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(ABSTRACT) 

Several mathematical models are developed for a hose-drogue refueling 

system in an attempt to represent the physical system accurately and to 

subsequently observe the dynamic response of the system under different 

initial conditions. The mathematical models examined include a flexible hose 

model and a model which includes elastic bending effects. The equations of 

motion include aerodynamic, gravitational, and tensile forces, and solutions 

of the refueling system are found using fewer assumptions than in previous 

work. 

Once the equations of motion are developed, they are separated into 

equilibrium and perturbation portions. Solutions of the nonlinear equilibrium 

tension distribution are obtained by solving the equations in closed form using 

a two point boundary value problem solver program. The solution to the linear 

equilibrium tension distribution is found and compared to the nonlinear 



solutions. Results indicate that the behavior of the solutions is similar, but the 

linear solution gives larger values of tension near the hose attachment point. 

The perturbation equation is discretized using a finite difference scheme and 

the resulting first order differential matrix equation is integrated to calculate 

the dynamic response for given parameters and initial conditions with the 

various equilibrium tension distribution solutions. Results show negligible 

differences between the different tension values upon substitution and it is 

therefore recommended that the linear aprroximation to the equilibrium 

tension distribution be used in analysis of this hose-drogue refueling system 

because of the ease in obtaining solutions with this method. 
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Chapter 1. Introduction 

In these days of advanced technology many nations rely heavily on their 

aircraft as a means of transportation and for defense purposes. A nation's air 

force performs many valuable duties, including cargo transport, 

reconnaissance missions, and missions involving fighter aircraft. Often these 

missions must be carried out over long distances beyond the normal range of 

an aircraft. lnflight refueling provides an air force with a larger range of 

possible missions and a more economical and effective means of completing 

them. 

1.1 REFUELING METHODS 

The capability of refueling an aircraft during flight has proven to be essential 

in the design of advanced fighters. Currently there are over 8100 aircraft 

equipped with inflight refueling devices in the United States alone [ref. 1]. Two 
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types of inflight aircraft refueling systems are in operation today; the boom 

refueling system and the hose-drogue refueling system. 

1.1.1 Boom Refueling System 

The boom refueling system acheives refueling by placing a refueling 

apparatus, called a boom, on the underside of a tanker aircraft, typically a 

KC-135 tanker. The boom is a rigid member which encases the refueling hose. 

It has airfoils attached to its free end which provide a boom operator, lying in 

the belly of the aircraft, with a means to control the position of the boom. A 

receiver aircraft flying behind the tanker must maintain a steady position so 

that the boom operator can extend the hose through the end of the boom into 

the receiver's receptacle and thus lock on and begin pumping fuel. Note that 

both aircraft must remain in a steady position relative to one another while the 

boom is flown into position. 

1.1.2 Hose-Drogue Refueling System 

The hose-drogue system is an entirely different refueling method in that the 

refueling hose no longer has a rigid casing and it is not controlled by any 

means. This hose is flexible and is constructed of several layers including 

rubber, wire braid, tape wrap, and other materials [fig. 1]. It collapses when 

empty and is wound up on a reel, much like a garden hose, and this reel 

mechanism is attached to the main spars in the fuselage of the tanker [fig. 2]. 
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Attached to the free end of the flexible hose is a basket-like device called a 

drogue [fig. 3]. The drogue acts as a receptacle for the refueling process and 

also provides aerodynamic forces at the end of the hose to help it attain a 

nearly horizontal position during flight. The receiver aircraft must now be 

equipped with a device called a probe which can be inserted into the drogue 

and locked into position at which time the refueling process can begin. Note 

that it is now the responsibility of the receiver aircraft to maneuver into 

position while the refueling hose is free to move about in the atmosphere 

without control. 

1.2 RESEARCH OBJECTIVES 

The hose-drogue refueling system will be the subject of this research. In 

particular, the equations of motion of the refueling hose will be developed for 

the time after the hose is deployed but before attachment has taken place. It 

is necessary to analyze this portion of the refueling process because of the 

problems that are associated with an uncontrolled flexible hose. An 

atmospheric disturbance acting on this type of refueling system, such as a gust 

of wind, may cause oscillations in the hose which can grow under the proper 

conditions and jeopardize the refueling process. 

The objectives of this thesis are 

Introduction 3 



• To construct a mathematical model which accurately describes the 

behavior of the physical system. 

• To obtain solutions to the nonlinear equilibrium equations using a two 

point boundary value problem solver which uses a multiple shooting 

method. 

• To run simulations of the perturbation equations and observe the dynamic 

behavior of the hose under different initial conditions. 

To construct any mathematical model of the hose which is useful, it is 

necessary to make many assumptions along the way. The choice of these 

assumptions is left to the researcher and often assumptions are made to 

simplify a problem when they may not be justifiable. This paper will use fewer 

assumptions than previous research of the same nature, and in particular will 

solve the nonlinear form of the equilibrium tension distribution and compare 

it to the previous solutions obtained from the linearized form of the same 

equation. 
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Chapter 2. Development of the Nonlinear Equations 

of Motion 

The basis for the development and derivation of the equations of motion in 

chapter two are based on reports published by AERCOL, an aerospace 

consulting company which did research sponsored by the U S Air Force [ref 

2, 3]. It has been the major source of information used throughout this 

research paper. A majority of the equations in this chapter come from this 

reference, with corrections and changes made where appropriate. 

The equations of motion are developed for the refueling hose while it is in its 

extended position and allowed to hang freely in the atmosphere. The effect 

of the drogue attached to the free end of the hose is accounted for in the 

boundary conditions applied to that end. The forces acting on the hose 

include aerodynamic, gravitational, and tensile forces. These forces are 
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summed over a hose element of length ds, where s is the position coordinate 

along the hose, to produce the general hose equation of motion in two 

dimensions. For simplicity a local coordinate system is used where e is the 

axial coordinate which runs along the length of the hose in its steady state 

position (neglecting any curvature), and C is the transverse coordinate which 

is perpendicular to the hose [fig 4). Now the equation of motion can be written 

in the local coordinate system as 

(2.1) 

(2.2) 

It is assumed that the hose remains coincident with the e axis in its equilibrium 

state and that any deflections from this straight line are small. Physically it is 

known that the hose will curve slightly towards the free end because of the 

drag force acting on the hose and drogue. Motion will occur in the transverse 

direction only and axial vibrations will be neglected. The variable s can now 

be replaced by the variable e in the equations since they are approximately 

equal. 

2.1 AERODYNAMIC FORCES 
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The expression used for the aerodynamic forces acting on the hose is based 

on tests conducted by the Air Force on the hose during flight. This force is 

split up into components normal and tangential to the hose. The component 

of the aerodynamic force normal to a segment of the hose is given by 

+ pR(U + u')2{CF[1 + sin(<X + ~:)] sin(cx + ~:)} 

The expression for the force tangential to the hose is 

The total angle of attack in these equations has been written as 

ac cx+-ot 

(2.3) 

(2.4) 

(2.5) 

where ex represents the angle of attack at the attachment point of the hose in 

its equilibrium position. Equivalently this is the angle measured from a local 
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horizontal line, drawn under the tanker aircraft, to the e axis. ~: represents 

the change in angle of attack along the hose. It is assumed that the variable 
I\ 

( consists of an equilibrium portion ( and a perturbation portion (' 

I\ 

(=(+(' (2.6) 

It is assumed that the change in angle of attack is very small for both the 

equilibrium and perturbation terms. 

"· (JY _.,, <<1 
Je 

(2.7) 

(2.8) 

The following assumption has also been made 

, . ac u sin ex=--ot (2.9) 
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where the quantity u' represents a small deviation in speed from the tow speed 

U. Small angle assumptions have also been made when expanding the 

trigonometric terms. 

After incorporating the simplifying assumptions and expanding terms, the 

equations can now be written as 

/\ 

FN = UpR{[2U(C0 +CF) sin cc cos cc+ UCF cos cc]~:}+ 

<X' UpR{U[2(C0 +CF) sin cc cos cc+ CF cos cc]-:i-} + 
(Jf 

(2.10) 

/\ 

Fr= pU2RCF{(1 +sin cc) cos cc+ ( cos2cc - sin2cc - sin cc)~:} (2.11) 
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The aerodynamic force written in vector notation is 

(2.11) 

2.2 GRAVITATIONAL FORCES 

A constant gravitational field has been assumed so that the gravitational force 

can easily be expressed as 

(2.12) 

The expression for the total angle of attack has been reduced to just a since 

the term !: is very small over most of the hose length. 

2.3 TENSILE FORCES 

The tensile force in an element of the hose which varies in space and time in 

-the b2 direction is given by 

(2.14) 
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The change from 1 to 2 denotes a change in space while the symbol x denotes 

a change in time. The tension terms can be written in Taylor series form (with 

all higher order terms truncated) as 

(2.15) 

(2.16) 

Equation (2.15) represents a step in space while equation (2.16) represents a 

step in time. Combining equations (2.15) and (2.16) yield 

(2.17) 

The same procedure can be applied to the a( term. After substituting these ae 
expressions into equation (2.14) and neglecting the subscripts, the variation in 

the tensile force becomes 

[T + ar dt + ~eJ[ o( + ~dt + 82' ds - r ac J at oe oe otoe ae2 ae (2.18) 
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Expanding equation (2.17) and dropping higher order terms results in 

(2.19) 

Again it is assumed that the variables C and T can each be divided Into a 

pertubation portion and an equilibrium portion. Further simplifying 

assumptions for the tensile variation are that the tension is time invariant and 

the perturbation of the tension is small and can therefore be neglected along 

with its derivatives. If the same approach is followed for the variation of the 

tension in thee direction, the total tensile force becomes 

(2.20) 

The components of the general equation of motion of the hose (2.1) have now 

been written explicitly. The last contribution to the total dynamic equation is 

that of elastic bending. 

2.4 ELASTIC BENDING 
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The differential equation of transverse vibration of an Euler-Bernoulli beam is 

[ref. 4] 

~2 12r 12r () c., -c., -[£/-] + p- = P(e, t) ae2 0£2 at2 
(2.21) 

Here P(F., t) represents the net transverse loading acting on the structure and 

El is the bending stiffness. Since El is assumed constant along the hose, 

equation (2.21) can be written simply as 

....,4.., .... 2 ~ 
C;, -C\, El-+ p-2 = P(c, t) c£4 ot (2.22) 

Making use of the perturbation and equilibrium portions of the variable (gives 

the expression 

a4( a4t - <lC' 
E/(-4 + -4-) + p-2- = P(F., t) oe ce ct (2.23) 

Rearranging terms gives 
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(2.24) 

When the components of the aerodynamic, gravitational, and tensile forces are 

substituted for P(e, t) in the above equation, it produces the complete 

equations of motion of the hose with elastic bending. The resulting differential 

equation in the C direction is 

(2.25) 

I\ . ac ac' - U2pR[2(C0 +CF) sin a cos a+ CF cos a](-;-+ -::i-) 
ve ve 
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The equilibrium equation in the e direction is 

/\ 

aaf +pg sin a+ U2pRCF( cos2a - sin2a - sin a~ 
e ae (2.26) 

+ U2pRCA1 +sin a) cos a= 0 

The equations have now been completely developed for the hose-drogue 

refueling system for both the elastic bending case and the flexible case. 

2.5 EQUILIBRIUM AND PERTURBATION EQUATIONS 

The differential equations (2.25) and (2.26) developed in the previous section 

can be separated into two equilibrium equations, one in each direction, and 

one perturbation equation in the ( direction. The equilibrium equation in the 

( direction is given by 

(2.27) 

/\ 

- U2pR[2(C0 +CF) sin a cos a+ CF cos a]~~ 
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2" - J\ 4 J\ 

_ -8' 8T8( a' + pg cos IX + T- + = El-
Of,2 8r,8r, or,4 

The equilibrium equation in the r, direction is the same as equation (2.26) since 

there are no perturbation terms present, and it is repeated here for 

completeness. 

J\ 

af - . u2 Re ( 2 . 2 . ) 8( -a;: + pg Sin IX + p F cos IX - Sin IX - Sin IX Of, (2.28) 

This leaves one perturbation equation (in the ( direction) which is given by 

(2.29) 
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A mathematical model of the hose dynamics is now completed. The next step 

is to attempt a solution to these equations and to see how well they represent 

the physical system. 
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Chapter 3. Solution of the Equilibrium Equations 

In order to solve the perturbation equation and thus observe the hose 

dynamics, it is necessary to obtain values of some of the parameters in the 

equations of motion. Throughout this paper all parameters and solutions will 

be obtained numerically for one test case which is representative of an actual 

refueling mission between a KC-135 tanker and a U S Air Force fighter aircraft. 

The constants for this system are listed in Table 1. Most of these come from 

references 2 and 3, and the value for El comes from hose stiffness tests in 

reference 5. The other quantities, such as equilibrium hose angle of attack and 

equilibrium tension distribution, can be found by solving the equilibrium 

equations. The equilibrium hose angle of attack at the attachment point is 

solved for first, and the resulting value is then used to obtain the equilibrium 

tension distribution solutions for the linear and nonlinear forms of the 

equations. 
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3.1 EQUILIBRIUM HOSE ANGLE OF ATTACK 

The initial hose angle of attack at the attachment point, ex , can be solved for 

using the equilibrium equation (2.27). At the aircraft attachment point (1.: = 0) 
f\ 

the hose is very straight and the term a' can be set equal to zero (i.e. the 
01.: f\ 

slope is zero at the attachment point). The second order derivative 02'2 is also 0£ 
neglected (I.e. there is no moment at the attachment point as if it were a pin 

joint). With these simplifications, equation (2.27) becomes 

(3.1) 

Equation (3.1) now has only one unknown ex which is solved for by finding the 

roots of the equation and choosing the appropriate value (between 0 and 90 

degrees). The equilibrium value for ex , using the case values from table one, 

is 11.4 degrees. This value can now be used in all subsequent equations. 

3.2 LINEAR EQUILIBRIUM TENSION DISTRIBUTION 

The last step in the equilibrium analysis is the determination of the equilibrium 

tension distribution. In references 2 and 3 the tension distribution has been 

assumed to be linear so that the tension distribution and its first derivative can 
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be solved for easily. The same procedure is repeated here, but then the same 

equations will be solved in their original nonlinear form without assuming a 

linear distribution. The solutions will then be compared and the assumptions 

involved will be discussed. 

The linear equilibrium tension is found using both equations (2.26) and (2.27) 

and neglecting all terms higher than first order. This results in the following 

equations 

(3.2) 

f\ 
- (JY 

ar +c+o-"' =O ot ot (3.3) 

A through D are constants for a particular example and are defined as 

(3.4) 

(3.5) 
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C = U2pRCF(1 +sin cc) cos cc+ pg sin cc (3.6) 

(3.7) 

Equations (3.2) and (3.3) can then be combined to produce a differential 

equation for the tension given as 

dT DA-CB -=----dt: B + C 
(3.8) 

This equation can be integrated using the boundary condition that the tension 

at the free end is known. The tension produced at this end is related to the 

forces acting there created by the drogue and can be expressed as 

T(t: = /) = W0 sin cc+ D0 cos cc (3.9) 

Integration of equation (3.8) using (3.9) as the boundary condition results in 

the following expression for linear tension 

- ar T = a;(t: - /) + W0 sin cc+ D0 cos cc (3.10) 
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This equation is solved for f using the constants from table 1. The tension at 

the free end of the hose is 453 pounds. Integration yields a tension value of 

792 pounds at the attachment point of the hose with a constant slope of 

approximately 3.5 pounds per foot. A plot of this linear tension distribution is 

shown in figure 5. 

3.3 NONLINEAR EQUILIBRIUM TENSION DISTRIBUTION 

The most difficult portion of this research centers around obtaining solutions 

to the nonlinear form of the equations involving the tension distribution, and 

this is the point where the research departs from any previous work on this 

topic. The motivation behind solving these nonlinear equations is to obtain a 

more accurate solution by making fewer initial assumptions, namely that the 

higher order terms be retained. Retaining these terms makes the solution 

much harder to obtain. The method of solution is to put the equations in state 

space form and then solve the system of equations using appropriate 

boundary conditions, the selection of which prove to be critical in obtaining 

converging solutions. 

A program called BOUNDSOL was used to solve for two different nonlinear 

systems of equations, one including the elastic bending terms (called the beam 

system of equations), and one neglecting any stiffness terms (called the string 

system of equations) [ref 6]. BOUNDSOL is actually a series of programs 
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designed to be used as subroutines for a main program written to suit a 

particular type of problem. It employs a multiple shooting method to solve two 

point boundary value problems and optimal control problems. The string 

system of equations, representing the flexible hose model, is solved in 

addition to the beam system of equations to determine the differences between 

assuming a flexible hose as opposed to a stiff hose. 

3.3.1 String System of Equations 

This section is called the "string system of equations" because the differential 

equations developed for the hose describe a structure which behaves similar 

to a string. The standard string equation, also known as the wave equation, 

is a second order partial differential equation which requires two boundary 

conditions in order to obtain a solution [ref 7]. The boundary conditions for 

the string equation for the case where one end is fixed and one end is free is 

that the displacement at the fixed end is zero and the slope at the free end is 

zero. 

The second order differential equations used for the hose model are obtained 

easily by removing the stiffness term El 04a ( from the equilibrium equations 
t;4 

developed in chapter 2. The adjusted form of these equations in each 

direction are then rewritten in state space form. Three state variables are 

chosen as 
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(3.11) 

(3.12) 

(3.13) 

Here X1 is the equilibrium tension, X2 is the transverse displacement of the 

hose from its equilibrium position, and X3 is the slope of the displacement 

curve. Substituting these state variables Into the equilibrium equations and 

rearranging results in a system of three first order differential equations 

(3.14) 

- U2pRCA1 +sin a) cos a - pg sin a 

(3.15) 

(3.16) 
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- pg cos IX+ (U2pR[2(C0 +CF) cos IX sin IX 

+CF cos 1X(2 +sin IX)] +pg sin 1X)X3 

This string system of equations requires three boundary conditions rather than 

two since there are now three first order differential equations instead of one 

second order differential equation. The two boundary conditions used for a 

standard string equation can be used here if they are modified for this special 

case where the string has a mass on the end. In this instance the slope at the 

end is related to the forces which act on the drogue and cause the slope at the 

free end to change from zero to a specified equilibrium value. The 

displacement of the hose at the attachment point is still zero as before, and the 

third boundary condition is the tension specified at the end to be 453 pounds, 

as in the linear tension distribution solution. The resulting boundary 

conditions are summarized here 

T(e = /) = W0 sin IX+ 0 0 cos IX (3.17) 
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I\ 

((e = 0) = 0 (3.18) 

I\ 

8( w -( e = /) = - - 1X oe D 
(3.19) 

In state space this can be expressed as 

(3.20) 

(3.21) 

(3.22) 

Solutions to this system of equations were found using BOUNDSOL after much 

difficulty. The program eventually produced a convergent solution but proved 

to be very sensitive to the initial guess given. The largest problem 

encountered was that the program would claim convergence, but the 

supposed convergent solution would be discontinuous. Apparently the 

solution would follow a path which was not the correct one and then the 

solution would have to jump at a node in order to match the boundary 
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conditions at the end. This problem was reduced by iterating the initial guess 

values until the jumps decreased in magnitude and were barely visible. The 

discontinuities could be reduced by this technique but the results were not 

very reliable since the jumps, although very small, still existed, the 

convergence rates (such as condition number and absolute error) were poor, 

and the method of solution at this point was tedious. 

I\ 

- I\ a( 
Figures 6, 7, and 8 are plots of the three state variables T, ( , and ae versus 

length of hose. The length of the hose is actually 97 feet but is scaled from 0 

to 1 for simplicity. A discontinuity is evident on the plot of the tension 

distribution at ten percent of the distance along the hose in figure 6. 

The next attempt at a solution was to specify the value of tension at the fixed 

end rather than the free end as one of the boundary conditions. The initial 

value of the tension at the fixed end was chosen to be the value from the 

solution obtained when using the previous method of iterating to find the 

proper initial values. This technique produced converging solutions with no 

discontinuities and good convergence rates, but was still sensitive to the initial 

guess. Figures 9, 10, and 11 illustrate the solutions of the state variables 

versus distance along the hose as before. There are no discontinuities present 

in any of the plots. Notice that the tension distribution solution to a nonlinear 

form of tile hose equilibrium equations produces a solution which is nearly a 

straight line. This is similar to the solution obtained from the linear 

assumption made previously for the same case values except that the initial 
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value of tension is now 769 pounds rather than 792 pounds and the slope of 

this line is also slightly different. This means that the actual values of the 

tension distribution for each case are different, but the behavior of the 

solutions are very similar. 

The fact that the program produces a convergent solution without 

discontinuities when the equations are integrated forward in space, but the 

tension is specified at the attachment point, provides the basis for the next 

approach, which is to integrate backward in space (i.e. from the free end of the 

hose to the fixed end). This means that the boundary condition of the tension 

being specified at the end of the hose is now an initial boundary condition 

rather than a final one. The program prefers this set of boundary conditions 

since there are now two initial requirements and one final one so that it was 

easier for the solution to march forward in space and match the one remaining 

boundary condition at the end of the hose rather than two boundary 

conditions. The method of integrating backward produces convergence rates 

which are excellent, and the absolute error rate for this case is on the order 

of 10-8 . The solutions are also less sensitive to the initial guess and do not 

rely on an initial guess value for the tension at the fixed end of the hose. Plots 

of the state variables versus distance are shown in figures 12, 13, and 14. 

They are identical to the three previous figures except that they are mirror 

images and can be used with sufficient confidence. 

3.3.2 Beam System of Equations 
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The "beam system of equations" is so named because the equations 

representing the system are similar to those of a vibrating beam. The 

equations used are the same as those of the string system of equations except 

the stiffness term with El is retained. The system is now fourth order and five 

state variables are chosen in order to put the equations into state space form. 

These are 

(3.23) 

(3.24) 

I\ 

X _jl_ 
3- oe (3.25) 

(3.26) 

(3.27) 
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These state variables are substituted into the nonlinear equilibrium equations 

and produce a system of five first order differential equations which are shown 

below. 

(3.28) 

+ (1 +sin o;) cos oc] - pg sin o; 

(3.29) 

(3.30) 

X'4 = Xs (3.31) 

(3.32) 

+pg cos ex+ { - U2pR[2(C0 +CF) cos ex sin ex 
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+CF cos oc + (1 +sin oc) cos oc] - pg sin oc}X3 

These five differential equations require five boundary conditions for a 

solution. The standard boundary conditions used for a pinned-free beam are 

applied here, again with some modifications to suit the particular problem of 

having a mass on the end, and the fifth boundary condition used is again to 

specify the tension at the free end of the hose as 453 pounds. The boundary 

conditions are summed below 

T(e = /) = W0 sin ex+ 0 0 cos oc (3.33) 

I\ 

((e = 0) = 0 (3.34) 

I\ 

i}( W cos ex - D sin oc -(e = /) = -----oe W sin ex + D cos ex 
(3.35) 

(3.36) 
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I\ <ic -(e=l)=O ae2 

In state space this can be expressed as 

X3(e = /) = W cos a - D sin a 
W sin <X + D cos a 

Xie= I)= 0 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

Solutions to the tension distribution for this case are obtained in a similar 

manner as with the string system of equations, and the same difficulties are 

encountered. First the equations are integrated forward in space and the 

solutions have discontinuities. Figures 15 through 19 illustrate the five state 

variables versus distance along the hose for this case. The discontinuities are 
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small here (after many attempts to iterate the guess values) but are still 

evident and still create a problem. Next the boundary condition of the tension 

specified at the free end of the hose is changed to the fixed end and the 

solutions are continuous but again are extremely sensitive to the initial guess 

values. Finally the problem is integrated backwards from the free end of the 

hose to the fixed end and the solutions converge nicely as was the case for the 

string system of equations. Figures 20 through 24 show the plots for this case. 

Again they are mirror images of the previous five except that these solutions 

are much easier to obtain and have excellent convergence criteria. Absolute 

error is on the order of 10-a and the condition number indicates that the 

problem is no longer ill conditioned. 

The tension distribution for the case of the beam proves to be very similar to 

the string solution. The value of the tension at the fixed end is 766 pounds as 

compared to 769 pounds in the string example and 792 pounds for the solution 

assuming linear tension. The change in slope between the two solutions to the 

nonlinear equations exists but is negligible. 
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Chapter 4. Solution of the Perturbation Equation 

The equilibrium values of the angle of attack and the tension distribution along 

the hose have now been solved for three different cases of tension distribution 

using the example data in Table 1. The perturbation equation may now be 

solved for this example using these equilibrium values. 

4.1 DISCRETIZATION SCHEME 

The perturbation equation is a partial differential equation which cannot be 

solved in closed form so it must be discretized. This is accomplished by using 

a finite difference approach. The spatial derivatives in the equation are 

replaced with central difference operators while the time derivatives are left 

intact. The perturbation equation of motion is repeated here with a change of 

variable for notation purposes. Let (' equal v and rewrite equation (2.29) as 
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+ f <iv + afov = - a2v +El ilv 
ar.2 Of.Of, p at2 or.4 

The following finite difference operators are used [ref 8]. 

av; 
-= 

or. 

ilv. I --= 
ar.4 

V;_2 - 4V1_ 1 - 6v1 - 4V;+1 + V1+2 

h4 

Substituting equations (4.2) through (4.4) into equation (4.1) yields 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 
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(4.5) 

The subscript i refers to the position in space. Thus the hose can be divided 

into n subdivisions where i goes from 0 to n. v0 is the hose attachment point 

and Vn is the free end of the hose where the drogue is attached. The terms 

W , X , Y , and Z are listed below. 

x =-1-<af 
2hp oe 
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(4.6) 

(4.7) 

(4.8) 
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(4.9) 

The variables vi(i = 0-+ n) comprise the state vector {v}. Now the matrix can 

be written in matrix form with appropriate boundary conditions to eliminate 

any dependence on the virtual nodes. 

The first boundary condition comes from the fact that the perturbation from 

equilibrium at the aircraft attachment point is zero, so v0 = 0. The virtual node 

v_1 must also be removed from the equation by expressing it in terms of actual 

nodes. The value at v_1 is approximated by assuming that the moment at the 

attachment point is zero. The moment" is expressed as El times the second 

derivative with respect to space at v0 using the central difference operator 

given below. 

(4.10) 

Solving (4.10) for v_1 yields 

(4.11) 
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The boundary conditions at the free end of the hose are found by expressing 

the slope and bending moment at the end as follows 

OV1 V1+1 - V1-1 
-= oe 2h 

w =--ex 
D 

(4.12) 

(4.13) 

Incorporating these boundary conditions into equation (4.2) removes the 

expressions of the virtual nodes and results in a matrix form of the 

perturbation equation which is given below 

(4.13) 

where Q1 is the state matrix consisting of terms which are functions of X , Y , 

and Z , and these values change for a particular example. This is a second 

order system and can be reduced to a first order system by introducing a new 

set of state variables so the dimension of the system doubles. The matrix 

equation becomes 
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{ ~ } = I o I I{~} 
v Q WI v (4.14) 

where I is the identity matrix. The perturbation equation has now been written 

in state space form as x = Ax and the hose dynamics can be resolved. 

4.2 TIME HISTORIES 

The perturbation equation is solved with the different values of the equilibrium 

tension and hose angle of attack substituted into the discretized model. This 

model is now in the form of a first order differential equation x =Ax in which 

the states include the displacement of the hose from equilibrium at finite 

intervals along the length of the hose and the velocities at those same 

positions. Thus the motion of the hose over time is found by integrating this 

equation and plotting the results. A Fortran code was written to calculate the 

hose dynamics and includes a fourth order Runge-Kutta integration scheme. 

This procedure is illustrated for two cases, the linear tension case and the 

beam case, because their boundary conditions are compatible with the system 

matrix developed in the previous section. The system matrix can be adapted 

for other sets of boundary conditions easily using the same approach of 

approximating derivatives with the appropriate finite difference operators. In 
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each sample case the hose has been divided into five sections giving a total 

of ten states (five positions and five velocities). The differential equations were 

both integrated using the set of initial conditions shown in table 2 for this 

example. The two cases produced almost identical dynamic responses. Plots 

of the position states versus time are shown in figure 25 and the 

corresponding velocity states versus time are illustrated in figure 26 for the 

linear tension distribution case. Similarly, figures 27 and 28 illustrate the 

dynamic solution for the case of the beam tension distribution. 

In each plot the perturbation caused by the initial conditions given takes 

approximately 20 seconds to damp out completely. The state variable x5 

represents the end of the hose where the drogue is attached. The position of 

this state over time is the most important to the analysis of this hose-drogue 

refueling system because its location is critical when performing an inflight 

refueling mission. The plots show that this state fluctuates the most when 

compared to the other position states along the hose as expected. In figure 

25 the maximum deflection from equilibrium at the free end of the hose is less 

than 0.4 feet, and figure 27 is identical. The same procedure carried out for 

different initial conditions produces the same type of dynamic response for the 

two different tension distributions used in this example. The velocitiy at the 

end of the hose is also of particular importance. Figures 26 anr.I 28 show the 

maximum velocity deviation to be just over one foot per second at the free end 

of the hose (x10). The dynamic response of the hose for this mathematical 
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model behaves as predicted and damps out after some time due to the 

aerodynamic damping terms in the equations of motion. 

The open loop eigenvalues were calculated for each system matrix and are 

listed in tables 4 and 5. The values in each case have the same real part. 

Differences between the two occur in the imaginary part and are in the first 

decimal position or less so the differences between the eigenvalues of the 

example system matrices exist but are very small. The system's natural 

frequencies can be found from the eigenvalues since w = (a2 + ix2) 112 where the 

w is the natural frequency and the eigenvalue is expressed as a + iix . It is 

important to know the natural frequencies of the system in order to avoid 

exciting the system at these frequencies and producing a response which 

grows over time rather than damping out. In this regard it is important to have 

as accurate a solution as possible, so it may be advisable to use the more 

accurate description of the system matrix given by the beam tension 

distribution for this purpose. 
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Chapter 5. Conclusions and Recommendations 

5.1 CONCLUSIONS 

In summary, the hose-drogue refueling system was mathematically modelled 

using Newton's second law and summing the aerodynamic, gravitational, and 

tensile forces acting on an element of the hose. The model was then extended 

to include beam elastic bending effects. The equations of motion developed 

were then separated into equilibrium and perturbation equations. 

The equilibrium equations were used to solve for the equilibrium hose angle 

of attack and tension distribution. The angle of attack was solved for first, and 

this value was used when solving for the tension. The nonlinear equations 

with and without elastic bending were solved in closed form using software. 

The tension was also assumed to be linear and after discarding terms, this 

linear approximation was solved also. 
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Solutions were obtained in each instance using the same case values each 

time. These values represent a typical refueling mission. The results indicate 

that the nonlinear equilibrium tension distribution can be solved in closed 

form after some difficulty, but with excellent convergence criteria. These 

solutions differ from the solution assuming a linear distribution in the 

magnitude of the tension along the hose, and thus the slope, but the behavior 

of all solutions is very similar. The slope (or change in the tension value along 

the hose) in each case is constant or nearly constant. The value of the tension 

at the free end of the hose is the same in all cases because it is fixed as a 

boundary condition. 

The most noticeable difference in solutions is the slope of the tension. It Is the 

highest in the linear case and produces the largest value of tension, 792 

pounds, at the hose attachment point. The slope of the beam system of 

equations produces the smallest slope and thus the lowest value of tension, 

766 pounds, at the fixed end. The string system of equations has a slope very 

close to the beam system of equations with a tension of 769 pounds. This data 

is tabulated in table three. The maximum difference in tension magnitude 

occurs at the hose attachment point. Here there is a difference in values 

between the linear solution and the nonlinear beam solution of less than 4 

percent. There is of course a 0 percent difference at the free end so the 

difference in solutions of the magnitude of the tension whould never exceed 4 
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percent in this case, and will be less when considering the change in 

magnitude at other points along the hose. 

These results show that the tension distribution can be solved more accurately 

by finding a closed form solution to the nonlinear equations, but this solution 

is sufficiently close, in magnitude and in behavior, to the solution of the 

linearized equations. It is recommended that the linear approximation be used 

for most instances because of the simplicity in obtaining its solution. This 

solution can also be used with confidence because it has been shown that the 

assumptions involved are valid and still produce reliable results. 

The solutions to the perturbation equation were obtained using the linear 

equilibrium tension distribution and the tension distribution corresponding to 

the beam system of equations. Both cases produce almost identical dynamic 

responses and further validate the recommendation that the linear equilibrium 

tension distribution solution be used in the analysis of this refueling system; 

however, the solution to the nonlinear equilibrium equations may be useful 

when solving for the open loop eigenvalues of the system because even slight 

differences become important when calculating natural frequencies. 
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5.2 RECOMMENDATIONS 

One purpose of this research was to develop an accurate structural model of 

the hose-drogue refueling system. The model used herein produced reliable 

results but could be improved upon in several ways. 

A more accurate model could be to include the drogue dynamics in the 

equations of motion. The equations developed previously only included the 

effects of the drogue in the boundary conditions. This approach is not entirely 

valid because the drogue has significant mass and aerodynamic forces acting 

on it which influence the behavior of the hose all along its length rather than 

just in the vicinity of the drogue attachment point. The problem associated 

with solving this system of equations is that it becomes sufficiently complex 

enough to create difficulties when attempting a solution to the nonlinear 

equilibrium equations in closed form. The problem may well be ill conditioned 

and a convergent solution unlikely. 

The structural model could also be further analyzed by using a finite element 

approximation to discretize the system rather than a finite difference scheme. 

The results from the two methods of solution and the numerical errors 

involved could be compared. 
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Another addition to this research would be to implement a control system for 

the hose so that any oscillations could be quickly damped out. One way to 

accomplish this task would be to place a control device, such as flaps, at the 

free end of the hose where the drogue is attached. This would enable the 

drogue to remain in a steady position relative to the aircraft, even in the 

presence of atmospheric disturbances. 

A last recommendation would be to realize that the true structure involved is, 

in reality, very different from a string or a beam. The actual physical system 

is not infinitely flexible because it does have some measure of stiffness, but it 

does not behave as a beam, either. Its cross section is unusual; circular and 

hollow in the center. In reality the true system lies somewhere between the 

string and beam approximations, but most importantly, its solution may not. 
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Table 1: Hose-Drogue Refueling System Data 

Length L 97 ft 

Radius R 0.1615 ft 

Altitude 10,000 ft 

Tow Speed U 506 ft I sec 

Hose Density 3.5 lb I ft 

Co 1.2 

Wo 63 lb 

Coo 2.0 

Do 449.5 lb 

CF 0.0283 

El 4600 lb ft2 
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Table 2: Initial Conditions 

X1 0.0 

X2 0.5 

X3 1.0 

X4 0.5 

X5 0.0 

Xe 0.0 

X7 0.5 

Xe 1.0 

Xg 0.5 

X10 0.0 
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Table 3: Equilibrium Tension Distribution Results 

T(t = 0) Slope 

Linear 792 3.495 

String 769 3.258 (ave) 

Beam 766 3.227 (ave) 
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Table 4: Open Loop Eigenvalues; Linear Model 

-0.3145 6.7142 i 

-0.3145 -6.7142 i 

-0.3145 5.5667 i 

-0.3145 -5.5667 i 

-0.3145 4.3110 i 

-0.3145 -4.3110 i 

-0.3145 3.1532 i 

-0.3145 -3.1532 i 

-0.3145 2.5861 i 

-0.3145 -2.5861 i 
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Table 5: Open Loop Eigenvalues; Beam Model 

-0.3145 6.6110 i 

-0.3145 -6.6110 I 

-0.3145 5.5039 i 

-0.3145 -5.5039 i 

-0.3145 4.2690 i 

-0.3145 -4.2690 i 

-0.3145 3.1213 i 

-0.3145 -3.1213 i 

-0.3145 2.5526 i 

-0.3145 -2.5526 i 
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Figure 1 Refueling Hose Configuration 
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A 

Figure 2 Hose-Drogue Reel Assembly 
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Figure 3 Drogue C onfiguration 

57 



Local Coordinate System 
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Figure 4 Local Coordinate System 
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