
Interactive Text Classification & Evaluation

Client/Instructor: Mohamed Farag

Jarvis Ly, Jason Tran, Subeom Kwon, and Thinh Truong

CS 4624 Multimedia, Hypertext, and Information Access

Virginia Tech

Blacksburg VA 24061

April 27, 2023

1

Table of Contents

List of Figures..3

List of Tables... 4

Abstract.. 5

1 Introduction...6

1.1 Background...6

1.2 Objective.. 6

1.3 Deliverables.. 6

2 Requirements...7

2.1 Text Preprocessing..7

2.2 Training and Testing the Machine Learning Model...7

2.3 User Interface... 7

3 Design..8

3.1 High-Level Application Architecture... 8

Figure 1: System Architecture.. 8

3.2 Default App Layout Wireframe...8

Figure 2: Home Page.. 8

3.3 File Upload Wireframe..9

Figure 3: Page After a File Has Been Uploaded..9

3.4 Classification Wireframe...9

Figure 4: Page After the Text Has Been Classified.. 9

3.5 Evaluation Wireframe...10

Figure 5: Page with User Evaluation Edits.. 10

4 Implementation... 11

4.1 General Flow of the Application... 11

4.2 train_and_save_model.py (Machine Learning Model Training / Testing).......................................11

4.3 classifier.py (Back-end / Prediction)..12

4.4 Database.py (Back-end / Prediction).. 14

5 Testing/Evaluation/Assessment..15

5.1 TF-IDF (Term-Frequency-Inverse Document Frequency).. 15

5.2 Multinomial Naïve Bayes.. 15

5.3 Testing and Evaluation of Text Classification Model... 16

Figure 6: Test Accuracy of Text Classifier..16

6 User’s Manual.. 17

6.1 Installation..17

6.2 Guest Mode..17

6.3 User Mode..18

2

Figure 7: Default Page View... 18

Figure 8: After Login...19

Figure 9: User Input via Zip File..19

Figure 10: After Submit..20

Figure 11: User Highlight / User Classification... 20

Figure 12: User History...21

7 Developer’s Manual... 22

7.1 Setting Up the Project.. 22

7.2 Running the Project..22

7.3 Important Files... 23

7.3.1 Front-End Files.. 23

Table 1: Important Front-End Files...24

7.3.2 Back-End Files..24

Table 2: Important Back-End Files..24

7.4 Training and Saving AI model..24

7.5 Dataset... 25

7.6 Creating a Pipeline..25

7.7 Training the Model... 26

7.8 Prediction... 26

7.9 Model Accuracy.. 26

7.10 Joblib.. 27

8 Lessons Learned... 28

8.1 Technical Lessons..28

8.2 Machine Learning Model Implementation...28

8.3 Non-Technical Lessons/Team Structure..28

9 Future Work...29

9.1 User-Selected Model.. 29

9.2 Additional File Type Support.. 29

9.3 Technical Lessons..29

9.4 Account Registration/Authorization (non-google)..29

Acknowledgments.. 30

References.. 31

3

List of Figures

Figure 1: System Architecture... 8

Figure 2: Home Page... 8

Figure 3: Page After a File Has Been Uploaded...9

Figure 4: Page After the Text Has Been Classified... 9

Figure 5: Page with User Evaluation Edits... 10

Figure 6: Test Accuracy of Text Classifier...16

Figure 7: Default Page View.. 18

Figure 8: After Login..19

Figure 9: User Input via Zip File...19

Figure 10: After Submit...20

Figure 11: User Highlight / User Classification.. 20

Figure 12: User History..21

4

List of Tables

Table 1: Important Front-End Files..24

Table 2: Important Back-End Files...24

5

Abstract

Text classification is a critical task in natural language processing that assigns predefined categories or

labels to text documents. It has become even more important than ever with the rapid growth in the

sheer number of text documents with the introduction of social media. It is highly practical to have a

machine classify these documents rather than a human manually identifying the contents of a

document. Starting in 2007, a project from the Google Summer of Code program released a free Python

machine-learning library that featured many classification, regression, and clustering tools. This project

will be based on this library to perform the necessary text classification from generating a model to

outputting a prediction given text.

The goal of this project is to create an interactive text classifier with the web application, user, and

developer manuals as deliverables. Our team will work closely with a client to ensure that our

application is on track and fits their needs. The main objective is to develop a web application that allows

the user to interact with a machine-learning text classification model by tracking its correctness based on

the principle of supervised machine learning. The UI should display keywords that were used to classify

the text and highlight them to the user. The interactive portion of the application comes from the fact

that the user will be able to classify the text themselves, mark down whether the highlighted text is right

or wrong and save the document for future reference.

This project is the first of its kind this Spring 2023 semester and no previous groups in other semesters

have done a project like this. Our group will have to start from scratch, and use tools and technologies

that are unfamiliar to us but have the willingness to learn them. Our approach in building this application

is to use a similar stack to MERN but instead of Expressjs, we opt to use Flask as our back-end server to

handle our scikit-learn machine learning script. We use Reactjs as the front-end framework, and Nodejs

to run the application and use other features. Lastly, we use MongoDB as our database to store

documents, classifications, and other important attributes. We hope that our project will provide

valuable insight into the effectiveness and power of machine learning and allow those who wish to

continue our project to be able to with ease through reading our user and developer manuals in this

report.

6

1 Introduction

1.1 Background
Text classification is the process of categorizing text documents into predefined classes or categories

based on their content. The need for text classification stems from the increasing amount of textual data

available in various forms such as emails, social media posts, news articles, and product reviews. Text is

one of the most common types of unstructured data where analyzing, understanding, organizing, and

sorting through text data is difficult and time-consuming. With the advent of machine learning, text

classifiers can significantly expedite and automate this process.

1.2 Objective
The primary objective of this project is to develop a system that allows users to interactively evaluate

text classifier performance conducted on a user-supplied webpage. The web application will serve as a

binary text classifier, meaning that it will determine whether or not the text data belongs to a particular

category. The system will display the classifier results to the user as well as what words within the

supplied webpage contributed to reaching the classifier output. The user will then be able to interact

with the output by providing their own highlights and annotations as to whether or not certain words

were effectively used in determining the classifier result.

1.3 Deliverables
The purpose of our application is to provide an interactive binary text classifier on user-supplied

webpages. We intend to achieve a fully functional web application by completing the deliverables listed

below:

● A Python script which conducts the text preprocessing and text classification

● A database that stores classifier output and user annotations

● User Interface which allows file uploading and text annotations.

1.4 Team Acknowledgements
Our team consisted of Jason Tran, Thinh Truong, Subeom Kwon, and Jarvis Ly. All team members are

seniors majoring in Computer Science at Virginia Tech graduating in Spring 2023.

7

2 Requirements

In the following section, we describe what needs to be accomplished in order to have a fully functional

product as requested by the client. The final product shall be a web application that shows the content

of a given user-uploaded text file, allow a text classifier to be applied to the text of the text file and show

the output of the text classifier prediction.

2.1 Text Preprocessing
We utilize scikit-learn which is a Python library that provides the tools that we will use to perform the

preprocessing. To feed the text data into the machine learning model, we must first turn the text content

into numerical feature vectors. This was conducted via a bag of words representation which stores the

unique words and their occurrences within the text. We then filter stopwords within the text which are

common words found in text that would not have much significance in classifying text. Finally, we

downscale the weights for words using tf-idf which is “Term Frequency times Inverse Document

Frequency”. This involves dividing the number of occurrences for each word by the total number of

words, allowing us to balance the weights for each word within the text data. Having completed these

steps, we can now feed our data to the classifier for training.

2.2 Training and Testing the Machine Learning Model
To achieve proficient accuracy with the model, we must supply an adequately sized dataset for the

purpose of training and testing the model. For our dataset, we used the 20 newsgroups text dataset for

our training and testing. This dataset comprises around 18,000 newsgroups posts on 20 topics. This

dataset is split into two subsets: one for training and one for testing.

2.3 User Interface
Upon launch of the web application, the user will be greeted with the option to enter text manually or

upload a text file. After having done so, the text data from the file will be extracted and displayed to the

user. After running the classifier, the classifier results are displayed to the user. Additionally, The user has

the option to sign in via Google and save previous classifications to the database. These previous

classifications will be displayed via a sidebar.

8

3 Design

3.1 High-Level Application Architecture

Figure 1: System Architecture

3.2 Default App Layout Wireframe

Figure 2: Home Page

When the application is first loaded, several elements are presented to the user by default. The user can

view a file upload button, a text box, a classification box, and the classify button. At the start, the user

only has access to the upload button.

9

3.3 File Upload Wireframe

Figure 3: Page After a File Has Been Uploaded

Once the valid file has been uploaded, the file’s text will appear in the text box. Additionally, the classify

button is now accessible to the user.

3.4 Classification Wireframe

Figure 4: Page After the Text Has Been Classified

After the classify button has been pressed, the user will be presented with the classification result from

the machine learning model. Words that were significant to the classification result are highlighted as

well. Additionally, a correctness switch is now accessible and is on by default.

10

3.5 Evaluation Wireframe

Figure 5: Page with User Evaluation Edits

If the user is dissatisfied with the classification result, new evaluation options will be available after the

correctness switch is turned off. The user will be able to remove and add new highlighted words and

even keep existing ones. Red highlighted words signify removed words and blue signifies newly added

words. Furthermore, the user can provide the correct classification in the new classification box.

11

4 Implementation

4.1 General Flow of the Application
The Front-end of the classifier displays a text-field that allows the user to input the text they want to

classify. If the user clicks on the submit button, it makes a POST request to the /classify endpoint using

axios. This /classify endpoint is created by Flask library in the classify.py script.

POST request with user input:

const [responseData, setResponseData] = useState('');

const [inputText, setInputText] = useState('');

const handleClick = async () => {

try {

// Make POST request to the Flask API

const response = await axios.post('http://localhost:5002/classify', { text: inputText });

const data = response.data;

console.log(data);

setResponseData(data); // Update state with response data

} catch (error) {

console.error(error);

}

};

const handleInputChange = (event) => {

setInputText(event.target.value);

};

4.2 train_and_save_model.py (Machine Learning Model Training / Testing)
This script constitutes the training and testing for the machine learning model. We first start the script by

defining a category that the AI can classify the text into.

categories = ['soc.religion.christian','comp.graphics', 'sci.med',

'sci.electronics','sci.space', 'sci.crypt','rec.sport.baseball',

'rec.sport.hockey', 'rec.autos','talk.politics.guns']

Subsequently, the train and test datasets are fetched from the “20_newsgroup” corpus, and a pipeline

consisting of two essential steps is constructed. The first step involves leveraging the TF-IDF (term

frequency-inverse document frequency) technique, which involves assigning numerical values based on

the word’s significance.

12

The succeeding step in the pipeline entails the implementation of the actual classifier model that will be

deployed to classify the provided text data. Specifically, a Naive Bayes classifier with a multinomial

distribution is trained, which is suitable for text classification tasks incorporating TF-IDF values.

Following this, the fit method of the Pipeline object is invoked to facilitate the training of the classifier on

the training data. In this process, the pipeline first applies the TfidfVectorizer to the text data, which

generates a numerical representation, and subsequently trains the MultinomialNB classifier, leveraging

the provided target labels.

Ultimately, the trained model and the twenty_train object are saved to binary files using joblib.dump()

function.

twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42)

twenty_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42)

text_clf = Pipeline([

('tfidf', TfidfVectorizer()),

('clf', MultinomialNB())

])

text_clf.fit(twenty_train.data, twenty_train.target)

predicted_test = text_clf.predict(twenty_test.data)

test_accuracy = accuracy_score(twenty_test.target, predicted_test)

joblib.dump(text_clf, 'text_classifier.joblib')

joblib.dump(twenty_train, 'twenty_train.joblib')

4.3 classifier.py (Back-end / Prediction)
The classifier.py script incorporates the Flask library to establish an API for text categorization. This API

creates an endpoint that accepts textual input, which is subsequently classified into one of the

predefined categories through the utilization of a pre-trained machine learning model. The classified

category is then returned as a response. Ultimately, the front-end interface receives the outcome in

JSON format, updating the state accordingly. Consequently, the classification result is presented to the

user via the front-end display.

The following section provides an in-depth examination of the classifier.py implementation:

We start by creating a new instance of Flask class:

app = Flask(__name__)

Next, we load the saved pre-trained model and the twenty_train object and assign them to text_clf and

twenty_train variables respectively:
text_clf = joblib.load('text_classifier.joblib')

13

twenty_train = joblib.load('twenty_train.joblib')

Subsequently, a category_map is constructed to enhance the readability of the classification results, thereby

facilitating a more comprehensible presentation for the end user.

category_map = {

'soc.religion.christian': 'Religion/Christian',

'comp.graphics': 'Computer/Graphics',

'sci.med': 'Science/Medicine',

'sci.electronics': 'Science/Electronics',

'sci.space': 'Science/Space',

'sci.crypt': 'Science/Cryptocurrency',

'rec.sport.baseball': 'Sports/Baseball',

'rec.sport.hockey': 'Sports/Hockey',

'rec.autos': 'Automobile',

'talk.politics.guns': 'Politics/Guns',

}

Following this, the app.route decorator is employed to define a '/classify' endpoint, which serves as the

communication channel between the back-end and front-end components. The 'methods' argument explicitly

specifies that this endpoint will solely accommodate POST requests.

Within the classify_text() function, the text input from the front-end is acquired via a POST request and

subsequently processed before being stored in the 'user_inputs' array. The classification is then executed

using the pre-trained model, leveraging scikit-learn's integrated predict() function. Finally, the results are

returned in a JSON format for further processing and display.

@app.route('/classify', methods=['POST'])

def classify_text():

if request.method == 'POST':

Get the text from the request

input_text = request.json['text']

user_inputs = [input_text]

Perform the classification

predicted = text_clf.predict(user_inputs)

for category in predicted:

output_string = category_map[twenty_train.target_names[category]]

return jsonify(result=output_string)

Lastly, the script initiates the Flask application with debug mode enabled, listening for incoming requests

on port 5002 (localhost:5002).

if __name__ == '__main__':

app.run(debug=True, port=5002)

14

4.4 Database.py (Back-end / Prediction)
Database.py is designed to interact with a MongoDB database to save a user's text classification history.

It first establishes a connection to the MongoDB server using the connection string URI stored in an

environment variable (.env file). Then, it selects the 'User_History' database and defines a

save_classification_history function to store information such as user ID, input text, classification results,

important words, user's interpretation of the result, and any highlighted text by the user. The function

inserts this data as a document into the 'User_History' collection within the database and returns the

unique ObjectID of the inserted document.

MONGODB_URI = os.environ["MONGODB_URI"]

client = MongoClient(MONGODB_URI, tlsCAFile=certifi.where())

db = client.User_History

def save_classification_history(user_id, input_text, classifier_result, important_words, user_result,

user_highlight):

history_collection = db.User_History

history_record = {

"user_id": user_id,

"input_text": input_text,

"classifier_result": classifier_result,

"important_words": important_words,

"user_result": user_result,

"user_highlight": user_highlight

}

result = history_collection.insert_one(history_record)

return result.inserted_id

15

5 Testing/Evaluation/Assessment

5.1 TF-IDF (Term-Frequency-Inverse Document Frequency)
TF-IDF uses the TfidfVectorizer() class from the sklearn.feature_extraction.text module. This step

transforms the raw text into a numerical representation by calculating the Term Frequency-Inverse

Document Frequency (TF-IDF) for each word in the text. This representation is useful for text analysis

tasks, as it emphasizes the importance of each word in the context of the entire dataset.

TF-IDF is a product of two statistics: Term Frequency and Inverse Document Frequency.

Term Frequency Formula:

Where ft,d is the raw count of terms in a document.

Inverse document frequency Formula:

Where N is the total number of documents.

5.2 Multinomial Naïve Bayes

We used Multinomial Naïve Bayes model for the classification. This step contains tokenization of raw

texts, and includes important processes such as Feature Extraction and Prediction.

The multinomial naive Bayes classifier becomes a linear classifier when expressed in log-space:

https://en.wikipedia.org/wiki/Linear_classifier

16

5.3 Testing and Evaluation of Text Classification Model

We used joblib to train and test the classifier and saved the model as a binary file so that we can easily
load this classifier when we start the application. We then manually tested the application with texts
from online articles and tested edge cases that might lead to errors (ex. putting one word as an input).

Figure 6: Test Accuracy of Text Classifier

17

6 User’s Manual

6.1 Installation

The source code for the application is available via GitHub at the link:

https://github.com/subeom7/text-classification-and-evaluation

For the most streamlined method of accessing the application, we would recommend using Git to obtain

the project files, however using Git is not required.

If the user is installing the project manually, the user would access the project repository, click the clone

button, then click download zip button. The user would then unzip the file.

If Git is not already installed, the user can reference the following link for instructions on how to install

Git on their device: https://github.com/git-guides/install-git

If Git is already installed, the user would first clone the repository by copying the HTTPS repository link

and typing the command “git clone https://github.com/subeom7/text-classification-and-evaluation.git”

in the terminal. This will install all the source files into the current working directory.

All the project files can be found inside the folder titled Text-Classification-and-Evaluation. The user

should enter the folder via the terminal by running cd Text-Classification-and-Evaluation. The user then

would run the command “npm run install-all” to install all project dependencies. After having installed all

dependencies, the user can run the application by using the command “npm run dev”.

Note: If the user is encountering python: command not found error, a potential fix would be to enter the

package.json file and edit the file to change instances of python to python3 or vice versa depending on

your version of python installed.

DISCLAIMER: AT THE TIME OF THIS REPORT THE USER INTERFACE IS NOT STANDARDIZED FOR ALL

PLATFORMS. IF USER ENCOUNTERS AND OVERLAPPING OF USER INTERFACE ELEMENTS, THE USER

SHOULD DECREASE THEIR ZOOM PERCENTAGE WITHIN THEIR BROWSER.

6.2 Guest Mode

The application has support for Google authentication, so the user has the option to utilize the text

classifier in guest mode or while signed in. We recommend the user to sign in using a Google account to

take advantage of all the features offered within the application, if the user wants to utilize the text

classifier without having their results be archived, they have the option to do so.

https://github.com/subeom7/text-classification-and-evaluation
https://github.com/git-guides/install-git
https://github.com/subeom7/text-classification-and-evaluation.git

18

6.3 User Mode

The user would click the Sign In option located at the top of the page and select a Google account of

their choosing. After they sign in, they will be met with the following screen which now includes the user

history side bar which is currently empty. The name of the user that is currently signed in will also be

displayed on the top right corner of the screen and the user will have the option to sign out of the

account if necessary.

Figure 7: Default Page View

19

Figure 8: After Login

The user has the option to either manually input the text that they want classified in the provided text

box or upload a zip file that contains .txt files to perform multiple classifications at once. We have

provided sample inputs above the text field which the user can use to test out the application. However,

they have the ability to enter whatever text input they desire. If the user uploads a zip file, a list of all the

.txt files that are present in the zip file will be displayed. The user can click on the names of the various

.txt files to view the different input text and outputs.

Figure 9: User Input via Zip File

Once the user has either manually input their text input or zip file, they can then click the submit button

which will execute the text classifier. The outputs from the classification(s) will be displayed which

includes:

AI Classification – what category the AI predicted the text belongs

Important Words – Words with heavy significance on the determination of the AI’s classification

Your Classification – User selects what category the input text belongs

Highlights – A view of the input text with the important words highlighted

20

Figure 10: After Submit

The user would then select what category the input should belong to, at the current state of the

application there are ten different categories in which the classifier can make its predictions. The user

also has the option to highlight additional words, that were not listed in the important words, that they

believe had high significance towards the determination of the AI’s classification.

Figure 11: User Highlight / User Classification

21

The user can now save the output to the database which will then be displayed in the user history

sidebar. This information will be maintained on the user’s account and will persist until the user clears

the user history or deletes specific entries. The information that will be saved to the database will

include:

● Document ID

● User ID

● Text Input

● AI Classification

● AI Highlighted Words

● User Classification

● User Highlighted Words

Additionally, the user will have the ability to delete specific entries listed within the User History as well

as have the ability to clear all previous entries saved to the database.

Figure 12: User History

Once the user has finished their session, they can select the “start a new session” button which will

allow the user to upload another zip file and/or manually enter another set of input text to perform any

additional classifications that they desire.

22

7 Developer’s Manual

The developer’s manual below has been taken from the readme.MD file of

https://github.com/subeom7/Text-Classification-and-Evaluation

7.1 Setting Up the Project

Create an empty project.

Move into that project directory and clone the project using this command in the terminal:

git clone https://github.com/subeom7/Text-Classification-and-Evaluation.git

Next, if you are not in the main “Text-Classification-and-Evaluation“ directory, change directory

into main project directory using the following command:

cd Text-Classification-and-Evaluation

To install all the dependencies, run the following command in the project

(Text-Classification-and-Evaluation) directory:

npm run install-all

If the above command does not work, run npm install and pip install -r requirements.txt inside

Text-Classification-and-Evaluation directory and cd client directory and run npm install again.

npm install

pip install -r requirements.txt

cd client

npm install

7.2 Running the Project

To "concurrently" run client & server, use the following command. Make sure to run this command inside

of the project (Text-Classification-and-Evaluation) directory:

npm run dev

https://github.com/subeom7/Text-Classification-and-Evaluation
https://github.com/subeom7/Text-Classification-and-Evaluation.git

23

To run the server. Use the following command. Open http://localhost:5002 to view it in your

browser:

python server.py

To Run the client app (front-end) in the development mode, run the following command. Open

http://localhost:3000 to view it in your browser. The page will reload when you make changes.

npm start

To Launch the test runner in the interactive watch mode. Run the following command:

npm test

To Build the app for production to the build folder, run the following commands. It correctly bundles

React in production mode and optimizes the build for the best performance:

npm run build

7.3 Important Files

7.3.1 Front-End Files

Filename Path/Location Description

App.js client/src Main file App file that uses the
custom components.

GoogleSignIn.js client/src/components Component to authorize user
using encoded JWT tokens.

InputForm.js client/src/components Component which provides the
UI/UX for the text field, upload
button and submit button

OutputDisplay.js client/src/components Component which provides the
UI and displays the AI
Classification and Important
Words

UserHistory.js client/src/components Component which provides the
sidebar that displays the

24

archived outputs from previous
classifications. Also provides
functionality for deleting
specific entries and clearing
user history.

UserPrediction.js client/src/components Component which provides the
UI for allowing the user to select
the classification they believe
the input belongs to.

Table 1: Important Front-End Files

7.3.2 Back-End Files

Filename Description

classifier.py Loads the saved model and the twenty_train
object file. Also provides the functions for
performing the classification provided a user
input, fetching the important words used in the
classification, and saving the output to the
database.

database.py MongoDB database for storing, retrieving,
updating, and deleting user text classification
history records using a user’s ID and Document ID
as references. Since the back-end is implemented
using Flask (python), we use pyMongo library to
connect the back-end script with the MongoDB
client.

server.py Server script that provides endpoints for
classifying text, saving classification results and
user highlights to a MongoDB database, retrieving
a user's classification history, and updating or
deleting classification records

train_and_save_model.py Actual model of the classifier, where testing and
training is done. After testing and training, the
model is saved as a serialize Python objects using
joblib library. We later load this file in classifier.py

Table 2: Important Back-End Files

7.4 Training and Saving AI model

25

7.5 Dataset
We first start by fetching the 20_newsgroup data which is a collection of approximately 18,000

newsgroup documents, partitioned across 20 different newsgroups. We load the dataset twice, for

training and testing.

The subset parameter is used to specify whether to load the training data ('train') or testing data ('test').

The categories parameter is used to specify a list of newsgroup categories to include in the dataset. In

our case we predeclared the categories array and set it to the categories parameter. If not provided, all

categories will be used.

The shuffle parameter is set to True, indicating that the dataset will be shuffled before being returned.

We shuffle the dataset to ensure a better distribution of classes, avoid overfitting, maintain consistency

in cross-validation and overall improve model performance and accuracy.

Finally, The random_state parameter is set to 42 to ensure that the shuffling is deterministic and the

results can be replicated in subsequent runs.

categories = ['soc.religion.christian','comp.graphics', 'sci.med',

'Sci.electronics','sci.space','sci.crypt','rec.sport.baseball','rec.sport.

hockey', 'rec.autos','talk.politics.guns']

twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42)

twenty_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42)

7.6 Creating a Pipeline

Next, we define a text classification pipeline using the “Pipeline” class from the sklearn.pipeline

module. The pipeline consists of two steps. The first step is Text feature extraction with the

TfidfVectorizer(). This step converts the input text documents into a matrix of TF-IDF (Term

Frequency-Inverse Document Frequency) features. TF-IDF is a numerical statistic that reflects

how important a word is to a document in a collection or corpus. The TfidfVectorizer processes

the raw text data and transforms it into a format suitable for machine learning algorithms.

The second step is Classification with the “MultinomialNB” classifier. This step uses a

Multinomial Naive Bayes classifier from the sklearn.naive_bayes module. Multinomial Naive

Bayes is a simple and effective probabilistic classification algorithm that is particularly

well-suited for text classification tasks. It works with discrete features like word counts or TF-IDF

values.

26

The pipeline is stored in the variable text_clf. Once the pipeline is defined, it can be used to fit

the model on the training data and make predictions on new, unseen data. The advantage of

using a pipeline is that it simplifies the process of applying multiple transformation steps and an

estimator in a sequential manner.

text_clf = Pipeline([

('tfidf', TfidfVectorizer()),

('clf', MultinomialNB())

])

7.7 Training the Model

Next, we train the previously defined text_clf pipeline. The fit method applies the following

steps in the pipeline. First, it transforms the input text data into a matrix of TF-IDF features using

the TfidfVectorizer. Then, it trains the MultinomialNB classifier on the transformed TF-IDF

feature matrix and the corresponding target variable. After the fit method is called, the text_clf

pipeline will be trained on the given data and can be used to make predictions on new, unseen

data using the predict method

text_clf.fit(twenty_train.data, twenty_train.target)

7.8 Prediction

The predict method is called on the trained text_clf pipeline object with the test dataset

(twenty_test.data). The test dataset is a list of text documents, where each document is a string.

The pipeline first transforms the input text data into a matrix of TF-IDF features using the

TfidfVectorizer and then uses the trained MultinomialNB classifier to predict the class labels.

The predicted class labels are stored in the variable predicted_test.

predicted_test = text_clf.predict(twenty_test.data)

7.9 Model Accuracy

The accuracy_score function from the sklearn.metrics module is used to compute the accuracy

of the classifier on the test dataset. The function takes two parameters: the true class labels

(twenty_test.target) and the predicted class labels (predicted_test). The test accuracy is

calculated as the proportion of correctly classified documents in the test dataset and is stored in

the variable test_accuracy

test_accuracy = accuracy_score(twenty_test.target, predicted_test)

27

print(f'Test accuracy: {test_accuracy:.2f}')

7.10 Joblib

Lastly, we save two objects to disk using the joblib.dump function from the joblib module. The

joblib.dump function is used to serialize Python objects to disk, which can later be reloaded

(deserialized) and used. When our back-end file is loaded, we load this saved model in our

back-end script using joblib.load function.

train_and_save_model.py

joblib.dump(text_clf, 'text_classifier.joblib')

joblib.dump(twenty_train, 'twenty_train.joblib')

classifier.py

text_clf = joblib.load('text_classifier.joblib')

twenty_train = joblib.load('twenty_train.joblib')

28

8 Lessons Learned

8.1 Technical Lessons
We found lessons to be learned from both the technical and non-technical aspects of the project. From

the technical aspect of the project, we found issues concerning the operating system when trying to run

the project. We found that the best practice was to ensure that the operating system is up to date when

trying to run the project. Additionally, we struggled to find a concise method to download all of the

dependencies needed to run the project. We managed to figure out the simplest command to install all

the dependencies at once. “npm run install –all" is a short and concise command to install the

dependencies in one go. Lastly, the documentation in our code was injected in the final stages of

implementation. This led to a very confusing code structure. As a result, we learned to document more

during development to avoid a convoluted code base.

8.2 Machine Learning Model Implementation
The machine learning model is a huge part of the technical function of the project. While we are still in

the process of fully implementing the machine learning model, we have encountered and solved a few

issues during our time in development. The most notable problem we found was our implementation of

the machine learning model. In our original implementation, a new model was created every time the

classify button was pushed. This caused our application to be very slow. We remedied this issue by

separating the classifier script into two scripts. One script handles the model training. The other script

handles the prediction. This new implementation allows for a single instance of the model after a file is

uploaded. The classify button no longer creates a new model and instead just runs the prediction script.

8.3 Non-Technical Lessons/Team Structure
From the non-technical aspect of the project, we had to learn a lot due to the learning curve of the

project. Right out of the gate, we were faced with many unfamiliar tools and technology needed to

develop this project. Some of these include machine learning, AI, React.js, Scikit-learn, MongoDB, and

Flask. Additionally, we learned a lot about how our team should function. To overcome challenges, we

found that the best way is to schedule an online meeting to work on deliverables rather than assigning

individual work. The bulk of the work on deliverables is done in these meetings. We only resort to

individual work when we run out of time for our meetings, and we all have a firm grasp of how we

should proceed. Overall, the meetings promote healthy communication between members of the group

more than back-to-back communication via messages. Furthermore, these meetings allowed us to

bounce ideas and features off of each other. Eventually, these features are implemented in their own Git

branch and merged at the end.

29

9 Future Work

9.1 User-Selected Model
There are several potential avenues for expanding the project in future semesters. Firstly, a significant

enhancement would be to permit the user to provide their own data set for training the classifier. This

would enable the user to determine the classification category in which the classifier will produce

precise predictions.

9.2 Additional File Type Support
Furthermore, integrating support for a more extensive range of file types would be a valuable addition to

the application. Currently, our app supports text and zip files. Additional file types like HTML will prove

beneficial to the user by providing more options.

9.3 Technical Lessons
Another potential expansion could be enhanced interactivity features. Users can already interact with

the application through highlighting and text input. These interactivity features could be enhanced in

various ways that would be beneficial to the user. There may even be new interactivity features that we

have not thought of so far.

9.4 Account Registration/Authorization (non-google)
Currently, our application supports account authorization. The only caveat is that users can only log in

using a Google account. This feature has the potential for future modifications. Specifically, we want

users to be able to register their own unique accounts within the application. Users should be able to log

in with their newly created account without the need for a pre-registered Google account.

30

Acknowledgments

Dr. Mohamad Farag

Client • Professor at Virginia Tech

Email: mmagdy@vt.edu

Ansh Gwash

UTA at Virginia Tech

Email: anshgwash@vt.edu

31

References

[1] Text classification: What it is and why it matters. MonkeyLearn. (n.d.). Retrieved February 15,

2023, from

https://monkeylearn.com/text-classification/#:~:text=Tutorial-,What%20is%20Text%20Classificat

ion%3F,and%20all%20over%20the%20web

[2] V. Rani, “NLP tutorial for text classification in Python,”Medium, 26-Jan-2023. [Online]. Available:

https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49

e. [Accessed: 15-Feb-2023].

[3] What is text classification? - hugging face. What is Text Classification? - Hugging Face. (2022,

May 17). Retrieved February 15, 2023, from https://huggingface.co/tasks/text-classification

[4] “TF–IDF,”Wikipedia, 06-Mar-2023. [Online]. Available:

https://en.wikipedia.org/wiki/Tf%E2%80%93idf. [Accessed: 21-Mar-2023].

[5] “Naive Bayes classifier,”Wikipedia, 03-Mar-2023. [Online]. Available:

https://en.wikipedia.org/wiki/Naive_Bayes_classifier. [Accessed: 21-Mar-2023].

https://monkeylearn.com/text-classification/#:~:text=Tutorial-,What%20is%20Text%20Classification%3F,and%20all%20over%20the%20web
https://monkeylearn.com/text-classification/#:~:text=Tutorial-,What%20is%20Text%20Classification%3F,and%20all%20over%20the%20web
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49e
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49e
https://medium.com/analytics-vidhya/nlp-tutorial-for-text-classification-in-python-8f19cd17b49e
https://huggingface.co/tasks/text-classification
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

