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Abstract 

An alternate method for mitigating the depredating physiological affects of a soldiers 

marksmanship due to combat stressors can be achieved through the design and 

implementation of a active stabilization system for small arms weapons. The INSTAR 

system is an innovative active stabilization system designed to decouple the shooter’s 

disturbance effects from the barrel movement. The INSTAR system uses an piezoelectric 

actuator separating the barrel of the rifle from its stock to stabilize barrel movement. This 

paper uses various control techniques to develop control algorithms for simulation. The 

level of performance for each control algorithm is based on how well each they measure 

up to the criteria developed from the INSTAR. This paper furthers research on INSTAR 

by developing and comparing four control designs that may be implemented within the 

INSTAR system.   
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Chapter 1 

Introduction 

The security of the United States of America is defended daily by volunteer military 

personnel.  The U.S. military is touted as the best in the world with the use of advanced 

technology, superior resources, and five service branches specializing in securing and 

protecting the land, air, and water.  Despite these advantages, U.S. service members’ 

lives are at risk every day as they attempt to defend our nation’s interests.  The number of 

military personnel in high risk combat situations grows each day.  Over 200,000 active 

duty soldiers are currently serving in the war in Iraq, Operation Iraqi Freedom (DoD, Nov 

2007).  Since March 2003, the beginning of Operation Iraqi Freedom, more than 30,000 

service members have been wounded (DoD, November 2007) and approximately 4,000 

military personnel have died (DoD, November 2007).  While government officials are 

trying to reduce soldier injuries and casualties by increasing funding, training, and 

number of military personnel, the figures continue to climb. Effective fighting tools borne 

of the application of today’s latest technology are needed more than ever to maintain the 

U.S. strategic advantage and protect the U.S. soldier in any line of combat whether its on 

water,  land, or in the air. This paper presents research to help protect and increase the 

defenses of infantry soldiers on ground. While in battle these soldiers’ defenses and 

performance suffer due the intense stressors of combat.  
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1.1 Physiological Effects of Combat 

Combat stress may be defined as the perception of an imminent threat of serious personal 

injury or death, or the stress of being tasked with the responsibility to protect another 

party from imminent and serious injury or death, under conditions where response time is 

minimal (cite). Physiological effects that result from combat include, but are not limited 

to, a dramatic increase in heart rate, heavy breathing, muscle tremors, and anxiety. 

Research shows that the heart rate of a soldier in combat is around 300 beats per minute 

(bpm), which is 100bpm more than the heart rate of Olympic athletes, which rarely 

exceed 200bpm during competition (Brei, James, Lindner, 2003). Fatigue is another 

physiological effect that is experienced by a soldier in combat. Depending on the soldier, 

the intensity of these physiological effects may render the soldier ineffective during 

combat.  

The degradation of a soldier’s marksmanship due to combat stressors is a problem 

that carries consequences and receives a great amount of attention from the United States 

military. Reduction in the soldier’s accuracy leads to a decrease in the soldiers’ ability to 

survive. A reduction in accuracy may also lead to an increase in collateral damage, as 

well as an increase in civilian casualties which in turn may have a negative impact on 

political relationships between the United States and other countries. Less accurate fire 

also results in an increased amount of wasted ammunition. The negative impact that 

combat stressors have on soldiers’ marksmanship jeopardizes the missions, national 

security, and most importantly the lives of unit.  
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1.2 Marksmanship Training 

Marksmanship is the measurement of a soldiers’ rifle proficiency. It is a key component 

of successful missions and most importantly soldiers’ defense. To reduce the 

physiological effects of combat, the U.S. military has developed extensive marksmanship 

training. This training includes physical and mental conditioning, along with rigorous 

target training exercises. One targeting exercise consists of soldiers shooting at pop-up 

targets at distances ranging from 50m-300m at various shooting positions (Brei et.al 

2003). The skill levels for this exercise are shown in Table 1.1. 

 

Table 1.1 Marksmanship Skill Levels 

Expert 36 hits (minimum) 

Sharpshooter 30 hits (minimum) 

Marksman 23 hits (minimum) 

  

In order for a soldier to advance to sniper training, they must qualify as an expert in this 

shooting exercise.  

 

1.3 Negative Factors Impacting Training 

Even though all soldiers receive marksmanship training, the number of soldiers that are 

able to qualify as Experts, is very low. This is due to that fact that it takes excellent motor 

skills and control over physiological effects which vary from soldier to soldier. Due to 

time constraints and urgent demands for soldier placement, marksmanship training for 
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incoming soldiers may be rushed. This creates a situation that is biased against those who 

have the potential to become Expert marksman if given the time normally allocated for 

training. Based on the intensity of stressors experienced by soldiers while in combat, it is 

well known that the accuracy of all shooters degrades during battle, regardless of the 

level of training.. An alternative solution to work in conjunction with marksmanship 

training, is to attach an active stabilization system to the small arms weapon of the 

soldiers. This system will act to in increase the effectiveness of a soldiers’ accuracy while 

experiencing the physiological effects of combat. 

 

1.4 Literature Review 

Statistics show that elimination of shooter induced disturbances can increase a soldier’s 

accuracy by up to 25% (Brei et. al, 2003). This increase in accuracy may allow soldiers to 

qualify as an Expert marksman, who under normal circumstances would not. An increase 

in the number of Expert shooters will increase the soldiers’ ability to defend themselves 

and increase mission effectiveness (Brei et. al, 2003). This is the motivation behind active 

stabilization systems. Active stabilization systems have been developed for large gun 

systems such as those on battleships, turreted systems like the 120mm gun on the M1A2 

Abrams tanks, and the 30 mm gun on Apache Helicopters (Pathak, Brei, Luntz, Lavigne, 

2006).  However, research for the application of active stabilization systems on hand-held 

weapons is fairly new (Pathak et. al, 2006). The Inertially Stabilized Rifle (INSTAR) is 

an active stabilization system designed to remove user-induced disturbances in small 

arms weapon systems, particularly the M16 (Brei et. al 2003). The INSTAR system is 

designed to stabilize the barrel of the M16 through an active spring-damper system 
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placed between the barrel and stock of the M16 (Brei et. al 2003). A DC powered smart 

material actuator adjusts the elevation of the barrel to compensate for shooter induced 

disturbances forced upon the rifle through use of a closed loop feedback controller which 

is connected to gyroscopic sensors (Pathak et. al, 2006). The purpose of the feedback 

controller is to ensure that the active stabilization system operates at peak performance at 

all times. 

 

1.5 M16 

Since the 1960s the primary infantry rifle of the U.S. military has been the M16, 5.56-

mm caliber, hand-held rifle. Today at least 15 NATO countries and 80 countries 

worldwide have used the M16 for defense. The M16 is the most commonly manufactured 

5.56-mm rifle in the world.  The United States and Canada have produced and distributed 

8,000,000 M16s worldwide. It is estimated that 90% of these rifles are still in operation. 

In today’s combat zones there is ever-increasing demand for a lightweight, highly 

dependable, accurate service rifle with great fire power. The M16 answers this call. 

Primarily composed of steel, aluminum, and composite plastics, most M16 rifles come in 

two forms: semi-automatic and 3 round burst. Both forms offer an effective range of 

550m which is equivalent to 5.5 football field lengths (cite). 

 

1.6 Closed Loop Controller 

The INSTAR stabilization system is designed to save the lives of soldiers and those that 

they are sworn to protect. With this responsibility, it is imperative that the system 
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performs optimally at all times. The feedback controller is designed to use feedback 

received from the gyroscopic sensors to send commands that control the actuator’s 

displacement of the gun barrel. This will offset the jitter like disturbances that are forced 

upon the rifle by a soldier in combat. The breathing pattern varies from soldier to soldier 

as well as how much each soldier is physiologically affected by combat. Therefore each 

soldier induces their own unique disturbances upon the rifle.  A properly designed 

feedback controller will remove the shooter induced disturbances without over-exerting 

the actuator. It will send different commands to the actuator for disturbances of various 

intensities. For example, disturbances of different amplitudes and frequencies may not 

require the same amount of force exertion and amplitude displacement. By adapting to 

the different disturbances and sending control commands that are calculated to address to 

each disturbance, the feedback controller will prevent the actuator from using 

unnecessary energy on smaller disturbances. In turn, conserving battery life and 

conservation of battery life will provide the most “rounds fired” in combat per fully 

charged battery. This type of robust feedback controller will guarantee that the INSTAR 

system will perform correctly for all soldiers. 

 

The following thesis presents just such a robust feedback controller. Chapter 2 shows the 

development of the mathematical model using the equations of motion for the M16 rifle. 

Chapter 3 outlines the specification and criteria that the control systems designed for the 

INSTAR system must meet. Chapter 4 consists of the theoretical underpinnings of each 

control method applied to the INSTAR system. Chapter 5 consists of the numerical 
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models for the M16 and its control designs. Chapter 6 presents the results of each control 

system derived in this study. Chapter 7 gives the conclusion of this study.  
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Chapter 2 

Mathematical Model 

This chapter discusses the actuator’s design and how its constraints will be used in the 

development of the control design. It also includes the mathematical model which results 

from the system’s equations of motion which are solved for using Newton’s second law 

applied to the rotational inertias of the stock and barrel in the azimuth and elevation 

direction. 

 

2.1 Actuator 

 

a

INSTAR is a tactical rifle designed to address unwanted shooter-induced disturbances by 

decoupling their effects from the rifle’s barrel via an active suspension system (Brei 

2003). A free body diagram of the active suspension system including the mass of the 

rifle is shown in Figure 2.1 where W is the weight of the barrel. The active suspension 

system consists of restoring force F  modeled as a spring of stiffness , an actuator 

force modeled as spring of stiffness k  with an actuator displacement of , sensors, 

and a power supply. Distances l , , and  are the moment lengths of W , , and , 

respectively (Brei et. al 2003). These moment lengths are measured from the pivot point 

of the rifle located at the shooter’s shoulder. These lengths will be used to derive the 

equations of motion for the rifle’s dynamic model (Brei et. al 2003). Based on the 

feedback of the targeting error 

s sk

aF a ax

w sl l sF aF

)(tθ  from the sensors, a control system will calculate the 

desired and needed to cancel out the human disturbances that are imparted to the ax aF
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rifle. The actuators are designed to cancel out jitter disturbances in a frequency range of 

3Hz-5Hz.  
 

 

Figure 2.1: Free Body Diagram Including Shoulder and Arm Disturbance  

(Brei et. al, 2003) 

 

 

_ + 

Figure 2.2: The Actuator’s Piezoceramic Layers (Brei et. al, 2003) 

 

The actuator itself is composed of multiple piezoceramic layers interconnected in 

series and/or parallel. A voltage applied to the array of layers produces a net push or pull 
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motion resulting in an applied force with a displacement Δ  as labeled in Figure 2.2. The 

unique design of the actuator allows it to provide ample force and displacement and 

satisfy the size constraints of being able to fit into the stock of the rifle, while adding 

minimal amount of weight to the rifle (Brei et al, 2003) 

 

 

Figure 2.3: Prototype Actuator for INSTAR (Brei et al, 2003) 

 

The actuator moves the barrel in the elevation direction, producing a range of 

barrel angles θ . The actuator is designed to isolate a shooter induced disturbance from 

the gun barrel’s point of aim for a stationary shooter with targeting error amplitude of 1.5 

to 3 silhouettes at various ranges (Brei et. al 2003). If the shooter is located 400m from 

their designated target this equates to a targeting error θ , of 1.88mrad as shown in Figure 

2.4. 

 

Figure 2.4: Allowable shooter targeting error range (Brei et. al, 2003) 

 

 



 Control Design for an Inertially Stabilized Rifle 11 

Since the rifle is a portable system, the actuators are battery powered. The battery 

is a 9V DC source (Brei et. al, 2003) . Assuming the average on-time for the system to be 

2 seconds, the actuator will be able to function for thousands of shots per fully charged 

battery. 

 

 

Table 2.1 Actuator Specifications 

Actuator Force(Max) 8N 

Actuator Displacement (Max) 1.90mm 

Power Supply 9V 

Power Usage 2W 

Weight 500g 

 

 

2.2 Model Description 

  

 

 

 

 

 

 

 

xs 

c1 

k1 

Ms 

Mb 

k2 Fo 

LB 

Lcm 

Cp 
Ccm 

Cs

Larm 

xa 

Stock 

Barrel 

Armθs 

θb

A 

B 

Shoulder 

Fp 

Ma 

xp 

z 
y 

x 



 Control Design for an Inertially Stabilized Rifle 12 

 

Figure 2.5: Generic Dynamic Model with Active Stabilization (Brei et. al, 2003) 

  

Figure 2.5 is a generic analytical dynamic rifle model. It consists of the stock of the gun, 

the barrel of the gun, the active suspension stabilizing system, along with the human arm 

and shoulder disturbance. 

 

pF px oF

2

2 oF

sM bM

s

The active suspension stabilizing system consists of the actuator which produces a 

force  at displacement , and the preloaded restoring force which is produced by 

spring constant k  which is located between the barrel and the stock of the weapon (Brei 

et. al, 2003). The active suspension stabilizing system serves to buffer out the jitter 

effects that result from human interaction with the weapon. The actuator moves the barrel 

of the rifle up and down independent of the stock while spring constant k  produces  

to hold the barrel onto the actuator (Brei et. al, 2003). 

The barrel and the stock are the two major components of a rifle. Their masses are 

so large that the masses of the other parts of the rifle are seen as negligible, therefore only 

the mass of the stock  and the mass of the barrel  are placed in the analytical 

dynamic model (Brei et. al, 2003). The stock of the rifle serves to facilitate easy steady 

holding and aiming of the rifle prior to and during firing of the rifle. The barrel of the 

rifle is a cylindrical metal tube through which the bullet travels before leaving the rifle. 

The human disturbances are modeled at the two main points of human-rifle 

contact with respect to the x-y-z coordinate system shown in Figure 2.5. These points are 

where the shoulder and hand touch the rifle (Brei et. al 2003). The shoulder disturbance is 

modeled in Figure 2.5 with a pivot point of the rifle with an angle of θ , and a translation 
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sx

s

in the positive direction due to shoulder disturbance is modeled as displacement  at the 

pivot point A (Brei et. al 2003). The arm disturbance is modeled as a mass-spring-damper 

system to account for the movements due to the musculature of the arm (Brei et. al 2003). 

Figure 2.5 has two pivot points,θ , the angle of the stock and bθ , the angle of the 

barrel. Both angles are measured relative to the horizontal, however bθ  is the angle of 

importance. The angle measured by bθ  corresponds to the targeting error of the rifle 

system (Brei et.al 2003). It is desired that bθ be equal zero. The value of bθ can be 

expressed in terms of sθ and  as follows: px

p

p
s C

x
−θ

ax s

pF

0DFHFGGKCM +++=⎥
⎦

⎤
⎢
⎣

⎡⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
pas

b

pp

b

p xxx

θθ&&
&&

 
(2.1) 

b= θ

  

The equations of motion for the rifle were established by applying Newton’s 

second law to the forces in the vertical direction in Figure 2.5. These equations of motion 

fully describe the motions of the rifle subject to base excitation inputs  , x  and 

platform force input  (Brei, Luntz, Barnes, 2005). 

 

 
(2.2) 

+⎥
⎦bθ

  

where the mass matrix M  is  
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2

M , 

 

(2.3) 

  

the damping matrix C  is 

 

⎥⎦0                      0        
⎥
⎥
⎤

⎢
⎢
⎢

⎣

⎡−
=

         2
2

armarm
p

armarm LC
C

LC
C , 

 

(2.4) 

  

the stiffness matrix K is 
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s
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s xM
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)( 1G
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(2.5) 

  

the shoulder disturbance matrix G  is 

 

, 
(2.6) 

cmbC

  

the arm disturbance matrixG is a
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(2.7) 

  

 

 

 

the moment matrix of the actuator is H  

 

, 
(2.8) 

  

 

 

and the matrix represents the moment arms for spring preload  

 

 
(2.9) 
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.

 

 

bM sM

Figure 2.6 is the analytical dynamic model for the M16 Assault Rifle. 

Kinematically Figure 2.6 represents a different case from the generic model in Figure 2.5 

in that its stock and barrel are rigidly attached, with the actuator held directly by the arm 

(Brei, et. al, 2005). Since the stock and barrel are rigidly attached their masses are 

summed together into and the stock mass  is set to zero. Figure 2.6 only has one 

pivot point A  so unlike Figure 2.5, the M16 has only one angle of rotation bθ  that is 

measured relative to the horizontal. 

 

The equations of motion for the M16 are 
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Figure 2.6: Dynamic M16 Combat Rifle Model with Active Stabilization  
(Brei et. al, 2005) 
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where the mass matrix  is  

 

⎦A

, 
(2.11) 

  

the damping matrix C  is 

 

, 
(2.12) 

  

K is the stiffness matrix 
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=K

  

the shoulder disturbance matrix  is sG

⎤−−− sssa xkxcxm &&& 11 , 
(2.14) 

  

the arm disturbance matrixG is 
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and the moment matrix of the actuator is H  

 

⎦p
, 

(2.16) 

  

2.3 M16 State Space 

A plant design of the M16’s dynamics must be developed before control theory may be 

applied to the system. The plant is a mathematical model that fully captures the dynamics 

of the M16 rifle while taking into consideration the rifle’s response to human interaction. 

Equations (2.10-2.16) will be used to develop the plant model since these equations fully 

describe the motions of the rifle being shot by a human in a stationary position (Brei et. 

al, 2005). 
The desired form of the system is  

 
(2.17) 

 

Where  represents the number of states and represents the number of system inputs, 

 is the state (plant) matrix, is the state vector, 

m

)(tx mxnR   ∈B  is the input matrix, 

 is the input vector, d  is the disturbance vector, and is the output matrix.  )(tu )(t C

The dynamic equations for the M16 mass-damper-spring system are given by 
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(2.18) 

 

The last two terms in Equation (2.18) are essentially disturbances imparted by the shooter 

to the gun. They are modeled as disturbance signals 

 

 
(2.19) 

(2.20) 

 

In Equation (2.19),  is a combination of arm disturbance  and shoulder 

disturbance . Equation (2.20) is only composed of shoulder disturbance .When the 

shooter holds the gun, ergonomic disturbances cause the gun barrel to oscillate. 

Disturbances and d  are assumed to be sinusoidal of the form 
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Equation (2.18) can now be written as 
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(2.23) 

  

Equation (2.23) can be put into state space form so that control theory may be applied to 

enhance the performance of the system. Equation (2.26) is multiplied by 

so that  is the lone term on the left side of the equation.  

The resulting equation is 
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The matrix  is a diagonal matrix, therefore its inverse does exist.  

 

After multiplying out the matrices, equation (2.24) becomes 
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To model equation (2.26) into a state space model the state variables are defined 

as 
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(2.28) 

 

With these state variables the second order dynamic equations in equation (2.28) can be 

formed into the desired form of a state space model  
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(2.29) 

  

The system represented by equation (2.29) outputs the barrel angle θ . Equation (2.29) 

is a fourth order state space dynamic model of an M16, where the motion is introduced 

by a shooter’s arm and shoulder disturbance, and the actuator force that is required to 

reduce the amplitude of movement of the M16’s barrel. 
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In equation (2.29) the state space representation of the M16’s dynamic model, 

matrix A represents the plant matrix of the M16 which represents the behavior of the 

states of the system. The state’s behavior that will be closely monitored is  which is 

equal to , the measurable value of the actuator’s displacement. Matrix B in equation 

(2.29) represents the behavior of the system’s input . Matrix C in equation (2.29) is 

the output matrix of system. It outputs the rifle’s barrel angle 

)(1 tx

)(tx p

)(tFp

)(tθ which is also referred 

to as the targeting error. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Block diagram of equation 2.29 

 

Figure 2.7 is a block diagram of the M16’s dynamic model without a controller 

applied to the system. In Figure 2.7 u  is the control input which corresponds to the 

barrel stabilizing actuator force . For all systems in this paper with or without a 

controller, represents the stabilizing actuator input . Since equation (2.29) 
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)(tFp

)(t

represents a linear time invariant system, the laplace transform may be used to calculate 

the system’s transfer function, in the frequency domain. The transfer function of the 

system is based on the relationship between input , with respect to the system 

output θ .  

 
(2.30) DBAsIC

sU
sY

+−= −1)(
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Equation (2.30) is the transfer function of the system. The transfer function of the system 

describes many characteristics of the system. Characteristics including the order of the 

system, the stability of the system, the transient response of the system, and the steady 

state response of the system. These tools will be used to evaluate and compare the 

performance of the system with and without control compensation. 
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Chapter 3 

Design Criteria 

This chapter is a collection of the specifications and criteria that must be met by all 

control systems that are designed in this paper. It discusses how the specifications of the 

actuator in Chapter 2 are converted to constraints that the designed control systems must 

meet. Meeting criteria ensures that the control systems designed are practical and that 

they are able to function properly with all components of the active stabilization system. 

 

3.1 Constraints and Specifications 

 

)(tx p

mmtx p  90.1)(

The value of  limits the targeting error allowed by the shooter. The maximum 

displacement value of the actuator is =  (Brei et. al, 2003).  In order for the 

actuator to properly cancel out the aiming errors of the shooter, the shooter must be able 

to come within 3 silhouettes of the target at a maximum range of 250m. This is equal to a 

target error distribution of (Brei et. al, 2003). In Figure 3.1, the allowable target error 

distribution by the shooter is represented by the shaded region. 
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Figure 3.1: Targeting Error Distribution 

 

Upon getting into position and acquiring the target, the shooter activates the 

control system. Within a short amount of time the control system acts to cancel out the 

jitters imparted on the rifle barrel by the shooter. This action dramatically increases the 

accuracy of the shooter. The time from which the shooter activates the control system to 

when the shooter actually pulls the trigger has to be done in 1s (Brei et. al, 2003). This is 

called Time To Trigger Pull (T3P). Maintaining a T3P of 1s or less preserves the battery 

life of the active stabilization system, enabling the system to operate for thousands of 

shots. 

 

Nt 8)( ≤

The maximum magnitude of actuator force is 8N (Brei et. al, 2003). This corresponds to a 

control input range of u . All control designs for the M16 rifle must meet this 

constraint to prevent saturation of the actuator. 
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The frequency of observation for the shooter induced disturbances is 3Hz (Brei et. 

al 2003). It is at this frequency that the control system must be able to decrease the 

targeting error of the shooter. 

 

Table 3.1 Maximum values of control constraints and specifications 

 Disturbances  3Hz 

Targeting Error 0.75m  

 )(tu  8N 

   )tp (x  1.9mm 

T3P 1s 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 Control Design for an Inertially Stabilized Rifle 28 

 

Chapter 4 
 
Control Techniques 
 
Through analysis of the nominal plant’s root locus and transfer function, various control 

techniques are suggested to properly reduce the jitter effects upon the rifle due to human 

interaction with the weapon. This chapter consists of the motivation behind each 

controller design. 

 

4.1 Unity Feedback Gain 

Applying unity feedback gain to the plant is the initial control technique used to reduce 

human induced targeting error. Since the output of the plant was sinusoidal it was 

decided to feed the output back into the system. Multiplying the feedback by a negative 

unity gain, produces an error signal that is fed back into the system, in hopes that the 

system will subtract this error signal from the output to produce better results as time 

passes. Simplicity is the main contributor behind the motivation of using a unity feedback 

loop. The unity feedback controller applied to the M16 plant is shown in Figure 4.1. The 

hardware design of a feedback gain control system can be accomplished by connecting a 

wire from the system output to the system input. 
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Figure 4.1: Negative Unity Feedback Control System 
 

The open loop state space equation for Figure 4.1 is 
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and the control law for Figure 4.1 is 

)()( ttu Cx−=  (4.2) 
  

After substituting equation (4.2) into (4.1) the closed loop equation becomes 
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The state matrix of equation (4.3) is 

BCA  (4.4) 
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The eigenvalues of equation (4.4) describe the stability of the unity feedback system in 

Figure 4.1. 

4.2 Compensator 

Assuming that the transfer function of the M16 system  

 

 (4.5) 
)(
)()(

sU
sYsH =

  

{ }nij ,..2,1   p iii =has complex poles of the form += ωα , with small damping.  These 

open loop complex poles  are to the left of and close to theip ωj -axis. A system that has 

complex poles close to the ωj  axis has an unfavorable characteristic of being marginally 

stable. In addition to this, complex poles with small damping produce large unwanted 

resonated oscillations in the system’s frequency response at their corresponding 

frequencies iω . The undesirable performance characteristics of a system being 

marginally stable and having small damping can be reduced through phase compensation 

by a compensator. The phase compensation control system will consist of the transfer 

function  cascaded with a scalar gain K and a dynamic compensator  as shown 

in Figure 4.2. 

)(sH )(sC
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Figure 4.2: Control system w/negative unity feedback 

 

Let φ  be the departure angle of  and ip diφ  be the desired departure angle of . 

The desired departure angle of  can be written as 

ip

ip

( iidi pC=

 

))arg(+φφ  (4.6) 

  

 

Using standard complex function theory  

 

))(arg())(arg( ii pCjC ≈ω  (4.7) 

  

when iα  is small. Equation (4.6) shows the relationship between the phase of the 

compensator )( ijC ω  at the resonant frequency iω  of complex pole , the initial 

departure angle of , and the desired departure angle of  (Lindner, Celano, Ide, 

1991). After the compensator is designed, a Bode plot is used to analyze the 
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ip ip
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))( ijcompensator’s phase arg(C ω  at the complex pole’s resonant frequency iω  of 

concern (Lindner et. al, 1991). 
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Figure 4.3: Generic Root Locus with two Complex Poles 

 

The desired departure angle of the two complex poles is . The compensator 

will be designed to change the departure angle of the complex poles. A departure angle of 

 will ensure that the system’s open loop poles as well as the closed loop poles 

remain to the left of the 

o180

o180

ωj -axis thus ensuring that the system remains stable, and 

preventing the system’s frequency response from resonating at the frequencies of the 
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complex poles close to the ωj -axis. A departure angle of 180  will produce a stable 

system with a much lesser response time, while reducing the jitter in the system’s 

transient response. 

o

 

The departure angle of the root locus from the open loop pole, is measured 

relative to the real axisσ  from the right. A departure angle of 90  is straight up vertical 

line, where as, a departure angle of  is a straight horizontal line directed towards the 

left. If a point is on the root locus, then the sum of all angles drawn from all finite poles 

and zeros to this point is an odd multiple of . This property of the root locus is used 

to calculate the departure angle of the system’s complex poles. 

o

180)12( +k

+∠ o180)12kzeros

o180

o

∠

o180

The total angle contribution of all finite zeros and poles towards a point located 

on the root locus equals  (where k is an integer). This is computed using 

equation (4.8). 

∑ ∑ =− (poles  (4.8) 

  

 

The first step in calculating the departure angle from a pole on the root locus, is to 

place a point that is a extremely short 

 

ε  distance away. This point is labeled as  as 

shown in Figure 4.4. The departure angle, 

εp

1θ  of the root locus line is drawn from the 

open loop pole (Pole 1), to . The assumption that is located on the root locus, means 

that all lines drawn from the finite poles and zeros to ε  have an angle sum of 

. 

εp εp

p

o180)12( +k
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Figure 4.4: Generic Root Locus w/point  εp

 

From equation (4.8) the summation of angles for a point on the root locus in Figure 4.4 is  

 (4.9) 
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The departure angle 

 

1θ  can be solved for from equation (4.9). 

 

 

ωj

 

 

Figure 4.5: Generic Root Locus w/180 degree departure angle 
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Figure 4.6: Possible K Values 

 

After phase modification of complex poles via compensator design the scalar 

gain K of Figure 4.6 is selected by looking at the lines of the root locus of the system and 

choosing a point on the root locus. The suitable scalar gain K  is chosen at the designer’s 

discretion to produce the desired performance of the system. Figure 4.6 shows possible 

desirable K  values that a designer may chose to incorporate into the control system. It is 

suggested that the designer choose K  values where the departure angle of the root locus 

is 180 . The scalar o K ,  in conjunction with compensator C , helps to ensure a desired 

departure angle from the system’s complex poles. Various gains 

)(s

K , may be chosen and 

simulated before satisfactory results are produced. 
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In Figure 4.2 the equation for the plant with transfer function  is 
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and the equation for the model of the compensator is 

 

 
(4.11) +=&

)()( tytu c=

)()( tKytu pc −=

  

The control law for the plant is 

 

 (4.12) 

 

and the control law for the compensator is 

 

 (4.13) 

 

After substituting equations (4.12) and (4.13) into equations (4.10) and (4.11), the closed 

loop state equation for the compensated system is 
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(4.14) 

   

The steps to the Compensator design for a system represented by Figure 4.2 are as 

follows (Lindner et. al 1991):  

φ  (1) Determine the departure angles 

(2) Determine the desired compensator angles , usually 180  diφ o

)( ijC(3) Determine the desired compensator phase ω  from equation (4.6) to                  

achieve diφ  for  i={1,..m} m= the number of complex poles 

)( ijC ω  to satisfy step (3) (4) Synthesize an appropriate compensator, 

K  for the compensator (5) Using the root locus, determine a suitable gain 

 

After following the steps the designed compensator should have a desirable affect 

on the departure angle from the poles. The closed loop complex poles will move away 

from the ωj  axis, dampening their vibrations in the system’s frequency response. The 

compensator moves these complex closed loop poles without significantly moving the 

other poles of the system. The compensator’s magnitude is a key element to this 

behavior. It must be chosen so that the designer may move the desired poles without 

affecting the other poles of the system. This is important for the stability and performance 

of the compensated system.  
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4.3 State Feedback Matrix Gain 

After analysis of a system’s root locus and the system’s time response, it may be decided 

by the designer that the system needs to converge to a smaller acceptable targeting error 

 

)(tθ , in a shorter amount of time. Moving the open loop poles of the system further to 

the left of the ωj -axis will shorten the transient response of the system. In addition to 

being moved further to the left of the ωj -axis, complex poles must also be moved closer 

to the real axis thereby shortening the system’s transient response and lowering the 

amplitude of the system’s frequency response, thus producing a steady state error that 

meets specification. A state feedback matrix can be designed to place the system’s poles 

in the new desired pole locations. 

 (4.15)       ,...1  nip
di

=

n

  

Where  represents the number of open loop poles. This feedback matrix may be placed 

in a negative feedback loop. Adding a state feedback matrix controller to the system will 

hopefully improve how well the system’s performance measures up to the established 

criteria. In some cases a feedback loop may cause the system to become unstable. A state 

feedback matrix may even allow the system to perform in a consistent and desired 

manner despite unaccounted for dynamic external affects that the system may experience 

in real world applications. 
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Figure 4.7: Plant with state feedback matrix 

 

Consider the system 

)()(
)()()()(

tt
ttutt

Cxy
dBAxx

=
++=

o

)(Fx)( ttu −=

 
(4.16) 

 

In reference to equation (4.16) and Figure 4.7, the control law for this particular system is 

 

 (4.17) 

   

After substituting equation (4.17) into equation (4.16), the closed loop system becomes 
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The eigenvalues λ  of the state matrix represent the pole locations of the 

closed loop system. In order to place the system’s closed loop poles in desired locations, 

the eigenvalues of the closed loop system must be studied. The characteristic polynomial 

, of the desired close loop pole locations is )(spd

0
2

2,
1

1,21 ...)...()(( d
n

nd
n

nddnddd asasass ++++−− −
−

−
−λλ

 

 (4.19) ) nss =− λ)(sp =

  

ddndd Λ∈λλλ ,...,, 21 are the eigenvalues of the desired system. where 

Theorem 4.1 Upon proof that equation (4.16) is controllable, there exists a feedback 

matrix such that the closed loop system’s poles can be placed in desired locations. 

Meaning that (   

F

dΛBFA ∈− )

)()(   ),()( tttt cc MuuTxx ==

This theorem is proven by the fact that the closed loop pole locations are not affected by 

a change in basis in the state space and in the input space. The state matrix of the 

transformed system has the same eigenvalues as the original state space matrix. 

Proof. Let . It follows that 
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(4.20) 

  

 (4.21) 

  

The state matrix of the closed loop system in equation (4.18) is similar to the state 

matrix of the transformed system of equation (4.21). This proves that a change of basis in 

the state space and input matrices creates a transformed system that has the same 

eigenvalues as the original closed loop system where upon viewing equation (4.20) 

 

 (4.22) 

 

Here represents the transformed state matrix, B is the transformed input matrix and 

 is the transformed state feedback matrix. The M16 is a Single Input Single Output 

(SISO) System, with the actuator force as the input and the barrel angleθ as the 

output. Therefore the SISO format for calculating the state feedback matrix using a 

change of basis is used to calculate the state feedback matrix F . 
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Before designing the state feedback matrix, controllability of the system has to be 

checked first. The system is controllable if and only if 

 

 

nn =− ],, 1BAABB L

n

)()()()( ttutt ccc dBxAx ++=
o

Rank[  (4.23) 

 

where  represents the number of states in the state matrix of the nominal plant. If 

equation (4.23) is satisfied, the system is controllable and can be transformed into 

controllable canonical form 

  

 (4.24) 

  

The transformation matrix T in Equation (4.20) must be calculated. Let  

 

  ],,[ 1BAABB −= nL (4.25) β

 

β is controllable, exists  Since it has already been shown that 1−β
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where q is the last row of β . After solving for the change of basis, the transformation 

matrix is 
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The state and input matrices take on the form of 
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where the characteristic polynomial of equation (4.28) is 

 

 (4.29) 

  

The characteristic polynomial for equation (4.28) is the same as the characteristic 

polynomial equation for equation (4.16) therefore both equations have the same 

eigenvalues.  This is proven using Theorem 4.1. After adding a state feedback matrix F   

to equation (4.24) the new control law is u −= and the new transformed state 

equation is  
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Equation (4.20) can be written in state space form as 
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(4.31) 

  

For equation (4.31) the characteristic polynomial equation for the transformed closed 

loop system is  

 (4.32) 

  

 Equation (4.32) allows for the elements of the feedback matrix F to be calculated. This is 

done by comparing equations (4.19) and (4.32). Equations (4.19) and (4.32) can be set 

equal to each other by choosing 

c

+= 1,1,0   − = −= niaaf idici K

c

 (4.33) , or 
 

This step creates the state feedback matrix gain F which will place the poles of the 

transformed closed loop system in their desired location. The state feedback matrix gain F ,   
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of the original system is 

 

TFF c=

ott ≥

)(x̂ t )(t

(t)y

 (4.34) 

  

 

Implementing F into the feedback control system of the original system as shown in 

Figure 4.7, should increase the performance characteristics of the M16’s dynamic 

stabilizing system. These characteristics include stability, transient response, and steady 

state error. If the designed F  produces poor results, a new F  is computed and simulated 

until the feedback control system improves the performance of the M16, meeting the 

designer’s criteria.   

 

4.4 Observer Design 

The feedback gain matrix applies a gain to the states of the system, to help produce a 

desired control signal. However use of a state feedback matrix in simulations assumes 

that all states of the system can be measured at all times . In reality this is not always 

possible. Often only the system’s produced output can be measured when a system is 

operating in a real world environment. This results in the task of observing the states’ 

behavior without being able to directly measure the states’ values. 

An observer can calculate estimated state values  using the control inputu , 

and the output  of the system. The equation of the observer is  
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Figure 4.8: Plant with observer connected to the state feedback matrix  
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The closed loop equation for the system in Figure 4.8 is 
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(4.36) 

 

Let   

 

 
(4.37) 

  

Introducing a change of basis to the state space of equation (4.36) using equation (4.37) 
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where x . The transformed state vector in equation (4.38) can be re-written 

as 
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In equation (4.39) the error vector e  is the calculated difference between the 

observer’s estimated state values and the true state values of the system x . 

The transformed system of equation (4.36) obtained from a change of basis is as 

follows: 
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(4.40) 

  

 

In equation (4.40) the eigenvalues of the closed loop system are 

 

∪− −λ λ  (4.41) 

 

The state matrix of the transformed closed loop system in equation (4.40) is similar to the 

state matrix of the closed loop system in equation (4.36), meaning it has been shown they 

both have the same eigenvalues. Equation (4.40) shows that the poles of the plant are the 
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poles placed by the state feedback irrespective of the observer, and the poles of the 

controller are the poles placed by observer irrespective of the plant. This is the separation 

principle. 

 

F

G

)()()()()( tttt dBFexBFAx +−−=
•

)()()( tt eGCΑe −=&

)(t

)(t )(t

F

The separation principle states that the poles of the entire closed loop system is 

the combination of the poles of the plant placed by the state feedback and the poles added 

to the system by the observer. This allows for the state feedback matrix gain  and the 

observer gain  to be designed separately. The closed loop form of equation (4.40) can 

be written as 

 (4.42) 

  

where 

 (4.43) 
 

 

The faster an observer is able to accurately measure the true state values x , the 

faster the error e approaches 0. When e approaches a value of 0, equation (4.42) takes 

the form of equation (4.18). Accurately estimating the states of a system in a short 

amount of time will result in a controller that accurately estimates the states’ values while 

allowing the state feedback matrix to remove the disturbances reflected upon the system 

After the state feedback matrix gain  and the observer gain matrix G  have been 

designed, the observer and the state feedback gain system can be joined together forming 

one control system to be added to the plant (the original M16 dynamic system). A 
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successful design of the matrix gains  and G results in a stable system, where the states 

are accurately measured and the outside disturbance affects are minimized. 

Before designing an observer, observability of equation (4.1) must first be 

checked. A system must be observable in order to design an observer for the system. 

Definition:  The state values in equation (4.1) are observable at time if for any state 

there exist a finite time t , such that knowledge of  and , 

suffices to determine  uniquely. A system is observable if and only if  

0

n=
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1tt ≤≤
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(4.44) 

  

where n  is the number of states of the system. 

To prevent the error dynamics of the observer from having an undesirable affect 

on the plant, e must converge to 0 in a shorter time period than the plant’s dynamics. 

The desired time of convergence can be achieved by placing the observer’s pole 

locations λ , further in the left half plane of the ωj -axis than the closed loop 

plant pole locations )BFA −(λ . The observer’s poles are generally placed 3-10 times 

further to the left in respect to the location of the plant’s closed loop poles.  

After the observer’s desired pole locations have been chosen, the next step is to 

design the observer’s gain matrix G of the observer. This process is very similar to 

constructing the state feedback gain matrix F . Therefore using the form of equation 

(4.41), 
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From equation (4.45) the observer gain  can be calculated when ( is 

controllable. As has been shown, the form used in placing − in controllable 

canonical form to solve for , can be used to place ( in controllable canonical 

form to solve for G . 

F )TT GA

G

TC−

 After adding an observer to the system it may be observed that the observer 

amplifies the disturbance signal. An amplified disturbance signal is an undesirable 

performance characteristic of some observers. However the disturbance may be mitigated 

by adjusting the observer’s pole locations and re-calculating a new corresponding gain 

matrix , respectively,, until the closed loop control system meets the designer’s 

specifications. 

 

4.5 LQG 

It is important that the control system designed to stabilize the M16 rifle meet all design 

criteria. The fact that the stabilizing system must produce an acceptable output while 

estimating and controlling the states’ values, along with the fact that the control input of 

the system requires a system of weights to regulate these performance aspects of the 

system led to the decision to develop a Linear Quadratic Gaussian (LQG) controller. 
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The linear quadratic regulator is used to minimize the performance measure 
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where is a symmetric, positive semi-definite matrix, and R is a symmetric, positive 

definite matrix. The Q matrix is a symmetric positive semi-definite matrix to ensure that 

the cost function  is convex with a local minimum. R is a symmetric positive definite 

matrix to ensure that the weighting coefficients for the optimal control  are not equal 

to 0. This guarantees that . A control input 
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u will allow the state variables 

to approach ∞ , which is an undesirable performance characteristic of the system. 

Since the matrix is positive semi-definite matrix all of its diagonal elements are 

non-negative. These diagonal elements  are weights that have an affect on the 

corresponding system state variables . Increasing these weights places a larger 

penalty on the deviation of in relation to . A weight value of 

q

)0t =iiq

)

means 

that the final value of  is of no concern.  (txi

The diagonal elements of R are non-negative as well. The diagonal elements of 

,  are weights that have an affect on the corresponding control values u . 

Increasing the weights of 

R iir )(ti

R reduces the amount of control expenditureu .  )(t

Q

Since the control system for the M16 model is linear time invariant, the ratio 

between the weight values of  and R  are of importance. Different weight values for 

 and  with the same ratio have the same effect on the control system. Using the 

weight values of Q  and 

RQ

R  and their ratio, the LQR produces an optimal feedback 
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matrix. This optimal feedback matrix produces the optimal control system input u  in 

relation to the designer’s desired state values and the desired control expenditure. 

 A similar process is carried out to design the optimal gain G  for the observer. 

The performance measure of the observer is 

 
(4.47) 

  

 

The observer for this M16 system is linear time invariant, therefore the ratio of weight 

values between Q and R has an effect on the performance of the observer. 

The closed loop equation for the M16 stabilizing control system is 

( ) )()()()( tttt dBFexBFAx +−−

)(x̂ t )(t

=&  (4.48) 

  

 

The motivation behind using a linear quadratic regulator to design the optimal 

gain G comes from equation (4.48). An optimal gain G minimizes the error variance 

between the observer’s estimated states  and the plant’s actual states x . Providing 

accurately measured state values of the system to the optimal feedback matrix allows the 

feedback matrix to calculate a superior system control input to reduce the effects of 

disturbances on the system’s performance.  
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Figure 4.9 LQG system with optimal feedback gain and optimal observer gain 
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Chapter 5 

Numerical Models 

This chapter is a layout of the numerical models of the plant and the controllers 

developed in this paper using the theory from Chapter 4. Pole locations for each 

controller are presented to certify that all control systems are stable before their use in 

simulations. 

 

5.1 Uncontrolled System 

The uncontrolled M16 system is a linear time-invariant system whose state equation is 

written as 
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The numerical model of equation (5.1) is 
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The transfer function of the system is  
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Figure 5.1: Root locus of the uncontrolled system 

 

The root locus of the uncontrolled system as shown in Figure 5.1, shows that the system 

is a marginally stable fourth order system. It has two dominant open loop complex poles 
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near the ωj -axis. The remaining two open loop poles of the system are complex poles 

and are located substantially further to the left of the ωj - axis than the dominant open 

loop poles. 

 

Table 5.1 Open Loop Pole Location 

Pole 1 -1.6413 +22.193i 

Pole 2 -1.6413 -22.193i 

Pole 3 -171.25 +132.14i 

Pole 4 -171.25 -132.14i 

 

 

5.2 Unity Feedback 

The unity feedback controller has a numerical model very similar to the uncontrolled 

system. It’s transfer function 

 

 
(5.4) 
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which is very similar to the transfer function of the uncontrolled system in equation (5.3). 
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The root locus for the unity feedback system is 
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Figure 5.2: Root locus of the plant connected to unity feedback system 

 

In Table 5.2 are the open loop pole locations for the unity feedback controller system. 

 

Table 5.2 Open loop pole locations 

Pole 1 -1.6413 +22.2i 

Pole 2 -1.6413 -22.2i 

Pole 3 -171.25 +132.14i 

Pole 4 -171.25 -132.14i 

 

 



 Control Design for an Inertially Stabilized Rifle 60 

 

 

5.3 Compensator Design 

 

i193.226413.1 +

∑ ∑ =∠−∠ o180poleszeros

The compensator for the M16 control system is designed using the root locus of the 

uncontrolled system from Figure 5.1. The departure angle for the complex Pole 1 located 

at − is calculated using equation (5.5) 

 

 (5.5) 

  

 

After choosing a point that is a short distance ε  away from Pole 1, equation (5.5) when 

applied to the M16 system takes the form of 

 

 (5.6) oooooo 1809042333342 1 =−−−−+ Poleθ

oo 90270 =−=θ

))(arg( iidi jC

 

 (5.7) 
1Pole

    

ωφφ =−

)( 1

 (5.8) 

 

 

Equation (5.7) is the departure angle of Pole 1. Using the fact that the real part of Pole 1 

is small equation (5.8) states that the phase of the compensator ωjC , placed at the 
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resonant frequency of Pole 1 can be used to determine the departure angle of Pole 1.The 

phase of C )( j iω can be calculated by subtracting the pole departure angle iφ , from the 

desired pole departure angle dφ . Where i  represents a particular pole and iω represents the 

corresponding resonant frequency of the  pole. For the M16 system considered, 

problem , , and 

thi

diφ o90 193.22o180= =iφ =iω rad/s. After substituting equation (5.7) into 

equation (5.8) and plugging in , the phase of the designed compensator can be 

solved for. 

o

o

thi

.22(arg( jC

180=

/ srad

.22=

diφ

193.22j

o90

 

 (5.9) oo 90180=

rad /193

90=))(C

=

arg(

))/193 srad

−

s

  

 

A positive angle for equation (5.9) means that a lead compensator may be used to add 

phase to the original uncontrolled system to adjust the departure angle of that 

particular pole. Using equation (5.9), a lead compensator of phase 

at ω  should result in the desired departure 

angle results on the new root locus. Figure 5.3 shows a Bode plot of the designed 

compensator 
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Figure 5.3: Bode plot of the designed lead compensator’s phase response 

 

The designed compensator in Figure 5.3 is a lead compensator that has a 

maximum phase value at 64 ato8. sec/ 1.22 rad=ω . After trying several designs, this 

compensator provided the optimal results.  
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Figure 5.4: Root locus of the compensated original system 
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000,10

The root locus of Figure 5.4 shows how adding the compensator to the system, 

modified the departure angles of the dominant complex poles of the system. This is a 

drastic change in departure angle, in comparison to the departure angle in Figure 1. The 

root locus was used to choose the optimal gain =K

o180

for the compensator. The 

resulting  departure angles of these poles dramatically increases the output 

performance of the M16 rifle system. In addition to having a reduced barrel targeting 

error, the system is no longer marginally stable.  

 

Table 5.3 Open loop pole locations 

Pole 1 -1.6428+22.193i 

Pole 2 -1.6428-22.193i 

Pole 3 -171.25+132.14i 

Pole 4 -171.25-132.14i 

Pole 5 -99.997 

 

 

5.4 State Feedback Matrix  

Controllability of the system must be checked before the state feedback matrix can be 

designed. Equation (5.10) has full rank therefore the system is controllable. 

  

Rank[  432 =]BA,BA,AB,B (5.10) 
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Next the transformation matrix  must be solved for in order to transform the 

system into controllable canonical form.  
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(5.11) 

  

 Equations (5.12) and (5.13) are the  and  matrices of the original system 

transformed into controllable canonical form based on their transformations by the T  

matrix. 
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The characteristic polynomial for equation (5.14) is given by 
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The new desired pole locations for the system are 

 

Table 5.4 Desired pole locations placed by state feedback 

Pole 1 -200 +0.5i 

Pole 2 -200 -0.5i 

Pole 3 -400 +0.5i 

Pole 4 -400 -0.5i 
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The characteristic polynomial for the new desired pole locations is 

 (5.16) 

 

972534 10*4001.610*6.910*2.51200 ++++ ssss

c

  

 

The elements of the transformed feedback matrix F  in equation (5.15) can be 

solved for by substituting the polynomial coefficients of equation (5.15) into the 

corresponding coefficients of equation (5.16). 
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(5.17) 

  

 

After solving for the elements of the transformed feedback matrix in equation (5.17), the 

transformed feedback matrix is 

 

[ ] (5.18) 21.854    471592   10*9.5677   10*6.3769 79=cF

TFF c=

  

 (5.19) 

  

Using equation (4.34) the state feedback matrix gain for the original coordinate system is  
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[ ]1.1819    7.1341   10*9267.3   10*7715.2 55=F

F

 (5.20) 

  

Matrix  in equation (5.20) is placed in a state feedback loop that is added to the original 

uncontrolled M16 plant model. Figure 5.5 is the root locus of the original system after the 

state feedback loop is added to it.     

 

-450 -400 -350 -300 -250 -200 -150 -100 -50 0

-500

0

500

Real Axis

Im
ag

in
ar

y 
A

xi
s

 

Figure 5.5: Root locus of the system with its poles placed by state feedback 

 

The root locus of the state feedback system in Figure 5.5 shows that all system 

poles are located in the left half of the complex plane, meaning that the system is stable. 

Also the state feedback matrix was successful in placing the poles further to the left of 

the ωj -axis than they were in the original uncontrolled system. This creates a system that 
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is stable and very responsive to diminishing the human disturbances induced upon the 

M16 rifle. 

 

Table 5.5 Actual pole locations place by state feedback 

Pole 1 -200+0.5i 

Pole 2 -200-0.5i 

Pole 3 -400+0.5i 

Pole 4 -400-0.5i 

 

5.5 Observer Design 

Before designing an observer to estimate the states of the system, the system must be 

checked for observability. For this particular system equation (5.21) has full rank, 

therefore the system is observable. 
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The state feedback matrix gain F , calculated in the previous section will be used 

in the observer control system. Using the separation principle, the observer gain  is 

calculated to place the poles of the observer four times further to the left of the ωj -axis in 

relation to the pole locations of the state feedback system. These pole locations are 
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Table 5.6 Observer pole locations 

Pole 1 -800 + 2i 

Pole 2 -800 -  2i 

Pole 3 -1600 +2i 

Pole 4 -1600  -2i 

 

 

The observer gain matrix is calculated in a manner similar to the state feedback matrix 

. The transformation matrix T is calculated and used to place the system into canonical 

form. 
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Equations (5.23) and (5.24) are the and matrices in controllable canonical form 

based on their transformations by the T  matrix. 
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The characteristic polynomial for equation (5.25) is 
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The characteristic polynomial for the new desired pole locations of Table 5.7 is 
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The elements of the transformed observer gain matrix in equation (5.26) can 

be solved for by substituting the polynomial coefficients of equation (5.26) into the 

corresponding polynomial coefficients of equation (5.27). 
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After solving for the elements in equation (5.28), the transformed feedback matrix is 

 

[ ]214454   102728    10*144.6     10*684.1 6912 .*.c
T =G

G

 (5.29) 
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After taking the transpose of equation (5.30) the observer gain matrix is  
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Figure 5.6 shows the root locus of the observer gain system with state feedback. 
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Figure 5.6: Root locus of state feedback system with an observer  

 

The root locus of the observer control system includes the open loop poles placed 

by the state feedback control system as well as the open loop poles of the observer. All 

poles are located in the left half plane of the axis, therefore it can be concluded that the 

system is stable. 
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Table 5.7 Pole locations of the state feedback with an observer 

Pole 1 -200 +0.5i 

Pole 2 -200 -0.5i 

Pole 3 -400 +0.5i 

Pole 4 -400 -0.5i 

Pole 5 -800 +2i 

Pole 6 -800 -2i 

Pole 7 -1600 +2i 

Pole 8 -1600 -2i 

 

 

5.6 Linear Quadratic Gaussian 

In the LQG method the state feedback matrix and the observer gain were initially 

designed separately, leading to undesirable performance marks for the observer and the 

output targeting error of the system. An alternate method was applied by using the LQG 

method to design the optimal state feedback matrix and the optimal observer gain 

together, while both systems are connected to the original plant. Controlling the state 

values as well as the targeting error of the system is the main factor in deciding the 

element values of theQ matrix for the state feedback matrix. The R matrix on the other 

hand used to design the state feedback matrix is modified to control the magnitude of 

actuator force. The Q and R  matrixes for the observer gain were designed using similar 

motivation. However the design for the Q  and R  matrices for the observer gain has 

 



 Control Design for an Inertially Stabilized Rifle 74 

emphasis on controlling all of the states of the system in order to produce proper state 

estimates. 
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For the state feedback, the Q  and  matrix combination is 
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For the observer gain the  and R  matrix combination is 
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The root locus for the LQG system is show in Figure 5.7. 
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Figure 5.7: Root locus of LQG system 

 

The root locus shows that the LQG system is stable. It includes the poles of the 

optimal state feedback system along with the optimal observer gain system. 

 

Table 7 Closed Loop Locations 

Pole 1 510*1623.3−  

Pole 2 i55 10*2618.110*2824.1 +−  

Pole 3 i10*1.2618 10*1.2824- 55 −  

Pole 4 7.0215-  

Pole 5 132.9i 172.89- +  

Pole 6 132.9i 172.89- −  

Pole 7 131.68i 169.38- +  

Pole 8 131.68i 169.38- −  

 



 Control Design for an Inertially Stabilized Rifle 76 

 

 

Chapter 6 

Results 

This chapter discusses and presents the simulation results of the designed controlled 

system. Simulink of  Matlab was the software used to create and test all designed control 

systems. First the plant model for the M16 rifle was designed. The plant model including 

human induced disturbances was designed in Chapter 2. The disturbances are 3Hz 

sinusoidal waves with various amplitudes. The amplitudes were modified to result in the 

allowable plant targeting error of mradt 3)( =θ , which is equivalent to 3 silhouettes at a 

distance of . The value of mD 250= )(tθ  is calculated using equation (6.1), with the 

target distribution  . Each simulation in this chapter is on a time interval of 

. 

ms 75.0±=

st 30 ≤≤

⎟
⎠
⎞

⎜
⎝
⎛=t tan)(θ  

(6.1) −

D
s1

)(t

 

 

6.1 Uncontrolled System 

Figure 6.1 shows the targeting error θ of the uncontrolled M16 plant model. 
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Figure 6.1: Targeting error for uncontrolled system 

 

In Figure 6.1 the M16 plant model along with human disturbances produces a targeting 

errorθ around  which is within the limits of the targeting error distribution 

allowed by the constraint of the actuator displacement magnitude . Figure 6.2 displays 

the dynamic behavior of , for this state value has to be monitored to test if the 

control design meets specification. The actuator force 

mrad3

px

0)(

)(tx p

=tFp  for the uncontrolled 

system. 
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Figure 6.2: Actuator displacement of the uncontrolled system   

 

6.2 Unity Feedback 

As stated previously, the system of negative unity feedback is one which the output 

θ is fed back into the system. Figure 6.3 shows the output of the unity feedback system 

versus the output of the uncontrolled system. 
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Figure 6.3: Targeting error for uncontrolled system vs. unity feedback system 

 

Observation of Figure 6.3 reveals that the targeting error θ of both systems is very 

similar. The uncontrolled output is represented as a solid blue line, while the unity 

feedback is a dashed red line with “--” point markers. 
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Figure 6.4: Actuator stabilization force of the unity feedback control system 

 

The maximum value of , is well below the actuator saturation limit of 

8N. For the negative unity feedback system the actuator force expenditure  is very 

low. The actuator displacement meets criteria as show in Figure 6.5. )(tx p
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Figure 6.5: Actuator displacement of the unity feedback control system 

 

6.3 Compensator  

The next control system applied to the plant is a lead compensator. This control system is 

added to address the dominant complex poles of the uncontrolled system that are located 

near the ωj - axis in order  to change the performance of the system from being  

marginally stable.  
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Figure 6.6: Targeting error for uncontrolled system vs. compensated system 

 

The amplitude of the barrel vibration has significantly been decreased as a result of 

adding a lead compensator control system to the M16. The lead compensator was 

successful in adding phase to the system which acted as a damper to reduce the jitter 

resonance in the frequency response. Figure 6.6 shows the output of the compensated 

system in relation to the original uncontrolled system. The uncontrolled system is 

graphed as a solid blue line while the compensator controlled system is a dashed red line 

with “--” point markers. The next parameter’s behavior to observe is the actuator 

stabilization. 
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)(tFp xThe compensated system meets specification for and as shown in 

Figures 6.7 and 6.8. 

)(tp
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Figure 6.7: Actuator stabilization force of the compensator control system 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Actuator displacement of the compensator control system 
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6.4 State Feedback 

 

)(t

As shown in Figure 6.9 use of a state feedback matrix dramatically decreases the 

amplitude of θ , the targeting error of the shooter in comparison to the shooter 

operating an uncontrolled rifle. State feedback moved the closed loop poles of the system 

closer to the real axis, and further to the left of the ωj -axis in order to dampen the 

amplitude of the targeting error and  shorten the system’s transient response.  

 

 

 

 

 

 

 

 

 

Figure 6.9: Targeting error for uncontrolled system vs. state feedback system 
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Figure 6.10: Actuator stabilization force of the state feedback control system 

 

The actuator force for the state feedback control system is well under the saturation limit 

as shown in Figure 6.10. The next parameter of interest is the actuator 

displacement in Figure 6.11. 
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Figure 6.11: Actuator displacement of the compensator control system 

 

For the compensator design, the actuator displacement meets criteria with a maximum 

displacement of  

 

6.5 Observer 

In addition to testing to see if the observer design meets the specification criteria like all 

other control designs, the degree to which the observer is able to estimate the four actual  

state’s values of the system is also analyzed. 
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Figure 6.12: Targeting error for uncontrolled system vs. observer system 

 

 

)(tFigure 6.12 shows the reduction of the targeting error θ  in comparison to the 

uncontrolled system. The observer does a terrific job at minimizing the human induced 

disturbances upon the rifle. Figure 6.13 shows the amount of force  required by the 

actuator to produce the results of Figure 6.12. 
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Figure 6.13: Actuator stabilization force of the observer control system 

 

The actuator control does not saturate for the observer control system. It is well within 

the 8N limit.  
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Figure 6.14: Actuator displacement of the observer control system 

  

The actuator displacement for the observer is slightly greater than the displacement of the 

actuator in the compensator. However the observer system is well within range of the 

displacement criteria. 

Figure 6.15 shows the state variables of the system with respect to their estimates 

produced by the observer. The true state variable values are represented by a solid blue 

line, while the estimated state variable values are represented by a dashed red line with  

“--” point markers. 
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Figure 6.15: Actual state values vs. observer estimated state values 

 

The observer captures precisely the trends for 3 of the 4 system states. Namely, states 

and , which corresponds to andθ , respectively which are used to 

measure whether the control system’s performance meets criteria. These estimated state 

values are so close to the true state values it looks as if their lines are graphed directly on 

top of each other in Figure 6.15. In Figure 6.15 the graph of state parameter and its 

observer estimate shows a lackluster performance of estimating this state’s true value by 

the observer in Figure 6.15.  
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6.6 LQG 

 

)(tThe LQG method produces the lowest targeting errorθ of the barrel in comparison to 

the other control methods used in the simulations. Figure 6.16 shows the output results of 

the LQG control method in relation to the uncontrolled system. 

 

 

 

 

 

 

 

 

 

Figure 6.16: Targeting error for uncontrolled system vs. LQG control system 
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Figure 6.17: Actuator stabilization force of the LQG control system 

 

Figure 6.17 shows that the LQG meets criteria on the amount of forced exerted by the 

actuator to stabilize the system, as a result the actuator does not saturate during the 

simulation of the LQG control system. 
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Figure 6.18: Actuator displacement of the LQG control system 

 

The LQG has the largest amplitude for actuator displacement, in comparison to the other 

control systems. The actuator displacement for the LQG is however within range of the 

allowed actuator displacement. Even though the LQG method produced the minimum 

targeting error it did not do as well estimating the state values of the system as did the 

observer system in the previous section as can be seen in Figure 6.18.  

 

 

 

 

0 0.5 1

4x 10
-4

1.5 2 2.5 3-4

-2

0

2

Time [sec]

x p(t)
 [m

]



 Control Design for an Inertially Stabilized Rifle 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Actual state values vs. LQG estimated state values 
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Chapter 7 

Conclusion 

 

In this research we analyzed the equations of motion for the INSTAR system and its 

actuator design. The information collected was used to developed control design criteria. 

Upon review of the control design criteria, five controllers where designed. Each 

controller handles the task of receiving the rifle’s targeting error as input and producing a 

stabilizing input command to the actuator. The design motivation behind the controllers 

is to produce a command signal to the actuator that reduces barrel jitter that results from 

human induced disturbances. These controllers include: a unity feedback controller, a 

compensator controller, a state feedback controller, an observer system controller, and an 

LQG controller.  

 

sts 30 ≤Computer simulations were ran for all five controllers in a time interval of ≤ . 

Within the simulation 3hz disturbance were induced into each controller design. How 

well each controller measured up to the design criteria determined if the controller 

reached a level of acceptable performance. 

All controllers except for the unity feedback controller, performed at a level of 

acceptance. The controllers were successful in minimizing the effects of human shooter 

disturbances in relation to the shooter’s targeting error while meeting that actuator’s force 

and displacement criteria. 
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Even though all controllers except for the unity feedback controller showed acceptable 

performance, there is no clear cut winner. The controller of choice depends on the 

operator and designer. The LQG controller produced the minimum targeting in reference 

to all controllers. However this controller is the most complex out of all system. An LQG 

system requires a microcontroller which requires its own power source, which may add 

weight to the weapon as well unwanted noise resulting from the additional amplifiers and 

power sources. On the other end of the spectrum when it comes to complexity and 

acceptable performance level is the compensator controller. It is the least complex control 

system to perform at an acceptable level. It is an analog system which does not need its 

own power supply, which means no extra noise added to the system from the amplifiers 

and additional power supplies. The compensator is easier to implement into the INSTAR 

system than its LQG counterpart. In the middle of the bunch is the observer controller. Its 

complexity is the in the middle in respect to the compensator and LQG controllers. It is 

an analog system that doesn’t require an external power supply nor a microcontroller. 

There is no clear cut winning control algorithm in this paper.   

 

7.2 Future Works 

Future investigations to be considered in this research due to certain limitations in this 

paper include applying and developing controllers for the INSTAR system for the M24 

sniper rifle. It is standard widely used sniper rifle in the U.S. military. An addition of 

sensor noise to the observer and LQG designs would provide additional real world 

criteria for performance level assessment for these controllers. Last but not least built 
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prototype of each controller tested in real world applications would be very beneficial in 

the progress of this research for active stabilization systems for small arms weaponry. 
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