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ITI, SYMBO

= ares

= gpeed of sound
= 0(§2)

s C

= ﬁ<§ tan ¢S - 52 tan? ¢S -1 )

distance between vertex of detached shock wave and xgp

velocity of flow
speed of sound

-Mach Number =

stagnation pressure

local velocity

coordinate in stream direction

distance from foremoat point of detached shock to intercept

of its asymptote on x-axis

= coordinaste perpendicular to stream direction

= ratio of specific heats (1.4 for air)

= angle between sonic line and normsl to free-stream direction

= half-angle of wedge

= gngle of streamline relative to x-exis

= distance from leading edge of wedge to foremost point of shock
= wedge half-angle for which shock becomes detached

= density

isentropic contraction ratio from free stream to sonic velocity

L]

= local inclination of detached shock relative to x-axis




Subscriptss
o = free-stream conditions
¢ = centroid of stresm tube passing sonic line
S = gonic point of detached shock

SB = sonic point of body

s = conditions along sonic line




I11. INTRODUCTION

One of the most difficult and least understood problems in
aerodynamics occurs when a region of subsonic flow exiafs in a super-
sonic flow field. One of the most important, and perhaps one of the
simplest conditions where a mixed flow field exists, is the case of the
detached shock wave for simple two-dimensional bodies. Although this
condition can occur for any Mach Number greater than unity, depending
upon the shape of the body, it is referred to as the transonic region.
Many attempte (1, 2, 3, 4, 5) have been made to find a theoretical method
that predicts the location of detached shock waves ghead of two-
dimensional bodies in this transonic region. It is well known that
bodies with detached shock waves are, in effect, immersed in an imbedded
non-uniforn subscnic flow. The difficulty is in determining the actual
velocity distribution, entropy, preassure, and density changes that occur
immedigtely downstresm from the detached shock wavee

It is important to the practicing aerongutical engineer that
a method of snalysis for detsched shock waves be available and it 1s
even more important to mow the sccurecy of the method, snd the limiting
range in which the method is applicable. The Continuity Methcd, a
theoretical approximste methoed for predicting the form snd location of
deteched shock waves (6), eppeers to be most promieing. The Continuity
Method is based on the assumptions that: 1) the form of the shock wave

between its foremost part and ite sonic point is adequately represented

by an hyperbola asymptotic to the free stream Mach lines; and 2) the
i
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sonic line between the shock and the body is straight and inclined at
an angle that depends only on the free stream Mach Number.

Unfortunately, at the time of the publication of the Continuity
Method, very few relisble experimental results for two-dimensional
bodies were aveilable for comparison with the theory. Further, the
experimental date availsble was, of necessity, for relatively bluffe-
type bodies at Mach Numbers considerably greater than unity. With the
edvent of new interferometric techniques and shock tubes, a great deal
of experimental data for supersonic airfoil shapes in the Mach Number
range slightly greater than unity is now available. With the existence
of this extensive and more reliable detached shock data, it is now
possible to investigate more thoroughly the relisbility of the Continuity
Method.

The purpose of this thesis is: 1) to present Moeckel's formu-
lation of the Continuity Method (6) for two-dimensional, sherp-nosed
wedge-type airfoils; 2) to calculate the form end location of the de-
tached shock waves for the specific ranges of Mach Number experimentally

investigated recently in references 7 and 8; and 3) to evaluate the

Continuity Method for engineering usage.
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IV. REVIEW OF LITERATURE

Moeckel, W. E., "Approximate Method for Predicting Form and Location
of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies".

NACA TN 1921, July 1949.

An approximate method, called the "Continuity Method", is
developed for predicting the form and location of detached shock waves
ahead of plane or axially symmetric bodies; and for estimating the drag
of the portion of the body upstream of the theoretical sonic point by
investigating the change of momentum of the alr passing the sonic line.

Comparison of the theory is made with exlsting experimental
data, namely for blunt, axislly symmetric bodies, with the exception
of a cone. The comparison of the form of the detached wave 1s limited
to the axially symmetric case at a single Mach Number, end the comperison
of the detachment distaence is for axially symmetric blunt bodies and one
two-dimensional wedge at a single Mach Number.

The comparison of the theory for only one wedge at one Mach

Number seems to be inadequate for a proper evalustion from an engineering

standpoint. An investigation should be mede for a series of Mach numbers

in the detachment rangee.
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Griffith, Wayland, "Shock-Tube Studleg of Transonic Flow Over Wedge
Profiles", Journal of the Aercnsutical Sciences, Vol. 19, No. 4,

The flowv around wedges in the transonic range is studied
experimentally using a shock=tube and Mach~Zehnder interferometer.

The results of these studies, meade tc determine the location
end shape of detached bow waves on wedges cf 20°, 30°, 40°, 60°, and
180° total engle, are presented in the forn of drewings showing the
detached shock waves, sonic lines, and lines of constant densitye.

The experimental procedure and results are discussed along
with implications from various detached shock theories. In addition,

the pressure distributions on the frent surface of the wedzes are com=

puted and presented.
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Bryson, A. E., Jr., "An Experimental Investigation of Transonic Flow
Past Two=-Dimensional Wedge and Circular-Arc Sections Using a Mach=

Zehnder Interferometer", NACA TN 2560, November 1951.

Interferometer measurements for the flow fields near two-
dimensional wedge and circular-arc sections at jzero angle of attach at
high subsonic and low supersonic velocities are discussed. The experi-
mental procedures are discussed at length and theoretical studies of
transonic flow past wedge profiles are reviewed.

Drawings accurately scaled from interferograms show the shocks,
sonic lines, and constant density lines for g 10° wedge at various Mach
Numbers from 1.207 to 1l.465. #lso included are similar drawings for a
biconvex airfoil.

The pressure variation with Mach Number over these wedges is

also discussed.



Ve THEORY OF THE CONTINUITY METHOD

It iz concidared necegssry first to present briefly Moeckel's
formulation of the Continuity Method for two-dimensionsl, wedge=type
airfoils.

A. BASIC ASFUMPTIONS

The Continuity Method is an approximate one, aimed at pre=-
dicting exnediently the approximete form end location of detached shock
weves. Manr simplifying assumptions are required to make theoretical
analysis feasible for a reglon of subsonic flow occurring in a supersonic
flow field, ss is the case with detached shock waves. Withcut such
assumptions, the flow czn be constructed only by means of lengthy numerical
methods based on the differential equations of fluid mechenies. With such
methods, general trends and important parameters are not essily discernible.

The assumptions of the Continulty Method concern the form of
the boundariss of the subsonic region rather than the nature of the flow
varisbles. Basically, the form of the detached shock wave is assumed to
be only seccndarily influenced by the form of the body ahesd of the sonic
point, and the sonic line between the shock and the body is assumed to be
straight and inclined st en angle that depends only on the free-stream
Mach number. The continuity relstion is then applied to this simplified
picture to obtain the location of the shock wave relative to the body
sonlc point,.

Bes METHOD OF ANALYSIS
The representation of flow with detached shock waves to be used

in Moeckel's analysis 1s shown in Figure 1. The detached shock wave is
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located upstreem a distance L from the body sonic point, SB. Somewhere
along the shock wave, there is also a sonic point, S. The locus of all
points between S and SB where the velocity is sonic is called the sonic
curve, and for this analysis is assumed to be straight end inclined at

an angle dependent only on the free-stream Mach Number, Mo‘ The boundaries
of the subsonic flow field then are: 1) the shock wave to the sonic
point, S3 2) the sonic line from S to SBj and 3) the portion of the

body ahead of the body sonic point, SB. If the form of the detached
shock wave is known, the location of S on the wave can be determined
immediately, because for a given free-gtream Mach Number, M,, the local
shock angle, ¢S, for which sonic velocity exists behind the shock is
known from the so-called exact shock theory (11). The flow direction,Ag,
at this point is then also known.

Concerning the assumption that the sonic curve is a straight
line, more exact computations, as well as experimental results, indicate
that the form may depend considerably on the shape of the nose or leading
edge (§, 10)3 but Moeckel states that to the degree of approximation of
the Continuity Method, such variations appear to be unimportant. With
this simplified picture, approximate expressions are derived for the
form and location of the shock relative to the body sonic point.

C. LOCATION OF THE BODY SONIC POINT

It is immediately evident that the location of the body sonic
point, SB, must be known. Evidence is svailable to show that for bodies
with sharp or well defined shoulders, the sonic point is located at the

shoulder (10). For more graduslly curved bodies, the location of the

o



shoulder can be estimated as being at the point where the contour of
the body is inclined at the wedze engle corresponding to shock wave
detachment. For purmoses o cnaly-is, the body soniec point end the
shoulder are assumed to coincide, the differences being insignificant,
according to Moeckel.

D. DERIVATION

The derivation of the expression for the location of the
detached wave will now be briefly presentad.

i rst, consider the most typical characteristics of detached
weves, nameiy: 1) they are normel to the free-stream at thelr {foremost
point, and 2) they are asymptotic to the free~stream Mach lines at a
large distance from their foremost point. & simple curve thet has these

characteristics is an hyperbola represented by

py = ¥/ - x] (1)
where
R = cot. Mach angle = ‘V ;E -1

and x, 1is the distance from the vertex of the weve to the intersection
of 1ts asymptotes (Figure 1). For the purpose of the analysis, the
hypothesis is made that to the degres of approximation required, all
detached shock waves in the region between the axis and the scnic point,
S, may be represented by Equation (1).

With this form of detached weve, the angle between the stream
direction and the tangent to the shock at any point is obtained from

Equation (1) by taking the derivative with respect to x. Thus,

dy . in + 32 y2

= (2)

= s
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The location of S is then

x, cot
YS = > 2 ¢§ 2 (3)
B'VB - cot< fg
and
P Xo
(3a)
If the y-coordinste of the body sonic point is used as a
reference dimension, then the form of the shock wave is given by
.
(-—-) (=2 (4)

YSB B ¥sB ysn

from Equation (1) where, from equation (3)

Yo .p ¥ Ap? tar? gy -1 (5)
YsB JsB

From Equation (3a), the dimensionless location of the shock wave

sonic point is
Xo
s G (®)
YsB i7§§-§;;;;§-ag
The distance from the foremost point of the wave to the x-coordinate
of the body=-sonic point is
L _Xp_Xo 7)

ey TN ain g Sun——

where, from Figure 1,

X, X%, B
T ySB* ( T 1) tan M (8)

If equations (5, (6), and (8) are combined to eliminate all unknown

coordinates except yg end L, equation (7) becomes

L
.......g.y-_..(c-ttanY\)-tan)\ (9)

Ysg  TsB
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where
2 2
Cm=p (ptanffg =Y p° tan" fg - 1) (10)
Since B and ¢S are known for any given Mo, only the quantities Z§_
ISR

end 7\ remain to be determined to predict the relation between the
sonic point on a body end the location of its detached wave.

In order to determine the quantity ;ﬁ , the continuity relation
SB

is applied to the fluid that peasses the sonic line. A&n appropriate
average value of the stagnation pressure distribution immediately behind
the shock is that existing along the streamline which represents the mass
centroid of the fluid passing the sonic line. This centroid streamline
enters the shock wave at y, = ;& for plane flow. Equations (2) and (3)
give the shock angle, ¢c, corresponding to this value of y. Since the
stagnation pressure remains constant along each stresmline behind the
shock, the value of Ps,c will remain unchanged between the shock and the
sonic line. Because the total temperature is constant, the simplified

continuity equation may be written as

v
Py =L a 1r—‘
bo_ (Ps Vs)e Co 2y "o (pg M 9Ta)c (11)
Vo
by P Yo Po 7 %o Po Mo ﬁ;
o

Applying the thermodynsmic reletionships between T, M, p, 8nd P,

equation (11) becomes

Ag P 1
el XM o



where
Mo 1 + 1—2._1 - 2 Y-l
g = = | —— (13)
Y=l
l l + -—2-— é

¢ = the contraction ratio required to decelerate the free-~
stream to sonic velocity isentropicallye.

In terms of the ccordinates of the sonic points, equation (12), beccmes

- P
cos T\ (Ps)c ¢ J¥s = Bys (14)

The appropria{:e value of T\ to be used remains to be estab-
lighed. In order to do this, the sonic line is assumed to be normal to
the average flow direction in its vicinity. At S, the inclination of the
flow is known to be A gl whereas at SB the inclination is assumed to be

Ad (the wedge half-sngle for which a shock becomes attached at a given

Mo). Using the arithmetic mean of the inclination at the two extremities,

the expression for Y| becomes

Y\"% (A4 "AS) (15)

Because A S differs only slightly from Ad! the inclination of the
sonic line for plane flow is assumed to be simply T\= AS'
To use the B8ontinuity Method for a given Mo, it is necessary,

P
therefore, to know ﬂs, 'Y\ﬂ ‘AS’ and ?E) o These values sre found from

oc
exact shock theory either from curves (11) or by celculations. With
these quantities, the values of the various parameters involved in the
method can be calculated.

The equations actually used in applying the Continuity Method

are listed as follows:

.
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1.1 1*'5’”3, 2[y-1) )
] Mb 14 xg;
p=4-1

1
B= 6{‘22;]

PO [+]
C =p? tan fg - B '\/;2 tan® g -1 (10)

-1
gé = [1 - B cosY\] from (12) and (14)
SB
Xo_ s 24,24 -
y;B =g Yeq 1/é tan ¢é 1 (5)
5 =2

Xs IsB
L~ TR 6
Y8 Yp? - cot? g ©
;é;-;;; [C*tanT\]-tanY\ (9)

Equation of shock: Bys=Yx* - > (1)
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VI. EXPERIMENTAL DATA USED FOR _EVALUATING THE CONTINUITY METHOD

The experimental datas used in this evaluation was taken from
scme recent works by A. E. Bryson, Jr., (7) and Weyland Griffith (8).
As part of his report, Bryson presents several drawings showing the
form and location of shock waves at various free stream Mach numbers
for a 10° wedge at zero degrees angle of attack, the data being obtained
from & transonic wind tunnel and a Mach~Zehnder interferometer. Several
of these were selected for use in the evaluation.

In order to make the evaluation as general as possible, use
was made of Griffith's article which contained drawings of the form
and location of shocks for various wedge angles at various Mach numbers.
This data was obtained using a Mach-Zehnder interferocmeter in conjunction
with a shock tube.

The geometry of the wedges selected for the evalustion, and

thelr corresponding Mach numbers and origin are given in Table I.




VII. METHOD OF EVALUATION

It wae ascertained from the author of the report that the
sketches of the shock waves in reference 7 were accurately scaled
drawings. The shock waves selected for use in the eveluation were then
redrawn to twice their originsl size, all measurements being to the
nesrest hundredth of an inch. The shock waves selected from reference 8
were traced directly from the original drawings. Great care was
exercised in the reconstruction of the shocks, and it is felt that the
shocks as presented in references 7 and 8 are truly represented in this
eveluation. Thus, the basis for the evalustion wes formed.

It will be recalled that according to the assumptions used
in the Continuity Method, the shock wave location and form is completely
determined by the free stream Mach Number - the wedge angle exerting no
influence. Accordingly, Moeckel has calculated the various parameters
used in applying the Continuity Method, end presents them in his report
in the form of curves of the various parameters and quantities involved
versus the free stream Mach Number. These include o, %)c, ¢S' A g

x
¢c' Cy =2 y and finally L. . Thus, all that is necessary to determine
IsB JsB

the location of the shock wave is to pick off the value of ?—- for the
SB

corresponding free stream Mach Number (Xmowing, of course, the wedge
gemi-thickness, ySB)‘ The only additional parameter necessary for one

x
to be gble to plot the shock wave is ;2- which also can be reed directly
SB

from Moeckel's curves. However, 1t was observed that values could not be
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read from the curves with any consistency for seversl reasons: 1) severasl
of the curves merged et very acute angles, thus making accurate reading
in that region very difficult; 2) the scele was small due to the wide

rence of Mach numbers covered (effectively, Mach numbers 1l.15 to 3.6)3

3) for the range of Mach numbers under investigation, the slopes of the
curves were for the most part very steep, or very shallows and 4) the
grid employed wes very inconvenient, i.e., the grid lines were 0.37 inches
sparte.

Therefore, in order to assure that exact theoretical values of
the parsmeters were used in the evaluation, it was decided to calculate
accurately all the parsmeters for the Mach numbers under investigation.
This wss done, the calculations being carried to the fourth decimal place.
It was further decided that since most practicel engineering problems
concerning detached shock waves would fall in the range of Mach numbers
from 1.1 to 1.7, it would be appropriate to include in the evalustion a
set of curves of the various parameters for that Mach number range,
drewn to a larzer and more convenient scele. Accordingly, a table of
some of the calculated varisbles and a table of the important parameters

(Tables 2 and 3, respectively) is presented along with curves of ¢é,

3 x
Cy oy AS' ¢c’ ‘152) y =2, E'_S__, and ‘?"" (Figures 2 through 8).
oc¢ JYsp JYgp SB
L Xq
Using the calculated values of -~ and T~ , the theoretical
JsB ~ TsB

shock waves were plotted for each Mach number with the corresponding

experimental shock. These are presented in Figures 9 through 17.



A comparison of the theoretical and experimental values

L
of ;" and & along with the corresponding percentage error is pre-

sented in Table 4.



VIII. DISCUSSION

The accuracy of the Continuity Method is clearly indicated
in Figures 9 through 17. The theoretical shock waves are seen to
approximate closely the forms of the corresponding experimental waves
except at Mach numbers close to the attachment Mach number, and at large
distances from the wedge axis of symmetry.

A large discrepency appears in the lecation of the sonic line.
The theoretical sonic line is seen to be inclined, in almost every case,
upstream from the experimental sonic line by 9 to 14 degrees. Also,
except for the 30 degree wedge at My = 1.36, the experimental sonic line
touches the body forward of the shoulder, the distance appearing to be
independent of wedge angle. Although not apparent from the figures in-
cluded here (because the Mach numbers are not close enough to the attach-
ment Mach numbers), the base of the sonic line moves forward as the shock
approaches attachment (7). This is due to the boundary layer changing the
"effective shape" of the wedge. That is, ss the shock wave gets close
to attachment, the velocities in the subsonic region behind it are getting
very close to sonic velocity and hence the flow in this region is very

sensitive to any slight curvature of the "revised shape" of the wedge.
As a projected considerstion, it was decided to determine the

L
theoretical ;;; by considering L as being the distance along the x-sxis

from the apex of the theoretical shock wave to the gctugl body soniec
point instead of to the shoulderjy and the Ygp @8 being the corresponding
distance from the wedge axis of symmetry slong the y-axis to the actusl
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body sonic point. The purpose wes to ascertain if this would improve

the agreement between the theory and experiment. Agreement was

improved in almost every case. That is, considering the ;i; as

obtained from the Continuity Method to follow the above definitions

of L and Yaps the theoretical shock wave is placed further from the

body thus making it, in most caeses, more nearly approach the experimental
shock wave. Of course, in a practical problem the actual location of the
body sonic point is not known so this consideration is of little aid in
the application of the Continuity Method. However, in most cases the
"rounding off" of the shoulder (due to viscosity) would allow the
investigator to know which way his prediction is off,

The agreement between the theoretical and experimental location
of the shock sonic points is seen to be very poor, particularly when the
vave is far from attachment. Consequently, the theoretical subsonic
region is generally much smaller than indicated by experiment, and
Moeckel's method for determining the drag by considering the change of
momentum of the air that passes the sonic line would, therefore, be
somevhat underestimated.

The theoretical shock detachment distance, as given by the
Continuity Method, is generally less than the experimental values, the
difference being less as the shock approaches esttachment, which would
be expected. Accordingly, the Continuity Method tends to indicate shock

attachment prematurely. As seen from Table 4, the Continuity Method

gives an ;L— e 5,425 for a free stream Mach number of 1.356, whereas a
SB
value of 5.68 would correspond to an attached shock, i.e., the nose of
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the wedge has penetrated the theoretical shock location. Actually,
experiment indicates the shock for this Msch number is still detached.
The distence from the detached shock to the shoulder is seen
to vary little with wedge engle but, of course, the actusl detaschment
distence from the leading edge to the shock does vary with wedge engle.

From Table 4, it can be seen thet the percent error based on ;L;' is

SB
much less than that based on the actual detachment distance, §. The
parameter ;i; is somevhat misleading. It should be noted thst ;L'

SB

does not approach zero as the shock wave spproaches attachment, but the
parameter % does (where L is the distance from the lesding edge to the
shoulder along the axis of symmetry). The parsmeter % is now used

almost exclusively, and from a practical point of view is a much better

perameter,
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IX. CONCLUSIONS

The vsriocus psrametric curves in reference 6 were found to
be very difficult to resd accurctely. Therefore, a set of more convenient
curves of the varicus quantities and peremeters for the lower range of
Mach numbers has been plotted and is included for the reader's ready
reference.

The Continuity Method has been svalusnted using asvailable
experimental data, end the results of the evalustion presented.

The theoretical znd experimental locations of the sonic line
are seen to be in poor agreement, since the experimental sonic line is
inclined downstresm from the theoretical sonic line. As s result, the
theoretical subsonic region is much smzller in extent than indicated by
experiment.

The theoreticsl shock detachment distance agrees very closely
with experiment in eome ceses, but is et variance in others. In general
the Continuity Method appesrs to predict shock wave detaclment distances
most accurately within a limited range. That is, the inaccuracy appears
to increese as the free stream Mach number approaches unity, and as the
free stream Mach number approaches the attachment Mach number. However,
the experimental deste ovailable for this evaluation is insufficient to
permit this range of accuracy of the shock wave detachment distence to
be determined.

A1lthough the shock detachment diatance is important, a much
more important aspect of the Continuity Method is the prediction of the

form of the detached shock wave. When the form of a shock wave is known,
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the flow variables across the weve at sny poinl can he determined.
Thaet 1s, the local pressure, density, and tempereture behind the weve,
and the flow deflection snd chanze of entropy across the uave are
determined by the free streesm Mech numbor end the inclinstion of the
shock wave, It is seen from Figures 9 through 17 that the form of
the detached shock wave is very closely approximated in glmost eovery
case, particulsrly for the portion close to the body. However, the
accuracy is better for some ceses than others. Too few cases have been
considered, in this evaluation, to permit estsblishing limitations on
the ranre of accurscy. Further investigation would be necessary ss
more experimental dsta hecomes availsble. As mentioned before, however,
for the csses here comsidered, the predicted shock wave forms are very
good epproximations. This would indicate that, within lirmitetions,
the flow variables obtained as a consequence of the Continuity Method
would very closely approximete those in the actusl flowe.

Tn conclusion, it mey be stated that, within linitations, the
Continuity Method represents a satisfactery engineering approach to the

problem of determinstion of the form and location of detached shock waves.
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Fig.1 Representation of Flow with Detached Shock Wave
Notation Used in Analysis.
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_ Experiment:
Cont. Method: _ _ _ _
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F:349 Exper/menfa/ and Theoretical Sho k Waves for a /0° Wedge
at My=1207.
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Fig. 10 Experimental and Theoretical Shock Waves for a |0° Wedge
at M,=1240.
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A Experiment. _
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Fig Il Experimental and Theoretical Shock Waves for a 10° Wedge

at M,=1.278. \
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Experiment:
Cont. Method: - — — _
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Fig.12 Experimental and Theoretical Shock Waves for a 10° Wedge
at M_ = L51b
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Fig.13 Expenmental and Theoretical Shock Waves for a 20° Wedge

at M,=1350. |
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Experiment:

Cont. Method: — — _ _

[ T T ' ] | |
4.10 X actval size

Fig.14 Experimental and Theoretical Shock Waves for a 30° Wedge
at M,=1.360.




Experiment.,
Cont. Method: Shock Attached
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Fig- 15 Experimental and Theoretical Shock Waves for a j0* wedge
at M,=1356.




EXPer:ment:
Cont Method s — — — _
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408 x actval size |

Fiq 16 Experimental and Theoretical Shock Waves for a 90° Wedge
at My~ 1.370.
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408 x actual size

Fig. 17 Experimental and Theoretical Shock Waves for a 26.6° Wedge
at M, = /.+40.




Table 1

GEOMETRY OF WEDGS USED IN THE EVALUATION

Mach Wedge Vedge Soml-~ Report From
Number Semi-Angle Thiclkness Which Taken
1.207 10° 0.0465" Ref. 7
1.240 10° 0.0465" Refe 7
1.278 10° 0.0465" Refa 7
1.315 10° 0.0465" Pefe 7
14350 20° 0.125" Rof. 8
1.356 10° 0.0465" Refe 7
1.360 30° 0.125" Refs 8
1.370 90° 0.125" Refe 8
1440 26.6° 0.125" Refe &




4=

Teble 2

CALCULATED QUANTITIES USED IN ANALYSIS FOR VARIOUS MACH NUMBERS

M, 8w ¢ ¢S )\ s ¢c Y Pg/ Pole
1,150 - 0.9829 | 70.25 2448 | 77.88 | 0.2023 | 0.9983
1.207 10 0.9683 | 67.80 3.86 | 76453 | 002263 | 049947
1.240 10 0.9586 | 66.70 4e73 | 75.96 | 0.2380 | 0.9926
1.278 10 0+9456 | 65.65 5,73 | 75430 | 0.2486 | 0.9879
1.315 10 0.9322 | 64.78 6472 75.00 | 0.2571 | 0.9842
1.350 20 0.9182 | 64.10 Te67 | The66 | 042633 | 0.9787
1.356 10 0.9158 | 64.00 780 | T4.63 | 042641 | 0.9779
1.360 30 0.9141 | 63.93 794 | 7460 | 0.2649 | 0.9771
1,370 90 0.9097 | 63.77 8422 | T4e53 | 0.2659 | 0.9757
1.440 26.6 0.8789 62.83 10.12 74420 02744 0.9614
1.500 - 0.8502 | 62.30 | 11.75 | 73.96 | 0.2790 | 0.9478
1.600 - 0.7999 | 61.65 | 14425 | 73.78 | 0.2837 | 0.9188
1,700 - 0.7476 | 61.38 | 16.63 | 73.80 | 0.2844 | 0.8826
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Table 3

CALCULATED PARAMETERS FOR VARIOUS MACH NUMBERS

Mo O Ys/¥sp x/Ysp Lsp
1.150 - 61.3497 | 42.6935 | 15.0302
1.207 | 10 34.7222 | 31.0107 | 10,1439
1.240 | 10 26,6667 | 26.9414 844693
1.278 | 10 20,9644 | 2441700 7.2223
1.315 | 10 16.8634 | 21.7825 642059
1.350 | 20 1442450 | 20.3732 545348
1.35% | 10 13.8504 | 2041551 504248
1.360 | 30 13.6054 | 20,0230 5.3625
1.370 | % 12.9702 | 19.6242 5.1773
1.440 | 2646 | 10.0000 | 18.1800 4o 3487
1.500 - 8.2169 | 17.2716 3.7936
1.600 - 6.4020 | 16.6926 3.1878
1.700 - 5.3135 | 16.8957 2.79%




Table 4

COMPARISON OF THFORETICAL AND EXPERIMFNTAL SHOCK DETACHMENT DISTANCES

L/Yap &n

Mo O Calc., Exp. % Error Calce Exp. | # Error
1.207 10° 10.144 15.95 | 36440 1.16 2.66 | 5644
1.240 10° 84469 10.59 | 20.00 0.72 1.27 | 43.3
1.278 10° 7.222 7.21 0.17 0.39 0.37 5¢4
1.315 100 64206 6480 8474 0.13 0.27 | 51.8
1.350 200 54535 6.25 | 11.43 1443 1.78 | 19.6
1.356 10° 5425 6e42 | 15.50 0 0.38 | 100
1.360 30° 5.363 6.18 | 13.20 1.95 2.39 | 18.4
1.370 90° 50177 6+40 | 19.11 2.64 3.26 | 19.0
1.440 | 26.6° 4349 4e57 | 4483 1.19 1.29 7.8
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