
A Self-Reconfiguring Platform
For Embedded Systems

by

Santiago A. Leon

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

Dr. Mark T. Jones, Chair

Dr. Peter M. Athanas

Dr. James M. Baker

August 24, 2001
Blacksburg, Virginia

Keywords: Reconfigurable Computing, FPGA, JBits, Java Virtual Machine, uClinux

ii

Self-Reconfiguring Platform
For Embedded Systems

Santiago A. Leon

Committee Chairman: Dr. Mark T. Jones
The Bradley Department of Electrical and Computer Engineering

(ABSTRACT)

The JBits Application Programming Interface has significantly shortened FPGA

reconfiguration times by manipulating the configurable resources of the FPGAs directly

under software control. The execution of JBits programs, however, requires a Java

Virtual Machine to be implemented on the platform where the configurations will be

modified. This presents a problem for embedded systems where a microprocessor to run

a Java Virtual Machine may not be available or desirable. This thesis discusses the

implementation of a FPGA platform that allows the execution of JBits programs,

effectively changing the configuration of a FPGA within a FPGA. This thesis also

presents a four step developing and testing strategy for JBits programs that are intended

to run on this FPGA platform.

iii

Dedicated to my parents and heroes, Guillermo León and Piedad Alvarez

iv

Acknowledgements

First of all I would like to thank Dr. Mark Jones for his patience, guidance, and

support throughout my work in the CCM Lab and for serving as the chair of my graduate

committee. I am very thankful to Dr. Peter Athanas for the encouragement, suggestions

and technical support. It has been an honor and a pleasure to work for Dr. Jones and Dr.

Athanas in the CCM Lab. My thanks also go to Dr. Mac Baker for serving on my

graduate committee and for taking the time to read this thesis.

I would like to thank Rüdiger Jordan, Luke Scharf, Ryan Fong, Scott Harper, Jonathan

Ballagh, Zahi Nakad, and Shashank Mehrotra from the CCM Lab for all the technical

help and for making the long hours in the lab much more enjoyable.

I am very grateful to Adela Dalmau for always being there for me, Katie Rask for

being such a good roommate and friend, and Dennis Collins for taking the time to review

this thesis.

I would also like to thank Carolina Reyes for the encouragement, inspiration, and for

making me the person that I am.

Last, but not least, I thank my parents and brother for not giving me away for adoption

when I started my Engineering career at age five by taking apart the electronic appliances

around the house.

v

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation 1

1.2 Contributions of this Work 2

1.3 Thesis Organization 3

2 Background 4

2.1 SLAAC1-V board 4

2.2 LEON processor 6

2.2.1 VHDL model 7

2.2.2 Compilers 9

2.2.3 Operating Systems 11

2.2.4 Simulator 12

2.3 Linux / uClinux kernel 13

2.4 Java 14

2.4.1 Programming language and API 15

2.4.2 Java class file format and Java Virtual Machine 16

2.4.3 Waba 18

2.5 JBits 19

2.6 Related Work 21

2.6.1 Soft-core processors 21

2.6.2 Embedded Linux devices 24

2.6.3 Java Virtual Machines on FPGAs 25

2.6.4 Self Reconfiguring platforms 27

3 LEON processor port to the SLAAC1-V board 29

3.1 Memory access 29

3.2 Console access 32

vi

4 uClinux port to LEON 34

4.1 Trap handling 36

4.2 Window overflow/underflow management 37

4.3 Root filesystem implementation 38

4.4 Memory map 40

4.5 Direct access to the ROM Filesystem 41

5 Java Virtual Machine port 44

5.1 Waba port to x86/Linux 44

5.2 Waba port to SPARC/uClinux 47

5.3 Java API classes implementation for Waba 48

5.3.1 java.lang 48

5.3.2 java.util 49

5.3.3 java.io 50

5.4 The development strategy 52

6 Applications and Experiments 55

6.1 Simple Java Application 56

6.2 JBits template lookup and LUT modification for a Xilinx 4085 part 58

6.3 JBits LUT modification for Virtex 200 61

6.4 JBits LUT modification for Virtex 1000 63

7 Conclusions 66

7.1 Summary 66

7.2 Suggestions for Future Work 67

7.3 Conclusions based on the Work 68

Bibliography 69

Vita 73

vii

List of Figures

Figure 1 SLAAC1-V block diagram 5

Figure 2 LEON block diagram 8

Figure 3 LEON Memory Interface 9

Figure 4 Block diagram of the LEON – SLAAC1-V wrapper 31

Figure 5 uClinux memory map 40

Figure 6 ROM Filesystem layout 42

Figure 7 ROM Filesystem header layout 43

viii

List of Tables

Table 1 LEON Memory Address map 8

Table 2 Memory usage of template lookup and LUT modification 59

Table 3 Results of template lookup and LUT modification of a Xilinx 4085 part 60

Table 4 Memory usage of LUT modification of a Xilinx XCV200 part 62

Table 5 Results of LUT modification of a Xilinx XCV200 part 62

Table 6 Memory usage of LUT modification of a Xilinx XCV1000 part 64

Table 7 Results of LUT modification of a Xilinx XCV1000 part 65

1

Chapter 1

Introduction

1.1 Motivation

Field Programmable Gate Arrays (FPGAs) have been typically used in industry for

prototypes and other applications where their reconfigurable nature is exploited. This

reconfigurable feature of FPGAs, however, has only been used for debugging and

upgrading purposes, and not as an inherent part of the designs. There have been many

approaches designed to exploit this new paradigm, the simplest being a pool of

configurations that can be swapped in and out, giving the appearance of having

significantly more hardware than is actually present on the FPGA at any given instance in

time [1]. Another approach, which can be combined with a configuration swapping

design, is to modify the configurations at run-time according to the specific current

needs.

To take advantage of the run-time modification approach, the traditionally lengthy

synthesis process had to be shortened. This issue has been addressed by the JBits

Application Programming Interface (JBits API), a set of Java classes that permit all

2

configurable resources of a Xilinx FPGA to be individually programmed under software

control [2]. The inherent advantages of Java, such as high-level constructs, platform

independence and GUI integration have made JBits a very flexible and useful tool. The

execution of Java programs, however, requires a Java Virtual Machine to be implemented

in the platform where the configurations will be modified. This presents a problem for

embedded systems where a microprocessor to run a Java Virtual Machine may not be

available or desirable.

Such is the case for the Secure Hardware Project at Virginia Tech’s Configurable

Computing Laboratory [3]. In this type of system, it is desirable to hide all of the

implementation of the design inside FPGAs to make it difficult to illicitly acquire

hardware design information from the system [3]. To perform reconfigurations in this

type of embedded platform, it is necessary to execute a JBits program inside a FPGA.

By performing reconfigurations inside the FPGA, not only the hardware implementation

and software for reconfiguration is secure, but the system can also be loaded into the

design only when it is necessary to perform a reconfiguration, saving valuable resources.

1.2 Contributions of this Work

The main contribution of this work is the design and development of a FPGA

platform that will execute JBits programs, effectively changing the configuration of a

FPGA within a FPGA. This work is considered a platform because it was necessary to

develop and modify ports of a microprocessor, an operating system, a Java Virtual

Machine, as well as some standard Java API classes. Another aspect of this contribution

3

is the presentation of a four step developing and testing strategy for JBits programs that

are intended to run on this FPGA platform.

1.3 Thesis Organization

Chapter 2 of this thesis provides the background material on which this work is

based. Chapter 3 describes the port of the LEON processor to a FGPA board. Chapter 4

details the contributions to the LEON processor port of the uClinux operating system.

Chapter 5 describes two ports of a Java Virtual Machine: one to Linux running on a

standard PC, and one to uClinux running on the FPGA board, as well as some standard

Java API class developed to support JBits. Chapter 6 presents some applications and

programs running on the platform that followed the development strategy. Finally,

Chapter 7 concludes with an overview and suggestions for future work.

4

Chapter 2

Background

This work was conceived using a top-down approach to the problem. To run a JBits

program, a Java Virtual Machine is necessary. A Java Virtual Machine requires an

operating system for low-level functions. The operating system for running the Java

Virtual Machine runs on a microprocessor that is synthesized as part of the FPGA design.

Finally, the FPGA is the processing element of a board that contains other components

such as memory and I/O connectors. This chapter, however, presents the topics that form

the basis for this work in a bottom-up manner. First it describes the FPGA board used,

then the microprocessor, followed by the operating system, Java and the Java Virtual

Machine, and an overview of the JBits API. The last section of this chapter describes

previous work related to this thesis.

2.1 SLAAC1-V board

The SLAAC1-V board was developed by the University of Southern California,

Information Sciences Institute as part of the SLAAC project, whose objective is to

develop and deploy a system-level, open, distributed, heterogeneous adaptive computing

architecture standard [4]. Figure 1 shows the overall architecture from the user’s

perspective. The board is a 64-bit PCI card with the following features [4], [5]:

5

- Three user-programmable Xilinx Virtex XCV1000-6 FPGA’s (X0, X1, and X2)

- One user-programmable Xilinx Virtex XCV200-6 FPGA (Configuration

Controller)

- 10 MB of SRAM organized as 2 MB for X0, 4 MB for X1, and 4 MB for X2.

Additionally, X0 can access all of the memory by performing bank switching.

- One 72-bit wide ring bus around X0, X1, and X2.

- One 72-bit wide crossbar bus connected to X0, X1, X2, and three QC-64 external

connectors.

- 2-bit wide handshake lines connecting X0, X1, and X2 to each other.

- 3-bit wide handshake lines between the PCI Interface on X0 to both X1 and X2.

- Two 68-bit wide 1-deep (mailbox) FIFOs and two 68-bit wide 256-deep FIFOs.

- PCI bus directly connected to X0.

Figure 1 SLAAC1-V block diagram

X1 X2

X0
PCI IF

CC

1MB SRAM

QC-64 Connector

Switch

FIFOs

PCI Bus

Ring Bus

Crossbar Bus

Handshake Lines

6

Figure 1 shows how X0 performs a special role in the SLAAC1-V board. It contains

the PCI interface, and it is used to control the data flow from the host PC to the board.

This data flow is mainly accomplished using the hardware queues (commonly referred to

as FIFO’s), memory banks, and registers in the PCI interface.

All of the functions provided by the host program API are performed through

registers in the PCI interface, including access from the host to memory banks, access to

the FIFOs, and access to the FPGA configurations. The FPGAs on the board are

programmed through the Configuration Controller that is directly connected to X0’s PCI

interface. It is also possible to set the clock speed, start and stop the FPGA clock, single

step, and toggle the FPGA reset signals from the host program.

To implement a user design into a FPGA, the top level VHDL entity needs to be

instantiated in one of a set of predefined VHDL files. These files describe the board,

memory interface and provide a special frame for the user design [6]. This is especially

important for X0 because the PCI core needs to be instantiated within the user design.

The manufacturer of the board also provides the constraints file needed for pin

assignments and timing constraints.

2.2 LEON processor

LEON is a synthesizable VHDL model of a 32-bit SPARC compatible processor

developed by the European Space Agency (ESA) [7]. The source code is freely

7

distributed under the GNU LGPL license. Compilers, operating systems, and simulators

are available from ESA and third party vendors.

2.2.1 VHDL model

The VHDL model of the LEON processor supports all of the main features of the

SPARC V8 architecture. Even though it has been extensively tested against the SPARC

V8 architecture manual and the IEEE-P1754 (SPARC) standard, it has not been certified

by SPARC International as being SPARC V8 compliant [7]. The processor is extensively

configurable and can be implemented on both FPGAs and ASIC technologies. The only

technology-specific mega-cells needed are ram cells for caches and the register file [7].

The processor has an integer unit with a 5-stage pipeline, separate direct-mapped

instruction and data caches, hardware multiply, divide, and MAC units. The distributed

source code also includes [7]

- a programmable 8/16/32-bits memory controller for external prom and static ram,

- a controller for AMBA-2.0 AHB and APB buses,

- an interrupt controller,

- two timers,

- two programmable UARTs,

- a watchdog unit,

- a 16-bit I/O port,

- an interface for FPU unit or coprocessor, and

- a bootstrap loader

8

These on-chip peripherals are connected to the AMBA bus shown in Figure 2.

Figure 2 LEON block diagram

The memory controller and its interface to external memory devices are of special

interest in this work. The memory controller supports three types of devices: PROM,

SRAM, and I/O, which are mapped to different address areas as shown in Table 1. The

data buses can be configured to support 8, 16, and 32 bit devices.

Table 1 LEON Memory Address map

LEON Integer
Unit

FPU

Coprocessor

Instruction
Cache

Data
Cache

Memory Controller
Timers UARTs I/O portInt. Ctl

AMBA Bus
Control

AMBA Bus

Not Implemented

Device Address range Size
PROM 0x00000000 - 0x1FFFFFFF 512MB
I/O 0x20000000 - 0x3FFFFFFF 512MB
RAM 0x40000000 - 0x7FFFFFFF 1GB

9

As Figure 3 shows, the memory controller has internal support for up to four banks in

the SRAM area each one having an independent Chip Select (RAMSN), Output Enable

(RAMOEN), and Read/Write (RAMWEN) signals. The PROM area has support for up

to two banks with independent Chip Select (ROMSN) signals. The memory mapped I/O

space is controlled by a single Chip Select (IOSN) signal. The PROM and I/O areas

share Output Enable (OEN) and Write Enable (WEN) signals. Memory bank timing,

size, and data widths are configured through two memory-mapped registers in the

processor.

Figure 3 LEON Memory Interface

2.2.2 Compilers

ESA provides a modified version of the GNU C/C++ and an ADA cross-compiler for

the LEON SPARC core. The compiler runs under Linux, Solaris or Windows and

includes the necessary programs to develop stand-alone programs such as a linker and

ROMSN[1:0]
OEN
WEN

IOSN

RAMSN[3:0]
RAMOEN[3:0]
RAMWEN[3:0]

A[30:2]
D[31:0]

PROMPROMPROMRAM

PROMPROM

PROM

M
em

ory B
us

LEON
Memory Controller

10

assembler. The package also includes a POSIX compliant C-library, with standard I/O to

a UART, as well as a Math library. The LEON/ERC32 Cross Compiler System (LECCS)

package includes

- a custom GNU C/C++ compiler,

- binary utilities such as linker, assembler, and archiver,

- a standalone C-library,

- a real-time kernel (Real-Time Executive for Multiprocessor Systems or RTEMS),

- a boot-prom utility,

- a GNU debugger with Tk front-end,

- a graphical user interface for the GNU Debugger (Data Display Debugger or

DDD), and

- a remote target monitor.

Because the LEON processor is SPARC V8 compatible, any SPARC compiler can be

used to generate programs. The standard distribution of the GNU Compiler Collection

(GCC) and GNU binary utilities (BINUTILS) include support for SPARC processors. They

are traditionally used to compile programs for Linux running on a Sun workstation, but

they can generate programs for the LEON processor. In addition, the standard

distribution of GCC can generate any binary file format, as opposed to the LECSS

version that only supports “a. out” and “bin” binary formats.

GCC includes compilers and pre-processors for C, C++, Fortran, Objective C, and

other languages [8]. BINUTILS includes an archiver, a linker, an assembler, an assembly

11

preprocessor, and utilities to transform between different binary file formats [9]. Note

that the SPARC build of these utilities has the prefix “sparc-linux-“ to denote that the

utility is a cross compiler for a SPARC processor running the Linux operating system.

2.2.3 Operating Systems

The development of applications more advanced than stand-alone C programs

requires the support of an operating system [6]. For this work, some of the most relevant

advantages of having an operating system are integrated trap handling, filesystem

support, device driver support, and multitasking.

The LECSS package includes the RTEMS real-time kernel as an API implemented

into libraries that are linked with the user program. The LEON port of RTEMS supports

multitasking, preemptive scheduling, POSIX threads, interrupt handling, dynamic

memory allocation, and an In-Memory Filesystem. Inter-process communication can be

implemented through semaphores, condition variables, message queues, events, and

signals [10]. Because of the impressive set of features, RTEMS has been extensively

used in defense systems with ports to several processors available.

An alternative operating system for the LEON processor is uClinux. The port is not

yet complete and is discussed in later this chapter and in Chapter 4.

12

2.2.4 Simulator

ESA has made available to the public an evaluation version of TSIM, a SPARC

architecture simulator capable of emulating LEON-based computer systems [11]. This

evaluation version has the following features:

- it emulates the full functionality of the LEON VHDL model, including cache

memories, UARTs, timers, and the memory controller [11],

- the UARTs can be mapped to a Linux device. Usually the first UART is used as a

console, so by default it is mapped to the standard I/O,

- simple debugging functions are available, such as single-stepping, breakpoints,

memory and registers inspection, and a disassembler, and

- it can be connected to the GNU debugger (gdb) acting as a remote target and

supports all of gdb’s debugging requests.

Unfortunately, the evaluation version has some limitations that the commercial

versions do not:

- it supports only 232 ticks of simulation time as opposed to 64-bit in the Standard

and Professional versions,

- the amount of simulated ROM is fixed to 2MB and 4MB for RAM (in the

commercial versions, the amount of simulated memory is a command line

argument and is only limited by the resources of the host computer),

- the commercial versions support loadable modules for emulation of user-defined

I/O devices,

13

- the sizes of the caches are fixed to 4 KB with 4 words per line, in contrast to a

fully configurable size and depth, and

- it is not possible to display the cache contents in the evaluation version.

The limitation of 232 ticks of simulation time translates to approximately five minutes

with the processor running at 14MHz. This limitation became an issue when executing

large JBits programs. However, there is an older version of TSIM called SPARC

Instruction Simulator (SIS). This program does not have all the debugging features,

namely the connectivity to gdb, but it does support 64-bit simulation time.

2.3 Linux / uClinux kernel

It is common knowledge that Linux is a very popular UNIX-like operating system

distributed under the GNU General Public License. The Linux operating system is

composed of several components, all relying on a single basic element, the kernel. The

Linux kernel is a monolithic kernel, in the sense that it is a single very large and complex

program. It carries out a large number of tasks including managing processes,

filesystems, memory, hardware, and devices.

uClinux is a derivative of the Linux 2.0 kernel intended for processors without

Memory Management Units (MMUs) [12]. The uClinux operating system’s main targets

are microcontrollers (µCs) for embedded systems. The first successful target was the

3Com PalmPilot; since then, there have been many successful ports to a wide variety of

processors such as the ARM 7TDMI, the Intel i960, the ETRAX, Motorola’s DragonBall,

14

the Coldfire, the QUICC, and many other 6800 and 68000 series processors. The LEON

port of uClinux is discussed in Chapter 4.

The source code for the kernel has been rewritten to reduce the memory requirements

making the uClinux kernel much smaller than the original Linux 2.0 kernel. The standard

C library had to be modified as well to construct more compact user programs.

Regardless, uClinux retains the main advantages of the Linux operating system: stability,

network capabilities, and filesystem support [12].

Multitasking is supported in uClinux, but there are some limitations that are imposed

by not having a MMU [12]:

- uClinux implements vfork() and not fork(), which means that the child and the

parent do not get independent copies of the variables and that the parent blocks

until the child calls exec() or exit().

- uClinux does not have autogrow stack for user programs and no brk(). To

allocate memory mmap() needs to be called.

- There is no memory protection; any program can access all of the available

memory, including the kernel and I/O space.

2.4 Java

Java is an architecture that is formed out of “four distinct but interrelated

technologies, each of which is defined by a separate specification from Sun

Microsystems:

15

- the Java Programming Language

- the Java class file format

- the Java Application Programming Interface

- the Java Virtual Machine” [13]

All of these technologies are relevant for this work. Sections 2.4.1 and 2.4.2 briefly

describe some of the characteristics of each technology. Section 2.4.3 describes Waba,

the Java Virtual Machine ported for this work.

2.4.1 Programming language and API

Sun Microsystems describes Java as a “simple, object-oriented, distributed,

interpreted, robust, secure, architecture neutral, portable, high performance,

multithreaded, and dynamic language.” [14] The language closely resembles the C++

language with multiple alterations. Some of these alterations are intended to make the

syntax simpler; for example, neither templates nor enumeration types are supported.

Some other alterations are intended to make the programs more robust by avoiding

common programming pitfalls. Nevertheless, the greatest advantage of Java over C or

C++ is portability.

There are no implementation-dependent aspects in the language specification. The

language is interpreted, so there are no native dependencies of the binary format. The

language specification goes so far as to specify the size of each primitive data type, as

well as its arithmetic behavior [14]. In theory, once a program has been written and

16

compiled for a specific platform, the compiled binary can run on any platform to which

the Java API and the Virtual Machine have been ported.

The Java API is a set of runtime libraries that gives the programmer a standard way to

access the system resources of the host computer. The API also provides the programmer

with an extensive set of commonly used data structures, algorithms, and features that

make up for the simpler syntax. The programmer can assume that the class files of the

Java API will be available from any Java Virtual Machine that may ever execute the

program. The class files of the Java API are inherently specific to the host platform; this

makes platform independence possible for Java programs. Additionally, the Java API

contributes to Java’s security model because there are methods of the Java API that check

for permissions before they perform any potentially harmful action.

2.4.2 Java class file format and Java Virtual Machine

The Java class file format is an intermediate representation of a Java object or

interface. It consists of a stream of 8-bit bytes with a simple organization optimized for

transmission over a network. The first four bytes contain a magic number used to verify

that the stream is a class file and not any other stream. The next four bytes contain the

version of the compiler that generated the class. The next two-byte field contains the size

of the constant pool, followed by a variable length field of the constant pool. The next

two-byte fields contain the class flags, the index of the class name to the constant pool

and the index of the Superclass name to the constant pool. The remainder of the file has

the same structure for Interfaces, Fields, Methods, and Attributes: a two-byte field

17

containing the number of items followed by an array of the respective items [15][16]. All

of these fields are parsed and executed by the Java Virtual Machine.

The Java Virtual Machine is an abstract computer system. Its primary job is to load

class files and execute the bytecodes that they contain. The specification defines the

following [16]:

- Data types are either primitive data types or reference types.

- Primitive data types have specific sizes and operations.

- Three kinds of reference types: class types, array types, and interface types.

- Independent Program Counter registers for each thread.

- Independent Java Virtual Machine stacks for every thread. These are analogous

to a C program stack and the frames can only be pushed or popped.

- Each frame has its own array of local variables, its own operand stack, and a

reference to the runtime constant pool.

- All operations between data types are done in each frame’s operand stack.

- A heap that is shared among all the threads and is used as a runtime data area for

all class instances and arrays.

- A method area shared among all the threads. It is used analogously to the “. text”

segment in a UNIX process.

- A run-time constant pool built from the constant pools of every loaded class.

- 202 op-codes divided into arithmetic, load and store, type conversion, object

creation and manipulation, operand stack management, transfer control, method

18

invocation and return instructions plus a breakpoint instruction, and two

implementation dependent instructions.

- Specific synchronization rules about the access of variables and locks from

different threads.

The specification defines many features but also leaves many choices to the designers

of each implementation. For example, although all Java Virtual Machines must be able

to execute Java bytecodes, they can use many available techniques to execute them [13].

2.4.3 Waba

Waba is a small, efficient, and reliable Java Virtual Machine aimed at portable

devices. Rick Wild of Wabasoft developed the first version, but now it is an open source

project distributed under the GNU General Public License and maintained in Sourceforge

[17]. All of the source code is written in standard ANSI C, simplifying ports to new

platforms. At the time this thesis was written, there were ports for PalmOS, PocketPC,

and x86 running Windows. The Virtual Machine takes less than 40KB of executable

code on Motorola 68K processors and about double that on x86 processors. The Virtual

Machine also includes a deterministic garbage collector for heap management [17].

Part of the Waba project is the development of a set of foundation classes to access

the system resources of the host computer and aid the programmer with graphics

primitives. Currently, the foundation classes are [17]:

19

- fx: simple effects -- Color, Font, FontMetrics, Graphics, ISurface, Image, Rect,

Sound, SoundClip.

- io: access to IO resources -- Catalog, File, SerialPort, Socket, Stream.

- lang: subset of the standard java.lang package -- Object, String, StringBuffer.

- sys: miscellaneous system utilities -- Convert, Time.

- ui: simple widget-oriented GUI -- Check, Container, Control, ControlEvent, Edit,

Event, IKeys, KeyEvent, Label, MainWindow, PenEvent, Radio, Tab, TabBar,

Timer.

- util: miscellaneous utilities – Vector.

Many classes, though slightly different and simpler, resemble the standard Java API.

Some other classes were designed to take advantage of specifics of a platform and do not

really have an equivalent in the Java API. For example, the io.Catalog class was

designed to support PalmOS’s catalogs and is not useful on any other platform.

2.5 JBits

JBits is a set of Java classes that provide an Application Program Interface (API) into

the Xilinx FPGA bitstream [2]. The interface can use a bitstream read back from the

actual hardware or generated from the Xilinx design tools. Once the bitstream is loaded,

all of the configurable resources of the FPGA can be read and modified. These

configurable resources include configurable-logic blocks (CLBs), routing switches,

input/output blocks (IOBs), block RAM (BRAM), and routing MUXes [18].

20

Within JBits, classes and class constants represent the configurable resources. Some

other class constants represent the possible configurations of certain resources and will

become the contents of the configuration SRAM inside the FPGA. Every resource that

can be configured using JBits is identified by a series of indices that reflect its position

relative to the lower-left corner of the FPGA CLB array [19]. For example, the following

code modifies the “F” LUT of the left slice of an arbitrary CLB (in this case the second

column of the last row) to the value 0xBEEF.

/* set the location of the CLB */
int y = 0;
int x = 1;

/* set which slice in that CLB */
int slice = 0;

/* set the value to be written (binary of 0xBEEF)*/
int value[] = {1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1};

/* call the method */
jbits.set(y, x, LUT.F[slice], value);

Using the JBits API, Xilinx FPGA bitstreams can be created and modified in the

order of seconds as opposed to hours when using the traditional FPGA synthesis and

compilation tools. Furthermore, the time to execute a JBits program can be significantly

shortened with the use of partial bitstreams [19].

Although the JBits calls perform actions at a very low level, the object-oriented

nature of Java and its GUI support have been exploited to produce a small library of

parameterizable, macro circuits or Cores, as well as higher-level tools such as

Boardscope [19]. Boardscope is a graphical FPGA debugging environment that can be

21

connected through a special interface to an actual FPGA, or can run in simulation mode

by loading the bitstream from a file. The tool can display the current state of the FPGA

in various modes: State, Core, Power, and Routing Density. For this work, the State

mode was very useful because it was possible to visually inspect the values of any LUT,

flip-flop or MUX in any CLB [20].

2.6 Related Work

This section provides an overview of previous work related to aspects of this thesis.

Namely, Section 2.6.1 reviews some freely available and commercial processors that can

be implemented in a FPGA. Section 2.6.2 surveys different approaches to running Linux

on embedded devices. Section 2.6.3 analyses other alternatives for running a Java Virtual

Machine on a FPGA. Section 2.6.4 reviews previous work on self-reconfiguring

platforms.

2.6.1 Soft-core processors

There have been numerous attempts to develop a processor core that can be

implemented in a FPGA. This section describes some of the processor cores that are

powerful enough to be part of a self-reconfiguring platform.

As part of an extensive library of cores, Altera developed Nios, a processor

specifically designed for programmable logic and system-on-a-programmable chip

integration [21]. The Nios processor is a pipelined, single-issue RISC processor in which

most instructions run in a single clock cycle. There are two versions available, one with a

22

native 16-bit word size and one with a native 32-bit word size. The 16-bit version is

designed to replace complex state machines as a very simple controller while the 32-bit

version is designed to be a powerful computing engine [21]. There is a development kit

available which includes a C/C++ compiler, a debugger, an assembler, as well as other

development utilities. At the time this thesis was written, there was only a proprietary

operating system ported to the Nios processor. However, there is currently an ongoing

effort to port Linux to this processor.

Xtensa is a 32-bit processor architecture developed by Tensilica. The company

provides software in which various parameters of a processor, such as instruction set,

cache characteristics, and optional components, can be defined in a set of configuration

files [22]. These configuration files can later be uploaded to Tensilica, and after one

hour, a complete software development environment can be downloaded. The software

development environment includes a customized compiler, assembler, debugger,

simulator and real-time operating system. Once the design and features have been

verified and the program executed in the simulator, Tensilica will provide full source of a

Hardware Description Language. This source code can be synthesized to a FPGA or to

an ASIC and the same customized tools can be used to develop the applications for the

final implementation.

The base processor of the Xtensa architecture is a pipelined 32-bit RISC processor

that can achieve more than 220 MIPS while running at 200MHz [22]. For 0.18-micron

CMOS ASIC process, the processor consumes less than 0.4 mW/MHz and will use

23

approximately 0.7 mm2 of area in the silicon wafer. There are many optional components

that can be included with the base processor including a 16-bit hardware multiplier, a 16-

bit DSP unit, and an on-chip debug module.

In response to the development of soft-core processors, Xilinx introduced the

MicroBlaze processor. The MicroBlaze processor is a 32-bit RISC processor that

supports both 16-bit and 32-bit busses and supports Block Ram and/or external memory

[23]. All peripherals including the memory controller, the UART, and the interrupt

controller run off a standard OPB bus. Additional processor performance can be achieved

by exploiting Virtex-II architecture features such as the embedded multiplier and ALU

[23]. Xilinx also provides Gnu-based tools, including a C-compiler, a debugger, and an

assembler, as well as all of the standard libraries [23]. At the time this thesis was written,

the MicroBlaze processor was in the beta stage of development and there was no

information on the operating system.

One of the primary disadvantages of these processors compared to the LEON

processor is that they are commercial products that require a fee for use. Additionally,

these architectures are specifically designed for particular platforms, which limits their

flexibility.

A processor core that doesn’t have these disadvantages is the OpenRISC 1000

processor [24]. The fully synthesizeable code of the OpenRISC 1000 processor is freely

available and was designed with an emphasis on scalability and platform independence.

24

The architecture consists of a 32-bit RISC Integer Unit with a configurable number of

general-purpose registers, configurable cache and TLB sizes, dynamic power

management support, and space for user provided instructions [24]. The core also

includes a memory management unit with powerful virtual memory support, as well as

peripherals for SMP support and cache coherency support [24]. A complete GNU-based

development environment is available and includes a C-compiler, assembler, linker,

debugger, and simulator. There is an ongoing effort to port Linux to this processor.

Unfortunately, at the time this thesis was written, the OpenRISC processor was still in the

testing phase and the development had slowed down significantly.

2.6.2 Embedded Linux devices

In the last few years different companies and groups have developed literally

hundreds of embedded systems that run Linux or some derivative of Linux. Because the

source code of Linux and its derivatives is free, there are ports of Linux for almost every

type of processor for which there is a GNU-based compiler. Depending on the processor

features and the application of the embedded system, either Linux, uClinux, or RTLinux

is used. The regular distribution of Linux is used on systems with an MMU and for

which a kernel with real-time capabilities is not required. As stated earlier in this

chapter, uClinux is used in embedded systems whose processor does not have a MMU

[12]. Finally, RTLinux is used in microprocessors with a MMU and where the

application of the system has time-critical tasks that require a real-time kernel [25].

Additionally the RTLinux patches have been applied to uClinux to support processors

with no MMU and applications that require a real-time kernel.

25

Because of the increasing number of new Linux embedded devices, any list of such

devices will be obsolete in a short amount of time. Nevertheless, [26] has a

comprehensive list of devices that gets constantly updated as well as links to the different

porting projects.

2.6.3 Java Virtual Machines on FPGAs

This section describes various Java processors that can be compiled into a FPGA.

Note the use of the term “Java processor” and not Java Virtual Machine because these

processors are only the Execution Engine subsystem of a JVM, and do not perform the

functions of the Class Loader and Security subsystems [13] [16]. The latter subsystems

have to be implemented to have a fully functional JVM. Currently, there are no cores

that include the three JVM subsystems, with the exception of designs that contain a Java

processor and a general-purpose processor to perform the functions of the Class Loader

and Security subsystems.

In 1998, Sun Microsystems introduced the first soft core of a Java processor and

named it the picoJava-I [27]. An upgrade of the picoJava-I core, the picoJava-II core has

a six-stage RISC pipeline with forward instruction folding and includes various

improvements in performance, silicon area, and power consumption [28]. It features

thread synchronization and a variety of garbage collection methods. Additionally, the

picoJava-II processor supports method invocation and load hiding from local variables,

streamlining object oriented programming [28]. Most of the Java bytecodes are executed

26

directly in hardware with the exception of the more complicated op-codes that are

emulated in software. The core features instruction and data cache units, an Integer Unit,

a Stack Manager, and a Bus Interface Unit. It lacks, however, memory and interrupt

controllers, making it necessary to include them in either hardware or in a program of a

general-purpose processor. For a licensing fee, Sun Microsystems provides a Verilog

RTL model, a logic library, and the internal specifications as well as technology training

and support [28].

Kim Austin of Lucent Technologies and Dr. Morris Chang from the Illinois Institute

of Technology developed a fully synthesizable VHDL model of a Java processor [29].

The internal structure of the processor closely resembles the abstract components of the

JVM specification. The core was intended to be a proof-of-concept, so only a subset of

the Java op-codes were implemented in the processor and it does not include any kind of

cache [29]. The design was verified in an Altera EPF10k20 FPGA and the core

consumed less than 50% of the resources of the FPGA. The authors later developed an

improvement of the design that includes a smart class loader and instruction folding [30].

In 1999 Derivation Systems Inc. (DSI) introduced the LavaCORE FPGA IP core

based on its proprietary Formal Synthesis technology [31]. It is provided as a fixed core

or synthesizable soft-core with a suite of tools for parameterized core generation,

hardware/software co-design, co-verification, and custom Java application development

[31]. The processor core is a 32-bit microprocessor and the soft-core version is targeted

to the Xilinx XC4000EX FPGA architecture. There is an evaluation/development kit

27

available from Xilinx’s IP cores library. It now supports the Virtex and Virtex-II series

FPGAs [32].

Another Java processor commercially available is the Moon processor from Vulcan

ASIC Inc. [33]. As opposed to the other processors reviewed earlier, the Moon processor

does not require a class loader because the company provides a proprietary linker. This

linker converts the object references to physical memory addresses, checks the constant

pool structure, resolves the constant pool types to physical addresses, and links the

program with an implementation of the Java API. Avoiding the class loader has its

advantages; however, it wouldn’t be possible to add any new classes to be executed once

the intermediate file is generated. This can become a disadvantage when attempting to

upgrade or add classes dynamically from a network.

2.6.4 Self Reconfiguring platforms

This section provides an overview of some projects that exploit the flexibility of

reconfigurable devices to build a self-reconfiguring platform. Note, however, that the

platforms only perform reconfigurations on specific previously defined parameters and

not on the entire platform.

Good examples of that type of platforms where specific parameters are self-

reconfigured are systems that use neural networks. For many of the applications of

neural networks the performance of software simulation running on a sequential

computer is not sufficient to be practical [34]. To solve this problem, James G. Eldredge

28

and Brad Hutchings of Brigham Young University developed a hardware implementation

of the neural backpropagation algorithm [34]. This implementation reconfigures the

same FPGAs for multiple phases of the algorithm giving the impression of having

significantly more hardware available. The reconfigurations are done at runtime and

depend on the data and data flow generated by the algorithm, effectively self-

reconfiguring the platform.

Tadayoshi Horita and Itsuo Takanami developed a platform in which the routing of a

mesh-array can be reconfigured to alternate routes when there is a fault in one of the links

[35]. Masaru Fukushi also used FPGAs that self reconfigure to solve the same problem

with excellent results [36]. Both of these platforms used neural networks algorithms and

modified different parts of the design at runtime.

Another interesting approach is the Dynamic Instruction Set Computer (DISC),

developed by Michael Wirthin and Brad Hutchings of Brigham Young University [37].

Using FPGA partial reconfiguration, this computer pages in and out instruction modules

as demanded by the executing program. The global controller unit of the processor

executes simple arithmetic operations and cycles the custom instruction modules. Once

the custom module is swapped in, it performs the operation when a specific op-code

found in the program is intercepted by the module’s decode unit. The controller can have

a large number of modules stored in memory and cycles them as required by the program,

effectively self-reconfiguring the platform at runtime.

29

Chapter 3

LEON processor port to the SLAAC1-V board

This chapter explains the various steps that were performed to implement the LEON

processor on the SLAAC1-V board. As explained in Chapter 2, the VHDL model of the

LEON processor includes many on-chip peripherals allowing for an easy implementation

of a complete solution on any board with only a FPGA, RAM, and serial I/O. The initial

tests of the processor were made on a small stand-alone XESS XSV300 board that

allowed probing of external signals for easy debugging. Once the tests on this board

were satisfactory, the port to the more complicated SLAAC1-V board started, focusing

primarily on memory access (Section 3.1) and serial I/O (Section 3.2). The work

explained in this chapter was developed in cooperation with Rüdiger Jordan of the

Darmstadt University of Technology [6].

3.1 Memory access

The original implementation of the port developed for this work had the LEON

processor synthesized into X0 of the SLAAC1-V board. This decision was made because

X0 can access all of the memory in the board by performing bank switching, as explained

30

in Chapter 2. It was a simple task to add a decoder that will drive the bank switching

signals of X0. However, the bank switching takes an additional cycle that is not

documented in the User’s Manual [5]. The additional clock cycle makes it impossible for

the processor to work with the 10MB of memory because the memory controller expects

a fixed number of wait states [7]. Nevertheless, X0 can access its own 2MB of RAM

with a fixed number of wait states, so they were assigned to the first two banks of the

LEON’s memory controller.

A problem that was encountered is that even though each RAM bank on the

SLAAC1-V board has a bi-directional hardware data bus, the SLAAC1-V VHDL

interface provides separate input and output data buses [5] [6]. This feature is necessary

to support the bank switching of its X0’s RAM banks with X1’s and X2’s RAM banks.

An easy way to solve this problem would be to add additional multiplexers that would

select the data based on the Read/Write bit. However, this approach will increase the

time delay of the data, forcing the processor to run at a lower clock rate. Therefore, it

was decided to modify the LEON processor’s memory controller so that it provides

different input and output data buses to match the SLAAC1-V interface. The task did not

require significant modifications to the source code because the memory controller has

separate buses internally which are merged by tri-state drivers in the I/O pad interface.

Some additional wrapper code was needed because the LEON processor should be

able to access all SRAM banks and additional memory mapped I/O devices through the

same address and data buses. The wrapper code primarily consists of the FIFO serial

31

interface (explained in Section 3.2) and multiplexers controlled by Chip Select signals.

All of the other control lines are output signals that were connected directly to the

corresponding RAM bank lines. A block diagram of the wrapper is shown in Figure 4.

Figure 4 Block diagram of the LEON – SLAAC1-V wrapper

The implementation of the LEON on X0 used only two RAM banks of the memory

controller, one for each 1MB RAM bank attached to X0. Nevertheless, the wrapper code

can be easily modified to fit more RAM banks.

Even though the processor worked on X0, 2MB of RAM was too little for some of

the applications as explained in later chapters, so it was decided to also implement the

processor on either X1 or X2. Both the X1 and X2 FPGAs are identical and have four

LEON

DATA OUT
ADDR

RAMSN
RWEN

IOSN
OEN

WRITEN

DATA IN

FIFO serial
Interface

DATA OUT

DATA IN, ADDR, CE, WE

DATA OUT

DATA IN, ADDR, CE, WE

DATA OUT

DATA IN, ADDR, CE, WE

RAM Banks

D
A

TA
 O

U
T

D
A

TA
 IN

,
A

D
D

R
, IO

SN

C
E, W

E

Wrapper

FIFOs

FULL, EMPTY
A0, B0, RD, WR

32

1MB RAM banks attached. For no special reason X2 was chosen and the wrapper code

was modified to couple the RAM. X2 does not have direct access to the FIFOs, so the

SLAAC1-V Ring bus was used and the signals were connected directly to the FIFO’s

inside X0. This configuration was used for all the testing and experiments in this work.

3.2 Console access

By default, the LEON processor can only communicate to the outside world through

one of its two UARTs. While this might be a suitable approach for a stand-alone system,

it does not make sense to connect a card in a PCI slot to the serial port in the same host

computer [6]. Furthermore, the built-in UARTs of the LEON processor will be used for

other purposes in the Secure Hardware Project [3]. An initial approach was to

communicate through the RAM, but the handshake protocol, especially polling for new

data, slowed down the programs on the LEON processor because the host has to stop the

FPGA clock before it accesses the memories. Another possibility was to communicate

through user registers in the PCI interface of X0. This possibility had, however, the

disadvantage that the PCI interface and the user design are clocked by different signals at

different rates, making synchronization very difficult. The FIFOs were chosen to

transmit console data from the host to the LEON processor.

The FIFO serial interface module shown in Figure 4 consists of several tri-state

buffers and a 29-bit decoder used to decode the memory controller’s address bus. This

decoder activates the tri-state buffers when a specific hard-coded memory address is

requested in such a way that the contents of the FIFOs are present in the memory

33

controller’s data bus. The data signals are memory mapped to 0x20000000 and the

FIFO_EMPTY and FIFO_FULL handshake signals are memory mapped to 0x20000004.

FIFO A0 is used to transmit data from the host to the LEON and FIFO B0 is used to

transmit data from the processor to the host. The transmissions are done one character at

a time because these FIFOs are 1-word deep and only eight bits of the 64-bit word are

being used. The host constantly polls for new data on FIFO B0 and sends console input

to FIFO A0. A state machine in the wrapper controls the FIFO_READ and

FIFO_WRITE lines. A simple I/O library with open(), read() and write() functions was

developed to support this FIFO interface from LEON processor programs.

34

Chapter 4

uClinux port to LEON

As explained in Chapter 2, uClinux is a derivative of the Linux 2.0 kernel intended

for processors without a Memory Management Unit (MMU) such as the LEON

processor. While there are many fully operational operating systems for these types of

devices, uClinux has the great advantage of the familiar Linux API. Most single-

threaded applications that run on the usual distributions of Linux can run under uClinux

by simply linking the object code with the uClinux libraries. Multithreaded applications

require some modification because of the inherent features of a MMU.

Jeff Dionne of Lineo Inc. started the project to port uClinux to the LEON processor

in September 2000 [12]. Because having such an operating system running on the LEON

processor would simplify the Java Virtual Machine port, it was decided that this work

should contribute to the porting process in its early stages. After months of debugging

and collaborative work with developers from all over the world, it was possible to run

threads, mount the root filesystem, and successfully load and use simple drivers on the

LEON processor. Even though the kernel development has been finished, the port cannot

be considered complete because it is not possible to build executables for the user space.

35

In order to build executables two pieces of software are yet to be ported: UC-LIBC and the

flat binary format tool chain.

UC-LIBC is a streamlined C-library specifically designed to be comprehensive but

small enough for embedded devices [12]. A C-library is always platform dependent, so

plenty of assembly code needs to be written for implementation on the LEON processor.

Other libraries can be used such as NEWLIB and GLIBC that provide more functionality,

but add up to 200k to every program. There have been initial attempts to port UC-LIBC;

however, it is not possible to test them without the flat toolchain.

uClinux native executable format is the flat binary format, which is a relatively

simple binary format, intended solely to contain the bare minimum needed to load and

execute simple binaries [12]. A special linker script is required to prepare an ELF file,

and then a special utility called elf2flat needs to be ported. Unfortunately, both of these

pieces of software are not easy to port because they deal with reallocation of sections,

which are platform dependent.

Despite not being able to generate executables, it is still possible to run applications

by linking them into the kernel and using the system calls directly. Obviously, the

application will have all of the kernel’s privileges, but because there is no memory

protection under uClinux, it does not make any difference.

36

The sections describe some of the major contributions of this work to the

uClinux/LEON project (Sections 4.1, 4.2 and 4.3) as well as the modifications and

additions specific to this work (Sections 4.4 and 4.5).

4.1 Trap handling

A trap in a SPARC processor is a vectored transfer of control to the supervisor

software. Traps can be caused by an instruction-induced exception, such as a divide-by-

zero or an external interrupt, such as a reset signal [38]. The transfer of control is

through a special trap table that contains the first four instructions of the trap handler.

Modifying the Trap Base Register (TBR) in the processor’s Integer Unit can modify the

base address of the table at runtime [38].

The internal boot ROM of the LEON was defined at synthesis time to immediately

jump to 0x40000000, the first memory location of RAM. This was done so that all of the

initialization code can run without having to synthesize and compile the design in the

FPGA for small changes. Additionally, the first entry in the trap table is the reset, so it

was decided to place base address of the trap table at the beginning of RAM.

The trap table was created by merging the trap tables from the RTEMS/LEON

distribution and the Linux/SPARC distribution. Not all of the entries in the table have

independent handlers; the only handlers implemented were reset, window overflow,

window underflow, flush window, and Linux syscall. A default handler BAD_TRAP

37

handled the remaining traps. For debugging purposes, BAD_TRAP displays to the

console the trap number and the contents of the Integer Unit registers.

The reset trap is primarily the code from locore1.S. The code initializes different

registers of the processor, such as the memory configuration registers, time scaler

register, and UART scaler register; finally, it enables the traps and jumps to the Linux

kernel. The window overflow and underflow traps are discussed in Chapter 2. The flush

window and the Linux syscall traps were directly copied from the Linux/SPARC

distribution and basically call assembly language functions that flush the windows and

call the appropriate functions, respectively.

4.2 Window overflow/underflow management

The SPARC Architecture includes the concept of “register windows,” a unique

feature designed to reduce function call overhead [38]. At a given time the instructions

can access eight global registers and a window of twenty-four registers. This register

window comprises the eight “in” and eight “local” registers together with eight “out”

registers that will become the “in” registers of the next function called. The SPARC

architecture does specify a minimum of two and a maximum of thirty-two register

windows for an implementation; the LEON processor has eight.

The limitation of a fixed number of register windows does not present a problem for

small programs that do not have deep function calls. However, bigger programs and

operating systems will have windows that overlap. For instance, on an eight register

38

window processor the ninth function call will try to use the window from the first

function. When such an overlap occurs, the Integer Unit generates a window overflow

trap that needs to be handled by the supervisor software. The window overflow handler

usually saves the contents of the register to memory, which later gets restored by the

window underflow handler

For uClinux, the window overflow and underflow handlers were originally copied

from the Linux/SPARC distribution. That version was further simplified because it used

the MMU to save and restore the register window into the user space of each process.

Debugging was long and tedious because optimizing compilers make it difficult to

predict when the traps will happen. Furthermore, incorrect behavior of the underflow and

overflow handlers usually gives errors that are obscure and difficult to trace.

4.3 Root filesystem implementation

The root filesystem is the device that is mounted first as the directory called “/”. Any

other device can only be mounted as a subdirectory inside the root filesystem. Because

uClinux supports all of the filesystem types supported by the Linux 2. 0. 14 kernel, it was

not a trivial decision which type of filesystem to implement on the LEON processor. The

first idea that came to mind was to mount the root filesystem through NFS, transmitting

the data via the FIFOs or one of the buses in the SLAAC1-V board. However,

developing the driver was not an easy task and there were additional options that could be

explored for implementation.

39

Another alternative was to use the Extended Filesystem 2 (EXT2FS). This type of

filesystem is a very flexible and efficient filesystem specifically designed for large

partitions and has become Linux’s native filesystem [39]. Generating a file that

contained the filesystem required the creation of a loopback device that was mounted on

the host computer. The files needed in the root filesystem of the LEON processor were

then copied to the mounted subdirectory. Once the file containing the LEON root

filesystem was generated, it was copied to a specific memory location in one of X2’s

memory banks and its location was hard-coded into the kernel. The EXT2 filesystem

worked satisfactorily; however, it required knowledge of the total size of the filesystem at

compile-time and its overhead was excessive for small filesystems.

Finally, it was decided to use the ROM Filesystem (ROMFS) even though RAM would

be wasted because it would only be used as ROM. The ROM Filesystem is a small read-

only filesystem with very little overhead originally designed for use in recovery disks

[40]. It operates in block devices and its very simple underlying structure will be

explained in Section 4.5. To generate the filesystem, a user program called genromfs was

required. This program takes a directory on the host computer and generates a file that

contains all of the directory’s files and subdirectories. This generated file is then

converted to S-record format and linked into the kernel (see Section 4.4). Because the

filesystem was included into the kernel at link-time, it was possible to associate variables

with its location and size, avoiding hard-coded absolute addresses in the kernel.

40

This ROM Filesystem implementation of the root filesystem worked satisfactorily so

it was used for all of the tests and experiments in this work and is now being used in the

public distribution of the uClinux/LEON port.

4.4 Memory map

This Chapter explains the organization of different sections of memory to adapt to the

specific characteristics of the SLAAC1-V board. Figure 5 shows a simplified memory

map (not to scale). Note that even though there are four independent memory banks in

X2, uClinux accesses all 4MB of RAM as one flat memory space due to the flexibility of

the LEON processor’s memory controller and wrapper code explained in Chapter 3.

Figure 5 uClinux memory map

 As stated in Section 4.1, the trap table is placed at the beginning of the first RAM

bank to take advantage of the fact that the first entry in the table is the reset trap

0x40000000
Trap Table

kernel .text section

kernel .bss section

kernel .data section

romfs filesystem

0x1000

0x55B13

0x7770

 varies

0x1986D

0x40800000
stack varies

free memory

41

instruction. The linker script was modified so that the linker joins all of the .text, .data

and .bss sections independently and places them according to Figure 5. The ROM

filesystem was placed before the .bss section intentionally to keep all of the read-only

sections adjacent. In the future, when ROM is available, all of the sections below .bss

can be placed in ROM by changing only a couple of lines in the linker script.

For some experiments it was necessary to modify the memory map detailed in this

chapter because the current version of uClinux cannot dynamically allocate more than

1MB of consecutive memory. As will be seen in Chapter 6, some experiments require

more than 1MB for Waba’s object heap. Therefore, the memory map was modified so

that uClinux manages a smaller amount of memory, and Waba uses a hard-coded area

that is not managed by uClinux for its class and object heaps.

4.5 Direct access to the ROM Filesystem

While trying to run JBits programs under Waba on the LEON, it was found that the

kernel was quickly running out of memory. Further investigation showed that whenever

Waba needs to load a class, it dynamically allocates memory for the full length of the

class file and then uses read() to copy the entire file to the allocated memory. Internally,

the kernel read() function also allocates memory, copies the data to it using the romfs

driver, and then transfers the data to the memory allocated by Waba. When using slow

permanent storage and when there is a distinction between kernel-space and user-space, it

makes sense for the kernel to buffer the data and then copy it to user-space. However, in

the implementation for this work, three redundant copies are completely unnecessary and

42

copying the entire file from one memory location to another significantly slows down the

program. Furthermore, the original data is already in RAM because the class files are

inside the ROM filesystem. As stated in Section 4.3, the ROM filesystem has a very

simple structure and it can be exploited to provide a direct access to the files without

kernel buffering. Figure 5 shows the layout of the filesystem [40]:

Figure 6 ROM Filesystem layout

The simple structure of the filesystem makes it easy to find the first file headers,

which in turn have simple structure as well, as Figure 7 shows.

- r o m

1 f s -

full size

checksum

Volume name

File headers

0

4

8

12

16

varies

Offset Content

The ASCII representation of
those bytes

The number of accessible bytes in this fs

The checksum of the first 512 bytes

The zero-terminated name of the volume
padded to 16-byte boundary

Description

43

Figure 7 ROM Filesystem header layout

Taking advantage of the simple structure of the headers, a function that performs a

linear search on each file header was written. The function’s input is the name of the file

and it returns a pointer to the absolute memory location of the file’s data. The function

was then included in the ROM Filesystem driver as the lseek() file operation. Obviously,

the function does not perform the expected lseek() operation, but it does return an integer

that can be cast to a pointer.

By using this modification to the ROM Filesystem, any user program can know the

absolute address of a file in the root filesystem. While this feature violates the

encapsulation and information hiding software-engineering principles, it saves a

significant amount of RAM, which is always a limitation in embedded systems.

size

checksum

file name

file data

0

4

8

12

16

varies

Offset Content

The offset of the next file header

Description

special info

next file header

Information for directories / hard
links / devices

The size of the file in bytes

Checksum of the filename, data and
padding

The zero terminated name of the file,
padded to 16 byte boundary

44

Chapter 5

Java Virtual Machine port

This chapter explains the implementation of Waba, the Java Virtual Machine used in

this work, to the SLAAC1-V board running uClinux. Chapter 2 explained the main

features of Waba, so this chapter will focus primarily on the development of ports of

Waba to x86/Linux (Section 5.1) and SPARC/uClinux (Section 5.2). This chapter also

covers the development of the Java API classes not included in the Waba Foundation

classes, but required to execute JBits programs (Section 5.3). Additionally, Section 5.4

explains in detail the development strategy to be followed to execute JBits or any

console-based Java program on the FPGA platform.

5.1 Waba port to x86/Linux

Because Linux and uClinux share a common API, it made sense to develop a port of

Waba to an x86/Linux computer before venturing into developing the port for a

SPARC/uClinux computer. This was especially important because at the time the Waba

port started, the uClinux kernel was still under development. Debugging a user program

in an unreliable kernel would have been very time consuming.

45

Waba was designed to be very portable, so the core of the Virtual Machine did not

need any modifications from the PalmOS port. However, some data types were redefined

in the header files so that the size of the elementary data types that Waba uses match the

ones of an x86 computer. Conversion functions for these data types had to be included as

well.

The Waba core expects all ports to include a few functions that can only be handled

natively [17]:

- Some sort of main() function that is called by the operating system, clears the

heaps, sets up the location of the classes and calls the core’s VmInit with the

appropriate parameters.

- A loadFromMem() function that opens a class file, reads its contents and returns a

pointer to the first byte of the class file.

- A getTimeStamp() funtion

- A ui_init() function, to initialize the User Interface.

- A ui_exit() function, to exit from the User Interface.

- A drawErrorWin() function that draws an error window in a Graphical User

Interface.

- A drawMainWin() function that draws the program window for programs that use

the Graphical User Interface.

- A handleMainWinEvent() function that handles events such as penMove, penUp,

and penDown.

46

Because the final platform for this work does not have a graphical user interface, the

last five functions were left empty. The remaining functions were based on the code

from the PalmOS port and were not difficult to write.

Once the Waba core compiled and linked successfully, the next step was to develop

the native functions called by the Waba Foundation classes. Most of these native

functions deal with the graphical user interface (see Chapter 2), so they were not ported.

The native functions ported are the ones from the File, SerialPort, Convert, and Vector

classes. Once again, the code was based on the PalmOS port except for the File class.

This class was developed from scratch because PalmOS does not have a filesystem per

se.

Because Waba was originally designed for mobile PDA-like devices where all of the

user interaction is done through a GUI, the Waba Foundation classes do not include

support for a standard I/O or text console. A text console, however, is the only

interaction device on the LEON. Therefore, it was decided to implement a class that

resembles the System class of the Java API. Unfortunately, this class could not be placed

as part of the java.lang package as in the Java API because the Java compiler uses the

System class from the host, which generated a name conflict. This name conflict could

not be resolved, so it was decided to place the System class in the waba.io package. This

placement, however, has the disadvantage that all the Java source code needs an “import

waba.io.System” line for the program to be able to use the text console.

47

Weeks after the port of Waba explained in this chapter was finished, a group of open-

source programmers released a complete port of Waba to x86/Linux. This latter port

includes GUI support through GTK libraries as well as a port of all the Waba Foundation

classes [17].

5.2 Waba port to SPARC/uClinux

Once the Waba port to x86/Linux worked satisfactorily, it was a minor task to

compile the source code with the SPARC cross compiler. Nevertheless there were some

issues that needed to be addressed:

- SPARC is a big-endian architecture as opposed to the little-endian x86

architecture, so the data type conversion macros had to be modified.

- Because Waba will be running as part of the kernel and not as a user program, the

main() function of Waba was renamed to mainWaba() and is called from the

kernel after all the initializations are completed.

- For the same reason as above, the kernel functions kmalloc(), kfree(), and printk()

had to be used instead of the user functions malloc(), free(), and printf().

- Some functions from the standard C and Math libraries had to be written because

the kernel did not have equivalent functions. Examples are atoi(), itoa(), pow(),

and exit().

- To save RAM, the direct ROM Filesystem access described in Chapter 4.5 had to

be used in loadFromMem().

48

Once these modifications were made, the SPARC/uClinux port of Waba worked

exactly like the x86/Linux port.

5.3 Java API classes implementation for Waba

As stated in Chapter 2, all Java programs can assume that the complete Java API will

be available with the Java Virtual Machine. However, the Java API contains more than

570 classes with each one having several methods [41]. The majority of those classes

and methods will not be used by JBits programs; so the only classes and methods ported

were the ones required by the programs in the experiments of Chapter 6. The following

sections describe these classes organized by Java API packages.

5.3.1 java.lang

The java.lang package provides fundamental classes to the design of the Java

Programming Language [41]. The classes ported in the java.lang package were

Character, Integer, and Class.

The Character class provides Java programs with a wrapper of the primitive type

“char” in an object. The class provides methods for converting characters from

uppercase to lowercase and vice versa [41]. The JBits API uses this class when

determining the type of device because all names are maintained internally as uppercase,

but the parameters provided by the user can be either uppercase or lowercase. The

algorithms used in the methods were mostly copied from KAFFE, an open-source Java

Virtual Machine and Java API implementation [42].

49

The Integer class provides Java programs with a wrapper of the primitive type “int” in

an object. The class provides methods for converting an integer to other data types, such

as a String, and other data types to an integer. The JBits API does not use this class

directly, but it is very useful when parsing command-line arguments of programs. Once

again, the algorithms and even some methods were a verbatim copy from KAFFE.

The Class class provides a representation of classes running in a Java application.

The class provides methods to access the name of the class, the name of the superclass,

the name of the package, the names of the methods, and other properties such as if the

object is an interface or a primitive. Some methods in this class can also create new

instances given a string of the class name. These latter methods are used by the JBits API

to load internal classes based on the type of device of the bitstream. Considering that the

Class class methods are native methods that need to access the Java Virtual Machine

class loader, it was not possible to copy the source code from KAFFE. Thus, the class

and methods were developed from scratch.

5.3.2 java.util

The java.util package contains collections of utility classes for data structures, date

and time facilities, internationalization, string parsing, random number generator, and bit

arrays [41]. The classes ported in the java.util package were Stack, StringTokenizer,

Calendar, and GregorianCalendar.

50

The Stack class represents a last-in-first-out collection of objects. It extends the

Vector class to allow the collections to be treated as a stack. The methods provided are

push(), pop(), and peek() along with a method to test if the stack is empty and a search()

method that returns how far an object in the stack is from the top. JBits uses this class

extensively to organize the different data structures found in the bitfiles. The class and its

methods were developed from scratch and it was a trivial programming exercise because

all the memory management was performed by the superclass Vector.

The StringTokenizer class allows a Java program to break a string into tokens. The

class provides methods to count the number of tokens, get the next token according to a

delimiter, and query if there are more tokens in the string. The JBits API does not use

this class, but the JBits program in Section 6.2 uses the StringTokenizer class to parse a

file that contains new data. The class and its methods were adapted from the distribution

of KAFFE [42].

The Calendar and GregorianCalendar classes provide methods to obtain the current

date of the System. These classes are used by JBits to set the date field in the generation

of a new bitstream. Because the LEON does not have a real-time clock, the methods in

these classes always return a fixed date.

5.3.3 java.io

The java.io package provides system input and output through data streams and the

local filesystem. The classes ported in the java.io package were File,

51

BufferedInputStream, and BufferedOutputStream. The SerialPort class is not a part of

the java.io package according to the specification but it was included to support the

UARTs of the LEON.

The File class interfaces Java programs to the operating system’s filesystem by

providing methods to open, close, read and write files. JBits does not use this class

directly, but it uses BufferedFileInputStream and BufferedFileOutputStream classes that

contain objects of type File. The class and methods were developed from scratch because

the methods are mostly native and require knowledge of the Java Virtual Machine

internals. Nevertheless, the development of the methods was a simple task thanks to the

Linux API.

The BufferedInputStream and BufferedOutputStream are classes that represent a

stream of data from or to a file in the filesystem. The class methods include read(),

write() and skip(), while the open() function is implied in the constructor. These classes

are used by the JBits API to read and write the bitfiles to the filesystem. The methods

were easy to develop once the File class was completely debugged. Even though the

name of these classes imply that the contents of the file streams are temporarily buffered,

the implementation developed for this work does not buffer the data to save valuable

memory.

52

5.4 The development strategy

While attempting to run the JBits programs under the SPARC/uClinux port of Waba,

it was found that it is much easier to develop the applications in the fast x86/Linux port.

This finding suggested a strategy for testing and developing Java, and especially JBits

applications for the FPGA platform. This chapter explains this four-step testing and

development strategy. See Section 6.1 for a working example.

Step one of the suggested strategy is to write and test the program on any platform

that has a certified Java Virtual Machine and a complete Java API implementation. For

this work, SUN’S JAVA RUNTIME ENVIRONMENT 1.3.1 was used [43]. Starting with this

step has the advantage that it can be assumed that any unexpected behavior of the

program will be due to a mistake in the JBits program, rather than a bug in the hardware,

operating system, Java Virtual Machine, or Java API implementation.

Step two is to add the necessary Waba imports to the source code file and try to run

the program under the x86/Linux port of Waba. This step has the feature that unexpected

behavior will be due to a bug in the Waba port or Java API implementation, not due to a

bug in the hardware, operating system or JBits program.

Waba imports are needed whenever the package of the used classes differs from the

package in the Java API specification. A specific example is the System class that was

moved to the waba.io package because of the reasons explained in Chapter 5.1.

Consequently, it is necessary to add an “import waba.io.System” to the source code.

53

In this step it is possible to obtain the amount of memory in Waba’s object and class

heaps required to execute the JBits program. The sizes of these heaps are command line

arguments and the minimum required can be obtained by trial and error. Moreover, this

step is where the classes of the Java API that are not implemented in Waba will result in

errors such as:

Error: can't find class java/util/Stack in
santi/J/FSMROMCfg. main([Ljava/lang/String;)V
Please notify the program's author.
*** EXITTING ***

A similar error is displayed if a method is not implemented. The programmer then

has to port the class and/or the methods and copy the compiled bytecodes to the Waba

directory. The behavior of the methods is thoroughly explained in the Java API

specification [41]. The libraries from KAFFE [42] can be used as a starting point.

The third step of the suggested strategy is to run the program on the SPARC

simulator. For this step, it is necessary to link the uClinux kernel together with a

filesystem that contains the directories of all the class files. This step will find bugs in

the SPARC/uClinux version of Waba or in uClinux itself because it can be assumed that

the hardware, JBits program, and Java API implementations have already been tested in

previous steps.

Finally, the fourth step is to run the program on the SLAAC1-V board. For this step,

it is only necessary to make sure that the program can fit in memory and make the

54

necessary adjustments to the memory map as explained in Chapter 4.4. This step tests

the hardware and memory organization exclusively and is the conclusive test for the

program.

55

Chapter 6

Applications and Experiments

This chapter shows some experiments that were developed and tested using the

recommended strategy. The purpose of the experiments is to demonstrate that it is

possible to run console-based Java programs and specifically JBits applications in a

FPGA. Additionally, the chapter analyzes the memory requirements, performance

measurements, and performance bottlenecks of the JBits applications.

The x86/Linux versions of the programs, as well as the SPARC simulator, were

executed on a Pentium-II 300MHz with 256MB of RAM running Linux 2.2.19. The

running time for different parts of the program were obtained by sending debugging

strings within the program to the standard output. This output was piped through tai64n

and tai64nlocal from the DAEMONTOOLS package, which put a precise timestamp on

every line of the standard output [44]. For example:

2001-05-25 23:42:14. 687720500 Writing out bitfile
2001-05-25 23:43:05. 580050500 Done writing!

56

6.1 Simple Java Application

The main objective of this experiment is to familiarize the reader with the four-step

strategy by applying it to the development of a very simple Java application. This simple

application also tests the functionality of the Java Virtual Machine in such key aspects as

loading classes and executing different types of methods (class, static and native), as well

as testing the API classes ported to this implementation of the Java Virtual Machine.

This is the source code for a simple program that outputs “Hello World” to the

standard output:

public class hello
{
 public static void main(String args[])
 {
 System. out. println("Hello World!\n");
 }
}

Step 1: Compile it and run it using SUN’S RUNTIME ENVIRONMENT (version 1.3.1 was

used throughout these experiments)

$ javac hello. java
$ java hello
Hello World!

Step 2: Implement the necessary Java API classes for Waba, add the necessary

imports and run the program using Waba for the Linux/x86 platform:

$ waba -a hello4
class: [hello]
classpath: [hello:/usr/local/java/jdk1-118sun/lib/classes.

zip:/home/sleon/jvm/waba/waba_classes:/project/vtloki/JBits:. :]
vmStackSize = 1500

57

nmStackSize = 300
classHeapSize = 14000
objectHeapSize = 8000

startApp(): calling VMInit
startApp(): calling VmStartApplication

Hello World!

Step 3: Compile the kernel and run the program in simulation:

$ make linux srec
$ sis64 linux.srec
SIS - SPARC instruction simulator 3. 1. 0, copyright Jiri

Gaisler 1995-1998
. . .
(output trimmed)
. . .
Hello World!

Step 4: Run the program on the SLAAC1-V board:

$ make bin
$ leonx2

Output on the serial port:

uClinux/Sparc
Flat model support (C) 1998-2000 Kenneth Albanowski, D. Jeff
Dionne
LEON-2. 1 Sparc V8 support (C) 2000 D. Jeff Dionne, Lineo
Inc. , Santiago Leon, Ruediger Jordan, Virginia Tech
Configurable Computing Lab
. . .
(output trimmed)
. . .
Hello World!

Because this is not an actual application, but rather a small program used to

demonstrate the design strategy, neither performance measurements nor memory

requirements were obtained. However, it is important to note that once the program runs

under a traditional Java runtime environment such as Sun’s JRE, the source code does not

58

need any modifications for it to run under the Waba platforms (with the exception of the

additional “import” lines). Furthermore, once the compiled Java code runs on the

Linux/x86 Waba, the same code can be used for the simulation and for the hardware

steps.

6.2 JBits template lookup and LUT modification for a Xilinx 4085 part

In the previous experiment it was shown that designs can be tested on the fast and

flexible Linux/x86 Waba and then use the same class files for simulation and hardware.

This experiment will show that this design and testing strategy can be used to execute a

more complex JBits code.

This program modifies the transition table of a state machine synthesized in a FPGA.

It was originally written by Ryan Fong of the Configurable Computing Lab at Virginia

Tech to change the state machine that switches the contexts of an integrated circuit in the

Sanders’ CSRC board [45]. First, the program opens a text file that specifies the

transition table. The format of this file is a ROM configuration format used in Xilinx’s

CoreGen. Second, it proceeds to search into each CLB of the original bitfile for a vector

that will be replaced by the contents of the new transition table. Finally, the program

writes the modified bitfile to memory.

The program appears to be simple; however, the search for the original template is

not trivial. The placing directives in the hardware description language are only relative,

so there is no way of knowing the absolute placement of the column of CLBs to be

modified. Furthermore, the compilation tools of the FPGA vendor scramble the address

59

and LUT vector configurations [19]. Jonathan Ballagh solved these problems by making

sure that the original “vector was unique in the sense that every possible address

configuration yielded a unique output sequence from the LUT” [19]. Thus, the search

becomes a linear search of all the CLBs, looking for the distinctive vector in any of its

scrambled forms.

Table 2 shows the memory usage for this experiment. Note that the components

under “Compiled Source” and “Filesystem” can reside in ROM. However, the SLAAC1-

V board does not contain any ROM, so those components were placed in RAM.

Table 2 Memory usage of template lookup and LUT modification

for a Xilinx 4085 part

Table 3 summarizes average running time of five iterations for different parts of the

program (all units are seconds):

Components Size (bytes)
Compiled source uClinux 386,496

Waba 58,880
Filesystem Program classes 12,928

Waba classes 155,648
JBits classes 942,080
Original Bitstream 240,711

Waba runtime Object Heap 950,000
Class Heap 190,000
JVM Stack 1,500
Native methods Stack 300

Total 2,938,543

60

Table 3 Results of template lookup and LUT modification of a Xilinx 4085 part

The table shows that meanwhile the hardware is many times faster than the

simulation, the x86/Linux Waba is almost 60 times faster than the application running on

the FPGA. This ratio emphasizes the importance of developing and testing the

applications on the x86/Linux version of Waba first. Furthermore, the x86/Linux version

is much more flexible because changes in the code only require a Java compilation, while

the hardware needs additional compilations of the filesystem and the uClinux kernel.

Table 3 also shows that more than 80% of the total time it takes to run the program is

spent on initialization. Bitstream search is considered an initialization because the

original template bitstream will not change. Therefore, the memory and the registers of

the processor can be saved into a snapshot. Then, whenever the program needs to run,

the initialization snapshot can be loaded back, which will save much processing time.

Another performance bottleneck when running this program is the amount of time

that the processor is writing back the bitstream to memory. This is an inherent problem

of the current versions of JBits because it was not designed with embedded systems in

mind. A Xilinx 4085 part has a bitfile of 240KB, and every single byte is written

x86/linux
with JIT without JIT simulation hardware

OS Loading N/A N/A N/A 36.480 2.600
JVM initialization 0.179 0.170 0.310 39.745 2.130
Initialization of JBits classes 0.451 0.516 4.697 1741.692 122.460
Reading the Bitstream 0.269 0.270 11.610 8359.251 662.550
Bitstream Search 1.295 1.417 45.530 21751.736 2072.300
Bitstream Modification 0.007 0.008 0.169 76.220 7.260
Writing the Bitstream 0.031 0.044 0.450 2925.730 337.905
Total 2.232 2.425 62.766 34894.374 3204.605

Sun JDK 1.18
x86/linux

Waba
sparc/uClinux

61

independently by calling a write() function in a BufferedOutputStream class. Thus, for

every byte there is an expensive overhead of a Java function call. This explains the

difference between the JIT and no-JIT runs when writing back the bitstream, because a

non-JIT function call is much more expensive that a JIT function call. To make matters

worse, the tested implementation of write() under Waba contains a native function, which

implies an additional overhead of a native function call. For a fast computer with

multiple cache levels the function overheads might not be relevant, but for a smaller

processor with a single level of cache, the function overheads directly affect the

performance of an application.

6.3 JBits LUT modification for Virtex 200

The previous experiment showed a real application for the FPGA platform that was

used to modify a bitstream of a Xilinx 4000 series part. However, the newer, faster, and

denser Virtex parts are quickly displacing the XCV4000 parts. For example, the older

SLAAC1 board was populated with XCV4000 parts, while the newer SLAAC1-V board

is populated with Virtex parts. Thus, it became important to develop an experiment that

will modify the bitstream of a Virtex part.

The part chosen for this experiment is an XCV200 because it is one of the four Virtex

parts in the SLAAC1-V board. The program is very simple: it reads the original bitfile,

changes the values of LUTs in specific CLBs, and writes the bitfile back to memory. The

modified CLBs were randomly chosen because the experiment’s purpose was to prove

that it is possible to modify a Virtex bitfile using the FPGA platform, not necessarily do

62

something useful with it. To verify that the program does modify the bitstream, the

modified bitstream was opened in BoardScope and the individual CLB’s were visually

examined.

Table 4 shows the memory usage for this experiment. Note that the components

under “Compiled Source” and “Filesystem” can reside in ROM.

Table 4 Memory usage of LUT modification of a Xilinx XCV200 part

The following table summarizes average running time of five iterations for different

parts of the program (all units are seconds):

Table 5 Results of LUT modification of a Xilinx XCV200 part

Components Size (bytes)
Compiled source uClinux 386,496

Waba 58,880
Filesystem Program classes 2,129

Waba classes 155,648
JBits classes 1,449,984
Original Bitstream 167,058

Waba runtime Object Heap 1,300,000
Class Heap 320,000
JVM Stack 1,500
Native methods Stack 300

Total 3,841,995

x86/linux
with JIT without JIT simulation hardware

OS Loading N/A N/A N/A 36.480 2.600
JVM initialization 0.179 0.170 0.310 39.745 2.130
Initialization of JBits classes 0.640 0.651 9.501 2779.801 164.390
Reading the Bitstream 0.466 0.467 28.274 8359.251 398.020
Bitstream Modification 0.011 0.013 0.442 125.820 9.460
Writing the Bitstream 0.054 0.065 0.744 2848.913 194.570
Total 1.350 1.366 39.271 14153.530 768.570

Sun JDK 1.18
x86/linux

Waba
sparc/uClinux

63

The table shows some the same characteristics of the previous experiment:

- The Sun JDK Virtual Machine is significantly faster than Waba under any platform.

- The x86/Linux version of Waba is roughly twenty times faster than the

sparc/uClinux version running on the FPGA.

- The Sparc simulator runs nearly twenty times slower than the LEON core running

on the FPGA.

- About 80% of the processing time is spent on initializations, which can be avoided

by taking a snapshot of memory and processor registers, as explained earlier.

- Writing back the bitfile is another performance bottleneck because of the function

overhead for every byte written to memory.

Because the program itself is not very complicated, most of the time that the program

is running is spent on bitstream I/O. However, the Virtex series support partial readback

and reconfiguration, which means that instead of loading and saving a complete bitfile,

the program can use a partial, smaller bitfile. These partial bitstreams only contain the

information of specific columns of CLBs, so reading and writing the bitstream would

take a fraction of the time it currently does [18].

6.4 JBits LUT modification for Virtex 1000

One of the motivations for this work was to use it as a reconfiguration tool in the

Secure Hardware Project at the Configurable Computing Lab. The first prototype of this

project uses the FPGA’s in the SLAAC1-V board to hide the details of the coding,

64

authentication, and encryption of a software radio. These components of the radio reside

in either X1 or X2 FPGAs, which are Virtex 1000 parts. Therefore, it is important that

the FPGA platform is able to modify Virtex 1000 bitfiles.

The program of this experiment is exactly the same used in the previous experiment

with the obvious exception that JBits initializes a bitstream for a XCV1000 part.

Furthermore, the modified CLB’s are directly connected to LED’s in a daughtercard for

additional verification of the modified bitstream.

 Table 6 shows the memory usage for this experiment. Once again, note that the

components under “Compiled Source” and “Filesystem” can reside in ROM.

Table 6 Memory usage of LUT modification of a Xilinx XCV1000 part

The following table summarizes average running time of five iterations for different

parts of the program (all units are seconds):

Components Size (bytes)
Compiled source uClinux 386,496

Waba 58,880
Filesystem Program classes 2,093

Waba classes 155,648
JBits classes 1,527,808
Original Bitstream 766,042

Waba runtime Object Heap 5,680,000
Class Heap 330,000
JVM Stack 1,500
Native methods Stack 300

Total 8,908,767

65

Table 7 Results of LUT modification of a Xilinx XCV1000 part

Note that the table doesn’t show values for the sparc/uClinux hardware execution of

the program. As shown in Table 7, the memory required to run this application was

much more than the available memory for the FPGA. While an XCV200 requires a total

of 1.6MB for the class and object heaps, an XCV1000 requires almost 6MB. As stated

before, X2 in the SLAAC1-V can only access up to 4MB of RAM, which made it

impossible to run this experiment on this FPGA.

Even though a XCV1000 has nearly five times as many configurable components

than a XCV200, the table shows the same trends and performance bottlenecks that were

analyzed in the previous experiment.

x86/linux
with JIT without JIT simulation hardware

OS Loading N/A N/A N/A 36.480 N/A
JVM initialization 0.179 0.170 0.310 39.745 N/A
Initialization of JBits classes 1.941 2.254 14.159 4140.479 N/A
Reading the Bitstream 1.899 1.838 96.208 19777.221 N/A
Bitstream Modification 0.069 0.084 0.443 125.760 N/A
Writing the Bitstream 0.133 0.142 0.954 12839.462 N/A
Total 4.221 4.488 112.074 36922.667 0.000

Sun JDK 1.18
x86/linux

Waba
sparc/uClinux

66

Chapter 7

Conclusions

7.1 Summary

This thesis introduced a FPGA platform that can be used to execute JBits programs

that modify various programmable resources of a FPGA. The platform required

development of ports of a processor, an operating system, a Java Virtual Machine, and a

set of Java API classes. The thesis also presented a developing and testing strategy for

such programs.

Following the introduction in Chapter 1, Chapter 2 overviewed the topics that form the

basis of this work: the SLAAC1-V board, the LEON processor, the uClinux operating

system, Java, and the JBits API. Chapter 3 described the steps that were necessary to

implement the LEON processor to the SLAAC1-V board with special attention to access

to memory and I/O. Chapter 4 explained the contributions of this work to the LEON port

of the uClinux operating system. The chapter also explained some specific optimizations

to uClinux developed for this work. Chapter 5 described the ports of Waba to Linux

running on a standard PC and the port of Waba to uClinux running on the SLAAC1-V

board. Both ports required the development of Java API classes that were described in

the chapter as well. The chapter also explained in detail each step of the suggested

67

development strategy including what aspects that are tested at each step. Chapter 6

presented some programs running on the platform that modified the configuration of

FPGAs along with performance and memory measurements.

7.2 Suggestions for Future Work

This research creates several opportunities for future investigations. First, there are

several improvements that can reduce the time required to execute JBits applications on

the platform:

- implementing a snapshot of the memory and processor registers after the

initialization of the JBits classes, as explained in Chapter 6,

- increasing the amount of memory so that Waba’s garbage collector runs less

often,

- using partial bitstreams for Virtex parts, and

- rewriting some JBits classes to avoid the overhead of reading and writing

bitstreams one byte at a time.

Second, this work can be used as part of a framework for remote reconfiguration of

FPGAs. The framework would utilize the transmission link more efficiently because a

class file of a JBits program will be significantly smaller than an entire bitfile. Further, it

might not be necessary to transmit a program, but rather only its parameters. Security

would another important advantage of the framework. If an entire bitstream is

transmitted over a medium, this medium can be intercepted and the bitstream can be

obtained, revealing the inner details of the design. Alternatively, if a JBits program is

68

intercepted, it may be useless without the original bitfile. Furthermore, because the

framework runs on a FPGA, it can be secured using schemes such as those used in the

Secure Hardware Project at Virginia Tech’s Configurable Computing Laboratory [3].

7.3 Conclusions based on the Work

The objective of this thesis was to demonstrate that it is possible to modify the

configuration of a FPGA within a FPGA. The JBits API provided a set of classes and

methods that enabled reconfiguration of FPGAs in significantly less time than is required

when using traditional synthesis and compilation processes. However, the execution of

JBits programs presented another challenge, the implementation of a Java Virtual

Machine on a FPGA board. The underlying platform required for a Java Virtual Machine

was implemented using generic processor core and a Unix-like operating system. Once

the underlying platform executed satisfactorily, a Java Virtual Machine was ported along

with several Java API classes. Finally, it was possible to successfully execute JBits

programs on the FPGA platform, which warrants further investigation and development

of applications.

Compared to the other self-reconfigurable platforms overviewed in Chapter 2, this

work has the advantage that any parameter of any design in a FPGA can be reconfigured,

not only a specified set of parameters. This flexibility, however, comes with the

disadvantage that the reconfigurations take a significant amount of time, making run-time

reconfiguration inefficient. Nevertheless, the platform has potential for execution speed

improvement making run-time reconfigurations a future possibility.

69

Bibliography

[1] David I. Lehn, Rhett D. Hudson and Peter M. Athanas, “Framework for

architecture-independent run-time reconfigurable applications,” SPIE

Proceedings, Nov 2000.

[2] Steve Guccione, Delon Levi, and Prasama Sundararajan, “JBits: Java based

interface for reconfigurable computing.” Second Annual Military and Aerospace

Applications of Programmable Devices and Technologies (MAPLD’99), The

Johns Hopkins University, Laurel, Maryland, Sep 1999.

[3] Scott Harper, “Secure Computational Hardware,” Internal Documentation.

[4] Information Sciences Institute – East, SLAAC Project Page,

http://www.east.isi.edu/projects/SLAAC, June 2001.

[5] “SLAAC1-V User VHDL Guide,” Release 0. 3. 1, Information Sciences Institute –

East, SLAAC1-V software distribution, June 2001.

[6] Rüdiger Jordan, “Radio management using an embedded RISC processor,”

Diplomarbeit of Darmstadt University of Technology and Virginia Tech, January

2001.

[7] Jiri Gaisler, “LEON SPARC Processor,” http://www.gaisler.com/leonmain.html,

June 2001.

[8] GCC Homepage, http://www.gnu.org/software/gcc/gcc.html, June 2001.

[9] GNU Binutils, http://www.gnu.org/software/binutils/binutils.html, June 2001.

[10] RTEMS Homepage, http://www.rtems.com/RTEMS/rtems.html, June 2001.

70

[11] TSIM SPARC simulator, http://www.gaisler.com/tsim.html, June 2001.

[12] uClinux Homepage, http://www.uclinux.org/, June 2001.

[13] Bill Venners, “Inside the Java Virtual Machine,” McGraw-Hill, 1998.

[14] Ed. Paula Ferguson, “Java in a Nutshell,” O’Reilly and Associates, 1997.

[15] Joseph L. Weber, “Using Java2 Platform Special Edition,” QUE, January 1999.

[16] Tim Lindholm, Frank Yellin, “The Java Virtual Machine Specification,”

Addison-Wesley Pub Co, April 1999.

[17] Waba Homepage, http://waba. sourceforge. net/, June 2001.

[18] Xilinx Inc. “Virtex Series Configuration Architecture User Guide, XAPP151 (v1.

5),” http://support.xilinx.com/xapp/xapp151.pdf, September 27, 2000.

[19] Jonathan Ballagh, “Design of a Reconfigurable IP Content Addressable Memory

Core”, Internal Documentation, December 1999.

[20] Delon Levi and Steven A. Guccione, John Schewel, ed. , “BoardScope: A Debug

Tool for Reconfigurable Systems,” Configurable Computing: Technology and

Applications, Proc. SPIE 3526, Bellingham WA, November 1998.

[21] Altera, “Nios Embedded processor Programmer’s Reference Manual,” Version

1.1.1, July 2001.

[22] Tensilica Homepage. http://www.tensilica.com, June 2001.

[23] MicroBlaze Homepage,

http://www.xilinx.com/ipcenter/processor_central/microblaze.htm, June 2001.

[24] OpenRISC 1000 Homepage, http://www.opencores.org/cores/or1k/, June 2001.

[25] RTLinux Homepage, http://www.rtlinux.org/, June 2001.

[26] LinuxDevices Homepage, http://www.linuxdevices.com/, June 2001.

71

[27] PicoJava Microprocessor Cores, http://www.sun.com/microelectronics/picoJava/,

June 2001.

[28] Sun Microsystems, “picoJava ™ -II Data Sheet,” April 1999.

[29] A. Kim and J.M. Chang, "Designing A Java Microprocessor Core Using FPGA

Technology," Proceedings of 1998 IEEE International ASIC Conference,

Rochester, NY, Sep. 13-16, 1998.

[30] A. Kim, Y. Qian and J.M. Chang, "Embedded Java Processor and Memory

Architecture," Submitted for ICCD99, September 1999.

[31] Derivation Systems Inc. press release at DAC’99, “Derivation Systems Introduces

"LavaCORE", the worlds first Formally Synthesized Java Virtual Machine FPGA

Core,” http://www.derivation.com/news/pressrelease_06-21-1999.html, June 21,

1999.

[32] Derivation Systems Inc. press release at ESC-WEST 2000. “Derivation Systems

Demonstrates "LavaCORE" Configurable Java(tm) Processor FPGA Core,”

September 26, 2000.

[33] Vulcan ASIC Inc. “Moon 1.0 Data Sheet,” January 15th 2000.

[34] James G. Eldredge, Brad L. Hutchings, “RRANN: A Hardware Implementation of

the Backpropagation Algorithm Using Reconfigurable FPGAs”, Custom

Integrated Circuits Conference, pages 77-80, San Diego, California, May 1994.

[35] Tadayoshi Horita and Itsuo Takanami, “A Built-In Self-Reconstruction Approach

for Partitioned Mesh-Arrays Using Neural Algorithm,”IEICE TRANS., Vol E-

79-D, No. 8, August 1996.

72

[36] Masaru Fukushi, “Self-Reconfigurable Mesh Array System on FPGA,”

Proceedings of the IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems (DFT'00).

[37] Michael J. Wirthlin and Brad L. Hutchings, “DISC: The dynamic instruction set

computer,” Field Programmable Gate Arrays (FPGAs) for Fast Board

Development and Reconfigurable Computing, John Schewel, Editor, Proc. SPIE

2607, pp. 92-103 (1995).

[38] SPARC International Inc. , “The SPARC Architecture Manual, Version 8,”

Revision SAV080SI9308. http://www.sparc.org/standards/V8.pdf, June 2001.

[39] Ext2fs Homepage, http://e2fsprogs.sourceforge.net/ext2.html, June 2001.

[40] Janos Farkas, “ROMFS - ROM FILE SYSTEM,” romfs.txt in the genromfs

distribution, June 2001.

[41] Sun Microsystems, “JavaTM 2 Platform, Standard Edition, v 1. 3. 1 API

Specification,” http://java.sun.com/j2se/1.3/docs/api/index.html, June 2001.

[42] Kaffe Homepage, http://www.kaffe.org, June 2001.

[43] JavaTM 2 Runtime Environment, Standard Edition

http://java.sun.com/j2se/1.3/jre, July 2001.

[44] D. J. Bernstein , “daemontools,” http://cr.yp.to/daemontools.html, June 2001.

[45] S. M. Scalera and J. R. Vazquez, "The Design and Implementation of a Context

Switching FPGA," Proceedings of the Symposium on Field-Programmable

Custom Computing Machines, April 1998.

73

Vita

Santiago Leon was born in July 1977 in Quito, the capital city of Ecuador. After

graduating from Alberto Einstein High School, he worked part-time and attended Escuela

Politécnica Nacional in Quito for one year. Santiago enrolled at Virginia Tech in 1996

and began pursuing a Bachelor’s Degree in Computer Engineering. During his junior

year at Virginia Tech, Santiago decided to continue his studies by enrolling in the 5-year

BS/MS program. He took his B.S. in Computer Engineering in May 2000 and his M.S.

degree in July 2001. After graduation, Santiago began employment with IBM

Microelectronics in RTP, North Carolina as a performance designer for PowerPC and

PowerNP processors.

