 2-op Subset plus the NonVoidMethodCalls operator.
It removes calls to non-void methods by replacing their return values the with given type’s
default value.

The inclusion of NonVoidMethodCalls results in negligible improvements in model perfor-
mance for all submission groups. The model continues to perform well for groups SG2–SG4
(adj. R2 > 0.94), and it continues to perform poorly for group SG1 (adj. R2 = 0.84). Note
that the addition of the NonVoidMethodCalls operator adds nearly 50% to the costs incurred
by the previous subset for each submission group (see Table 6.6).

6-op Subset. For the sake of brevity, we jump to results for the entire available set of
DELETION operators, i.e., containing all 6 deletion operators listed in Table 6.3.

With the entire DELETION set included, models are able to explain a high amount of variance
in FULL coverage (94% or higher) for submission groups SG2–SG4. For group SG1, the model
is only able to explain 85% of the variance in FULL coverage. For all groups, this represents
a small improvement from the 3-op subset.

6.7 Discussion

In this section, we discuss the implications of our results.

6.7. Discussion 77

Table 6.6: Median running times (in seconds) using incremental subsets of operators, for
each submission group, and for the entire corpus normalised by program size.

Group-wise and overall running time medians (seconds).

Per group All groups

SG1 SG2 SG3 SG4 Time / KSLoC
FULL 16.11 83.81 283.42 325.06 205.64
DELETION 3.93 15.84 63.39 66.78 34.77
3-op Subset 2.76 13.50 50.80 54.58 27.91
2-op Subset 1.63 8.40 29.52 31.25 19.52
1-op Subset 1.19 6.16 20.08 20.83 13.95

6.7.1 Choosing a Subset of Operators

The DELETION set, though cheaper than the FULL and SUFFICIENT sets (Figure 6.2), in-
curs unproductive cost. Consider the mutation operators chosen through the lens of cost-
effectiveness. We have seen in sections 6.5 and 6.6 that DELETION operators’ ability to ap-
proximate FULL coverage improves and then tapers off after a few mutation operators have
been chosen. Based on the changing R2 values in Table 6.5, one might conclude that the
critical point is after the second (AOD) or third (NonVoidMethodCalls) operator is added
to the model. However, consider the cost incurred by this third operator. The first two
operators chosen—RemoveConditionals and AOD—together account for just under half of
all DELETION mutants, and just under 10% of all mutants under the FULL set, but are able
to explain 88% of variance in FULL coverage. Including the NonVoidMethodCalls operator
increases the total cost of the previous two operators by nearly 50%, (3-op Subset in Ta-
ble 6.6), but only explains an additional 3% (91%) of the variance, which is a relatively small
improvement over the previous subset.

Figure 6.6 is a “zoomed in” version of Figure 6.2, with the FULL and SUFFICIENT sets
excluded, and the 1-op and 2-op subsets included. For extremely small losses in accuracy,
subsets of the DELETION set are able to bring huge cost savings. Taking cost and accuracy
with respect to FULL coverage into account, we conclude that in general the 2-operator
subset is the most practical set for fast and effective mutation analysis.

Why does RemoveConditionals perform so effectively by itself? For the groups of larger
submissions SG2–SG4, RemoveConditionals alone proved to be tremendously effective at
approximating FULL coverage (§6.6). This operator replaces conditionals with Boolean lit-
erals, effectively excluding (or ensuring the execution of) all statements controlled by a
condition. Mutation analysis using this operator has strong ties to object branch coverage
(OBC) [151], one of the strongest forms of code coverage for Java programs. OBC requires
students to write tests that exercise every Boolean condition generated in their solution’s
compiled bytecode. RemoveConditionals can be seen as a stronger form of this measure,

78 Chapter 6. Improving the Assessment of Software Test Quality

DELETION 2-op 1-op
Subset

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Accuracy = 1 - (FULL cov. - Subset cov.)2
Cost = # Mutants per KSLoC

0

200

400

600

800

1000

1200

1400

Co
st

Figure 6.6: Accuracy and cost of the DELETION, 2-op, and 1-op subsets of mutation operators.
This figure is a “zoomed in” version of Figure 6.2, with the FULL and SUFFICIENT sets no
longer included.

since it is sensitive to not only the execution of logical branches, but also to the propagation
of program state or output from those logical branches to the tests, i.e., through assertions.

Also consider the kinds of programs under test in this study. We included submissions from
an upper-level Data Structures & Algorithms (CS3) course, nearly all of which were clustered
in submission groups SG2–SG4. These projects require significant control flow components
to implement complex behaviors, so it is plausible that focusing on conditions in the control
flow logic would imply the most critical aspects of quality testing. We recommend that AATs
use the 1-op subset for larger projects (SLoC > 341).

How does one evaluate tests for smaller submissions (group SG1)? In §6.6, notice that the
3-op subset—or indeed, the entire DELETION set—is unable to achieve a good approximation
of coverage under the FULL set for smaller submissions. This throws into question whether
selective mutation is an effective approach for these projects. In fact, the time to run
mutation analysis on these submissions is so low (µ = 0.37 minutes, σ = 0.28 minutes)
that one might consider simply using the FULL set of PIT operators instead of a cheaper
approximation.

Submissions in SG1 overwhelmingly belong to early assignments in the CS2 course. They
are small and simple codebases that present comparatively fewer opportunities for mutation,
even when normalizing by program size. They generate an order of magnitude fewer mutants
per KSLoC than projects in SG2–SG4. Submissions in SG1 generate an average of 2772
(σ = 719) mutants per KSLoC, while submissions in SG2, SG3, and SG4 generate an average
of 3896 (σ = 738), 4076 (σ = 1104), and 4443 (σ = 1034) mutants per KSLoC, respectively.

6.7. Discussion 79

1 public int probeSquare(int i) {
2 return i * i;
3 // Tests did not check the use of this arithmetic expression.
4 }

Listing 1: A snippet highlighting a line that contained a surviving mutant (similar to reports
emitted by PIT.

An analysis of variance confirmed that the number of mutants per KSLoC is significantly
different for different submission groups. Post-hoc analysis using Tukey’s HSD test showed
that the pairwise differences in mutants per KSLoC between groups SG2–SG4 is at least an
order of magnitude less than the difference between SG1 and each of the other submission
groups (p < 0.05 for all pairs). In light of these differences in the effectiveness and cost of
mutation testing on our data set, we recommend that AATs use the FULL set of mutation
operators for small submissions (SLoC ≤ 341).

It is also worth considering whether mutation testing is an over-engineered test evaluation
strategy for programs of such minimal complexity. When cyclomatic complexity is low,
infected program state is much more likely to propagate to test output, assuming that the
faulty code is executed by the test suite. This assumption is usually satisfied by AAT
requirements for complete condition coverage. These facts mitigate much of the threat
associated with code coverage measures for small and simple software projects.

6.7.2 Operationalising Feedback

What might feedback based on mutation analysis look like? Ultimately, the goal of our
research is to improve the quality of student-written test suites. Mutation analysis only
furthers this goal if the students get feedback about the process in some way. Similar to
code coverage, it is easy to generate feedback for students by highlighting the lines of code
that contain undetected mutations. Consider the code snippet in Listing 1. The AOD
mutation operator was applied to the highlighted line (line 2), changing it to return i.
The highlight indicates that all tests passed even with the specified mutation in place. In
other words, no test behaves differently whether the output is i or i * i. A combination
of information—the highlighted line and the exact mutation that was applied—gives the
student an explicit strategy for improving the test suite based on the provided feedback, i.e.,
write a test that makes an assertion about the function’s return value. Similar feedback may
be devised for other mutation operators.

Is this any better than code coverage? Listing 1 depicts a real function from our corpus of
submissions, that achieved complete object-branch coverage but zero mutation coverage. It
is a simple probing function that helps determine a record’s position in a hash table. The
student’s tests only verified that the size of the hash table increased after each insertion,

80 Chapter 6. Improving the Assessment of Software Test Quality

but they never verified that records were inserted at the right positions. Code coverage
measures were unable to detect this deficiency, since the probeSquare function was executed
(“covered”) during the insertion process.

Indeed, this discrepancy was reflected in submissions across our entire corpus. Object branch
coverage (a strong form of code coverage) scores tended to cluster close to the 100% mark
(µ = 0.98, σ = 0.03), while mutation coverage using only the 2-op Subset (RemoveCondi-
tionals and AOD) tended to be lower (µ = 0.81, σ = 0.18). We observed an insignificant
Pearson correlation between the two measures (r = −0.01, p = 0.58).

An intuitive explanation for the distributions above is that students naturally try to score
highly on the measures for which they are incentivised to do so. Whether idealistically or to
maximise incentives, students in our dataset attained near-perfect code coverage scores. Our
hope is that this tendency will remain when mutation analysis is used for feedback instead,
resulting in test suites with much better guarantees of thoroughness due to its strength as a
test adequacy criterion (§6.1.2).

6.8 Threats to Validity

Internal. We did not exclude equivalent or duplicate mutants from those generated by
PIT. In general, equivalent mutants manifest in mutation analysis by artificially driving
down the mutation coverage score (since it creates unkillable mutants), and duplicate mu-
tants may manifest by artificially driving up the score (since it means multiple mutants are
killed by the same set of tests). The problem of identifying these mutants automatically is
undecidable [32], but can be done heuristically by manual inspection of programs. This was
infeasible due to the size of our submission corpus, and is impossible to operationalise in
an incremental feedback context. The size of our corpus may have helped to mitigate this
threat. Additionally, in a study that aims to reduce the cost of mutation analysis in AATs,
excluding this inevitable cost could lead to inaccurate results. Where possible, we reduced
the occurrence of duplicate mutants such that they could also be omitted when deployed in
an AAT (§6.3).

External. As with any educational research, the generalizability of our results may be
threatened by our sample of students and their submissions. We tried to mitigate this by
studying 1389 distinct submissions from 7 programming assignments in 2 CS courses. Sub-
missions between and within assignments were heterogeneous in terms of size and complexity
of both source code and test code. Testing the generalizability of these results on open-source
or industry projects would be interesting future work.

Construct. We studied PIT, a mature mutation testing tool available for Java. As de-
scribed in §6.2.2, it is currently the most robust, easy-to-use, and practical mutation testing
tool for the JVM, making it the most practical choice for fast feedback based on mutation
analysis. Nevertheless, we do not use any direct measures of software test quality here, such

6.9. Summary 81

as measuring bug revealing capability. Instead, we use coverage on the FULL set of PIT
operators as a proxy for measuring test quality, relying on existing theory [51] and research
on the validity of mutation analysis [4, 97]. We are encouraged by the fact that Shams [151]
performed an assessment of deletion mutators in terms of measuring test suite bug detection
ability and found them to be more effective than code coverage measures, but these results
still depend on the validity of the relationship between mutation analysis and test quality.

6.9 Summary

We have built on the current state of research to devise a cost-effective mutation strategy
to produce accurate, incremental, and scalable feedback on the quality of student-written
software tests. This approach provides a better assessment of how well software tests check
expected behaviours, and can be used to generate feedback for students. We improved upon
the most efficient mutation operator set previously proposed in the literature, the DELETION
set. For the projects we studied, the RemoveConditionals and AOD operators produced
results comparable to the most stringent set of operators at 1/10th the cost, achieving less
than half the cost of the best mutation approach proposed so far. Cost savings such as these
would go a long way toward being able to apply mutation analysis in practice in auto-graders
such as ASSYST or Web-CAT.

Chapter 7

Conclusions and Future Work

7.1 Summary of Findings and Conclusions

This dissertation presents methods to quantitatively measure aspects of the software devel-
opment process as followed by students. The eventual goal is to use these measurements to
provide students with formative feedback about their software development habits as they
work on projects, though no intervention experiments were conducted as part of this work.
In addition, to address challenges with evaluating the strength of student-written software
tests, we investigated the utility of mutation analysis as a test adequacy criterion. We
addressed its primary limitation: its computational cost.

This dissertation provides a number of contributions to computing education.

7.1.1 Process Metrics

Procrastination. In Chapter 4, I defined the Early/Often Index, which measures the
mean number of days before the project deadline when the student tends to write their code.
It represents a quantification of procrastination on software projects: a smaller number
indicates that work tended to be done closer to the deadline (i.e., procrastination occurred).

To validate the measure, I conducted semi-structured interviews with CS3 students in which
we talked about their development habits, loosely following the script in Appendix A. Ad-
ditionally, I manually inspected snapshot histories that were captured by DevEventTracker.
Details of this qualitative validation are presented in §4.3. Results indicated that the mea-
sure was generally accurate at characterising when a student tended to work on a given
project, showing discriminatory power between early and late work from different students,
and early and late work from the same student on different projects.

We found that students tended to work on projects less than 10 days before the deadline on
average, even though they were 3–4 weeks to work on each project. Relationships between
this metric and project outcomes aligned with experiential and theoretical expectations of
the effects of procrastination. When students worked earlier and more often:

• They were more likely to solve the assigned problem (i.e, achieve > 95% correctness)
• They were more likely to finish their projects earlier and on time

82

7.1. Summary of Findings and Conclusions 83

• They did not spend any more or less time on projects

Additionally, we considered the edit median time (calculated just like the Early/Often Index,
but as a median instead of mean). We found that when students had earlier test edit median
times (i.e., when they finished half of their testing earlier in the project lifecycle), they
tended to spend more time on their projects. This relationship was not present for the test
edit mean time. It is possible that when students did the bulk of their testing earlier, they
were more comfortable trying different approaches to the problem, or they had to re-design
solutions based on clarifications that were made available later in the project lifecycle.

Analyses were conducted using a within-subjects repeated measures design, meaning that
inferences were made by comparing the work of the same students on different projects
with each other. This helps us avoid making inferences based on traits or factors that are
inherent to individual students. Therefore, while our findings are not strictly causal, but we
are confident acting upon them to design interventions (proposed in §7.2).

Writing and running software. Also in Chapter 4, I described metrics to measure the
amount of time that passed between writing the project and executing it. This can be
measured with varying combinations of solution code or test code and normal executions
and test executions. A smaller result would indicate that, on average, less time passes
between when the student writes code and when they execute code (i.e., they engage in
more incremental “self-checking” behaviours).

Similar to the Early/Often Index, these metrics were considered generally accurate after
interviews with students and manual inspection of Git snapshots. We were unsurprised to
find that students launch their programs very often, with an average of 1.37 hours passing
between code edits and executions. However, we were surprised to find that the overwhelming
majority of launches were test launches as opposed to normal program launches (solution
µ = 55.66 and test µ = 229.23). In any case, we did not find any relationships between
students’ program or test launching practices and any project outcomes.

Incremental test writing. In Chapter 5, I presented metrics to measure the degree to
which students engaged with software testing during the project lifecycle. In particular, I
measured the balance and sequence of effort devoted to writing solution code and test code.

We defined a measure of testing effort: the proportion of code writing effort that was devoted
to writing test code. This was then calculated and aggregated (as a median) across multiple
axes: work sessions devoted to the project, individual methods in the project, and both.
Additionally, we measured the amount of testing effort devoted to a given method before
and after the method was completed, i.e., modified for the last time.

We found that, on average, around 20% of code writing effort in individual work sessions was
devoted to writing test code. This might be indicative of students’ disinclination to practise
testing that other researchers have reported. In terms of individual methods, after filtering
out getters, setters, and printing methods, we found that students were likely to directly
invoke no more than 60% of their projects’ methods in their test suites. Finally, we observed

84 Chapter 7. Conclusions and Future Work

that students were more likely to practice incremental test-last development than they were
to practice test-first development: in 85% of projects, students put in less than half of their
testing effort before the code under test had been finalised.

We measured the metrics’ relationships with two project outcomes: correctness, as measured
by an oracle of instructor-written test cases, and test suite strength, as measured by condition
coverage. We found that students were likely to produce higher quality software and tests
when they devoted a higher proportion of their coding effort to testing during each work
session in which they worked on their projects. Whether this testing occurred before or after
the solution code under test was written was irrelevant to project correctness. This indi-
cates that the incremental nature of testing was more important than whether the student
practised TDD or ITL.

Additionally, students were likely to produce test suites with higher condition coverage when
they:

• Conducted more testing after the code under test had been completed
• Devoted more testing effort to individual solution methods

The primary contribution of this work is that we are able to identify these behaviours with
lead time before project deadlines. For example, at or before the halfway point of a project
timeline, one could use metrics from §5.2 to determine the extent to which students are
engaging with incremental testing. This would help set the stage for interventions or feed-
back mechanisms that could encourage effective software development habits and discourage
ineffective ones.

7.1.2 Mutation Analysis

In addition to measuring incremental test writing process, it is important to appropriately
assess test quality. We discussed the fact that previous options for measuring test adequacy
suffer from a number of limitations, and that a more robust solution is required. To this
end, we examined the feasibility of using mutation analysis as an automated assessment
mechanism for evaluating student-written software tests. Experiments were conducted on a
server setup that is similar to that of the Virginia Tech Web-CAT server, which serves many
thousands of users. Upon finding that current approaches to mutation analysis were too
expensive for the autograding context, we devised and evaluated new ones. Analyses and
results are presented in Chapter 6.

We investigated the feasibility of using mutation analysis “as is” for feedback on CS2 and
CS3 software projects. Comprehensive mutation took a median of approximately 30 seconds
to run for CS2 projects, and 5 minutes to run for CS3 projects. These running times are
too slow for providing incremental feedback and might result in community-wide slowdowns
for the 20–30 institutions that use the Virginia Tech Web-CAT servers. We also found that
mutation by deletion—which Shams found to be more cost-effective [151]—was infeasible for

7.2. Future Work 85

automated feedback, particularly for CS3 projects.

To evaluate less expensive subsets of mutation operators, we used linear models to measure
the percentage of variance in comprehensive mutation coverage that was explained by a
smaller subset of mutation operators. We confirmed that mutation by deletion is effective at
approximating test adequacy: it 92% of the variance in comprehensive mutation coverage.

Reducing the cost mutation by deletion further, we found that a single mutation operator—
replacing conditional statements with true and false—was tremendously effective at mea-
suring test adequacy in larger projects. It explained approximately 90% of the variance
and incurred only 8% of the cost, taking a median of 20.83 seconds to run for the largest
codebases in our corpus (≥ 1097 KSLoC). For smaller projects, an additional mutation
operator—deleting arithmetic expressions—is required to make this approximation. This
subset of two operators explained > 90% of the variance for all but the smallest codebases
(≤ 341 KSLoC). For small codebases (like those submitted to early assignments in CS2),
comprehensive mutation analysis is a feasible assessment mechanism, taking a median of
only 16.11 seconds for these projects.

7.2 Future Work

7.2.1 Development Process Interventions

How can we use our metrics to change student development behaviours? In §4.6, I dis-
cussed a prototypical predictive model that achieved some accuracy at classifying projects
as “solved” a project or not, based on their solution edit mean times and their test edit
median times. A model like this might be used to aid in early identification of students
who are following suboptimal development practices like procrastination or sporadic testing,
thereby enabling formative assessments. In this section I discuss possible uses of the metrics
described in Chapters 4 and 5 to power such interventions.

Ideally, we would like to support interventions in real time, i.e., while students are still
working on projects. However, a challenge is that the Early/Often Index—as a measure of
central tendency—is “backwards facing” (see §4.2.1). The mean or median of a student’s
distribution of work days can only be calculated (or approximated to a reasonable degree of
accuracy) when all or most of the work has already been done. Unfortunately, this would
mean that the student will already have faced the consequences of procrastinating on the
project, which is precisely what we would like to avoid.

However, it should be possible to approximate a projection of a student’s future work plans,
based on the work of thousands of students from previous semesters on similar projects.
Given the work done by a student so far, one might use time series forecasting methods
to project what the rest of the student’s work distribution will look like. In theory, we

86 Chapter 7. Conclusions and Future Work

could obtain a distribution of work days that is part real data and part projected data,
with the proportion that is real data increasing in size as time passes. This distribution can
then be used to make increasingly accurate approximations of the mean edit time (i.e., the
Early/Often Index). Since successful (solved) project solutions have mean edit times more
than a week ahead of deadlines, it should be possible to predict performance with some
degree of accuracy with some degree of lead time before the deadline.

The measurements of test writing described in §5.2 are readily amenable to incremental
feedback. The PSB metric measures the testing effort being applied during each work session.
Unlike the solution edit mean or median time, PSB begins to provide useful insights much
earlier in the project lifecycle. For example, during the first or second week, we can tell how
much testing effort the student is applying per work session, on average. This is information
that can be acted on to provide formative feedback.

There are many potential interventions that could be driven by early identification of inef-
fective development practices.

Project grade. A portion of the project grade is already allocated based on properties
other than correctness, such as the percentage of code covered by students’ own tests, and the
quality of the comments and program style. A natural step is to base a portion of the grade on
an assessment of incremental development and time management practices. A grade-based
intervention could work under Web-CAT’s model of multiple submissions, by encouraging
students to respond to rewards or penalties based on their development practice between
intermediate submissions. It is unclear how this might affect development behaviours. There
is research that shows that students performed better on project correctness when they were
graded on the strength of their test suites [58]. However, students have also been shown
to maximise incentives (i.e., points) by driving up their testing “scores” without actually
improving the strength of their test suites [1, 153]. Would such interventions cause students
to improve their software development behaviours? Or would it incentivise them to find
ways to maximise scores without substantively changing behaviours?

A learning dashboard or a leader-board. Perhaps the solution need not be grade-based
at all. Instead, it may be fruitful to encourage students to reflect on their behaviours over the
course of a project, perhaps in comparison with their peers. Graphs showing the progression
of solution code and test code over time (e.g., Figures 4.7–4.9) be automatically generated
for each student, providing visual feedback on their programming process. One might also
consider a leader-board that relates the individual’s performance to that of the rest of the
class. Making students aware of their standing in the class could provide more incentive for
self-improvement than simply informing them of their own programming practices.

Adaptive emails. Previous work has discussed the effects of interventions with adaptive
feedback on students’ procrastination behaviours and project performance [120]. Students
were sent emails with feedback generated from data about their last submitted work, and the
effects were positive when compared to a control group. Our suite of metrics could be applied
in a similar fashion. The feedback generated from data made available by DevEventTracker

7.2. Future Work 87

could be far more adaptive than that reported in [120].

Visual cues in the IDE. We have considered creating an Eclipse plugin that provides
students with visual cues about their development process in situ. Bandura reports that
self-regulatory behaviours are malleable by visual, verbal, and aural cues [10]. In a study
conducted by Buffardi & Edwards, students reported that they found the red–green bars in-
dicating the thoroughness of their testing to be the most important points of feedback (about
testing) provided in the Web-CAT interface [34]. Using the metrics described in Chapters 4
and 5, we could provide more detailed, real-time feedback in students’ IDEs themselves. For
example, an unobtrusive widget in the IDE’s toolbar might transition along a red–green
gradient, indicating the balance of the student’s testing and implementation effort during
the current work session. It is important for an intervention like this to maintain a balance
between unobtrusiveness and noticeability to the student.

Project milestones. Steel’s meta-analysis [161] suggested that procrastination occurs
when a task presents many junctures of choice [156] and when a person feels low self-efficacy
about their ability to complete a task [10]. As a preliminary response to high rates of late
or incomplete submissions, the CS3 course at Virginia Tech instituted project milestones—
increments of project requirements that were due before the final deadline—that appeared
to reduce rates of late submission and improve overall project performance. It is possible
that this intervention succeeded because it counteracted the two procrastination correlates
described above. The data analysed in Chapters 4 and 5 were not collected during semesters
in which milestones were instituted. Future work will need to quantitatively evaluate the
impact of project milestones, perhaps by examining its effect on, say, the Early/Often Index.

Other considerations. It is possible for the approaches described above to have negative
effects on student performance, self-efficacy, or motivation. For example, if the student
starts testing late in their project lifecycle, it might be difficult for them to counteract the
low score they garnered from early work sessions. Should we still penalise bad practices
from earlier in the lifecycle if the student is now engaging in better practices? Moving
up a leader-board might supplant learning or project performance as the student’s goal,
potentially leading them to optimise for incentives rather than substantively changing their
development habits. Alternatively, a student who is sufficiently behind may feel like no
action they take is good enough to move them up the leader-board, leading to feelings of
inadequacy or a lack of self-efficacy. We need to be cognizant of these potential side effects
while deploying interventions.

7.2.2 Mutation Analysis

Feedback based on mutation analysis. In Chapter 6, we devised and evaluated a scal-
able approach to deploying mutation analysis in an AAT like Web-CAT. We are considering
deploying feedback based on our results at Virginia Tech, starting with the CS3 course.
In §6.7.2, I described a possible presentation of feedback based on mutation analysis. The

88 Chapter 7. Conclusions and Future Work

feedback mode is quite similar to that of code coverage, except it focuses on undetected
defects instead of unexecuted statements or conditions (see Listing 1). Before deploying
this feedback, it is important to evaluate the pedagogical effectiveness of mutation analysis.
As a preliminary step, we held 9 interviews with CS3 students, who indicated that they
found feedback based on mutation analysis to be useful and actionable. We conducted 2-op
mutation analysis (using RemoveConditionals and AOD) on their project submissions, and
showed them instances of live mutants in their otherwise “covered” code. They were able to
identify specific test cases that would have killed the mutants we showed them.

Evaluating the pedagogical value of mutants and mutators. Further work is needed
to determine the degree to which mutation feedback is useful to CS students, and the factors
that affect this usefulness. I define useful mutation feedback to mean feedback that guides the
student to make targeted improvements to their test adequacy based on live mutants. How
does the number of mutation operators used or mutants generated affect the student’s ability
to improve their testing? It is possible that too many reported live mutants could overwhelm
students into thinking that sufficient testing is a mammoth task that they are not equipped to
undertake. Are some mutation operators more useful than others? It is possible, for example,
that students will more easily respond to feedback based on RemoveConditionals, since it
has more direct ties to code condition coverage measures, with which they are familiar. We
could borrow from program comprehension research to aid in answering this question.

Mutant selection based on program type. Another promising avenue for future work
is in static determination of appropriate mutation operators for a given program. One might
analyse programs to determine various characteristics (cyclomatic complexity, use of looping
constructs, or others) that might impact mutation analysis. From those characteristics,
it might be possible to derive a context-specific subset of practical mutation operators.
While the space for such program characteristics may be intractably large for industry-grade
codebases, it might be manageable for student projects. The question is then whether we can
identify clusters of program types for which different subsets of operators perform better.

Closing the loop between Chapters 4–6. In Chapters 4 and 5, we used project cor-
rectness as an outcome variable measured by an oracle of tests written by course staff. But
who tests the tests themselves? Future work should involve strengthening our oracles us-
ing mutation analysis to ensure that our measurement of correctness is itself correct and
complete. Similarly, in Chapter 5 we used test suite quality as an outcome variable, mea-
sured by condition coverage. It would be interesting to augment the analysis by examining
the relationships between incremental testing practices and the different mutation analysis
approaches described in Table 6.3.

7.2.3 Long-Term Research Plans

Instructional improvements. We know the following about procrastination and students’
test writing habits:

7.3. Final Remarks 89

1. People procrastinate on tasks that they perceive to provide little value ([161])
2. Students often do not see the value in software testing ([11, 35])
3. Students are not practising regular software testing (see Chapter 5 in this dissertation)

These three findings together provide a fairly clear path forward: design instruction that
makes clear to students the value of software testing. For example, a software engineering
or software testing course might involve discussions of high-profile software failures and how
they might have been avoided by testing methodologies [5].

Additionally, we should be designing software assignments that more closely mimic real-world
software development, where the value of testing is more apparent. In §5.5, we discussed the
fact that students’ incremental test writing practices explained a significant but ultimately
small proportion of variance in eventual project outcomes. My conjecture is that students are
able to “test” their programs using the readily available instructor-created oracle (i.e., Web-
CAT), and therefore do not see value in conducting their own systematic testing. Preliminary
interviews held with students during the Fall semester of 2019 have mostly confirmed this.
Removing or reducing the ability to rely on such an oracle may be a good first step. Irwin
& Edwards have made some progress toward this goal by using gamification methods to
throttle the frequency with which students can make submissions to Web-CAT [86].

Longitudinal studies. Once interventions, feedback mechanisms, or instructional im-
provements have been deployed, it would be interesting to conduct longitudinal studies to
investigate subjects’ efficacy in their first engineering jobs. This would give us a real measure
of the impact we are having at mitigating the difficulties we discussed at the beginning of
this dissertation.

Good development process for end-user software developers. The development of
software—historically the sole purview of trained software professionals—is increasingly be-
ing carried out in a professional capacity by people with varying intents and motivations [128].
There are far more end-user programmers today than professional software developers [38].
For example, data analysts often maintain computational notebooks or spreadsheets to help
make sense of data. Information visualization specialists might follow more exploratory or
reactive development cycles than typical software engineers. Ko et al. have done important
work identifying the barriers faced by end-user programmers in today’s tools and technolo-
gies [105]. What does effective programming process look like for people in these roles?
How is this similar to or different from “traditional” software engineering best practices?
How can we design instruction for students preparing for these roles, keeping in mind their
motivations and intents for practising computing?

7.3 Final Remarks

Software development is a skill. Like any skill, it requires practice and feedback in order
to develop. In this dissertation, I have contributed methods to empirically characterise

90 Chapter 7. Conclusions and Future Work

software development habits as effective or ineffective in real time, i.e., as students work
toward project completion. In doing this, I have set the stage for instructors to provide
formative feedback on various aspects of the software development process. The primary
hypothesis that remains to be tested is that this kind of feedback will enable to students
to achieve improved project outcomes (e.g., higher project quality, reduced likelihood of
incomplete or abandoned submissions, and reduced rates of late submissions).

Findings from this research are also relevant to software engineering researchers and prac-
titioners. The intermediate-to-advanced undergraduates that were studied are only a year
away from entering the professional workforce, and the research methods used (developer in-
terviews, IDE log analysis, and software repository mining) were borrowed from the software
engineering research community. Professional engineers often follow project-based workflows
with deadlines, deliverables, and demands on their time that are not unlike the ones that
students grapple with in university.

Bibliography

[1] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. Mutation analysis vs. code cover-
age in automated assessment of students’ testing skills. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion, OOPSLA ’10, pages 153–160, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0240-1. doi: 10.1145/1869542.1869567. URL
http://doi.acm.org/10.1145/1869542.1869567.

[2] George Ainslie. Specious reward: a behavioral theory of impulsiveness and impulse
control. Psychological bulletin, 82(4):463, 1975. doi: 10.1037/h0076860.

[3] Amjad Altadmri and Neil C.C. Brown. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education, SIGCSE ’15, page
522–527, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450329668. doi: 10.1145/2676723.2677258. URL https://doi.org/10.1145/
2676723.2677258.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for
testing experiments? In Proceedings of the 27th International Conference on Soft-
ware Engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM. ISBN
1-58113-963-2. doi: 10.1145/1062455.1062530. URL http://doi.acm.org/10.1145/
1062455.1062530.

[5] Maurício Aniche, Felienne Hermans, and Arie van Deursen. Pragmatic software testing
education. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19, pages 414–420, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-5890-3. doi: 10.1145/3287324.3287461. URL http://doi.acm.org/10.
1145/3287324.3287461.

[6] Maurício Finavaro Aniche. Repodriller. https://github.com/ayaankazerouni/
repodriller, 2018.

[7] Maurício Finavaro Aniche and Marco Aurélio Gerosa. Most common mistakes in test-
driven development practice: Results from an online survey with developers. In Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), 2010 Third Interna-
tional Conference on, pages 469–478. IEEE, 2010. doi: 10.1109/ICSTW.2010.16.

[8] Richard D. Arvey, Maria Rotundo, Wendy Johnson, Zhen Zhang, and Matt McGue.
The determinants of leadership role occupancy: Genetic and personality factors.
The Leadership Quarterly, 17(1):1 – 20, 2006. ISSN 1048-9843. doi: https://doi.

91

http://doi.acm.org/10.1145/1869542.1869567
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/2676723.2677258
http://doi.acm.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/3287324.3287461
http://doi.acm.org/10.1145/3287324.3287461
https://github.com/ayaankazerouni/repodriller
https://github.com/ayaankazerouni/repodriller

92 BIBLIOGRAPHY

org/10.1016/j.leaqua.2005.10.009. URL http://www.sciencedirect.com/science/
article/pii/S1048984305001232.

[9] Dave Astels. Test driven development: A practical guide. Prentice Hall Professional
Technical Reference, 2003.

[10] Albert Bandura. Self-Efficacy: The Exercise of Control. Macmillan, 1997. ISBN
978-0716728504.

[11] Elena García Barriocanal, Miguel-Ángel Sicilia Urbán, Ignacio Aedo Cuevas, and
Paloma Díaz Pérez. An experience in integrating automated unit testing practices in
an introductory programming course. SIGCSE Bull., 34(4):125–128, December 2002.
ISSN 0097-8418. doi: 10.1145/820127.820183.

[12] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-
effects models using lme4. Journal of Statistical Software, Articles, 67(1):1–48, 2015.
ISSN 1548-7660. doi: 10.18637/jss.v067.i01.

[13] Lewis Baumstark and Michael Orsega. Quantifying introductory cs students’ iterative
software process by mining version control system repositories. J. Comput. Sci. Coll.,
31(6):97–104, June 2016. ISSN 1937-4771.

[14] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[15] Brett A. Becker. A new metric to quantify repeated compiler errors for novice
programmers. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’16, page 296–301, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342315. doi:
10.1145/2899415.2899463. URL https://doi.org/10.1145/2899415.2899463.

[16] Andrew Begel and Beth Simon. Novice software developers, all over again. In
Proceedings of the Fourth International Workshop on Computing Education Re-
search, ICER ’08, page 3–14, New York, NY, USA, 2008. Association for Com-
puting Machinery. ISBN 9781605582160. doi: 10.1145/1404520.1404522. URL
https://doi.org/10.1145/1404520.1404522.

[17] Andrew Begel and Beth Simon. Struggles of new college graduates in their first
software development job. In Proceedings of the 39th SIGCSE Technical Sym-
posium on Computer Science Education, SIGCSE ’08, page 226–230, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 9781595937995. doi:
10.1145/1352135.1352218. URL https://doi.org/10.1145/1352135.1352218.

[18] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When, how,
and why developers (do not) test in their ides. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 179–190,

http://www.sciencedirect.com/science/article/pii/S1048984305001232
http://www.sciencedirect.com/science/article/pii/S1048984305001232
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1352135.1352218

BIBLIOGRAPHY 93

New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.
2786843.

[19] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers test?
In Proceedings of the 37th International Conference on Software Engineering - Volume
2, ICSE ’15, pages 559–562, Piscataway, NJ, USA, 2015. IEEE Press.

[20] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy Zaid-
man. How to catch ’em all: Watchdog, a family of ide plug-ins to assess test-
ing. In Proceedings of the 3rd International Workshop on Software Engineering
Research and Industrial Practice, SER&IP ’16, pages 53–56, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4170-7. doi: 10.1145/2897022.2897027. URL
http://doi.acm.org/10.1145/2897022.2897027.

[21] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy of test-driven
development: Industrial case studies. In Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering, ISESE ’06, pages 356–363, New
York, NY, USA, 2006. ACM. ISBN 1-59593-218-6. doi: 10.1145/1159733.1159787.

[22] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. The
promises and perils of mining git. In 2009 6th IEEE International Working Conference
on Mining Software Repositories, pages 1–10, May 2009. doi: 10.1109/MSR.2009.
5069475.

[23] Paul Black and Dylan Wiliam. Assessment and classroom learning. Assessment
in Education: Principles, Policy & Practice, 5(1):7–74, 1998. doi: 10.1080/
0969595980050102. URL https://doi.org/10.1080/0969595980050102.

[24] Paul Black and Dylan Wiliam. Developing the theory of formative assessment. Ed-
ucational Assessment, Evaluation and Accountability, 21(1):5–31, Feb 2009. ISSN
1874-8597, 1874-8600. doi: 10.1007/s11092-008-9068-5.

[25] David Bowes, Tracy Hall, Jean Petrić, Thomas Shippey, and Burak Turhan. How good
are my tests? In Proceedings of the 8th Workshop on Emerging Trends in Software
Metrics, pages 9–14. IEEE Press, 2017.

[26] Hamparsum Bozdogan. Model selection and akaike’s information criterion (aic): The
general theory and its analytical extensions. Psychometrika, 52(3):345–370, 1987.

[27] Michael K. Bradshaw. Ante up: A framework to strengthen student-based testing
of assignments. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, SIGCSE ’15, pages 488–493, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-2966-8. doi: 10.1145/2676723.2677247. URL http://doi.acm.org/
10.1145/2676723.2677247.

http://doi.acm.org/10.1145/2897022.2897027
https://doi.org/10.1080/0969595980050102
http://doi.acm.org/10.1145/2676723.2677247
http://doi.acm.org/10.1145/2676723.2677247

94 BIBLIOGRAPHY

[28] Eric Brechner. Things they would not teach me of in college: What microsoft de-
velopers learn later. In Companion of the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’03, page 134–136, New York, NY, USA, 2003. Association for Computing Machinery.
ISBN 1581137516. doi: 10.1145/949344.949387. URL https://doi.org/10.1145/
949344.949387.

[29] Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael Kölling. Blackbox,
five years on: An evaluation of a large-scale programming data collection project.
In Proceedings of the 2018 ACM Conference on International Computing Educa-
tion Research, ICER ’18, page 196–204, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450356282. doi: 10.1145/3230977.3230991. URL
https://doi.org/10.1145/3230977.3230991.

[30] Neil C.C. Brown and Amjad Altadmri. Investigating novice programming mistakes:
Educator beliefs vs. student data. In Proceedings of the Tenth Annual Conference
on International Computing Education Research, ICER ’14, page 43–50, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327558. doi:
10.1145/2632320.2632343. URL https://doi.org/10.1145/2632320.2632343.

[31] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.
Blackbox: A large scale repository of novice programmers’ activity. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education, SIGCSE ’14,
pages 223–228, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2605-6. doi:
10.1145/2538862.2538924.

[32] Timothy A. Budd and Dana Angluin. Two notions of correctness and their relation
to testing. Acta Informatica, 18(1):31–45, Mar 1982. ISSN 1432-0525. doi: 10.1007/
BF00625279. URL https://doi.org/10.1007/BF00625279.

[33] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick G. Say-
ward. Theoretical and empirical studies on using program mutation to test the func-
tional correctness of programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’80, page 220–233, New
York, NY, USA, 1980. Association for Computing Machinery. ISBN 0897910117. doi:
10.1145/567446.567468. URL https://doi.org/10.1145/567446.567468.

[34] Kevin Buffardi and Stephen H. Edwards. Exploring influences on student adherence to
test-driven development. In Proceedings of the 17th ACM Annual Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE ’12, page 105–110, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312462.
doi: 10.1145/2325296.2325324. URL https://doi.org/10.1145/2325296.2325324.

[35] Kevin Buffardi and Stephen H. Edwards. A formative study of influences on student
testing behaviors. In Proceedings of the 45th ACM Technical Symposium on Computer

https://doi.org/10.1145/949344.949387
https://doi.org/10.1145/949344.949387
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1007/BF00625279
https://doi.org/10.1145/567446.567468
https://doi.org/10.1145/2325296.2325324

BIBLIOGRAPHY 95

Science Education, SIGCSE ’14, pages 597–602, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2605-6. doi: 10.1145/2538862.2538982.

[36] Kevin Buffardi and Pedro Valdivia. The significance of positive verification in unit test
assessment. In 52nd Hawaii International Conference on System Sciences, HICSS 2019,
Grand Wailea, Maui, Hawaii, USA, January 8-11, 2019, pages 1–10. ScholarSpace /
AIS Electronic Library AISeL, 2019. URL http://hdl.handle.net/10125/60199.

[37] Kevin Buffardi, Pedro Valdivia, and Destiny Rogers. Measuring unit test accuracy. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
SIGCSE ’19, pages 578–584, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5890-
3. doi: 10.1145/3287324.3287351. URL http://doi.acm.org/10.1145/3287324.
3287351.

[38] Margaret M. Burnett and Brad A. Myers. Future of end-user software engineering:
Beyond the silos. In Proceedings of the on Future of Software Engineering, FOSE 2014,
page 201–211, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450328654. doi: 10.1145/2593882.2593896. URL https://doi.org/10.1145/
2593882.2593896.

[39] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. The normalized
programming state model: Predicting student performance in computing courses based
on programming behavior. In Proceedings of the Eleventh Annual International Confer-
ence on International Computing Education Research, ICER ’15, pages 141–150, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3630-7. doi: 10.1145/2787622.2787710.
URL http://doi.acm.org/10.1145/2787622.2787710.

[40] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. Blending mea-
sures of programming and social behavior into predictive models of student achieve-
ment in early computing courses. ACM Trans. Comput. Educ., 17(3), August 2017.
doi: 10.1145/3120259. URL https://doi.org/10.1145/3120259.

[41] Adam Scott Carter and Christopher David Hundhausen. Using programming process
data to detect differences in students’ patterns of programming. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’17, page 105–110, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450346986. doi: 10.1145/3017680.3017785. URL https://doi.org/10.
1145/3017680.3017785.

[42] J. C. Carver and N. A. Kraft. Evaluating the testing ability of senior-level computer
science students. In 2011 24th IEEE-CS Conference on Software Engineering Educa-
tion and Training (CSEE T), pages 169–178, May 2011. doi: 10.1109/CSEET.2011.
5876084.

http://hdl.handle.net/10125/60199
http://doi.acm.org/10.1145/3287324.3287351
http://doi.acm.org/10.1145/3287324.3287351
https://doi.org/10.1145/2593882.2593896
https://doi.org/10.1145/2593882.2593896
http://doi.acm.org/10.1145/2787622.2787710
https://doi.org/10.1145/3120259
https://doi.org/10.1145/3017680.3017785
https://doi.org/10.1145/3017680.3017785

96 BIBLIOGRAPHY

[43] Henrik Bundefinedrbak Christensen. Systematic testing should not be a topic in the
computer science curriculum! In Proceedings of the 8th Annual Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE ’03, page 7–10, New
York, NY, USA, 2003. Association for Computing Machinery. ISBN 1581136722. doi:
10.1145/961511.961517. URL https://doi.org/10.1145/961511.961517.

[44] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

[45] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony
Ventresque. Pit: A practical mutation testing tool for java (demo). In Proceedings
of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
pages 449–452, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi:
10.1145/2931037.2948707. URL http://doi.acm.org/10.1145/2931037.2948707.

[46] Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change informa-
tion with the evolution radar. IEEE Transactions on Software Engineering, 35(5):
720–735, 2009.

[47] Lars-Ola Damm and Lars Lundberg. Quality impact of introducing component-level
test automation and test-driven development. In Pekka Abrahamsson, Nathan Bad-
doo, Tiziana Margaria, and Richard Messnarz, editors, Software Process Improvement,
pages 187–199, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-
75381-0.

[48] M. Delahaye and L. du Bousquet. A comparison of mutation analysis tools for java. In
2013 13th International Conference on Quality Software, pages 187–195. IEEE, July
2013. doi: 10.1109/QSIC.2013.47.

[49] M. E. Delamaro, J. Offutt, and P. Ammann. Designing deletion mutation operators.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation, pages 11–20. IEEE, March 2014. doi: 10.1109/ICST.2014.12.

[50] Márcio Eduardo Delamaro, José Carlos Maldonado, and Auri Marcelo Rizzo Vincenzi.
Proteum/IM 2.0: An Integrated Mutation Testing Environment, pages 91–101. Springer
US, Boston, MA, 2001. ISBN 978-1-4757-5939-6. doi: 10.1007/978-1-4757-5939-6_17.
URL https://doi.org/10.1007/978-1-4757-5939-6_17.

[51] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, April 1978. ISSN 0018-9162.
doi: 10.1109/C-M.1978.218136.

[52] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offutt, and K. N. King. An
extended overview of the mothra software testing environment. In [1988] Proceedings.
Second Workshop on Software Testing, Verification, and Analysis, pages 142–151.
IEEE, July 1988. doi: 10.1109/WST.1988.5369.

https://doi.org/10.1145/961511.961517
http://doi.acm.org/10.1145/2931037.2948707
https://doi.org/10.1007/978-1-4757-5939-6_17

BIBLIOGRAPHY 97

[53] Richard A DeMillo and Aditya P Mathur. On the use of software artifacts to evalu-
ate the effectiveness of mutation analysis for detecting errors in production software.
Software Engineering Research Center, Purdue University, West Lafayette, IN„ Tech.
Rep. SERC-TR92-P, 1991.

[54] L. Deng, J. Offutt, and N. Li. Empirical evaluation of the statement deletion mutation
operator. In 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation, pages 84–93. IEEE, March 2013. doi: 10.1109/ICST.2013.20.

[55] A. Derezinska and K. Kowalski. Object-Oriented Mutation Applied in Common Inter-
mediate Language Programs Originated from C#. In 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops, pages 342–
350, March 2011. doi: 10.1109/ICSTW.2011.54. ISSN: null.

[56] Anna Derezińska. Evaluation of deletion mutation operators in mutation testing of
c# programs. In Wojciech Zamojski, Jacek Mazurkiewicz, Jarosław Sugier, Tomasz
Walkowiak, and Janusz Kacprzyk, editors, Dependability Engineering and Complex
Systems, pages 97–108, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-39639-2.

[57] Chetan Desai, David Janzen, and Kyle Savage. A survey of evidence for test-driven
development in academia. SIGCSE Bull., 40(2):97–101, June 2008. ISSN 0097-8418.
doi: 10.1145/1383602.1383644.

[58] Stephen H. Edwards. Improving student performance by evaluating how well students
test their own programs. J. Educ. Resour. Comput., 3(3), September 2003. ISSN
1531-4278. doi: 10.1145/1029994.1029995.

[59] Stephen H. Edwards. Using software testing to move students from trial-and-error
to reflection-in-action. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’04, page 26–30, New York, NY, USA, 2004.
Association for Computing Machinery. ISBN 1581137982. doi: 10.1145/971300.971312.
URL https://doi.org/10.1145/971300.971312.

[60] Stephen H. Edwards and Manuel A. Perez-Quinones. Web-cat: Automatically grading
programming assignments. In Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’08, pages 328–328, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-078-4. doi: 10.1145/1384271.1384371.

[61] Stephen H. Edwards and Zalia Shams. Comparing test quality measures for assessing
student-written tests. In Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pages 354–363, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2768-8. doi: 10.1145/2591062.2591164. URL http:
//doi.acm.org/10.1145/2591062.2591164.

https://doi.org/10.1145/971300.971312
http://doi.acm.org/10.1145/2591062.2591164
http://doi.acm.org/10.1145/2591062.2591164

98 BIBLIOGRAPHY

[62] Stephen H. Edwards, Jason Snyder, Manuel A. Pérez-Quiñones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. Comparing effective and ineffective behaviors of
student programmers. In Proceedings of the Fifth International Workshop on Comput-
ing Education Research Workshop, ICER ’09, pages 3–14, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-615-1. doi: 10.1145/1584322.1584325.

[63] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil. Running
students’ software tests against each others’ code: New life for an old ”gimmick”. In
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education,
SIGCSE ’12, pages 221–226, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1098-
7. doi: 10.1145/2157136.2157202. URL http://doi.acm.org/10.1145/2157136.
2157202.

[64] Sebastian Elbaum, David Gable, and Gregg Rothermel. The impact of software evolu-
tion on code coverage information. In Proceedings of the IEEE International Conference
on Software Maintenance (ICSM’01), page 170. IEEE Computer Society, 2001.

[65] Mary C English and Anastasia Kitsantas. Supporting student self-regulated learn-
ing in problem-and project-based learning. Interdisciplinary journal of problem-based
learning, 7(2):6, 2013. doi: 10.7771/1541-5015.1339.

[66] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effectiveness of the
test-first approach to programming. IEEE Transactions on software Engineering, 31
(3):226–237, 2005.

[67] Hakan Erdogmus, Grigori Melnik, and Ron Jeffries. Test-driven development., 2010.

[68] Anneli Eteläpelto. Metacognition and the expertise of computer program compre-
hension. Scandinavian Journal of Educational Research, 37(3):243–254, 1993. doi:
10.1080/0031383930370305. URL https://doi.org/10.1080/0031383930370305.

[69] Katrina Falkner, Rebecca Vivian, and Nickolas J. G. Falkner. Neo-piagetian forms of
reasoning in software development process construction. In Proceedings of the 2013
Learning and Teaching in Computing and Engineering, LATICE ’13, page 31–38, USA,
2013. IEEE Computer Society. ISBN 9780769549606. doi: 10.1109/LaTiCE.2013.23.
URL https://doi.org/10.1109/LaTiCE.2013.23.

[70] Katrina Falkner, Rebecca Vivian, and Nickolas J.G. Falkner. Identifying computer sci-
ence self-regulated learning strategies. In Proceedings of the 2014 Conference on Inno-
vation & Technology in Computer Science Education, ITiCSE ’14, page 291–296, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328333.
doi: 10.1145/2591708.2591715. URL https://doi.org/10.1145/2591708.2591715.

[71] Katrina Falkner, Claudia Szabo, Rebecca Vivian, and Nickolas Falkner. Evolution of
Software Development Strategies. In Proceedings of the 37th International Conference

http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2157136.2157202
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1109/LaTiCE.2013.23
https://doi.org/10.1145/2591708.2591715

BIBLIOGRAPHY 99

on Software Engineering - Volume 2, ICSE ’15, pages 243–252. IEEE Press, 2015. doi:
10.1109/ICSE.2015.153. event-place: Florence, Italy.

[72] Radio Technical Commission for Aeronautics (U.S.), Software Considerations RTCA,
Inc. SC 205, RTCA (Firm). SC-205, and EUROCAE (Agency). Working Group 71.
Software Considerations in Airborne Systems and Equipment Certification. Document:
RTCA, Inc. RTCA, 2011.

[73] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, October 1988. ISSN
2326-3881. doi: 10.1109/32.6194.

[74] D. Fucci and B. Turhan. A replicated experiment on the effectiveness of test-first
development. In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 103–112, Oct 2013. doi: 10.1109/ESEM.2013.15.

[75] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo. A dissection of the test-
driven development process: Does it really matter to test-first or to test-last? IEEE
Transactions on Software Engineering, 43(7):597–614, July 2017. ISSN 0098-5589. doi:
10.1109/TSE.2016.2616877.

[76] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin Shepperd, Boyce Sigweni,
Fernando Uyaguari, Burak Turhan, Natalia Juristo, and Markku Oivo. An external
replication on the effects of test-driven development using a multi-site blind analysis ap-
proach. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’16, New York, NY, USA, 2016. Associ-
ation for Computing Machinery. ISBN 9781450344272. doi: 10.1145/2961111.2962592.
URL https://doi.org/10.1145/2961111.2962592.

[77] M. Ghafari, C. Ghezzi, and K. Rubinov. Automatically identifying focal methods
under test in unit test cases. In 2015 IEEE 15th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 61–70, Sept 2015. doi:
10.1109/SCAM.2015.7335402.

[78] Michael H. Goldwasser. A gimmick to integrate software testing throughout the cur-
riculum. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Sci-
ence Education, SIGCSE ’02, pages 271–275, New York, NY, USA, 2002. ACM. ISBN
1-58113-473-8. doi: 10.1145/563340.563446. URL http://doi.acm.org/10.1145/
563340.563446.

[79] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. IEEE
Transactions on Software Engineering, SE-1(2):156–173, June 1975. ISSN 2326-3881.
doi: 10.1109/TSE.1975.6312836.

https://doi.org/10.1145/2961111.2962592
http://doi.acm.org/10.1145/563340.563446
http://doi.acm.org/10.1145/563340.563446

100 BIBLIOGRAPHY

[80] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they to real faults?
In 2014 IEEE 25th International Symposium on Software Reliability Engineering, pages
189–200, Nov 2014. doi: 10.1109/ISSRE.2014.40.

[81] Susan Hammond and David Umphress. Test driven development: the state of the
practice. In Proceedings of the 50th Annual Southeast Regional Conference, pages
158–163. ACM, 2012.

[82] Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. Exploring problem solving
paths in a java programming course. In Psychology of Programming Interest Group
Conference, PPIG 2014, pages 65 – 76, 2014. URL http://d-scholarship.pitt.
edu/21832/.

[83] Liang Huang and Mike Holcombe. Empirical investigation towards the effectiveness of
test first programming. Information and Software Technology, 51(1):182–194, 2009.

[84] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports, ITICSE-WGR ’15, pages 41–63, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-4146-2. doi: 10.1145/2858796.2858798.

[85] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2756-5. doi: 10.1145/2568225.2568271. URL http://doi.acm.org/10.
1145/2568225.2568271.

[86] Michael S. Irwin and Stephen H. Edwards. Can mobile gaming psychology be used to
improve time management on programming assignments? In Proceedings of the ACM
Conference on Global Computing Education, CompEd ’19, page 208–214, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362597. doi:
10.1145/3300115.3309517. URL https://doi.org/10.1145/3300115.3309517.

[87] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. Code coverage at
google. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, pages 955–963, New York, NY, USA, 2019. ACM. ISBN 978-1-
4503-5572-8. doi: 10.1145/3338906.3340459. URL http://doi.acm.org/10.1145/
3338906.3340459.

[88] David Jackson and Michelle Usher. Grading student programs using assyst. SIGCSE
Bull., 29(1):335–339, March 1997. ISSN 0097-8418. doi: 10.1145/268085.268210. URL
https://doi.org/10.1145/268085.268210.

http://d-scholarship.pitt.edu/21832/
http://d-scholarship.pitt.edu/21832/
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
https://doi.org/10.1145/3300115.3309517
http://doi.acm.org/10.1145/3338906.3340459
http://doi.acm.org/10.1145/3338906.3340459
https://doi.org/10.1145/268085.268210

BIBLIOGRAPHY 101

[89] Matthew C Jadud. A first look at novice compilation behaviour using bluej. Computer
Science Education, 15(1):25–40, 2005.

[90] Matthew C Jadud. Methods and tools for exploring novice compilation behaviour. In
Proceedings of the second international workshop on Computing education research,
pages 73–84. ACM, 2006.

[91] George F Jenks. The data model concept in statistical mapping. International yearbook
of cartography, 7:186–190, 1967.

[92] GF Jenks. Optimal data classification for choropleth maps occasional paper no 2.
University of Kansas, Department of Geography, 1977.

[93] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, Sep. 2011. ISSN
0098-5589. doi: 10.1109/TSE.2010.62.

[94] P. M. Johnson, Hongbing Kou, J. M. Agustin, Qin Zhang, A. Kagawa, and T. Ya-
mashita. Practical automated process and product metric collection and analysis in
a classroom setting: lessons learned from hackystat-uh. In Proceedings. 2004 In-
ternational Symposium on Empirical Software Engineering, 2004. ISESE ’04., pages
136–144, Aug 2004. doi: 10.1109/ISESE.2004.1334901.

[95] Edward L. Jones. Software testing in the computer science curriculum – a holistic
approach. In Proceedings of the Australasian Conference on Computing Education,
ACSE ’00, pages 153–157, New York, NY, USA, 2000. ACM. ISBN 1-58113-271-9.
doi: 10.1145/359369.359392.

[96] R. Just, F. Schweiggert, and G. M. Kapfhammer. Major: An efficient and extensible
tool for mutation analysis in a java compiler. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pages 612–615, Nov 2011.
doi: 10.1109/ASE.2011.6100138.

[97] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 654–665, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5. doi: 10.1145/2635868.2635929. URL http://doi.acm.org/
10.1145/2635868.2635929.

[98] Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Clifford A. Shaffer.
DevEventTracker: Tracking development events to assess incremental development
and procrastination. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’17, pages 104–109, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4704-4. doi: 10.1145/3059009.3059050.

http://doi.acm.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929

102 BIBLIOGRAPHY

[99] Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A. Shaffer. Quantifying incre-
mental development practices and their relationship to procrastination. In Proceedings
of the 2017 ACM Conference on International Computing Education Research, ICER
’17, pages 191–199, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4968-0. doi:
10.1145/3105726.3106180.

[100] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco Servant.
Assessing incremental testing practices and their impact on project outcomes. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
SIGCSE ’19, page 407–413, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450358903. doi: 10.1145/3287324.3287366. URL https://doi.
org/10.1145/3287324.3287366.

[101] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in student
programs. In Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’17, page 110–115, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450347044. doi: 10.1145/3059009.
3059061. URL https://doi.org/10.1145/3059009.3059061.

[102] K. N. King and A. Jefferson Offutt. A fortran language system for mutation-based
software testing. Softw. Pract. Exper., 21(7):685–718, June 1991. ISSN 0038-0644. doi:
10.1002/spe.4380210704. URL http://dx.doi.org/10.1002/spe.4380210704.

[103] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris. Analysing and
comparing the effectiveness of mutation testing tools: A manual study. In 2016 IEEE
16th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 147–156, Oct 2016. doi: 10.1109/SCAM.2016.28.

[104] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. How effective are mutation testing tools? an em-
pirical analysis of java mutation testing tools with manual analysis and real faults.
Empirical Software Engineering, 23(4):2426–2463, Aug 2018. ISSN 1573-7616. doi:
10.1007/s10664-017-9582-5. URL https://doi.org/10.1007/s10664-017-9582-5.

[105] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in end-
user programming systems. In Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, VLHCC ’04, page 199–206, USA, 2004. IEEE
Computer Society. ISBN 0780386965. doi: 10.1109/VLHCC.2004.47. URL https:
//doi.org/10.1109/VLHCC.2004.47.

[106] Sami Kollanus. Test-driven development-still a promising approach? In Quality of
Information and Communications Technology (QUATIC), 2010 Seventh International
Conference on the, pages 403–408. IEEE, 2010. doi: 10.1109/QUATIC.2010.73.

https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3059009.3059061
http://dx.doi.org/10.1002/spe.4380210704
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47

BIBLIOGRAPHY 103

[107] B. Kurtz, P. Ammann, and J. Offutt. Static analysis of mutant subsumption. In 2015
IEEE Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 1–10, April 2015. doi: 10.1109/ICSTW.2015.7107454.

[108] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and A. Ventresque. In
2017 IEEE International Conference on Software Testing, Verification and Validation
(ICST), pages 430–435, March 2017. doi: 10.1109/ICST.2017.47.

[109] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. Mucheck:
An extensible tool for mutation testing of haskell programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014, page
429–432, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450326452. doi: 10.1145/2610384.2628052. URL https://doi.org/10.1145/
2610384.2628052.

[110] Timothy C. Lethbridge. Priorities for the education and training of software engineers.
Journal of Systems and Software, 53(1):53 – 71, 2000. ISSN 0164-1212. doi: https:
//doi.org/10.1016/S0164-1212(00)00009-1. URL http://www.sciencedirect.com/
science/article/pii/S0164121200000091.

[111] S. Levin and A. Yehudai. The co-evolution of test maintenance and code maintenance
through the lens of fine-grained semantic changes. In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages 35–46, Sep. 2017. doi:
10.1109/ICSME.2017.9.

[112] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, March 1982. doi: 10.1109/TIT.1982.1056489.

[113] Dastyni Loksa and Amy J. Ko. The role of self-regulation in programming prob-
lem solving process and success. In Proceedings of the 2016 ACM Conference on
International Computing Education Research, ICER ’16, page 83–91, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450344494. doi:
10.1145/2960310.2960334. URL https://doi.org/10.1145/2960310.2960334.

[114] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. Programming, problem solving, and self-awareness: Effects
of explicit guidance. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, CHI ’16, page 1449–1461, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450333627. doi: 10.1145/2858036.2858252. URL
https://doi.org/10.1145/2858036.2858252.

[115] Z. Lubsen, A. Zaidman, and M. Pinzger. Using association rules to study the co-
evolution of production test code. In 2009 6th IEEE International Working Conference
on Mining Software Repositories, pages 151–154, May 2009. doi: 10.1109/MSR.2009.
5069493.

https://doi.org/10.1145/2610384.2628052
https://doi.org/10.1145/2610384.2628052
http://www.sciencedirect.com/science/article/pii/S0164121200000091
http://www.sciencedirect.com/science/article/pii/S0164121200000091
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252

104 BIBLIOGRAPHY

[116] Joseph Abraham Luke. Continuously collecting software development event data as
students program. Master’s thesis, Virginia Tech, 2015.

[117] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated class mutation
system. Software Testing, Verification and Reliability, 15(2):97–133, 2005. doi: 10.
1002/stvr.308.

[118] Lech Madeyski and Łukasz Szała. The impact of test-driven development on software
development productivity — an empirical study. In Pekka Abrahamsson, Nathan Bad-
doo, Tiziana Margaria, and Richard Messnarz, editors, Software Process Improvement,
pages 200–211, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-
75381-0.

[119] C. Marsavina, D. Romano, and A. Zaidman. Studying fine-grained co-evolution pat-
terns of production and test code. In 2014 IEEE 14th International Working Con-
ference on Source Code Analysis and Manipulation, pages 195–204, Sep. 2014. doi:
10.1109/SCAM.2014.28.

[120] Joshua Martin, Stephen H. Edwards, and Clfford A. Shaffer. The effects of procrastina-
tion interventions on programming project success. In Proceedings of the Eleventh An-
nual International Conference on International Computing Education Research, ICER
’15, pages 3–11, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3630-7. doi:
10.1145/2787622.2787730.

[121] A. P. Mathur. Performance, effectiveness, and reliability issues in software testing. In
[1991] Proceedings The Fifteenth Annual International Computer Software Applications
Conference, pages 604–605, Sep. 1991. doi: 10.1109/CMPSAC.1991.170248.

[122] E Michael Maximilien and Laurie Williams. Assessing test-driven development at ibm.
In Software Engineering, 2003. Proceedings. 25th International Conference on, pages
564–569. IEEE, 2003.

[123] D. McCall and M. Kölling. Meaningful categorisation of novice programmer errors.
In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–8, Oct
2014. doi: 10.1109/FIE.2014.7044420.

[124] Norman A Milgram, Barry Sroloff, and Michael Rosenbaum. The procrastination of
everyday life. Journal of Research in Personality, 22(2):197–212, 1988. doi: 10.1016/
0092-6566(88)90015-3.

[125] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient javascript mutation testing.
In 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation, pages 74–83, March 2013. doi: 10.1109/ICST.2013.23.

[126] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 2011. ISBN 978-111803196.

BIBLIOGRAPHY 105

[127] Shinichi Nakagawa and Holger Schielzeth. A general and simple method for obtaining
r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4
(2):133–142. doi: 10.1111/j.2041-210x.2012.00261.x.

[128] Bonnie A Nardi. A small matter of programming: perspectives on end user computing.
MIT press, 1993.

[129] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Trans.
Softw. Eng. Methodol., 1(1):5–20, January 1992. ISSN 1049-331X. doi: 10.1145/
125489.125473. URL https://doi.org/10.1145/125489.125473.

[130] A Jefferson Offutt and Jeffrey M Voas. Subsumption of condition coverage techniques
by mutation testing. Department of Information and Software Systems Engineering,
George Mason University, Tech. Rep. ISSE-TR-96-100, 1996.

[131] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. An experimental determination of sufficient mutant operators. ACM Trans.
Softw. Eng. Methodol., 5(2):99–118, April 1996. ISSN 1049-331X. doi: 10.1145/227607.
227610. URL http://doi.acm.org/10.1145/227607.227610.

[132] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence: A
large scale empirical study of a simple, fast and effective equivalent mutant detection
technique. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 936–946, May 2015. doi: 10.1109/ICSE.2015.103.

[133] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
Threats to the validity of mutation-based test assessment. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, pages 354–
365, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi: 10.1145/2931037.
2931040. URL http://doi.acm.org/10.1145/2931037.2931040.

[134] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation Testing Advances: An Analysis and Survey. In Advances in
Computers, volume 112, pages 275–378. Elsevier, 2019. ISBN 978-0-12-815121-
1. doi: 10.1016/bs.adcom.2018.03.015. URL https://linkinghub.elsevier.com/
retrieve/pii/S0065245818300305.

[135] Andrei Papancea, Jaime Spacco, and David Hovemeyer. An open platform for man-
aging short programming exercises. In Proceedings of the Ninth Annual Interna-
tional ACM Conference on International Computing Education Research, ICER ’13,
pages 47–52, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2243-0. doi:
10.1145/2493394.2493401. URL http://doi.acm.org/10.1145/2493394.2493401.

[136] Raymond Pettit and James Prather. Automated assessment tools: Too many cooks,
not enough collaboration. J. Comput. Sci. Coll., 32(4):113–121, April 2017. ISSN
1937-4771. URL http://dl.acm.org/citation.cfm?id=3055338.3079060.

https://doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/227607.227610
http://doi.acm.org/10.1145/2931037.2931040
https://linkinghub.elsevier.com/retrieve/pii/S0065245818300305
https://linkinghub.elsevier.com/retrieve/pii/S0065245818300305
http://doi.acm.org/10.1145/2493394.2493401
http://dl.acm.org/citation.cfm?id=3055338.3079060

106 BIBLIOGRAPHY

[137] Raphael Pham, Stephan Kiesling, Leif Singer, and Kurt Schneider. Onboard-
ing inexperienced developers: struggles and perceptions regarding automated test-
ing. Software Quality Journal, 25(4):1239–1268, December 2017. ISSN 0963-9314,
1573-1367. doi: 10.1007/s11219-016-9333-7. URL http://link.springer.com/10.
1007/s11219-016-9333-7.

[138] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experience during
function test. In Proceedings of 1993 15th International Conference on Software Engi-
neering, pages 287–301, May 1993. doi: 10.1109/ICSE.1993.346035.

[139] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. Metacognitive difficulties faced by novice programmers in automated
assessment tools. In Proceedings of the 2018 ACM Conference on International Com-
puting Education Research, ICER ’18, page 41–50, New York, NY, USA, 2018. Associ-
ation for Computing Machinery. ISBN 9781450356282. doi: 10.1145/3230977.3230981.
URL https://doi.org/10.1145/3230977.3230981.

[140] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. First things first: Providing metacognitive
scaffolding for interpreting problem prompts. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, page 531–537, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450358903. doi:
10.1145/3287324.3287374. URL https://doi.org/10.1145/3287324.3287374.

[141] Alex Radermacher and Gursimran Walia. Gaps between industry expectations and
the abilities of graduates. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, page 525–530, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450318686. doi: 10.1145/2445196.
2445351. URL https://doi.org/10.1145/2445196.2445351.

[142] Alex Radermacher, Gursimran Walia, and Dean Knudson. Investigating the skill gap
between graduating students and industry expectations. In Companion Proceedings of
the 36th International Conference on Software Engineering, ICSE Companion 2014,
page 291–300, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327688. doi: 10.1145/2591062.2591159. URL https://doi.org/10.1145/
2591062.2591159.

[143] Yahya Rafique and Vojislav B Mišić. The effects of test-driven development on ex-
ternal quality and productivity: A meta-analysis. IEEE Transactions on Software
Engineering, 39(6):835–856, 2013.

[144] Kyle Reestman and Brian Dorn. Native language’s effect on java compiler errors.
In Proceedings of the 2019 ACM Conference on International Computing Educa-
tion Research, ICER ’19, page 249–257, New York, NY, USA, 2019. Association for

http://link.springer.com/10.1007/s11219-016-9333-7
http://link.springer.com/10.1007/s11219-016-9333-7
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/2591062.2591159
https://doi.org/10.1145/2591062.2591159

BIBLIOGRAPHY 107

Computing Machinery. ISBN 9781450361859. doi: 10.1145/3291279.3339423. URL
https://doi.org/10.1145/3291279.3339423.

[145] Pierre N. Robillard. The role of knowledge in software development. Commun. ACM,
42(1):87–92, January 1999. ISSN 0001-0782. doi: 10.1145/291469.291476. URL https:
//doi.org/10.1145/291469.291476.

[146] Adrian Santos, Sira Vegas, Fernando Uyaguari, Oscar Dieste, Burak Turhan, and
Natalia Juristo. Increasing validity through replication: an illustrative TDD
case. Software Quality Journal, March 2020. ISSN 0963-9314, 1573-1367.
doi: 10.1007/s11219-020-09512-3. URL http://link.springer.com/10.1007/
s11219-020-09512-3.

[147] David Schuler and Andreas Zeller. Javalanche: Efficient mutation testing for java. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 297–298, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
001-2. doi: 10.1145/1595696.1595750. URL http://doi.acm.org/10.1145/1595696.
1595750.

[148] Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–
464, 03 1978. doi: 10.1214/aos/1176344136. URL https://doi.org/10.1214/aos/
1176344136.

[149] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical model-
ing with python. In 9th Python in Science Conference, 2010.

[150] Francisco Servant and James A Jones. History slicing: assisting code-evolution tasks. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 43. ACM, 2012.

[151] Zalia Shams. Automated Assessment of Student-written Tests Based on Defect-detection
Capability. PhD thesis, Virginia Tech, Blacksburg, VA, 2015. URL http://hdl.
handle.net/10919/52024.

[152] Zalia Shams and Stephen H. Edwards. Toward practical mutation analysis for evalu-
ating the quality of student-written software tests. In Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research, ICER
’13, pages 53–58, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2243-0. doi:
10.1145/2493394.2493402. URL http://doi.acm.org/10.1145/2493394.2493402.

[153] Zalia Shams and Stephen H. Edwards. Checked coverage and object branch coverage:
New alternatives for assessing student-written tests. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, SIGCSE ’15, pages 534–539,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2966-8. doi: 10.1145/2676723.
2677300. URL http://doi.acm.org/10.1145/2676723.2677300.

https://doi.org/10.1145/3291279.3339423
https://doi.org/10.1145/291469.291476
https://doi.org/10.1145/291469.291476
http://link.springer.com/10.1007/s11219-020-09512-3
http://link.springer.com/10.1007/s11219-020-09512-3
http://doi.acm.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
http://hdl.handle.net/10919/52024
http://hdl.handle.net/10919/52024
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2676723.2677300

108 BIBLIOGRAPHY

[154] Terry Shepard, Margaret Lamb, and Diane Kelly. More testing should be taught.
Commun. ACM, 44(6):103–108, June 2001. ISSN 0001-0782. doi: 10.1145/376134.
376180.

[155] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. Sufficient mutation
operators for measuring test effectiveness. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 351–360, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-079-1. doi: 10.1145/1368088.1368136. URL http:
//doi.acm.org/10.1145/1368088.1368136.

[156] Maury Silver. Procrastination. Centerpoint, 1974.

[157] Sivert Sørumgård. Verification of process conformance in empirical studies of soft-
ware development. PhD thesis, Ph. D. thesis, Norwegian University of Science and
Technology, 1997.

[158] Jaime Spacco and William Pugh. Helping students appreciate test-driven development
(tdd). In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’06, pages 907–913, New
York, NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi: 10.1145/1176617.1176743.

[159] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.
Hollingsworth, and Nelson Padua-Perez. Experiences with marmoset: Designing
and using an advanced submission and testing system for programming courses.
In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Tech-
nology in Computer Science Education, ITICSE ’06, pages 13–17, New York, NY,
USA, 2006. ACM. ISBN 1-59593-055-8. doi: 10.1145/1140124.1140131. URL
http://doi.acm.org/10.1145/1140124.1140131.

[160] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. PyDriller: Python Frame-
work for Mining Software Repositories. 2018. doi: 10.1145/3236024.3264598.

[161] Piers Steel. The nature of procrastination: A meta-analytic and theoretical review
of quintessential self-regulatory failure. Psychological bulletin, 133(1):65, 2007. doi:
10.1037/0033-2909.133.1.65.

[162] Roland H. Untch. On reduced neighborhood mutation analysis using a single mutagenic
operator. In Proceedings of the 47th Annual Southeast Regional Conference, ACM-SE
47, pages 71:1–71:4, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-421-8. doi:
10.1145/1566445.1566540.

[163] Sander Valstar, Sophia Krause-Levy, Alexandra Macedo, William G. Griswold, and Leo
Porter. Faculty views on the goals of an undergraduate cs education and the academia-
industry gap. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, SIGCSE ’20, page 577–583, New York, NY, USA, 2020. Association

http://doi.acm.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1140124.1140131

BIBLIOGRAPHY 109

for Computing Machinery. ISBN 9781450367936. doi: 10.1145/3328778.3366834. URL
https://doi.org/10.1145/3328778.3366834.

[164] Marcel VJ Veenman, Jan J Elshout, and Joost Meijer. The generality vs domain-
specificity of metacognitive skills in novice learning across domains. Learning and
instruction, 7(2):187–209, 1997. doi: 10.1016/S0959-4752(96)00025-4.

[165] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. Scaffolding
students’ learning using test my code. In Proceedings of the 18th ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’13, pages
117–122, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2078-8. doi: 10.1145/
2462476.2462501.

[166] Tiantian Wang, Xiaohong Su, Peijun Ma, Yuying Wang, and Kuanquan Wang. Ability-
training-oriented automated assessment in introductory programming course. Comput.
Educ., 56(1):220–226, January 2011. ISSN 0360-1315. doi: 10.1016/j.compedu.2010.
08.003. URL http://dx.doi.org/10.1016/j.compedu.2010.08.003.

[167] Christopher Watson, Frederick WB Li, and Jamie L Godwin. Predicting performance
in an introductory programming course by logging and analyzing student programming
behavior. In Advanced learning Technologies (ICALT), 2013 IEEE 13th international
conference on, pages 319–323. IEEE, 2013.

[168] Laurie Williams, E Michael Maximilien, and Mladen Vouk. Test-driven development
as a defect-reduction practice. In Software Reliability Engineering, 2003. ISSRE 2003.
14th International Symposium on, pages 34–45. IEEE, 2003.

[169] W. Eric Wong and Aditya P. Mathur. Fault detection effectiveness of mutation and
data flow testing. Software Quality Journal, 4(1):69–83, March 1995. ISSN 0963-9314,
1573-1367. doi: 10.1007/BF00404650. URL http://link.springer.com/10.1007/
BF00404650.

[170] John Wrenn and Shriram Krishnamurthi. Executable examples for programming
problem comprehension. In Proceedings of the 2019 ACM Conference on Interna-
tional Computing Education Research, ICER ’19, pages 131–139, New York, NY,
USA, 2019. ACM. ISBN 978-1-4503-6185-9. doi: 10.1145/3291279.3339416. URL
http://doi.acm.org/10.1145/3291279.3339416.

[171] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. Who tests the testers? In Pro-
ceedings of the 2018 ACM Conference on International Computing Education Research,
ICER ’18, pages 51–59, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5628-
2. doi: 10.1145/3230977.3230999. URL http://doi.acm.org/10.1145/3230977.
3230999.

https://doi.org/10.1145/3328778.3366834
http://dx.doi.org/10.1016/j.compedu.2010.08.003
http://link.springer.com/10.1007/BF00404650
http://link.springer.com/10.1007/BF00404650
http://doi.acm.org/10.1145/3291279.3339416
http://doi.acm.org/10.1145/3230977.3230999
http://doi.acm.org/10.1145/3230977.3230999

110 BIBLIOGRAPHY

[172] Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt. Inter-class mutation operators for
java. In 13th International Symposium on Software Reliability Engineering, 2002.
Proceedings., pages 352–363, Nov 2002. doi: 10.1109/ISSRE.2002.1173287.

[173] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. Studying
the co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 16(3):325–
364, Jun 2011. ISSN 1573-7616. doi: 10.1007/s10664-010-9143-7.

[174] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier, 2009.
ISBN 9780123745156.

[175] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and
Lu Zhang. Predictive mutation testing. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 342–353, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4390-9. doi: 10.1145/2931037.2931038. URL
http://doi.acm.org/10.1145/2931037.2931038.

[176] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test Coverage and
Adequacy. ACM Comput. Surv., 29(4):366–427, December 1997. ISSN 0360-0300. doi:
10.1145/267580.267590. URL https://doi.org/10.1145/267580.267590. Place:
New York, NY, USA Publisher: Association for Computing Machinery.

[177] Barry J Zimmerman. A social cognitive view of self-regulated academic learning.
Journal of educational psychology, 81(3):329, 1989. doi: 10.1037/0022-0663.81.3.329.

http://doi.acm.org/10.1145/2931037.2931038
https://doi.org/10.1145/267580.267590

Appendices

111

Appendix A

Research Materials

This appendix contains the materials used for qualitative interviews with students, held
during Fall semester of Fall 2016. The following materials are included:

• The consent form given to students on the first day of class in the Spring and Fall 2016
semesters.

• The script followed by the interviewers (both co-authors on [98]) during the interviews
described in §4.3.1.

112

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

Informed Consent for Participants in Research Projects Involving Human
Subjects

Title	of	Project:	
 Classroom Interventions to Reduce Procrastination, and
 Assessing and Expanding the Impact of OpenDSA

Investigator(s):	
 Dr. Clifford Shaffer, Dr. Stephen Edwards, and Dr. T. Simin Hall

I.	Purpose	of	this	Research/Project	
This project investigates several classroom interventions that are intended to help students taking
Computer Science couses, including CS2114 and CS3114. OpenDSA is an eTextbook system
intended to improve learning of course content including proficiency with a range of data
structures and algorithms, and to understand algorithm analysis. OpenDSA’s goal is to improve
student performance on exams and similar learning outcomes measures. Other interventions
attempt to address deficiencies in project management skills and procrastination on programming
assignments. The overall goal for this research is to come up with strategies that measurably
increase student performance on programming projects, but that can be implemented without
excessive manpower costs on course staff.

II.	Procedures	
This study relies on examining student work and student outcomes in CS 3114 at the level of
user interactions with course software, surveys, exam scores, etc. This includes user interactions
in OpenDSA, and for programming projects it includes file editing activity, program execution,
assignment scores, test results, cumulative scores, and final grades. Normally, this information is
regularly collected as part of these courses, both from your software development environment
as you work, and on the electronic grading system to which you submit your work for grading.
As a result, there is nothing extra you have to do to participate. This consent form is simply
your way of giving us permission to use your coursework and scores in the research
project.

III.	Risks	
Participation in this research will not place you at more than minimal risk of physical or
psychological harm.

IV.	Benefits	
We expect that this research will lead to improvements in CS education. These improvements are
expected to include better strategies related to project management and learning content, so that
students can achieve their full potential on their coursework. Study participants, including you,
may directly benefit from the ongoing improvements to the courses that are the subject of
investigation.

V.	Extent	of	Anonymity	and	Confidentiality	
The data we collect as part of this project will be kept strictly confidential. The data
collected will not be anonymous, since we wish to examine relationships between scores
throughout the course and when students start and stop working on assignments. However, all
data will have your name removed and only a subject number will identify you during analyses
and any written or oral reports of the results. Any personally identifiable information will be
stored securely, where only the investigators can access it.

The investigators will use the collected data in publications, and they may make such data
available to other researchers outside the project who are investigating the learning of
programming. In no case will personally identifiable information be divulged to any party
outside the project team.

VI.	Compensation	
No compensation will be provided to participants. Your choice to participate will have no effect
on your course grade.

VII.	Freedom	to	Withdraw	
You are free to withdraw from this study at any time, for any reason, and without penalty.

VIII.	Approval	of	Research	
This research has been approved, as required, by the Institutional Review Board for projects
involving human subjects at Virginia Polytechnic Institute and State University, and by the
Department of Computer Science.

IX.	Subject's	Responsibilities	
I voluntarily agree to participate in this study, and am not a minor (am not under 18).

X.	Subject's	Permission	
I have read the Consent Form and conditions of this project. I have had all my questions
answered. I hereby acknowledge the above and give my voluntary consent for participation in
this project. If I participate, I may withdraw at any time without penalty.

___ ____________
Subject Signature Date

__
Name (Please Print)

XI.	Demographic	Information	
A) Gender: Male Female

B) Ethnicity
1. Hispanic
2. White
3. African-American
4. Asian
5. Native Hawaiian or Other Pacific Islander
6. American Indian or Alaska Native
7. Other

C) I am a first generation college student: 1. Yes 2. No

Should I have any questions about this research or its conduct, I may contact:

Dr. Clifford Shaffer
Investigator

Email: shaffer@vt.edu
Phone: 540-231-4354

Dr. Stephen Edwards
Investigator

Email: s.edwards@vt.edu
Phone: 540-231-5723

Dr. T. Simin Hall
Investigator

Email: thall57@vt.edu

David M. Moore
Chair, IRB

Email: moored@vt.edu
Phone: 540-231-4991

Programming	Project	Interview	Script	
	
	
Welcome	
	

The	interviewers	introduce	themselves.	
	
Purpose	
	

We	are	conducting	an	educational	research	project	on	programming	project	
management	skills.	
	
This	interview	provides	a	way	for	us	to	learn	what	students	actually	do	when	
they	develop	a	programming	project	for	a	class	such	as	CS3114.	You	were	
invited	because	you’ve	experienced	these	projects	first-hand	in	class,	and	we	
value	your	experience.	
	
Participation	in	this	interview	is	purely	voluntary—you	will	not	receive	any	
course	credit,	and	your	comments	will	not	affect	any	course	grade	in	any	
way.	
	
While	we	hold	our	discussion,	I’ll	take	notes	on	the	comments	that	are	made.		
However,	I	will	not	use	any	names	or	write	down	any	personally	identifying	
information	for	any	one	of	you,	so	everything	is	kept	anonymous.	
	
Please	read	this	consent	form	completely	and	decide	if	you	wish	to	
participate.		If	you	agree	to	participate,	you’re	giving	us	permission	to	use	the	
comments	made	here	as	part	of	our	research.		Remember	that	the	
information	will	always	be	anonymous.	
	
If	you	don’t	wish	to	participate,	that	is	no	problem—you	are	free	to	leave	for	
any	reason	you	choose,	at	any	time.		Also,	if	you	are	a	minor,	we	cannot	
include	you	in	our	research,	so	please	decline	to	participate	now.	
	
[Give	time	to	read/sign	consent	forms,	or	for	participants	to	elect	to	
leave.]	
	

Questions	
	

1. How	did	you	do	on	your	first	project	from	CS3114?	
• Did	you	find	it	to	be	hard?	If	so,	why?	
• About	how	much	time	did	you	spend	on	Project	1?	
• Did	you	think	that	the	difficulty	of	Project	1	was	appropriate	for	this	

course?	
• Did	you	learn	much	from	doing	the	project?	

2. Describe	to	me	how	you	went	about	doing	the	project.	Please	explain	the	
design-implement-test	strategy	that	you	used.	That	is,	tell	us	about	things	
like	how	much	you	designed	before	you	wrote	code,	how	much	code	you	
typically	wrote	before	you	did	testing	and	debugging.		[If	this	is	not	clear	in	
the	response,	ask	again	explicitly:	How	much	code	did	you	typically	write	
before	you	did	testing	and	debugging	for	that	code?]	

3. For	Project	1,	how	many	"Parts"	did	you	break	the	project	into,	where	a	
"part"	means	that	you	completed	testing	and	debugging	it	before	
implementing	any	more	code.	

4. What	is	your	primary	method	of	doing	debugging?	
5. What	do	you	think	of	using	JUnit	testing?	How	do	you	use	it?	Would	you	use	

it	if	it	were	not	required?	
6. Please	explain	how	you	developed	JUnit	test	cases	in	relationship	to	the	rest	

of	your	work.	Did	you	write	test	cases	along	with	the	code?	Did	you	do	it	after	
the	code	but	as	an	integrated	part	of	your	testing	strategy?		Or	did	you	write	
the	JUnit	tests	only	afterward	so	as	to	satisfy	Web-CAT's	requirements?	

7. How	helpful	do	you	find	the	requirement	to	have	good	code	coverage	from	
your	JUnit	tests?	

8. Generally	speaking,	there	are	two	extremes	to	program	development.	One	is	
to	write	all	of	the	program,	and	then	test	and	debug	it.	The	other	is	
"incremental	development",	where	you	write	just	the	smallest	possible	
working	functionality,	and	then	test	and	debug	it	before	adding	more	
functionality.	To	what	extent	do	you	write	everything	and	then	test/debug,	
versus	do	incremental	development?	

9. 	Did	you	have	a	partner	on	this	project?	
• If	so,	describe	how	you	worked	together.	Did	you	do	things	together,	

or	did	different	tasks	get	done	by	each	of	you	
• How	did	having	a	partner	go?	

10. [Aside	from	your	partner	if	you	had	one]	Who	did	you	talk	to	about	the	
project?	
• Did	you	discuss	it	with	classmates?	If	so,	how	much/how	often?	How	

important	was	that?	
• Did	you	go	to	see	the	TAs	or	Professors?	If	so,	how	much/how	often?	How	

important	was	that?	
11. [At	this	point,	interviewers	will	share	the	report	produced	by	the	model	

software	with	the	interviewee.]	We	have	written	a	program	that	analyzes	the	
edit	logs	from	your	project,	and	then	gives	scores	regarding	how	well	it	
thinks	that	you	followed	an	incremental	development	process.	What	we	are	
really	trying	to	do	today	is	determine	how	well	the	software	is	able	to	
estimate	your	use	of	incremental	development.	[Interviewers	explain	the	
report	results	for	the	interviewee.]	How	well	do	you	feel	that	this	report	
accurately	reflects	your	use	of	incremental	development	for	this	project?	

12. Of	all	the	points	that	have	been	made	during	our	discussion,	which	do	you	
think	is	most	important?	

13. Have	we	missed	anything?	

	

Thank	you	for	participating!	

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Self-Regulation in Software Development
	Programming Process Tracking Systems
	Software Testing
	Empirical Studies on Software Testing Practices
	Evaluating Software Test Quality
	Software Testing in the Undergraduate CS Curriculum

	The Academia–Industry Gap

	Data Collection Infrastructure: DevEventTracker
	Description of Collected Data
	DevEventTracker in Virginia Tech Coursework
	My Contributions to DevEventTracker

	Time Management in Intermediate Programming Projects
	Research Method
	Research Questions
	Study Context

	Proposed Metrics of Time Management
	Working Early and Often
	Test Writing
	Incremental Program Executions

	Research Question 1
	Interviews With Students
	Manual Inspection of Snapshot Histories

	Research Question 2
	Research Question 3
	Working Early and Often
	Test Writing
	Program and Test Executions

	Discussion
	Threats to Validity
	Summary

	Incremental Testing in Intermediate Programming Projects
	Research Method
	Research Questions
	Study Context
	Data Collection and Preprocessing

	Proposed Metrics of Testing Effort
	Balance of Testing Effort
	Sequence of Testing Effort

	Research Question 1
	Research Question 2
	Discussion
	Threats to Validity
	Summary

	Improving the Assessment of Software Test Quality
	Background
	Test Adequacy Criteria
	Structural Testing
	Fault-Based Testing

	Mutation Analysis—A Silver Bullet?
	Underlying Assumptions
	Efforts to Reduce the Cost of Mutation Analysis

	Test Adequacy Criteria in Education and Their Limitations

	Research Method
	Research Questions
	Study Context

	Research Question 1
	Method
	Result

	Research Question 2
	Method
	Result

	Research Question 3
	Method
	Result

	Research Question 4
	Method
	Result

	Discussion
	Choosing a Subset of Operators
	Operationalising Feedback

	Threats to Validity
	Summary

	Conclusions and Future Work
	Summary of Findings and Conclusions
	Process Metrics
	Mutation Analysis

	Future Work
	Development Process Interventions
	Mutation Analysis
	Long-Term Research Plans

	Final Remarks

	Bibliography
	Appendices
	Appendix Research Materials

