
Sequential Motion Estimation and Re�nement for Applications of

Real-time Reconstruction from Stereo Vision

Kevin V. Stefanik

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial ful�llment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Kevin Kochersberger

A. Lynn Abbott

Craig Woolsey

May 31, 2011

Blacksburg, Virginia

Keywords: stereo vision, feature points, bundle adjustment, matching, UAV, terrain

mapping, IRLS, 3D reconstruction, SURF

Sequential Motion Estimation and Re�nement for Applications of Real-time

Reconstruction from Stereo Vision

Kevin V. Stefanik

ABSTRACT

This paper presents a new approach to the feature-matching problem for 3D recon-

struction by taking advantage of GPS and IMU data, along with a prior calibrated stereo

camera system. It is expected that pose estimates and calibration can be used to increase

feature matching speed and accuracy. Given pose estimates of cameras and extracted

features from images, the algorithm �rst enumerates feature matches based on stereo

projection constraints in 2D and then backprojects them to 3D. Then, a grid search

algorithm over potential camera poses is proposed to match the 3D features and �nd

the largest group of 3D feature matches between pairs of stereo frames. This approach

will provide pose accuracy to within the space that each grid region covers. Further

re�nement of relative camera poses is performed with an iteratively re-weighted least

squares (IRLS) method in order to reject outliers in the 3D matches. The algorithm is

shown to be capable of running in real-time correctly, where the majority of processing

time is taken by feature extraction and description. The method is shown to outperform

standard open source software for reconstruction from imagery.

Dedicated to my parents.

iii

Acknowledgements

I would like to thank my committee members, Dr. Abbott, Dr. Woolsey and Dr.

Kochersberger, along with the graduate students directly involved in the development

for this project including Jason Gassaway, and Nathan Short. I'd also like to thank

other graduate students at the Unmanned Systems Lab including Kenny Kroeger, Brian

McCabe, Jerry Towler, Praither Lanier, Shajan Thomas, Mike Bromley, Eric Brewer,

Eric Gustafson, Collin Lutz, Matt Torok, and Pete Fanto for their �ight support, help,

and comic releif. For supporting my persuit of a graduate degree, I thank my family,

including my parents, sisters and nephews.

iv

Contents

1. Introduction 1

1.1. Background . 1

1.2. Problem Statement . 3

1.3. Contribution . 4

2. Literature Review 6

2.1. Image Filtering . 6

2.1.1. Gaussian Smoothing . 6

2.1.2. Laplacian of Gaussian . 7

2.1.3. Di�erence of Gaussians . 7

2.1.4. Determinant of the Hessian . 7

2.2. Multiple View Geometry . 8

2.2.1. Camera Calibration . 9

2.2.2. Stereo Imagery . 11

2.2.3. Rotations . 12

2.2.3.1. Rotation Matrix Derivations 12

2.2.3.2. Rotation Estimation between 3D Point Matches 13

2.3. Estimation Theory . 14

2.3.1. Median and Median Absolute Deviation 14

2.3.2. Shortest Half . 14

2.3.3. Regression . 15

2.3.4. Iteratively Reweighted Least Squares 15

v

2.4. Feature Types . 17

2.4.1. Edges . 17

2.4.2. Points . 18

2.4.2.1. Kanade-Lucas-Tomasi . 18

2.4.2.2. Scale and A�ne Invariant Features 19

2.4.2.3. Scale-Invariant Feature Transform 20

2.4.2.4. Speeded-Up Robust Features 20

2.5. Matching . 21

2.5.1. Basic nearest-neighbor . 21

2.5.2. kD Tree . 22

2.5.3. Group Matching . 22

2.5.4. RANSAC . 23

2.6. Bundle Adjustment . 24

2.6.1. Levenberg-Marquardt Algorithm 24

2.6.2. Sparse Bundle Adjustment . 26

2.6.3. Simple Sparse Bundle adjustment 26

2.7. Simultaneous Localization and Mapping 27

2.7.1. Monocular SLAM . 27

2.7.2. Low-Altitude Imagery . 28

2.8. Full Reconstruction . 28

2.8.1. Bundler . 29

2.8.2. Urbanscape . 29

2.8.3. AEROSYNTH . 30

3. Methodology 31

3.1. Previous Methods . 31

3.2. Hardware Design . 32

3.3. Coordinate Frames . 35

3.4. Feature Extraction . 36

vi

3.5. Feature Matching . 37

3.5.1. Stereo Feature Matching and 3D Projection 37

3.5.2. Spatial Sorting and Searching . 38

3.5.3. Grid Pose Search . 40

3.6. Pose Re�nement and Outlier Rejection with IRLS 42

4. Results 46

4.1. Feature Extraction . 46

4.2. Two Standard Frames . 48

4.2.1. Sparse 3D Data . 49

4.2.2. Dense 3D Data . 49

4.2.3. Grid Search Statistics . 51

4.3. Two Homogeneous Frames . 51

4.3.1. Sparse 3D Data . 55

4.3.2. Dense 3D Data . 55

4.3.3. Grid Search Statistics . 55

4.4. Data without GPS . 55

5. Conclusion 60

5.1. Recommendations for Future Work . 61

5.1.1. Further Analysis . 61

5.1.2. Improvements . 61

5.1.3. Bundle Adjustment Extensions . 63

5.1.4. IMU Integration . 64

5.1.5. Real-time Viewing . 64

Bibliography 66

Appendix 70

A. Stereo Pair Vertical Alignment Correction Procedure 71

vii

List of Algorithms

2.1. Generic IRLS Algorithm . 16

3.1. IRLS for 6DOF Pose Re�nement . 44

viii

List of Figures

3.2.1.Stereo camera system carried on a Yamaha RMAX. 33

3.2.2.Accuracy at 40m distance across stereo �eld of view per pixel error. 34

3.2.3.Accuracy of principal point versus distance per pixel error. 34

3.2.4.Resolution, measured by pixel to pixel distance. 35

3.5.1.Generation of 3D features and 6DOF camera pose measurement 39

3.6.1.3D feature matching and re�nement . 45

4.1.1.Extracted SURF features (color-coded circles) overlaid on image 47

4.2.1.Two stereo image frames (a) frame 1 left image, (b) frame 1 right image,

(c) frame 2 left image, (d) frame 2 right image 48

4.2.2.Visualization of 3D feature matches with �nal IRLS weights are displayed

as line intensity, where black lines indicate outliers and white lines indicate

inliers . 49

4.2.3.3D features from two stereo image frames. Red represents features from

frame 1, while black shows features from frame 2. (a) points recti�ed

only with IMU and GPS; (b) corrected results using 3D matching with

K = M = N = 1 and IRLS. 50

4.2.4.Raw dense point cloud with maximum of 3 meters shift (a) nadir view,

(b), (c), (d) side views showing vertical o�sets. 52

4.2.5.Corrected dense point cloud (a) nadir view, (b) side view showing some

vertical o�sets, (c) second side view showing vertical gaps, (d) color-coded

o�sets of grain silo: red is frame 1, green is frame 2, blue indicates manually

measured o�sets less than 1 meter . 53

ix

4.2.6.Histogram of feature sizes . 54

4.3.1.Homogeneous stereo frame matching: (a) corrected with raw pose mea-

surements, (b) corrected with grid method of 1× 1× 1, (c) corrected with

3×3×1 grid, (d) corrected with 5×5×1 grid, (e) corrected with 7×7×1

grid. 56

4.4.1.All SGBM results overlayed with only IMU rotations applied 57

4.4.2.Point cloud mosaicked with grid-based method and no GPS data (a) nadir

view, (b) angled view, (c) side view . 58

4.4.3.Side view of roof height o�sets . 59

4.4.4.Side view of tank height o�sets . 59

5.1.1.Recommended bundle adjustment design 63

5.1.2.Architecture for real-time mapping and viewing. Items with thick borders

must run in real-time. 65

x

List of Tables

4.1. SURF extraction time for 800× 600 (downsampled) images 47

4.2. Grid size vs. number of matches and search time for standard frame pair . 52

4.3. Grid size vs. number of matches and search time 54

4.4. Grid search statistics. σx = σy = 1, σψ = 1.5◦ 56

xi

1. Introduction

1.1. Background

The Unmanned Systems Lab is developing an aerial nuclear materials detection and

sampling system. As part of that system, a stereo camera system has been selected

to rapidly provide 3D information about the terrain of the region that may contain

nuclear materials. A radiation detector alongside the stereo imaging system is to provide

radiation concentration data to be overlaid on top of the 3D terrain, and presented to

a ground control station for human analysis. A real-time solution is preferred so that

dynamic mission-level human intervention may occur.

Therefore, this thesis addresses the use of a calibrated stereo camera system for real-

time terrain mapping. In the future, this technology could be extended to ground vehicle

tracking and navigation, forest �re or post-disaster relief, beyond line-of-sight navigation

and avoidance, and for VTOL aircraft it is likely to be used for autonomous landing zone

assessment. Since a stereo camera system provides synchronized multi-view imagery,

it can generate 3D information when the cameras are stationary, and even reconstruct

dynamic changes in the environment.

In general, digital electro-optic (EO) imagers can greatly reduce hardware complexity

and cost in 3D reconstruction. Reconstruction might be used for mapping and navigation

for land, sea, and air vehicles�both manned and unmanned. EO sensors are relatively

small and lightweight enough that they could even be installed on a micro air vehicle

(MAV). Also, passive sensors inherently require much less power. Furthermore, they

provide very dense data, which is dependent on the number of cells in the sensor array.

Other 3D mapping sensor types, such as LIDAR (Natale et al., 2010) and synthetic aper-

1

ture radar (SAR) (Munoz et al., 2009) have their own strengths, but generally do not

match the power, weight, size, cost, and data density of EO sensors. LIDAR generates

laser pulses to record time-of-�ight to and from an object with which the beam inter-

sects. This active technique requires more power at greater distances, but is also highly

accurate to just a few centimeters, with little or no outliers in results. SAR is also an

active technology that bene�ts because it can penetrate most cloud cover and dust by

using higher electromagnetic frequencies. However, it requires several passes to achieve

comparable accuracy to LIDAR. So, for real-time mapping applications, SAR is infeasible

and LIDAR is complex and expensive, and so we explore the use of EO imagery.

Many projects have already addressed 3D reconstruction from EO imagery. Speci�-

cally, Urbanscape at the University of North Carolina (Mordohai et al., 2007), Bundler

at the University of Washington (Snavely et al., 2007), and AEROSYNTH at Rochester

Institute of Technology (Walli et al., 2009), each of which is discussed in section 2.8. Cur-

rently, the standard method of reconstruction is named bundle adjustment (BA), which

is the maximum likelihood global estimator for camera pose, camera intrinsics, and radial

lens distortion under zero-mean Gaussian noise (Lourakis and Argyros, 2009). Lourakis

formulates BA as an optimization problem over variable camera calibration parameters

and feature locations in 3D.

A feature in this text refers to any 3D location in the environment, which can be de-

tected in an image as either the local minima or maxima some function over the image.

Several image feature detectors have been designed that quickly extract information from

an image, so that results can be used for classi�cation and matching. In classi�cation,

one may wish to detect a ground vehicle from an air vehicle, for example. For matching,

applications include optical �ow, navigation, mapping and 3D reconstruction with BA.

BA requires feature matches as an input and minimizes the squared norms of the resid-

uals between the projection of the 3D feature locations on the image and the measured

location in the image. Common features range from edge detectors (Canny , 1986), to

corner detectors (Harris and Stephens, 1988), to more current scale and a�ne invariant

point approaches (Lowe, 2004; Bay et al., 2006; Mikolajczyk and Schmid , 2002), further

2

discussed in section 2.4.

1.2. Problem Statement

When re�ning camera parameters, robust and accurate feature matches between images

must be provided to the BA algorithm. Robust in this context means maintaining perfor-

mance in the presence of outliers and noise. Common feature detectors and descriptors

can only assume that features undergo scaling and translational changes between di�er-

ent viewpoints. However, when mapping highly dynamic environments, such as a tree

canopy or grass �elds blowing in the wind, feature descriptors may vary greatly over

time and viewpoint. Therefore, we consider environments that provide features which

are di�cult to match, because the feature descriptors are themselves dynamic. We also

consider scenery with textures that may generate homogenous features such as gravel,

asphalt, or concrete, that may also be di�cult to match. These scenarios would result

in many outlying feature matches.

In high speed video, features generally undergo small dynamic changes frame to frame.

In this case, feature matching is not a problem because the baseline, or distance the

camera travels, between frames is small. However, most applications would prefer low

frame-rate wide baseline matching because 3D reconstruction results from a wide base-

line are much more accurate. Also, high resolution and high frame-rate imagery would

require heavy processing for real-time operation. Therefore, a low frame-rate (~2Hz),

high resolution imaging (>1megapixel) system is the focus of problem.

The problem is then to develop an e�cient and robust feature matching algorithm for

homogeneous or dynamic features viewed with a low frame-rate, high resolution imaging

system. In order to gather 3D information in the presence of dynamic scene changes,

two synchronized and calibrated stereo cameras are assumed.

3

1.3. Contribution

This thesis presents an algorithm that �rst matches features between stereo image pairs

using stereo calibration constraints. It then backprojects the matches to 3D and performs

matching between sets of 3D features. Finally, it re�nes the relative pose of the cameras

with the 3D feature matches.

A single frame in this paper will refer to two synchronized stereo images and 6DOF

pose measurements captured at a unique time instant. Any derived data from any single

frame will be considered part of that frame as well (i.e. a set of 3D backprojected

points from the synchronized stereo pair). An inertial measurement unit (IMU) and GPS

receiver provide the pose measurements in each frame. The presented algorithm performs

alignment between frame pairs assuming �eld of view overlap between the cameras.

The algorithm begins by �nding stereo correspondences between feature points within a

single stereo frame and backprojecting them to 3D locations using prior stereo calibration

parameters. It then attacks the homogenous and dynamic feature problem by matching

two sets of 3D features from two di�erent frames while imposing pose measurement

constraints.

This method is expected to bene�t for two reasons. Firstly, it will reduce the search

space for feature matches by imposing 3D constraints. Secondly, it will be able to �nd

more correct matches in a dynamic environment. The �rst bene�t is rather straight-

forward since common kD-tree approaches target monocular applications with no pose

measurements, so 3D constraints are not applied. The second bene�t is more di�cult

to understand. Consider a car traveling down a road and a stationary camera viewing

the car. If two images of the vehicle were captured from the same pose but at di�erent

times, standard feature matching techniques may �nd several features on the vehicle that

match, but would likely throw them out when imposing a�ne constraints on the entire

set of feature matches, resulting in correct matching. However, if relatively few distinct

features are generated and matched from the rest of the environment, such as textures

of homogeneous grass or sand, then the features on the vehicle may be accepted as the

overall change. So, standard algorithms could �nd that the camera has moved, when it

4

was in fact stationary. However, by applying pose constraints when matching 3D features

from stereo, correct feature matches might still be extracted from the rest of the scene.

The matching algorithm uses 3D space with 6DOF pose measurements. To overcome

homogeneous features, an optimization problem is formulated to maximize the number of

matches over the 6DOF pose variance. The objective function of this problem is not easily

di�erentiable since it takes on discrete values. It is also computationally intensive since

it depends on searching for matches in 3D. So, a grid-based pose search is used. Costs

are calculated across a 6DOF grid of potential pose regions that cover the possible pose

measurement variance. The grid region with the most high-certainty feature matches is

considered the optimal value of the set.

Outliers are detected using a custom Iteratively Reweighted Least Squares (IRLS)

algorithm, which isolates the group of matches with most coherence. This approach is

expected to be more valuable than a RANSAC technique since pose measurements are

available, and it is much more deterministic.

This approach will be analyzed in execution time and accuracy. Because reference

datasets are not currently available, accuracy will only be able to be measured through

manual inspection. Furthermore, it will be shown to produce e�ective results even in the

GPS-denied case. Lastly, its processing requirements will be shown to be feasible for a

real-time implementation.

This feature matching approach would be used in a higher level real-time mapping sys-

tem. Coordinate transformations for geo-loation are emplyed, but correction for random-

walk e�ects from multiple frame-to-frame alignment is not performed. Furthermore, the

algorithm generates all 3D information from single pairs of calibrated stereo imagery,

and so data reduction is not performed between multiple frames.

5

2. Literature Review

As this research required much investigation into the �elds of image processing and esti-

mation, this literature review will cover several mathematical standards that this research

builds upon and attempts to exploit. This includes sections 2.1-2.6. These sections cover

image �ltering, multiple view geometry, estimation theory, feature extraction, feature

matching and optimization methods for 3D reconstruction from imagery. Reviews of full

reconstruction systems and projects are found in sections 2.7 and 2.8.

2.1. Image Filtering

2.1.1. Gaussian Smoothing

The Gaussian �lter is a common method for image smoothing or down-sampling. This

�lter is implemented as the 2D convolution of the image, I (x, y), with a Gaussian kernel:

g (x, y, σ) =
1√

2πσ2
e−

x2+y2

2σ2

G = g ∗ I

For example, a 3× 3 kernel could be approximated discretely as:

g3×3 =
1

16


1 2 1

2 4 2

1 2 1



6

This can be considered a low-pass �lter such that features of size σ or larger are

retained. Therefore, it is commonly used as a �lter to extract features of a speci�c size

within an image.

2.1.2. Laplacian of Gaussian

The Laplacian of Gaussian (LoG) can be used for edge detection or noise detection. After

running a Gaussian �lter, the Laplacian is calculated. This can be reduced to a single

kernel convolution that looks something like:

K5×5 =



0 0 1 0 0

0 1 2 1 0

1 2 −16 2 1

0 1 2 1 0

0 0 1 0 0


(2.1.1)

2.1.3. Di�erence of Gaussians

The Di�erence of Gaussians is merely an approximation of the LoG, and is given by eqn.

2.1.2.

Dσ,∆σ (x, y) =
1

2∆σ
(g (x, y, σ + ∆σ) ∗ I (x, y)− g (x, y, σ −∆σ) ∗ I (x, y)) (2.1.2)

With ∆σ chosen appropriately, the resulting di�erences between the DoG and LoG are

small enough to be negligible. Since it is merely the di�erence of two Gaussian-smoothed

images, it can be quickly calculated at multiple scales. A resultant kernel would look

similar to equation 2.1.1.

2.1.4. Determinant of the Hessian

The determinant of the 2D Hessian (equation 2.1.3) is commonly used to �nd scale-space

maxima and minima. Its determinant is de�ned by equation 2.1.4. The maxima or

7

minima of this measure is commonly used for feature point detection (Mikolajczyk and

Schmid , 2004). After a Gaussian smoothing operation, the determinant of the Hessian is

used to �nd points, and sometimes edges, at that scale. This is found numerically using

discretized second order partial derivatives. See Bay et al. (2006) for more information.

H (I) =

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

 (2.1.3)

|H| =
(
∂2I

∂x2

)(
∂2I

∂y2

)
−
(
∂2I

∂x∂y

)2

(2.1.4)

2.2. Multiple View Geometry

Multiple view geometry theory enables 3D reconstruction of an environment from 2D

images taken at di�erent camera poses. All reconstruction techniques require the ability

to align or calibrate imagery along epipolar lines, which represent the pixels in multiple

images that project along the same plane. This calibration enables correlation and then

3D backprojection of points along corresponding epipolar lines. Projection is considered

the process of projecting points in an environment onto a planar pixel sensor array.

Backprojection is considered the reverse process of mapping 2D image points back into

3D coordinates.

Lens distortion must also be considered in epipolar alignment, because it will cause

warped image projections. Also, relative camera poses are either unknown or have some

measurement error which must be corrected. Therefore, this section summarizes com-

mon lens and camera models used in calibration of imagery for reconstruction. Generally,

the calibration parameters are automatically extracted from features that can be auto-

matically detected and matched between the images, later covered in sections 2.4 and

2.5.

8

2.2.1. Camera Calibration

Camera calibration is split between intrinsic and extrinsic parameters. The intrinsic

parameters are unique for each sensor and lens combination and include radial lens

distortion, focal length, and the center point of projection. The extrinsic parameters

include the rotation and translation of the camera relative to some world-�xed coordinate

system.

The following calibration models are summarized from the OpenCV library's C im-

plementation, and previously documented by Bradski and Kaehler (2008) and Bradski

(2011). If we let (u, v) be the coordinates of a 3D point (X,Y, Z) in an image after

projection, the transformation is described by equations 2.2.1-2.2.3.


x

y

z

 = [R|t]


X

Y

Z

1

 (2.2.1)

In equation 2.2.1, R ∈ R3×3 is the rotation matrix and t ∈ R3 is the location vector of

the camera relative to the environment, also known as the extrinsics. The projection of

the 3D point to the 2D image is given by 2.2.2.

 x̄

ȳ

 =

 x/z

y/z

 (2.2.2)

Lens distortion e�ects, if present, are accounted for with equation 2.2.3.


u

v

1

 =


fx α cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K


x̄
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1x̄ȳ + 2p2

(
r2 + 2x̄2

)
ȳ
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1

(
r2 + 2x̄2

)
+ 2p2x̄ȳ

1


(2.2.3)

9

r2 = x̄2 + ȳ2

Here, the parameters fx and fy are the focal length scaled to a pixel count. This

is calculated separately in the two dimensions, because the sensor may have di�erent

spacing in each dimension of the pixel array. Also, the center of projection (cx, cy), in

pixels, is also where (x̄, ȳ) = 0, and is the center point of the radial distortion. Therefore,

it is the only point una�ected by the distortion. The parameter, α, is the skew of the

camera, which should be near 0. However, due to shutter scanning from the top to bottom

of the sensor, camera motion may result in skew. The camera matrix, K, includes the

focal lengths, center of projection, and skew parameters.

The distortion coe�cients, (k1, k2, p1, p2 [, k3]) (with optional k3), is a generic model

for most optical lenses (Heikkila and Silven, 1996). The model which excludes k3 has

been found to be su�cient for this research.

Note that if the distortion coe�cients can be assumed to have negligible e�ects, then

the calibration reduces to equation 2.2.4 (Lourakis and Argyros, 2009).

λ


u

v

1

 =


fx α cx

0 fy cy

0 0 1

 [R|t]

︸ ︷︷ ︸
M


X

Y

Z

1


︸ ︷︷ ︸

X

(2.2.4)

Here, M is the projection matrix and is an arbitrary homogeneous 3× 4 matrix with

rank 3 and depends on 11 parameters. It is also clearly possible to rectify an image

to correct for radial distortion, and still quantify the remaining calibration with this

3 × 4 matrix. With known distortion coe�cients, an undistorted point (x̄, ȳ) can be

found from raw coordinates (u, v) by solving for the inverse of a heavily non-linear

function iteratively. This domain (x̄, ȳ) is generally preferred when matching features,

or calibrating extrinsics, primarily because all transformations of corresponding points

between di�erent camera views are a�ne.

10

Allowing the intrinsic parameters (camera matrix and distortion coe�cients) to vary

some about the prior calibration is important when performing mosaicking or matching

between images. This is because they can actually change dynamically due to thermal

or mechanical variations, including those induced by vibration. It is important to know

the maximum variation of camera intrinsics, because with a smaller variation, a smaller

search space can be imposed during re�nement.

2.2.2. Stereo Imagery

In a calibrated two camera stereo system, not only can the cameras' intrinsics be cali-

brated a priori, but also their relative extrinsic parameters including rotation and transla-

tion. This enables projection of the two images onto the same plane, which aligns epipolar

lines between the images. In this process, the images are also normalized relative to each

other reducing the calibration data to a smaller set of intrinsics, [f, cxl, cxr, cy, Tx].

Here, the focal length, f , is normalized between the cameras in the x and y directions.

Also, the principal points of the two images are aligned in y, such that cyl = cyr = cy,

but the x positions are left independent as cxl and cxr.

Disparity is the di�erence in x-coordinates between a matched point the left and right

images, d = xl − xr, which holds a linear relationship to the 3D coordinates of a point

which has been matched between left and right images. The disparity must be normalized

by the di�erence in x coordinates of principal points, cxl − cxr. The translation between

cameras in the x direction is represented by Tx, in millimeters. From this domain, the

disparity-to-depth mapping matrix in equation 2.2.5 will project a left/right point match

to a 3D coordinate. Here, x is right in the image (horizontal), y is down in the image

(vertical), and z is into the image (depth) in the direction of the stereo-recti�ed principal

point of the left camera.

11


X

Y

Z

W

 =


1 0 0 −cxl
0 1 0 −cy

0 0 0 fx

0 0 1
Tx

cxl−cxr
Tx




xl

yl

d

1



x

y

z

 =


X/W

Y/W

Z/W


(2.2.5)

2.2.3. Rotations

2.2.3.1. Rotation Matrix Derivations

Let a 3D rotation be described by a = θ [x, y, z]T , where â = [x, y, z]T is a unit vector

for the axis of rotation, and ‖a‖ = θ is the magnitude of that rotation. It is known that

rotation of a point p1 to p2 can be described by a rotation matrix such that p2 = Rp1.

The deriviation of this was found in Hartley and Zisserman (2004), and the results are

in equation 2.2.61.

R = cos ‖a‖ I + sinc ‖a‖ [a]× + 1−cos‖a‖
‖a‖2 aaT

= I + sin θ [â]× +
(

1− cos θ [â]2×

) (2.2.6)

More explicitly, Gruber (2000) derived equation 2.2.7, which generates a rotation ma-

trix quickly in software from the four parameters (x, y, z, θ).

R =


γx2 + c γxy − sz γxz + sy

γxy + sz γy2 + c γyz − sx

γxz − sy γyz + sx γz2 + c


c = cos θ, s = sin θ, γ = 1− cos θ

(2.2.7)

To convert from rotation matrix to axis/angle, the trace is considered (equation 2.2.8),

and the angle is then derived by equation 2.2.9. This is to be used for matching 3D

1The notation [·]× denotes a cross-product with the expression or vector on the right-hand side.

12

rotations.

tr R =
(
γx2 + c

)
+
(
γy2 + c

)
+
(
γz2 + c

)
= (1− c)(((((((((

x2 + y2 + z2
)︸ ︷︷ ︸

=1

+3c

= 1 + 2cosθ

(2.2.8)

θ = cos−1 [(tr R− 1) /2] (2.2.9)

2.2.3.2. Rotation Estimation between 3D Point Matches

The least-squares algorithm to directly estimate the rotation between two 3D point

matches, (pi, p
′
i)i=1,...,N was originally presented by Arun et al. (1987) is summarized

below.

1. Calculate p′ , 1
N

∑N
i=1 p

′
i and p = 1

N

∑N
i=1 pi

2. Center the points, qi , pi − p and q′i , p′i − p′

3. Calculate H ∈ R3×3, H ,
∑
qiq
′T
i

4. Find the SVD,H = UΛV T , then calculateX = V UT and the determinant, detX =

|X|

a) If detX = 1, then R = X

b) If detX = −1, then the algorithm fails

The algorithm may fail if the points are colinear, or the noise is too large. Arun recom-

mends a �RANSAC-like technique� to attack the latter case. However, the Iteratively-

Reweighted Least Squares (IRLS) algorithm (see section 2.3.4) has comparable perfor-

mance to RANSAC, for its rejection of outliers, primarily when coupled with robust

median estimators. IRLS does not operate in a random fashion, but isolates outliers

iteratively (see section 2.3.4).

13

2.3. Estimation Theory

2.3.1. Median and Median Absolute Deviation

In many practical applications, modeling measurement errors with a Gaussian distri-

bution is su�cient. However, outliers can easily throw o� results. Therefore, a Gaus-

sian estimator that is robust to outliers is desired. So, instead of the sample mean,

µ = E [X], the sample median, µ̂ = median (X), can be used instead. Furthermore,

to estimate the standard deviation, σ = E
[
(X − µ)2

]
, the median absolute deviation

(MAD), σ̂ = MAD (X) = 1.4826 median (|X − µ̂|), can be used instead (Mili , 2006a).

The scalar value in this estimator is a derived bias relative to the standard deviation of

a Gaussian distribution. It is important to realize that the median is robust to less than

50% outliers biased on one side of the mean. If the outliers occur on both sides, then it

is robust to even more than 50%.

2.3.2. Shortest Half

A more adaptive, robust estimator is the shortest half (Mili , 2006a). After sorting the

samples, the shortest half is found by calculating the di�erence between N
2 samples, and

choosing the location with the smallest di�erence. Consider the following example with

N = 10, being the number of samples.

1 3 6 7 7︸ ︷︷ ︸
7−1=6

8 10 15 19 21

1 3 6 7 7 8︸ ︷︷ ︸
8−3=5

10 15 19 21

1 3 6 7 7 8 10︸ ︷︷ ︸
10−6=4

15 19 21

14

1 3 6 7 7 8 10 15︸ ︷︷ ︸
15−7=8

19 21

1 3 6 7 7 8 10 15 19︸ ︷︷ ︸
19−7=12

21

1 3 6 7 7 8 10 15 19 21︸ ︷︷ ︸
21−8=13

With N = 10, each consecutive set of 5 numbers is considered and the di�erence

between the maximum and minimum is taken. The set [6, 7, 7, 8, 10] is then the shortest

half, and the mean and standard deviation can be estimated from this set.

2.3.3. Regression

The ordinary least-squares is the simplest regression algorithm, which has a closed-form

solution for the estimate given by equation 2.3.1.

R =
(
XTX

)−1
XT y (2.3.1)

In a true Guassian-noise case, this is unbiased and consistent. However, with non-

Guassian noise containing outliers, this algorithm may become highly biased to an outlier.

Instead, if the covariance of the noise is known, the regression becomes equation 2.3.2

(Mili , 2006c).

R =
(
XTΣ−1X

)−1
XTΣ−1y (2.3.2)

2.3.4. Iteratively Reweighted Least Squares

The iteratively reweighted least squares (IRLS) algorithm can be used to perform out-

lier rejection and provide a robust estimate (Mili , 2006b). With IRLS, optimization is

performed over a weighted least squares function as in equation 2.3.3.

15

Algorithm 2.1 Generic IRLS Algorithm

1. Initialize weights with any prior information:
w ⇐ w0

2. Initialize ε:
ε⇐∞

3. Estimate initial β (i.e. regression estimator):
β ⇐ f−1

est (y, w)

4. while ε > εmax

a) Calculate the residuals:
r ⇐ y − f (β)

b) Re-calculate weights (i.e. Huber, equation 2.3.5):
w ⇐ g (r)

c) Estimate β:
βnew ⇐ f−1

est (y, w)

d) ε⇐ max (|β − βnew|), β ⇐ βnew

argminβ

n∑
i=1

wi (β) |yi − fi (β)|2 (2.3.3)

The algorithm iteratively assigns the weights, w, based on the residuals, r = y−f (β),

using a cost function, such as the Huber cost function (equation 2.3.4). The weights are

then calculated by equation 2.3.5. This bene�ts from the ability to give outliers an equally

high cost, such that they do not a�ect the optimization result. The factor τ determines

within how many standard deviations to give the index a weight of 1. Any normalized

residual, ri/σ̂, outside τ standard deviations then has a proportionally decreasing weight.

Ψ (z, τ) =


z, |z| ≤ τ

τ sign (z) , |z| > τ

(2.3.4)

wi =
Ψ (ri/σ̂, τ)

ri/σ̂
, σ̂ = MAD (r) (2.3.5)

The generic IRLS algorithm is shown in algorithm 2.1.

16

2.4. Feature Types

For a 3D reconstruction application, features can be used to serve as anchor points when

deriving camera calibration parameters. It is unimportant what these anchor points

actually represent, but it is critical that they are projected from stationary surfaces in

the environment and can be accurately localized. Features that are invariant to changes

in camera pose and lighting conditions are also desireable. So, the image processing

�eld has generated many types of features with repeatable, robust detection properties.

This report will �rst discuss edge features, followed by point features encompassing KLT,

MSER, SIFT and SURF. For more detailed discussions and exploration of other feature

types, see Tuytelaars and Mikolajczyk (2008).

2.4.1. Edges

Edges are one type of feature which are generally detected by a high gradient response in

a single direction. If a detected edge is linear, then it is relatively simple to �t a line to

it, otherwise it is considered a more generic contour. Matching these simple features can

attain sub-pixel accuracy with a high precision (Pilz et al., 2009). They are very useful in

indoor, structured environments where edge features are generally more prominent than

point features.

A common edge detector is the Canny edge detector (Canny , 1986), or Canny-Deriche

algorithm which is more suitable for real-time operation (Deriche, 1987). First, a LoG

or DoG is run across the image. Then a Sobel operator is applied to approximate the

horizontal and vertical derivatives to �nd edges, and then simply uses the arctangent

to �nd the edge direction. Next, edges are traversed using the directions, and any

nonmaximum value is set to 0 (if it's not an edge). Lastly, a two-fold thresholding

algorithm is applied. First, any pixel above threshold T1 is considered an edge. Second,

any pixel connected to the found edges above threshold T2 (where T2 < T1), is also

considered an edge.

It is also important to note that while a straight line in an environment (i.e. intersection

of a wall and ceiling or �oor) are easily detectable and repeatable, a static contour

17

can change shape drastically from multiple perspectives when it has a 3D structure.

However, algorithms like snakes (Kass et al., 1988) has some potential for overcoming

these problems and detecting the same contour between image sequences.

2.4.2. Points

Contrary to an edge, a point cannot exhibit a partial occlusion�it is either detected

or not. This makes feature points much simpler and more straight-forward to process.

However, the region around a point is typically used for classi�cation, which would still

undergo some a�ne change.

An image pixel is considered a feature point if it is located at the maxima or minima of

an arbitrary measure, such as the determinant of Hessian, and is above some minimum

threshold (Mikolajczyk and Schmid , 2004). By performing the operation at multiple

scales, and �nding the corresponding maxima and minima at each scale, features can

also be generated at these di�erent scales. This section summarizes some of the common

feature detection algorithms and their strengths and weaknesses.

2.4.2.1. Kanade-Lucas-Tomasi

The Kanade-Lucas-Tomasi (KLT) feature tracker (Tomasi and Kanade, 1991) assumes

a small translation between two consecutive images, and therefore, the pixel-to-pixel

errors between the two images and the gradient (found from only one of them) can be

used to approximate the translation. Simply put, derivation of a 2×2 system, G, enables

formulation of the 2D translation, d, as Equation 2.4.1, where I and J are successive

images, g is the gradient, and w is an arbitrary weighting function (such as a Gaussian).

Gd =

ˆ
W

(I − J) gwdA (2.4.1)

So, G is then a weighted average of the gradients within the window, W , and is

comprised of the estimated terms in Equation 2.4.2.

18

G =

ˆ
W

ggTwdA =

 (dIdx)2 dI
dx

dI
dy

dI
dx

dI
dy

(
dI
dy

)2

 (2.4.2)

This is a convenient result, and simple to calculate numerically. To select prominent

features on which to base this result, the algorithm uses the eigenvalues of a given G

matrix. The two eigenvalues must be above some threshold (to reject sensor noise over a

surface without intensity variation), but also not di�er by several orders of magnitude.

This tracker has been the standard for determining optical �ow, generally from high

frame rate (>10fps), and relatively low resolution (VGA quality, or 640 × 480 pixels)

video. This can certainly be applied to higher resolution imagery too, but would possibly

require down-sampling of the image, thus reducing accuracy, if a high frame rate cannot

be achieved. Also, with high resolution imagery, only a few small, accurate, and robust

features are needed for successful tracking. KLT is not suitable to match features from

wide-baseline viewpoints. Wide-baseline implies a large change in perspective to better

reconstruct a 3D scene, in which case the KLT small translation assumption does not

hold.

2.4.2.2. Scale and A�ne Invariant Features

Any viewpoint change can be characterized by an a�ne change in the projected image.

Considering just scale di�erences (i.e. camera zoom), the imagery can be analyzed in

scale-space using di�erent sized Gaussian �lters, or with pyramidal down-sampling.

An a�ne invariant detector generalizes this scale-invariant approach to include both

scaling and skew. Simply put, a scale-invariant detector can fail with signi�cant a�ne

transformations (i.e. wide-baseline views). These methods include Edge-Based Regions

(EBR), Intensity-Based Regions (IBR), and Maximally Stable Extremal Regions (MSER)

(Tuytelaars and Mikolajczyk , 2008). EBR starts from Harris corners and two intersect-

ing edges. The directions of those edges determine a parallelogram, and some measure

of texture determines the length of the edges. With IBR, local intensity extrema are

�rst extracted, then an ellipse is �tted to a region corresponding to intensity changes

19

around each extremum. MSER, however, begins with image segmentation using inten-

sity thresholds. Then, if the pixels within a segment are either greater than or less than

all the intensities in the neighboring segments, it is considered an extremal region. This

image segment, or connected component, can then be �tted to an ellipse to generate an

a�ne-invariant feature.

2.4.2.3. Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform, or SIFT, is a widely used feature detector. It

is not a�ne-invariant, but does have very good performance across most viewpoints. It

begins by calculating Gaussian-smoothed images at multiple scales. Then, it calculates

the DoG from these at each scale, thus creating a scale-space. To extract keypoints from

the DoG, rather than just a high gradient response or intensity maximum, it uses the

determinant of a 2× 2 Hessian (Lowe, 2004). Then, orientation alignment is performed

with a Histogram of Gradients (HOG) �lter. Lastly, the area around the point, with size

chosen according to its scale, is split into 4× 4 sub-regions. Then, a 4 or 8-bin HOG is

calculated for each sub-region to produce either a 64 or 128-element descriptor vector.

The descriptor is normalized to have an `2-norm of 1, to accommodate lighting variances.

Repeatability of this detector was originally demonstrated to be greater than 70% with

10% noise introduced on an image.

2.4.2.4. Speeded-Up Robust Features

Speeded-Up Robust Features (SURF), is a much faster approximation of the SIFT al-

gorithm, which is more widely used because of its execution speed. It �rst calculates

an integral image (equation 2.4.3). Then, the determinant of the Hessian is approx-

imated using box �lters2, which run at an identical speed at each scale�the primary

time-consuming factor with the original SIFT algorithm's detector.

2Any non-rotated rectangular, or box, sum of an image can be found with four accesses of the integral

image:
∑y2
j=y1

∑x2
k=x1

I (k, j) = I˜ (x1, y1) + I˜ (x2, y2)− I˜ (x1, y2)− I˜ (x2, y2)

20

I˜ (j, k) =

j∑
m=0

k∑
n=0

I (m, n) (2.4.3)

For orientation alignment, SURF then uses Haar wavelets implemented with box �lters

on the integral image. The orientation is chosen at the angle where the response of the

Haar wavelets is highest. It also generates an oriented descriptor by splitting the region

around each feature into 4 × 4 sub-regions, and stores Haar wavelet responses within

each region. It also generates either a 64 or 128-element descriptor, by optionally storing

positive and negative Haar wavelet responses separately (Bay et al., 2006). Like SIFT, it

normalizes the descriptor to have an `2-norm of 1. However, it runs in approximately 1/3

the time as SIFT, and has similar repeatability characteristics (82% vs. 78% originally

shown by Bay).

This particular algorithm was chosen for this research because it provides multi-scale

features and can run relatively quickly for real-time wide-baseline matching.

2.5. Matching

2.5.1. Basic nearest-neighbor

Several matching algorithms are available for matching feature descriptor vectors. Ide-

ally, a matching algorithm will minimize the 2-norm between the vectors. This is known

as the �nearest neighbor�. Say, features are generated from two images producing re-

spective sets A and B, with sizes NA and NB. The simplest algorithm for �nding

ai ∈ A | ‖ai − bk‖2 , bk ∈ B is to iterate over i = 1, . . . , NA. This produces an O (NANB)

algorithm, which is exhaustive since it computes the norm for every possible combination.

The square-root portion of the norm calculation is usually omitted to save computation

time, which is then considered as the sum of squared di�erences or SSD (Bay et al.,

2006).

21

2.5.2. kD Tree

A k-dimensional (kD) tree structure can be used to sort one set of the features, and

increase matching time. This structure, similar to a binary tree or quad tree is designed to

accommodate an arbitrary number of dimensions. The tree structure begins by splitting

the �rst dimension of data in two branches, based on the �rst feature that was added. As

the algorithm moves down the tree, it cycles the comparisons through each dimension of

the data. Often, for high dimensional descriptor vectors, just the �rst 5 or 10 elements

are used in the kD tree. The complexity of building a tree is an O (n log n) operation.

Searching the tree (if well-balanced) is an O
(
n1−1/k +m

)
operation, where m is the

number of points within the requested hypersphere.

Bay et al. (2006) used an approach where a kD tree would store more than 100,000

points, and when searching for a nearest-neighbor, the tree would provide only the �rst

200 candidates.

The kD tree's strengths are for matching between a vast amount of features, where

little is known about the feature's position or size, as feature matching algorithms are

designed speci�cally for monocular algorithms. However, sorting, searching and bal-

ancing a tree over k dimensions is a complex task, which this research plans to avoid.

Since 3D information can be found within a given stereo pair, this research will perform

searches over 3D coordinates, and determine the nearest-neighbor from features within

some distance of a target location.

2.5.3. Group Matching

Group matching has proven to increase robustness of match results (Jung and Lacroix ,

2001). Group matching entails �nding a small set of features�roughly 3 to 10�that

undergo an a�ne change between frames. This follows from a planar assumption of the

data. If, say, 3 features lying on a plane that is parallel to the image plane, then as the

camera translates along the image plane, the features will translate together. However,

if the features lie on a plane that isn't parallel to the image plane, which is much more

likely, then their relative translation on the projective image plane will instead result in

22

an a�ne transformation. This method will reject false matches that do not experience

the same a�ne transformation at other feature matches.

This research will use this concept, except with estimates of the transformation given

by pose measurements. Each frame in the stereo system can generate 3D information,

so features will �rst be projected to 3D before matching. Then, the algorithm will

maximize the size of the group with the best feature matches in 3D that conforms to the

pose measurement.

2.5.4. RANSAC

Random Sample Consensus (RANSAC) is a widely used algorithm in many practical

signal processing algorithms that require real-time operation (Hartley and Zisserman,

2004). When used to match feature set A and B, random features are selected out of set

A and matched across B either at random or with a kD tree. The critical assumption,

however, is that only a few of the good matches are needed, and that there are many good

unique feature matches between the two sets. This allows it to quickly �nd just a few

matches that are su�cient for pose estimation. However, in a homogeneous environment,

where feature descriptors are very similar, RANSAC will �nd itself spinning its wheels

on searching for unique features. Also, the question arises as to �how many� comparisons

is �enough� to accept a match as being unique, under the nearest-neighbor criterion in

section 2.5.1.

RANSAC certainly proves well in practice, and it is convenient to abort a particular

matching sequence if it takes too long. However, this report considers the case where

RANSAC fails in real-time, because it will reduce to an exhaustive search in a homoge-

neous environment which provides non-unique features. In this case, the nearest-neighbor

criterion will prevent correct matches from being accepted, and could potentially cause

aliasing if thresholds are lowered.

23

2.6. Bundle Adjustment

Bundle adjustment (BA) is the general optimization problem for �nding the calibration

parameters of an arbitrary number of cameras with an arbitrary number of poses. The

�bundles� referred to in this context are the bundles of light rays projecting into each

camera, usually representing features that have been previously matched. Each bundle is

rigid�the relative angles between each ray within a bundle is accurately known. However,

the relative camera poses are not. For the purposes of this paper, we will assume that

radial distortion coe�cients are known and are already corrected.

The BA algorithm is to �nd the m camera projection matrices, Mi (see section 2.2.1),

and the n 3D points Xi, such that each matched image point xij is closely approximated

by MjXi. For example, consider the optimization problem in equation 2.6.1. We can

see that this is a very high degree-of-freedom problem with 11m + 3n variables. It is

clear that having some approximation of each variable from pose measurements and prior

calibration estimates, will reduce the solution space.

min
∀Mj,Xi

‖MjXi − λxij‖ , j = 1, . . . ,m, i = 1, . . . , n (2.6.1)

2.6.1. Levenberg-Marquardt Algorithm

Levenberg-Marquardt (LM) optimization is a widely-used algorithm for the nonlinear

least squares problem in BA which is a blend of both vanilla gradient descent and Gauss-

Newton iteration. The following is a summary of LM from Ranganathan (2004).

LM estimates the gradient (equation 2.6.2) and the Hessian matrix (equation 2.6.3)

from the Jacobian.

∇f =
m∑
j=1

r (x)∇rj (x) = J (x)T r (x) (2.6.2)

∇2f ∼= J (x)T J (x) (2.6.3)

This assumes that the residuals (or errors from the estimation) are small, and therefore,

24

LM cannot be used in problems with large residuals. Simple vanilla gradient descent being

the most intuitive technique to �nd a minima, su�ers from the fact that it takes small

steps when the gradient is small, and large steps when the gradient is large. Small steps

are desired in regions where the gradient is large, because it would be easy to escape the

minima region. Large steps are desired in regions where the gradient is small because it

would take many steps otherwise.

We can use the gradient information to generate an update rule - also known as New-

ton's Method. Assuming f to be quadratic, high order terms of the Taylor expansion are

set to 0, when solving∇f = 0:

xi+1 = xi −
(
∇2f (xi)

)−1∇f (xi)

Using the above approximations, Levenberg proposed an algorithm based on the update

rule:

xi+1 = xi − (H+ λI)−1∇f (xi)

Where H is the Hessian matrix at xi. The algorithm is then:

1. Calculate xi+1based on the update rule

2. Evaluate the error at the new parameter vector

3. If the error has increased, then retract the step, and increase λ by α

4. If the error has decreased, then accept the step and decrease λ by α

The adjustment factor, α, may be set to 10 or some large amount. It does, however,

reduce the e�ect of the Hessian on the result for large λ.

Marquardt, however, observed that larger movements could occur where the gradient

is smaller, so that the �error valley� problem no longer occurs. Therefore, he replaced the

use of the identity matrix with the diagonal of the Hessian, producing the Levenberg-

Marquardt update rule in equation 2.6.4.

25

xi+1 = xi − (H + λdiagH)−1∇f (xi) (2.6.4)

The LM method will generate a locally optimal solution, which is not guaranted to

generate a globally optimal solution. However, it works very well in many applications,

and is, in general, much faster than any other algorithms. Since it adaptively moves

across the search space using gradient and Hessian information, LM is considered a

simpler approximation of trust-region methods (Berghen, 2004).

2.6.2. Sparse Bundle Adjustment

The sparse bundle adjustment (SBA) package provides a Levenberg-Marquardt imple-

mentation customized for feature matches. Most implementations of Levenberg-Marquardt

had not taken advantage of the fact that the normal equations matrix has a sparse block

structure, due to the lack of interaction among parameters for di�erent 3D points and

cameras. Therefore, the SBA package is a tailored an implementation to the BA prob-

lem (Lourakis and Argyros, 2009). The SBA package is an ANSI C implementation and

enables the optimization of an arbitrary number of camera calibration parameters, in-

cluding both intrinsic parameters and extrinsic pose parameters. The SBA package was

tested over several test image sequences, and the pixel errors of features were re�ned to

be as low as a quarter pixel.

2.6.3. Simple Sparse Bundle adjustment

The Simple Sparse Bundle Adjustment (SSBA) library is another newer implementation

of sparse BA. Written by researchers at the University of North Carolina, it takes advan-

tage of the SuiteSparse matrix library from the University of Florida. The SuiteSparse

library provides fast routines for Cholesky and LDL factorization for sparse matrix appli-

cations. SSBA also implements the optimization as a Levenberg-Marquardt algorithm.

It provides two primary optimization interfaces: one that assumes the same camera gen-

erated each image (also referred to as �common� in the library), and one that allows

unique calibration parameters to be varied and optimized for each image (referred to as

26

http://www.ics.forth.gr/~lourakis/sba/
http://www.cs.unc.edu/~cmzach/opensource.html

�varying�). Like SBA, this library requires prior feature matching by the user, with little

or no outliers, and estimates of their 3D coordinates. The latter optimizer was chosen, to

account for use of two stereo cameras, and also to allow the intrinsics to be corrected for

any possible lens vibration. SSBA claims to have processed over 1745 images in about

16 minutes. However, this does not include either feature extraction or matching.

2.7. Simultaneous Localization and Mapping

For a real-time 3D reconstruction or mapping task, simulatenous localization and map-

ping (SLAM) techniques are commonly employed. SLAM is a time sequential approach,

which estimates both sensor location and locations of objects in the environment from

sensor data such as LIDAR or cameras. When mounted to a vehicle or robot, the sensor

location is also used to estimate the vehicle locatiom. The di�culty with this task is that

with innacurate or no direct measurements on vehicle location, all localization errors are

dependent on measurements of static object locations relative to the vehicle. The ran-

dom walk in a particular SLAM method is generally used as a measure of accuracy. If

the environment allows it, GPS may be used to reduce random walk errors.

Liu and Dai (2010) points out that airborne visual SLAM poses many challenges.

Generally, UAVs have a large amount of dynamic motion. In our case, with a relatively

small helicopter, wind disturbances can greatly a�ect the accuracy of position estimates

or GPS measurements. Also, the brightness of terrain varies greatly due to cloud cover

and position of the sun. For low-altitude mapping, environment dynamics may cause

problems with tracking. Therefore, the SLAM community may not provide a drop-in

solution for the UAV mapping problem.

2.7.1. Monocular SLAM

Newcombe and Davison (2010) developed a monocular vision-based SLAM approach,

solely using structure-from-motion (SFM) from a single camera. This approach takes

advantage of PTAM or Parallel Tracking and Mapping developed by Klein and Murray

27

(2007). It uses a ground-plane approximation to both track and map features. Mapping

is based on choosing keyframes and performing BA, while tracking is run in a separate

thread to determine camera jitter and determine matching points. Using this method

to track and calibrate camera locations, dense reconstruction is then performed with

a hierarchical approach by Ohtake et al. (2003). This method is e�cient and robust.

However, it assumes a static scene, and even a ground plane. In our application, we may

not make these assumptions, because vegitation may be blowing in the wind. Also, the

scenery may not have a prominent ground plane. For example, if a tree canopy covers

the entire view, then it might �t an ellipsoid or sphere rather than a plane. However,

from high-altitudes, a planar assumption may hold, as in the AEROSYNTH project (see

section 2.8.3). Furthermore, relatively low-resolution, but high frame-rate (640 × 480,

15-30fps) cameras are used in these approaches. So these algorithms are not necessarily

suitable for high resolution, low frame-rate sensors.

2.7.2. Low-Altitude Imagery

Jung et al. (2003) present a simultaneous localization and mapping (SLAM) approach to

high-resolution terrain mapping with a stereo imaging system onboard a blimp. The al-

gorithm �rst calculates stereo correspondences, then performs feature matching between

frames. It then selects landmarks, estimates vehicle motion, and updates an extended

Kalman �lter (EKF) to generate a digital elevation map (DEM). For feature matching,

they use a group-matching technique (Jung and Lacroix , 2001), which is helpful to re-

ject outliers. Our approach plans intends to follow a similar approach, but extends this

group-matching to �nding the single largest group match between entire image frames

through expoitation of prior stereo calibration.

2.8. Full Reconstruction

No freely available software exists to perform real-time full reconstruction, which includes

feature extraction, matching, and BA on intrinsics and extrinsics. Part of the issue is

28

that the acquisition software must be customized to the particular hardware platform

chosen. However, this section will cover projects which have demonstrated free batch

processing to perform reconstruction (Bundler), and near-real-time projects, which have

demonstrated the feasibility of reconstruction in real-time (Urbanscape), but have not

published a working real-time system.

2.8.1. Bundler

Snavely et al. (2007) have developed a freely available software package, Bundler, for

3D modeling from uncalibrated image sets, speci�cally for the world's well-photographed

sites. Bundler relies upon other free software packages such as SBA (see section 2.6.2),

SIFT (see section 2.4.2.3), and ANN: A Library for Approximate Nearest Neighbor

Searching (see section 2.5.2). This work focuses on reconstructing only sparse 3D models

(speci�cally of features), since they are only concerned about smooth 3D transitions be-

tween photographs rather than visualizing the 3D environment. This software package

also has a web interface for general use called Microsoft Photosynth.

This tool is highy relevant to this research, but must be highly-tailored to suit a real-

time system. One approach would be to use Bundler to correct for errors in camera

calibration over sets of four images, or two stereo pairs at a time. This could then be

used as input to a SLAM algorithm.

2.8.2. Urbanscape

The Urbanscape project (Mordohai et al., 2007) as a collaboration between University

of North Carolina and University of Kentucky is a system to perform real-time 3D re-

construction with a stereo vision system on a ground vehicle. The system consists of a

computer with a high-performance GPU, GPS, INS, and eight cameras - four on each

side of a ground vehicle. Each set of four cameras have minimal �eld-of-view overlap, and

the two sets are calibrated to perform stereo correlation with a plane sweeping method.

The GPS and INS data provide accurate enough pose measurements that sparse feature

matches are not needed for correction. The �nal step is fusion of all stereo measurements

29

http://www.photosynth.com

to correct for errors and generate the most accurate and robust geo-registered map.

The selected aerial vehicle, however, does not have the power or weight capacity to

take advantage of a high-performance GPU. Also, to reduce cost, power and complexity,

a single high-resolution camera with a wide-angle lens can take the place of the four

lower resolution cameras in the Urbanscape system. The Urbanscape software is not

readily available, and because it is so customized to GPUs, without one available all

software must be written from scratch. However, it is expected that it does make use of

an SSBA variant, as it was written by the same research group (see section 2.6.3). The

Urbanscape team was also rather large (~18 people), so replicating their work would be

highly involved.

2.8.3. AEROSYNTH

The Airborne Synthetic Scene Generation or AEROSYNTH project at Rochester Insti-

tute of Technology is a monofocal SFM system for a �xed-wing aircraft (Walli et al.,

2009). It combines data from an arbitrary number of imagers to provide data of dif-

ferent light spectrums. It uses SIFT points for matching between frames from a single

high-resolution camera to correct pose estimates using BA. Then, it generates dense 3D

data from the high-resolution camera. Multi-spectral information from other imagers is

then overlaid using prior calibration parameters. This system works well because at the

altitude the aircraft �ies, dynamic scene changes are virtually immaterial and the use of

a synchronized stereo system is not needed. Multiple suppliers of high-altitude mapping

and dense reconstruction systems similar to AEROSYNTH are readily available in indus-

try, including Urban Robotics and AGI. Of course, all of these require post-processing of

the image data and are not implemented in real-time.

30

http://urbanrobotics.net/home.php
http://www.agi.com/

3. Methodology

Since generic BA procedures have matured, and can be extended to stereo imagery

because of their generic nature, this research primarily focuses on the feature matching

process itself by taking advantage of prior stereo calibration. This is expected to improve

matching results in applications where robust, unique features are hard to �nd. Also, it is

expected to generate matches faster, because pose estimates are used to reduce the search

space. Standard feature point matching algorithms such as a kD-tree do not currently

exploit prior camera calibration information, because they are targeted at the generic

image matching problem with no pose estimates and no prior intrinsic calibration. It

is hypothesized that prior calibration and synchronized pose measurements can provide

enough information to overcome problems when too many dynamic or homogeneous

features are present. Still, the robustness and accuracy of existing approaches do provide

a high standard for result comparison.

This work assumes that a secondary utility is used for dense reconstruction. An open

source implementation of semi-global block matching (SGBM) from OpenCV (Bradski ,

2011) was used throughout this research for dense data generation. Also, the accuracy

of the pose re�nement algorithms is manually inspected by the dense data alignment

between frames.

3.1. Previous Methods

It was found that the work of Short (2009) projected 3D points with an estimate of angle

derived from pixel location, rather than the projection methods presented in section

2.2.2, which are known to be more accurate. Furthermore, by only using prior stereo

31

calibration parameters, it was found that dense correlation of pixels with open-source

algorithms would not consistently generate accurate results. This was later attributed to

vertical o�sets in the recti�ed images (along the y-axis in the image), which were found

through manual inspection. A simple feature point matching algorithm was used to

correct for these errors (see Appendix A). After correction using feature matches, dense

correlation became much more consistent.

The o�set has been attributed to delays in the software triggers for the cameras. While

the vehicle is in motion, even the slightest o�set in synchronization can result in several

pixels of di�erence. Therefore, a hardware trigger is recommended in future designs. The

correction is characterized by a vertical bias in the y-axis, and the algorithm does not

correct for x-axis translation or rotations about the principal point. Any horizontal bias

would cause depth-mapping errors after stereo re-projection, while rotations could cause

epipolar misalignment. These further corrections are left to a more involved correction

over several image frames, such as BA.

3.2. Hardware Design

To provide synchronized stereo images and pose measurements, a rigid stereo vision

system was designed to include an IMU and GPS receiver. The stereo vision system

consists of two black and white Sony XCD-U100 FireWire cameras installed on a carbon

�ber-epoxy tube with a 1.5 m separation. The system mounted to a Yamaha RMAX

helicopter is shown in Figure 3.2.1. The baseline was selected to maximize the accuracy of

the stereo system without a�ecting helicopter stability. The cameras provide 1600×1200

resolution, and lenses were selected with focal length of 8 mm. A single XCD-U100CR

color camera is mounted on the left side of the structure to provide a color overlay

information. Since the e�ective resolution of color cameras is decreased by the Bayer

pattern, the system instead uses only the black and white cameras in 3D backprojection.

Each camera consumes 3 watts or 9 watts total. The spatial accuracy of a terrain map

generated from stereo vision depends on camera resolution, baseline distance between the

cameras, and the altitude above ground level (AGL). The depth accuracy, or possible

32

Figure 3.2.1.: Stereo camera system carried on a Yamaha RMAX.

error, for a stereo system's estimation of point, (x, y, z), relative to a camera pinhole is

given by Equation 3.2.1. The wider the baseline, B, and the greater the focal length, f ,

the lower the error and higher the accuracy. The disparity error, 4d, a�ects the accuracy

linearly, and the altitude/distance, z, increases the error quadratically. Also, the position

in the image a�ects resolution, where the center of the image has the highest accuracy.

√
4x2 +4y2 +4z2 =

z4d
Bf

√
x2 + y2 + z2 (3.2.1)

From an altitude of 40 m, the accuracy of the system is shown by Figure 3.2.2. This

plot displays the accuracy change across the image, which varies from 56 cm at the

principal point to 65 cm at the corners per unit disparity. For other distances, accuracy

at the principal point of the image changes according to the quadratic in Figure 3.2.3,

while the accuracies of the rest of the image scale similarly. The horizontal resolution

for both x and y axes are shown in Figure 3.2.4 as a function of altitude. At 40 m,

the resolution is approximately 2.1 cm, which gives a point density of more than 2200

points/m2.

Stereo calibration was performed with a large checkerboard, 1.22×2.44 m, with squares

of 12 × 12 cm from a distance of approximately 7 m. This method was selected to

33

Figure 3.2.2.: Accuracy at 40m distance across stereo �eld of view per pixel error.

Figure 3.2.3.: Accuracy of principal point versus distance per pixel error.

34

Figure 3.2.4.: Resolution, measured by pixel to pixel distance.

cover the whole �eld of view in the focal range of the cameras. In addition to the

cameras, a Microstrain 3DM-GX3-35 is mounted on the right side of the stereo system,

which includes a GPS receiver. The complete system weighs 3.1 kg. The cameras and

IMU/GPS are connected to a PC/104 with an Atom processor for synchronization and

data collection. Currently, all data is post-processed.

A new system will use two Zelos-655 GV color cameras from Kappa optronics GmbH.

These have 5 megapixel sensors, which would provide equivalent resolution to the 1.9

megapixel grayscale cameras. Also, by using just two cameras instead of three, total cost

is reduced signi�cantly.

3.3. Coordinate Frames

The de�nition of the camera coordinate frame is as follows: +X is right in the image,

+Y is down in the image, and +Z is into the image. The IMU provides roll (φ), pitch

(θ), and yaw (ψ) relative to a north-east-down (NED) coordinate frame, where zero

yaw corresponds to magnetic north, and the right hand rule is used for each angle.

The rotation matrix is de�ned by equations 3.3.1 and 3.3.2. The camera is physically

aligned with the IMU such that equation 3.3.3 is a reasonable approximation of the

transformation. We also convert from NED to east-north-up (ENU) coordinates, since

this is more conceptual when viewing the output data. So, the �nal transformation

equation from camera to ENU coordinates is summarized by equation 3.3.4.

35

RIMU =


cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ

cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ


(3.3.1)

VIMU = RIMUVNED (3.3.2)

VIMU =


0 0 1

1 0 0

0 1 0

VCam (3.3.3)

VENU =


0 1 0

1 0 0

0 0 −1

RTIMU


0 0 1

1 0 0

0 1 0

VCam
︸ ︷︷ ︸

VIMU︸ ︷︷ ︸
VNED

(3.3.4)

GPS data is generally provided in latitude, longitude and altitude. These coordinates

are converted into a local ENU reference coordinate system, where the origin is chosen at

the �rst GPS reading. GeoStarslib provides the functions for converting GPS coordinates

to ENU. It also provides the magnetic declination at a given time and location for IMU

yaw measurement correction relative to true north.

3.4. Feature Extraction

The algorithm begins by extracting SURF points while adapting the Hessian Threshold

to ensure enough features are found. If too few features are extracted using the default

Hessian threshold, the threshold is lowered, and the features are extracted again. This

process repeats until at least 3000 features are extracted. This may force the Hessian

threshold to be somewhat low, which is generally undesireable since it means the feature

36

http://geostarslib.sourceforge.net/

is not very prominent and possibly not repeatable. Since this project targets conditions of

homogeneous or dynamic features, we prefer to have many features rather than a handful

of prominent features. So, a low Hessian threshold is acceptable. Also, by making the

threshold adaptive, plenty of features can be extracted automatically and reduce any

user tweaking.

3.5. Feature Matching

3.5.1. Stereo Feature Matching and 3D Projection

The feature point matching algorithm exploits the ability of pre-calibrated stereo cameras

to backproject 3D points from two synchronized images. After extracting SURF features

from both the left and right images, they are matched using the algorithm originally

implemented for aligning the images vertically, found in Appendix A. These matches are

then backprojected to 3D using equation 2.2.5, such that the 3D locations are relative

to the left camera's center of projection. The scale of the feature is also converted from

pixels to meters using equation 3.5.1.

σmeters = z
f σpixels

=
(

Tx
d+cxl−cxr

)
σpixels

(3.5.1)

Since SURF provides an angle of each feature relative to the original 2D image, the

angle is converted to a 3D rotation in the ENU reference frame, and stored as 3 Euler

angles extracted from a rotation matrix. The original angle in the image maps to yaw

about the z axis in the camera coordinate frame (see section 2.2.2), and roll in the

IMU coordinate frame. Recti�cation of this rotation to local ENU coordinates is then

performed with equation 3.5.2. The feature descriptor for a 3D feature point is copied

from only the left image.

37

Rfeature =


0 1 0

1 0 0

0 0 −1


︸ ︷︷ ︸
NED→ENU

RTIMU︸ ︷︷ ︸
IMU→NED


0 0 1

1 0 0

0 1 0


︸ ︷︷ ︸
Cam→IMU


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.5.2)

Additional acquisition measures were implemented to ensure that both the left and

right cameras used the same exposure setting, and a software trigger was implemented

to synchronize the images. The full data �ow diagram is shown in Figure 3.5.1.

3.5.2. Spatial Sorting and Searching

This section presents an algorithm for matching two sets of 3D features in camera coor-

dinates, A and B, given pose measurements for each camera from GPS and IMU data.

Since this project assumes a nadir view of terrain, 3D features in set A are �rst sorted

based on x and y, or the east-north plane, in a point-region quadtree structure. This

enables fast search time complexity of O (log n), while generation of the structure is

O (n log n). It also provides capability for enumerating potential matches within some

radius of another point. The z coordinate relative to the camera is omitted from the

quadtree sort because backprojection will generally result in unique x and y coordinates.

The only time x and y may not be unique is if the cameras can both see underneath a

surface from the side, which is uncommon for a normal angle (< 40◦) lens.

The pose measurements are assumed to follow a multivariate Gaussian distribution,

shown in equation 3.5.3. Each axis is assumed to be independent, so the covariance is

de�ned as a diagonal matrix. This imposes a noise on the measured, geo-located points

a ∈ A and b ∈ B. We also approximate a maximum error in each dimension at 3σ, which

is su�cient for 99% of the samples along one axis, under the Gaussian assumption. These

errors will be represented by 4x, 4y, 4z, 4φ, 4θ, and 4ψ.

38

Figure 3.5.1.: Generation of 3D features and 6DOF camera pose measurement

39

[
X Y Z Φ Θ Ψ

]T
∼ N

(
0,Σ6×6

)
Σ6×6 = diag

[
σ2
X σ2

Y σ2
Z σ2

Φ σ2
Θ σ2

Ψ

] (3.5.3)

When searching the quadtree, a radial search is performed in x and y (east and north)

using a maximum radius approximation. This approximation considers a generic 3D

point in frame A (in left camera coordinates), a =
[
xa ya za

]T
, and the maximum

distance it may have in x and y between its second measurement in B. The pitch and roll

components are combined into a single distance assuming xa and ya to be zero because

this provides the maximum error in the x and y dimensions for any xa and ya. The

e�ect of yaw is estimated as the base of an isosceles triangle with two edges of length√
x2
a + y2

a and the angle between them as the maximum yaw error. The maximum GPS

translational error is simply the Euclidean distance of the errors in x and y. The sum

of these components de�nes the total radius displayed in equation 3.5.4. This estimate

also enables a single precomputation of coe�cients, (α, β, ζ), which reduces calculations

when searching for a match of each 3D point.

r = za
√

sin2 ∆θ + cos2 ∆θ sin2 ∆φ

+2 sin ∆ψ
2

√
x2
a + y2

a

+
√

∆x2 + ∆y2

= αza + β
√
x2
a + y2

a + ζ

(3.5.4)

3.5.3. Grid Pose Search

In the homogeneous feature case, it is possible for the single radial search method to

still provide too many potential matches because features are too dense. Also, a long

focal length or a high-resolution sensor would contribute to a highly dense set of features

relative to the radius. Therefore it is desireable to be able to split the 6DOF search

space into a grid whereby each grid region tests a particular pose using a signi�cantly

smaller search radius. The grid region with a midpoint that generates the highest number

of good feature matches is then accepted to contain the correct pose. E�ectively, this

40

acts as a correlation procedure over the 6DOF pose, while using the group-matching

methods by Jung and Lacroix (2001). By choosing the midpoint which provides the

largest group of feature matches, the algorithm can determine the region that contains

the best correlation. This method also guarantees a higher coherence in the matching

result as the grid spacing becomes smaller.

The grid search segments the search space of each axis which spans [−3σ, 3σ]. However,

for a 6D search, where each axis is split into N segments, the size of the grid-space would

be N6. With further assumptions, the complexity of this grid-space can be reduced.

Firstly, the z axis can be ignored for the same reason it was left out of the quadtree sort

in section 3.5.2. Secondly, if we assume that pitch and roll errors are small enough (< 15◦)

that they do not cause signi�cant scaling in x and y, then these two dimensions can be

approximated by translations in the x and y dimensions. So the maximum translational

error induced by pitch and roll error is added to 4x and 4y, as de�ned in equation 3.5.5.

In this case, the coe�cient for roll and pitch is set to zero, α = 0. The search space is

reduced to (X,Y,Ψ) and is split into a K ×M × N grid where the midpoints of each

grid region, g (k, m, n), are de�ned by equation 3.5.6.

∆x = 3σX + zp,max sin4θ, ∆y = 3σY + zp,max sin4φ (3.5.5)

g (k, m, n) =


xg,k

yg,m

ψg,n

 =


∆X
K (2k + 1−K)

∆Y
M (2m+ 1−M)

∆Ψ
N (2n+ 1−N)

 ,
k = 0, 1, . . . ,K − 1

m = 0, 1, . . . ,M − 1

n = 0, 1, . . . , N − 1

(3.5.6)

The cost at each midpoint is evaluated based on the number of feature matches it

�nds for the NA features in set A and the descriptor distance, di, to the match b ∈ B.

This cost function is de�ned by equation 3.5.7. This goal is to �nd the minimum value

of this cost function over the grid. The descriptors of the features in a match, (ai, bi),

are denoted by vai and vbi . Note that the maximum distance two feature descriptors

could have is 2, since the descriptors are normalized such that ‖vai‖2 = ‖vbi‖2 = 1. A

41

nearest-nieghbor match (see section 2.5.1) is accepted if the descriptor distance is less

than a threshold, κ. This threshold determines how the algorithm will perform among

homogeneous or dynamic features. If selected to be low (~0.5), then descriptors that

vary above the threshold will not be accepted as a match. So, κ was set to 2, allowing

feature descriptors to vary dynamically and still be matched.

C (g (k, m, n)) =

NA∑
i=1

 di, di < κ

κ, di ≥ κ (or no match)
, di = ‖vai − vbi‖

2
2 (3.5.7)

When calculating the cost for each grid region, a dynamic heap structure is used to

minimize the number of unnecessary searches and comparisons. After each increment

of i, the grid region is re-inserted to the heap, which then pushes the grid region with

minimum cost to the top throughout the search. The search ends if the grid region on

the top of the heap, having the minimum cost, has completed summing the cost for all

a ∈ A. This method could be parallelized on a multi-core processor in the future by

allocating the grid regions at the top of the heap to each core for processing.

If there is not much margin between the lowest cost grid region and the rest, this

algorithm could incur many unnecessary quadtree lookups and feature comparisons. Also,

if few matches are found across the whole grid, or the problem is infeasible, then this

method would result in an exhaustive search. Still this grid search will guarantee that

it �nds the maximum group of matches possible for the two 3D sets, assuming that the

pose measurement lies within the error bound.

3.6. Pose Re�nement and Outlier Rejection with IRLS

Given a set of 3D point matches between two frames, the relative 6DOF pose measure-

ment can be further re�ned using 3D constraints for outlier rejection. If at least 50% of

the 3D matches have similar disparities (are inliers), it is statistically feasible to deter-

mine a re�ned relative pose. This re�nement is similar to BA methods, but is robust to

42

outlier matches and only optimizes over 6DOF.

The chosen method for re�nement and outlier rejection is IRLS (see section 2.3.4).

This is expected to provide performance characteristics for real-time and be robust to

outliers by using a match weighting scheme based on robust estimators such as the median

(section 2.3.1) or shortest half (section 2.3.2). The custom IRLS algorithm begins with

point sets A ∈ R3×N and B ∈ R3×N , initial weights, Q0 = diagRN , and the initial

relative pose estimate, Me ∈ R4×3. The corresponding rows of A and B are 3D point

matches. The initial weights are derived from the feature size and SSD of descriptor

vectors. The pose estimate is comprised of a rotation matrix R ∈ R3×3 and a translation

T ∈ R3, which comes from the grid search procedure. Alternatively, raw GPS and IMU

data could be used instead.

The procedure for re�ning the measured pose estimate, Me, is shown in algorithm 3.1

and summarized as follows. In each iteration, the translation is estimated as the weighted

median between the two sets of points. The Huber cost function (equation 2.3.4) is used

to generate weights from the residuals. The cost of the Z residuals and X/Y residuals

(steps 7e and 7f) use di�erent thresholds because the error in Z is expected to be higher

than the accuracy in X-Y . For example, the Z error might be up to 1-2 m, whereas

the X-Y error may not be more than a few centimeters. After correcting for translation,

the SVD decomposition technique from section 2.2.3.2 is used to estimate the rotation

between the points. Note that both steps 3 and 7b use a weighted median (section 2.3.1)

for outlier rejection, but the shortest half (section 2.3.2) could be used as well.

The entire matching and re�nement process is shown in Figure 3.6.1.

43

Algorithm 3.1 IRLS for 6DOF Pose Re�nement

1. Correct for the initial pose estimate: B←
[

B 1
]
Me

2. Calculate translations: T← A−B

3. Find the weighted median of translations: Tmed ← med (T, Q0)

4. Shift B: B← B + Tmed

5. Use regression estimator for rotation and correct with SVD:

a) Generate SVD, UΣV T =
(
BTQ0B

)−1
BTQ0A

b) R0 ← V UT

c) Check that det R0 = 1

6. k ← 0, ε← 0.0001

7. do

a) Calculate translations: T← A−BRk

b) Find the weighted median of translations: Tmed ← med (T, Qk)

c) Calculate the residuals: E← T−Tmed

d) Increment k: k ← k + 1

e) Calculate the weights of the Z residuals, with a threshold of 0.35:

i. ~r ← |EZ |
ii. σ̂ ← 1.4826 med~r

iii. QZ ← diag
Ψ (~r/σ̂, 0.35)

~r/σ̂

f) Calculate the weights of the X-Y residuals, with a threshold of 0.15:

i. ~r ← ‖EX,Y ‖2
ii. σ̂ ← 1.4826 med~r

iii. QX,Y ← diag
Ψ (~r/σ̂, 0.15)

~r/σ̂

g) Multiply the two weights together: Qk ← QZQX,Y

h) Use regression estimator for rotation and correct with SVD:

i. UΣV T =
(
BTQkB

)−1
BTQkA

ii. Rk ← V UT

iii. Check that det Rk = 1

8. while max |Rk −Rk−1| > ε

9. M̂ =

[
Rk

Tk

]
44

Figure 3.6.1.: 3D feature matching and re�nement

45

4. Results

All presented stereo imagery was collected with the RMAX helicopter and stereo camera

system over the terrain at Kentland Farm in Blacksburg, VA. A lawnmower path was

designed to record stereo imagery with approximately 80% overlap, which was expected

to provide adequate feature matches between frames. All testing was performed on

a laptop with an Intel i5-430M processor running at 2.27GHz with 4GB of RAM. All

software was written in C/C++ using the g++ compiler. Subroutines from OpenCV and

the STL were employed where possible. No data is presented regarding image acquisition

or �le access time.

4.1. Feature Extraction

An example image displaying all extracted 2D features is shown in Figure 4.1.1. SURF

feature extraction requires approximately 600ms on average for a single 800×600 image,

given the speci�c results in Table 4.1. The grayscale images are �rst histogram-equalized

to extract the highest image contrast without loss of information. Then, the images

are down-sampled from 1600× 1200 using a Gaussian pyramid, because extraction time

is improved 4-fold by doing so. For a raw image, SURF would require over 2 seconds

for extraction over the entire image. Although smaller, more precise features could

be acquired by performing extraction at full resolution, this also removes any features

generated from pixel noise. From the same images, the open-source Bundler package was

also run over the same images, where SIFT feature extraction took approximately 7-8

seconds per image.

46

Figure 4.1.1.: Extracted SURF features (color-coded circles) overlaid on image

Table 4.1.: SURF extraction time for 800× 600 (downsampled) images

Trial/Image Time (ms) # Features

1 552 3182

2 618 3308

3 583 3374

4 640 3454

47

(a) (b)

(c) (d)

Figure 4.2.1.: Two stereo image frames (a) frame 1 left image, (b) frame 1 right image,
(c) frame 2 left image, (d) frame 2 right image

4.2. Two Standard Frames

Two frames were selected that appear to contain many unique objects that are expected

to be easy to match. These were used for most initial algorithm testing and development.

The original four images are shown in Figure 4.2.1. They contain several 3D man-made

structures found on the terrain including a building, two small capped cylinders on their

side, and two large white cylinders. There is also some grass, some dirt roads, and a

patch of gravel. These are expected to provide adequately unique features.

48

Figure 4.2.2.: Visualization of 3D feature matches with �nal IRLS weights are displayed
as line intensity, where black lines indicate outliers and white lines indicate
inliers

4.2.1. Sparse 3D Data

Feature points were �rst extracted from each image, matched within the stereo frame,

and then backprojected to a 3D location. Then the features were geo-located with the

synchronized GPS and IMU pose measurement data and plotted in Figure 4.2.3(a). The

points were then matched in 3D using the method in section 3.5.2. The IRLS algorithm

then corrected the result. The matches and their weights are displayed in Figure 4.2.2.

Each match is represented by a line between the two points, and the line's intensity is

proportional to the �nal weighting found with IRLS. This plot shows that the �nal result

of IRLS is coherent since all the white lines are in consistent directions. The corrected

3D features are shown in Figure 4.2.3(b), where only a 1× 1× 1 (K ×M ×N) grid was

used.

4.2.2. Dense 3D Data

Dense correlation between stereo pairs was performed with the SGBM algorithm. The

dense results are shown in Figure 4.2.4 using raw IMU and GPS data, and Figure 4.2.5

49

(a)

(b)

Figure 4.2.3.: 3D features from two stereo image frames. Red represents features from
frame 1, while black shows features from frame 2. (a) points recti�ed
only with IMU and GPS; (b) corrected results using 3D matching with
K = M = N = 1 and IRLS.

50

using the corrected pose estimates. Higher grid sizes in the matching process resulted in

such similar results that they are indistinguishable if presented on paper.

By manual inspection with Meshlab, the geo-located point clouds, corrected by raw

GPS and IMU data, incurred a 3 meter o�set, primarily in the vertical direction. How-

ever, after correction, less than 1 meter error is apparent between the two dense point

clouds at the four corners of the intersection of the two clouds. This error is not in any

one axis. In the X and Y axes this would be up to 50 pixels, and in the Z axis this is

only one or two pixels from Figures 3.2.3 and 3.2.4. A histogram of the feature matches'

sizes in meters is shown in Figure 4.2.6. The majority is less than 0.2m, which would

about 10 pixels in the image at 40m distance. So, depth-mapping errors of a few pixels

are expected.

This method does not match the sub-pixel accuracy of existing BA techniques. This

can partially be attributed to the fact that images are �rst down-sampled before feature

extraction. However, IRLS re�nement is much simpler and more practical for real-time

alignment. Still, the feature matches found with this search method may be used as an

input to a BA solver.

4.2.3. Grid Search Statistics

The grid search was run with N = 1 in each trial, while K andM (in the X and Y axes)

were varied between 1, 3, 5, and 7. The results of which are shown in Table 4.2. As

discussed above, improvement in �nal accuracy was negligible for larger grid sizes. Still,

this table shows that matching time increases when more grid points are used. Also, it

shows that once the grid becomes dense enough, the time required for IRLS no longer

improves since the time was roughly the same for sizes of 3, 5 and 7.

4.3. Two Homogeneous Frames

Two more image frames were selected for their low uniqueness of texture, since they

mostly contain grass. Also, when Bundler was run on them, it only found 48, 43, 89, and

51

http://meshlab.sourceforge.net/

(a) (b)

(c) (d)

Figure 4.2.4.: Raw dense point cloud with maximum of 3 meters shift (a) nadir view, (b),
(c), (d) side views showing vertical o�sets.

Table 4.2.: Grid size vs. number of matches and search time for standard frame pair

Grid Size (K ×M ×N) # 3D Matches Matching Time (ms) IRLS Time (ms)

1× 1× 1 276 87 11.15

3× 3× 1 146 260 6.46

5× 5× 1 117 514 7.39

7× 7× 1 97 869 6.87

52

(a) (b)

(c) (d)

Figure 4.2.5.: Corrected dense point cloud (a) nadir view, (b) side view showing some
vertical o�sets, (c) second side view showing vertical gaps, (d) color-coded
o�sets of grain silo: red is frame 1, green is frame 2, blue indicates manually
measured o�sets less than 1 meter

53

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

Feature Size (m)

#
 F

e
a

tu
re

s

Histogram of Feature Match Sizes

Figure 4.2.6.: Histogram of feature sizes

Table 4.3.: Grid size vs. number of matches and search time

Grid Size (K ×M ×N) # 3D Matches Matching Time (ms) IRLS Time (ms)

1× 1× 1 156 43.4 29.7

3× 3× 1 96 131 6.95

5× 5× 1 79 264 5.02

7× 7× 1 70 505 2.85

150 features in each of the four images. Bundler was unable to match these few features

successfully, so comparison of our algorithm with Bundler is infeasible. It is assumed

that Bundler's SIFT extraction tool uses a static determinant of Hessian threshold, since

it uses Lowe's (2004) demonstration software, which is available only in binary form. If

this Hessian threshold could be reduced, more features might be extracted to avoid this

problem.

These frames are, however, good examples of where our spatial sorting and searching

algorithm do manage to still perform adequately well.

54

4.3.1. Sparse 3D Data

Considering that feature extraction requires between 1 to 1.5 seconds per stereo image

pair, feature extraction appears to be more time consuming than the matching and re-

�nement processes. With low frame-rate (0.5fps), high resolution imagery, this algorithm

is considered feasible for real-time 3D feature matching applications. Dense image cor-

relation is not accounted for in this, but if performed in parallel is expected to provide

adequate real-time dense 3D data.

4.3.2. Dense 3D Data

The dense point cloud results from the SGBM algorithm are shown in Figure 4.3.1. From

manual inspection, the raw pose measurements impose an error of less than 1.4 meters

across the overlapping data. The 1×1×1 grid reduced the error to less than 0.7 meters.

Still, the 3× 3× 1, 5× 5× 1, and 7× 7× 1 reduced the error to below 0.4 meters. This

demonstrates the improvements that the grid search provides. The smaller the grid, the

fewer outliers had to be detected by the IRLS algorithm.

4.3.3. Grid Search Statistics

The grid search statistics for the two frames previously discussed are displayed in Table

4.4. For the matching process, the standard deviation was set to 1 meter in the X and Y

axes, and 1.5◦ in yaw, based on the known accuracies of the GPS and IMU. The number

of grid points in the X and Y dimensions were varied from 1 to 7. With increases of grid

points, processing time increases and each grid point covers a much smaller region. So

a smaller radius is used in the search and fewer potential matches are compared which

causes fewer 3D matches to be found.

4.4. Data without GPS

The �rst data presented is a short pass comprised of 13 frames which does not contain

GPS data. To visualize the input data, the SGBM results from each frame was plotted

55

(a) (b)

(c) (d)

(e)

Figure 4.3.1.: Homogeneous stereo frame matching: (a) corrected with raw pose mea-
surements, (b) corrected with grid method of 1× 1× 1, (c) corrected with
3×3×1 grid, (d) corrected with 5×5×1 grid, (e) corrected with 7×7×1
grid.

Table 4.4.: Grid search statistics. σx = σy = 1, σψ = 1.5◦

M (X) N (Y) K (Ψ) # Grid Points # 3D Matches Time

1 1 1 1 276 519.946

3 3 1 9 146 1056.152

5 5 1 25 117 2004.889

7 7 1 49 97 3207.066

56

Figure 4.4.1.: All SGBM results overlayed with only IMU rotations applied

using the initial pose estimates from IMU data (Figure 4.4.1). As shown, each frame

was assumed to be taken from the same position, with a standard deviation of 3 m in

X and Y , and so the grid tests for errors of up to 9 m in each axis. The number of

grid points in each dimension was 11, with which the matching algorithm mosaiced the

frames correctly, shown in Figure 4.4.2. From this nadir view, it can be seen that the

grid search and IRLS re�nement correctly translate and rotate the frames relative to each

other. However, upon closer inspection, it was found that some major o�sets ocurred,

mostly in the Z axis. Some minor misalignment does occur in X and Y . From manual

inspection, the Z o�sets range from 0.2 to 2 m between consecutive frames, while the X

and Y errors range from 0.1 to 0.3 m. The Z o�sets are best shown in Figures 4.4.3 and

4.4.4. These o�sets are attributed to large features, which have more depth uncertainty.

57

(a)

(b)

(c)

Figure 4.4.2.: Point cloud mosaicked with grid-based method and no GPS data (a) nadir
view, (b) angled view, (c) side view

58

Figure 4.4.3.: Side view of roof height o�sets

Figure 4.4.4.: Side view of tank height o�sets

59

5. Conclusion

This paper has summarized the current technologies for image-based 3D reconstruction,

presented a customized algorithm for matching and reconstruction of stereo image se-

quences, and demonstrated this algorithm. The relevant technologies included camera

calibration techniques, the SURF feature detector/descriptor, stereo backprojection, pose

sensors, grid-based search methods, various rotation matrix operations, and the Itera-

tively Re-weighted Least Squares algorithm. The customized algorithm requires prior

calibration of the stereo cameras. It �rst extracts SURF features from the stereo im-

ages and matches them using stereo calibration constraints. It then backprojects feature

matches within each stereo frame to 3D using the stereo calibration. Then, feature

matching is carried out by imposing 3D constraints over a grid of relative camera poses.

IRLS is then used to re�ne the rotation and translation of the stereo cameras between

frames while determining outliers in the set of 3D feature matches.

The new matching algorithm experiences adequate timing requirements for use in a

real-time application, and the feature extraction process is currently the most processor-

intensive step. Sorting and searching spatially over only 2 dimensions proved to be

competitive with standard kD-tree approaches over feature descriptors in time, accuracy,

and robustness. The IRLS algorithm is relatively fast, and provides outlier detection in

3D. Its pose re�nement accuracy of as low as 3 pixels does not match results of BA.

However, this is expected since the images are downsampled, and camera intrinsics are

not re�ned.

This method is dependent on the distance to the surfaces in the �eld of view of the

stereo cameras. At far distances, accuracy of stereo backprojection decreases exponen-

60

tially. Since this algorithm is highly dependent on backprojection to 3D, the algorithm

will breakdown at far distances relative to the stereo baseline and focal length.

5.1. Recommendations for Future Work

5.1.1. Further Analysis

The algorithm has been known to fail when matching long image sequences. However,

it does succeed in matching most frames together. Frame pairs which fail the match-

ing process should be analyzed. This may include generating more statistics from the

matching process. Also, the case of two incoherent 3D feature sets should be studied.

If no grid region in the grid pose search provides matches, then the maximum time for

matching, which would result in the most exhaustive search, should be measured. This

time is expected to vary based on distance and feature density. Also, statistics should be

measured on the success of the algorithm relative to number of feature matches. From the

presented data, only 70 matches generated successful re�nement and outlier detection.

However, if the number of 3D features matches found is very low (i.e. less than 20), then

the IRLS algorithm might fail more frequently. Therefore, measuring this performance

over existing and even future �eld data is recommended.

Testing of the accuracy of this algorithm with synthetic data is also recommended.

Currently, there are no terrain databases with enough accuracy with which to compare

the presented data. Therefore, generating image data sets from a synthetic enviroment

is the only way to determine accuracy.

5.1.2. Improvements

Some of the frame-to-frame matching failures may be related to data synchronization.

If the carrier vehicle is rotating or stra�ng during a frame capture, then the vertical

alignment with feature points may not be adequate to correct the stereo calibration, since

horizintal misalignment would occur causing depth-map errors. A software trigger was

used to synchronize the two cameras, so they are e�ectively triggered sequentially rather

61

than instantaneously. Therefore, a hardware trigger on the cameras is recommended in

future designs.

It is recommended to test results using feature extraction on the original images rather

than down-sampled images. This is expected to increase accuracy, but the e�ects of pixel

noise are currently unknown.

Smaller approximations of the search radius based on the pose variance could also be

tested. This would speed up the algorithm by reducing the number of feature compar-

isons.

In the software implementation, the quadtree code used was not necessarily optimal.

Using an o�-the-shelf quadtree library, rather than an in-house one may provide better

performance. Also, the heap from the C++ STL may not be the most e�cient structure

for this task, since a re-heap is performed very frequently. Evaluation of these data

structure implementations should be performed.

The cost function used in the grid search could be changed to speed it up. For example,

by weighting a �no match� with twice the value of the constant κ would allow the search

to converge earlier. However, this would also not be able to guarantee that the grid point

with the least cost is selected. Rather, this would be a more loosely estimating heuristic,

and the heap structure would push an approximated minimum cost grid point to the top.

Use of a Kalman �lter on the IMU and GPS data may be used to decrease pose

measurement variance. The IMU data is already �ltered, but its accelerometers could be

used to interpolate between GPS readings more accurately.

Lastly, it is recommended to tailor the SURF algorithm to assign all features an ori-

entation facing north. It is known that orientation alignment in both SIFT and SURF is

the most processor-intensive task. This would greatly improve feature extraction speed.

Furthermore, this would eliminate the case where a feature detected in two images is

assigned di�erent rotations because of the viewpoint change. Though it is unknown how

common this case is.

62

Figure 5.1.1.: Recommended bundle adjustment design

5.1.3. Bundle Adjustment Extensions

The match results from IRLS, after outlier removal, can be directly supplied to a BA

solver. It is recommended to use the SSBA package (see section 2.6.3). Local BA

techniques over several past image frames are expected to provide adequate results, if

the matches are correct. This may or may not be necessary for every new frame. A

proposed architecture is shown in Figure 5.1.1.

It is recommended to refactor the Bundler package to incorporate the adaptive Hessian

SURF detector, in order to better compare the kD-tree matching algorithm in Bundler

with the presented matching algorithm.

It is also recommended to integrate relative stereo pose constraints from prior cali-

bration into a BA solver. These constraints are convex, and so imposing them on the

optimization problem is possible.

63

5.1.4. IMU Integration

This approach requires some orientation/IMU measurement of the camera. The current

state-of-the-art in IMU sensors are cabable of providing robust and accurate estimates

of camera poses. The sensors have even become readily available in hobbyist OEM

circuit boards for under just $200. It would be wise for camera manufacturers to begin

including them directly next to an EO sensor, and provide �ltered and synchronized IMU

data along with each image, such as the Procerus Technologies' camera board (Procerus,

2011). This would enable considerable reduction in search space for any BA algorithm.

5.1.5. Real-time Viewing

The proposed algorithm is intended for real-time viewing and mapping, with a proposed

architecture in Figure 5.1.2. Once the above improvements have been made to the

matching and re�nement algorithm, this is expected to outperform existing local BA

techniques since BA is no longer required to optimize the location of every new frame.

The idea is that BA would be run every N frames, optimizing the poses and camera

calibration parameters, while the proposed frame-to-frame alignment procedure can be

quickly run for every new frame.

64

Figure 5.1.2.: Architecture for real-time mapping and viewing. Items with thick borders
must run in real-time.

65

Bibliography

Arun, K. S., T. S. Huang, and S. D. Blostein, Least-Squares Fitting of Two 3-D Point

Sets, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9 (5),

698�700, doi:10.1109/TPAMI.1987.4767965, 1987.

Bay, H., T. Tuytelaars, and L. V. Gool, SURF : Speeded Up Robust Features, in European

Conference on Computer Vision, pp. 404�417, 2006.

Berghen, F. V., Levenberg-Marquardt algorithms vs Trust Region algorithms, 2004.

Bradski, G., OpenCV Wiki, 2011.

Bradski, G., and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV

Library, 1st ed., O'Reilly Media, Sebastopol, CA, 2008.

Canny, J., A Computational Approach to Edge Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-8 (6), 679�698, doi:10.1109/TPAMI.1986.

4767851, 1986.

Deriche, R., Using Canny's criteria to derive a recursively implemented optimal edge

detector, International Journal of Computer Vision, 1 (2), 167�187, doi:10.1007/

BF00123164, 1987.

Gruber, D., The Mathematics of the 3D Rotation Matrix, 2000.

Harris, C., and M. Stephens, A Combined Corner and Edge Detector, pp. 147�152, 1988.

Hartley, R., and A. Zisserman, Multiple View Geometry in Computer Vision, second ed.,

Cambridge University Press, Cambridge, UK, 2004.

66

Heikkila, J., and O. Silven, Calibration procedure for short focal length o�-the-shelf CCD

cameras, in Proceedings of 13th International Conference on Pattern Recognition, pp.

166�170, IEEE Comput. Soc. Press, doi:10.1109/ICPR.1996.546012, 1996.

Jung, I.-k., and S. Lacroix, A Robust Interest Points Matching Algorithm, in 8th Inter-

national Conference on Computer Vision, Vancouver, Canada, 2001.

Jung, I.-k., S. Lacroix, C. Roche, and T. C. France, High resolution terrain mapping using

low attitude aerial stereo imagery, Proceedings Ninth IEEE International Conference

on Computer Vision, pp. 946�951 vol.2, doi:10.1109/ICCV.2003.1238450, 2003.

Kass, M., A. Witkin, and D. Terzopoulos, Snakes�Active Contour Models, International

Journal of Computer Vision, pp. 321�-331, 1988.

Klein, G., and D. Murray, Parallel Tracking and Mapping for Small AR Workspaces,

2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,

pp. 1�10, doi:10.1109/ISMAR.2007.4538852, 2007.

Liu, Y.-c., and Q.-h. Dai, Vision aided unmanned aerial vehicle autonomy: An overview,

417�421 pp., IEEE, doi:10.1109/CISP.2010.5647995, 2010.

Lourakis, M. I. a., and A. a. Argyros, SBA: A Software Package for Generic Sparse

Bundle Adjustment, ACM Transactions on Mathematical Software, 36 (1), 1�30, doi:

10.1145/1486525.1486527, 2009.

Lowe, D. G., Distinctive Image Features from Scale-Invariant Keypoints, International

Journal of Computer Vision, 60 (2), 91�110, doi:10.1023/B:VISI.0000029664.99615.94,

2004.

Mikolajczyk, K., and C. Schmid, An a�ne invariant interest point detector, in Proceedings

on the 7th European Conference of Computer Vision, Copenhagen, Denmark, 2002.

Mikolajczyk, K., and C. Schmid, Scale & A�ne Invariant Interest Point Detectors, In-

ternational Journal of Computer Vision, 60 (1), 63�86, 2004.

67

Mili, L., Robust Estimation and Filtering: Lecture Slides (Ch. 1), 2006a.

Mili, L., Robust Estimation and Filtering: Lecture Slides (Ch. 3), 2006b.

Mili, L., Robust Estimation and Filtering: Lecture Slides (Ch. 6), 2006c.

Mordohai, P., J.-M. Frahm, A. Akbarzadeh, B. Clipp, C. Engels, D. Gallup, P. Merrell,

C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius, H. Towles, G. Welch,

R. Yang, M. Pollefeys, and D. Nister, Real-time Video-based Reconstruction of Urban

Environments, in 3D-ARCH'2007: 3D Virtual Reconstruction and Visualization of

Complex Architectures, Zurich, Switzerland, 2007.

Munoz, J. M. C., M. J. G. Bonilla, B. G. Miguel, J. Ramon, L. Sudupe, and M. G.

Rodriguez, INTA's developments for UAS and small platforms: QUASAR, in 2009

IEEE International Geoscience and Remote Sensing Symposium, pp. IV�999�IV�1002,

IEEE, doi:10.1109/IGARSS.2009.5417548, 2009.

Natale, D. J., R. L. Tutwiler, M. S. Baran, and J. R. Durkin, Using full motion 3D

Flash LIDAR video for target detection, segmentation, and tracking, 2010 IEEE

Southwest Symposium on Image Analysis & Interpretation (SSIAI), pp. 21�24, doi:

10.1109/SSIAI.2010.5483929, 2010.

Newcombe, R. A., and A. J. Davison, Live Dense Reconstruction with a Single Moving

Camera, 2010.

Ohtake, Y., A. Belyaev, and H. Seidel, A multi-scale approach to 3D scattered data

interpolation with compactly supported basis functions, Shape Modeling International,

pp. 153�161, doi:10.1109/SMI.2003.1199611, 2003.

Pilz, F., N. Pugeault, and N. Kr, Comparison of Point and Line Features and Their Com-

bination for Rigid Body Motion Estimation, pp. 280�-304, Springer-Verlag, Berlin,

Heidelberg, doi:10.1007/978-3-642-03061-1_14, 2009.

Procerus, OnPoint Targeting v1.3 Vision-Based, in

68

http://www.procerusuav.com/Downloads/DataSheets/Procerus_OnPoint_Targeting.pdf,

Procerus Technologies, Vineyard, UT, 2011.

Ranganathan, A., The Levenberg-Marquardt Algorithm, 2004.

Short, N. J., 3-D Point Cloud Generation from Rigid and Flexible Stereo Vision Systems,

Ph.D. thesis, Virginia Tech, 2009.

Snavely, N., S. M. Seitz, and R. Szeliski, Modeling the World from Internet Photo

Collections, International Journal of Computer Vision, 80 (2), 189�210, doi:10.1007/

s11263-007-0107-3, 2007.

Tomasi, C., and T. Kanade, Detection and Tracking of Point Features, Tech. Rep. April,

Carnegie Mellon University, Pittsburgh, PA, 1991.

Tuytelaars, T., and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, now

Publishers Inc., Hanover, MA, 2008.

Walli, K. C., D. R. Nilosek, and J. R. Schott, Airborne synthetic scene generation

(aerosynth), in ASPRS, 2009.

69

Appendix

70

A. Stereo Pair Vertical Alignment

Correction Procedure

The pseudo-code for this procedure, given stereo recti�ed feature point sets A and B,

relative to the principal point, is as follows:

1. Let M be an empty set of matches

2. For each a in A

a) Generate B̂ ⊆ B, such that |ay − by| ≤ 4y1, ∀ b ∈ B̂

b) Find the nearest-neighbor between a and B̂

c) If the nearest-neighbor exists, add the match to M

3. δmed ← med(a,b)∈M (ay − by)

4. Set M back to empty

5. For each a in A

a) Generate B̂ ⊆ B, such that |ay − by − δmed| ≤ 4y2 ∀ b ∈ B̂

b) Find the nearest-neighbor, b, between a and B̂

c) If the nearest-neighbor exists, add the match, (a, b), to M

6. δmed ← med(a,b)∈M (ay − by)

7. σ̂ ← 1.4826 med(a,b)∈M |ay − by − δmed|

8. For each (a, b) in M

71

a) If |ay − by − δmed| > 2σ̂, remove (a, b) from M

9. dmed ← med(a,b)∈M ‖adesc − bdesc‖22

10. For each (a, b) in M

a) If ‖adesc − bdesc‖22 > αdmed + β, remove (a, b) from M

After several trials with di�erent image sets, �nal values for the constants in the algorithm

were set at:

Name Value

4y1 25

4y2 10

α 0

β 0.8

Source code is in Sample3D.cpp:

/*

* Sample3D.cpp

*

* Created on: May 18, 2010

* Author: kevin

*/

#include "Sample3D.h"

#include <algorithm>

#include <iostream>

#include <fstream>

using std::vector;

72

using std::sort;

//#define PRINT_REASONS

#include <iostream>

using namespace std;

#define RATIO (0.7)

Sample3D::feature2Dwrap::feature2Dwrap(const feature2D* p, int ind)

{

f = p;

i = ind;

}

bool Sample3D::feature2Dwrap::operator>(const feature2Dwrap& p)

{

return f->pt.y > p.f->pt.y;

}

bool Sample3D::feature2Dwrap::operator<(const feature2Dwrap& p)

{

return f->pt.y < p.f->pt.y;

}

bool Sample3D::feature2Dwrap::operator==(const feature2Dwrap& p)

{

return f->pt.y == p.f->pt.y;

}

Sample3D::Sample3D(const Sample2D& lft,

const Sample2D& rht,

73

const stereo_cal &cal,

double dy_max,

double dy_bias,

const char* id)

{

origin[0] = origin[1] = origin[2] = 0;

origin[3] = 1;

if (id)

strcpy(ID, id);

else

strcpy(ID, lft.getID());

AVL<feature2Dwrap> lftTree;

for (unsigned int i = 0; i < lft.size(); i++)

{

lftTree.Insert(feature2Dwrap(&(lft[i]), i));

}

vector<match> matches;

bias = dy_bias;

getMatches(lftTree, rht, matches, dy_max, bias, cal.c1.c_xp - cal.c2.c_xp);

matches2Features(matches, fs, cal, cal.f);

}

Sample3D::~Sample3D()

{

}

IplImage* Sample3D::getCorrespImg(IplImage* corr)

74

{

CvRNG rnggstate = cvRNG(0xffffffff);

for(unsigned int i = 0; i < fs.size(); i++)

{

//generate random color

CvScalar color = CV_RGB(cvRandInt(&rnggstate) % 255,

cvRandInt(&rnggstate) % 255,

cvRandInt(&rnggstate) % 255);

//draw circle on left image

CvPoint lcenter = cvPointFrom32f(fs[i].lftpnt);

//draw circle on right image

CvPoint rcenter = cvPointFrom32f(fs[i].rhtpnt);

CvPoint rcenter2 = cvPoint(rcenter.x, rcenter.y+corr->height/2);

cvCircle(corr, lcenter, 2, color, -1, 8, 0);

cvCircle(corr, rcenter2, 2, color, -1, 8, 0);

//draw line on correspondence image

cvLine(corr, lcenter, rcenter2, color, 1);

}

return corr;

}

bool Sample3D::saveASCIIPLY(const char* fn)

{

std::cout << "Saving ASCII PLY to: " << fn << std::endl;

75

std::ofstream out(fn, std::ios::out);

if (!out)

return false;

out << "ply\n" << "format ascii 1.0\n" << "element vertex " << fs.size()

<< "\n" << "property float x\n" << "property float y\n"

<< "property float z\n" << "end_header" << endl;

char buff[256];

for (unsigned int i = 0; i < fs.size(); i++)

{

sprintf(buff, "%.3f %.3f %.3f\n", fs[i].pt.x, fs[i].pt.y,

fs[i].pt.z);

out << buff;

//out<<p.x<<", "<<p.y<<", "<<p.z<<", "<<p.r<<", "<<p.g<<", "<<p.b<<"\n";

if (i % 100 == 0)

{

out.flush();

}

if (!out)

{

out.close();

return false;

}

}

out.flush();

out.close();

return true;

}

76

bool compareSSD(const feature3D &f1, const feature3D &f2)

{

return f1.distance < f2.distance;

}

void Sample3D::sortBySSD()

{

std::sort(fs.begin(), fs.end(), compareSSD);

}

void Sample3D::applyRandT(dMatrix3 m)

{

applyRandT(this->fs, m);

applyTR(origin, m);

}

void Sample3D::applyRandT(std::vector<feature3D> &ftrs, dMatrix3 m)

{

dVector3 v1, v2;

dMatrix3 R, R2;

for (unsigned int i = 0; i < ftrs.size(); i++)

{

cvPointTodVector3(ftrs[i].pt, v1);

applyTR(v2, m, v1); //v2 = m * v1

dVector3TocvPoint(ftrs[i].pt, v2);

eulerAnglesToMatrix3(R, ftrs[i].hpr);

rm(R2, m, R);

dMatrix3ToEulerAngles(R2, ftrs[i].hpr);

}

77

}

void Sample3D::getOrigin(dVector3 ogn)

{

memcpy(ogn, origin, sizeof(dVector3));

}

void Sample3D::matchPts(const AVL<feature2Dwrap> &lftTree,

const Sample2D &rht,

vector<match> &mtchs,

double dy_max, double dy_bias,

double scaleDiff,

double angDiff,

double mxsz, int cxl_cxr)

{

dy_max = fabs(dy_max);

int length = NUM_DESCS;

double d, dist1 = 1e8, dist2 = 1e8;

mtchs.clear();

const feature2D* rhtFtr;

const feature2D* neighbor;

for (unsigned int i = 0; i < rht.size(); i++)

{

rhtFtr = &rht[i];

if (rhtFtr->size > mxsz)

{

#ifdef PRINT_REASONS

cout<<"point is too big"<<endl;

#endif

78

continue;

}

const float* vec = (const float*)rht[i].d;

double miny = rhtFtr->pt.y + dy_bias - dy_max;

double maxy = rhtFtr->pt.y + dy_bias + dy_max;

feature2D dummy;

dummy.pt.y = miny;

feature2Dwrap p(&dummy, -1);

AVL<feature2Dwrap>::iterator beg = lftTree.iterGT(p);

dummy.pt.y = maxy;

AVL<feature2Dwrap>::iterator end = lftTree.iterGT(p);

neighbor = 0;

dist1 = dist2 = 1e8;

for (AVL<feature2Dwrap>::iterator it = beg; it != end; ++it)

{

const feature2D* lftFtr = (*it).f;

//compare the laplacian

if(lftFtr->laplacian != rhtFtr->laplacian)

{

#ifdef PRINT_REASONS

cout<<"laplacian"<<endl;

#endif

continue;

}

//check the size

79

if(lftFtr->size > mxsz)

{

#ifdef PRINT_REASONS

cout<<"point is too big"<<endl;

#endif

continue;

}

//compare the x's

if(lftFtr->pt.x - rhtFtr->pt.x <= cxl_cxr)

{

continue;

}

//compare the angles

if(fabs(lftFtr->dir - rhtFtr->dir) > angDiff)

{

#ifdef PRINT_REASONS

cout<<"angle"<<endl;

#endif

continue;

}

//compare the sizes

double avg = 0.5*(double)(lftFtr->size + rhtFtr->size);

if(fabs(lftFtr->size - avg)/avg > scaleDiff/2)

{

#ifdef PRINT_REASONS

cout<<"scale"<<endl;

80

#endif

continue;

}

//get descriptor of the iterator point:

const float* mvec = (const float*)lftFtr->d;

//compare the descriptors

d = compareSURFDescriptors(vec, mvec, dist2, length);

if(d < dist1)

{

dist2 = dist1;

dist1 = d;

neighbor = lftFtr;

}

else if (d < dist2)

dist2 = d;

}

if (dist1 < RATIO*dist2)

{

match newMatch;

newMatch.p1 = neighbor;

newMatch.p2 = rhtFtr;

newMatch.dist = dist1;

mtchs.push_back(newMatch);

}

else

{

#ifdef PRINT_REASONS

cout<<"ratio"<<endl;

81

#endif

}

}

}

void Sample3D::getMatches(const AVL<feature2Dwrap> &lftTree,

const Sample2D &rht,

vector<match> &matches,

double dy_max, double &dy_bias, int cxl_cxr)

{

matchPts(lftTree, rht, matches,

25, dy_bias,

MAX_SCALE_DIFF, //scale

MAX_ANGLE_DIFF, //angle

150, //size

cxl_cxr); //cxl - cxr

//sort by dy

sort(matches.begin(), matches.end(), dycmp);

//get dy median

match md = matches[matches.size()/2];

dy_bias = md.p1->pt.y - md.p2->pt.y;

/*********Re-match**************/

matchPts(lftTree, rht, matches,

dy_max, dy_bias,

MAX_SCALE_DIFF, //scale

MAX_ANGLE_DIFF, //angle

82

800, //size

cxl_cxr); //cxl - cxr

/***** get dy median again *****/

sort(matches.begin(), matches.end(), dycmp);

md = matches[matches.size()/2];

dy_bias = md.p1->pt.y - md.p2->pt.y;

for(unsigned int i = 0; i < matches.size(); i++)

{

matches[i].med = dy_bias;

}

//sort by abs(dy - median)

sort(matches.begin(), matches.end(), dyAbsDiffCmp);

//get dy MAD & sigma

double mad = absdiff(matches[matches.size()/2]);

double sigma = 1.4826*mad;

//retain only elements within 2*sigma of dy

vector<match>::iterator it = matches.end()-1;

for (; it != matches.begin() &&

absdiff(*it) > sigma*2; --it);

matches.erase(it+1, matches.end());

//sort matches by distance

sort(matches.begin(), matches.end(), distcmp);

//retain only elements with dist <= 0.8

83

it = matches.end()-1;

for (; it != matches.begin() &&

(*it).dist > 0.8; --it);

matches.erase(it+1, matches.end());

//get median of descriptor SSD distance:

double meddist = matches[matches.size()/2].dist;

cout << "meddist=" << meddist << endl;

}

void Sample3D::matches2Features(const vector<match> &matches,

vector<feature3D> &ftr,

const stereo_cal &cal, double f)

{

int n = matches.size();

CvMat* src = cvCreateMat(1, n, CV_32FC3);

CvMat* xyz = cvCreateMat(1, n, CV_32FC3);

//double cxrmcxl = cal.c2.P->data.db[2] - cal.c1.P->data.db[2];

for (int i = 0; i < n; i++)

{

cvSet2D(src, 0, i, cvScalar(matches[i].p1->pt.x, matches[i].p1->pt.y,

matches[i].p2->pt.x - matches[i].p1->pt.x));// + cxrmcxl));

}

cvPerspectiveTransform(src, xyz, cal.Q);

cvReleaseMat(&src);

84

ftr.resize(n);

CvScalar pnt;

for (int i = 0; i < n; i++)

{

//get location

pnt = cvGet2D(xyz, 0, i);

//store points in camera coordinates:

ftr[i].pt.x = pnt.val[0]/1000.;

ftr[i].pt.y = pnt.val[1]/1000.;

ftr[i].pt.z = pnt.val[2]/1000.;

//ftr[i].pt.y = pnt.val[0]/1000.; //camera x is IMU y (right/east)

//ftr[i].pt.z = pnt.val[1]/1000.; //camera y is IMU z (down)

//ftr[i].pt.x = pnt.val[2]/1000.; //camera z is IMU x (forward/north)

//copy hessian and laplacian

ftr[i].hessian = matches[i].p1->hessian;

ftr[i].laplacian = matches[i].p1->laplacian;

//set size to the size*distance/focal length (converts to meters)

ftr[i].size = matches[i].p1->size*fabs(ftr[i].pt.x)/f;

//ftr[i].dir = (matches[i].p1->dir + matches[i].p2->dir)/2;

//ftr[i].hpr[2] = matches[i].p1->dir; //feature dir corresponds to roll

//ftr[i].hpr[1] = ftr[i].hpr[0] = 0;

//feature direction is about z axis, so it corresponds to heading

ftr[i].hpr[0] = matches[i].p1->dir;

ftr[i].hpr[1] = ftr[i].hpr[2] = 0;

85

//V_imu = Rot(hpr) * V_f

memcpy(ftr[i].d, matches[i].p1->d, NUM_DESCS*sizeof(float));

ftr[i].distance = compareSURFDescriptors(matches[i].p1->d,

matches[i].p2->d, 1000, 64);

#ifdef RETAIN_COORDS

ftr[i].lftpnt = matches[i].p1->pt;

ftr[i].rhtpnt = matches[i].p2->pt;

#endif

}

cvReleaseMat(&xyz);

}

ostream& operator<<(ostream& strm, const Sample3D::feature2Dwrap& p)

{

strm<<p.f->pt.y;

return strm;

}

86

�The act of designing is more ephemeral; it is an intuitive process informed by

external forces that direct the intuition. Whereas a solution can be explained,

the process that created it can never adequately be understood.�

-Paula Scher

�Always walk through life as if you have something new to learn and you will.�

-Vernon Howard

�If at �rst you don't succeed, try, try again. Then quit. There's no use being

a damn fool about it.�

-W.C. Fields

From the GeoStarslib FAQs:

87

	Introduction
	Background
	Problem Statement
	Contribution

	Literature Review
	Image Filtering
	Gaussian Smoothing
	Laplacian of Gaussian
	Difference of Gaussians
	Determinant of the Hessian

	Multiple View Geometry
	Camera Calibration
	Stereo Imagery
	Rotations
	Rotation Matrix Derivations
	Rotation Estimation between 3D Point Matches

	Estimation Theory
	Median and Median Absolute Deviation
	Shortest Half
	Regression
	Iteratively Reweighted Least Squares

	Feature Types
	Edges
	Points
	Kanade-Lucas-Tomasi
	Scale and Affine Invariant Features
	Scale-Invariant Feature Transform
	Speeded-Up Robust Features

	Matching
	Basic nearest-neighbor
	kD Tree
	Group Matching
	RANSAC

	Bundle Adjustment
	Levenberg-Marquardt Algorithm
	Sparse Bundle Adjustment
	Simple Sparse Bundle adjustment

	Simultaneous Localization and Mapping
	Monocular SLAM
	Low-Altitude Imagery

	Full Reconstruction
	Bundler
	Urbanscape
	AEROSYNTH

	Methodology
	Previous Methods
	Hardware Design
	Coordinate Frames
	Feature Extraction
	Feature Matching
	Stereo Feature Matching and 3D Projection
	Spatial Sorting and Searching
	Grid Pose Search

	Pose Refinement and Outlier Rejection with IRLS

	Results
	Feature Extraction
	Two Standard Frames
	Sparse 3D Data
	Dense 3D Data
	Grid Search Statistics

	Two Homogeneous Frames
	Sparse 3D Data
	Dense 3D Data
	Grid Search Statistics

	Data without GPS

	Conclusion
	Recommendations for Future Work
	Further Analysis
	Improvements
	Bundle Adjustment Extensions
	IMU Integration
	Real-time Viewing

	Bibliography
	Appendix
	Stereo Pair Vertical Alignment Correction Procedure

