Adaptive Control Using | IR Lattice Filters

Stephen J. Hevey

Thesis submitted to the Faculty of the Virginia Polytechnic
Institute and State University in partial fulfillment of the
requirements for the degree of
Mastersin Science
in

Electrical Engineering

William Baumann, Chair
John Bay
Hugh Vanlandingham

April 24, 1998
Blacksburg, Virginia

Keywords. Adaptive Control, IIR Filters, Lattice Filters, Adaptive-Q

Copyright 1998, Stephen J. Hevey

Adaptive Control Using IIR Lattice Filters

Stephen J. Hevey

(ABSTRACT)

Thiswork is astudy of ahybrid adaptive controller that blends fixed feedback control
and adaptive feedback control techniques. Thistype of adaptive controller removes the
requirement that information about the disturbance is known apriori. Additionally, the
control structure isimplemented in such away that as long as the adaptive controller is
stable during adaptation, the system consisting of the controller and plant remain stable.

The objective is to design and implement an adaptive controller that damps the structural
vibrations induced in a multi-modal structure. The adaptive controller utilizes an
adaptive infinite impul se response lattice filter for improved damping over the fixed
feedback controller alone. An adaptive finite impulse response LM S filter is also
implemented for comparison of the ability for both algorithms to reject harmonic, narrow
bandwidth and wide bandwidth disturbances.

It is demonstrated that the lattice filter algorithm performs sightly better than the LMS
filter algorithm in all three disturbance cases. The lattice filter aso requires less than half
the order of the LM Sfilter to get the same performance.

Acknowledgements

| would like to thank Dr. Baumann for his guidance as my committee chair and for his
infinite patience. Without his help, | would probably still be scratching my head in the
lab wondering why things are not working properly. | would also like to thank Dr. Bay

and Dr. Vanlandingham for their suggestions and serving on my committee.

Specia thanks go to my family. To my brothers, Mike and Matt, for their understanding
when | was unable to spend time with them because | was too busy. To my mother and
father, who always seem to know just what to say to lift my spirits. To Donna and
Wade, for always supporting and encouraging me.

Additional thanks go to Dr. Baumann’s family for understanding each time Bill spent a
night or weekend helping out in the lab.

Finally, to my wife, Charlene, there are no words great enough to express my thanks for

being there for me and understanding why | spent so many nights and weekend away

from home.

Table of Contents

Chapter 1 Adaptive Control SChEmMES..........ceiiiii e 1
Chapter 2 Control System DevelOpmentooceii i 3
2.1 Choosing an Adaptive [TR FIEer ... 8
2.2 Tapped-state Recursive Lattice Filters. ... 9
2.3 System ID Algorithm Using an Adaptive Lattice Filterccocoevieeeiiinenen. 11
2.4 Moadifying the system ID algorithm for usein the adaptive-Q approach...... 14
Chapter 3 EXperimental SELUDcoooiiiiiiiieiee et 20
3.1 General SYStEM OVEIN VIEWcc.eeiiiiiieiiiie ettt e e eneeas 20
I = 1 o PP PPP 20
3.3 .SENSOr AMPIITIEN o 21
3.4 SMOOLNING FHTEN ... e 22
3.5 POWEr AMPITIEN oo 23
3.6 Disturbance AMPIHTIEN ... 25
3.7 DSP INPUL PrOtECLIONcooiiiiiiiiieciie ettt 25
3.8 DSP Signal Processing Board...........cooceieiiieeiiiieeiee e 26
3.9 Other EQUIPMENT ...ttt 26
Chapter 4 System 1dentifiCationcooceiiiiiieiiiie e 27
Chapter 5L QG Fixed Feedback Controller ... 31
5.1 Closed Loop System MOcoouiiiiiiiieee e 33
Chapter 6 Implementation of CONtrollerccoe i 34
6.1 SYSLEM DEIAYS ...coeeeeiiiie et n e aree e 34
6.2 ProCeSSING TIME.....oiiiiiieiiiie ettt et e st e e e e s ne e e s nnee e snree e 35
6.3 Frequenciesnear the NyqUISE Fate........coceeeiiieiiiiie e 35
Chapter 7 Optimal CoNtrollercoouiiiieee e 36
Chapter 8 Simulationsvs. Optimal Controllerccooieeiie e 39
8.1 Harmonic SIMUIBLIONccccueiiiiiieiiii e 39
8.2 Narrow Band SImulationcocceiiiiiiiiieiicee s 40
8.3 WideBand SIMUIALIONcoiiiiiiiiiieeiiee e 46
Chapter 9 Experimental RESUILS..........ooiiiiiiiieie e 51
0.1 LQG CONLIOHEN . 51
9.2 Verification of Neutralization LOOPcouceeiiiieeeiiiie e 54
9.3 HarmoniC DIiStUIrDANCEcooiiiieiiiieeee e 55
9.4 Narrow Band DiStUrDaNCEcoouiiiiiiie e 58
9.5 WideBand DisturbDance...........coooiiiiiiiieee e 62
Chapter 10 CONCIUSIONScccuiieiiiee ittt b e saee e e snse e e s seeesnneeeas 67
REFEI BNCES.....eeee ettt st e e s be e e e naee e e nne e e nnreeeanneeens 68
y N 0] 0 1< 16 | L NSRS 71
AL SYSID.ASM ettt ne e re e 71
A2 BINZASCI.C ottt ettt e e st e e s nne e e e nneaeenes 77
A3 ETFE.M ettt st nn e b e 79
N D =1 N N 1 PRSPPI 80
AL RDUGCE.M ...ttt ettt e nne e e s b e 82
A8 SVIMOD.M .. e ae e re e 84
AT SAVTEM ottt s e e st e e s nne e e s nneeeenes 84

y N o] 01 [0 |5l = P RPR 86

B.1 ADAPT.CTOr LMSCOUE ... 86
B.2 INITVECSH for LMSCOUE......cccooeee 87
B.3 TEMODS8.H for LM S COUE......cccooeieee e 88
B.4 INITIO.ASM fOr LM S COUE.....ccooeiiee e 90
B.5 FILTER.ASM fOr LM S COUEccccooeeiee 92
B.6 ADAPT.CMD for LM S COUE......ccoiiiee 101
B.7 MAKEFILE fOr LMSCOUEcccooeiee 103
B.8 ADAPT.Cfor LattiCE COUC......ccooieiee e 103
B.9 INITVECSH for LattiCE COUE........ccoeeieieeeeeiee e 105
B.10TFMODS8.H for LattiCe COUE........cooee e 106
B.11INITIO.ASM for LattiCe COUE........cooeeeeeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 108
B.12FILTER.ASM for LattiCE COUEccoeeeeeeieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 109
B.13POSTFILT.ASM for LattiCe COUE........coooieiiieieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 118
B.14ADAPT.CMD for LattiCe COUE........ccooeeeeieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 123
B.1I5SMAKEFILE for LattiCe COUE.......coooeee 124
N 0] 0 1< [0 | G TR PRRPIN 125
C.1 OPTCNTRL.M 125
APPENAIX D ettt e e nnae e e ne e e anee e 128
D.1 LIMSFILT .M e 128
D.2 HARMONIC.M oo 131
D.3 NBANDWB.M ..o 135
D.4 LOADMODL.M oo 139

Table of Figures

Figure 1 - Plant with LQG feedback controller...........ocoeeviiiiiie e 3
Figure 2 - Plant with LQG controller and Q Filterccvveeeiiiiiiiiiee e 3
FIQUIre 3 — SCNUN TECUISION.eeiiiiiee ittt e e e 9
Figure 4 — Tapped-state recursive lattice filltero 10
Figure 5— System ID problem using adaptive fillter ... 11
Figure 6 — lllustration of modified lattice algorithm............cccooceeeiiieiii e 16
Figure 7 — EXPerimental SELUPDeeeiiiie ittt sttt snee e 20
Figure 8 — Cantilever DEAM............oi i 21
Figure 9 — Sensor ampPlifieroooeiiiie e 21
Figure 10 — SMOOthing fIlLEr.......ccueiiiee e 22
Figure 11 — POWer @ampPlifier......oooueiiiiie e 24
Figure 12 — DSP iNPUL PrOtECIIONccvvieiiiie ettt 25
Figure 13 — Magnitude comparison between ETFE and 28" order least squares fit......... 28
Figure 14 — Phase comparison between ETFE and 28" order least squaresfit................ 29
Figure 15 — Model structure used in theoretical diSCUSSIONccocciiiiiiiiiiieeniieeieens 30
Figure 16 — Model structure created by system identificationccccccevieeiiiieeniennns 30
Figure 17 — Open loop and closed loop frequency response of system..........ccocceeeeeennne 32
Figure 18 — System bIOCK diagram..........coceeeiiie i 33
Figure 19 — Response of 1IR and FIR adaptive-Q controller to 189 Hz harmonic
AISUrDANCE ... e e e sneas 39
Figure 20 — Matlab simulated performance of the optimal controller to a narrow band
disturbance centered at 18 HzZ.........oooiiiiiiiii e 41
Figure 21 - Initial adaptation of the LM S algorithm to a narrow bandwidth disturbance
centered al 189 HzZ........eoiieeeee e 42
Figure 22 — Matlab simulated response of the LM S algorithm to the narrow band
disturbance input after one minute of CONVErgeNnCe...........oovveverieeeiieeesiieee e 43
Figure 23 - Initial adaptation of the lattice filter algorithm to a narrow bandwidth
disturbance centered at 189 Hz.oooueiiiiiii e 44
Figure 24 — Matlab simulated response of the adaptive lattice filter algorithm to the
narrow band disturbance input after one minute of convergence.ccccevcveeenen. 45
Figure 25 — Matlab simulated performance of the optimal controller to a wide band
disturbance centered at 300 HzZ.oooieiiiiiie e 46
Figure 26 - Initial adaptation of the LM S algorithm to a wide band disturbance centered
B B00 HZ. ..ottt e et e e nre e re e naeenree s 47
Figure 27 — Matlab simulated response of the LM S algorithm to the wide band
disturbance input after five minutes of CONVErgenCe..........oocvvvuereriieescieeesieeenee, 48
Figure 28 - Initial adaptation of the lattice filter algorithm to a wide band disturbance
centered al 300 HzZ........eoi i 49
Figure 29 — Matlab simulated response of the lattice filter algorithm to the wide band
disturbance input after five minutes of CONVErgenCe..........oocvvvuereriieescieeesieeenee, 50
Figure 30 — Open and closed loop response of the control system to a harmonic
disturbanCe of 189 Hz..........oooiie e 52

Vi

Figure 31 — Closed |oop response of the beam to a narrow band disturbance centered

AOUN 189 HZ. ..ttt e b et e e s nne e e snneas 53
Figure 32 — Closed loop response of the beam to a wide bandwidth disturbance centered

around 300 Hz and having a bandwidth of 250 Hz............cccccoeiiiiiiiiiiie e, 54
Figure 33 — Power spectral density at r with white noise at Sc.....ooovvveeiveeiiiieiniiiieiienns 55
Figure 34 — Response of the LM S algorithm using a 3™ order LM S filter to a harmonic

AISIUMDANCE. ... e 56
Figure 35 — Response of the LM S algorithm to a harmonic disturbance located at 189 Hz.

.. 57
Figure 36 — Response of the lattice algorithm to a harmonic disturbance located at 189

o PP 58
Figure 37 — Frequency response of the narrow bandwidth filter.............cccoooeiiinienns 59
Figure 38 — Response of the LM S algorithm to a narrow bandwidth disturbance. 60
Figure 39 — Response of the lattice algorithm to a narrow bandwidth disturbance.......... 62
Figure 40 — Frequency response of the wide bandwidth filter. ..., 63
Figure 43 — Response of the LM S algorithm to a wide bandwidth disturbance............... 64
Figure 44 — Response of the lattice algorithm to a wide bandwidth disturbance. 65

Vil

Chapter 1 Adaptive Control Schemes

Most current methods of adaptive disturbance rejection applied to structures have used
feedforward [1,2] or feedback [3,4] control algorithms utilizing an adaptive finite impulse
response (FIR) filter. Adaptive feedforward controllers using FIR filters have been used
successfully for active control for some time, with applications in controlling noisein
ducts[20], cars[21], and aircraft [22]. Implementation of an adaptive feedforward
controller has the advantages of inherent stability and ssimplicity in design.

Unfortunately, a major problem with using feedforward control is the requirement that an
independent measurement be obtained which is coherent with the disturbance.

An adaptive feedback control scheme removes the requirement that independent coherent
measurements be obtained but sacrifices the inherent stability and simplicity of design
associated with most feedforward designs. The adaptive feedback approach has been
investigated by many for the reduction of acoustical noise. Applications include reducing
the noise in air conditioning ducts [23], noise from sunroof air oscillations [24], and

damping the sound field in a hearing protector [25].

One particular implementation of an adaptive feedback controller adds an adaptive filter
to astandard linear quadratic gaussian (LQG) controller to enhance disturbance rejection
in afeedback control loop. This controller is called a hybrid controller and has shown
that the addition of afeedback loop to provide system damping results in faster
convergence of the adaptive filter and lower filter orders for the same performance when
compared with the undamped case [18,19]. One particular use of this feedback control
design isreferred to as Adaptive-Q feedback and employs atechnique called a
“neutralization loop” [5]. The neutralization loop breaks the feedback path that contains
the adaptive filter in such away that aslong as the filter stays stable during adaptation, it
cannot drive the control system unstable.

Currently, only FIR filters are used when implementing this adaptive feedback control
approach. Thisthesis considers the use of an infinite impulse response (1IR) filter in
place of the FIR filter. One potential benefit of using an IR filter in place of the FIR

filter isthe reduction in the size of the required filter. A drawback to using an IR filter is
finding an adaptive algorithm for the filter that is reasonable to implement with adigital
signal processor and ensures that the filter will stay stable during adaptation.

An adaptive | IR lattice filter utilizing a tapped state recursive lattice filter structure can be
adapted in such away as to guarantee stability [6]. Thisfilter is adapted intime using a
gradient descent algorithm. Although complex to implement, the algorithm has been
simplified enough to allow implementation of the filter on adigital signal processor
(DSP). Replacing the standard FIR filter with this adaptive IR filter could potentially
require fewer computations for the adaptive-Q controller when implemented on complex
multi-modal plants.

The performance of the IR lattice filter in the adaptive-Q feedback agorithm will be
compared with the performance of an FIR filter in the same system. Simulations were
performed, as well as a physical implementation of the system. The physical
implementation is the only way to see the true complexity of the lattice algorithm and the
only way to find any problems that exist which are not represented in simulation. Both
systems were subjected to harmonic, narrow band, and wide band disturbances, and the

results compared to the theoretically optimal performance.

Chapter 2 Control System Development

Consider a plant with a Linear Quadratic Gaussian (LQG) feedback controller added to
the system. It has alayout as shown in Figure 1.

d
- Plant y >
u
Controller)
Ke

Figure 1 - Plant with LQG feedback controller

The Adaptive-Q controller builds off of the LQG controller by placing an adaptive filter
into the controller as shown in Figure 2.

d | y
R Plant >
u
Controller)
Ke
S r
Q Filter

Figure 2 - Plant with LQG controller and Q Filter

This adaptive controller can be modeled as follows. Consider the plant with the state
description:

X = AX, +Bu, +Ed,
Y =CX

where x, are the states of the plant at time k. It isassumed that the controller knows

nothing about the disturbance or any dynamics associated with the disturbance. With this
in mind, the standard LQG framework will produce a state estimate feedback with state
description:

Xy = AX, +Bu, +L (Y, - V)

u, =-(s +Kx,)

M= Y- Y

where X, isthe state estimate at time k, u, is the controller feedback, r, is the output
estimation error, s, isanew control input required for the adaptive filter, K isthe LOR

state feedback gain, and L isthe Kaman filter gain. The Kalman filter gain is calculated
by assuming white noise acting on each of the modes of the system. In thisway, some
information about the disturbance is obtained for the state estimator design, but spectral
information about the disturbance itself and how it enters the plant remains unknown.

The Q filter is placed between the error estimate, r, , and the new input signal, s,. Since
u, isfed directly into the state estimator, s, produces no estimation error in either the

state or the output [8]. Thus, the fixed feedback controller forces the transfer function

between s, and r, to be identically equal to zero and a “ neutralization loop” is formed.

A proof of the transfer function being identically equal to zero is shown below.

Proof that TF,s° O

Consider the system with the following state equations:
X = A% - B(s, + KX,) + Ed,

)A(k+1 = A)A(k - B(% + K)A(k) + I—(ka - C)A(k)
r, =Cx, - CX,

Rewrite in matrix format:

exkﬂu eA - BK

&1 8c A-BK-LC

éx, U
=|C - Cla.
© ol

Transform using the Transform matrix T

uexku eBu

. gteé
@nge'Bu

and notethat T1=T. In transfer function format,

TF =C(d-A)'B

=CT'T(s-A)'T'TB
=CTT(-A)'TTB

Again rewrite into matrix format:

el OueA - BK

5 b w0
& -18c A-BK-LCH -1}

eoudk

Multiply C and T matrices on left and T and B matrices on right:

d 0 6A- BK
e C]

-1 o
0 Ca
éA- BK
[o cla 0
e

To find inverse of the inner matrix, consider

éA- BK BK U§A- BK)™*

€
& 0 A-LCE

0

-1,
BK 0 é

A- LCl &

A-

BK u'é Bu

?

(A- LC)

LCy &0 4

o0& oy

o

The term containing the “?’ mark is not needed because it is multiplied by zero as seen
below.

&A- BK)* ? Ué BU
[o clg L8 G
§ 0 (A-LO)'ggo

B
o ca-Loys Tg=0 v TR,00
60y

Since this neutralization loop “breaks’ the feedback path between the control input, u, ,
and the feedback estimation error, r, , the Q filter does not appear as a new feedback loop

in the system. Asaresult, this*broken path” closely resembles the adaptive feedforward
control approach [5]. This has the advantage that as long as Q is chosen to be a stable
adaptive filter, it will not drive the feedback control system unstable when placed across
this neutralization loop. Additionally, it can be shown [7] that as the Q filter sweeps over
the set of all stable transfer functions, the controller consisting of the fixed controller and
Q, sweeps over the set of all stabilizing controllers for the plant. Thus, to find the best
controller for the plant, one needs only to find the best stable Q.

Using mixed notation, the output y, can be modeled as a combination of the disturbance

input d, and the filter input s, , as shown below:

Yk :Tyddk +TS,

S, =Qr,
T,, isthe transfer function from the disturbance input to y, , and Tisthe transfer
function from the Q filter output toy, . The problem of minimizing the output, v, , can

be reformulated as a system identification problem, provided both y, and r, are scalars

[8]. If both y, and r, are scalars, T,and Q commute, and the equations above can be
rewritten as.

z, =Qi, +Y,

Thisisin the form of the standard output error model used in system identification as
described by Ljung [12], where:

z, =T,d, isthediturbance output
I, =-T,r, istheadaptive filter input
Y, istheresidual error

Now that the problem of minimizing y, can be thought of as solving the system

identification problem, system identification agorithms can be applied to the problem of

adapting Q.

The final problem isfinding an IR adaptive filter that can be adapted using a system
identification method. An adaptive IR lattice filter using tapped-state recursive lattice
filters can be used to solve a standard output error system identification problem [6].

Section 2.1 discusses the selection of alattice filter as an adaptive lIR filter. Sections 2.2

and 2.3 discuss the structure of the lattice filter and the method of adaptation.

Modification of the system identification problem for implementation with the adaptive-

Q controller isdiscussed in section 2.4.

2.1 Choosing an AdaptivelIR Filter

When considering I IR filters, the direct form filter is the common structure of choice.
Thisistrue, in general, because when designing an algorithm which adapts the

parameters a, and b, , the coefficients of the difference equation, described below, are

manipulated directly.

Ve ta Y1t ag Y, =bu b, +e+bu

Some problems exist in using the direct form filter for adaptive applications. First of all,
ensuring stability of atime-varying direct form filter can be amajor difficulty. It is often

computationally a burden because the polynomial, A(z), made up of the a, parameters,

must be checked to seeif it is minimum phase at each iteration [6]. Even if the stability
was assured during adaptation, roundoff error causing limit cycles can plague the filter
[11].

Parallel and cascade forms are often used as alternatives for direct form filters. These
consist of an interconnection of first and second order filter sections, whose sensitivity to
roundoff errors tends to be less drastic than for the direct form filter [6]. Since the filter
is broken down into a factored form, the roundoff error associated with each factorization
only affects that term. In the direct form filter, the factors are lumped together so that
roundoff error in each term affects all of the factorsin turn.

A larger problem exists for both parallel and cascade forms: the mapping from transfer
function space to parameter space is not unique. Whenever the mapping from the
transfer function space to the parameter space is not unique, additional saddle pointsin
the error surface appear that would not be present if the mapping had been unique [13].
The addition of these saddle points can slow down the convergence speed if the
parameter trajectories wander close to these saddle points. Examplesillustrating this
phenomenon are contained in [14]. For this reason, these filter forms are considered
unsuitable for adaptive filtering [6].

A tapped-state lattice form has many of the desirable properties associated with common
digital filters and avoids the problems discussed above. Section 2.2 discusses the
structure of the tapped-state lattice form and the properties that make this filter form
suitable for adaptive applications.

2.2 Tapped-state Recursive L attice Filters

A tapped-state recursive lattice filter consists of a cascade of interconnected Schur

recursion steps, denoted g, and a summation of weighted tap parameters, denoted n .

The basic step in the Schur recursion structure is depicted in Figure 3.

G, (2 » G _,(2

F.(2) z l&— F_,(2

Figure 3 — Schur recursion

The Schur recursion contains rotation angles, g, , that span the forward and backward

signal path of the lattice structure. These Schur sections cascade to form the recursive
part of the lattice filter as depicted in Figure 4.

Input G,(2)
—> ——O0—>
F(2) | 95 9, F.(2) | 9
‘_ z
n, n,

Figure 4 — Tapped-state recursive lattice filter

Summing the taps, F (z) , weighted by the n, parameters, generates the output of the

filter.

Due to the computational structure, the roundoff error in thisfilter isinherently low.
Additionally, a tapped-state recursive lattice IR filter is stable [6] when [q, | < p/2 for
all k. Thisfilter is stable even for time-varying coefficients, aslong as [q,| < p/2- e for

al k and somefixed e . Also, bounding the rotation anglesin this way, forces the lattice
parameterization to be unique [6]. These properties render the filter quite suitable for

adaptive applications [6].

10

2.3 System ID Algorithm Using an Adaptive L attice Filter

As stated in chapter Chapter 2, the problem of minimizing the disturbance in the system
can be reformulated as a system identification problem. Figure 5 depicts the standard
system identification problem using an adaptive IR filter.

u y
__» Gyu
error
i y
ter
Adaptation

Algorithm <

Figure 5— System ID problem using adaptive filter

This type of identification passes an input signal, u, through the plant G, and the

adaptivefilter. In Figure 5, yisthe output of the plant, y isthe estimate of the output of
the plant, and the error signal isdefined as, error =y- y. The adaptation algorithm

minimizes this error signal and calculates a gradient vector to adjust the weights of the
adaptive filter. When the error signal reaches some small number close to zero, the
systems have a closely matched frequency response.

An adaptive | IR filter using tapped-state recursive lattice filters can solve the standard
system identification problem [6] described above. A simplified algorithm is considered
because it reduces the computational complexity of the adaptation. This agorithm adapts
both g, and n parameters in the lattice filter by a small step size, m, opposite the
direction of the calculated gradient. The gradients for the n parameters are calculated
using the original lattice filter. A second lattice filter, caled a post filter, is used to
compute the gradient associated with the q, parameters. Additionally, the g, are

11

bounded within +p/2 to guarantee stability for the lattice filter. This simplified form of

the standard algorithm is presented below.

Simplified Partial Gradient Lattice Algorithm
Available at time n:

Filter coefficients:
n.(n), k=01---,M

qk(n), k=12---M
Adaptive filter states:
N, (n-1), k=01--M-1
The variable N, (n) will be computed below, but need not be stored.

Post filter states:
X.(n), k=0%---,M-1

The variable x,, (n+1) will be computed below, but need not be stored.

New data:
u(n) Input Sample

y(n) reference Sample
Adaptive filter computation:

Let g, =u(n)
For k=M ,M -1,---1do
€ gy U_éeosg, () -sng (Mg g U
&N, (NG~ &sing, (n) cosg, (n) taN,, , (- Dy
EndiFor}
Let Nno(n) =0,
Adaptive filter output:

y(m =an. (N, ()

Output error:
e(n) = y(n)- y(n)

Filtered regressors:

Letg, =1
Fork=M,M-1,---1do
qu :gkxk—l(n)
Jy.1 =9, cosq, (n)
End { For}

12

Coefficient updates:

N, (n+1) =n,(n) +me(m)N, (n), k=0L-M
qc(n+D) =q, (n) +me(nN, , k=12--M
Test for instability:
For k=12,---,M do

If |Qk(n+1)| >p/2 setq,(n+1)=q,(n)
End { For}

Post filter computations:
Let temp =- y(n)
For k=M,---,21 do
é temp U écosq(n+1) - sing, (n+1)0étemp U
0=é. e ¥
& (1+Dg &sing, (n+1) cosa, (n+1) &, , (M

End { For}
Let x,(n+1) =temp

End Algorithm

The computational complexity of this algorithm is readily apparent. Implementation on a
DSP processor is adifficult task, augmented by the need to find the sine and cosine of the
rotation angles. Comparatively, the FIR LMS filter adaptation algorithm is essentially
simple. Information on the LM S adaptation algorithm is contained in [12], [15], and

[16]. The algorithm for an LM Sfilter is given below.

LMS Algorithm
Available at time n:

Filter coefficients:
W, (n), k=0L---,M

Adaptive filter states:
h.(n-1), k=0,---,M

New data:
u(n) Input Sample

y(n) reference Sample

13

Adaptive filter computation:
Update filter states:

For k=12,---,M do
h.(n)=h_,(n- 1)
End { For}

hy(n) =u(n)
Adaptive filter output:

y(n) = a Wi (Mh(n)

Output error:

e(n) =y(n)- ¥(n)
Coefficient updates:
W (n+1) =W, (n) + mu(n)e(n)

End Algorithm
24 Modifying the system ID algorithm for use in the adaptive-Q approach

The mgjority of the adaptation described in the lattice algorithm above can be used to
adapt the Q filter in the adaptive feedback control system. The main changes occur in the
setup of the problem and the addition of some prefiltering. The system identification
problem solved by the smplified partial gradient lattice algorithm can be described by
the equation

€ :Tyuuk - Quk

where e, isthe output error, u, istheinput, and Q isthe adaptive IR lattice filter. This
equation implies that adjusting the parameters of Q such that the error g, is minimized

resultsin Q modeling the plant described by T, .

14

From the discussion above, it was shown that the problem of adapting Q for the adaptive-
Q control structure can be restated as a system identification problem. A copy of the

resultant equation is shown below.

Tyddk =Q(- Tysrk) T Y

where y, isthe output of the system, d, isthe disturbance, - T..r, is the estimation error,
and Q isthe adaptive lattice filter. Inthis case, the parameters of Q are adjusted using a
gradient descent method such that the output of the system y, isminimized. Thisis
possible since the estimate, Y, , is made using information about the plant only, so the
output estimation error, r, =y, - Y, , contains information that is coherent with the

disturbance input.

Finding a relationship between these two equations allows the use of the simplified
partial gradient lattice algorithm to adjust the parameters of Q. The equations that define

this relationship are

ek = Tyddk
Tyuuk = yk
U =- Tyl
Yy, isdirectly measured and r, isthe estimation error. From these equations the changes

to the algorithm can be inferred. These changes are

1. Since the output needs to be driven to zero, the error g, is changed to the output v, .
2. Theinput to the Q filter is r, instead of u, .
3. Togeneratethen gradients, asecond lattice filter Q, is added with - T..r, asits

input.

15

4. Theinput to the post filter is the new estimate of the output, described by Q,T..r, .

The output of the post filter can still be used to calculate the gradients for the g,

parameters.

Figure 6 illustrates the setup of the adaptive lattice algorithm after the above changes

have been made.

d —»
“ Plant * » Vi
—
uk yk
LQG —
> Controller

Sk ‘ k
g}' o P Tys |
Theta
Update
f Nu
Update <
Post
Filter *
; Q. 4_<li
QZTysrk - T r

Figure 6 — lllustration of modified lattice agorithm

The revised agorithm that incorporates these changesis listed below.

16

Modified Partial Gradient Lattice Algorithm for Adaptive-Q System
Available at time n:

Filter coefficients:
n.(n), k=01---,M
qk(n), k=12---M
Primary adaptive filter states:
Q(n-1, k=01---M-1
The variable Q,, (n) will be computed below, but need not be stored.

Secondary adaptive filter states:
N, (n-1, k=01--M-1

The variable N, (n) will be computed below, but need not be stored.

Post filter states:
X (n), k=0%---,M-1
The variable x,, (n+1) will be computed below, but need not be stored.

New data:
r_filt(n) Estimation Error (filtered throughT,,)

r(n) Estimation Error (unfiltered)
y(n) System Output

Primary adaptive filter computation:

Let g,, =r(n)
For k=M ,M -1,---1do
€ g,., U_écosq,(n) -sng (e g u
ng(n)H_ gﬁnqk(n) COSQk(n) ngk-l(n' 1)3
End { For}
Let Qy(n) =g,

Filter output:
s(n) = @ n, (NQ(n)

k=0
Secondary adaptive filter computation:

Let g,, =r_ filt(n)

For k=M,M-1.--1do
é G, U_ecos (n) -sing (i g 0
X, (M7 &ing, () cosy, (n) &N, (n- DY

17

End { For}
Let N, (n)=g,

Filter output:
M
s_filt(n) =4 n, (N, (n)
k=0

Output error:
e(n) = y(n)

Filtered regressors:

Letg, =1
For k=M ,M - 1---1do
qu =0iX.1(N)
9.1 =9, cosq, (n)
End { For}
Coefficient updates:

n(n+1) =n, (n)+ me()N, (n), k=01--,M

A (n+1) =g, () + (N, , k=12,-,M
Test for instability:

For k=212,---,M do
If [a,(n+12)|>p /2 set q, (n+1) =q, ()
End { For}

Post filter computations:

Let temp=-s_ filt(n)

For k=M,---,21 do
¢ temp u_éeosq, (n+1) - sing, (n+1)ce temp
&, (n+Df &ing, (n+1) cosa, (n+1) B, ()

End { For}
Let x,(n+1) =temp

End Algorithm

18

Again, as stated in section 2.3, the lattice algorithm is considerably more complex than
the LMS agorithm. Since adigita signal processing chip is capable of implementing
FIR filters with ease, it isatrivial mater to implement the LM S algorithm. The lattice
algorithm, however, is not so fortunate. The lattice algorithm requires three lattice filters
and the adaptation of both nu and theta parameters. Additionally, the sine and cosine of
thetais required which adds a considerable amount of programming complexity. Asa
result, the performance of the lattice filter needs to be considerably better than the LM S
filter for it to be an improvement.

19

Chapter 3 Experimental Setup

This section contains a description of the experimental setup used to validate the
theoretical approach.

3.1 General System Overview

The experimental results were obtained using a cantilever beam, instrumented with three
piezoceramic devices. One was used as a sensor and the other two as the disturbance and
control input actuators. A Digital Signal Processing (DSP) board implements the
controller design in mixed assembly and C code. Figure 7 below shows a block diagram
of the setup.

Smoothing Power
— P Filtee ™ Amplifier
Disturbance Disturbance
Cgmputer Source Amplifier
with DSP ¢
board
Cantilever Beam
DSP Input Sensor
Protection Amplifier
Figure 7 — Experimental setup
3.2 Beam

The beam is made of a piece of aluminum held rigid at one end. Three piezoceramic

elements were attached to the beam for use as the feedback sensor, disturbance actuator,

and control actuator. For best performance, the actuators were adhered to the beam in

areas of high strain [9]. The location of the piezoceramic elements and size of the beam

are shown in Figure 8.

20

0.1 '« ‘ 05> |«
> >< > < < >
Y —— 1” 2.25” | 1” 1” 6.15”
4
1”
v
/
0.0625"

Figure 8 — Cantilever beam

3.3 Sensor Amplifier

The sensor amplifier is set up in a high pass filter configuration. An LF411 (JFET)
operational amplifier was chosen for this circuit because of its high input impedance,
which is required when measuring voltage from a piezoceramic. The amplifier
configuration is chosen as a high pass circuit, with cutoff frequency at 0.07 Hz, to counter
the DC shifts that can occur in the sensor signal. Thisis mainly due to the extremely

high sensitivity of the piezoceramic devicesto low frequencies (< 1 Hz). Additionally,
it isdesired to measure small disturbances in the system, so the amplifier was set with a

gain of 10. The circuit diagram for the sensor amplifier is shown in Figure 9.

Vin

R4 C,

+ Vout

C

— R,

R.

-

Figure 9 — Sensor amplifier

21

The transfer function associated with this configuration is

Vou — SCCRRR, +C,R(R +R,)
Vi, S'CC,RR,(R+R,)+S(C,R,(R, +R,)+CRR,) + R,

The component values are

C, =0.472nF
C, =0.223nF
R =10.0 KW
R, =1.0 KW

R, =10.0 MW
R, =82.0 KW

3.4 Smoothing Filter

A smoothing filter is required to smooth out the high frequency components from the
DSP digital outputs. The filter is set up using a Sallen-Key low pass circuit
configuration. Thegainisset to 1 V/V and the cutoff frequency is set to 500 Hz. To

keep the final order of the system as small as possible, the filter is only second order.

The circuit diagram for the smoothing filter is shown in Figure 10.

G

Ry R, + Vout

Figure 10 — Smoothing filter

22

The transfer function associated with this configuration is

V, 1

out -

Vi S'RRCC, +sCy(R+R,)+1

n

The component values are

R =1.0 MW
R, =1.0 MW
C, =220 pF
C, =470 pF

3.5 Power Amplifier

A power amplifier was needed to drive the piezoceramic devices to higher voltage levels

than a standard 741 operational amplifier is capable of supplying. The power amplifier is
a PB58 power booster from APEX Microtechnology. The supply voltages for the device

were set at £30V and the gain for the system is approximately 10.

The power booster is not capable of driving the capacitive load of the piezoceramic
actuator without compensation. To compensate the amplifier, the resistor isolation
technique described in APEX application note 24 was used. This technique moves the
lowest frequency pole in the open loop and add a zero near this pole such that the
modified open loop passes through the zero dB point at a slope of 20 dB/decade instead
of 40 dB/decade. To set the value of Riso, first find the first open loop pole given by the
eguation

1
2pC| R,

fp =

where C. is the capacitance of the load and Ry is the output resistance of the PB58. For

the cantilever beam system, the parameters are

C, »15nF
R, =35W

23

Then choose an R;sp such that the modified pole frequency is within one decade of the
new zero frequency, and the open loop response passes through the zero dB point at 20
dB/decade. The equations for the modified pole and added zero frequencies are

1
fpmod =
2pC (R, +Rg)
1
fz=——F—
2pCL Ri&)

The value for R sp was chosen to be 16W. All other component values are given below.

The circuit configuration with R;sp in place is shown below in Figure 11.

AN
Vin i RcL
Riso

uﬂ“ﬂ

Cc CL
—VVV g

Rg

Figure 11 — Power amplifier
Gain Set:
Rs =[(A - D*3.1K]- 6.2K

_R. 62K
AT

1

24

The component values are

R =6.2KW
R. =60 KW
R; =0W
Ry =2W
Ry =16 W
C. =10pF
C. =10pF

3.6 Disturbance Amplifier

The disturbance amplifier is a 741 operational amplifier set up in a standard inverting
configuration. The gain was set at 10 V/V allowing the amplifier to act as a buffer and

driver for the piezoceramic actuator.

3.7 DSP Input Protection

The input to the DSP card is limited to + 3 volts, so a voltage limiter was needed to
prevent overdriving the inputs. The input protection is made using the natural diode
voltage drops associated with a IN7001 diode. The circuit diagram is shown below in

Figure 12. Thiscircuit clamps the voltage between + 2.5 volts.

Vin Vou
IN7001 1IN7001
IN7001 1IN7001
IN7001 1IN7001
1

Figure 12 — DSP input protection

25

3.8 DSP Signal Processing Board

The DSP board used was manufactured by Spectrum Signal Processing [17]. It usesa
Texas Instruments TM S320C31 32-hit floating-point microprocessor. The board has two
analog input and two analog output channels and is capable of 1/0 speed well in excess of
the required 2000 Hz used in the implementation of the controller. The DSP board plugs
into an I1SA bus on a standard personal computer and uses software written by Spectrum
as a processor interface.

One item of mgjor concern was discovered during operation of the Spectrum board. The
system has afour sample latency output delay inherent to the system. These delays were
confirmed by Spectrum Signal Processing, but are not mentioned in the accompanying

manuals. Since the delays were present during the system 1D, they were accounted for in

the control system.

3.9 Other Equipment

Several pieces of additional test equipment were used during the implementation of the
controller. These include a Tektronix TDS210 Digital Oscillosope, a Hewlett Packard

35665A Dynamic Signal Analyzer, two Elenco XP-656 power supplies, an Elenco XP-
760 power supply, and a Tektronix FG502 Function Generator.

26

Chapter 4 System Identification

The adaptive control system requires amodel of the control to output transfer function to
create afixed LQG controller that generates the neutralization loop. A copy of the
system is also needed to prefilter the input data for the secondary lattice filter. The
required model needs to contain the magnitude and phase information from the control
input to the system output. Additionally, amodel of the transfer function from the
disturbance input to the system output is needed so that a proper ssmulation of the
experimental setup can be conducted on the computer. The disturbance model is not used
in the controller design because in arealistic application, information about how the
disturbance enters the system is unknown. The best way to get these system modelsisto
use standard system identification techniques.

The process of system identification requires the measurement of the system’s output
response to awhite noise signal entered at the input. To generate this noise signal, a
pseudo random binary signal (PRBS) was generated in assembly language using the
method described in Horowitz and Hill [10]. This PRBS signal is sent to the control
actuator through the signal conditioning electronics described in section 3.1. Thisis
important to consider so that the model contains all magnitude and phase information
associated with the smoothing filter, cantilever beam, signal amplifier, and DSP input
protection circuitry.

The gathering of this input-output data was performed using the sysid.asm program. A
listing for this program is found in Appendix A. The input-output information is then
converted from binary to ASCII using a second program written in C-code and was
named Bin2asci. A listing of Bin2asci isfound in Appendix A. Conversion to ASCII is
required so that the rest of the system identification can be generated using a series of
Matlab m-files.

A listing of each of the m-files required for the system identification is found in

Appendix A. They are named: etfest.m, ident.m, rduce.m, svmod.m, and savtf.m.

27

etfest.m computes the empirical transfer function estimate (ETFE) for the input-output
data. The ETFE isaratio of the discrete Fourier transform (DFT) of the output data to
the DFT of theinput data. A Hamming window is used to smooth the data. Etfest.m
relies on the Matlab m-file etfe.m to calculate the ETFE of the input-output data. ident.m
computes a least squares estimate of the input-output data. A 34™ order model was
chosen to fit al of the nuances associated with the data. A visual comparison of the
ETFE and the least squares fit was made to determine the quality of the fit. rducem
reduces the order of the data using a balanced state space model routine in conjunction
with amodel order reduction routine. The model was reduced to 28" order because it
could capture all of the system modes accurately. The magnitude and phase response of
the least squares fit and the ETFE are plotted together in Figure 13 and Figure 14 below.

Control Input to Sensor Output (28th order)

lO T T T T 3
10
o 10
°
2
c
(@]
] 2
= 10
10 ¢ .
Grey - ETFE E
Black - Least Squares Fit
lo ! 1 1 1 1
0 200 400 600 800 1000

Frequency (Hz)

Figure 13 — Magnitude comparison between ETFE and 28" order least squares fit

28

Control Input to Sensor Output (28th order)

500

Grey - ETFE
oL Black - Least Squares Fit i

-500
m
Q
o
(@]
(3]
o)
P -1000
(@]
C
<
-1500
-2000 1 1 1 1
0 200 400 600 800 1000
Frequency (Hz)

Figure 14 — Phase comparison between ETFE and 28" order least squares fit

It is important to note that modes between 600 and 800 hertz are high frequency modes
aliased down to lower frequencies. These modes do not exist in the continuous time

system, but do exist when the system is driven by a zero order hold.

svmod.m saves the system model to disk in state space form. savtf.m uses the state space
model generated by the system identification routines to compute a fixed LQG controller
for the system. The controller information is saved in transfer function form so that the
data can be filtered efficiently by the DSP chip. The LQG controller was designed to
create the neutralization loop for the adaptive I IR filter and does very little rejection of
the disturbance in the beam. With this LQG controller, the disturbance rejection
performed by the adaptive IR filter can be readily seen.

Additionally, the model of the system that was generated from the system ID had a
different structure than the model used in Chapter 2 for the theoretical discussion. Inthe

29

theoretical case, the disturbance and control signals entered into a system described by
one set of state equations. Thisisillustrated in Figure 15.

d,—p

U —

R

—> Vi

J

Figure 15 — Model structure used in theoretical discussion

For the model created by the system ID, the disturbance and control state equations are

model ed separately then summed to produce the output, see Figure 16.

O—> v

dkﬁsdgﬁz Ca

=1

w—»a?z C.
=1

Figure 16 — Model structure created by system identification

Both systems have an identical response, so this difference will not affect the results.

30

Chapter 5 LQG Fixed Feedback Controller

The LQG controller is required to generate the neutralization loop for the adaptive-Q
technique and for rgjecting any transient disturbances in the system. The LQG controller
is designed to give aminimal amount of damping so that the effects of the adaptive filter

on the system are easy to see.

The LQG controller design was performed in Matlab using the LQR and LQE
commands. Since the control system requires no spectral information or knowledge of
how the disturbance enters the plant, the disturbance is modeled as white noise acting on
each mode of the system, independently. The process noise covariance is set to 1 and the
measurement noise covariance is set to 1e-4. The cost function is defined in the standard
LQG form

T — vl T
ekek _XkQXk+uk I:auk

The state weighting is Q =C'C where C isthe output matrix of the system model on
which the control system design isbased. The control weighting for the controller, R, is
set to 0.96 to provide damping of only the larger modes in the system. The closed loop
L QG disturbance to output simulation response and the open loop ETFE spectral
response from disturbance input to system output are plotted together in Figure 17.

31

Frequency Response (Closed loop LQG and Open Loop)

10 E T T T T
i Open Loop
100" ! ' / Closed Loop
©
©
=
S10
(@]
@
=
10 7
10 2 - - - -
0 200 400 600 800 1000

Frequency (Hz)

Figure 17 — Open loop and closed loop frequency response of system

32

5.1 Closed Loop System M odel

The closed loop system with the plant modeled from the system ID and the LQG fixed
feedback controller in place is shown in Figure 18. The location of the adaptive filter is
also shown. Thisdiagram is useful when parsing through the Matlab m-files and

assembly code.

error

O,
v
foy

Yy

N
-
D
e

A'GE - e
X

Figure 18 — System block diagram

33

Chapter 6 Implementation of Controller

The implementation of the digital controller in the system as described above was
performed in mixed Assembly and C-code. Several considerations had to be taken into
account when implementing the controller. These include understanding the delays in
the system, making sure the processing time is less than the sampling speed, and the
effects of the digital controller at frequencies nearing the Nyquist rate. A brief
description of each of these effectsis discussed in sections 5.1 through 5.3 below.

The Assembly and C-code written for the controller that uses an LMS FIR filter can be
found in Appendix B. The code pertaining to the controller using IR lattice filters can
also be found in Appendix B. These listings include the controller code, as well as
makefiles, header files, and .cmd files needed for processor implementation.

6.1 System Delays

Delay isimportant in any implementation of a control system. Added delay can
adversely affect the phase of a system to the point where stability can no longer be
maintained. Additionally, it isimportant to have an exact model of the beam for the
neutralization loop to work properly. Any delay in the actual system not included in the
model of the system will result in erratic behavior of the adapting filter.

Delay in the system occurs because the output cannot be calculated before the input is
measured. Asaresult, the calculations resulting from an input sample will not be sent
out until the next sampling instant. This delay needs to be accounted for in the fixed
LQG controller only. The delay does not need to be accounted for in the adaptive filter
since any delay isincorporated into the filter itself.

To account for the delay in the fixed controller, estimates of the future system states need
to be based on the current delayed states, the previous output, and the current delayed
input. A mathematical description for this controller is

)A(Mk =AX,,, +Bu +AL(Y, - ¥,)

k|k-1

ukwk =-K kak

X,y denotesthe value of x at time k +1based on information obtained at time k..

6.2 Processing Time

Implementing the control system requires a computationally intensive program. To make
sure the system is capable of computing the output of the controller between the sampling
instants, the controller must be programmed in Assembly code. Assembly codeis
perfectly suited for the implementation of the many digital filters required to make the
fixed controller and provides away to streamline the gradient descent algorithm required
for the lattice filters.

6.3 Frequencies near the Nyquist rate

When running the fixed controller on the system, the response of the system did not
match the predicted response from the computer. The magnitude of the modes near the
Nyquist rate of 1 kHz, specifically the mode at 900 Hz, tended to increase by one or two
decibels when the fixed controller was applied. It is currently unknown why the
magnitude of the modes increase when they should be decreasing.

35

Chapter 7 Optimal Controller

The performance of the optimal controller is used as a baseline comparison to the
experimental and ssimulated controllers’ performances. It is assumed that the optimal
performance of the system to a harmonic disturbance is the noise floor in the
experimental case and zero for simulation. In the narrow and wide band cases, the
optimal performance is referenced to the optimal disturbance rejection controller
described below.

The optimal controller consists of augmenting the information of how the disturbance
enters the plant and the disturbance spectrum to the model and finding the best
performance using an LQG disturbance rejection controller. In thisway, the estimator
has exact knowledge of the disturbance spectrum allowing the control effort to

compensate in the best possible manner.

The current state representation for the system is:

X1 = AX, +Bu, +Ed,
Yi = CX,

To create the optimal controller, it is assumed that the controller knows the spectrum of
the disturbance signal and how it enters the plant. The disturbance spectrum is modeled
as.

Xy = Ay X, + ByW,

d, =C X,

X, arethe states of the disturbance input and w, is white noise.

With thisin mind, the state equations for the optimal controller can be formed as follows:

ik+1 = A-\ugik + Bauguk + L(yk - 9k)
u, =- KX,

36

X isthe optimal estimate of the states of the plant and disturbance, A,,,B,,.C

aug ' “aug ?

andE,, arethe state matrices augmented with the disturbance description as follows:

eA EC u
Auw=8y
& Ag
Baug EBE
eO
C. =[C 0]
é0u
E.o =6, (
° 8B

The LQG controller that has been augmented with the disturbance states is then placed on
the original system plant. The state equations for the plant with the optimal controller
are:

exmu eA - BK uexku é-B u

e
exk+1u LC A-Iug Baug K- LCaug uexk u Baug 1] O Udk
=lc &
k u

S, isthe new control input where the adaptive filter enters the system, d, isthe colored
disturbance input, and vy, is the system output.

When designing the optimal controller, a process noise covariance of 1, a measurement
noise covariance of 1le-4, and a control penalty of 1e-8 was used. To find the control
penalty, a start value of 1le-2 was assumed and was continuously adjusted down until no
further performance improvement was noticed.

The narrow band filter is afifth order Butterworth filter with a center frequency of 189

Hz and a 20 Hz bandwidth. It isplaced at the largest mode in the system so that the

disturbance regjection performance is easier to measure.

37

The wide band filter is afifth order Butterworth filter with a center frequency of 300 Hz
and a bandwidth of 250 Hz. It is considered a wide band filter because it covers two of
the largest modes in the system and is about 1/3" the size of the zero to 1 kHz spectrum
being considered. These modes are 189 Hz and 367 Hz.

Calculation of the optimal controller was performed in Matlab. The code for the optimal
controller can be found in Appendix C, and is named optcntrl.m. Figures showing the
performance of the optimal controller are place along with the figures of the s mulated
LMS and lattice filter controller performances in Chapter 8.

38

Chapter 8 Simulationsvs. Optimal Controller

This section compares the simulations of the controller using an LM S algorithm, the
controller using a lattice filter algorithm, and the optimal controller. Generation of the
optimal controller is described in Chapter 7. The Matlab M-files used for these

simulations are given in Appendix D.

8.1 Harmonic Simulation

For the harmonic simulation, a1 Vex Sinusoid with a frequency of 189 Hz was chosen
for the disturbance. Note that this frequency corresponds to one of the strongest modes
on the beam. The damping provided by the fixed feedback controller reduced the
disturbance down to 0.5 Vea. Figure 19 below shows the closed loop response with an
adaptive lattice filter and the closed loop response with an adaptive LM Sfilter. In both
cases, 3" order filters were used and the step size for the two systems were identical.

Adaptive Suppression of 189 Hz Disturbance (Lattice Filter)

5
o
=
=
Iy
e »
=
=
o
[aal
=
g 0.2 04 0.6 08 1
Adaptive Suppression of 189 Hz Disturbance (LM Filter)
05
o
o
=
qx
=
=
I=
o
[aad
=
05 0.2 04 0.6 0.8 1

Time (Zeconds)

Figure 19 — Response of 1IR and FIR adaptive-Q controller to 189 Hz harmonic
disturbance

39

Notice that both systems damp the disturbance down to zero volts. Since the lattice filter

has both poles and zeros to adapt, the harmonic disturbance was damped out faster.

Trying to get the LM Sfilter to perform as well as the lattice filter required an increased
order for the LM Sfilter. It takes a seventh order LM Sfilter to get the system to damp the

sinusoid as well as the third order lattice filter.

8.2 Narrow Band Simulation

The narrow band filter is a second order discrete time Butterworth filter centered at 189
Hz and has a bandwidth of 60 Hz. A pseudo random binary signal was generated and
passed through this filter to generate the narrow band input disturbance. To keep the
comparisons among the various controllers as similar as possible, the same random
number generator seed was used. The seed was set to 931916785 in Matlab and the
normal random generator RANDN was used to create the pseudo random binary
sequence. Additionally, a random measurement noise of 0.01 V., was added to the

signal.

The spectral performance of the optimal controller to the disturbance input is shown in
Figure 20 below.

40

Optimal Response to Narrow Bandwidth Disturbance
-20.00

——OL Spectrum
-30.00 {\\ —— CL Spectrum
-40.00

-50.00 /\
-60.00 I

-70.00 M ‘W\\\/

-80.00

Magnitude (dB)

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Frequency (Hz)

Figure 20 — Matlab ssimulated performance of the optimal controller to a narrow band
disturbance centered at 189 Hz

By looking at the reduction in the magnitude at 189 Hz, it is determined that the optimal
disturbance rejection controller is capable of reducing the disturbance by 23 dB. Thisis
twenty seven times smaller than the open loop response.

The adaptive algorithm using an LM Sfilter was subjected to the same narrow band

disturbance. Its step size parameter, m, was set to 5 and the filter order was adjusted to

7" order. Theinitial run of the system is shown in Figure 21.

41

Open Loop Response to Narrow Bandwidth Disturbance
05 . . .

Magnitude (Volts)
L]

g 0.5 1 1.5 2

Closed Loop Response to Narrow Bandwidth Disturbance
02 . . .

0.1

—

Magnitude (Volts)
L]

05 1 15 2
Time (Seconds)

I
R
[
o

Figure 21 - Initial adaptation of the LM S algorithm to a narrow bandwidth disturbance
centered at 189 Hz

The LMS algorithm takes about 2 seconds to converge to near its steady-state value. The
algorithm was left to fully converge for one minute. A comparison between the open and
closed loop spectral response of the LM S algorithm after this one minute of convergence

is shown in Figure 22 below.

42

LMS Simulation Response to Narrow Bandwidth Disturbance

-20.00

——OL Spectrum
-30.00 + — CL Spectrum

-40.00

-50.00

-60.00

Magnitude (dB)

-70.00 ~

-80.00

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Frequency (Hz)

Figure 22 — Matlab simulated response of the LM S algorithm to the narrow band
disturbance input after one minute of convergence.

The LMS algorithm reduced the disturbance in the system from 0.5 V pex to about 0.023
V peakc &fter one minute. Thisis close to the result produced by the optimal controller and
corresponds to a reduction of 15 dB as seen in Figure 22. Thisis twenty three times

smaller than the open loop response.

The adaptive lattice filter algorithm was subjected to the same disturbance asthe LM S
algorithm and the optimal controller. The order of the lattice filter was set to 3 order
and the step size parameters for the n and q parameterswere set to 5 and 0.1
respectively. Theinitia run of the lattice filter algorithm is shown in

Figure 23.

43

Open Loop Response to Narrow Bandwidth Disturbance
0.5 . . .

Magnitude (Volts)
L]

_[:]5 1 1 1
] 05 1 15 2
Closed Loop Response to Narrow Bandwidth Disturbance
BES, . . .
f5)
=]
=
4 ¥
=
=
=
o
L]
=
_[:]2 1 1 1
] 05 1 15 2

Time (Zeconds)

Figure 23 - Initial adaptation of the lattice filter algorithm to a narrow bandwidth
disturbance centered at 189 Hz.

Like the LMS agorithm, the lattice filter algorithm took about 2 seconds to converge to
near its steady-state value. The filter was left to converge for one minute so that a
comparison could be made to the LM S algorithm. The open and closed |oop spectral
response of the lattice filter algorithm after one minute of convergence is shown in Figure
24.

Lattice Simulation Response to Narrow Bandwidth Disturbance

-20.00

——OL Spectrum

-30.00 1 —— CL Spectrum

-40.00

-50.00

-60.00

Magnitude (dB)

-70.00

-80.00

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Frequency (Hz)

Figure 24 — Matlab simulated response of the adaptive lattice filter algorithm to the
narrow band disturbance input after one minute of convergence.

The lattice filter algorithm converged to 0.02 Vpea. This convergence is better than the
LMS algorithm’s convergence and looking at the 189 Hz mode in Figure 24, corresponds
to areduction of 18 dB. Thisis about twenty five times smaller than the open loop

response.

Overal, the improved performance of the lattice filter agorithm over the LM S agorithm
isnot very large. A 3" order instead of 7" order filter was used, and the convergence of
the lattice filter algorithm was a little better than the LM S algorithm. Since the lattice
filter algorithm is more complex to implement than the LM S algorithm, the lattice filter

algorithm is not a good choice for narrow bandwidth disturbances.

45

8.3 WideBand Simulation

To seeif the adaptive lattice filter is an improvement over the LM S algorithm, awide
bandwidth disturbance is considered. The wide bandwidth disturbance is generated using
a butterworth filter with a center frequency of 300 Hz and a bandwidth of 250 Hz. This
filter covers two of the largest modes in the system. The seed of the random number

generator is the same one used in the narrow bandwidth case.

The performance of the optimal controller is shown below in Figure 25.

Optimal Response to Wide Bandwidth Disturbance
-20.00

—— OL Spectrum

. j& LA o
RIAY o,
iR N g,

-80.00

Magnitude (dB)

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Frequency (Hz)

Figure 25 — Matlab ssimulated performance of the optimal controller to a wide band
disturbance centered at 300 Hz.

The optimal controller was able to reduce the disturbance 17 dB at 189 Hz and 20 dB at
367 Hz.

46

The same wide band disturbance was sent through the adaptive controller using the LM S
algorithm. The order of the filter was set to twelve. Higher orders did not seem to
improve the performance of the controller. The step size for the weights of the filter was
set to 5. Theinitial response of the LMS agorithm to the disturbance is shown Figure
26.

Open Loop Response to Wide Bandwidth Disturbance

I~2

1
" PEn
[—0 —_—

Magnitude (Volts)
i

1
1

0.5 1 13 2

L]

Closed Loop Response to Wide Bandwidth Disturbance
1 . . ;

Magnitude (Volts)

'10 05 1 15 7

Time (Seconds)

Figure 26 - Initial adaptation of the LM S algorithm to a wide band disturbance centered
at 300 Hz.

Figure 26 shows no visible evidence that the LM S algorithm is converging, however, the
filter parameters did slowly change during several minutes of running. The simulation
was |eft to adapt for 5 minutes to make sure the filter fully converges. The open loop and
closed loop spectral response of the LM S algorithm after the 5 minutes of convergenceis
shown in Figure 27.

a7

LMS Simulation Response to Wide Bandwidth Disturbance
-20.00

30,00 A A
v
4
j) hY \a
2000 V

N B

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

—— OL Spectrum
—— CL Spectrum -

Magnitude (dB)

Frequency (Hz)

Figure 27 — Matlab simulated response of the LM S algorithm to the wide band
disturbance input after five minutes of convergence.

The LMS algorithm damped the disturbance 9 dB at 189 Hz and 13 dB at 367 Hz. The
optimal controller performance is 1.3 times better than the converged LM S algorithm
performance. Thisisaround 3 times smaller than the open loop response.

The lattice filter algorithm was subjected to the same wide band disturbance asthe LM S
algorithm and the optimal controller. The order of the lattice filter was set to 5 order
and the step size parameters for the n and q parameters were set to 5 and 0.08
respectively. The q parameter step size was reduced because larger step sizes resulted in

the system going unstable. Theinitia run of the lattice filter algorithm is shown in

Figure 28.

48

Open Loop Response to Wide Bandwidth Disturbance

[

e
p—

N
e

Magnitude (Volts)
(o]

1
]

05 1 1k 2
Closed Loop Response to Wide Bandwidth Disturbance

lan]

N

=
in
T
1

1
&2
n

1
1

Magnitude (Volts)
i

05 1 15 2
Time (Seconds)

L
O

Figure 28 - Initial adaptation of the lattice filter algorithm to a wide band disturbance
centered at 300 Hz.

The lattice filter algorithm is slowly converging to its optimal performance. The

simulation was left to run for five minutes. After the five minutes, the performance was

greatly improved. The performance is shown in Figure 29 below.

49

Lattice Simulation Response to Wide Bandwidth Disturbance

b A

ol I\
AR Y
ST B

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

——OL Spectrum
—— CL Spectrum

Magnitude (dB)

Frequency (Hz)

Figure 29 — Matlab simulated response of the lattice filter algorithm to the wide band
disturbance input after five minutes of convergence.

The lattice filter algorithm converged yielding a reduction in the disturbance of 12 dB at
189 Hz and 15 dB at 367 Hz. This convergence is better than the LM S algorithm’s
convergence and is close to the optimal controller’s performance. The reduction is about

5.6 times smaller than the open loop response.

Overal, the improved performance of the lattice filter agorithm over the LM S agorithm
is quite substantial. A 5" order instead of 12" order filter was used, and the reduction in
the disturbance for the lattice algorithm was almost two times the reduction achieved by
the LM S algorithm. For disturbances that span many modes of the system, the lattice
filter algorithm is a significant improvement over the LMS algorithm.

50

Chapter 9 Experimental Results

The experimental results consist of a comparison between the controller using an LMS
filter, the controller using the lattice filter, and the theoretically optimal controller. The
power spectrum at the output of the beam is measured using a Hewlett Packard 35665A
Dynamic Signal Analyzer. The measurements are set to average 10 runs for the purpose
of reducing the white noise in each measurement. Additionally, a uniform window is
used to smooth the data. Comparisons are made by checking the reduction in the largest
mode of concern for each case.

9.1 LQG Controller

The LQG controller was designed with a control weighting of 0.96. Thisisthe same
weighting that was used in the ssimulations. The LQG controller was designed to give a
minimal amount of damping to the system. The effect of the LQG controller on a
harmonic disturbance is shown in Figure 30.

Measurements in of the reduction of the disturbance are taken using the HP analyzer
marker function. The marker function can identify a peak in the open loop spectral
response, set this as a zero decibel point, then measure the change in the peaks magnitude

relative to this point when the LQG control loop is closed around the system.

Additionally, the noise floor is plotted with the harmonic plot. The noise floor is the
response of the system, measured at the output, with no inputs. It can be seen from
Figure 30 that there is a second harmonic generated by the function generator which has a
frequency of 378 Hz. Because of this additional harmonic, the adaptive controller
requires alarger order adaptive filter to reduce the disturbance to the noise floor. The
larger order is required because two harmonics need to be reduced in the system, not just

the main harmonic.

51

Closed Loop LQG Response to Harmonic Disturbance at 189 Hz
-20 ‘ ‘ ‘ ‘ ‘
------- OL Spectrum
-30 CL Spectrum (LQG Only)
— — —-Noise Floor

-40 1=
_ 50 | '
o t ;
= | It
3 h l i\
3 -60 hi— : ;
N .
@ S N |
= 70 '%\ \\ ,"' ;

I . .
-80 - ;'j‘\
l.\\~ L R - ,“\ N o ‘\
i e e
-%0 i N "'“” A \/V\J\JV\JVVV"\/W\/\/\/VWV‘—\J
‘\
-100 A WV’\IMIJLMWM\:\/‘:\M wia
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 30 — Open and closed loop response of the control system to a harmonic
disturbance of 189 Hz.

The LQG controller reduced the harmonic disturbance by 7.5 dB at 189 Hz. Thisleaves
plenty of room for the adaptive agorithms to show their ability to affect the disturbance.

The closed loop LQG response to a narrow band disturbance is shown in Figure 31,
below.

52

-20

------- OL Spectrum
CL Spectrum (LQG Only)

-40

Magnitude (dB)

-100

100 300 500 700 900
Frequency (Hz)

Figure 31 — Closed loop response of the beam to a narrow band disturbance centered
around 189 Hz.

The dominant mode in the narrow band case is the mode at 189 Hz. Thisis expected
since the narrow band filter is centered at this frequency. The LQG controller reduced
the disturbance at this mode by 5 dB.

The effect of the LQG controller on a system with a wide bandwidth disturbance is
shown in Figure 32.

53

Closed Loop Response to Wide Bandwidth Disturbance
-20 ; ; ;

------- OL Spectrum

-30 1 CL Spectrum (LQG Only)

-40

-50 ++

60 I

Magnitude (dB)

-70

-80

-90

-100

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 32 — Closed loop response of the beam to a wide bandwidth disturbance centered
around 300 Hz and having a bandwidth of 250 Hz.

There are two dominant modes in the wide bandwidth disturbance case. The modes are
located at 189 Hz and 367 Hz. The mode at 189 Hz was reduced by 5 dB and the mode
at 367 Hz was reduced by 2 dB.

9.2 Verification of Neutralization L oop

The adaptive filter needs to be placed in the neutralization loop to prevent feedback
through the controller. In practice, an exact model of the system cannot be made, so the

neutralization loop generates same non-zero transfer function between s, and r,. To

measure the relative size of the transfer function in the experimenta setup, the HP
analyzer isused. A pseudo random binary sequence is generated using the signal

processing board. Thisis used asawhite noiseinput into s, . The analyzer is set up to
measure the power spectral density at r, with no disturbance input at d, . Theresulting

measurement is shown below in Figure 33.

Power Spectral Density at r, with White Noise at s

-20 A A Ma A A A ~
AN T R TN N AN p |
-30
3
-40 ;
oA .".
. s RN vy
—~ ' ¢ K
@ 50 : g :
RS2 PN M ' " AR]
@ . . N LA X \
2 -60 - . CL EU, i
c “ ' 1, u
[=] \, '
IS \ o .
=
-70
-80
ol PSD of R
) PSD of S
-100
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Figure 33 — Power spectral density at r with white noise at s..

This plot of the spectrum shows the true transfer function isindeed not zero. The
majority of the signal resides at the modes of the system where the errors have more
energy and so are magnified.

9.3 Harmonic Disturbance

The harmonic disturbance was generated from a Tektronix FG502 function generator.
The disturbance was sent to the piezoceramic actuator that represents the disturbance
input. A National Semiconductor uA741 operational amplifier with again of 1 V/V was
used as a buffer between the piezoceramic element and the function generator.

For the LM S algorithm, the step size, m was set to 0.75. Larger step size would cause a

saturation of the controller. The experimenta setup was set to run 3 to 4 times longer

than the simulations to make up for the reduction in the step size. The filter was adjusted

55

to a3 order filter. The effect of the LM S algorithm on the harmonic disturbance is
shown in Figure 34.

Response of LMS Algorithm to Harmonic Disturbance

-20

------- OL Spectrum
CL Spectrum (3rd order LMS)
h — — —-Noise Floor
-40

* z
0 If . .
I i
\ /xl \\ J ;
R N ;

-30 A1

Magnitude (dB)

) | f] \ = RN

PN 7 :
‘\\\”\.ql ' | |’|' N\’"L\"Nf'»"|'»,‘f‘; L R RN \-;1\,"_,\
-90 . L ! L
-’\/\/\,NVVJ\W |L\ \ I I
-100 AAMAN LN st dan o N M
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Figure 34 — Response of the LM S algorithm using a3 order LMS filter to a harmonic
disturbance.

The harmonic disturbance was reduced 17.6 dB by the LM S algorithm. During the
adaptation, amode at 378 Hz was excited. Asaresult, the overal disturbance rejection
for the system is not optimal. This harmonic excitation is a second harmonic created by
the function generator. To reduce the mode at 189 Hz and the mode at 378 Hz, alarger
order filter isneeded. The filter order was increased by one and tested until the filter was
large enough the reduce both modes. This resulted in a 7" order LMSfilter. The
response of the filter is shown below in Figure 35.

56

Response of LMS Algorithm to Harmonic Disturbance
-20

R REE OL Spectrum
-30 1 : CL Spectrum (7th order LMS)

-40 -

-50 A
-60 l\ /.\A
-70
-80 I oy .
WMAAA R .\ A
vty ;':‘—"aq~ o l
-90

VVVWWVWWWNMN\A/\VWWW

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Magnitude (dB)

S

-100

Figure 35 — Response of the LM S algorithm to a harmonic disturbance located at 189 Hz.

The algorithm reduced the harmonic disturbance by 36 dB. Thiswas enough to drive the
disturbance into the noise floor.

Next, the lattice agorithm was used to remove the same harmonic disturbance. Again,
the second harmonic at 378 Hz appeared and required a larger filter order to reduce the
noise. Thefilter was set at first order then increased by one until the system could reduce
the disturbance. The filter was required to be 3" order and the step size for the n and g
parameters were set to 0.75 and 0.1 respectively. Figure 36 shows the effect of the lattice
algorithm on the 189 Hz harmonic disturbance.

57

Response of Lattice Algorithm to Harmonic Disturbance
-20

....... OL Spectrum

-30 CL Spectrum (3rd order Lattice)

-40 +

-50

-60 .A ,"“".
k f: \/\ II \l\
70 4 s
v .‘&(’j ﬂ\ \\\ I
-80 \\,\,/ | S -
| \ AN VISV

POV e ceots ok v

-100

Magnitude (dB)

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 36 — Response of the lattice agorithm to a harmonic disturbance located at 189
Hz.

The lattice algorithm was capable of reducing the disturbance by 37 dB. The 367 Hz
mode was reduced as it was with the 7" order LMSfilter. Thisis because the lattice
filter isan IR filter and can adapt both numerator and denominator coefficientsin its
transfer function. This gives the filter more freedom to fit the 189 Hz and 367 Hz modes.

9.4 Narrow Band Disturbance

To create the narrow bandwidth disturbance, a Krohn-Hite model 3202 analog filter was
used. This particular filter was used because it was readily available and could generate
fourth order filters with relative ease. The filter breakpoints were set to 180 Hz and 200
Hz. Additionally, auA741 operational amplifier was placed at the output of the filter to
boost the signal and serve as adriver for the piezoceramic actuator. It was unnecessary
to use a power booster to drive the disturbance piezoceramic element because it did not
need an output greater than the £10 volts available from a 741 op-amp. Additionaly, the
741 isinternally compensated so no additional components were required to keep the

58

amplifier and piezoceramic device combination stable. For the narrow bandwidth

disturbance case, the gain of the 741 amplifier was set to 10 V/V. The frequency

spectrum of this narrow bandwidth filter is shown in Figure 37

Magnitude (dB)

10
20
30
-40
)
-60

-70

Frequency Response of Narrow Bandwidth Disturbance Filter
Ll e NB Filter
’ S
. .
"‘I" \ s
g NG
NLooh
: ‘:'v"-
100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Since thisfilter places most of the disturbance power at the 189 Hz mode, the reduction
in its magnitude is used to measure the performance of the LM S and lattice algorithms.

Figure 37 — Frequency response of the narrow bandwidth filter.

First, the ability of the LM S algorithm to reduce the narrow bandwidth disturbance is
considered. The step size for the LMS algorithm was left at 0.75 and the filter was

adjusted to 7" order based on the results of the harmonic disturbance experimental run.
The effect of the LMS agorithm on the narrow bandwidth disturbance is shown Figure

38. A copy of the simulation response is also present for referencing purposes.

59

Response of LMS Algorithm to Narrow Bandwidth Disturbance
-20
------- OL Spectrum
-30 1 CL Spectrum (5th order LMS)
o
=
(3]
©
E
5
j=2)
(]
=
-100
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
LMS Simulation Response to Narrow Bandwidth Disturbance
-20.00
—— OL Spectrum
-30.00 + A\ —— CL Spectrum
-40.00
o
T -50.00
]
=]
2
S -60.00
©
=
-70.00 ~
-80.00
-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00
Frequency (Hz)

Figure 38 — Response of the LM S algorithm to a narrow bandwidth disturbance.

The LMS algorithm reduced the disturbance 11 dB at the dominant mode of 189 Hz.
Compared to the ssimulated response, the algorithm performs only alittle worse on the
experimental setup than was predicted in simulation.

60

The response of the lattice algorithm to the narrow bandwidth disturbance was looked at
next. Thefilter was |eft at 3 order and the step size for the n and g parameters were set
to 0.75 and 0.2 respectively. The narrow bandwidth disturbance for this case is the same
one used as the disturbance for the LMS algorithm.

Figure 39 shows the effect of the lattice algorithm to a narrow bandwidth disturbance.
The lattice algorithm reduced the disturbance by 15 dB. The simulations predicted the

lattice algorithm would reduce the disturbance more than the LM S algorithm. Thisis
true in the experimental setup as well.

Response of Lattice Algorithm to Narrow Bandwidth Disturbance
-20

....... OL Spectrum

-30 | CL Spectrum (3rd order Lattice)

-40

50

:60 A ﬂ /Wv‘\j\w\vf'/\ 3
. B
3

Magnitude (dB)

\
"

-80

-90

-100

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

61

Lattice Simulation Response to Narrow Bandwidth Disturbance

-20.00

——OL Spectrum

-30.00 ——CL Spectrum| |

N

-60.00

Magnitude (dB)

¢
-70.00 f

-80.00

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Frequency (Hz)

Figure 39 — Response of the lattice algorithm to a narrow bandwidth disturbance.

9.5 WideBand Disturbance

To create the wide bandwidth disturbance, the analog filter used to create the narrow
bandwidth filter was adjusted. The filter breakpoints were set at 175 Hz and 425 Hz.
This provided afilter with a center frequency of 300 Hz and a bandwidth of 250 Hz.
This filter was selected to cover two modes in the beam, the 189 Hz and 367 Hz modes.
To measure the amount of disturbance rejection, it is convenient to measure the reduction
in the size of the 367 Hz mode. Additionally, the uA741 operational amplifier gain was
adjusted to 20 V/V. The frequency spectrum of the wide bandwidth filter is shown in
Figure 40.

62

Frequency Response of Wide Bandwidth Disturbance Filter
-10
A T WB Filter
-20 — St
! 'y\l‘.’;;'fj .
' N\

-30 : e
— '.'; ‘.iwl\ [
g -y \-I‘\,‘ll,\.\
) : N e ';"'---(\,()
S 40 bl
c ™ -
j=2)
(]
=

-50

-60

-70

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Figure 40 — Frequency response of the wide bandwidth filter.

The step size for the LMS algorithm was |eft at 0.75. The filter was adjusted to 12" order
based on the results of the simulation. The effect of the LMS agorithm on the wide
bandwidth disturbance is shown in Figure 41.

Response of LMS Algorithm to Wide Bandwidth Disturbance

-20 ‘ ‘
------- OL Spectrum
-30 - CL Spectrum (12th order LMS)
k
S /\
E L
o 0
o 1 .
= N
g - /X :
= m m« LA
-80
-90
-100
0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

63

LMS Simulation Response to Wide Bandwidth Disturbance
-20.00

—— OL Spectrum

b
AN
Y 4
O B

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

-50.00

-60.00

Magnitude (dB)

Frequency (Hz)

Figure 41 — Response of the LM S algorithm to a wide bandwidth disturbance.

The LMS algorithm reduced the disturbance 6 dB at the 189 Hz mode and 12 dB at the
367 Hz mode. Thisisclose to the 9 dB and 13 dB reduction achieved by the simulation.
The convergence time for this case was longer than in simulation because of the smaller
step sizes that were required. Remember that large step sizes would result in a saturation
of the controller. Thisisaso true for the lattice case discussed below.

The lattice algorithm filter was adjusted to 5" order. The step size for then and g
parameters were left at 0.75 and 0.2 respectively. The wide bandwidth disturbance for
this case is the same one used as the disturbance for the LM S algorithm. Figure 42 shows
the effect of the lattice algorithm to the wide bandwidth disturbance.

Response of Lattice Algorithm to Wide Bandwidth Disturbance
-20 ; ; ; ; ; ;
------- OL Spectrum
-30 | CL Spectrum (5rd order Lattice)
h NI
-40 -
| A
a | ;‘\ /l \\
=2
[} '-\ s .
=]]] o
E "x 1
= RO L S A A a)
= NPVOVY A ol YR . &,
VoV W A
-80
-90
-100
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
Lattice Simulation Response to Wide Bandwidth Disturbance
-20.00

—— OL Spectrum
—— CL Spectrum

-30.00 -

" b
A A
R \
I

-90.00
0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Magnitude (dB)

Frequency (Hz)

Figure 42 — Response of the lattice agorithm to a wide bandwidth disturbance.

The lattice algorithm reduced the disturbance by 8 dB at the 189 Hz mode and 14 dB at
the 367 Hz mode. Thisisthe similar to the amount of rejection achieved by the

simulation. Again, asin the simulation, the lattice algorithm performs better than the
LMS algorithm with asmaller order filter.

The results for Chapter 8 and these results show the true benefit of using an adaptive
lattice filter in place of an adaptive LM Sfilter; the order of the filter required is cut
amost in half. Unfortunately, the lattice filter algorithm is a complex algorithm to
implement. As aresult, the lattice algorithm should only be used when needed for
complex multi-modal, possibly MIMO, plants.

66

Chapter 10 Conclusions

This thesis contains the theoretical and experimental results obtained for two forms of an
adaptive disturbance rejection controller. A disturbance rejection controller using an
FIR and an IIR adaptive filter were implemented and their results compared. The results
show the improvement in the performance of the controller using an 1R adaptive filter

over the same controller using an FIR adaptive filter.

Despite the improvement in the performance of the controller over the LM S algorithm,
the LM S agorithm is a better choice for most applications. The LMS algorithm is much
easier to implement on adigital signal processor and it has an overall good performance,

as shown by the experimental results.

If the lattice filter controller were used on a multi-input multi-output (MIMO) system
with many modes, it would improve the computation time and performance enough to
make it worthwhile to implement. This potential isworth exploring in future work, asit
could be capable of removing disturbances in systems such as complex space structures,

noise in close environments, and numerous other situations.
Also, making the system fully adaptive so that the system works with plants whose

parameters vary with time would be useful. It would open up awide range of

applications for the adaptive lattice and LMS control structure.

67

References

1. Conover, W. B., 1956, “Fighting Noise with Noise”, Noise Control, Vol. 2, pp. 78-82

2. Boucher, Elliot, and Nelson, 1991, “ The Effect of Errorsin the Plant Model on the
Performance of Algorithms for Adaptive Feedforward Control”, Proceedings of the
Institute of Electrical Engineers, Vol. 138, 313-319.

3. Olson, H and May, E., 1953, “Electronic Sound Absorber”, Journal of the Acoustic
Society of America, Vol. 25, No. 6, pp. 1130-1136.

4. Nelson, p, Elliot, S., 1992, “Active Control of Sound”, Academic Press, San Diego,
1992.

5. Tay, T.T. and Moore, J.B., 1991, “Enhancement of Fixed Controllers via Adaptive-Q
Disturbance Estimate Feedback”, Automatica, Vol. 27, No. 1 pp. 39-53.

6. Regalia, Phillip A., AdaptivelIR Filtering in Sgnal Processing and Control, Marcel
Dekker, Inc., 1995.

7. Moore, J.B., Glover, K., and Telford, A., 1990, “All Stabilizing Controllers as
Frequecny-Shaped State Estimate Feedback” , IEEE Transactions on Automatic

Control, Vol. 35, No. 2 pp. 203-208.

8. Baumann, W.T., 1997, “An Adaptive Approach to Structural Vibration Suppression”,
Journal of Sound and Vibration, pp. 121-133.

9. Miller, Daniel, 1995, “Adaptive Feedback Technique for Unmodeled Disturbance

Rejection”, Master’s Thesis Virginia Polytechnic Institute and State University.

10. Horrowitz, Paul and Hill, Winfield, The Art of Electronics, Second Addition,
Cambridge University Press, 1994.

68

11. Classen, Mecklenbrauker, and Peek, 1976, “Effects of Quantization and Overflow in
Recursive Digita Filters’ , IEEE Transactions on Acoustics, Speech, and Sgnal
Processing, Vol. 24, pp. 517-529

12. Ljung, Lennart, System Identification Theory for the User, Prentice Hall, 1987.
13. M. Nayeri and W. Jenkins, 1989, “Alternate realizations of adaptive IIR filters and
properties of their performance surfaces’, IEEE Transactions on Circuits and

Systemss, Vol. 36, pp. 485-496.

14. J. Shynk, 1987, “Performance of alternate adaptive IR filter realizations’, Proc.
Asilomar Conf. Circuits, Systems, and Computers, Pacific Grove, CA.

15. Haykin, Simon, Adaptive Filter Theory, Prentice Hall, 1986.

16. Astrom, Karl and Wittenmark, Bjorn, Adaptive Control - Second Edition, Addison-
Wesley Publishing Company, Inc., 1995.

17. Spectrum Signal Processing, “PC/C31 Board User Guide”, Version 1.04, Burnaby,
B.C.

18. Saunders, Robertshaw, and Burdisso, 1996, “A Hybrid Structural Control Approach
for Narrowband and Impulsive Disturbance Rejection”, Noise Control Engineering
Journal, Vol. 44, pp. 11-21.

19. Clark, R. L., 1995, “A Hybrid Autonomous Control Approach”, American Society of

Mechanical Engineers Journal of Dynamic Systems, Measurement, and Control, Vol.
117, pp. 232-240.

69

20. Lueg, P., 1936, “Process of Silencing Sound Oscillations’ , U.S Patent No.
2,043,416.

21. Elliot, Stothers, McDonald, Quinn, Saunders, and Nelson, 1988, “The Active Control
of Engine Noise Inside Cars’, Proc. Inter-Noise 88, pp. 989-990.

22. Elliot, Nelson, Stothers, and Boucher, 1990, “In-flight Experiments on the Active
Control of Propeller-induced Cabin Noise”, Journal of Sound and Vibration, Vol.
140, pp. 219-238.

23. Eghtesadi, Hong, and Leventhall, 1983, “ The Tight-Coupled Monopole Active
Attenuator in a Duct”, Noise Control Engineering Journal, Vol. 20, No. 1, pp. 16-20.

24. Smothers, Saunders, McDonald, and Elliot, 1993, “ Adaptive Feedback Control of
Sunroof Flow Oscillations’, Proceedings of the Institute of Acoustics, Vol. 15, pp.

383-393.

25. Whedler, P, and Smeatham, 1992, “On Spatia Variability in the Attenuation
Performance of Active Hearing Protectors’, Applied Acoustics, Vol. 36, pp. 159-162.

70

Appendix A

A.l1 SYSID.ASM

*

* SYSTEM ID ROUTINE
.global RESET,INIT,INPUT
.global M,SENSOR_ADDR
.global RANDOM_ADDR,RANDOM
.global ISRO,ISR1,ISR2,1SR3
.globa CH OCH 1

*

* RESET VECTOR SPECIFICATION

*

.sect "init" :
RESET .word INIT ; RESET VECTOR (LOADSINIT ADDRESS TO PC)
.sect ".int0"
BR ISRO
.sect ".intl"
BR ISR1
.sect ".int2"
BR ISR2
.sect ".int3"
BR ISR3
.data
BUSADDR .word 00808064h : ADDRESS OF BUS CONTROL REGISTER
BUSDATA .word 00000900h : VALUE FOR LSI CARD GIVES ZERO

; WAIT STATES, 32k BANK SIZE, EXTERNAL
; READY CONTROL

*

* INITIALIZE CONSTANTS

*

M st 16384 - NUMBER OF POINTS
CH_O word 550002h . CH_0 ADDRESS

T™1 word 550005h : TIMER 1 REGISTER
CH_1 word 550006h . CH_1 ADDRESS

UCR word 550008h - USER CONTROL REG.
ACR word 55000Ah - AMELIA CONTROL REG.
IMR word 55000Bh - INTERRUPT MASK REG.

71

CFR .word 55000Fh ; CONFIGURATION REGISTER

VALUES .word 0A4000000h ; A4000000h

.word 0OE8010000h ; E8010000h 2000 Hz

.word 00B20000h ; 00B20000h

.word O08DFF0000h ; 8DFFO000N

.word 00010000h ; 00010000h
*SEED .word O0AC1178h ; Random Startup SEED
*SEED .word 01AB903h ; Random Startup SEED
*SEED .word 00BAG61Ch ; Random Startup SEED
*SEED .word 039CF27h ; Random Startup SEED
SEED .word OFE633Dh ; Random Startup SEED
END .word 40000000h
MID .word 08000000h
NORM_1 float 1.09225E+4 ; Represents 1V

NORM_2 float 9.155552843E-5 ,

*

* SPECIFY ARRAYS

*

RANDOM .usect "RAND",M ; RANDOM OUTPUT ARRAY
SENSOR .usect "SENS'.M ; SENSOR INPUT ARRAY

*

* SPECIFY POINTERS TO ARRAY S

*

RANDOM_ADDR .word RANDOM ; RANDOM ARRAY ADDRESS
SENSOR_ADDR .word SENSOR ; SENSOR ARRAY ADDRESS

*

* INITIALIZE POINTERS AND ARRAY S

*

text

INIT: LDP BUSADDR,DP ; DATA PAGE POINTER SET PRIOR TO
; USING DIRECT ADDRESSING MODE
LDl @BUSADDR,ARO ;
LDl @BUSDATA,RO ;
STl RO*ARO ; SET BUS. REG. FOR LSI CARD

72

LDP @SENSOR_ADDR,DP

; SET DATA PAGE

LDl @SENSOR_ADDR,ARO ; SET POINTER TO SENSORY]
LDI @RANDOM_ADDR,AR1 ; SET POINTER TO RANDOMI]
LDl O,RO ;RO=0

RPTS M ; REPEAT M+1 TIMES

STI RO*ARO++(1) ;

LDl @SEED,RO ;

LDl M,RC ;

RPTB RNDN

LDI @END,R1

AND ROR1

LDI @MID,R2

AND RO,R2

LDl -27,R3

LSH R3R2

LDl -30,R3

LSH R3R1

XOR R1,R2

LDl 1,R3

LSH R3,RO

OR3 RO,R2,RO

LDF @NORM_1,R3
FLOAT R2R1

SUBF 0.5,R1

MPYF 3,R1

MPYF3 R3,R1,R2

; LOAD VALUE STORED AT NORM_1

; CONVERT (+-)3V TO ORIGINAL FORM

BNN POSITIVE

FIX R2R3

LDl OFFFFh,R1

ADDI R1,R3

BR SENDOUT
POSITIVE:

FIX R2R3 ; CONVERT TO INTEGER
SENDOUT:

73

LDI

16,R1

ASH R1,RS3

STI

R3,*AR1++(1)

RNDN NOP

*

* PREPARE FOR ID ROUTINE

*

; 0000X XXX / FFFFXXXX => XXX X0000

; SET USER CONTROL REGISTER
; FOR BURR_BROWN DAUGHTER

; VAL = A4000000h

: SET TIMER 1 REGISTER
. FOR BURR_BROWN DAUGHTER MOD.
: VAL = E8010000h (2 kHz)

; SET AMELIA CONTROL REGISTER
; FOR BURR_BROWN DAUGHTER

; VAL = 00B20000h

; SET CONFIGURATION REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = 8DFF0000h

; SET INTERRUPT MASK REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = 00010000h

@RANDOM_ADDR,ARO ; SET POINTER TO RANDOM[]
@SENSOR_ADDR,AR1 ; SET POINTER TO SENSOR][]

; M INTO REPEAT COUNTER

; ENABLE INTERRUPT O

; AR2 CONTAINS1/O ADDROFCH 0
; LOAD VALUE STORED AT

LDI @VALUESRO

LDI @UCRARO
MOD.

STI RO*ARO

LDI @VALUES+1,RO

LDI @TMLARO

STI RO*ARO

LDI @VALUES+2,RO

LDI @ACRARO
MOD.

STI RO*ARO

LDI @VALUES+3,R0

LDI @CFRARO

STI RO*ARO

LDI @VALUES+4,RO

LDI @IMRARO

STI RO*ARO

LDI

LDI

LDI M,RC

OR 01hJE

RPTB LOOP :

LDI @CH_0AR2

LDl *ARO++(1),R1
RANDOM[M]

74

STI

PUSH
PUSH

OR
IDLE
AND

POP
POP

LOOP NOP

AND

NOP
NOP

WAIT BR

R1,*AR2

RS
RE

2000h,ST
1FFFh,ST

RE

RS

OFFEh,IE

WAIT

; OUTPUT THROUGH D/A

; SAVE REPEAT START
; SAVE REPEAT END

; ENABLE ALL INTERRUPTS SET IN |E REG.
; WAIT FOR INTERRUPT

; DISABLE ALL INTERRUPTS
; RESTORE REPEAT END
; RESTORE REPEAT START

; DISABLE INTERRUPT ZERO

; END IN TERMINATION LOOP

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhkhhkhhhkhhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkhkkkkkk,%x%x

k

ISRO
PUSH
PUSH
PUSH

LDI
LDI

AND
LDI
LDI
STI
POP
POP
POP

RETI

ST
DP
IE

@IMR,AR2

*AR2,RO

OFFFEN,IF

@CH_0,AR2

*AR2,RO

RO,*AR1++(1)

IE
DP
ST

; IMR FOR BURR_BROWN DAUGHTER MOD.
; READ INTERRUPT MASK TO CLEAR

; RESET INTERRUPT FLAG
; AR2 CONTAINS1/O ADDROFCH 0

; READ VALUE FROM A/D PORT
; STORE VALUE IN SENSOR[M]

; RETURN FROM INTERRUPT

khkhkkkhhkkkhhhkkhhhkkhhhkhhhkhdhhkhhhkhkhhkhkhhkhhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkkkkkxkx*x%x

k

ISR1 RETI

; INT1

75

ISR2 RETI ;INT2

ISR3 RETI ;INT3

ISR4 RETI ; XINTO
ISR5 RETI ; RINTO
ISR6 RETI ; TINTO
ISR7 RETI ; TINT1
ISR8 RETI ; DINTO

khkhkkkhhkkkhhhkkhhhkkhhhkhhhkhdhhkhhhkhkhhkhkhhkhhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkkkkkxkx*x%x

k

.end

76

A.2 BIN2ASCI.C

#include <stdio.h>
#include <io.h>
#include <ctype.h>

main (argc,argv)

char *argvl[];
int argc;

{
FILE *fopen(), *fp_in, *fp_out;
char ch;

if (argc!=23)

printf ("correct usageis\n");
printf ("bin2asci <input_file> <output_file>\n");
exit (0);

}

fp_in=fopen(argv[1],"rb");
fp_out= fopen(argv[2],"w");

if (fp_in == NULL)

{
printf ("input file could not be opened.\n");

exit (1);
}
convert file (fp_in,fp_out);
printf ("DONE\n");

fclose (fp_in);
fclose (fp_out);
return (1);

}

convert_file (input,output)
FILE *input, * output;

{
unsigned short ch[2];

77

long length;
float out;

int i,hold,handle;
printf ("\n");

handle=fileno(input);
length=filelength(handle);

printf ("Size of binary file: %lu\n",length);
printf ("Please wait . . . \n\n");

length=length / 4;
for (i=0; i<length; i++)
{
fread (ch, sizeof(unsigned short), 2, input);

if (ch[1] > 32767)

{
hold=ch[1] - 65535;
}
dse
{
hold=ch[1];
}

out=hold/10922.5;

fprintf (output,”%f\n",out);

78

A3 ETFEM

%X X=1; %% use Control input to output program flow
XX=-1; %% use Disturbance input to output program flow

Sizeof=16384,

if XX>0
load c:\matlab\research\data\cinput.dat
u=cinput(1:sizeof);
clear cinput;

load c:\matlab\research\data\coutput.dat
y=coutput(1:sizeof);
clear coutput;

else
load c:\matlab\research\data\dinput.dat
u=dinput(1:sizeof);
clear dinput;

load c:\matlab\research\data\doutput.dat
y=doutput(1:sizeof);
clear doutput;

end

%%% Empirical Transfer Function Estimate %%%

M=512,
N=4096;
T=1,

ghh_y=etfe([y u],M,N,T);
[freq _vect,amp,ang] = getff(ghh_y,1,1);
freq_vect=freq_vect.* (2000/(2* pi));

figure
semilogy(freq_vect,amp,'y’)
if XX>0
title("Control Input to Sensor Output (ETFE)")
else
title('Disturbance Input to Sensor Output (ETFE)")
end
xlabel ('"Frequency (Hz)")
ylabel (‘Magnitude')
axis([0 1000 1le-4 1Q])

79

figure
plot(freq_vect,ang,'y")
if XX>0
title("Control Input to Sensor Output (ETFE)")
else
title('Disturbance Input to Sensor Output (ETFE)")
end
xlabel ('"Frequency (Hz)")
ylabel ('Angle (degrees)’)
A.4 |IDENT.M

%%% Initial Model Orders (ARX Model) %%%

if XX>0
na=34; %%% Control %%%
nb=34; % 34 %
nk=0;

ese
na=34; %%% Disturbance %%%
nb=34; % 34 %
nk=0;

end

%%% L east Squares Fit %6%%

th_Is y=arx([y u],[na nb nk]);
[num_Is y,den_lIs y]=th2tf(th_Is vy);

[alsb Isc Isd Isk Isx0 Is]=th2ss(th_Is y);
clear k_ls; clear x0_ls;

clear th Is y;

max(abs(roots(den_Is y)))

%%% Least Squares Frequency Response %% %

[h_Is y,w]=freqz(num_Is_y,den |Is y,N);
mag_ls y=abs(h_Is y);
phase_Is y=(unwrap(angle(h_ls y))*(180/pi));

clear num_Is y;
clear den Is y;
%clear h_|s vy;

%%% Plot %%%

80

figure
semilogy(freq_vect,amp,'y")
hold on
semilogy(freq_vect,mag_Is y,'d’)
hold off
if XX>0
title("Control Input to Sensor Output (Least Squares Fit)')
else
title('Disturbance Input to Sensor Output (Least Squares Fit)")
end
xlabel ('"Frequency (Hz)")
ylabel (‘M agnitude')
axis([0 1000 1le-4 1Q])

figure
plot(freq_vect,ang,'y")
hold on
plot(freq_vect,phase |Is vy,'q)
hold off
if XX>0
title("Control Input to Sensor Output (Least Squares Fit)')
else
title('Disturbance Input to Sensor Output (Least Squares Fit)")
end
xlabel ('"Frequency (Hz)")
ylabel ('Angle (degrees)’)

81

A5 RDUCE.M
%%% Discrete Balanced Redlization %%%

Gc =dgram(a Is,b_Is);
Go =dgram(a Is,c_Is);

[Vx,Dx]=eig(Gc);
Gc_pd=Vx*abs(Dx)*inv(VX);

R=chol(Gc_pd);

[ux,D,V] = svd(R* Go*R);
D = D.*sign(ux*V);

Trans = R*V*diag(diag(D)."(-.25));
a red = Trans\a Is* Trans;

b red =Trans\b_Is;

c red=c Is*Trans,

gram_diag = diag(dgram(a_red,b_red))’;
clear Dx; clear Vx; clear ux;
clear R; clear D; clear V;
clear Gc_pd; clear Gc; clear Go;
%% % Discrete Model Reduction %%%
if XX>0
[ab,bb,cb,db]=dmodred(a red,b_red,c red,d Is,[29,30,31,32,33,34]);
else
[ab,bb,cb,db]=dmodred(a red,b _red,c red,d Is,[29,30,31,32,33,34]);
end

%clear a red; clear b_red; clear c_red;
%clear a_iv; clear b_iv; clear c_iv; clear d_iv;

%%% Frequency Response %%%
[top,bot] =ss2tf(ab,bb,cb,db);

[h,w]=fregz(top,bot,N);
red_mag=abs(h); red_ang=unwrap(angle(h))* (180/pi);

max (abs(roots(bot)))
clear h; clear top;

82

if XX>0
[num_c,den_c]=ss2tf(ab,bb,cb,db);
else
[num_d,den_d]=ss2tf(ab,bb,cb,db);
end

%%% Plot %%%

figure
semilogy(freq_vect,amp,'y’)
hold on
semilogy(freq_vect,red_mag,'m’)
hold off
if XX>0
title('Control Input to Sensor Output (reduced to 28th order)")
else
title('Disturbance Input to Sensor Output (reduced to 28th order)')
end
xlabel ('"Frequency (Hz)")
ylabel (‘Magnitude')
axis([0 1000 1le-4 10])

figure
plot(freq_vect,ang,'y")
hold on
plot(freq_vect,red_ang,'m’)
hold off
if XX>0
title('Control Input to Sensor Output (reduced to 28th order)")
else
title('Disturbance Input to Sensor Output (reduced to 28th order)')
end
xlabel ('"Frequency (Hz)")
ylabel ('Angle (degrees)’)

83

A6 SVYMOD.M

if XX>0
save c:\matlab\research\model\Ac.dat ab -ascii -tabs;
save c:\matlab\research\model\Bc.dat bb -ascii -tabs;
save c:\matlab\research\model\Cc.dat cb -ascii -tabs;
save c:\matlab\research\model\Dc.dat db -ascii -tabs;
ese
save c:\matlab\research\model\Ad.dat ab -ascii -tabs;
save c:\matlab\research\model\Bd.dat bb -ascii -tabs;
save c:\matlab\research\model\Cd.dat cb -ascii -tabs;
save c:\matlab\research\model\Dd.dat db -ascii -tabs,
end

A.7 SAVTFM

N=4096;
Id_1x_md;

%%%%% Finding the Value of K %%%%%

R=0.96
K=dlgr(Ac,Bc,Cc™*Cc,R); %% 0.960

%%%%% Finding the Value of L %%%%%
L=Ac*(dlge(Ac,Bc,Cc,1,1e-4));

fresp2
%break

%0%% %% Generate Transfer Functions %%%%%

[num_uy,den uy]=ss2tf(Ac,Bc,Cc,0);
[num_dy,den_dy]=ss2tf(Ad,Bd,Cd,0);
[num_uz,den_uz]=ss2tf(Ac-L*Cc,Bc,K,0);
[num_yz,den_yz]=ss2tf(Ac-L*Cc,L,K,0);
[num_uyh,den_uyh]=ss2tf(Ac-L*Cc,Bc,Cc,0);
[num_yyh,den_yyh]=ss2tf(Ac-L*Cc,L,Cc,0);

save c:\matlab\research\model\num_dy.dat num_dy -ascii -tabs,
save c:\matlab\research\model\den_dy.dat den_dy -ascii -tabs;

save c:\matlab\research\model\num_uy.dat num_uy -ascii -tabs,
save c:\matlab\research\model\den_uy.dat den_uy -ascii -tabs;

save c:\matlab\research\model\num_uz.dat num_uz -ascii -tabs;
save c:\matlab\research\model\den_uz.dat den_uz -ascii -tabs;

save c:\matlab\research\model\num_yz.dat num_yz -ascii -tabs;
save c:\matlab\research\model\den_yz.dat den_yz -ascii -tabs;

save c:\matlab\research\model\num_uyh.dat num_uyh -ascii -tabs;
save c:\matlab\research\model\den_uyh.dat den_uyh -ascii -tabs;

save c:\matlab\research\model\num_yyh.dat num_yyh -ascii -tabs;
save c:\matlab\research\model\den_yyh.dat den_yyh -ascii -tabs;

85

Appendix B

B.1 ADAPT.C for LMScode

/**/

I* */
[* Adaptive LMS Routine */
I* */

/**/

#include <math.h>
#include <stdlib.h>
#include "tfmod8.h"
#include "initvecs.h"

[*** defined constants ***/

#define M 15 [* order of lattice filter */
#define ORDER 28 [* order of system */

[*** variables ***/
float mu;

float nu[M];

float ux[M];

float uf[M];

float u,y, s,

int seed:
int i;

[*** function prototypes ***/

extern void init_io(void);
extern void filter(void);

/**/

I* */
/* Main Program: Adapt.c */
I* */

/**/

void main(void)

{

86

mu = 0.75;
seed = 16671549;

for (I=0; i < M; i++)

{
nu[i]=0.0;
ux[i]=0.0;
uf[i]=0.0;

}

u=0.0;

y =0.0;
s=0.0;
i=1
init_io();
while (i > 0)

filter();
}

}

B.2 INITVECSH for LMS code

float u_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0};

float y_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float za vect[29] ={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float zb_vect[29] ={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float yha vect[29] ={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float yhb_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

87

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0};

float r_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float rb_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

float rp_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

B.3 TFMODS8.H for LMS code

const float num_uy[29] = { 0.0000000e+000, -1.5904315e-004, 4.2409415e-004, -4.9284109e-002,
1.9893541e-001, -3.1758832e-001, 3.1991080e-001, -2.5978062e-001, 1.6495562e-001,
1.3093236e-002, -2.6836145e-001, 4.0050110e-001, -3.8240303e-001, 3.3581286e-001,
-2.5461830e-001, 9.4364512e-002, 9.4201270e-002, -1.9247663e-001, 2.0855357e-001,
-2.0134025e-001, 1.4533480e-001, -4.3740757e-002, -3.3162386e-002, 3.8873874e-002,
-2.9871692e-002, 3.2910294e-002, -3.7478365e-002, 2.3224869e-002, -9.5386817e-004} ;

const float den_uy[29] = { 1.0000000e+000, -3.2865226e+000, 4.6603098e+000, -3.2893508e+000,
4.1916269e-001, 1.6767313e+000, -3.1235753e+000, 4.3896353e+000, -3.9919281e+000,
1.0311235e+000, 2.2520882e+000, -3.7354589e+000, 4.1809189e+000, -4.2092994e+000,
2.8734239e+000, 4.5056639e-002, -2.5650890e+000, 3.2889473e+000, -2.7153134e+000,
1.4414222e+000, 8.5999084e-002, -1.1600308e+000, 1.1084441e+000, -3.9557971e-001,
-1.2658787e-002, -1.2413373e-001, 2.8652604e-001, -1.8344510e-001, 5.6467152e-002};

const float num_uz[29] = { 0.0000000e+000, 4.4880500e-002, -7.8615094e-002, 3.5876926e-002,
1.7895885e-003, -7.4897554e-003, 1.7182858e-002, -6.9484365e-002, 8.1450245e-002,
-1.6089545e-002, -6.8375095e-004, -1.4705265e-002, -1.0106208e-002, 4.9611529e-002,
-4.2922180e-002, 3.5838479e-003, -2.6290233e-004, 4.8756548e-003, 1.3150029e-002,
-2.3821924e-002, 1.0976638e-003, 1.3481585e-002, -1.0471705e-003, -6.0964111e-003,
3.2565513e-003, 6.9405164e-003, -1.8129320e-003, -4.1746617e-003, 1.4782862e-004};

const float den_uz[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_yz[29] = { 0.0000000e+000, -1.9824451e-001, 6.5783635e-001, -7.1735758e-001,
2.5201745e-001, 4.6119829e-001, -1.1576058e+000, 1.6506510e+000, -2.0641613e+000,
1.8259873e+000, -9.6363275e-001, -2.5721269e-002, 7.9107211e-001, -1.2764404e+000,
1.5898900e+000, -1.3052523e+000, 6.1665461e-001, 7.2693068e-002, -4.5457441e-001,
5.8160015e-001, -4.9605233e-001, 2.2580249e-001, -4.6555229e-002, -8.4845841e-003,
-7.5207262e-002, 8.1771196e-002, -1.2539931e-002, -1.4700859e-002, 1.1441345e-002};

const float den_yz[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,

88

3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,

-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_uyh[29] ={ 0.0000000e+000, -1.5904315e-004, 4.2409415e-004, -4.9284109e-002,
1.9893541e-001, -3.1758832e-001, 3.1991080e-001, -2.5978062e-001, 1.6495562e-001,
1.3093236e-002, -2.6836145e-001, 4.0050110e-001, -3.8240303e-001, 3.3581286e-001,
-2.5461830e-001, 9.4364512e-002, 9.4201270e-002, -1.9247663e-001, 2.0855357e-001,
-2.0134025e-001, 1.4533480e-001, -4.3740757e-002, -3.3162386e-002, 3.8873874e-002,
-2.9871692e-002, 3.2910294e-002, -3.7478365e-002, 2.3224869e-002, -9.5386817e-004} ;

const float den_uyh[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_yyh[29] ={ 0.0000000e+000, 6.1331992e-001, -1.2346403e+000, 2.4397244e-001,
1.7465307e+000, -2.6842832e+000, 1.9292824e+000, -9.7800999e-001, -2.8058302e-002,
2.6119441e+000, -5.3018505e+000, 5.6613819e+000, -4.2211602e+000, 2.6540068e+000,
-8.1906648e-001, -2.0643901e+000, 4.2966192e+000, -4.2986929e+000, 2.7495472e+000,
-1.0375900e+000, -4.3599127e-001, 1.4387147e+000, -1.4319766e+000, 7.2474101e-001,
-1.0662714e-001, 1.2747497e-001, -2.8321606e-001, 1.8133215e-001, -5.5916210e-002} ;

const float den_yyh[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_hp[7] = { 7.60790003e-001, -4.56474002e+000, 1.14118500e+001, -1.52158000e+001,
1.14118500e+001, -4.5647400e+000, 7.60790003e-001 };

const float den_hp[7] = { 1.00000000e+000, -5.45387055e+000, 1.24164881e+001, -1.51024974e+001,
1.03499935e+001, -3.78890907e+000, 5.78801429e-001 };

89

B.4 INITIO.ASM for LMS code

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhkhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxd
*

* INITALIZE 1/0 ROUTINE

*
khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhdhrddxd

.global _init_io

hhkhkkkhhkhkhhkhhkhkdhhdhhdhhdhhhhhdhhhdhhdhhhhhdhhhhdhhdhhhhhdhhdhhhdhdddhhkdhhhdxsk
*

* Set C31 for LS| Control

*
hhkhkkkhhkhkhhhhhkdhhdhhdhhdhhdhhhhhdhhhdhhhhhdhhdhhdhkhdhhhhdhhdhhhdhhddhkdhhhdxsk

.data

BUSADDR .word 00808064h ; ADDRESS OF BUS CONTROL REGISTER
BUSDATA .word 00000900h ; VALUE FOR LSl CARD GIVES ZERO

; WAIT STATES, 32k BANK SIZE,

; EXTERNAL READY CONTROL

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhhrddxd
*

* INITIALIZE CONSTANTS

*
khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhhhhdhhhhhhhhdhhhhhddhhdrhhrddxd

CH_O .word 550002h ; CH_O ADDRESS
™1 .word 550005h ; TIMER 1 REGISTER
CH_1 .word 550006h ; CH_1 ADDRESS
UCR .word 550008h ; USER CONTROL REG.
ACR .word 55000Ah ; AMELIA CONTROL REG.
IMR .word 55000Bh ; INTERRUPT MASK REG.
CFR .word 55000Fh ; CONFIGURATION REGISTER
VALUES .word 0A4000000h ; A4000000h

.word OE8010000h ; E8010000h 2 kHz
* .word OFA010000h ; FA010000h 8 kHz

.word 000B20000h ; 00B20000h

.word O8DFF0000h ; 8DFF0000h

.word 000010000h ; 00010000h

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhdhhhhhhhhhhhdhhhhhdhddrhdhrddxd

*

* INITALIZE 1/0O Routine

*
khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhdhrddxd

text
_init_io:
LDP BUSADDR,DP ; DPPOINTER SET PRIOR TO

; USING DIR. ADDR. MODE
LDI @BUSADDR,ARO ;

90

LDI
STI

LDP
LDI
LDI
STI

LDI
LDI
STI

LDI
LDI
STI

LDI
LDI
STI

LDI
LDI
STI

RETS

@BUSDATA,RO
RO,*ARO

@VALUESDP
@VALUESRO
@UCR,ARO
RO,*ARO

@VALUES+1,R0
@TM1,ARO
RO,*ARO

@VALUES+2,R0
@ACR,ARO
RO,*ARO

@VALUES+3,R0
@CFR,ARO
RO,*ARO

@VALUES+4,R0
@IMR,ARO
RO,*ARO

; SET BUS. REG. FOR LSl CARD

; SET DATA PAGE POINTER

; SET USER CONTROL REGISTER

; FOR BURR_BROWN DAUGHTER MOD.
; VAL = A4000000h

; SET TIMER 1 REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = FFC40000h

; SET AMELIA CONTROL REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = 00B20000h

; SET CONFIGURATION REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = 8DFF0000h

; SET INTERRUPT MASK REGISTER
; FOR BURR_BROWN DAUGHTER MOD.
; VAL = 00010000h

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhhhhhhhhhhhhdhhhhhddhhddrhhrddxd

91

B.5 FILTER.ASM for LMS code

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhkhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxd

*

* Adaptive-Q Filter Routine
*

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhdhrddxd

.global _filter
.global _mu,_y, u
.globa ISRO,ISR1,ISR2,ISR3
.global _hum_uy, den uy
.global _hum_uz, den uz
.global _hum_yz, den yz
.global _nhum_uyh, _den_uyh
.global _num_yyh, den yyh
.global _num_hp, _den_hp
.global _za vect, zb vect
.global _yha vect, _yhb vect
.global _Uu vect, y vect
.global _r vect, s, seed
.global _rb_vect, rp_vect
.global _nu
.global _ux, _uf
khkkhkkhkhhhhhkhkhkkkkkhkhkhkhhhhhhhhhhhdhhhhdddhhhhhhkhkkhhhdddddhdhhhkxxxxxxixkx
*
* Interrupt Vector Specifications
*

Khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhhrddxd

.sect ".int0"

BR ISRO

.sect ".intl"

BR ISR1

.sect ".int2"

BR ISR2

.sect ".int3"

BR ISR3
hhkhkkkhhkhkhhdhhkhkdhhdhhdhhdhhdhhdhhdhhhdhhhhhdhhhhdhhdhhhhdhhdhhhdhhddhhkdhhhdxsd
*

* Vector Addresses & Constants
*

khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhdhrddxd

.data
ord .Set 28 ;
M .set 15 ;
NORM 1 float 1.09225e+4 : REPRESENTS 1V

NORM_2 float 9.155552843e-5 ;

92

END .word 40000000h ;

MID .word 08000000h ;

IMR .word 55000Bh ; INTERRUPT MASK REG.
CH.O0 .word 550002h ; CH_O ADDRESS

CH_1 .word 550006h ; CH_1 ADDRESS
numuy_addr word _num_uy X

denuy_addr word _den_uy X

numuz_addr word _num_uz X

denuz_addr word _den uz X

numyz_addr word _num_yz ;

denyz_addr word _den yz ;
numuyh addr .word _num_uyh X
denuyh_addr .word _den_uyh X
numyyh addr .word _num_yyh ;
denyyh_addr .word _den_yyh ;
numhp_addr .word _num_hp X
denhp_addr word _den_hp X

yvect_addr word _y vect ;
uvect_addr word U vect X
zavect_addr word _za vect X
Zbvect_addr word _zb vect X

yhavect_addr .word _yha vect ;
yhbvect addr .word _yhb vect ;

rvect_addr word _r_vect X
rpvect_addr word _rp_vect X
rbvect_addr word _rb vect X
nu_addr word _nu X
ux_addr word _ux X
uf_addr word _uf X

hhkkkhkkhkkhhkkhhkhhhkhhhhhkhhhkhhhhhhdhhkhhhkhhhdhhhhhkhhhhhhdhhhhhddhhddrhdhrddxd

*

* filter Routine
*

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhhhhhhhhhhhhdhhhhhddhhddrhhrddxd

text

filter:

khkkkkkkkkhkk Output U & Input Y hhkkkhkkhkkhhkkhhkkhhkhhhkkhhhhhdhhhhhdhhhxdkx

OR O01hJlE ; ENABLE INTERRUPT O

OR 2000h,ST ENABLE ALL INT IN IE REG
IDLE ; WAIT FOR INTERRUPT
AND 1FFFh,ST ; RESET GIE TO ZERO

AND OFFEh,IE DISABLE INTERRUPT ZERO

hhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhdhhdrhdhrddxk

93

LDI @zavect_addr,ARO ;
LDI @zbvect_addr,AR1 ;
LDI @yhavect_addr,AR2 ;
LDI @yhbvect_addr,AR3 ;
LDI @rvect_addr,AR4 ;
LDI @rbvect_addr, AR5 ;
LDI @rpvect_addr, AR6 ;
LDI @yvect_addr, AR7 ;

LDI ord-1,IR0 ;
LDI ord,IR1 ;

LDl ord-1,RC :
RPTB shiftl :
LDF *+ARO(IR0),R0 :
| LDF *+ARL(IR0),R1 :
LDF *+AR2(IR0),R2 :
| LDF *+AR3(IR0),R3 :
LDF *+AR4(IR0),R4 :
| LDF *+AR5(IR0),R5 :
LDF *+ARG6(IR0),R6 :
| LDF *+AR7(IR0),R7 :
STF RO*+ARO(IR1) :
| STF RL*+AR1(IR1) :
STF R2*+AR2(IR1) :
| STE R3*+AR3(IR1) :
STF R4*+AR4(IR1) :
| STE R5*+ARS5(IR1) :
STF R6*+AR6(IR1) :
| STF R7*+AR7(IR1) :
SUBI 1RO :
shiftl: SUBI 1,IR1 :

LDl @yvect_addr,ARO :

LDF @ y,RO ;
STF RO*ARO ;

khkkkkkhkkkhkkhkkkkk TF from U tO Za*********************************

LDI @numuz_addr,ARO ;
LDI @uvect_addr,AR1 ;
LDI @denuz_addr, AR2 ;
LDI @zavect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

94

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 :
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 :

STF R2,@ za vect ;

khkkkkkkhkkhkkkhkkhkx TF from Y tO Zb Khhkkkkkhhkkhhkkhhhhhkhhhdhhhhhhhhdrhhxdxx

LDI @numyz_addr,ARO ;
LDI @yvect_addr,AR1 ;
LDI @denyz_addr,AR2 ;
LDI @zbvect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 :

STF R2,@ zb vect ;

khkkkkkkkkhkkhkhkkhkk TF from U tO Y HAT hhkkkhkkhhkkhkkhhkkhhkhhkkhhkhhkkdkkkhxixkx

LDI @numuyh_addr,ARO ;
LDI @uvect_addr,AR1 ;
LDI @denuyh_addr,AR2 ;
LDI @yhavect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;
LDI ord-1,RC ;
RPTS ;

MPYF3 *++AR2(1),* ++AR3(1),R0 :
| SUBF3 RO,R2,R2 ;

95

SUBF3 RO,R2,R2 ;

STF R2,@_yha vect ;

khkkkkkhkkkkkkhkkkkx TF from Y to Y HAT khkkkhhkkhkkhhkkhhkkhhhkhhhhhhhhhrhhxk

LDI @numyyh_addr,ARO ;
LDI @yvect_addr, AR1 ;
LDI @denyyh_addr,AR2 ;
LDI @yhbvect_addr, AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 :

STF R2,@_yhb_vect ;

khkkkkkhkkkhkkhkhkkkkx Y - Y HAT dhkkkhhkkhhkkhhkkhhhhhdhhkhhhdhhhhhhhhddhhhrkhdx

LDF @_yha vect,RO ;
LDF @ _yhb_vect,R1 ;
LDF @_y_vect,R3 ;
ADDF RO,R1 ;
SUBF R1,R3 ;
STF R3,@ r_vect ;

khkkkkkhkkkhkkhkhkkkkx TF from R to RX hhkkkhkkkhhkhhkhkhhkhhhkhhkhhhkhhhhdhhhhxixkx

LDI @numhp_addr,ARO ;
LDI @rvect_addr,AR1 ;
LDI @denhp_addr,AR2 ;
LDI @rbvect_addr,AR3 ;

LDF 0.0,RO ;
LDF 0.0,R2 ;
LDI 6,RC
RPTS ;

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

96

LDI 5RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 :

| SUBF3 ROR2,R2 :
SUBF3 RO,R2,R2 ;

STF R2,@ rb_vect ;

khkkkkkhkkkkkhkkkkkx TF from R to R BAR khkkkkkhhkkhkhkkhhhkhhkhhhkhhkhhhkdhkhhxixkx

LDI @numuy_addr,ARO ;
LDI @rbvect_addr,AR1 ;
LDI @denuy_addr,AR2 ;
LDI @rpvect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* AR1++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R3 :

STF R3,@_rp_vect ;

kkkk*k W = W + MU * ERR * UX hhkkkhkkkhkkhhkkhhkdhhkhhhkhhkhhhdhhhhhhhhhrhxixx

LDI @ux_addr,ARO ;
LDI @nu_addr,AR1 ;

LDF @ _mu,RO ;
LDF @_y_ vect,R2 ;
MPYF R2,R0 ;

LDI M-LRC :
RPTB WLOOP :
MPYF3 RO,*ARO++(1),R2 :
ADDF *ARLR2 :

WLOOP: STF R2*ARIL++(1) :

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhkhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxd

LDI @ux_addr,ARO ;
LDI @uf_addr,AR1 ;

97

LDI M-2,IR0 ;

LDI M-LIR1 :
LDl M-2RC :
RPTB shiftd :

LDF *+ARO(IR0),R0 :

| LDF *+ARL(IR0),R1 :

STF RO*+ARO(IR1) :

| STF RL*+AR1(IR1) :

SUBI 1RO :

shiftd: SUBI 1,IR1 :

* LDF 0.0,RO ;
LDF @_rp vect,RO X
* SUBF R1,RO ;

STF RO,@ ux ;

LDF @ rb vect,RO X
STF RO,@_uf ;

Khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhdhrddxd

LDI @nu_addr,ARO ;
LDI @uf_addr,ARL :

LDF 0.0,RO ;
LDF 0.0,R2 ;
LDI M-1,RC ;
RPTS ;

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

STF R2,@ s ;

hhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhhhhdhhhdhhhhhhhhdhhhhhdhhdrhhrddxd

LDI @uvect_addr,ARO ;

LDI ord-1,IR0 ;
LDI ord,IR1 ;

LDl ord-1,RC :
RPTB shift5 :
LDF *+ARO(IR0),R0 :
STF RO*+ARO(IR1) :
SUBI 1RO :
shifts: SUBI 1,IR1 :

kkkkkkkk%x U VECT = _(S+(Za+zb)) khkkhkkkkkhkhkkkhkhkkkhkhkkhkhkkkkhkhkkkkhkkkk,*x%x
LDF @ za vect,RO X
LDF @ zb vect,R1 ;

LDF @ sR2 ;
ADDF RO,R1 ;

98

LDF 0.0,R2 ;
* SUBF R1,R2 ;
ADDF R1,R2 ;
LDF 0.0,R3 ;
SUBF3 R2,R3,R2 ;
LDF 25R0 ;
CMPF R2,RO ;
BLT LT ;
LDF -25R0 ;
CMPF R2,RO ;
BGT GT ;
STF R2,@ u vect X
STF R2,@ u ;
B ouT ;
LT: STF RO,@ u vect X
STF RO,@ u ;
B ouT ;
GT: STF RO,@ u vect X
STF RO,@ u ;
OUT: NOP ;

hhkkkhkkhhkkhhkhhhkhhhkhhhhhkhhhhhhdhhkhhhhhhdhhhhhdhhhhhhhdhhdhhhhhhhdddrhdhrddxd

LDF @NORM_1,R3 ;LOAD NORM_1

LDF @ uR0 LOAD U
MPYF R3RO - NORMALIZE BETWEEN 7FFF & 8000
BGE POS 2 : BRANCH IF INPUT VALUE +VE
FIX ROR3 : CONVERT FLOATING POINT TO INT.
LDl OFFFFh,R1 :
ADDI RLR3 - ADD 65535 TO NEG. VALUE
BR OUT.2 . GOTO SENDOUT
POS_2:
FIX ROR3 : CONVERT FLOATING POINT TO INT.
OUT _2:

LDI @CH_0,AR2 ; AR2-CH_01/0 ADDR

" SHIFT VALUE

LDl 16R1

ASH R1,R3 ; FFFEXXXX / 0000X XXX => XXXX0000

STI R3*AR2 ; OUTPUT THROUGH D/A CH_O

RETS ;
khkkhkkhkhkhhhhkhkhkkkkkhkhkhkhhhhhhhhhhhhhhhhdddhhhhhhkhkkhhkhdddddhdhhhkxxxxxxixkx
ISRO

PUSH ST ; SAVE STATUS REGISTER

PUSH DP ; SAVE DATA PAGE POINTER

PUSH [E

; SAVE INTERRUPT ENABLE

99

LDI @IMR,AR2 ; IMR FOR DAUGHTER MOD.
LDl *AR2,RO ; CLEAR INTERRUPT MASK

AND OFFFEh,IF ; RESET INTERRUPT FLAG
khkkkkkkkkkk GmerateWhlte Noi$*********************************
LDl @_seed,RO ;

LDI @END,R1 ;

AND RO,R1 ;
LDI @MID,R2 ;
AND RO,R2 ;
LDl -27,R3 ;
LSH R3R2 ;
LDl -30,R3 ;
LSH R3R1 ;
XOR R1,R2 ;
LDl 1,R3 ;
LSH R3R0 ;
OR3 RO,R2,RO;

STI RO,@_seed ;

LDF @NORM_1,R3 ;LOAD VALUE STORED AT NORM_1
FLOAT R2R1 ;

SUBF 0.5R1 ;

MPYF 3R1 ;

MPYF3 R3,R1,R2 ; CONVERT (+-)3V TO ORIGINAL FORM

BNN POS 1 ;
FIX R2R4 :
LDl OFFFFhR1 :
ADDI RL,R4 ;
BR OUT. 1 ;
POS_1:
FIX R2R4 . CONVERT TO INTEGER

OUT _1:

LDl 16,R1 0000X XXX / FFFFXXXX => XXXX0000
ASH R1R4 ;

khkkkkkkkkhkk Output U & Input Y hhkkkhkkhhkkhkkhhkkhhkhhhhhkhhhkhhhhhkhkkddkx

LDI @CH_0,AR2 ; AR2-CH_01/0 ADDR

LDI @CH_1,AR3 ; AR3-CH_11/0 ADDR

STI R4*AR3 OUTPUT THROUGH D/A CH_1
LDl *AR2,RO ; READ A/D PORT

LDl -16,R1 ; SHIFT VALUE

LDF @NORM_2,R3 ;LOAD VALUE STORED AT NORM_2

100

ASH R1,RO XXXX0000 => FFFFEXXXX / 0000X XXX

FLOAT RO,R2 CONVERT TO FLOATING POINT VALUE

MPYF3 R3,R2,RO i NORMALIZE VALUE TO (+-)3V
STF RO,@.y ; STOREINY

POP IE RESTORE INTERRUPT ENABLE
POP DP ; RESTORE DATA PAGE POINTER
POP ST ; RESTORE STATUS REGISTER
RETI RETURN FROM INTERRUPT

khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhdhhdrhdhrddxd

ISR1 RETI ;INT1
ISR2 RETI ;INT2
ISR3 RETI ;INT3
ISR4 RETI ; XINTO
ISRS RETI ; RINTO
ISR6 RETI ; TINTO
ISR7 RETI ; TINT1
ISR8 RETI ; DINTO

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhhrddxk

B.6 ADAPT.CMD for LMS code

/***/

[* Thislinker command file is used to specify how the link */
[* phaseisto be performed. Input files, output files and */
[* other options are specified in this command file. */

/***/

[* Specify input files */

adapt.obj

init_io.obj

filter.obj

[* Specify linker output files */

-m adapt.map [* Generate MAP File */

-0 adapt.out /* name executable output module */
[* (default a.out) */

[* Specify linker options */

-C /* Link Using C Conventions */

-stack 0x100 [* Stack */

-heap 0x100 [* Heap */

-l rts30.lib [* Get Run-time Support */

101

[* Describe memory configuration for linker memory allocation
[* scheme. Specify 32K in Bank 0 and (optional) 512K in Bank 1

/* this allows the command file to be used for all C31
[* standard memory variants

[* give names to the various regions of memory available

/* tothe C31

[* use last reflection of BankO; allow space for monitor

MEMORY
{

BANKO: origin = 0478400h length = 00007bffh
BANKZ: origin = 0480000h length = 0001ffffh
DPRAM: origin = 0500000h length = 000007ffh
IRAMO: origin = 0809800h length = 00000400h
IRAM1: origin = 0809c00h length = 000003bfh
VECS: origin = 0809FCOh length = 00000040h

}

[* specify how each output section isto be
[* dlocated into memory regions
SECTIONS
{
text: >BANKO
bss. > BANK1
dataa > BANK1
const: > BANK1
.cinit: > BANK1
Sstack: > BANK1
Sysmem: > BANK1
anit: >VECS
Int0 0809fclh: {} /* external interrupt O
ntl 0809fc2h: {} /* external interrupt 1
nt2 0809fc3h: {} /* external interrupt 2
Int3 0809fcdh: {} /* external interrupt 3
int4 0809fc5h: {} /* sport O tx
nt5 0809fceh: {} /* sport O rx
nt6 0809fcoh: {} /* timer Oint
ant7 0809fcah: {} /* timer 1int
nt8 0809fcbh: {} /* DMA channel

}
/* end of adapt.cmd

102

*/
*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

B.7 MAKEFILE for LMS code

@ECHO OFF
RENq**
REM *

REM * Adaptive-Q Filter Makefile

REM *

RENq**

@ECHO ON

ac30 adapt.c

cg30 adapt

asm30 adapt.asm
asm30 init_io.asm
asm30 filter.asm
Ink30 adapt.cmd

B.8 ADAPT.C for Lattice code

/***/

I* */
[* adapt.c */
I* */

/***/

#include <math.h>
#include <stdlib.h>
#include "tfmod8.h"
#include "initvecs.h"

/*** defined constants ***/

#define M 8 /* order of lattice filter */
#define ORDER 28 [* order of system */

[*** variables ***/

float mu_theta;
float mu_nu;

float QL atticeParamg[M+1];
float DL atticeParamg{M+1];
float PFLatParamsM+1];
float gradient{M+1];

float nu[M+1];

float sineg[M];

103

float cosinegM];
float theta[M];
float old_theta]M];

float u,y, s, gm, gm _hold, post_input;

int seed:
int i,j;

[*** function prototypes ***/
extern void init_io(void);

extern void filter(void);
extern void postfilt(void);

/***/

I* */
/* Main Program: Adapt.c */
I* */

/***/

void main(void)

{

mu_theta = 0.001,
mu_nu = 0.75;

seed = 16671549;

for (iI=0; i < M+1; i++)

{
QL atticeParamg[i]=0.0;
DL atticeParamg[i]=0.0;
PFLatParamg[i]=0.0;
nu[i]=0.0;

}

for (iI=0; i < M; i++)

{
sineq[i]=0.0;
cosineyi]=1.0;
theta[i]=0.0;
old_thetd[i]=0.0;

}

u=0.0;

104

init_io();

while (i > 0)

{
filter();

for (j=0;) < M; j++)
{
if (abs(theta[j]) > (3.1415926/2))

{
theta[j]=old_theta[j]:

}
theta[j]=0.00;
sineg|j]=sin(thetalj]);
cosinesfj]=cos(thetd[j]):
}
postfilt();
}

}
B.9 INITVECSH for Lattice code
float u_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0

0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.0,
Ol

05
0 0.0,00};

.0, 0.0, 0.0, 0.
.0, 0.0, 0.0, 0.

floaty_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float za vect[29] ={ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float zb_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0

0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,0.0,0.0,0.0,0.0};

float yha vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float yhb_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

105

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0};

float r_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float rp_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

float rb_vect[29] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0};

B.10 TFMODS8.H for Lattice code

const float num_uy[29] = { 0.0000000e+000, -1.5904315e-004, 4.2409415e-004, -4.9284109e-002,
1.9893541e-001, -3.1758832e-001, 3.1991080e-001, -2.5978062e-001, 1.6495562e-001,
1.3093236e-002, -2.6836145e-001, 4.0050110e-001, -3.8240303e-001, 3.3581286e-001,
-2.5461830e-001, 9.4364512e-002, 9.4201270e-002, -1.9247663e-001, 2.0855357e-001,
-2.0134025e-001, 1.4533480e-001, -4.3740757e-002, -3.3162386e-002, 3.8873874e-002,
-2.9871692e-002, 3.2910294e-002, -3.7478365e-002, 2.3224869e-002, -9.5386817e-004} ;

const float den_uy[29] = { 1.0000000e+000, -3.2865226e+000, 4.6603098e+000, -3.2893508e+000,
4.1916269e-001, 1.6767313e+000, -3.1235753e+000, 4.3896353e+000, -3.9919281e+000,
1.0311235e+000, 2.2520882e+000, -3.7354589e+000, 4.1809189e+000, -4.2092994e+000,
2.8734239e+000, 4.5056639e-002, -2.5650890e+000, 3.2889473e+000, -2.7153134e+000,
1.4414222e+000, 8.5999084e-002, -1.1600308e+000, 1.1084441e+000, -3.9557971e-001,
-1.2658787e-002, -1.2413373e-001, 2.8652604e-001, -1.8344510e-001, 5.6467152e-002};

const float num_uz[29] = { 0.0000000e+000, 4.4880500e-002, -7.8615094e-002, 3.5876926e-002,
1.7895885e-003, -7.4897554e-003, 1.7182858e-002, -6.9484365e-002, 8.1450245e-002,
-1.6089545e-002, -6.8375095e-004, -1.4705265e-002, -1.0106208e-002, 4.9611529e-002,
-4.2922180e-002, 3.5838479e-003, -2.6290233e-004, 4.8756548e-003, 1.3150029e-002,
-2.3821924e-002, 1.0976638e-003, 1.3481585e-002, -1.0471705e-003, -6.0964111e-003,
3.2565513e-003, 6.9405164e-003, -1.8129320e-003, -4.1746617e-003, 1.4782862e-004};

const float den_uz[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_yz[29] = { 0.0000000e+000, -1.9824451e-001, 6.5783635e-001, -7.1735758e-001,
2.5201745e-001, 4.6119829e-001, -1.1576058e+000, 1.6506510e+000, -2.0641613e+000,
1.8259873e+000, -9.6363275e-001, -2.5721269e-002, 7.9107211e-001, -1.2764404e+000,
1.5898900e+000, -1.3052523e+000, 6.1665461e-001, 7.2693068e-002, -4.5457441e-001,
5.8160015e-001, -4.9605233e-001, 2.2580249e-001, -4.6555229e-002, -8.4845841e-003,
-7.5207262e-002, 8.1771196e-002, -1.2539931e-002, -1.4700859e-002, 1.1441345e-002};

const float den_yz[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,

106

4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_uyh[29] ={ 0.0000000e+000, -1.5904315e-004, 4.2409415e-004, -4.9284109e-002,
1.9893541e-001, -3.1758832e-001, 3.1991080e-001, -2.5978062e-001, 1.6495562e-001,
1.3093236e-002, -2.6836145e-001, 4.0050110e-001, -3.8240303e-001, 3.3581286e-001,
-2.5461830e-001, 9.4364512e-002, 9.4201270e-002, -1.9247663e-001, 2.0855357e-001,
-2.0134025e-001, 1.4533480e-001, -4.3740757e-002, -3.3162386e-002, 3.8873874e-002,
-2.9871692e-002, 3.2910294e-002, -3.7478365e-002, 2.3224869e-002, -9.5386817e-004} ;

const float den_uyh[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_yyh[29] ={ 0.0000000e+000, 6.1331992e-001, -1.2346403e+000, 2.4397244e-001,
1.7465307e+000, -2.6842832e+000, 1.9292824e+000, -9.7800999e-001, -2.8058302e-002,
2.6119441e+000, -5.3018505e+000, 5.6613819e+000, -4.2211602e+000, 2.6540068e+000,
-8.1906648e-001, -2.0643901e+000, 4.2966192e+000, -4.2986929e+000, 2.7495472e+000,
-1.0375900e+000, -4.3599127e-001, 1.4387147e+000, -1.4319766e+000, 7.2474101e-001,
-1.0662714e-001, 1.2747497e-001, -2.8321606e-001, 1.8133215e-001, -5.5916210e-002} ;

const float den_yyh[29] = { 1.0000000e+000, -2.6732026e+000, 3.4256695e+000, -3.0453783e+000,
2.1656934e+000, -1.0075518e+000, -1.1942929e+000, 3.4116253e+000, -4.0199864e+000,
3.6430676e+000, -3.0497623e+000, 1.9259230e+000, -4.0241287e-002, -1.5552926e+000,
2.0543575e+000, -2.0193335e+000, 1.7315302e+000, -1.0097455e+000, 3.4233749e-002,
4.0383223e-001, -3.4999218e-001, 2.7868387e-001, -3.2353246e-001, 3.2916130e-001,
-1.1928593e-001, 3.3412439e-003, 3.3099793e-003, -2.1129510e-003, 5.5094230e-004};

const float num_hp[7] = { 7.60790003e-001, -4.56474002e+000, 1.14118500e+001, -1.52158000e+001,
1.14118500e+001, -4.5647400e+000, 7.60790003e-001 };

const float den_hp[7] = { 1.00000000e+000, -5.45387055e+000, 1.24164881e+001, -1.51024974e+001,
1.03499935e+001, -3.78890907e+000, 5.78801429e-001 };

107

B.11 INITIO.ASM for Lattice code

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhkhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxd
*

* INITALIZE 1/0 ROUTINE

*
khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhdhrddxd

.global _init_io

hhkhkkkhhkhkhhkhhkhkdhhdhhdhhdhhhhhdhhhdhhdhhhhhdhhhhdhhdhhhhhdhhdhhhdhdddhhkdhhhdxsk
*

* Set C31 for LS| Control

*
hhkhkkkhhkhkhhhhhkdhhdhhdhhdhhdhhhhhdhhhdhhhhhdhhdhhdhkhdhhhhdhhdhhhdhhddhkdhhhdxsk

.data

BUSADDR .word 00808064h ; ADDRESS OF BUS CONTROL REGISTER
BUSDATA .word 00000900h ; VALUE FOR LSl CARD GIVES ZERO

; WAIT STATES, 32k BANK SIZE,

; EXTERNAL READY CONTROL

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhhrddxd
*

* INITIALIZE CONSTANTS

*
khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhhhhdhhhhhhhhdhhhhhddhhdrhhrddxd

CH_O .word 550002h ; CH_O ADDRESS
™1 .word 550005h ; TIMER 1 REGISTER
CH_1 .word 550006h ; CH_1 ADDRESS
UCR .word 550008h ; USER CONTROL REG.
ACR .word 55000Ah ; AMELIA CONTROL REG.
IMR .word 55000Bh ; INTERRUPT MASK REG.
CFR .word 55000Fh ; CONFIGURATION REGISTER
VALUES .word 0A4000000h ; A4000000h

.word OE8010000h ; E8010000h 2 kHz
* .word OFA010000h ; FA010000h 8 kHz

.word 000B20000h ; 00B20000h

.word O8DFF0000h ; 8DFF0000h

.word 000010000h ; 00010000h

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhdhhhhhhhhhhhdhhhhhdhddrhdhrddxd

*

* INITALIZE 1/0O Routine

*
khhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddhhdrhdhrddxd

text
_init_io:
LDP BUSADDR,DP ; DPPOINTER SET PRIOR TO

; USING DIR. ADDR. MODE
LDI @BUSADDR,ARO ;

108

LDI @BUSDATA,RO ;

STl RO*ARO ; SET BUS. REG. FOR LSl CARD

LDP @VALUESDP ; SET DATA PAGE POINTER

LDI @VALUESRO ; SET USER CONTROL REGISTER

LDI @UCR,ARO ; FOR BURR_BROWN DAUGHTER MOD.
STl RO*ARO ; VAL = A4000000h

LDl @VALUES+1,RO ; SET TIMER 1 REGISTER

LDI @TM1ARO ; FOR BURR_BROWN DAUGHTER MOD.
STl RO*ARO ; VAL = FFC40000h

LDl @VALUES+2R0 ; SET AMELIA CONTROL REGISTER
LDI @ACRARO ; FOR BURR_BROWN DAUGHTER MOD.
STI RO*ARO ; VAL = 00B20000h

LDl @VALUES+3 R0 ; SET CONFIGURATION REGISTER

LDI @CFR,ARO ; FOR BURR_BROWN DAUGHTER MOD.
STl RO*ARO ; VAL = 8DFF0000h

LDI @VALUES+4,R0 ; SET INTERRUPT MASK REGISTER

LDI @MR,ARO ; FOR BURR_BROWN DAUGHTER MOD.
STl RO*ARO ; VAL = 00010000h

RETS

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhhhhhhhhhhhhdhhhhhddhhddrhhrddxd

B.12 FILTER.ASM for Lattice code

Khhkkkhkkhhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhdhhdrhhrddxk

*

* Adaptive-Q Filter Routine
*

khhkkkhkkhhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhddddrhdhrddxd

.global _filter

.global _mu_theta, mu nu,_y, u,_s
.globa ISRO,ISR1,ISR2,ISR3
.global _hum_uy, _den uy
.global _hum_uz, den uz
.global _hum_yz, den yz
.global _num_uyh, _den_uyh
.global _num_yyh, den yyh
.global _num_hp, _den_hp
.global _za vect, zb vect
.global _yha vect, _yhb vect
.global _Uu vect, y vect
.global _r_vect, old theta
.global _rb_vect, rp_vect
.global _PFLatParams
.global _QLatticeParams

109

.global _DLatticeParams

.global _nu, _sines, _cosines, _theta
.global _gm_hold
.global _gradient, _seed

hhkhkkkhhkhkhhhhhkdhhhdhhdhhdhhhhhhhhdhhhdhhhhhdhhdhhdhhdhhdhhdhhdhhhdhdddrhkdhhddxsd
*

* Interrupt Vector Specifications

*

hhkkkhkkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhhhhdhhhhhhhhhhhdhhhhhddhhddrhdhrddxd

.Sect ".int0"
BR ISRO
.Sect ".intl"
BR ISR1
.Sect ".int2"
BR ISR2
.Sect ".int3"
BR ISR3

hhkhkkkhhkhkhhhhkhkdhhhhdhhkdhhhhhhhhdhhhdhhhhdhhdhhdhhdhhdhhdhhdhhhdhdddhkdhhddxsk
*

* Vector Addresses & Constants

*

Khhkkkhkkhkhkkhhkkhhhhhkhhhhhhhhhhhhhhdhhkhhhhhhhhhhhhhhhhhdhhhhhdhhdrhdhrddxd

.data

ord .Set 28 ;

M .set 8 ;

NORM_1 float 1.09225e+4 ; REPRESENTS 1V
NORM_2 float 9.155552843e-5 ;

END .word 40000000h ;

MID .word 08000000h ;

IMR .word 55000Bh ; INTERRUPT MASK REG.
CH_O .word 550002h ; CH_O ADDRESS
CH_ 1 .word 550006h ; CH_1 ADDRESS
numuy_addr word _num_uy X

denuy_addr .word _den_uy X

numuz_addr word _num_uz X

denuz_addr word _den uz X

numyz_addr word _num_yz ;

denyz_addr word _den yz ;
numuyh addr .word _num_uyh X
denuyh_addr .word _den_uyh X
numyyh addr .word _num_yyh ;
denyyh_addr word _den_yyh ;
numhp_addr word _num_hp X
denhp_addr word _den_hp X

yvect_addr word _y vect ;
uvect_addr word U vect X
zavect_addr word _za vect X

110

Zbvect_addr word _zb vect X
yhavect_addr .word _yha vect ;
yhbvect addr .word _yhb vect ;

rvect_addr word _r_vect X
rpvect_addr word _rp_vect X
rbvect_addr word _rb vect X
g_addr word _QLatticeParams
d_addr word _DLatticeParams
post_addr word _PFLatParams

nu_addr word _nu X
grad_addr .word _gradient ;
sin_addr.word _sines X
cos_addr .word _cosines X
theta_addr word _theta X
oldth_addr word _old theta X

hhkkkhkkhkkhhkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhhhhdhhhhhhhhdhhhhhdhhdrhhrddxd

*

* filter Routine
*

khhkkkkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxk

text

filter:

khkkkkkkkkhkk Output U & Input Y hhkkkhkkhkkhhkkhhkkhhkhhhkkhhhhhdhhhhhdhhhxixkx

OR O01hJlE ; ENABLE INTERRUPT O

OR 2000h,ST ENABLE ALL INT IN IE REG
IDLE ; WAIT FOR INTERRUPT
AND 1FFFh,ST ; RESET GIE TO ZERO

AND OFFEh,IE DISABLE INTERRUPT ZERO

hhkkkhkkhkkhhkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhddrhdhrddxd

LDI @zavect_addr,ARO ;
LDI @zbvect_addr,AR1 ;
LDI @yhavect_addr,AR2 ;
LDI @yhbvect_addr,AR3 ;
LDI @rvect_addr,AR4 ;
LDI @rpvect_addr, AR5 ;
LDI @rbvect_addr,AR6 ;
LDI @yvect_addr, AR7 ;

LDI ord-1,IR0 ;
LDI ord,IR1 ;

LDI ord-1,RC ;

RPTB shiftl :
LDF *+ARO(IR0),R0 :

111

| LDF *+ARL(IRO)R1 :
LDF *+AR2(IR0),R2 :
I LDF *+AR3(IRO)R3 :
LDF *+AR4(IR0),R4 :
I LDF *+AR5(IRO)R5 :
LDF *+ARG6(IR0),R6 :
| LDF *+AR7(IRO0),R7 :
STF RO*+ARO(IR1) :

|| STF R1*+AR1(IR1) :
STF R2*+AR2(IR1) :
|| STF R3,*+AR3(IR1) :
STF R4*+AR4(IR1) :
|| STF R5,* +AR5(IR1) :

STF R6*+AR6(IR1) :

I STF R7*+AR7(IR1) :
SUBI 1RO :

shiftl: SUBI 1,IR1 :

LDl @yvect_addr,ARO :

LDF @ y,RO ;
STF RO*ARO ;

khkkkkkhkkkhkkhkkkkkx TF from U tO Za*********************************

LDI @numuz_addr,ARO ;
LDI @uvect_addr,AR1 ;
LDI @denuz_addr, AR2 ;
LDI @zavect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* AR1++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 ;

STF R2,@ za vect ;

khkkkkkkhkkhkkkhkkhkx TF from Y tO Zb Khhkkkkkhkkhhkkhhhdhhkhhhdhhhhhhhhdhhdhxdxx

LDI @numyz_addr,ARO ;
LDI @yvect_addr,AR1 ;
LDI @denyz_addr,AR2 ;
LDI @zbvect_addr,AR3 ;

112

LDF 0.0,RO ;

LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 :

STF R2,@ zb vect X

khkkkkkhkkkkkkhkkhkk TF from U tO Y HAT hhkkkhkkhkhkkhkkhhkkhhkhhkkhhkhhkkdkkhkxixkx

LDI @numuyh_addr,ARO ;
LDI @uvect_addr,AR1 ;
LDI @denuyh_addr,AR2 ;
LDI @yhavect_addr,AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :
RPTS :

MPYF3 *ARO++(1),* AR1++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 :

STF R2,@_yha vect ;

khkkkkkkkkkkkhkkkkx TF from Y to Y HAT khkkkhhkkhkkhhkkhhkkhhkkhhkhhhhhhhhhxk

LDI @numyyh_addr,ARO ;
LDI @yvect_addr, AR1 ;
LDI @denyyh_addr,AR2 ;
LDI @yhbvect_addr, AR3 ;

LDF 0.0R0 :
LDF 00R2 :
LDl ordRC :

113

RPTS ;
MPYF3 *ARO++(1),* AR1++(1),R0 ;
|| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 ;

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R2 ;

STF R2,@_yhb_vect ;

khkkkkkhkkkhkkhkhkkkkx Y - Y HAT hhkkkhhkkhhkkhhkkhhkhhhdhhkhhhdhhhhdhhhddhhhrkhdx

LDF @_yha vect,RO ;
LDF @ _yhb_vect,R1 ;
LDF @_y_vect,R3 ;
ADDF RO,R1 ;
SUBF R1,R3 ;
STF R3,@ r_vect X

khkkkkkhkkkhkkhkhkkkk TF from R to R BAR khkkkkkhkkkhkkhhkkhhkhhhkhhkhhdkhhkhkxixkx

LDI @numhp_addr,ARO ;
LDI @rvect_addr,AR1 ;
LDI @denhp_addr,AR2 ;
LDI @rbvect_addr,AR3 ;

LDF 0.0,RO ;
LDF 0.0,R2 ;
LDI 6,RC
RPTS ;

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;
LDI 5RC
RPTS ;

MPYF3 *++AR2(1),*++AR3(1),R0 ;

|| SUBF3 RO,R2,R2 ;

SUBF3 RO,R2,R3 ;

STF R3,@ rb_vect X
kkkkkkkkhkkhkkkkhkkk*k TF fromR BARtOR POS'I' kkkhkkkkkhkhkkkhkhkkkhkhkkkkhkkkk*x

LDI @numuy_addr,ARO ;

LDI @rbvect_addr,AR1 ;
LDI @denuy_addr,AR2 ;

114

LDI @rpvect_addr,AR3 ;

LDF 0.0,R0 :
LDF 00R2 :
LDl ordRC ;
RPTS :

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 :
ADDF3 RO,R2,R2 :

LDF 0.0,RO ;

LDl ord-1,RC :
RPTS :
MPYF3 *++AR2(1),* ++AR3(1),R0 ;
| SUBF3 RO,R2,R2 :
SUBF3 RO,R2,R3 :

STF R3,@_rp_vect ;
*kkk*x CALCULATE GRADIENT khkkhkkkkkhkkkhkhkkhkhkkkhhkhkkkhkhkhkkhkhkhkkhkhkkkkhkkkk,*x%
LDI @grad_addr,ARO ;

LDI @post_addr,AR1 ;
LDI @cos_addr,AR2 ;

LDF 10RO :
LDI M-1RC ;
RPTB GTH :

MPYF3 RO*++AR1(1),R2 ;
STF R2*AR0++(1) :
GTH: MPYF3 RO,*AR2++(1),R0 ;

kkkk*k NU = NU + MU*ERR*D hhkkkhkkhhkkhkkhhkhhhkhhkhhkkhhkhhhdhhhhhdhhhrdrhdxx

LDI @d_addr,ARO ;
LDI @nu_addr,AR1 :

LDF @ mu _nu,RO ;
LDF @_y_ vect,R2 ;
MPYF R2,RO ;

LDI M,RC :
RPTB NULOOP :
MPYF3 RO,*ARO++(1),R2 ;
ADDF *ARLR2 :
NULOOP: STF R2*ARIL++(1) :

kkkkkk THETA = THETA + MU*ERR*GRADIENT khkkkkkhkkhhkkhkkhhkhkhkkhhkkhkhkdkkhkxk

LDl @oldth_addr,ARO ;
LDl @theta addr,ARL ;

LDI M-1,RC ;
RPTB OTL ;

115

LDF *AR1++(1),R0 :
OTL: STF RO*ARO++(1) :

LDI @grad_addr,AR2 ;
LDI @theta_addr,AR3 ;

LDF @ mu_thetaR6 X
LDF @_y_ vect,R7 ;
MPYF R6,R7 ;

LDI M-LRC :
RPTB SLOOP :
MPYF3 *AR2++(1),R7,R0 ;
ADDF *AR3,R0 :

SLOOP: STF RO,* AR3++(1) ;

RETS ;
khkkhkkkhkhhhhkhkhkkkkkkhkhkhhhhhhhhhhhhhhhkhddddhhhhhhkhkkhkhkhdddddhdhhhkxxxxxxixkx
ISRO

PUSH ST ; SAVE STATUS REGISTER

PUSH DP ; SAVE DATA PAGE POINTER

PUSH [E ; SAVE INTERRUPT ENABLE

LDI @IMR,AR2 ; IMR FOR DAUGHTER MOD.

LDl *AR2,RO ; CLEAR INTERRUPT MASK

AND OFFFEh,IF RESET INTERRUPT FLAG

khkkkkkkkkkk GmerateWhlte Noi$*********************************

LDl @_seed,RO ;

LDI @END,R1 ;

AND RO,R1 ;
LDI @MID,R2 ;
AND RO,R2 ;
LDl -27,R3 ;
LSH R3R2 ;
LDl -30,R3 ;
LSH R3R1 ;
XOR R1,R2 ;
LDl 1,R3 ;
LSH R3RO ;
OR3 RO,R2,RO ;

STI RO,@_seed ;

LDF @NORM_1,R3 ;LOAD VALUE STORED AT NORM_1
FLOAT R2R1 ;

SUBF 0.5R1 ;

MPYF 3R1 ;

MPYF3 R3,R1,R2 ; CONVERT (+-)3V TO ORIGINAL FORM

BNN POS 1 :

116

FIX R2R4 ;
LDl OFFFFh,R1 ;

ADDI R1R4 :
BR OUT 1 :
POS 1: '
FIX R2R4 . CONVERT TO INTEGER
OUT 1: '
LDl 16R1 0000XXXX / FFFFXXXX => XXXX0000
ASH RLR4 :

khkkkkkkkkkk Output U & Input Y hhkkkhkkhhkkhkkhhkkhhkhhhhhkhhhkhhkhhkkhkkdx

LDI @CH_0,AR2 ; AR2 - CH_01/0 ADDR

LDI @CH_1,ARS ; AR3-CH_11/0 ADDR

STI R4*AR3 OUTPUT THROUGH D/A CH_1

LDl *AR2,RO ; READ A/D PORT CH_O

LDl -16,R1 SHII——I' VALUE

LDF @NORM_2,R3 ;LOAD VALUE STORED AT NORM_2
ASH R1,RO XXXX0000 => FFFFEXXXX / 0000X XXX
FLOAT RO,R2 CONVERT TO FLOATING POINT VALUE
MPYF3 R3,R2,RO i NORMALIZE VALUE TO (+-)3V

STF RO,@.y ; STOREINY

POP IE RESTORE INTERRUPT ENABLE

POP DP ; RESTORE DATA PAGE POINTER

POP ST ; RESTORE STATUS REGISTER

RETI RETURN FROM INTERRUPT

khhkkkhkkhkhkkhhhkhhhhhkhhhhhhhhhhhhhhdhhhhhdhhhdhhhdhhhhhhhhdhhhhhdhhdrhhrddxd

ISR1I RETI ;INT1
ISR2 RETI ;INT2
ISR3 RETI ;INT3
ISR4 RETI ; XINTO
ISR5 RETI ; RINTO
ISR6 RETI ; TINTO
ISR7 RETI ; TINT1
ISR8 RETI ; DINTO

khhkkkhkkhkhkkhhkkhhhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhdhhdrhhrddxk

117

B.13 POSTFILT.ASM for Lattice code

hhkhkkkhhkhkhhdhhhkdhhdhhdhhdhhhhhhhhdhhhdhhhhhdhhhhdhhdhhdhhdhhdhhhhdddhkdhhddxsk
*

* Pogt Filter Routine

*

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhdhrddxd

.global _postfilt

.global _PFLatParams
.global _sines, _cosines
.global _gm_hold, _post_input
.global Y, _U,_Ss

.global _QLatticeParams
.global _DLatticeParams
.global _nu, _sines, _cosines
.global _za vect, zb vect
.global _Uu vect, y vect
.global _r_vect, old theta
.global _rb_vect, rp_vect

hhkhkkkhhkhkhhkhhkhkdhhhdhhdhhdhhhdhhdhhdhhhdhhhhdhhhhdhhdhhdhhdhhdhhhdhhddhhkdhhddxsd
*

* Vector Addresses & Constants

*

Khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhdhhhhhhhhhhhdhhhhhdhddrhdhrddxd

.data
ord .Set 28 ;
M .Set 8 ;
NORM_1 float 1.09225e+4 ; REPRESENTS 1V
NORM_2 float 9.155552843e-5 ;
END .word 40000000h ;
MID .word 08000000h ;
CH_O .word 550002h ; CH_O ADDRESS
CH_ 1 .word 550006h ; CH_1 ADDRESS
g_addr word _QLatticeParams;;
d_addr word _DLatticeParams;;
post_addr word _PFLatParams
nu_addr word _nu X
sin_addr word _sines X
cos_addr .word _cosines X
yvect_addr word _y vect ;
uvect_addr word U vect X
zavect_addr word _za vect X
Zbvect_addr word _zb vect X

118

rpvect_addr word _rp_vect X
rbvect_addr word _rb vect X

khhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhhhhdhhhdhhhhhhhhhhhdhhhhhdhhdrhhrddxd

*

* filter Routine
*

Khhkkkhkkhkkhhkkhhhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhdhhhhhhhhdhhhhhddhhdrhhrddxd

text

_postfilt:

khkkkkkkkkkkkkx D LattICG Fl|tef Khhkkkhkkhhkkhhkkhhkhhhkhhhhhkhhhdhhkhhddhhhxdxx

LDI @cos_addr,AR1 ;
LDI @d _addr,AR2 ;
LDI @sin_addr,AR3 ;

LDF 0.0,RO ;
LDF O0.OR1 ;
LDF 0.0,R2 ;

LDF @_rp vect,R3 X
STF R3,@_gm_hold ;

LDI M-1,RC ;
RPTB LATLP1 ;
LDF @_gm hold,R3 X
MPYF3 R3,*AR1,R0 ;
MPYF3 *+AR2(1),*AR3,R1 ;
SUBF3 R1,R0,R2 ;
MPYF3 R3,*AR3++(1),R0 ;
MPYF3 *+AR2(1),* AR1++(1),R1 ;
ADDF3 RO,R1,R3 ;
STF R3,*AR2++(1) ;
STF R2,@_gm_hold ;
LATLP1: nop ;
STF R2,*AR2 ;

LDI @d_addr,ARO :
LDI @nu_addr,AR1 :

LDF 0.0,RO ;
LDF 0.0,R2 ;
LDI M,RC
RPTS ;

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :

119

LDF 0.0,RO ;
SUBF R2,RO ;
STF RO,@_post_input ;

khkkkkkkkkkkkkx Q LaItICG Fl|tef Khhkkkkkhhkkhkkhhkhhhkhhhhhkhhhdhhkhhddhhhxdxkx

LDI @cos_addr,AR1 ;
LDI @q_addr,AR2 ;
LDI @sin_addr,AR3 ;

LDF 0.0,RO ;
LDF O0.OR1 ;
LDF 0.0,R2 ;

LDF @ rb vect,R3 X
STF R3,@_gm_hold ;

LDI M-1,RC ;
RPTB LATLP2 ;
LDF @_gm hold,R3 X
MPYF3 R3,*AR1,R0 ;
MPYF3 *+AR2(1),*AR3,R1 ;
SUBF3 R1,R0,R2 ;
MPYF3 R3,*AR3++(1),R0 ;
MPYF3 *+AR2(1),* AR1++(1),R1 ;
ADDF3 RO,R1,R3 ;
STF R3,*AR2++(1) ;
STF R2,@_gm_hold ;
LATLP2: nop ;
STF R2,*AR2 ;

LDI @q addr,ARO ;
LDI @nu_addr,AR1 :

LDF 0.0,RO ;
LDF 0.0,R2 ;
LDI M,RC
RPTS ;

MPYF3 *ARO++(1),* ARL++(1),R0 :
| ADDF3 RO,R2,R2 ;
ADDF3 RO,R2,R2 :
STF R2,@.s ;

hhkkkhkkhkhkkhhkkhhkhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhhhhhhhdhhhhhdhhdrhdhrddxd

LDI @uvect_addr,ARO ;

120

LDI
LDI

LDI
RPTB
LDF
STF
SUBI
shiftd: SUBI

ord-1,IRO
ord,IR1

ord-1,RC
shift4

*+ARO(IR0),RO
RO,*+ARO(IR1)

1,IRO
1R1

khkkkkkkkk U_VECT = _(S+ (Za+ Zb)) hhkkkhkkhhkkhkkhhkkhhkhhhkhhkhhhkhhkhhhkhkkhdx

LDF
LDF
LDF

ADDF

* LDF
LDF

ADDF
SUBF3

LDF

CMPF

BLT
LDF

CMPF

BGT
STF
STF
B
LT: STF
STF
B
GT: STF
STF
OUT: NOP

@ za vect,RO
@ zb vect,R1
@ sR2
RO,R1

0.0,R2

0.0,R3

R1,R2
R2,R3,R2

25R0

R2,R0

LT

-2.5,R0
R2,R0

GT
R2,@ u vect
R2,@ u
ouT

RO,@ u vect
RO,@ u
ouT

RO,@ u vect
RO,@ u

; %%% Uncomment for LQG Only %%%

khkkkkkkkkhkk WRITE U TO OUTPUT REGISTER khkkkkkhkkkhkkhkkkhkkhkkkhkkxkx

LDF @NORM_1,R3
LDF @ u,R0

MPYF R3,RO
BGE POS 2

FIX RORS3

LDI
ADDI

OFFFFh,R1

R1,R3

BR OUT.2

POS 2:

FIX RORS3

OUT _2:

; LOAD NORM_1
; LOAD U

NORMALIZE BETWEEN 7FFF & 8000
; BRANCH IF INPUT VALUE +VE

CONVERT FLOATING POINT TO INT.
ADD 65535 TO NEG. VALUE

- GOTO SENDOUT

; CONVERT FLOATING POINT TO INT.

121

LDI @CH_0,AR2 ; AR2-CH_01/0 ADDR

LDl 16R1 SHII——I' VALUE

ASH R1,R3 ; FFFEXXXX / 0000X XXX => XXXX0000
STI R3*AR2 OUTPUT TO D/A CH_O REG.

khhkkkkkkkkkkkkx Pog &ate Lattlce Fllta‘ hhkkkhkkhhkkhkkhhkkhhkkhkhkkhkkkhkkdx

LDI @cos_addr,AR1 ;
LDI @post_addr,AR2 ;
LDI @sin_addr,AR3 ;

LDF 0.0,RO ;
LDF O0.OR1 ;
LDF 0.0,R2 ;

LDF @ _post_input,R3 ;
STF R3,@_gm_hold ;

LDI M-1,RC ;
RPTB LATLP3 ;
LDF @_gm hold,R3 X
MPYF3 R3,*AR1,R0 ;
MPYF3 *+AR2(1),* AR3,R1 ;
SUBF3 R1,R0O,R2 ;
MPYF3 R3,*AR3++(1),R0 ;
MPYF3 *+AR2(1),*AR1++(1),R1 ;
ADDF3 RO,R1,R3 ;
STF R3,*AR2++(1) ;
STF R2,@_gm _hold ;
LATLP3: nop ;
STF R2,*AR2 ;

RETS

122

B.14 ADAPT.CMD for Lattice code

/***/

[* Thislinker command file is used to specify how the link */
[* phaseisto be performed. Input files, output files and */
[* other options are specified in this command file. */

/***/

[* Specify input files */

adapt.obj

init_io.obj

filter.obj

postfilt.obj

[* Specify linker output files */

-m adapt.map I* Generate MAP File */

-0 adapt.out [* name executable output module */
[* (default a.out) */

[* Specify linker options */

-C /* Link Using C Conventions */

-stack 0x100 [* Stack */

-heap 0x100 I* Heap */

-l rts30.lib [* Get Run-time Support */

[* Describe memory configuration for linker memory allocation */
[* scheme. Specify 32K in Bank 0 and (optional) 512K in Bank 1, */

[* this alows the command file to be used for all C31 */
[* standard memory variants */
[* give names to the various regions of memory available */
/* tothe C31 */
[* use last reflection of BankO; allow space for monitor */
MEMORY

{

BANKO: origin = 0478400h length = 00007bffh
BANKZ: origin = 0480000h length = 0001ffffh

DPRAM: origin = 0500000h length = 000007ffh
IRAMO: origin = 0809800h length = 00000400h
IRAM1: origin = 0809c00h length = 000003bfh
VECS: origin = 0809FCOh length = 00000040h

}

[* specify how each output section isto be */

123

[* alocated into memory regions */
SECTIONS

{

text: >BANKO

bss: > BANK1

dataz >BANK1

.const: > BANK1

cinit: >BANK1

Stack: > BANK1

Sysmem: > BANK1

init: >VECS
Int0 0809fclh: {} /* external interrupt O */
ntl 0809fc2h: {} /* external interrupt 1 */
nt2 0809fc3h: {} /* external interrupt 2 */
Int3 0809fcdh: {} /* external interrupt 3 */
int4 0809fc5h: {} /* sport O tx */
nt5 0809fceh: {} /* sport O rx */
nt6 0809fcoh: {} /* timer Oint */
nt7 0809fcah: {} /* timer 1int */
int8 0809fcbh: {} /* DMA channel */
}

* end of adapt.cmd */

B.15 MAKEFILE for Lattice code

@ECHO OFF

REM R b
REM *

REM * Adaptive-Q Filter Makefile

REM *

REM kkhkkhkkkhkkhkkhkhhkkhkhhkhkhhkhkkhhkhkhhkhkhhkhkkhhkhkhhkhkhhkhkkhhkhkhhhkhkhhkhkhhkhkhhkhkhhkhkhkkkkk**

@ECHO ON

ac30 adapt.c

cg30 adapt

asm30 adapt.asm
asm30 init_io.asm
asm30 filter.asm
asm30 postfilt.asm
Ink30 adapt.cmd

124

Appendix C

C.1 OPTCNTRL.M

%

% Simulation of Clamped Beam
%

%

loadmodl;

%%% Narrow Band (189 Hz center 20 Hz BW) %%%
%[num,den]=butter(5,[0.179 0.199]);

%%% Wide Band (300 Hz center 250 Hz BW) %%%
[num,den]=butter(5,[0.075 0.425]);

%%%%% Harmonic Disturbance %%%%%
Time=0:0.0005:2;

randn(‘seed',s);
prbs=sign(randn(size(Time,2),1));
Input=dlsim(num,den,prbs);

ord=size(Ac,0);

%%%%% Closed Loop System %%%%%

[Af,Bf,Cf,Df]=tf2ss(num,den);
ordf=size(Af,0);

Adh=[Af zeros(ordf,ord); Bd*Cf Ad];
Bdh=[Bf; zeros(ord,1)];

Cdh=[zeros(1,ordf) Cd];

Ddh=[0];

ordd=size(Adh,0);

Aaug=[Adh zeros(ordd,ord); zeros(ord,ordd) Ac];
Baug=[zeros(ordd,1); Bc];

Caug=[Cdh Cc];

Daug=[O];

Eaug=[Bdh; zeros(ord,1) |;

ordaug=size(Aaug,0);

125

%%%%% Finding the Value of K %%%%%

R=1e-8; %% 1e-8 narrow and wide
K=dlgr(Aaug,Baug,Caug™ Caug,R); %% 0.930

%%%%% Finding the Value of L %%%%%

L=Aaug* (dlge(Aaug,Eaug,Caug,1,1e-4));

%A cl=[Ad zeros(ord,ord) zeros(ord,ordaug);zeros(ord,ord) Ac -Bc*K; L*Cd L*Cc
Aaug-Baug*K-L* Caug];

%Bcl=[Bd; zeros(ord,1); zeros(ordaug,1)];

%Ccl=[Cd Cc zeros(1,ordaug)];

%Dcl=[0];

%[magcl,phacl,w]=dbode(Acl,Bcl,Ccl,Dcl,0.0005);
%[magol,phaol ,w]=dbode(Ad,Bd,Cd,Dd,0.0005,1,w);

%semilogy(w/(2* pi),magcl,'r',w/(2* pi),magol,'y";
Y%break

%%%%% Initialization of States %%%%%
X=zeros(ord,1);

Xd=zeros(ord,1);

X _hat=zeros(ordaug,1);

Y =zeros(size(Input,1),1);

for i=1:size(Input,1)

%%%%% Compute Outputs %%%%%

Y (i,1)=Cc* X+Cd* Xd;
Y _hat=Caug* X_hat;

%%%%% Update States %%%%%
X=Ac*X+Bc*(-K* X _hat);
X_hat=Aaug* X _hat+Baug* (-K*X_hat)+L*(Y (i,1)-Y_hat);
Xd=Ad* Xd+Bd* Input(i,:);

end

126

figure

subplot(2,1,1);

plot(Time,Input);

title("Wide Band Disturbance);

ylabel (‘Magnitude (Volts)");

subplot(2,1,2);

plot(Time,Y)

title('Optimal Disturbance Rejection Controller’);
ylabel (‘Magnitude (Volts)");

xlabel ("Time (Seconds)');

127

Appendix D
D.1 LMSFILT.M

%
% LMS Algorithm Simulation of Clamped Beam Controller
%
%

loadmodl;

%%% Harmonic Frequency %%%
f=189; % Hz %

Time=0:0.0005:3;

Input=sin(2* pi*f* Time)’;

%%% Narrow Band (189 Hz center 20 Hz BW) %%%
%[num,den]=butter(5,[0.179 0.199]);

%%% Wide Band (300 Hz center 250 Hz BW) %%%
%[num,den]=butter(5,[0.075 0.425]);

%Time=0:0.0005:2;

%randn('seed’,s);
%prbs=sign(randn(size(Time,2),1));
%l nput=dlsim(num,den,prbs);
%%%%% LM S Parameters %%:%6%%
M=3; % LMS Order %

w=zeros(M,1);

u=zeros(M,1);

uf=zeros(M,1);

mu=0.75;

ord=size(Ac,0);
ordd=size(Ad,0);

%%%%% Finding the Value of K %%%%%
Q=Cc*Cc;

R=0.96;
K=dlgr(Ac,Bc,Q,R);

128

%%%%% Finding the Value of L %%%%%

L=dlge(Ac,Bc,Cc,1,1e-4);
L=Ac*L;

90%%%% I nitialization of States %%%%%

X=zeros(ord,1);
Xd=zeros(ordd,1);
X_hat=zeros(ord,1);
X_filt=zeros(ord,1);
Y _hat=0.0;

Y _filt=0.0;

S=0.0;

Y =zeros(size(Input,1),1);
for i=1:size(Input,1)
%%%%% Compute Outputs %%%%%
S=w'™* uf;
Y (i,1)=Cc* X+Cd* Xd;
Y _hat=Cc*X_hat;
Y _filt=Cc* X_filt;
if Y(i,1) >5.0
error("Too Big)
end
%%% L QG %%%
% X=Ac*X+Bc*(-K*X _hat);
% X_hat=Ac*X_hat+Bc* (-K*X_hat)+L* (Y (i,1)-Y_hat);
% Xd=Ad*Xd+Bd*Input(i,:);
% X_filt=Ac*X_filt+Bc* (Y (i,1)-Y_hat);
%%% LM S %%%
X=Ac*X+Bc* (-S-K* X _hat);
X_hat=Ac*X_hat+Bc* (-S-K*X_hat)+L* (Y (i,1)-Y_hat);
Xd=Ad* Xd+Bd* Input(i,:);
X_filt=Ac*X_filt+Bc*(Y(i,1)-Y_hat);

%%%%% LM S Algorithm %%%%%

129

er=Y(i,);

for]=M:-1:1
w(j,1)=w(j,1)-mu*err*u(j,1);
end

%%%%% Update Filter Inputs %%%%%

for]=M:-1:2
u(j,1)=u(j-1,1);
uf(j,1)=uf(j-1,2);
end

u(L,)=-Y_filt
uf(1,0)=(Y (i,1)-Y_hat);

end

figure

subplot(2,1,1);
plot(Time,Input);

title("Wide Band Disturbance);
ylabel (‘Magnitude (Volts)");
subplot(2,1,2);

plot(Time,Y)

title("Adaptive Supression of Disturbance);

ylabel(‘'Magnitude (Volts)");
xlabel (‘'Time (Seconds));

130

D.2 HARMONIC.M

%

% Harmonic Simulation of Clamped Beam Controller
0

loadmodl;

%%% Harmonic Frequency %%%
f=189; % Hz %

%0%% %% Harmonic Disturbance %%:%:%%

Time=0:0.0005:3;
Input=sin(2* pi*f* Time)';

[Out]=nocntrl(Ad,Bd,Cd,Dd,Input);
20%0%%% L attice Parameters %6%0%%%
M=3; % Lattice Order %

mu_nu=0.75;
mu_theta=0.03;

ord=size(Ac,0);
ordd=size(Ad,0);

%%%%% L attice Filter Initialization %%%%%
Q_Latt=zeros(M+1,1);

D_Latt=zeros(M+1,1);

P_Latt=zeros(M+1,1);

nu=zeros(M+1,1);

grad_th=zeros(M,1);
Theta=zeros(M,1);

%%%%% Finding the Value of K %%%%%
Q=Cc*Cc;

R=0.96;
K=dlgr(Ac,Bc,Q,R);

131

%%%%% Finding the Value of L %%%%%

L=dlge(Ac,Bc,Cc,1,1e-4);
L=Ac*L;

%%%%% Initialization of States %%%%%
X=zeros(ord,1);
Xd=zeros(ordd,1);
X _hat=zeros(ord,1);
X _dist=zeros(ord,1);
X_filt=zeros(ord,1);
Y =zeros(size(Input,1),1);
for i=1:size(Input,1)
%%%%% Compute Outputs %%%%%
Y (i,1)=Cc* X+Cd* Xd+0.01;
Y _hat=Cc*X_hat;
Y filt=Cc* X_filt;
if Y(i,1) >5.0
error("Too Big)
end
%%%%% L attice Filter (D Filter) %%%%%
gm=Y _filt;
for j=M:-1:1
gm_hold=gm;
gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; D_Latt(j)];
D_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; D_L att(j)];
end
D_Latt(1)=gm;
s filt=nu*D_L att;
%%%%% L attice Filter (Q Filter) %%%%%
gm=(Y(i,1)-Y_hat);

for]=M:-1:1
gm_hold=gm;

132

gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; Q_Latt(j)];
Q_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; Q_Latt(j)];
end
Q_Latt(1)=gm;

ssnu*Q Latt;
%%6%%% Update States %%%6%6%

X=Ac*X+Bc* (-s-K* X _hat);

X_hat=Ac*X_hat+Bc* (-s-K* X _hat)+L*(Y(i,1)-Y_hat);
Xd=Ad*Xd+Bd* Input(i,:);

X_filt=Ac*X_filt+Bc* (Y (i,1)-Y _hat);

%%%%% Adaptive Update %%%%%
err=Y(i,);

gamma=1;

for]=M:-1:1
grad_th(j)=gamma*P_L att(j);
gamma=gamma* cos(Theta(j));

end

nu=nu+mu_nu*err*D_L att;

old_theta=Theta;
Theta=Theta+mu_theta*err*grad_th;

for]=M:-1:1
if abs(Theta(j))>pi/2
Theta(j)=old_theta());
end
end

gm=-s filt;
for]=M:-1:1
gm_hold=gm;
gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; P_Latt(j)];
P_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; P_Latt(j)];
end
P_Latt(1)=gm;

end

figure

133

subplot(2,1,1);
plot(Time,Input);
title("Harmonic Disturbance');
ylabel (‘Magnitude (Volts)");
subplot(2,1,2);

plot(Time,Y)

title("Adaptive Supression of Disturbance);

xlabel (‘'Time (Seconds));
ylabel('Magnitude (Volts)");

spectrum(Out,Y);

[top,bot]=ss2tf(Ac,Bc,Cc,Dc);
[h,w]=fregz(top,bot,4096);
sys_mag=abs(h);

[ab]=lat2dir(nu,sin(Theta));

[h,w]=freqz(b,a,4096);
filt_mag=abs(1./h);

figure

semilogy(w* 2000/(2* pi),sys_mag,'y’)
hold on

semilogy(w* 2000/(2* pi),filt_mag,'r)
hold off

xlabel ('"Frequency (Hz)")

ylabel (‘Magnitude')

134

D.3 NBANDWB.M

%

22 Narrow Band and Wide Band Simulation of Clamped Beam Controller
%

loadmodl;

%%% Narrow Band (189 Hz center 20 Hz BW) %%%
%[num,den]=butter(5,[0.179 0.199]);

%%% Wide Band (300 Hz center 250 Hz BW) %%%
[num,den]=butter(5,[0.075 0.425]);

Time=0:0.0005:2;
randn(‘seed',s);

prbs=sign(randn(size(Time,2),1));
Input=dlsim(num,den,prbs);

[Out]=nocntrl(Ad,Bd,Cd,Dd,Input);
20%0%%% L attice Parameters %6%0%%%
M=3; % Lattice Order %

mu_nu=>5;
mu_theta=0.10;

ord=size(Ac,0);
ordd=size(Ad,0);

%%%%% L attice Filter Initialization %%%%%
Q_Latt=zeros(M+1,1);

D_Latt=zeros(M+1,1);

P_Latt=zeros(M+1,1);

nu=zeros(M+1,1);

grad_th=zeros(M,1);
Theta=zeros(M,1);

%%%%% Finding the Value of K %%%%%

135

Q=Cc*Cc;
R=0.96;
K=dlgr(Ac,Bc,Q,R);

%%%%% Finding the Value of L %%%%%

L=dlge(Ac,Bc,Cc,1,1e-4);
L=Ac*L;

%%%%% Initialization of States %%%%%
X=zeros(ord,1);
Xd=zeros(ordd,1);
X _hat=zeros(ord,1);
X _dist=zeros(ord,1);
X_filt=zeros(ord,1);
Y =zeros(size(Input,1),1);
for i=1:size(Input,1)
%%%%% Compute Outputs %%%%%
Y (i,1)=Cc* X+Cd* Xd+randn* 0.005;
Y _hat=Cc*X_hat;
Y _filt=Cc* X_filt;
if Y(i,1) >5.0
error("Too Big)
end
%%%%% L attice Filter (D Filter) %%%%%
gm=Y _filt;
for j=M:-1:1
gm_hold=gm;
gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; D_Latt(j)];
D_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; D_L att(j)];
end
D_Latt(1)=gm;
s filt=nu*D_L att;

0696%6%6% Lattice Filter (Q Filter) %%%6%6%

136

gm=(Y (i,1)-Y_hat);

for j=M:-1:1
gm_hold=gm;
gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; Q_Latt(j)];
Q_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; Q_Latt(j)];
end
Q_Latt(1)=gm;

s=nu*Q_Latt;
%%%%% Update States %%%%%

%%% LQG %%%

% X=Ac*X+Bc*(-K*X_hat);

% X_hat=Ac*X_hat+Bc* (-K*X_hat)+L* (Y (i,1)-Y_hat);
% Xd=Ad*Xd+Bd*Input(i,:);

% X_filt=Ac*X_filt+Bc* (Y (i,1)-Y_hat);

%%% L attice %%%
X=Ac*X+Bc* (-s-K* X _hat);
X_hat=Ac*X_hat+Bc*(-s-K* X _hat)+L*(Y(i,1)-Y_hat);
Xd=Ad*Xd+Bd* Input(i,:);
X_filt=Ac*X_filt+Bc* (Y (i,1)-Y _hat);

%%%%% Adaptive Update %%%%%
er=Y(i,);

gamma=1;

for]=M:-1:1
grad_th(j)=gamma*P_L att(j);
gamma=gamma* cos(Theta(j));

end

nu=nu+mu_nu*err*D_L att;

old_theta=Theta;
Theta=Theta+tmu_theta*err*grad_th;

for]=M:-1:1
if abs(Theta(j))>pi/2
Theta(j)=old_theta());
end
end

137

gm=-s filt;
for]=M:-1:1
gm_hold=gm;
gm=[cos(Theta(j)) -sin(Theta(j))]*[gm_hold; P_Latt(j)];
P_Latt(j+1)=[sin(Theta(j)) cos(Theta(j))]*[gm_hold; P_Latt(j)];
end
P_Latt(1)=gm;

end

figure

subplot(2,1,1);

plot(Time,Input);

title('Narrow Band Disturbance);

ylabel (‘Magnitude (Volts)");

subplot(2,1,2);

plot(Time,Y)

title("Adaptive Supression of Disturbance);
ylabel (‘Magnitude (Volts)");

xlabel ("Time (Seconds)');

spectrum(Out,Y);

[top,bot]=ss2tf(Ac,Bc,Cc,Dc);
[h,w]=fregz(top,bot,4096);
sys mag=abs(h);

[ab]=lat2dir(nu,sin(Theta));
[h,w]=fregz(b,a,4096);
filt_mag=abs(1./h);

figure

semilogy(w* 2000/(2* pi),sys_mag,'y’)
hold on

semilogy(w* 2000/(2* pi),filt_mag,'r)
hold off

xlabel ('"Frequency (Hz)")

ylabel (‘Magnitude')

138

D.4 LOADMODL.M

%
% L oads the Model of the Clamped Beam
%

load c:\matlab\researchimodel\Ac.dat;
load c:\matlab\research\model\Bc.dat;
load c:\matlab\research\model\Cc.dat;
load c:\matlab\researchimodel\Dc.dat;

load c:\matlab\researchimodel\Ad.dat;
load c:\matlab\researchimodel\Bd.dat;
load c:\matlab\researchimodel\Cd.dat;
load c:\matlab\researchimodel\Dd.dat;

139

VITA

Stephen Hevey was born in Boston, Massachusetts to Richard and Kathleen
Hevey. Hewasraised for most of hislife in Malvern, Pennsylvania. Stephen received a
Bachelors of Science from Penn State University in 1994, where he studied Electrical
Engineering. He married Charlene Slone and moved to Virginia shortly after graduation.
Steve accepted ajob at Vatell Corporation in Blacksburg, Virginia and started working
part time on his Mastersin Electrical Engineering at Virginia Tech. 1n 1998 he
completed his Masters of Science degree and received a promotion to Vice President of
Engineering at Vatell.

140

	Table of Contents
	Table of Figures
	Chapter 1 - Adaptive Control Schemes
	Chapter 2 - Control System Development
	 Section 2.1 - Choosing an Adaptive IIR Filter
	 Section 2.2 - Tapped-state Recursive Lattice Filters
	 Section 2.3 - System ID Algorithm Using an Adaptive Lattice Filter
	 Section 2.4 - Modifying the System ID Algorithm for use in the Adaptive-Q Approach
	Chapter 3 - Experimental Setup
	 Section 3.1 - General System Overview
	 Section 3.2 - Beam
	 Section 3.3 - Sensor Amplifier
	 Section 3.4 - Smoothing Filter
	 Section 3.5 - Power Amplifier
	 Section 3.6 - Disturbance Amplifier
	 Section 3.7 - DSP Input Protection
	 Section 3.8 - DSP Signal Processing Board
	 Section 3.9 - Other Equipment
	Chapter 4 - System Identification
	Chapter 5 - LQG Fixed Feedback Controller
	 Section 5.1 - Closed Loop System Model
	Chapter 6 - Implementation of Controller
	 Section 6.1 - System Delays
	 Section 6.2 - Processing Time
	 Section 6.3 - Frequencies Near the Nyquist Rate
	Chapter 7 - Optimal Controller
	Chapter 8 - Simulations vs. Optimal Controller
	 Section 8.1 - Harmonic Simulation
	 Section 8.2 - Narrow Band Simulation
	 Section 8.3 - Wide Band Simulation
	Chapter 9 - Experimantal Results
	 Section 9.1 - LQG Controller
	 Section 9.2 - Verification of Neutralization Loop
	 Section 9.3 - Harmonic Disturbance
	 Section 9.4 - Narrow Band Disturbance
	 Section 9.5 - Wide Band Disturbance
	Chapter 10 - Conclusions
	Rreferences
	Appendix A
	Appendix B
	Appendix C
	Appendix D

