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Coherence and Phase Synchrony Analysis of Electroencephalogram 
 

Gleb V. Tcheslavski 
 

ABSTRACT 
 

Phase Synchrony (PS) and coherence analyses of stochastic time series – tools to 
discover brain tissue pathways traveled by electrical signals – are considered for the 
specific purpose of processing of the electroencephalogram (EEG). 

We propose the Phase Synchrony Processor (PSP), as a tool for implementing 
phase synchrony analysis, and examine its properties on the basis of known signals. Long 
observation times and wide filter bandwidths can decrease bias in PS estimates. The 
value of PS is affected by the difference in frequency of the sequences being analyzed 
and can be related to that frequency difference by the periodic sinc function. 

PS analysis of the EEG shows that the average PS is higher – for a number of 
electrode pairs – for non-ADHD than for ADHD participants. The difference is more 
pronounced in the δ rhythm (0-3 Hz) and in the γ rhythm (30-50 Hz) PS. The Euclidean 
classifier with electrode masking yields 66 % correct classification on average for ADHD 
and non-ADHD subjects using the δ and γ1 rhythms.  

We observed that the average γ1 rhythm PS is higher for the eyes closed condition 
than for the eyes open condition. The latter may potentially be used for vigilance 
monitoring. The Euclidean discriminator with electrode masking shows an average 
percentage of correct classification of 78 % between the eyes open and eyes closed 
subject conditions. 

We develop a model for a pair of EEG electrodes and a model-based MS 
coherence estimator aimed at processing short (i.e. 20 samples) EEG frames. We verify 
that EEG sequences can be modeled as AR(3) processes degraded by additive white noise 
with an average SNR of approximately 11-12 dB. 

Application of the MS coherence estimator to the EEG suggests that MS 
coherence is generally higher for non-ADHD individuals than for ADHD participants 
when evaluated for the θ rhythm of EEG. Also, MS coherence is consistently higher for 
ADHD subjects than for the majority of non-ADHD individuals when computed for the 
low end of the δ  rhythm (i.e. below 1 Hz). 

ADHD produces more measurable effects in the frontal lobe EEG and for 
participants performing attention intensive tasks. 
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Chapter 1 

Background and literature review 

 The electroencephalogram (EEG) is a weak (generally, less than 300 μV) 

electrical signal obtained from electrodes mounted on or under the surface of a human (or 

non-human) head.  

1.1 History of the Electroencephalogram (EEG) 

 The discovery of the electroencephalogram phenomenon is traditionally 

associated with the name of Austrian psychiatrist Hans Berger, who performed the first 

EEG recording from a human brain in 1924 using metal strips pasted to the scalp. 

However - almost 50 years before Berger, in 1875 - Richard Caton, a Liverpool physician 

and medical school lecturer, published his observations of spontaneous electrical activity 

in the brain of laboratory animals [1]. In his study, Caton used a reflecting galvanometer 

invented in 1858 by Lord Kelvin, which - according to Bronzino [2] - does not provide 

sufficient amplification. Perhaps that was one of the reasons why the work of Caton 

received little attention and is questioned nowadays. Nevertheless, in 1876 Russian 

scientist Vasili Danilevsky had made similar experiments on dogs and published the 

results in his doctoral thesis one year later. Similar observations were reported by 

Fleischel von Marxow in 1883 and Adolph Beck from Poland in 1890. In 1913, Vladimir 

Pravdich-Neminsky published photographic recordings of dogs’ brain waves using an 

invasive method [3].  

In the early 1920s, Dr. Hans Berger had begun his study of brain electricity, 

which he later named the Elektroenkephalogramm. He had obtained the first records from 

the subject, who had a skull with a gap under the skin. Later, Dr. Berger’s fifteen-year-

old son Klaus became the subject of his study. Hans Berger was able to measure the 

irregular, relatively small electrical potentials (i.e., 50 to 100 µV) coming from the brain. 
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Berger had observed the cyclic nature of the EEG, discovered and studied Alfa (8-12 Hz) 

and Beta (18-30 Hz) waves recorded from normal and epileptic patients, laying the 

foundation for the application of this technique to clinical practice. Later, in his 

publication in 1929, Berger writes [4], [5], [6]: "The electroencephalogram represents a 

continuous curve with continuous oscillations in which ... one can distinguish larger first 

order waves with an average duration of 90 milliseconds and smaller second order waves 

of an average duration of 35 milliseconds. The larger deflections measure at most 150 to 

200 microvolts..." A photograph of Hans Berger and the system for EEG recording, 

which he developed in 1926, are seen in Figure 1.1. 

 

 
 

Figure 1.1: Hans Berger and his 1926 system for recording EEG. 
 

Figure 1.2 depicts the first EEG record obtained by Hans Berger in 1928. Figures 

1.1 and 1.2 have been downloaded from the Internet site:  

http://chem.ch.huji.ac.il/~eugeniik/history/berger.html. 
 

 
 
Figure 1.2: The first EEG recorded by Hans Berger, 1928; the lower signal is a 10 Hz reference sinusoid. 

 
Berger suggested that the activity of the brain changes in a consistent and 

recognizable fashion when the state of the subject changes, as in going from relaxation to 

alertness. He also concluded that brain waves could be greatly affected by certain 
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pathologic conditions after noting a marked increase in the amplitude of brain waves 

recorded during convulsive seizures. 

Surprisingly, the Berger studies did not attract interest until 1934, when Adrian 

and Matthews published their papers [7], [8] verifying the findings of Hans Berger. One 

of the major contributions of Adrian and Matthews was their classification of certain 

rhythms e.g., regular oscillations in the EEG. 

In 1949 Moruzzi and Magoun [9] demonstrated the existence of pathways widely 

distributed through the central reticular core of the brainstem that were capable of 

exerting a diffuse activating influence on the cerebral cortex. This study established the 

physiological basis for the previously discovered rhythms. More on the history of EEG 

can be found elsewhere [10]. Nowadays more advanced methods of weak electrical 

activity registration and signal processing are available and the EEG has become a 

powerful tool in psychological and physiological research of the human brain. 

1.2 Instruments and standards for EEG studies; some 
interesting applications of the EEG 

 While more sensitive tools for registering electrical signals were becoming 

available, EEG research moved from invasive to non-invasive methods for obtaining 

records. Nowadays, non-invasive methods dominate as EEG signals are generally 

acquired with a system of skin-mounted electrodes. The International Federation of 

Electroencephalography and Clinical Neurophysiology has adopted the 10–20 electrode 

placement system shown in Figure 1.3. In addition to the standard 10–20 scalp array, 

electrodes to monitor eye movement, ECG, and muscle activity are essential for 

discrimination of different vigilance or behavioral states. Additional electrode placement 

systems involving more electrodes are also available.  
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Figure 1.3: Standardized electrode placement using the “10-20 International system.” 
 

 

Any EEG system consists of electrodes, amplifiers (with or without appropriate 

filters), and a recording device. Commonly used scalp electrodes consist of Ag-AgCl 

disks, 1 to 3 mm in diameter, with long flexible leads that can be plugged into an 

amplifier [2]. Conductive electrode paste helps obtain low impedance and keep the 

electrodes in place. EEG signals of amplitude up to 10 μV can be obtained from the 

electrodes and require amplification to gain a sufficient level for a recording device. 

Many different recording instruments are available. A pen or chart recorder (usually 

multi-channel) is one of the most commonly used; the other type of registering device is 

an analog tape recorder. At the present time, EEG recording is often performed by 

computer based signal acquisition, digitization, and storage systems. 

Many commercial systems for registering EEG signals are available. Among them 

are Comet® Portable EEG, Aurora® and Aurora® Deluxe manufactured by Grass 

Telefactor; SynAmps®, ESI®, and MagLink® by Neuroscan. Numerous software 

products for EEG processing, such as STIM and ToolBox 2003 by Neuroscan or TWin® 

Clinical Software by Grass Telefactor, can be found on the market as well. 

Figure 1.4 illustrates an EEG signal recorded from the Fp1 electrode by the 

Neuroscan-24 system (NRS-24) sampled at 256 Hz. 
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Figure 1.4: Amplitude of EEG signal acquired from Fp1 electrode; fs = 256 Hz. 

 

It is also worth noting that the most employed algorithm for processing of EEG 

signals, the Fourier transform and its modifications, has been used since 1932 when 

Fourier analysis was applied to the EEG record by Dietch [11]. 

The focus of the present study is the processing of EEG records for psychological 

needs. However, the electroencephalogram and its processing find multiple applications, 

not only in medicine and psychological research. A new growing area based on real-time 

analysis of the EEG is brain-computer interface (BCI) research and its applications. The 

primary goal of BCI is to give its users channels of communication and control that are 

not associated with any normal output channels of the human brain but utilize the 

electrical activity of the brain as a carrier. This topic mostly arises from the needs of 

people with severe motor disabilities. All existing BCI can be subdivided into 

communication and control systems. The common communication rate of successful 

systems is less than 10 letters per minute [12].  McKay and Provost report BCI-based 

remote control of a toy car with an achieved accuracy of up to 40% [13]. The authors 

utilized modulations of the α rhythm measured from the visual cortex. Examples of BCI 

exploring the possibility of controlling a wheelchair or prostheses can be found in the 
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literature [14]. Interested readers are pointed to the work of Wolpaw and colleagues [14], 

who are among the pioneers in BCI research. 

1.3 Attention Deficit (Hyperactivity) Disorder (ADD/ADHD) and its 
treatment 

 Attention is the information management process in which intensiveness, 

sustainability, selectiveness, and controllability combine and interact. One of the most 

common attention disorders is ADD/ADHD. According to epidemiological data 

http://www.emedicine.com/med/topic3103.htm, approximately 3 to 7 % of the U.S. 

population has ADHD. 

According to information available on the web site of the Attention Deficit 

Disorder Association (ADDA) http://www.add.org/: ADHD is a diagnosis applied to 

children and adults who consistently display certain characteristic behaviors over a period 

of time. The most common core features include: 

• distractibility (poor sustained attention to tasks) 

• impulsivity (impaired impulse control and delay of gratification)  

• hyperactivity (excessive activity and physical restlessness) 

In order to meet diagnostic criteria, these behaviors must be excessive, long-term, and 

pervasive. 

According to the DSM-IV (the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition) “some common symptoms of ADHD include: often fails to 

give close attention to details or makes careless mistakes; often has difficulty sustaining 

attention to tasks; often does not seem to listen when spoken to directly; often fails to 

follow instructions carefully and completely; losing or forgetting important things; 

feeling restless, often fidgeting with hands or feet, or squirming; running or climbing 

excessively; often talks excessively; often blurts out answers before hearing the whole 

question; often has difficulty awaiting turn.” 

From the popular Concerta® brochure: 

ADHD is a condition that: 
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• is biological 

• has its origin in brain function 

• has a genetic component 

• is real and diagnosable on solid criteria 

• may continue into adulthood 

• is treatable but not curable at this time 

• may be accompanied by associated conditions 

ADHD is NOT caused by: 

• bad parenting 

• too much TV 

• food allergies 

• excess sugar 

• a head injury 

• bad schooling 

 
ADHD was formerly associated with childhood only and its symptoms were 

thought to disappear completely with puberty. This point of view has been debated and 

completely disproved in the 80’s [15], [16], [17]. Approximately 70 % of kids diagnosed 

with ADHD show all symptoms of this disorder in adulthood [16]. It has also been shown 

that, undiagnosed in childhood, ADHD may be successfully treated in adulthood [17]. 

Treatment of ADHD traditionally follows one of two approaches, namely, the 

medical and psychological models. The medical treatment is mainly based on 

methylphenidate (Ritalin®) taken internally. This approach is effective on motor 

functions but does almost not affect symptoms related to attention deficits. The other 

model primarily employs behavior modification as a source of self-control for the patient. 

However, both approaches show limited effects on information processing, impulsivity, 

destructibility, and emotional liability [18], [19]. In past decades, progress in personal 

computers has made possible the development of computer-based cognitive training 

systems usually associated with the term “Biofeedback.” The growing body of evidence 

reported in the literature proves that significant improvement in information processing 

can be achieved, and other aspects practically unaffected by medication treatment in 
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ADHD patients can be treated by, using biofeedback training systems. Linden, Habib, 

and Radojevic reported encouraging results of the application of a biofeedback learning 

system to a group of eighteen children [21]; Kotwal, Burns, and Montgomery described 

positive results of the application of two different biofeedback protocols to a single 

subject [18]; Tensey and Bruner have achieved impressive results applying biofeedback 

training to a ten-year old ADHD patient [19], [20]; Barabasz and Barabasz proposed the 

usage of hypnosis during biofeedback training to achieve quicker results of treatment 

[22]. Moreover, based on his study results, Arbarbanel suggested that neurofeedback 

results are more permanent than the results of medical therapy [23]. Linden reported 

results of the successive application of a biofeedback system based on the processing of 

event related potentials (ERP) [24]. 

The series of experiments considering biofeedback have been based on the 

findings, that originated from the experiments of Lubar and colleagues [25], [26], that 

patients diagnosed with ADHD produce excessive activity in θ  and show deficit in the β 

range as compared to non-ADHD subjects. The same results were confirmed later by 

Janzen et al. [27] and Barabasz, Crawford, and Barabasz pointed out that this effect is 

more pronounced when the patient performs more difficult cognitive tasks [28]. 

Moreover, Matsuura and colleagues have observed the same effect in EEG of patients in 

Japan, Korea, and China [29]. 

Another interesting observation is the more desynchronized θ  wave noticed in 

ADHD patients compared to non-ADHD subjects, according to Barabasz, Crawford, and 

Barabasz [28], especially in the EEG acquired from the frontal lobe. These results are in 

agreement with a growing body of evidence of frontal lobe dysfunction in ADD/ADHD 

patients [30], [31], [32]. More recently, research has also focused on the role of pathways 

between brain structures as a possible model for the neurological basis of ADD/ADHD 

[31]. 
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1.4 Concepts of coherence and phase synchrony 

 The coherence function is a frequency domain based measure of the linear 

association between two wide sense stationary time series. According to the definition of 

the coherence function, it is the normalized cross-spectrum [33], [34], as follows 

( )( )
( ) ( )
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xy j j
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S ee
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ω
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It is seen that this function is complex and can be denoted as follows: 
( )( ) ( )

jj j j
xy xye e e e ωω ωΓ = Γ λ

  (1.2) 

( )j
xy e ωΓwhere is referred to as the magnitude (squared) coherence and  is called 

the phase coherence. 

)( ωλ je

The magnitude squared (MS) coherence function “measures the degree to which 

one process can be represented as the output of a linear filter operating on the other 

process” [34] and varies from 0 - for two statistically independent processes - to 1, when 

one process is the result of linear filtering performed on the other. The phase coherence is 

usually interpreted as a phase lead of one signal over the other. 

Another useful measure of linear dependence between two stochastic signals, 

phase synchrony analysis, has been independently proposed by Lachaux et al. [35] and 

Mormann et al. [36] and applied later by Allefeld and Kurths [37], [38]. This approach is 

based on the concept of phase synchronization of chaotic oscillators studied by 

Rosenblum et al. [39]. This method was developed to detect stability of phase across 

different trials but can be successively applied to a single trial within a time window [40]. 

The phase synchrony (coefficient), also called the phase locking value, rlm, of two 

oscillators l and m, over an N  sample long time window, is specified as follows [35], w

[36], [37], and [38]: 

(
,

1

1
lk m k

w
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j

lm n
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where ϕlk and ϕmk  denote instantaneous phase sequences for oscillators l and m 

respectively and n represents the time instant at which the analysis ends. To obtain the 

sequence of instantaneous phases, Lachaux convolved the signal with the Gabor wavelet 

function, Allefeld used the Morlet wavelet, and Mormann applied an analytic signal 

generator via the Hilbert transform. It is important from our point of view to note that a 

wavelet function can be viewed as a band-pass filter. Hence, the phase sequences 

generated via wavelets are frequency specific, i.e. observed over a narrow frequency 

range. However, a Hilbert transformer-based analytic signal generator is not generally 

intended to extract frequency specific content. Thus, to study phase synchrony in the 

frequency band of interest, band-pass filtering is needed. Mormann does not implement 

such filtering [36]. 

The phase synchrony (coefficient) takes on values between 0, for two signals at 

different frequencies, and 1, for signals that exhibit a constant difference in instantaneous 

phase (representing the situation where a signal and its time-shifted version are 

observed). This measure requires prefiltering at a frequency of interest. The interesting 

properties of the phase synchrony coefficient are its independence of the signal 

amplitudes and that no assumptions about the nature of the signals are made. 

Both coherence and phase synchrony have found intensive usage in the study of 

brain signals, particularly the EEG. Studies report enormously high synchronization in 

EEG signals during epileptic seizures [41], Spencer and colleagues have confirmed the 

hypothesis that gamma band synchronization is abnormal in schizophrenia [42], Tallon-

Baudry et al. were studying β-range synchrony between extra-striate areas of the brain 

during maintaining visual short-term memory [43].  

In conclusion, it is also necessary to emphasize that although phase coherence and 

phase synchrony are quite similar and often are mixed up, they are two principally 

different measures. Phase coherence can be interpreted as phase shifts and amplitude 

changes over frequency between two correlated sequences, while phase synchrony 

indicates whether the phase shift is close to a constant over the specified time interval. 

This interpretation justifies narrow-band filtering in the case of phase synchrony. The 

concept of a phase shift (either lead or lag) between two signals is only applicable when 
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both signals are at the same frequency. Coherence and phase synchrony will be examined 

and discussed in detail in the following chapters. 

1.5 Limitations of the classical coherence function and possible 
solutions to overcome these limitations 

The classical methods of spectral estimation are based on the Fourier transform 

and rely entirely on the following two definitions of power spectral density (PSD) [44]: 

   (1.4) 
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where rn denotes the auto- or cross-correlation for lag n, N is the length of the analyzed 

record x , and E{} represents expectation. n

The problem of estimating the PSD from a finitely (length N) observed sequence 

xn is ill-posed from a statistical standpoint, unless appropriate assumptions about the PSD 

are made [44]. Strictly speaking, without making any assumptions, PSD estimation 

requires an infinite number of independent values of P(ω) to be obtained based on a finite 

number of signal observations. This problem can be mitigated either by parameterization 

of P(ω) via a model of finite dimensions, or by smoothing P(ω) based on the assumption 

that the PSD is nearly constant over a narrow frequency band [44]. Dobie et al. proposed 

an algorithm to smooth the coherence estimates [50]. According to the authors, such 

smoothing can increase reliability of the estimate. 

The other important limitation is that the concepts of spectra, PSD, correlation 

sequences, and coherence function are only applicable to stationary or, at least, wide 

sense stationary processes [44], [45], and [46]. EEG signals are known to exhibit a highly 

non-stationary and often non-linear nature [46], [47], and [48] and can be interpreted as a 

collection of non-stationary stochastic processes [49]. A stochastic process is called 

locally stationary if it behaves like a stationary process over short intervals of time [49]. 
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According to the review presented by Schack and Krause [46], fragments of EEG 

of length up to 40 – 290 ms can be treated as stationary. Another source [47] suggests 

that the maximum length of locally stationary EEG segments does not exceed 80 ms. 

Assuming the duration of the stationary fragments to be 100 ms and the sampling 

frequency to be 256 Hz, the maximum length of a signal record to be analyzed is 25 

samples. 

The classical spectral estimators are not capable of providing reliable estimates 

for such short sequences. As a consequence, parametric methods of spectral analysis must 

be employed. 

One possible approach to solving this problem is to parameterize measurements 

of synchronization between two oscillators. Cadzow and Solomon have developed an 

algorithm to estimate a rational MS coherence function based on the autoregressive 

moving average (ARMA) linear model [51]. Franaszczuk and Bergey proposed a method 

to estimate synchronization of multivariable EEG records [41]. The essence of the 

method is to establish a pth order m–channel autoregressive (AR) model for the m–

channel EEG signal and use the residuals of the model as a measure of synchronization. 

The smaller the residuals, the better the model fits the data, and the lower the entropy of 

the system. Low entropy means a high level of synchrony in the data. Florian and 

Pfurtscheller suggest dividing EEG records into locally stationary fragments to establish 

an autoregressive (AR) model for each fragment [49]. Moreover, considering the EEG 

records of event-related potentials as a set of realizations of the same stochastic process, 

the authors propose to average over the estimated AR parameters. Schack and Krause 

have fitted an iterative bi-variate ARMA model to EEG records and estimated the 

coherence function parametrically [46]. This work was extended to the multivariate case 

by Ding et al. [48].  
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Chapter 2 

The Coherence function and its existing 
estimators 
 

As mentioned in Section 1.4, the coherence function is a measure based upon the 

auto- and cross-spectral properties of the processes being analyzed. As defined in (1.4), 

the (mean square) coherence is 
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complex function and can be viewed as follows: 
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2.1 Nonparametric estimates of the coherence function 

Perhaps, the most employed algorithm to estimate the auto- and cross-spectra is 

Welch’s averaged periodogram method, as implemented in the function “cohere” in 

Matlab. The popularity of this procedure can be explained by its relatively high 

computational efficiency. The N – sample long time series xn and yn being analyzed are 

divided to form K successive L – sample long frames each. These frames overlap with 

offset D (i.e., the overlap is L-D samples). The data window wl is applied to each frame 

producing a set of modified periodograms that are then averaged. 

The spectral estimates are defined as follows [1]: 
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An estimate of the coherence function is formed based on the spectral estimates 

according to (2.1). 

The importance of averaging while estimating coherence can be illustrated by the 

following consideration [2]. If no averaging over different time windows is performed, 

the squared coherence function is 
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where X and Y represent the Fourier transforms of xn and y  respectively. n

Some properties of the periodogram-based coherence estimate, as evaluated by 

Monte Carlo methods, are illustrated below. 

The coherence was estimated for two normally distributed random sequences of 

length 1000 (generated by the Matlab command randn) as shown in Figure 2.1. The 

4096-point DFT was used in the periodograms. The length of the analysis frames was 

varied from 100 to 1000 samples. The analysis frames were overlapping by 50%. 
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Figure 2.1: An example of analyzed sequences. 

 

Because of the stochastic nature of the analyzed signals, coherence estimates for 

each length of analysis frame were averaged over 100 trials performed for the statistically 

independent data sets. Finally, these averaged over 100 trials estimates were also 

averaged over the entire frequency range. The result is presented in Figure 2.2. 
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Figure 2.2: Mean average coherence estimates for different ratios of the length of the analysis frame to the 

signal record length; signal record length is 1000 samples, 50 % overlap for frames. 
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According to the definition, the coherence between two statistically independent 

sequences must be zero. Based on this property, we conclude, observing Figure 2.2, that 

low results (i.e. coherence less than 0.1, for instance) can be expected when the length of 

the analysis frame is less than 0.2 of the length of the signal record. On the other hand, 

the analysis frame must be long enough because the Welch’s averaged periodogram 

method tends to generate biased spectral estimates when processing short frames that are 

not from white noise. These considerations suggest that the Welch-based coherence 

estimator is not desirable for processing of short records and frames. 

Another nonparametric approach to estimating the coherence function has been 

proposed by Thomson [3]. This method is based on Thomson’s spectral estimation 

procedure, also referred to as the multiple – taper method [4], [5], and [6], which is 

known to produce less biased spectral estimates in comparison with the periodogram 

method. This method was proposed for signals with complicated spectral densities. The 

appropriate procedure is briefly described next. 

Assuming two N – sample long time records xn and yn, both with zero mean, the 

raw eigen-coefficients [5], [6] are specified as a discrete Fourier transform of the input 

signals 

   (2.6) ∑
−

=

−⋅⋅=
1

0

)( ),()(~ N

n

njk
nn

j
k eWNvxex ωω

where is the discrete prolate spheroidal sequence, which is a Fourier 

transform of the discrete prolate spheroidal wave function  also called the 

Slepian function 

),()( WNv k
n

);,( fWNUk

[7], [8], and [9]. These sequences are orthonormal providing spectral 

windows with well-concentrated energy, over which the data is observed. More on 

properties of Slepian functions can be found elsewhere [4], [5], [6], [7], [8], and [9]. W 

denotes the bandwidth: 0 < W < 0.5. 

),( WNkλThe raw eigen-coefficients usually are weighted by  to form estimates 

of idealized eigen-coefficients 

ˆ ( ) ( , ) (j j
k k k )x e N W x eω ωλ= ⋅ �   (2.7)  

)(
)(2sin),(

nm
nmWWN mn −

−
=

π
πρHere ),( WNkλ  are the eigenvalues of the N x N matrix ;  
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m, n = 0,1,…N-1. 

Similarly, the idealized eigen-coefficients are estimated for the record yn. Finally, 

the estimates of auto- and cross-spectra are obtained as follows [1], [3]: 
2 1 2
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S e x e
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j
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j
k

j
XY eyex

NW
eS ωωω  (2.10) 

where superscript * denotes complex conjugate. The coherence estimate is formed 

according to (2.1). 

An example of a coherence estimate according to (2.8) – (2.10) is shown in Figure 

2.3 for two normally distributed random records of length 1000 (generated by the Matlab 

function randn) illustrated in Figure 2.1. The length of the FFT was specified as 512 to 

reduce computational complexity, while the time-bandwidth product NW for the discrete 

prolate spheroidal sequences was chosen to be 4 in a compromise between keeping the 

spectrum approximately constant within the window and decreasing the possibility of 

unstable estimates [4]. 
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Figure 2.3: An example of the coherence estimate for two random sequences via Thomson’s spectra. 

 

The coherence estimate seen in Figure 2.3 does not correspond to the expected 

low value for all frequencies. Additionally, we can conclude that since the presented 
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method is nonparametric, it may exhibit a fundamentally limited applicability for the 

processing of short records and frames. 

2.2 Magnitude squared coherence function via linear modeling 

 The study presented next is based on the method proposed by Cadzow and 

Solomon [10], [11] and presents the results of a statistical analysis of the rational 

Magnitude Squared (MS) coherence function, as specified by (2.2), and obtained via 

parametric modeling [10], [11]. This MS coherence estimate has been derived for 

sequences, whose cross-spectrum and auto-spectra are rational. The MS coherence in this 

case can be expressed as a ratio of auxiliary polynomials ( )jA e ω ( )jB e ω and  as follows: 

( ) ( ) ( )( )
( ) ( ) ( )

j j j
xy yxj

j j
xx yy

S e S e
j

A ee
S e S e B e

ω ω ω
ω

ω ω ω

⋅
Γ  = =

⋅  (2.11) 

or as  

2

2

( )
( )

( )

j
qj

xy j
p

F e
e

G e

ω
ω

ωΓ =
  (2.12) 

2 ( j
qF e 2 ( j

pG e)ω )ωwhere the polynomials  and  are symmetric based on the symmetry 

property of the MS coherence function ( ) (j
xy yxe e )jω ω−Γ = Γ  [10], [11]. 

The essence of the procedure to estimate the MS coherence function, as proposed 

by Cadzow and Solomon [10], which they titled the near null space approach, consists of 

the following steps: 

1) estimate the cross- and auto-correlation sequences rij for the records being 

analyzed; 

2) estimate the convolution sums  and , which are estimates of inverse 

Fourier transforms of polynomials specified in (2.11), as follows: 

ˆ( )b nˆ( )a n

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

L

xy yx
k L

L

xx yy
k L

a n r k r m k

b n r k r m k

=−

=−

= ⋅ −

= ⋅ −

∑

∑
 (2.13)  
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where rxy represent correlation estimates between the signals x  and yn n, for the lags 

–L to L; 

3) choose the model orders p, and q, and the parameter M, and form , 

such that  

,
ˆ ˆ ˆ[ ]p q p qC A B=

    
ˆ ˆ ˆ( , ) ( ) ( 2);

ˆ ˆˆ ( , ) ( ( ) ( 2));
p

q

A m n a m n a m n

B m n b m n b m n

= − + + −

= − − + + −

1 1;
;1 1

n p
n q

≤ ≤ +
≤ +

m M  1≤ ≤

k

 (2.14) 
≤

4) compute the eigen-decomposition of  ; , ,
ˆ ˆH

p q p qC C

5) select the s smallest eigenvalues and construct the minimum norm solution as 

follows: 
1
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1 1
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,

 (2.15)  

ˆ ˆ 0C θ⋅ =where  is the kˆkv th eigenvector of the  matrix and ,
ˆ ˆT

p q p qC C⋅ . 

6) form the rational MS coherence function according to the following expression: 
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 ω−
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 (2.16) 

where f and g are partitions of the minimum norm solution vector as follows: 

  (2.17) 1 0
ˆ [1, ,..., , ,..., ]pg g f fθ =

Cadzow and Solomon show that steps 3 – 5 lead to the solution of the following 

time domain recursive system of equations [10]: 

  (2.18) 
[ ] [ ]

0 0
( ) ( ) ( ) ( ) 0

p q

n n
n n

g a m n a m n f b m n b m n m
= =

− + + − − + + =     ∀∑ ∑

[10], [11]It can be shown  that to fully determine the system in (2.18), a total of M = p + 

q + 2 equations is required. If M > p + q + 2, the system in (2.18) is called over-

determined. 

To test the method described above, the numerical example proposed by the 

authors [10], [11], was examined. We consider two time series generated in accordance 

with Figure 2.4. The MS coherence function between the white Gaussian noise xn and the 

output y  is estimated. It is seen in Figure 2.4, that the output y  is a sum of two ARMA n n
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, the coherence between xprocesses. We note that without adding the colored noise vn n 

and yn would be one for all frequencies. 

 
 

 
Figure 2.4: Signal generation for the MS coherence Example. 

 

The white noise sequences xn and wn are zero-mean, unit-variance. Studying the 

block diagram in Figure 2.4, we can compute the noise-free response as 

 1 2ˆ ˆ ˆ0.8n n n n 1y y y x− − −= − ⋅ +  (2.19) 

the colored noise as 

 1 21.212 0.49n n nv v v− − nw= ⋅ − ⋅ +  (2.20) 

and the output as 

 ˆn n ny y v= +  (2.21) 

The input signals xn and wn were generated as 2500 sample-long random Gaussian 

records. The MS coherence function was estimated according to (2.13) - (2.18) and 

compared to the theoretical result derived for the known ARMA parameters of the signal 

generator in Figure 2.4, which is given by the following expression [10], [11]: 

 0.5066 0.6754 cos( ) 0.1832 cos(2 )( )
1.0 1.3482 cos( ) 0.4811 cos(2 )

j
theor e ω ω ω

ω ω
− ⋅ + ⋅

Γ =
− ⋅ + ⋅

 (2.22) 

The auto- and cross-correlation sequences were estimated by the Matlab function xcorr, 

which implements the nonparametric Direct method [14]. 

The model parameters were chosen as follows: p = 2, q = 2, M = 10, s = 1, which 

corresponds to the true orders of the numerator and denominator p and q of the MS 

coherence and over-determination of the estimator by 4. The correlation functions were 

1

1 21 0.8
z

z z
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estimated only for 30 lags to reduce computational complexity. The influence of the 

number of lags on the accuracy of the estimator will be discussed later. The estimate of 

MS coherence between x(n) and y(n), averaged over 100 independent trials, is shown in 

Figure 2.5. The true MS coherence evaluated in accordance to (2.22) is presented as well. 
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Figure 2.5: True MS coherence and its estimate for p = 2, q = 2, M = 10, s = 1. 

 

We see in Figure 2.5 that the mean of the estimate and the theoretical curve are 

quite close to each other. 

To evaluate the statistical properties of the Cadzow/Solomon MS coherence 

estimator, error graphs for different combinations of estimator parameters were 

generated. As a measure of the performance, the average relative error (ARE) was 

computed as follows: 

,
1
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je ω je ωwhere Γxy( ) and Γtheor( ) represent estimated and true coherence functions, 

respectively. 

The MS coherence function was computed for N  = 1,000 pairs of signals xr n and yn 

with independent noise from trial to trial. The theoretical curve was subtracted from the 
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average of the MS coherence estimate, computed over Nr trials. The result was summed 

over all frequencies and divided by the sum over all frequencies of the theoretical values.  

Additionally, some estimates were unstable, as indicated by spikes at arbitrary 

fractional frequencies. These solutions were ignored but their number was counted to 

provide another measure of performance, called the probability of unstable solution 

(POUS). 

Figures 2.6 and 2.7 represent the results of statistical experiments investigating the 

influence of the model parameters on the ARE and POUS of the MS coherence estimate. 

All presented graphs are averages over 1,000 independent trials unless specified. Figure 

2.6 shows the dependence of ARE and POUS on the value of M, the number of equations 

used to compute the minimum norm solution. The graphs were plotted for different 

orders p and q and different numbers s of eigenvalues. 
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Figure 2.6: ARE (a) and POUS (b) of the estimator for different M. 

 

The simulations show a high sensitivity of the Cadzom/Solomon coherence 

estimator to parameter choice. Namely, for the true orders, the average relative error is 

observed to be unacceptably high when more than one eigenvector is used to form the 

solution. Such dependence was not observed when the model order was over-estimated. 

For the range of orders and number of eigenvalues studied, the estimator tends to produce 

the lowest ARE when M is between 8 and 10. Figure 2.6 suggests that to obtain the 

lowest ARE and POUS the following must hold true: s = p – 1 and M = p + q + 2. 

Figure 2.7 illustrates the influence on the accuracy of the estimator of the number 

of lags over which the correlation sequence is estimated. The experiment was performed 
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on 2500 sample-long records for the following sets of parameters: 1) p = 2, q = 2, s = 1, 

M = 8, 2) p = 3, q = 3, s = 2, M = 8, and 3) p = 4, q = 4, s = 2, M = 8.  
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Figure 2.7: ARE (a) and POUS (b) of the estimator for different lags of correlation estimate. 

 

Figure 2.7 suggests that ARE increases when the correlation sequences are 

estimated for more and more lags. The lowest error is observed when correlations are 

estimated for 22 lags. On the other hand, the probability of unstable solution does not 

depend on the number of correlation estimate lags. 

We conclude that the performance of the Cadzow/Solomon coherence method is 

greatly influenced by the number of lags used to obtain the correlation sequence 

estimates. 

2.3 Comparison of different correlation estimates for the 
magnitude squared coherence estimator 

 In this section several correlation estimators are implemented and their 

performance evaluated in the context of the Magnitude Squared Coherence estimator 

proposed by Cadzow and Solomon [10], [11]. 

The first correlation estimator analyzed implements the Direct correlation 

estimator (D) as follows [14]: 
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k

,D̂ kr  is an estimate of the cross-correlation coefficient between records xwhere n and yn for 

the lag index k. The auto-correlation for the record xn can be obtained by replacing y by x. 

The records xn and yn analyzed must have the same length N. The subscript d indicates the 

Direct method of correlation estimation is implemented. 

The second correlation estimation algorithm executes the Double Absolute 

Difference Average estimator (Double ADA) [14], [15]: 
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The third - Relative Magnitude estimator (RM) - is expressed as [15]

21

0

21

0

21

0

21

0
,ˆ

⎟
⎠

⎞
⎜
⎝

⎛
−+⎟

⎠

⎞
⎜
⎝

⎛
+

⎟
⎠

⎞
⎜
⎝

⎛
−−⎟

⎠

⎞
⎜
⎝

⎛
+

≡

∑∑

∑∑
−

=
+

−

=
+

−

=
+

−

=
+

N

i
kii

N

i
kii

N

i
kii

N

i
kii

kRM

yxyx

yxyx
r  (2.26) 

Finally, the robust correlation estimator via Bi-weight Midcovariance (BwM) was 

implemented as follows [16]: 
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Here Mx is the median of x , and U  is computed as follows: n i

x
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where MADx is the median absolute deviation 

{ }xNxx MxMxMedianMAD −−= ,...,1  (2.30) 

The coefficient a  is specified as follows: i

     ⎩
⎨
⎧

=
0
1

ia
otherwise
Ui 1≤

 (2.31) 

The corresponding coefficients and function associated with the yn record are defined 

analogously. 

To study the performance of the Cadzow/Solomon algorithms when using these 

various correlation estimators, two normally distributed real random signals of length 100 

with zero mean and unit variance were generated, with an example seen in Figure 2.1. 

Autocorrelation estimates for the Direct, Double ADA, and RM methods are 

shown in Figure 2.8. Similarly, cross-correlation estimates are shown in Figure 2.9.  
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Figure 2.8: Autocorrelation sequences estimated by different methods. 
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Figure 2.9: Cross-correlation sequences estimated by different methods. 

 

We observe in Figures 2.8 and 2.9 that all three estimates are close to each other 

for small lags.  

The autocorrelation estimate obtained by the Direct method was compared to the 

autocorrelation sequence estimated for the same random signal by the Matlab function 

xcorr. The difference (absolute error) between these two sequences is seen in Figure 2.10. 
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Figure 2.10: Absolute error between the Matlab ACF estimate and the ACF estimate obtained via the 

Direct method. 
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We see in Figure 2.10 that the difference does not exceed the magnitude of the 

value of Matlab ε. Based on this observation, we may conclude that Matlab implements 

the Direct method and the performance resulting from using the Matlab function xcorr 

and the performance of the Direct method is expected to be approximately the same. 

Figures 2.11 and 2.12 present a comparison between auto- and cross-correlation 

estimates obtained by the Direct and robust methods. The same random sequences were 

used. 
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Figure 2.11: Autocorrelation sequences estimated by the Direct method and the BwM robust method. 

 

 32



-100 -80 -60 -40 -20 0 20 40 60 80 100
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Lag (samples)

C
C

F 
es

tim
at

e

 

 
Direct method
Robust (BwM)

  
Figure 2.12: Cross-correlation sequences estimated by the Direct method and the BwM robust method. 

 

Visual inspection of Figures 2.11 and 2.12 shows that the results obtained by the 

Direct method and the BwM robust estimator are relatively close for small lags (up to lag 

= 25). 

Next, all the correlation estimators considered here were used in combination with 

the MS coherence estimator described in Section 2.2. Each graph in Figures 2.13 to 2.17 

was generated by averaging over 1,000 trials with independent noise. The length of the 

record was 2,500 samples, and the correlation sequences were estimated for 30 lags since 

this number is close to the suboptimal number of lags causing the lowest ARE as shown 

in Figure 2.7. The MS coherence estimates were obtained for the following parameters: p 

= 2, q = 2, M = 10, s = 1. The corresponding ARE is presented in the legends as well. 
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Figure 2.13: True MS coherence and its estimate for the Section 2.2 Example; Direct method, POUS = 

0.007. 
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Figure 2.14: True MS coherence and its estimate for the Section 2.2 Example; double ADA method, 

POUS = 0.405. 
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Figure 2.15: True MS coherence and its estimate for the Section 2.2 Example; relative magnitude method, 

POUS = 0.366. 
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Figure 2.16: True MS coherence and its estimate for the Section 2.2 Example; BwM robust method, 

POUS = 0.003. 

 

Figures 2.13 – 2.16 show that the double ADA and relative magnitude estimators 

tend to produce coherence estimates with large ARE (ARE is out of the range depicted in 

Figure 2.14 and 2.15, therefore, not shown) and a large probability of unstable solution. 
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The BwM robust estimator yields a lower probability of unstable solution,  compared to 

the Direct method, however, the corresponding relative error is slightly higher. 

Figure 2.17 illustrates the influence of a different number of correlation lags on 

the accuracy of the coherence estimate obtained for 2500 sample-long records. The 

processing has been performed for the following parameters: p = 2, q = 2, M = 10, s = 1. 

The average over 100 trials with independent noise is presented. 
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Figure 2.17: ARE (a) and POUS (b) of coherence estimates using the Direct and robust methods for 

correlation estimation. 

 

We observe in Figure 2.17 that the coherence estimator, whether using the Direct 

or the robust method of correlation estimation, exhibits sensitivity to the number of lags 

of correlation estimates used in their computation. The smallest ARE was observed when 

correlation was estimated by the Direct method for 19-24 lags. The robust estimator 

causes higher ARE but more stable solutions as seen in the right part of Figure 2.17. 

Next, the influence of the length of the analyzed frames on the accuracy of the 

coherence estimate using different correlation estimators was examined. The true order 

coherence with p = 2, q = 2, M = 10, s = 1 was estimated and averaged over 100 

experiments with independent noise. The ARE and POUS are shown in Figure 2.18. The 

zoomed versions of the plots are presented in Figure 2.18 as well. 
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Figure 2.18: ARE (a) and POUS (b) of coherence estimates using different correlation estimators. 

 

We observe in Figure 2.18 that the double ADA and relative magnitude correlation 

estimators perform considerably worse than the Direct and Robust methods. The BwM 

robust estimator exhibits a smaller relative error than the Direct method when the signal 

frame is varied from approximately 150 to approximately 1100 samples. However, when 

record length exceeds approximately 1800, the Direct estimator outperforms the BwM 

robust estimator. Another important observation is the unacceptably high probability of 

unstable solution when processing frames shorter than 1,000 samples, for any of the 

correlation estimators evaluated here. This implies that the coherence estimator exhibits 

very limited capability of processing short sequences, regardless of the correlation 

estimator it uses. This limitation is fundamental and may well originate from the fact that 

the above correlation estimators are all non-parametric. 
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Chapter 3 

Phase Synchrony 

Phase Synchrony (PS) is the frequency-specific quantity rlm,n specified for two 

oscillators l and m, over an N  sample long time window as follows [1], [2], [3], and [4]: w

(
,

1

1
lk m k

w

n
j

lm n
k n Nw

r e
N

ϕ ϕ− −

= − +

= ∑ )  (3.1) 

where ϕlk and ϕmk  denote instantaneous phase sequences for oscillators l and m 

respectively and n represents the last time instant included in its evaluation. 

We will adopt the following interpretation of phase synchrony: 

1) PS is expected to be close to one when two sequences at the same frequency are 

processed; 

2) PS is expected to be close to zero, when two sequences at different frequencies 

are analyzed. 

Next, we investigate the properties of phase synchrony. 

3.1 Fundamental properties of phase synchrony 

 The properties of phase synchrony were studied on two signal pairs, generated 

based on the presented interpretation of PS, as sinusoids of a particular frequency 

contaminated by white noise with SNR = 10 dB. We studied two types of signal pairs. In 

the high synchrony pair both signals contain noisy sinusoidal sequences of a particular 

frequency, i.e. the analyzed signals were noisy sinusoids of the same frequency with a 

constant phase shift between them (Figure 3.1 (a)). In the low synchrony pair one of the 

signals was normally distributed white noise (Figure 3.1 (b)). 
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 (a) 

 
 (b) 

Figure 3.1: Signal pairs with (a) high and (b) low synchrony; f0 = 0.05, SNR = 10 dB. 
 

 
We see that when two input signals are at the same frequency, the phase 

difference k lk mkϕ ϕ ϕΔ = −  between them is constant and the PS is 

,
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1 cos ( ) sin ( ) 1
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ϕ

ϕ ϕ

ϕ ϕ

− Δ

= − +

− Δ

= =

       ⋅ =

       ⋅ Δ − Δ =

       ⋅ Δ + Δ ≡

∑

 (3.2)  

Evaluation of the expected value of PS for two sequences not at the same 

frequency is more challenging. We will estimate the expected value of PS for a low 

synchrony case. Assuming for simplicity that n = Nw, i.e. the summation is performed 

from 1 to N , phase synchrony can be rewritten as follows: w
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ϕ

kSince cos cos sin sin cos( )i k i k iϕ ϕ ϕ ϕ ϕΔ Δ + Δ Δ = Δ − Δϕ  [5], phase synchrony is 

1

,
1 1

1 2 cos(
w wN N

lm n w i k
i k iw

r N
N

)ϕ ϕ
−

= = +

= + Δ − Δ∑ ∑   (3.4)  

When a low synchrony signal pair is processed, the phase difference Δϕk between 

two signals can be modeled as a uniformly distributed random variable (RV) over [-π π], 

since it is a sum of a constant and a uniformly distributed RV. A sum of two independent 

identically distributed RVs is another RV, whose probability density function (PDF) is a 

convolution of the initial PDFs [6]. Namely, if two initial RVs are uniformly distributed, 

their sum (or difference) will have a triangular distribution. We can make the 

substitution ik i kϕ ϕ ϕ= Δ − Δ� ikϕ�, where the PDF of  is 

2

2

2
4

2( )
4

0

when

f when

otherwise

ϕ

π ϕ π ϕ
π

π ϕϕ ϕ
π

+⎧

π

                − 2  ≤  ≤ 0⎪
⎪

−⎪=                    0 <  ≤ 2⎨
⎪

                        ⎪
⎪⎩

�

� �

�� �  (3.5) 

The theoretical PDFs and their experimental approximations for the initial random 

variable Δϕ and triangularly distributed ikϕ�k  are illustrated in Figure 3.2. The 

experimental histograms have been plotted for 100,000 uniformly distributed random 
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numbers over [-π π] (Figure 3.2 (a)) and for 100,000 differences of two such identically 

and uniformly distributed random numbers (Figure 3.2 (b)). 
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Figure 3.2: Theoretical PDFs for (a) uniformly and (b) triangularly distributed RVs and their experimental 

approximations. 

 

Substituting ik i kϕ ϕ ϕ= Δ − Δ� , phase synchrony can be simplified as follows: 

1

,
1 1

1 2 cos
w wN N

lm n w ik
i k iw

r N
N

ϕ
−

= = +

= + ∑ ∑ �  (3.6) 

and, by another substitution cosik ikψ ϕ= � , we find (3.7) 

1

,
1 1

1 2
w wN N

lm n w ik
i k iw

r N
N

ψ
−

= = +

= + ∑ ∑  (3.8) 

The distribution of ψik can be evaluated using the Fundamental Theorem of 

statistics [6] that specifies the PDF of a function of random variable with known 

distribution. Before these derivations, the following remarks must be made. The cosine is 

a periodic function with period of 2π. Because of the symmetry around π, 

ϕ�cos( ) cos( )π θ π+ = −θ , which transforms the triangular PDF of , shown on the right 

part of Figure 3.2, to a distribution uniform over [-π π], as Figure 3.3 illustrates. 
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Figure 3.3: Diagram of PDF transformation. 

 

Applying the Fundamental Theorem [6], we can find the PDF of ψ specified in 

(3.7) via the following steps: 

Two solutions of (3.7) exist for ϕ�  in [-π π] for given ψ, namely: 

1 1
1 2cos ( ) and cos ( )ϕ ψ ϕ− −=      = −� � ψ . 

( )cos sind
d

ϕ ϕ
ϕ

= −�
�

�Differentiation of (3.7) leads to . Finally, the resulting PDF can be 

expressed according to the Fundamental Theorem of statistics as follows: 

1 1

1

1 1
2 2( )

sin(cos ) sin( cos )

1 for 1
sin(cos )

fψ
π πψ

ψ ψ

ψ
π ψ

− −

−

= +
− − −

           =                                         −1 ≤ ≤

 (3.9)  

A plot of the theoretical PDF corresponding to (3.9), and its experimental 

approximation obtained for 100,000 independent RV generated in accordance to (3.7) and 

the previous discussion, is shown in Figure 3.4. 
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Figure 3.4: Theoretical PDF for RV distributed corresponding to (3.7) and its experimental approximation. 

 

The histogram in Figure 3.4 closely matches the theoretical curve. The expected 

value (mean) of distribution (3.7) can be found as 
1

1
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1
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The second moment is estimated as 
1
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To further simplify the expression for phase synchrony in (3.8), we apply the 

substitution:  
1

2
1 1

1 w wN N i

n
i kwN kiξ ψ

− −

= =

= ∑ ∑  (3.12)  

which transforms the expression for phase synchrony into 
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Finally, we therefore have the following 

,
1 2lm n n

w

r
N

ξ= +  (3.14) 

The RV ξn in (3.12) can be approximated as a shifted exponential random process 

with the PDF expressed as follows: 
1

2( )f e
λ ξ
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ξ ξ λ
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wNλ = . (3.16) where 

1
2( )

w
w

N
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wf N e
ξ

ξ ξ
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− +⎜ ⎟
⎝=Or, finally: ⎠  (3.17) 

A plot of the theoretical PDF corresponding to (3.17) and its experimental 

approximation obtained for 100,000 independent RV generated in accordance to (3.12) 

and the previous discussion, is shown in Figure 3.5. 
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Figure 3.5: Theoretical PDF for RV distributed corresponding to (3.17) and its experimental 

approximation for N = 130. 
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The histogram in Figure 3.5 closely matches the theoretical curve. 

Finally, the expected value of phase synchrony as expressed in (3.14) can be 

evaluated as follows [6]: 
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  (3.18) 

The resulting integral can be evaluated numerically. The result of this evaluation 

(the theoretical expected value of phase synchrony) and the experimental average of 

phase synchrony specified in (3.1) over 1,000 trials with independent noise are shown in 

Figure 3.6. 
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Figure 3.6: Averaged value of phase synchrony and its theoretical estimate for different lengths of the 

analysis window. 

 

We observe from Figure 3.6 that the theoretical and experimental results are 

close. Based on these graphs, we can conclude that the expected value for phase 
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synchrony for a low synchrony signal pair is not zero and principally depends on the 

length of the analysis window. 

Analyzing the graphs shown in Figure 3.6, we can conclude that the expected 

value of phase synchrony in the low synchrony case is governed by the following 

equation: 

1{ }
w

E r
N

≈  (3.19) 

The expected value of phase synchrony, when processing two random sequences, 

can be evaluated using the approach described above. In this case, the initial phase 

difference is triangularly distributed. As a result, the PDF of ϕ�  is a convolution of two 

triangles. Since each triangle is defined over the [-2π 2π] interval, the resulting 

convolution will be defined over the [-4π 4π] interval. However – due to the symmetry 

around π of the cosine – this distribution will be transformed to being uniform over the [-

4π 4π] range, similar to the illustration in Figure 3.5. The rest of the derivation remains 

unchanged. Consequently, the expected value of phase synchrony in the case of two 

random input sequences can be found by the expression in (3.18). 

3.2 Design of - and parameter selection for - the Phase 
Synchrony Processor 

 To apply phase synchrony analysis (3.1) to the generated pairs of signals shown in 

Figure 3.1, we need to extract the frequency specific instantaneous phase sequences. To 

accomplish this, we first generate the analytic sequence corresponding to the given signal 

and then extract the frequency specific content for the frequency band (or EEG rhythm) 

of interest. These goals can be attained by the Instantaneous Phase Processor (IPP) 

depicted in Figure 3.7 [7]. The advantage of the IPP, compared to wavelet filtering, is 

better parameter flexibility as the analysis time, the center frequency, and the bandwidth 

of the processor can be adjusted independently. 
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Figure 3.7: Frequency specific Instantaneous Phase Processor (IPP). 
 

 
The filter Hht(ejω) is a Kaiser-window based linear-phase FIR approximation of 

the ideal Hilbert transformer evaluated as follows [8]: 

2 2
0

, 0

{ 1 [( ) / ] sin { ( ) / 2}2 , 0[ ] ( )
0,

d d d

ht FIR d

I n n n n n n Nh n I n n
otherwise

β π
β π

⎧ − − −
⎪ ⋅ ⋅          < <= ⎨ −
⎪                                                                                  ⎩

 (3.20) 

where N+1 is the specified length of the Hilbert transformer FIR approximation (N+1 = 

19 was used in this study), nd = N/2, β is a parameter that controls the smoothness of 

spectral transition. To achieve a peak approximation error of about -35 dB, the design 

parameter β was chosen as 2.629 [9]. 

The real part of the analytic signal yn is the real input signal delayed by N/2 

samples (9 in our case). The band-pass filter Hbp(ejω) was implemented as an equiripple 

FIR filter with adjustable center frequency fc and adjustable bandwidth B. The length of 

the filter was estimated for the pass-band and stop-band ripples chosen as 0.01 and the 

given B. 

To process a pair of signals according to (3.1), the Phase Synchrony Processor 

(PSP), depicted in Figure 3.8, is employed. 

 
Figure 3.8: Phase Synchrony Processor. 
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The instantaneous phase sequences associated with the two input signals xln and 

xmn are generated by two identical IPPs, subtracted, and their difference used to produce 

the corresponding unit magnitude phasor. The resulting sequence of phasors is filtered by 

the FIR filter performing time averaging over an Nw sample-long rectangular window. 

Finally, the absolute value of the result of this filtering is rlm,n, a sequence of phase 

synchrony coefficients. 

The phase synchrony processor (Figure 3.8) was implemented in Matlab and 

numerical experiments with the artificially generated signals, described earlier and shown 

in Figure 3.1, were performed. 

The inputs of the PSP were either the high synchrony pair (Figure 3.1 (a)) or the 

low synchrony pair (Figure 3.1 (b)). In both cases, the sinusoidal signals were 

contaminated by white Gaussian noise, generated by the command “randn.” The SNR 

was 10 dB. For the channel containing the sinusoidal signal, Figure 3.9 depicts the 

instantaneous phase sequences of the signals y  and vn n (Figure 3.7), that is, before and 

after narrow-band filtering (bandwidth was 0.005; the band-pass filter length was 489 

samples). 

 
(a) (b)  

Figure 3.9: Instantaneous phase sequences before and after narrow-band (B = 0.005) filtering for different 

time intervals: samples 1950-2050 (a) and samples 3000-3100 (b). 

 
We observe that the filtering operation has little effect on the phase of the sinusoidal 

signal (to the left of the vertical line in Figure 3.9 (a)) since the center frequency of the 

filter and the frequency of the sinusoidal signal are the same. On the other hand, the 

phase of the filtered noise remains nearly linear (Figure 3.9 (a)). Even after a 
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considerable time, the phase sequence of the filtered noise exhibits approximately linear 

behavior (Figure 3.8 (b)). 

This effect leads to a nearly constant phase difference between two filtered random 

sequences (Figure 3.10 (a)). Phase relations are more complicated when processing actual 

time series, such as an EEG, but the general influence of the parameters is seen to be the 

same (Figure 3.10 (b)). Both results were obtained for a bandwidth of 0.005 and exhibit 

little variation in the phase differences. The latter indicates high synchrony coefficients, 

which for the case of Figure 3.10 (a) is known to be incorrect. 
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Figure 3.10: Instantaneous phase differences (a) for the low synchrony (synthetic signals) pair and (b) for 

the real EEG. 

 

Considering the low synchrony signal pair (Figure 3.1 (b)), the correct value of 

phase synchrony is expected to be close to zero. The result of a Monte Carlo experiment 

[7] conducted on such pairs for varying bandwidths and lengths of analysis window is 

shown in Figure 3.11. Each value was obtained by averaging the results for 100 

repetitions of signal pairs and statistically independent noise. The results in Figure 3.11 

were obtained for the low synchrony channel pair with SNR = 10 dB. The fractional 

center frequency of the band-pass filter was chosen as 0.05. The length of the sinusoidal 

signal exceeded the length of the analysis window. The phase synchrony coefficients are 

represented by different colors as indicated on the color-bar. 
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Figure 3.11: Phase synchrony for different bandwidth and different length of the analysis window; low 

synchrony pair. 

 
We observe in Figure 3.11 that the bandwidth of the filter has a major effect on 

phase synchrony. Namely, the narrower the bandwidth, the higher the phase synchrony 

coefficient, and thus the higher the likelihood of phase synchrony error for the low 

synchrony pair. Another factor, influencing the value of phase synchrony, is the length of 

the analysis time window, denoted as Nw in (3.1). We observe that the shorter the analysis 

length, the higher the phase synchrony, and therefore the higher the likelihood of phase 

synchrony error for the low synchrony pair. This observation agrees with the previous 

theoretical derivations, presented in Section 3.1. 

The corresponding results for high synchrony pairs showed a minimal dependence 

on bandwidth and analysis window length. All values of phase synchrony exceeded 0.99 

for the entire range of filter parameters depicted in Figure 3.11.  

Figure 3.12 depicts a distribution of values of phase synchrony for low and high 

synchrony pairs processed with 600 sample-long analysis windows, and a filter 

bandwidth of 0.02. Figure 3.12 was obtained for 10,000 runs with independent noise 

realizations with SNR = 10 dB. Only a part of the bin representing the high synchrony 

pair is shown in Figure 3.12 for better data representation. 
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Figure 3.12: Histogram of phase synchrony for low synchrony and high synchrony signal pairs; length of 

analysis window is 600 samples, filter bandwidth is 0.02. 

 

All 10,000 results corresponding to the high synchrony pair are represented by a 

single bin. We see in Figure 3.12 that low and high synchrony pairs can be easily 

discriminated by comparing a synchrony coefficient with a certain threshold chosen for a 

particular probability of false high synchrony detection. The distribution of PS for the 

low synchrony case looks like a Rayleigh distribution, whose tail is truncated at 1.  

The influence of pass-band and stop-band ripples on the average value of phase 

synchrony was studied next. The Parks-McClellan optimal equiripple FIR was used as the 

pass-band filter. Stop-band and pass-band ripples were equal to 0.01. Figure 3.13 presents 

instantaneous phase sequences of white noise before and after narrow-band filtering with 

different specified pass-band and stop-band ripples. The filter bandwidth was 0.005 in 

fractional frequency. 
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Figure 3.13: Instantaneous phase sequences of random noise, non-filtered and narrow-band filtered with 

different ripples; Parks-McClellan optimal equiripple FIR, f0 = 0.05, pass-band is 0.005. 

 

We see in Figure 3.13 that a filter with bigger ripples produces more variation in 

the instantaneous phase sequence of the filtered signal, which is desired for a random 

input sequence. We conclude based on the last observation that bigger ripples should 

produce lower values of phase synchrony for the low synchrony signal pairs. The 

following experiments were designed to evaluate this hypothesis. 

Figure 3.14 shows the value of phase synchrony - averaged over 300 trials - for 

the low synchrony signal pair, seen in Figure 3.1 (b), for an analysis window length of 

600 samples, different bandwidths of the filter, and various pass-band and stop-band 

ripples. Parks-McClellan FIR filters with the center frequency of 0.05, bandwidths from 

0.0025 to 0.02, and various ripples have been used. 
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Figure 3.14: Average phase synchrony for different pass-band ripples; Parks-McClellan FIR, analysis 

window length of 600 samples, f0 = 0.05; bandwidths are indicated in the legend. 

 

We observe in Figure 3.14 that bigger ripples lead to lower values of phase 

synchrony, which is known to be correct for low synchrony pairs. This influence is more 

pronounced when narrow-band filters are applied. The most interesting observation is 

that curves for filters with different bandwidths converge to low values of phase 

synchrony when the ripples are around 0.2. The result for a high synchrony pair does not 

exhibit any dependency on the choice for pass-band and stop-band ripples. The latter 

observations suggest that narrowband filters can be successfully applied even when 

relatively big ripples are allowed. 

3.3 Properties of Phase Synchrony Processor 

 We now describe properties of the Phase Synchrony Processor developed in 

Section 3.2. 

An incorrectly low result for a high synchrony signal pair can be observed when 

processing two sinusoids of the same frequency with one of them containing a 1800 phase 
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shift. The corresponding result is shown in Figure 3.15, which was generated for the 

analysis window length of 600 samples and a bandwidth of 0.02. 
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Figure 3.15: Input signals and corresponding phase synchrony computed over the sliding time window of 

length 600 samples, filter bandwidth of 0.02; the 1800 phase shift is emphasized by the red circle. 

 

Signal 1 is a plane sinusoid, while signal 2 has a phase shift of 1800 at the 900th 

sample. We see in the lower part of Figure 3.15 that, when the processed sinusoidal 

segments of different phases are equal in length, the phase synchrony is close to zero, 

which is known as incorrect. The described effect may be caused in the EEG, perhaps, by 

temporal failure of one electrode. 

The next experiment was designed to discover the influence of SNR on the value 

of phase synchrony. The phase synchrony was estimated for the high and low synchrony 

signal pairs (Figure 3.1 (a) and 3.1 (b)). The length of the analysis window was 600 

samples and the bandwidth of the band-pass filter was 0.02. The average over 100 trials is 

presented in Figure 3.16. 
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Figure 3.16: Average phase synchrony for different SNR; analysis window length is 600 samples, f0 = 

0.05, bandwidth is 0.02, ripples are 0.01. 

 

Analysis of Figure 3.16 shows no significant changes in the value for the low 

synchrony signal pair. Considering the high synchrony pair, we conclude that the phase 

synchrony shows little dependence on the SNR when it exceeds 0 dB. High and low 

synchrony pairs can be successfully discriminated – on average – when SNR is bigger 

than -10 dB. SNR less than -20 dB leads to the same average phase synchrony as for the 

low synchrony case. 

The other remarkable property of phase synchrony is its frequency discrimination. 

For a constant frequency shift , over the analysis time interval of N21 ωωω −=Δ w 

samples, the instantaneous phase difference can be evaluated as follows: 

, , ,

0 0

0

lm k l k m k

l l m mk k
k

ϕ ϕ ϕ

ϕ ω ϕ ω
ϕ ω

Δ = − =

    = + − − =

           = + Δ
 (3.21)  

where  is some constant initial phase difference and 0ϕ ωΔ  is a constant frequency 

difference of two signals. We will treat  as a discrete time index. Then (3.1) can be 

rewritten as follows: 

k
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where psinc refers to the periodic or Dirichlet sinc function. For the sampling frequency fs

( )1 22

s

f f
f

π
ω

−
Δ =  (3.25)  

where f  and f1 2 are the frequencies of the two sinusoidal signals. Note that phase 

synchrony equals one when f  = f . 1 2

Figure 3.17 presents phase synchrony between two sinusoids of different 

frequencies. The frequency f1 of the first signal was fixed at 0.05, which was the center 

frequency of the band-pass filter. The frequency f2 of the second signal was varying from 

approximately 0.035 to approximately 0.0659 Hz, which is ± 30 % of f . The sampling 1
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frequency was 256 Hz. The graphs were plotted for different lengths of the analysis 

window and filter bandwidths. 

  The graphs in Figure 3.17 (b) show the theoretical results, computed according to 

(3.24), as well as the corresponding estimates produced by the PSP. 
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Figure 3.17: Phase synchrony for a noiseless signal pair vs. frequency difference for different bandwidths 

and analysis window lengths; f

(a) (b) 

1 = 0.05: (a) experimental results and (b) comparison with theoretical results. 

 

Figure 3.17 (a) suggests that the PSP exhibits frequency discrimination. Phase 

synchrony decays more rapidly when analysis is conducted with a long analysis window. 

The shape of this graph is not affected by the other filter parameters, such as bandwidth 

(Figure 3.17 (a)). Also, the phase synchrony graph corresponding to narrow-band 

filtering (B = 0.01) becomes less well defined when the frequency difference exceeds 

approximately 0.01. In the latter situation, the frequency difference is larger than the filter 

bandwidth (pass and transition bands); and thus the second sinusoid is attenuated. 

Analyzing Figure 3.17 (b), we see that the experimental data matches perfectly with the 

theoretical results when the frequency difference is smaller than approximately 0.005. 

The discrepancy between theoretical and experimental results for frequency differences 

exceeding 0.01 can be explained by the influence of band-pass filtering, which was not 

accounted for when (3.24) was derived. This discrepancy becomes less pronounced when 

a band-pass filter with wider bandwidth is used as illustrated by the green graph in Figure 

3.17 (b) corresponding to a wider pass band of the filter (i.e. B = 0.06). Also, as seen in 

Figure 3.17 (b), longer analysis windows lead to better agreement between experimental 

and theoretical results. 
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Practical signals are generally contaminated by noise. We are therefore interested 

in determining how noise affects the frequency discrimination properties of the PSP. For 

this next experiment, the sinusoidal input signals were contaminated by Gaussian noise 

for SNR = 10 dB. The phase synchrony coefficient averaged over 100 trials is shown in 

Figure 3.18 (a). The frequency f  was fixed at 0.05; f  was varied over ± 30% of the f1 2 1 

range. Figure 3.18 (b) illustrates averaged PS coefficient vs. frequency difference for 300 

and 900 sample-long windows for SNR = 10 dB and for the noise-free case. 
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Figure 3.18: Average phase synchrony for a signal pair vs. frequency difference for different bandwidths 

and analysis window lengths; f1 = 0.05, SNR = 10 dB (a) and comparison with the noise-free case (b). 

 

We see in Figure 3.18 (b) that noise contamination produces a minor influence on 

the average phase synchrony (i.e. minima of phase synchrony are less pronounced than in 

the noise-free case) when the frequency difference is small and does not exceed one half 

of the filter bandwidth.  Considering the graph in Figure 3.18 (a) for B = 0.01, we 

conclude that PS is consistent with the noiseless case as illustrated in Figure 3.17 (a), 

when the frequency difference is smaller than approximately 0.01. PS corresponds to the 

average value of 0.28 for the low synchrony case when the frequency difference exceeds 

the filter bandwidth: pass band (± 0.005) and transition band (0.005), namely, 0.01. 

Figure 3.19 illustrates average phase synchrony for the three different SNR of 10 

dB, 0 dB, and -10 dB. All graphs were plotted for filter bandwidth B = 0.02 and analysis 

window length Nw = 300. The red graph represents average phase synchrony when only 

one sinusoid, namely the one at the variable frequency f2, was contaminated by Gaussian 

noise. The black curve illustrates the situation when sinusoids were degraded by α-stable 
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[12]noise generated by a program developed by John P. Nolan  with the following 

parameters: stability α = 1, skewness β = .25, scale γ = 1, location δ = 0. Since the 

variance is undefined for α-stable random process, the concept of SNR is not applicable 

to the case of α-stable noise contamination. However, it is known [12] that, when 

stability α equals 2, the random process reduces to the Gaussian case with the variance σ2 

= 2γ2. Therefore, SNR would be -3 dB. 

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ha

se
 s

yn
ch

ro
ny

Fractional frequency difference

SNR = 10 dB
SNR = 0 dB
SNR = -10 dB
SNR = -10 dB, one

α-stable

 
Figure 3.19: Average phase synchrony for a signal pair vs. frequency difference for different SNR; f1 = 

0.05, Nw = 300 samples, B = 0.02. 

 

It is seen in Figure 3.19 that the increased noise power causes the dependence of 

phase synchrony on frequency difference to be less pronounced. However, the main lobe 

of the graph (when the frequency difference is relatively small) is still readily recognized. 

We conclude that although high intensity additive Gaussian noise affects the frequency 

discrimination properties of the PSP, the dependence of the phase synchrony coefficient 

on frequency difference is still well approximated by (3.24). Leaving one sinusoid noise-

free improves frequency discrimination properties of the PSP. When sinusoids are 

contaminated by non-Gaussian – for instance, α-stable – noise, the frequency 

discrimination property of the PSP is greatly degraded. Only the shape of the graph is 

somewhat similar to ones when Gaussian noise was added. 

We evaluate the distribution of the phase synchrony coefficient next. 10,000 

phase synchrony coefficients were computed for a signal pair containing two sinusoids, 
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 = 0.05 and fwith frequencies f1 2 = 0.052, contaminated by normal noise for SNR = 10 

dB,. For the length of the analysis window Nw = 300, the expected value of the phase 

synchrony coefficient is approximately 0.5236. Figure 3.20 shows the estimated 

frequency of occurrence of phase synchrony. The Gaussian pdf computed for the 

estimated mean and variance – from 10,000 values of coefficients – is also plotted. 
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Figure 3.20: Frequency of occurrence of phase synchrony coefficient; Nw = 300, f1 = 0.05, f2 = 0.052,  

SNR = 10 dB. 

 

We conclude from Figure 3.20 that phase synchrony (coefficient) estimates can be 

approximated as normally distributed when the frequency difference is relatively small. 

The previously discussed results for phase synchrony coefficients were computed 

and averaged for independent sequences, i.e. sinusoids were contaminated by 

independent noise. The situation, when phase synchrony is estimated for a number of 

overlapping successive time windows, may be of interest. Two noisy sinusoids of length 

1,000 samples were generated with f  = 0.05, f1 2 = 0.052. Signal segments were observed 

and the phase synchrony was estimated over fifty successive 300 sample-long analysis 

windows overlapping by 290 samples (i.e. shifted by 10 samples). Figure 3.21 shows 

phase synchrony coefficients computed for such signal pairs for SNR = 10 dB and SNR = 

0 dB. The cumulative average phase synchrony coefficients and the expected values of 

phase synchrony are also presented. All values are plotted vs. time instances at which the 

corresponding analysis time window ends. 
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Figure 3.21: Time dependence of phase synchrony for a signal pair with f1 = 0.05, f2 = 0.052, Nw = 300 

samples, B = 0.02; (a) SNR = 10 dB and (b) SNR = 0 dB. 

 

We see in Figure 3.21 that even when computed for dependent signal pairs, the 

average phase synchrony approaches its expected value relatively fast. Monte Carlo 

experiment showed that – for SNR of 0 dB – phase synchrony cumulatively averaged 

over 18 windows shifted by 10 samples (i.e. overlapping by 290 samples) is enough – on 

average – for the cumulative average to reach – and stay within – ±5 % the expected 

value. When windows were further apart, i.e. shifted by more than 10 samples, 

convergence occurred faster, as shown in Figure 3.22. This is expected, as the individual 

phase synchrony estimates are now more independent. 
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Figure 3.22: Time dependence of phase synchrony for a signal pair with f1 = 0.05, f2 = 0.052, Nw = 300 

samples, B = 0.02, SNR = 0 dB; step of (a) 10 samples and (b) 20 samples. 
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We suggest that the PSP may be used to estimate the frequency deviation of a 

sinusoidal signal contaminated by Gaussian noise relative to a noise-less standard. The 

phase synchrony coefficient, as evaluated by the PSP, can be compared with the expected 

value computed according to (3.24) for known window length and various frequency 

differences. 

3.4 Phase synchrony analysis of EEG 

 In this section, we apply phase synchrony analysis to EEG records. The processor 

parameters will be chosen based on the previous discussions. Phase synchrony analysis is 

traditionally applied to discover relations in EEG between different trials, for instance, 

when processing event-related potentials. However, PS can be estimated within a single 

trial. The processing, described in the following section, corresponds to phase synchrony 

estimated for single-trial EEG records. 

3.4.1 EEG data acquisition 

Two different EEG data sets were used to test the developed processor (PSP). 

One EEG data set, referred to as the “ADHD data set,” was obtained from thirteen 

children, aged 9 to 16. Six of them were diagnosed with ADHD. None of the children had 

participated in neurotherapy. All participants with ADHD were reported to have had 

independent EEG evaluations by neurologists that showed them to be essentially free of 

psychopathology. All subjects were medication-free for at least 24 hours before data 

collection. Each child was seated comfortably in a recliner chair in a sound-attenuated 

room for EEG data collection. Children were shown ways to reduce muscle tension and 

eye movement . [13]

Each experimental task was of 120 sec duration; EEG was recorded for 90 sec 

starting 30 sec after the beginning of task performance. Tasks included: (a) solving 

simple addition and subtraction problems presented in columns by marking which were 
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correct or incorrect, and (b) reading silently to themselves an age/intellectual ability 

appropriate story. The children appeared to show minimal movement during data 

acquisition. 

A Lexicor Medical Technology (Boulder, Colorado) Neurosearch-24 system 

(NRS-24) was employed for EEG acquisition. Using a lycra electrode cap, referential 

(A1, A2) recordings were obtained from 19 sites placed according to the International 10-

20 system. Resistance was kept below 5000 ohms with no more than 500 ohms between 

neighboring electrodes. EEG was amplified using the NRS-24 (gain setting 32K in the 

0.5 - 64 Hz band, with a 60 Hz notch filter), sampled at 256 Hz, and band-pass filtered 

from 2 to 64 Hz. 

The other EEG data set, referred to as the “Condition data set”, was obtained from 

forty strongly right-handed college students (18 men, 22 women; 17 – 21 years old, mean 

age of 18.87). They were recruited from 613 online survey participants who had been 

administered the Schizotypal Personality Questionnaire (SPQ; by Raine) [14], and 

smoking history and medical background questionnaires. They reported normal hearing, 

no known history of neurological or psychiatric problems and no prescription (except 

birth control) or over-the-counter drugs, alcohol or illicit drugs for at least one day before 

the experiment. Participants were chosen based upon scoring in the upper or lower 1/3 of 

the Raine’s SPQ [14] (upper cutoff 25, lower cutoff 13), low schizotypy (Np = 20: 10 

smokers and 10 non-smokers; SPQ M = 3.53, SD = 3.08) and high schizotypy (Np = 20: 

10 smokers and 10 non-smokers; SPQ M = 40.05, SD = 9.47)1. Smokers abstained for at 

least four hours before the experiment. 

Forty identical pairs of 1 ms 1000 Hz sinusoidal tone pips (1ms rise/fall; 70dB), 

with a 512 ms inter-click interval and 10 s inter-pair interval, were delivered by the 

Neuroscan® stimulus generation system through speakers placed 35 cm from each ear. 

Participants were instructed to attend to a stationary picture of a white cross on a 

computer monitor screen at eye level, 80 cm in front of them. EEG data was collected for 

two participant conditions: eyes open and eyes closed. 

Continuous EEG (0.1 to 100 Hz, 500 Hz sampling rate; gain of 150) was recorded 

with a cap (Electrocap Inc.) at 30 electrode sites (impedance < 5 kΩ), referenced to the 

                                                 
1 M and SD represent mean and standard deviation of the SPQ test scores. 
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2nose, plus vertical (above and below left eye) and horizontal Electro-oculogram  (EOG) 

electrodes. Recording and digitization was done with Neuroscan® SynAmps amplifier 

and Scan® version 4.2 software [15].

3.4.2 General properties of Phase Synchrony observed on real EEG records 

We present examples of phase synchrony evaluated for the EEG record collected 

from a healthy subject performing a reading task from the “ADHD data set.” The EEG 

signal was sampled at the rate of 256 Hz and then processed according to (3.1) using 

band-pass filters with center frequency f0 = 10 Hz and bandwidth of either 0.02 or 0.0025, 

i.e. 4 Hz or 0.5 Hz respectively. The length of the analysis window was 600 samples. The 

results for one time frame for all 19 electrode pairs are shown in Figure 3.23. Each square 

in Figure 3.23 corresponds to a phase synchrony coefficient evaluated for the particular 

pair of electrodes. Note that the diagonal elements are one since auto-synchrony of a 

signal pair is always identical to one.  
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Figure 3.23: Phase synchrony between different pairs of EEG electrodes; f0 = 10 Hz (0.039 in fractional 

frequency), Nw = 600 samples, bandwidth 0.02 (upper triangle) and 0.0025 (lower triangle). 

 

                                                 
2 electrical activity associated with eye movement 
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The center frequency and the bandwidths of the filter were chosen to correspond 

to the α rhythm (8-12 Hz). As seen in Figure 3.23, a narrow bandwidth (lower triangle) 

tends to produce high values of phase synchrony. In our modeled results we observed that 

this can happen regardless of whether synchrony is actually low or high. 

Figure 3.24 illustrates the importance of an appropriate choice of pass-band ripple, 

showing the phase difference between the EEG electrodes Fp1 and F3 using a Parks-

McClellan FIR filter with a fixed bandwidth of 0.005 and different ripples.  
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Figure 3.24: Instantaneous phase difference between Fp1 and F3 for various pass-band and stop-band 

ripples; analysis window length 600 samples, f0 = (0.05), bandwidth 0.005; real EEG record. 

 

Analysis of Figure 3.24 suggests that when the ripples of the band-pass filter are 

small, the phase difference may locally exhibit almost sinusoidal behavior, while this 

effect becomes less noticeable when bigger ripples are allowed. Since there are no 

obvious reasons for such behavior, we suggest that this result is undesirable and thus the 

use of bigger pass-band ripples is preferable. 

To be able to discriminate between low and high synchrony, these results suggest that 

band-pass filters with sufficiently broad bandwidth and analysis windows that are 

sufficiently long need to be used. For instance, studying the EEG α rhythm (8 – 12 Hz), 

the center frequency of the band-pass filter would be 10 Hz and the bandwidth 0.02. 

Thus, as seen in Figure 3.11, to obtain a phase synchrony coefficient under 0.2 (on 
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average) for a low synchrony signal pair, the length of the analysis window must be over 

600 samples. Assuming a sampling rate of 256 Hz, we see that EEG frames longer than 2 

seconds need to be processed. If less discrimination is acceptable, and a phase synchrony 

coefficient under 0.4 (on average) is used, the analysis frame needs to be over 240 

samples long (about 1 second). 

For EEG data collected from L+1 electrodes, L2/2 – L unique phase synchrony 

coefficients rlm, can be estimated for all possible pairs of electrodes l and m. These 

coefficients computed over the Nw-sample time window, need to be interpreted. To make 

this interpretation more straight-forward, an appropriate method of mapping of the PS 

coefficients is important. 

The most frequently used method to display these values of phase synchrony on the 

conventional electrode placement map is by drawing lines connecting two electrodes, for 

which phase synchrony exceeds some threshold [10], [11]. This method is schematically 

illustrated in Figure 3.25 for electrode F . 3

 
 

Figure 3.25: Example of mapping of phase synchrony coefficients exceeding a threshold for electrode F3. 
 

An advantage of this approach is its capability to qualitatively display high 

synchrony coefficients for particular electrode pairs. A weakness is its inability to 

quantitatively represent the synchronization data. The only available information about 

the value of the coefficient from Figure 3.25 is whether it exceeds the threshold or not. 

Also, keeping in mind that such mapping is usually done for all electrodes on the same 
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plot, this method faces a challenging trade-off between complexity and completeness of 

representation. An increase in the threshold may lead to omitting some important data, 

while it would certainly simplify the map and make its interpretation more straight-

forward as it is easier to track fewer crossing lines. 

Another approach to mapping the synchronization data has been proposed by 

Allefeld and Kurths [3], [4]. The main idea was to assign oscillators to clusters in which 

they participate with different weights and form a multivariate synchrony coefficient for 

each electrode. Based on this, each oscillator contributes to the particular clusters. 

The approach, employed here, can be viewed as a variation of the Allefeld and 

Kurths concept. All electrodes may be included into a single cluster with unitary weights. 

Thus, no influence of the electrode spacing comes into consideration. To take this spacing 

into account, individual clusters for each electrode were formed based on the distance 

between the analyzed electrode and all other electrodes. The oscillators can be assigned 

to form clusters, for instance, of local and non-local synchrony as shown in Figure 3.26. 

 
 

Figure 3.26: Example of two clusters assigned for the electrode F3: local (yellow) and non-local (blue) 

synchrony. 

 

Thus, the multivariate phase synchrony coefficient for the ith electrode is 

computed as follows: 

∑
=

=
M

k
iki r

M
P

1

1
  (3.26) 
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where rik are phase synchrony coefficients between the ith oscillator and the kth oscillator, 

where k refers to one of the M other oscillators included in cluster i, i.e. the cluster 

associated with electrode i. 

Utilizing this approach, the following steps have been performed: 

1. use the data to estimate phase synchrony coefficients rik for all possible 

electrode pairs as in (3.1); 

2. establish clusters for short range and long range synchrony for all electrodes; 

3. evaluate multivariate phase synchrony coefficients Pi for all electrodes and 

clusters as in (3.26); 

4. map the multivariate phase synchrony coefficients Pi on a topographical plot 

of a human brain. 

An example of a result obtained from the kind of processing just described is 

shown in Figure 3.27. The multivariate phase synchrony coefficients for 19 electrodes 

have been mapped on the plot of a human brain using the Matlab routine “eegplot” 

developed by Icaro and freely distributed from the Mathworks web site 

http://www.mathworks.com/. The positions of the electrodes in Figure 3.27 are indicated 

by the black dots. The values of the coefficients are represented by colors. Dark blue 

corresponds to zero, dark red represents one, intermediate values are shown by other 

colors as indicated on the color-bar. The actual data was available only for the points on 

the map where the electrodes were placed. For illustrative purposes, we assume the 

distribution of phase synchrony coefficients to be smooth on the brain surface. Based on 

this, cubic interpolation was used to estimate values of the multivariate phase synchrony 

coefficients for the locations between the electrodes [3], [4]. The center frequency of the 

filter was 5.5 Hz, the bandwidth was 0.055 Hz, and the length of the analysis time 

window was 300 samples, as discussed above. 
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Figure 3.27: Multivariate phase synchrony coefficients mapped on a topographical plot of the human brain. 

 

The next step in the processing could be the evaluation of a sequence of such 

multivariate synchrony maps computed over consecutive and overlapping time windows. 

This approach can provide a tool to study phase synchrony dynamics. 

3.4.3 Discrimination between ADHD and non-ADHD children 

 The EEG data from the “ADHD data set” corresponding to “Math” and 

“Reading” tasks [13] was processed by the Phase Synchrony Processor (PSP), which 

estimates phase synchrony coefficients r  for the pair of electrodes l and m over an Nlm,n w 

sample long time window as discussed in Section 3.2. 

Phase synchrony was computed based on (3.1) for all individuals for the 

following frequency bands (rhythms): δ (0-3 Hz), θ (4-7 Hz), α (8-12 Hz), β1 (13-20 Hz), 

β2 (20-30 Hz), γ  (30-40 Hz), and γ1 2 (40-50 Hz). To conduct the processing in the 

frequency band of interest, the Parks-McClellan FIR band-pass filter with a pass-band 

corresponding to the EEG rhythm has been employed. For instance, for the γ1 rhythm, the 

pass-band was selected from 30 to 40 Hz. For all rhythms, transition bands of 2 Hz, and 

pass-band and stop-band ripples of 0.02 were selected. The length of the analysis time 

window N  was chosen as 600 samples (approximately 2.3 seconds considering the w
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sampling frequency fs = 256 Hz) to decrease finite window length effects as discussed in 

Section 3.2. 

Using lth electrode as a reference, phase synchrony was estimated for the ith 

subject and for nth time interval for all other electrodes (pairs) to form a vector of 

individual phase synchrony x , specified for the lth reference electrode as follows: i,n

( )1, ,e

ti i
l n lN nr ri,nx = …  (3.27)  

where Ne represents the number of electrodes used. Note that auto phase synchrony (i.e. 

the phase synchrony coefficients evaluated between an electrode and itself) were not 

considered for processing since they always equal one. 

These vectors were computed for each subject for each of N = 400 consecutive 

time intervals, shifted by 50 samples (i.e. overlapping by 550 samples). The estimates 

were averaged within two groups of participants (i.e. smokers vs. nonsmokers, high vs. 

low schizotypy, eyes open vs. eyes closed) to determine the vectors of average group 

synchrony as 

1 1

1 kN N

i nkN N = =

=
⋅ ∑∑kx i,nx   (3.28)  

where  are the vectors of individual phase synchrony used to form the kth
i,nx  cluster 

(group), N is the number of time windows or frames used to evaluate phase synchrony for 

each subject, and Nk is the size of the kth cluster. Thus, having 6 or 7 participants in a 

group, these vectors of average phase synchrony were computed based on either 2,400 or 

2,800 individual phase synchrony vectors. The standard deviation of phase synchrony 

was evaluated for all electrode pairs within each group also: 

( )2

1 1

1 kN N

k
i nkN N

σ
= =

=
⋅ ∑∑ i,n kx - x  (3.29)  

Figure 3.28 illustrates the algorithm of evaluating average group phase synchrony 

from the EEG records. 
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Figure 3.28: Block diagram of evaluating averaged - within group and over time - phase synchrony. 

 

When the averaged phase synchronies were different for two groups, Euclidean 

and Mahalanobis distance-based classifiers [18] were used to discriminate between these 

groups. If no differences in average group synchrony were observed, no classification 

was performed. The Euclidean and Mahalanobis distances between two vectors  and i,nx

kx  are specified as 

( ) ( ),
H

i k Q
d = =i,n k i,n k k i,n kx - x x - x Q x - x  (3.30)  

In the case considered here,  is the vector of phase synchrony coefficients evaluated 

for the i

i,nx

th
kx subject (individual phase synchrony) specified by (3.27), and  is the within-

group average vector of phase synchrony for the kth group (group phase synchrony) 

computed according to (3.28). Thus, (3.30) can be viewed as a measure of association of 

the ith individual with the kth group. As discrimination was performed between two 

groups, k takes on the values 1 and 2. 

Qk are weighting matrices. For the Euclidean distance, Qk are identity matrices. 

For the weighted Euclidean distance, Qk are diagonal matrices with elements equal to the 

inverse of the variances estimated for the kth group. For the Mahalanobis distance, Qk are 

the inverse covariance matrices [17]. For the finite data set, the inverse covariance 

matrices were estimated as 

1
1ˆ

1kN

−
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
T

k iQ X X i   (3.31) 
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where  is a matrix of all N times NiX k column-vectors of individual phase synchronies 

with the means subtracted: 

⎡= ⎣ ki 1,1 k i,1 k N ,N kX x - x ,…,x - x ,…x - x ⎤⎦  (3.32) 

Mahalanobis distances were evaluated according to (3.30) with weighting 

matrices  evaluated according to (3.31). Euclidean, weighted Euclidean, and 

Mahalanobis distances were computed between vectors of individual phase synchrony 

 and two vectors of group synchrony 

ˆ
kQ

i,nx 1x 2x and . The vectors of individual phase 

synchrony  were excluded from the group synchrony vectors i,nx 1x  and 2x . The ith 

individual was assigned to group one if d  < di,1 i,2. Otherwise, he/she was assigned to 

group two.  

Classifiers employing (3.30) implement a linear discriminant function [18]. It 

might be beneficial to employ a nonlinear – quadratic, for instance – discriminant 

function. Assuming normal distributions, minimum error-rate classification can be 

achieved when the discriminant function is designed as follows [18]: 

( ) ( ) [1
,

1 1ˆ ˆln ln ( )
2 2

H
i k kg P ]ω−= − − +i,n k k i,n k kx - x Q x - x Q  (3.33) 

where ( )kP ω  is the a-priori probability of class k. In the case considered here both 

classes are equally probable, and thus 1 2( ) ( ) 0.5P Pω ω= = . The subject is therefore 

assigned to the group with the higher discriminant function. 

The other classifier tested implements the “nearest neighbor” Vector Quantizer 

(VQ) as described by Namburu [19]. Instead of evaluating vectors of group synchrony, 

the Euclidean distance was computed between the test vector of individual synchrony and 

all vectors of individual synchrony assigned to the training data set. The individual was 

assigned to the first group if the minimum Euclidean distance was found between the 

vector of his/her phase synchrony and one of the training vectors belonging to the first 

group. Otherwise, he/she was assigned to group two. 

During classification, one subject was excluded from the group and N = 400 

vectors of his/her individual phase synchrony were used as  in (3.30) to test the i,nx
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classifier. The remaining vectors of individual phase synchrony (400 for each subject) 

were used to train the classifier, i.e. to form data matrices as in (3.32) and to evaluate 

group synchronies as in (3.28) and weighting matrices as in (3.31). The percentage of 

correct associations was evaluated. 

 We observed that phase synchrony is significantly lower for one particular non-

ADHD subject than for all other non-ADHD participants, as illustrated in Figure 3.29 for 

θ and β1 rhythms.  
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Figure 3.29: (a) θ and (b) β1 rhythm phase synchrony between C3 and F3 electrodes evaluated for the 

“Math” task for all non-ADHD participants. 

 

We see in Figure 3.29 that phase synchrony varies in time for each participant and 

between participants. However, phase synchrony is significantly different on average 

between Subject 5 and all other subjects forming the Non-ADHD group. Similar effects 

were observed for the same individual for different electrode pairs and for all assessed 
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frequency bands. We consider phase synchrony of this subject to be inconsistent with all 

other subjects and therefore this participant was excluded from the processing. 

kxGroup phase synchronies  as averaged within each of two groups and over time 

according to (3.28) are presented for the δ, θ, α, β , β , γ , and γ1 2 1 2 rhythms in Figures 

3.30-3.36 for reference C3 as explained early in this Section and specified in (3.27). The 

bars indicate one standard deviation (±σ) intervals according to (3.29). 
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Figure 3.30: Average δ  rhythm (0-3 Hz) phase synchrony: (a) reading and (b) math tasks. 
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(a) (b) 

Figure 3.31: Average θ rhythm (4-7 Hz) phase synchrony: (a) reading and (b) math tasks. 
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(a) (b) 

Figure 3.32: Average α rhythm (8-12 Hz) phase synchrony: (a) reading and (b) math tasks. 
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Figure 3.33: Average β1 rhythm (13-20 Hz) phase synchrony: (a) reading and (b) math tasks. 
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(a) (b) 

Figure 3.34: Average β2 rhythm (20-30 Hz) phase synchrony: (a) reading and (b) math tasks. 
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Figure 3.35: Average γ1 rhythm (30-40 Hz) phase synchrony: (a) reading and (b) math tasks. 
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(a) (b) 

Figure 3.36: Average γ2 rhythm (40-50 Hz) phase synchrony: (a) reading and (b) math tasks. 

 

We see in Figures 3.30-3.36 that phase synchrony is higher – on average – for 

non-ADHD participants than for ADHD subjects for many electrode pairs. This 

difference is more pronounced for particular electrode pairs in each rhythm. For instance, 

in the δ rhythm and the “Math” task (Figure 3.30 (b)), such an electrode pair is C3T5; for 

both β rhythms (Figure 3.34 and Figure 3.34) it is C F ; and for the γ3 7 1 rhythm (Figure 

3.35) most diversity is offered by C F3 p1 and C F3 7. This observation suggests using only 

particular electrode pairs (electrode masking), thereby offering higher discrimination 

power in classification. Two electrode masking algorithms were considered: “Maximum 

masking” when a number of electrode pairs with maximum differences in phase 

synchrony was used, and “Area masking” when electrode pairs forming particular areas 

(clusters) were used. “Maximum masking” was performed with various numbers of 
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electrode pairs included. As an example of “Area masking,” phase synchrony from the 

frontal lobe (i.e. for the electrode pairs C F3 p1, C F3 p2, C F , C F , C F , C F , and C C3 3 3 4 3 7 3 8 3 4) 

were included in processing. 

We also see in Figures 3.30-3.36 that the differences in average phase synchrony 

are more pronounced for particular rhythms and tasks. 

Euclidean, weighted Euclidean, and Mahalanobis distance-based classification 

were implemented. Quadratic and Vector Quantizer-based classifiers were tested also. 

Only Euclidean distance-based classifier produced results with approximately equal error 

probability when tested on non-ADHD and ADHD subjects. Therefore, only the 

Euclidean distance-based classifier was considered. The highest performance of the 

classifier was observed for the “Math” task in the δ rhythm when “Maximum masking” 

with 9 electrode pairs was implemented and for the “Reading” task in the γ1 rhythm with 

“Area masking.” This observation is consistent with the results depicted in Figure 3.30 

(b) and in Figure 3.35 (a), where differences between the average phase synchronies of 

the two groups seem to be more pronounced than for other rhythms and tasks. The 

corresponding percentages of correct classification are presented in Figure 3.37. 
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(a) (b)  

Figure 3.37: Individual classification scores for Euclidean classifier using reference C3: δ rhythm (0-3 Hz), 

“Math” task, “Maximum masking” with 9 electrode pairs and γ1 rhythm (30-40 Hz), “Reading” task, frontal 

lobe for (a) the non-ADHD group and (b) the ADHD group. 

 

 Analyzing Figure 3.37, we can conclude that the classifier performance varies 

greatly for different choices of rhythm and task for some subjects. We may conclude 

from Figure 3.37 that, when classification was performed for the δ rhythm, The average 
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percentage of correct classification using the δ rhythm is 62.7 % for the non-ADHD 

group and 61.3 %, for the ADHD group. For the γ1 rhythm, these percentages are 57.3 % 

and 71.5 % for non-ADHD and ADHD participants respectively. The average percentage 

of correct classification, over these two rhythms and all subjects in both test groups is, 

63.2 %. 

We also observed that proper electrode masking can – in general – improve 

performance of the classifier. For instance, considering Figure 3.35 (a), we conclude that 

the electrode pairs placed near the frontal lobe, namely C F3 p1, C F3 p2, C F , C F , C F3 3 3 4 3 7, 

C F , and C C3 8 3 4, may contribute to better classification. The classification results depicted 

in Figure 3.38 support the latter conclusion. 
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Figure 3.38: Individual classification scores for Euclidean classifier tested on ADHD participants for γ1 

rhythm (30-40 Hz) using reference C3; “Reading” task, all available electrode pairs and the frontal lobe 

only. 
 

We see in Figure 3.38 that masking (i.e. “Area masking” as depicted in Figure 

3.38) – in general – tends to improve the performance of the classifier in that it increases 

the percentage of correct classifications. These results were observed on limited 

experimental data; perhaps, a bigger data sample would more conclusively show such an 

improvement in performance of the classifier. 

Figure 3.39 shows the distribution of phase synchrony for two electrode pairs 

C F3 p1 and C F  for the γ  rhythm “Reading” task for all participants considered. 13 8
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Figure 3.39: Phase synchrony for electrode pairs C3Fp1 and C3F8 for the γ1 rhythm “Reading”. 

 

 We see in Figure 3.39 that values of phase synchrony form two overlapping 

clusters for two groups of participants. We can estimate that the centroid of the blue – 

non-ADHD – cluster is located at approximately 0.4 when the centroid of the red – 

ADHD – cluster is considerably lower, between 0.2 and 0.3. Figure 3.40 illustrates the 

situation when two of the ADHD subjects (Subject 1 in Figure 3.40 (a) and Subject 2 in 

Figure 3.40 (b)) were taken out of the ADHD group and their individual phase 

synchronies indicated in a different color. 

 
Figure 3.40: Phase synchrony for electrode pairs C3Fp1 and C3F8 for the γ1 rhythm “Reading”: two groups 

and (a) ADHD Subject 1; (a) ADHD Subject 2. 

 

 81



 Visual inspection of Figure 3.40 (a) shows that the majority of phase synchrony 

values for Subject 1 are closer to the centroid of the ADHD cluster. This subject was 

classified to the correct (ADHD) group most of the time as Figure 3.37 (b) illustrates. 

However, phase synchrony for Subject 2 (Figure 3.40 (b)) is closer to the centroid of the 

non-ADHD cluster. As Figure 3.37 (b) indicates, Subject 2 was assigned to the incorrect 

(non-ADHD) group most of the time. 

It is possible – in general – to distinguish between children with and without 

attention deficit disorder on the basis of phase synchrony computed from their EEG while 

they are performing attention intensive tasks. For many electrode pairs, phase synchrony 

was observed to be higher on average for non-ADHD subjects than for ADHD children. 

Euclidean distance-based classification, performed on phase synchrony, may help – with 

careful choice of rhythm, task, and appropriate selection of electrode pairs to be 

processed – to assign a subject accurately to a non-ADHD or ADHD group. 

3.4.4 Discrimination between smokers and nonsmokers, schizotypy, and 
the experimental conditions of eyes closed and eyes open 

In this experiment, the EEG data from the “Condition data set” described in 

Section 3.4.1 was processed by the Phase Synchrony Processor (PSP) as discussed in 

Section 3.2. Classifications were performed N = 500 times (for N = 500 overlapping time 

windows). The percentage of correct associations was evaluated. 

The phase synchrony was computed according to (3.1) for different electrode 

pairs. Based on a growing body of evidence that γ  rhythm1  phase synchrony is playing an 

important role in cognitive processes [1], [10], [20] and differences between γ  rhythm1  

phase synchrony of ADHD and non-ADHD individuals discussed in Section 3.4.3, γ1 

rhythm (i.e. 30-40 Hz) phase synchrony was assessed in this experiment. Therefore, the 

Parks-McClellan FIR band-pass filter with a pass-band from 30 to 40 Hz, transition bands 

of 2 Hz, and pass-band and stop-band ripples of 0.02 was used. The length of the analysis 

time window N  was chosen as 600 samples (1.2 seconds for the sampling frequency fw s = 

500 Hz) to decrease finite window length effects as discussed in Section 3.2. 
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The individual phase synchrony vectors  were formed as in (3.27) for different 

n and different subjects i and averaged within the two groups and over time. Vectors of 

average phase synchrony 

i,nx

1x 2x and  were compared between different groups: high vs. 

low schizotypy (HiS/LoS), smokers vs. nonsmokers (Sm/nSm), and two experimental 

conditions (eyes open/closed). Each group contains 10 subjects. The group phase 

synchrony and variances were compared for different groups. For particular reference 

electrodes, the Euclidean, Mahalanobis distance-based, quadratic, and VQ classifiers 

were implemented as discussed in Section 3.4.3. 

A. Smokers vs. nonsmokers 
This experiment was conducted for the eyes closed condition. No significant 

differences were observed in group phase synchrony between smokers and nonsmokers 

for the LoS and mixed (LoS ans HiS) groups. However, for the HiS groups, the average 

phase synchrony was higher for nonsmokers for all electrode pairs. The comparison – for 

the C3 electrode used as reference – is shown in Figure 3.41 for LoS (a) and HiS (b) 

groups. Each dot represents a value of group phase synchrony kx  evaluated according to 

(3.28) and the bars denote the one standard deviation (i.e.±σ) intervals as specified by 

(3.29). 
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Figure 3.41: Average γ1 rhythm phase synchrony using reference C
(b)

3 for (a) LoS and (b) HiS groups. 
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We see in Figure 3.41 (b) that the average phase synchrony is consistently, i.e. for 

all electrode pairs, higher for HiS nonsmokers than for HiS smokers. Similar results were 

observed when other electrodes were used as the reference. Next, Euclidean, 

Mahalanobis distance-based, quadratic, and VQ classification was performed for HiS 

smokers and HiS non-smokers for C3 used as the reference electrode. The percentages of 

correct classification for the Euclidean classifier are shown in Figure 3.42. 
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Figure 3.42: Percentages of correct classification of the Euclidean classifier for HiS smokers vs. HiS non-

smokers using reference C3; tested on smokers and nonsmokers. 
 

As shown in Figure 3.42, average percentages of correct classification are 56.3 % 

and 58.4 % for the groups of smokers and non-smokers respectively. We conclude that – 

for the present data – no reliable classification between HiS smokers and HiS non-

smokers is observed. 

B. High vs. low schizotypy 

In this experiment, differences were assessed in γ1 rhythm phase synchrony 

between the two schizotypy groups. Phase synchrony was computed for the eyes closed 

condition and averaged within the two groups, i.e. with high and low schizotypy. Figure 

3.43 illustrates group phase synchrony and their standard deviations evaluated for the 

smoking and non-smoking groups. The bars represent one standard deviation. 
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Figure 3.43: Average γ1 rhythm phase synchrony using reference C3 for (a) non-smokers, (b) smokers. 

 

Figure 3.43 (a) suggests that γ1 rhythm phase synchrony is higher on average for 

high schizotypy non-smokers than for low schizotypy non-smokers for most electrode 

pairs. The effect of average phase synchrony being different for HiS smokers and LoS 

smokers is less pronounced (Figure 3.43 (b)). However, this difference is significantly 

smaller than one standard deviation and neither Euclidean, weighted Euclidean, or 

Mahalanobis distance-based classifiers, nor quadratic or VQ classifiers, produced reliable 

results as illustrated in Figure 3.44 for the Euclidean classifier. 
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Figure 3.44: Percentages of correct classification of the Euclidean classifier for HiS non-smokers vs. LoS 

non-smokers using reference C3; tested on HiS and LoS. 
 

As seen in Figure 3.44, average percentages of correct classification are 57.8 % 

and 49 % for the HiS and LoS groups respectively. We conclude that – for the present 

data – no reliable classification between HiS non-smokers and LoS non-smokers is 

achieved. 

C. Conditions of eyes open vs. eyes closed 

All previously seen results were obtained for the eyes closed condition. Next, γ1 

rhythm group phase synchrony was computed for the two experimental conditions of 

eyes closed and eyes open. The comparison has been conducted within high and low 

schizotypy groups. The phase synchrony was higher on average for the eyes closed 

condition than for the eyes open condition, as seen in Figure 3.45. 
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Figure 3.45: Average γ1 rhythm phase synchrony using reference C3: (a) all LoS subjects, (b) all HiS 

subjects, (c) smokers only, (d) nonsmokers only. 
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It is seen in Figure 3.45 that the effect of γ1 rhythm phase synchrony being higher 

on average for the eyes closed condition than for the eyes open conditions is more 

pronounced when observed on a HiS non-smoking group. Euclidean, variance-weighted 

Euclidean, covariance-weighted (i.e. Mahalanobis), quadratic, and VQ classification were 

performed for HiS groups. However, none of these classifiers contributed to reliable 

classification results as illustrated in Figure 3.46 for the Euclidean and Mahalanobis 

classifiers. 
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Figure 3.46: Percentages of correct classification of (a) the Euclidean and (b) the Mahalanobis classifiers 

for HiS subjects for Eyes closed vs. Eyes open conditions using reference C3. 
 

We see in Figure 3.46 (a) that, average percentages of correct classification for 

Euclidean classifier are 61.6 % and 61.9 % for the eyes closed and the eyes open 

conditions. The classification results depicted in Figure 3.46 (b) suggest that the 

Mahalanobis classifier produces biased results in the case considered here since the 

percentage of correct classification – 12.7 % for the eyes closed and 77.2 % for the eyes 

open condition – depends greatly on the subject conditions used to test classifier. Similar 

but less pronounced trends (i.e. biased toward one of the group classification results) 

were observed for the weighted Euclidean and quadratic classifiers. 

Weighted Euclidean, Mahalanobis, and quadratic classifiers were designed 

assuming Gaussian data [18]. We consider the frequency of occurrence of phase 

synchrony values for different subject conditions (i.e. eyes open and eyes closed) and for 

the C3F  and C F  electrode pairs as shown in Figure 3.47. 3 3 3
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Figure 3.47: Frequency of occurrence of γ1 rhythm phase synchrony for two experiment conditions 

computed for (a) C electrode pairs. 3F3 and (b) C3Fp1 

 

We may conclude from Figure 3.47 that values of phase synchrony exhibit 

different distributions when computed for the different participant conditions of eyes 

open vs. eyes closed. This difference in distribution is more or less pronounced for 

different electrode pairs. Namely, the distributions differ greatly for the C F3 p1 electrode 

pair, as depicted in Figure 3.47(b). Another important observation is that the distribution 

of phase synchrony values is, in general, non-Gaussian. As a consequence, classification 

results provided by weighted Euclidean, Mahalanobis, and quadratic classifiers may – for 

the data being classified – not be accurate. Also, from this perspective, the previously 

shown estimates of phase synchrony variance do not offer enough information to make a 

decision regarding the difference between groups.  

We observed that phase synchrony is consistently higher for the majority of 

subjects when evaluated for the eyes closed condition. However, average phase 

synchrony differs considerably from subject to subject. Therefore, none of the 

implemented classifiers provided accurate classification results for the majority of 

participants when individual synchrony was compared to the two group synchronies, as 

previously described. 

Next, instead of comparing individual phase synchrony with two group 

synchronies as averaged over different participants, individual phase synchrony was 

compared with two average (over time) synchronies evaluated for the same subject. For 

each individual, phase synchrony was computed for 500 time intervals, shifted by 50 
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samples (i.e. overlapping by 550 samples) as before, for the eyes closed condition and for 

the eyes open condition. First 100 or 300 successive estimates of individual phase 

synchrony were used to train the classifier, i.e. to compute two average synchronies as in 

(3.28) for all classifiers except VQ, since the latter does not require average synchronies. 

The rest of the individual phase synchronies computed for the same subject (either 400 or 

200 vectors) was used to test it. It was found to be beneficial to apply “Maximum 

masking” as was discussed in Section 3.4.3. Five, ten, or fifteen electrode pairs with the 

highest difference between average synchronies were selected for processing. 

We observed that performance of the weighted Euclidean, Mahalanobis distance-

based, and quadratic classifiers depends greatly on the subject conditions used to test 

them. Namely, the performances were significantly higher when these classifiers were 

tested on the eyes closed conditions. Electrode masking – with a small number of 

electrodes used – makes this difference less pronounced. Therefore, we conclude that 

weighted Euclidean, Mahalanobis distance-based, and quadratic classifiers produce – in 

our case – biased classification results and we therefore exclude them from further 

consideration. Euclidean and VQ classifiers provide – in general – equal probability of 

correct classification and equal error probabilities for both participant conditions.  

Using 100 vectors of individual synchrony for training (short training data); the 

highest average percentages of correct classification of 77.95 % and 78.76 % for the eyes 

closed and eyes open condition respectively were observed for the VQ classifier when 

electrode masking with 10 electrode pairs was implemented. When more training data 

was available (i.e. 300 vectors), the average performance of 81.2 % of correct 

classification was exhibited by the Euclidean classifier when “Maximum masking” with 5 

electrode pairs was used. 

Figure 3.48 shows the percentages of correct classifications of the VQ classifier 

for short training data with 10 electrode pairs used in testing. Subjects 1 through 20 are 

HiS, while subjects 21 through 40 are LoS. 
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Figure 3.48: Percentages of correct classification with the VQ classifier when using 10 electrode pairs for 

eyes closed vs. eyes open conditions using reference C3; tested on eyes closed and eyes open. 
 

We see in Figure 3.48 that the percentage of correct classification for each 

individual may vary significantly when the classifier is tested on the eyes closed or eyes 

open conditions. The average percentages of correct classification are 77.95 % and 78.76 

% for the eyes closed and eyes open condition respectively. The averaged over two 

experimental groups percentage of correct classification is 78.36 %. The performance of 

classifiers is generally higher when more training data is available. 

Figure 3.49 shows the γ1 rhythm phase synchrony distribution for the electrode 

pairs C F3 p1 and C F , for the eyes open and eyes closed conditions, for Subject 1. 3 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C3Fp1

C
3F 3

 

 

Eyes closed, training
Eyes open, training
Eyes closed, test
Eyes open, test

 
Figure 3.49: Phase synchrony for electrode pairs C3F  and Cp1 3F3 for the γ1 rhythm. 
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We see in Figure 3.49 that phase synchrony computed for two different subject 

conditions forms two distinct clusters. 

We conclude that the average γ1 rhythm phase synchrony is generally different for 

high schizotypy smokers and nonsmokers; for individuals with high and low schizotypy, 

and for eyes closed and eyes open experimental conditions. The Euclidean and VQ 

classifiers may be implemented to discriminate between the eyes open and eyes closed 

conditions with fairly high percentage of correct classification. The latter could be used, 

for instance, for vigilance monitoring. 
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Chapter 4 

Model-based coherence function: proposed 
estimator 

 In this Chapter we select a model for a pair of EEG electrodes, develop and test 

the algorithm estimating the parameters of such a model, and process real EEG records 

using the proposed model. 

4.1 Model of a pair of EEG electrodes 

 Autoregressive (AR), moving average (MA), and autoregressive moving average 

(ARMA) processes can be modeled as the output signal of a linear time invariant filter 

with the corresponding transfer function driven by white noise [1]. 

While modeling cross spectra or the cross-correlation between two stochastic 

processes x  and yn n, the model represented in Figure 4.1 is traditionally assumed. 

 

wn
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H2(ejω) 
yn

 
Figure 4.1: Block diagram of a simple linear model. 

 

The processes studied here are modeled as the output sequences of two linear time 

invariant filters, with frequency responses H jω jω(e ) and H (e1 2 ) respectively, both excited 

by the same normally distributed white noise process wn with zero-mean and unit 

variance σ 2 = 1.  w

Based on this model, we can write the following expressions for the auto and 

cross spectra: 

 95



* 2
1 1

*
2 2

* 2
1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j t j t j t

2
xx w

j t j t j t
yy w

j t j t j t
xy w

S e H e H e

S e H e H e

S e H e H e

ω ω ω

ω ω ω

ω ω ω

σ

σ

σ

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅

 (4.1) 

2Since the variance of the input noise σw  = 1, and assuming that the noise is a 

wide sense stationary process and filter parameters are not changing over time, (4.1) can 

be simplified as follows: 
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Consider the magnitude squared coherence function: 
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As we see, the magnitude squared coherence is one for all frequencies while 

employing the model depicted in Figure 4.1. The unit coherence between the processes xn 

and yn is destroyed by additional independent noise (or signal) injections. The block 

diagram of the modified linear model is shown in Figure 4.2. 
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Figure 4.2: Block diagram of the modified linear model. 

 

Filters H1(ejω) and H2(ejω) are assumed to be linear and time invariant and all 

input noise sequences wn, vn and un are statistically independent, zero mean, normally 

distributed processes. We represent the sequences xn and yn as sums of the signal 

components nx�  and ny�  and the white noise sequences vn and un respectively. The noise 

H1(ejω) 

H2(ejω) 

+

+
un 

nx�  

ny�  

xn 

yn 

 96



sequences can be pre-multiplied by noise variances σv
2 and σu

2 to account for different 

signal to noise ratios (SNR). In other words, both sequences x  and yn n originate from the 

same source and are contaminated by independent Gaussian noise. 

Based on the new model, the auto- and cross spectra are specified as follows: 
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The magnitude squared (MS) coherence is then 
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ω
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⋅ ⋅ ⋅

Γ =
⋅ + ⋅ ⋅ +

 (4.5) 

It is seen now that the coherence function converges to unity only when the power 

of both noise sources vanishes. In this case, the model is equivalent to the one depicted in 

Figure 4.1. 

In conclusion, it is important to keep in mind that the developed model may be 

applied only for short EEG records due to the non-stationary nature of the EEG as 

mentioned in Section 1.5. We will assume a sampling rate of 256 Hz and 100 ms as the 

length of the locally stationary frames [2], [3]. Therefore, the model parameters must be 

estimated based on observed signal (EEG) frames, whose length does not exceed 25 

samples. 

4.2 Method for model parameter estimation 

 The problem of evaluating the model parameters in the presence of white additive 

background noise has been widely discussed [4], [5], and [6]. It can be shown [4] that the 

power spectral density (PSD) of the output of an AR(p) filter ( )jA e ω  driven by white 

noise with variance σ2 and corrupted by another white noise with variance σnoise
2 is given 

as 
2

2
2( )

( )
j

noisej
P e

A e
ω

ω

σ σ= +  (4.6) 
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Rewriting the last expression for the xn sequence depicted in Figure 4.2, and 

assuming the order p of the AR model, we obtain 
2

2
2

0

( )j w
x vp

jk
k

k

P e

a e

ω

ω

σ σ
−

=

= +

∑
,   a  ≡ 1 (4.7)  0

or 
2

2 2

0
2

0
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jk

w v k
kj

x p
jk

k
k

a e
P e

a e

ω

ω

ω

σ σ −

=

−

=

+
=

∑

∑
,    a  ≡ 1 (4.8)  0

One can recognize that the true model for (4.8) is ARMA(p,p) rather than AR(p) 

[4]. Based on this, some suboptimal approaches can be applied to evaluate the AR 

parameters of the model (4.8) along with the variance of the driving noise σw
2 and the 

variance of the measurement noise σv
2. The procedure for AR parameter estimation will 

be discussed in detail later. 

Once the AR parameters are evaluated, the noise variances can be estimated by 

the least squares estimator proposed by Parzen [4], [7]. He has shown that solving (4.7) in 

a least-squares sense – with AR parameters replaced by their estimates and the true PSD 

replaced by its DFT estimate – leads to 
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∑ ∑ ∑
 (4.9)  

where are the estimates of the AR parameters, p indicates the system order, N is the 

length of the modeled frame x

ˆka

, and  represents linear convolution. ⊗n

To estimate the AR parameters, the least squares modified Yule-Walker equation 

(LSMYWE) estimator [4] was used. This estimator is among the suboptimal solutions 

mentioned above for parameter estimation in the presence of measurement noise [4] and 

can be described as 

( )ˆ ˆ ˆˆ
-1H H Ha = - R R R r̂  (4.10)  
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where  

  (4.11) 
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Here ,x̂x nr  represents the nth element of the autocorrelation estimate of the 

sequence xn, p and q are the orders of the AR and MA portions of the model respectively, 

and M is the number of equations used to determine the system in (4.10). Since the orders 

of the AR and MA portions of the model in (4.8) are the same, i.e. p = q, we can rewrite 

(4.11) as follows: 
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=  (4.12)  

, 1 , 2 ,ˆ ˆ ˆ ˆ
T

xx p xx p xx Mr r r+ +⎡ ⎤= ⎣ ⎦r "   

Note that the system (4.10) is determined when M = 2p. Thus, when solving 

(4.10), at least 2p equations must be used. 

The quality of the AR estimates may be increased by applying a filter matched 

with the AR(p) process [4]. In this case the signal (the AR(p) process) is enhanced 

relative to the noise by means of the filter, with a frequency response magnitude specified 

as follows [5], [6], and [8]: 

2

ˆ ( )( ) ˆ ˆ( )

j
j x

m j
x v

P eH e
P e

ω
ω

ω σ
=

+
 (4.13)  

ˆ ( j
xP e )ωwhere  is a PSD computed according to (4.7) or (4.8) when the true AR 

parameters are replaced by their estimates. 

The estimation procedure is again applied to the enhanced signal. Filtering 

followed by parameter estimation may be performed iteratively. 
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Another way to improve the quality of the AR(p) parameter and noise variance 

estimates is by averaging these estimates over a number of signal frames [9]. The AR 

coefficients are estimated for each frame and then averaged over all frames. 

To develop and test a suboptimal approach to AR parameter estimation, an AR(p) 

process was generated and degraded by additive white noise, according to Figure 4.2, and 

the estimation and enhancement procedures described above were implemented. 

According to Palaniappan and colleagues, the EEG can be successfully modeled as an 

AR process of third order nx� ny�[10]. Based on this, sequences  and  were generated as 

AR(3) processes with the following AR filter coefficients: 

[1 1.3 1.26 0.56] = − −a  

  (4.14) [1 1.76 1.41 0.43] = − −c
jωwhere a represents the AR coefficients of the filter H1(e ) and c corresponds to the filter 

H jω
2(e ) as specified in Figure 4.2. The variance of the driving noise 2

wσ  was chosen as 1. 

The poles corresponding to the selected coefficients a and c are: 

Poles of a: Poles of c: 

p p  = 0.5779 + 0.6146i a,1 = 0.3158 + 0.8591i c,1

pa,2 = 0.3158 - 0.8591i p  = 0.5779 - 0.6146i c,2

pa,3 = 0.6684 p  = 0.6042 c,3

The corresponding pole-zero diagrams are shown in Figure 4.3. 
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Figure 4.3: Pole-zero diagrams of filters (a) H1 and (b) H2. 

(a) (b) 
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In Figure 4.3 the zeros are indicated by o’s and the poles are represented by x’s.    

The frequency responses of the AR filters can be computed as follows [1]: 
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  (4.15) 
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∑
 (4.16)  

The frequency responses, computed for the AR parameters (4.14) according to 

(4.15) and (4.16), are illustrated in Figure 4.4. 
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(a) (b)  
Figure 4.4: Frequency responses of filters (a) H1 and (b) H2. 

 

When modeling the test signals, the driving noise wn, was generated as a Gaussian 

sequence with zero mean and unit variance. The additive noise sequences v  and un n were 

also Gaussian processes, with zero mean and variances corresponding to the signal to 

noise ratio (SNR). The SNR was assumed to be in the range of 3 to 10 dB. This 

assumption is based on studies of Schlögl and colleagues [11] and beim Graben [12]. The 

variance of the noise additive to the xn sequence was selected based on the following 

definition of SNR [4]: 

2
v

Pη
σ

=  (4.17) 

where P, the signal power, can be evaluated as 
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2

,1 ,21
w

a a

P
p p
σ

=
− ⋅

  (4.18) 

Here pa,1 and pa,2 represent the complex conjugate roots of the polynomial a (poles of the 

frequency response ( )j
1H e ω ). 

Finally, combining the last two equations and considering SNR in dB, we obtain 

the following expression for the variance of the additive noise: 

( )

2
2

10
,1 ,210 1

w
v SNR

a ap p

σσ =
− ⋅

 (4.19)  

For the sequence yn, the variance of the additive noise 2
uσ  can be found 

analogously. The true PSDs of the noise-free and the white noise contaminated AR 

sequences, computed according to (4.8), are shown in Figure 4.5. The corresponding 

SNRs are shown in the legend. 
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(a) (b)  

Figure 4.5: True Power Spectral Densities (PSDs) of the simulated sequences (a) xn and (b) yn. 

 

It is seen in Figure 4.5 that the additive white noise leads to less pronounced 

peaks of the PSD. However, we observe that the additive noise – at the indicated SNR – 

has a minor effect on the auto-PSDs around their peaks. 

Considering (4.4), we can conclude that additive noise does not affect the cross-

PSD since the cross-PSD only depends on the frequency responses ( )j
1H e ω  and 

( j
2H e )ω , which are not affected by additive noise. The true cross-PSD – for the case 

considered here – is shown in Figure 4.6. 

 102



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-15

-10

-5

0

5

10

15

Fractional frequency

C
ro

ss
-P

S
D

 (d
B

)

 
Figure 4.6: True cross-PSD. 

 

The corresponding true MS coherence function for the AR(3) parameters given in 

(4.14) is presented in Figure 4.7 for different SNRs. The same SNR was assumed for 

sequences x  and yn n. 
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Figure 4.7: True MS coherence. 

 

We see in Figure 4.7 that in the noise-free case the coherence equals one. This 

result is consistent with our findings in Section 4.1. Additive noise destroys coherence, 

and increased variance of the additive noise leads to a decrease in the coherence function. 

To evaluate the MS coherence function according to (4.5), we need to estimate the 

AR(p) parameters of two filters, the variance of the driving noise and the variances of 
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two additive noises. The AR filter frequency responses can then be estimated according 

to (4.15) and (4.16) with the true AR coefficients replaced by their estimates. 

The previously described LSMYW estimator was implemented in Matlab together 

with Parzens’ estimator for the noise variance. The methods, discussed previously to 

enhance the signal as in (4.13) and for AR parameter averaging, were tested also. 

To evaluate the quality of the LSMYW estimator, the AR parameters were 

estimated for M = 100 signal records generated according to the diagram in Figure 4.2, 

with statistically independent noise. The mth PSD estimate Px,n,m was evaluated for the mth 

set of parameter estimates and compared to the true PSD computed according to (4.8). 

The MAE – the mean absolute error, i.e. the mean of the absolute difference between the 

m , ,x̂ n mPth  and the true spectrum S spectrum estimate xx – was used as a measure of the 

quality of the estimator, and evaluated as follows: 

, , ,
1 1

1 1 ˆ
M N

x n m xx n
m n

E P
M N= =

S⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑   (4.20)  

where n represents the nth (frequency) sample of the corresponding sequence of length N. 

The absolute bias and the standard deviation of the AR parameter estimates and 

noise variances – averaged over M trials – were evaluated also. 

4.3 Model parameter estimation results 

 In this section we present numerical results of the estimation of the model AR 

parameters and the variances of the driving and additive noise sequences as described in 

Section 4.2. We observed that some estimates lead to an unstable AR system, i.e. the 

auto-PSD corresponding to the obtained estimates contains spikes greatly exceeding the 

true PSD. Empirically, when the maximum value of the auto-PSD exceeded 100, such a 

PSD was considered a numerically unstable solution. The probability of unstable 

solutions is illustrated in Figure 4.8 for different additive noise variances and unbiased 

and biased correlation estimates. The standard deviation of the additive noise is reported 

in the legend. 
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Figure 4.8: Probability of unstable AR auto-spectrum solutions (POUS). 

 

As seen in Figure 4.8, the probability of getting an unstable solution is 

considerably higher when short segments are analyzed and when the unbiased ACF 

estimator is used. However, the power of the additive noise (in the assessed range) does 

not seem to affect the probability of getting an unstable spectral estimate. 

Kay suggests [4] using the unbiased ACF estimator since then the average 

equation error is zero. Therefore, the unbiased correlation estimator was used later and 

unstable solutions were discarded. 

One factor that greatly affects the performance of the estimator is M, the number 

of equations used to solve the Yule-Walker system in (4.10). The mean absolute error 

(MAE) of the auto-PSD estimation as specified by (4.20) is presented in Figure 4.9 for 

different M, as shown in the legend. 
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Figure 4.9: MAE of auto-PSD estimate for different number of equations M; σv = 1. 

 

As previously discussed, the minimum number of equations necessary to 

determine the system in (4.10) is M = 2p, where p is the assumed order of the AR system. 

The maximum number of equations is M = Nw-1. We see in Figure 4.9 that the estimator 

exhibits the worst performance when the minimum number of equations is used. 

Doubling M leads to a considerable decrease in MAE. Utilizing the maximum number of 

equations can be beneficial when the segment length is short. Based on these 

observations, the number of equations M was selected as the maximum when the segment 

length did not exceed 60 and as 6p otherwise. 

To improve the quality of the developed estimator, we consider AR parameter 

averaging and the signal enhancement technique, as described in Section 4.2. 

4.3.1 Effect of parameter averaging 

 We implement a modification of the AR parameter estimates proposed by Beex 

and Rahman [9]. Namely, signal frames used to obtain estimates are overlapping in this 

study, while no overlapping was implemented in [9]. AR parameters and noise variances 

were estimated for signals at two SNRs, namely, 10 dB and 3 dB. Assuming that all 
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estimates are normally distributed, the bias and standard deviation of the parameter 

estimates – averaged over 100 trials – were used as measures of quality. 

Figure 4.10 represents the average bias of the driving and additive noise power 

estimates according to (4.9), for different SNRs, with and without averaging, and for 

various lengths of the analyzed segments. When averaging was implemented, three signal 

frames of length of 0.8 of the length of the corresponding segment were formed via 

windowing. The frames were overlapping by 80 % of their length. AR parameters and 

noise powers were estimated for each frame and then averaged over all frames. 
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Figure 4.10: Average bias of power estimates of (a) driving and (b) additive noise. 

 

We see in Figure 4.10 (a) that additive noise leads to biased results for the power 

of the driving noise estimation. Averaging does not affect this bias. As seen in Figure 

4.10 (b), the power of the additive noise can be estimated without considerable bias on 

average. The average bias is less when SNR is higher. Averaging the estimates does not 

offer improvements in terms of bias. 

We verify next the previously stated assumption regarding the normal distribution 

of the power estimates. 10,000 estimates of the additive noise powers were obtained 

when the standard deviation of the additive noise was σn = 0.5. The histogram of additive 

noise power estimates is shown in Figure 4.11 together with the corresponding Gaussian 

curve computed as 
2

2
( )

21( )
2

x

Gf x e
μ

σ

σ π

−
−

=  (4.21) 
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where μ and σ are the sample mean and sample standard deviation found from those 

same estimates. 
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Figure 4.11: Normalized frequency of occurrence of error of the additive noise power estimate, σv = 0.5; 

10,000 trials. 

 

From Figure 4.11 we conclude that the estimates may be reasonably considered as 

being normally distributed. 

We consider next the bias of the AR(3) parameter estimation, as illustrated in 

Figure 4.12. The corresponding SNR are indicated in the legend. 
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Figure 4.12: Average bias of autoregressive, i.e. AR(3), parameter estimates. 

 

It is seen in Figure 4.12 that the AR(3) parameter estimates, in the presence of 

noise, are subject to bias. Averaging does not lead to a decrease in this bias. 

We consider the influence of averaging on the standard deviation of additive and 

driving noise power estimates. Figure 4.13 shows the standard deviation of the driving 

and additive noise power estimates. 
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Figure 4.13: Standard deviation of the (a) driving and (b) additive noise power estimates. 
 

We see in Figure 4.13 (a) that averaging may – especially in low SNR cases and 

when segment length is small – lead to a decrease in the standard deviation of the driving 

noise power estimate. The additive noise power estimate, as seen in Figure 4.13 (b) is 

subject to a higher standard deviation. Averaging of frame-based estimates does not seem 

to improve them. 

Figure 4.14 illustrates similar results for the standard deviation of the 

autoregressive parameter estimates. 
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Figure 4.14: Standard deviation of the autoregressive parameter estimates (a) and its magnified version (b). 
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It is seen in Figure 4.14 that averaging of the autoregressive parameters leads to a 

decrease in the standard deviation of these estimates when the frame length is small. 

We conclude that averaging of parameter estimates may – especially in low SNR 

cases and when segment length is small – lead to improved estimates, i.e. decreased 

standard deviation. Since we are interested in the processing of short sequences with low 

SNR, it is worth implementing averaging of AR parameter estimates obtained for a 

number of overlapping frames of the modeled sequence. 

4.3.2 Effect of signal enhancement 

 The same SNRs, namely 10 dB and 3 dB, were simulated. Signal enhancement by 

the matched filtering specified in (4.13) was implemented for one to ten iterations 

followed by AR(3) parameter estimation as described in Section 4.2. The powers of the 

driving and additive noise were estimated only once since the implemented enhancement 

technique decreases noise and therefore skews these estimates.  

Figure 4.15 shows the average bias of the AR(3) parameter estimates when SNR 

= 3 dB. The results are plotted for a control case (no signal enhancement) and for 1, 2, 5, 

and 10 iterations of enhancement as indicated in the legend. 
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Figure 4.15: Average bias of AR(3) coefficient estimates, SNR = 3 dB. 

 

As seen in Figure 4.15, the signal enhancement procedure, as described in Section 

4.2, may – especially when short segments with low SNR are analyzed – lead to a 

decrease in the bias of the AR parameter estimates. 

Figure 4.16 depicts the average bias of the AR(3) parameter estimates when SNR 

= 10 dB. 
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Figure 4.16: Average bias of AR(3) coefficient estimates, SNR = 10 dB. 

 

We can conclude that in high SNR cases the matched filtering signal enhancement 

technique considered here may introduce additional bias as seen in Figure 4.16. For an 

SNR of 10 dB, the most desirable results are seen when only one iteration of the 

enhancement procedure is implemented. 

Figure 4.17 illustrates the corresponding results for the standard deviation of the 

AR(3) parameter estimates. 
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  (a) (b) 
Figure 4.17: Standard deviation of AR(3) parameter estimates for (a) SNR = 3 dB and (b) SNR = 10 dB. 

 

We see from Figure 4.17 that in high SNR cases the matched filtering signal 

enhancement procedure does not offer any improvement in terms of the standard 

deviation of the AR parameter estimates. 

We conclude that the signal enhancement technique may improve the AR 

estimates by decreasing their average bias, when SNR is low and frame length is short. 

4.3.3 MS coherence estimates 

 The MS coherence estimates were evaluated according to (4.4) based on the 

AR(3) parameter and noise power estimates as discussed in Section 4.2. 

Figure 4.18 represents the true MS coherence and five independent estimates for a 

segment length N =100 and SNR = 10 dB (a) and SNR = 3 dB (b). w
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Figure 4.18: True MS coherence and its estimates for Nw = 100, and SNR = 10 dB (a) and SNR = 3 dB (b). 

 

It is seen in Figure 4.18 that the coherence estimates are more consistent with the 

true coherence when SNR is high. Next, we present MS coherence estimates for shorter 

segments, i.e. N  = 25. w
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(a) (b)  

Figure 4.19: True MS coherence and its estimates for Nw = 25, and SNR = 10 dB (a) and SNR = 3 dB (b). 

 

Comparing Figures 4.18 and 4.19, we conclude that when short segments are 

analyzed and SNR is low, a higher discrepancy between the true MS coherence and its 

estimate results. This conclusion agrees with the previously seen result that short 

segments and low SNR contributed to a higher variance of the estimated noise powers 

and AR parameters. 

The mean absolute error (MAE) computed according to (4.20) and the standard 

deviation of the MS coherence estimates are shown in Figure 4.20. For each segment 
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length, the MS coherence was estimated for 100 independent segments. One iteration of 

signal enhancement is implemented together with averaging of the AR parameter 

estimates over 3 frames. 
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Figure 4.20: MAE (a) and standard deviation (b) of MS coherence estimate. 

 

We see in Figure 4.20 that both MAE and standard deviation of the MS coherence 

estimate decrease when the length of the analyzed frames increases. A lower SNR yields 

a higher bias and a higher standard deviation in the MS coherence estimates. 

We also compare the MAE and the standard deviation of the MS coherence 

estimates obtained with and without the matched filtering signal enhancement. The 

corresponding results are illustrated in Figure 4.21. 
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Figure 4.21: Effect of signal enhancement on (a) MAE and (b) standard deviation of MS coherence 

estimate. 
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We see in Figure 4.21 (a) that signal enhancement leads to an increased bias in the 

coherence estimates for low SNR cases when segment length exceeds approximately 200. 

In the high SNR cases (SNR = 10 dB), the bias in the MS coherence estimate is higher 

while signal enhancement was implemented, when the segment length exceeds 

approximately 50 samples. It is seen in Figure 4.21 (b) that the signal enhancement does 

not affect the standard deviation of the MS coherence estimates in the high SNR case. In 

the low SNR case, the standard deviation exhibits a minor decrease when signal 

enhancement was implemented. 

Since we are particularly interested in the processing of short segments, namely 

fewer than 50 samples, signal enhancement can be considered beneficial. 

For illustrative purposes, we show in Figure 4.22 averaged MS coherence 

estimates based on 100 independent trials, for SNR of 10 dB and 3 dB. The 

corresponding true MS coherences are also shown. 
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Figure 4.22: MS coherence estimate, averaged over 100 trials, and true MS coherence. 

 

We see in Figure 4.22 that the MS coherence estimates are biased. This bias is 

more pronounced for low SNR. However, the general behavior of the estimates is 

consistent with the true coherence. 
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4.4 Application to EEG 

 In this section, the previously developed MS coherence estimator is tested on real 

EEG records from the “ADHD EEG data set” described in Section 3.4.1.

4.4.1 AR model order selection 

 When developing the model, we assumed its order p = 3 as suggested [10] by 

Palaniappan et al. In this subsection we verify that this assumption is reasonably valid by 

employing as order estimators the Akaike Information Criterion (AIC) and the Minimum 

Description Length (MDL) criterion [13], which are computed as follows: 

[ ]
2

0,1...

2ˆ ˆarg min lnAIC kk P

kp
N

σ
=

⎧ ⎫⎛= ⎞+⎨ ⎬⎜
⎝ ⎠⎩ ⎭

 ⎟  (4.22) 

[ ]
2

0,1...
ˆ ˆarg min ln lnMDL kk P

kp N
N

σ
=

⎧ ⎫⎛= + ⎞
⎨ ⎬⎜

⎝ ⎠⎩ ⎭
 ⎟  (4.23) 

2ˆkσwhere is the maximum likelihood estimate of the driving noise variance for the AR(k) 

model, N is the length of the modeled sequence, and P represents the maximum allowed 

model order. 

The AR parameters and the driving noise variance were estimated via the Yule-

Walker method (Matlab function aryule). The values of AIC and MDL, evaluated as in 

(4.22) and (4.23) for a number of randomly selected EEG frames of length 25 samples, 

collected from randomly selected subjects, are presented in Figure 4.23. 
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Figure 4.23: Values of the Akaike Information Criterion and the Minimum Description Length criterion 

evaluated for randomly selected 25 sample segments of EEG from randomly selected electrodes. 

 

 Figure 4.24 illustrates order estimates of AIC and MDL obtained for 100 

randomly selected 25 sample EEG segments recorded from different individuals. 
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Figure 4.24: AR model order estimates for 100 randomly selected 25 sample segments of EEG via Akaike 

Information Criterion and Minimum Description Length criterion. 
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We see in Figure 4.24 that the AR order estimates according to the AIC and MDL 

criteria generally do not exceed 7. The average AIC and MDL order estimates are also 

shown in Figure 4.24. 

Based on the estimation results presented in Figure 4.24 we conclude that EEG 

processes can be reasonably modeled as AR(3) processes. 

4.4.2 Discrimination between ADHD and non-ADHD children 

 The EEG data used has been pre-filtered by a band-pass filter with a pass-band of 

2 to 64 Hz as mentioned in Section 3.41. We observed that this operation caused the 

coherence estimate to be consistently low for frequencies higher than approximately 80 

Hz and close to one for frequencies lower than approximately 40 Hz for all tested 

subjects (ADHD and non-ADHD) as shown in Figure 4.25. The MS coherence estimates 

were obtained for 25 sample segments of EEG with the model order p = 3 as discussed in 

Section 4.4.1. 

 
Figure 4.25: MS coherence estimates between the electrodes Fp1-F3 for EEG sequences pre-filtered from 2 

to 64 Hz, fs = 256 Hz, N = 25. 

 

We suggest that the effect seen in Figure 4.25 (i.e. MS coherence being low for 

high frequencies and high for low frequencies for all tested subjects) is due to the pre-

filtering operation and, therefore, these results are non-informative. To eliminate non-
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informative results and to exclude the frequency content attenuated by the pre-filtering, 

the data can be re-sampled at a lower sampling frequency. Namely, to conduct processing 

for the frequency band from 0 to 64 Hz as considered here, we can use a new sampling 

frequency of 128 Hz. 

To conduct analysis for the lower frequency band, an anti-aliasing low-pass filter 

with the frequency band of interest can be used followed by resampling of the EEG data. 

According to the results reported in Section 3.4.3, δ rhythm phase synchrony is different 

on average for ADD and non-ADHD participants. Based on this observation and on the 

report of Barabasz, Crawford, and Barabasz [14], suggesting different θ (i.e. 4 – 6 Hz) for 

ADHD and non-ADHD subjects, the EEG data was filtered using a Kaiser window-based 

FIR approximation to a low-pass filter with cut-off frequency fc = 10 Hz, which exceeds 

the θ rhythm; a transition band of 2 Hz, and a stop-band attenuation of at least 50 dB. The 

length of the filter was N  = 234; its frequency response is presented in Figure 4.26. f
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Figure 4.26: Magnitude and phase of frequency response of the Kaiser window-based FIR low-pass filter. 

 

 Time delays due to filtering were accounted for by discarding the first and last 

2
fN⎢

⎢⎣ ⎦
⎥
⎥
 time samples. After pre-filtering, the EEG data was resampled at the sampling 

frequency of f  = 2fs,new c = 20 Hz. EEG segments of length N = 20 samples (1 second) 

were processed. We note that processing of such long EEG segments generally violates 

the local stationarity conditions for the EEG. 
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The MS coherence was estimated for electrode pairs of interest and for a particular 

task (i.e. “Reading” or “Math” as described in Section 3.4.1) for each segment (time 

window) for all participants. To accomplish this and form EEG segments, the low-pass 

filtered EEG data was first resampled to the new sampling frequency fs,new and then 

windowed by a rectangular window of length N. 

The time window was shifted by one sample and MS coherence was estimated 

again. Thus, MS coherence was estimated over time as illustrated in Figure 4.27. 
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Figure 4.27: Resampling/windowing algorithm. 

 

Before conducting the experiment aimed at distinguishing between individuals 

with ADHD and non-ADHD subjects, we verified the previously used assumption 

regarding the SNR of the EEG being between 3 and 10 dB [11], [12]. SNR was evaluated 

based on (4.19) as follows: 

 ( )
2

10 2
ˆ ˆ,1 ,2

ˆ
10 log

ˆ 1
w

v a a

SNR
p p

σ
σ

⎛ ⎞
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⎟⎟  (4.24) 
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2ˆwσwhere  and 2ˆvσ ˆ,1ap are power estimates for the driving and additive noises, and  and 

 represent the two complex conjugate roots of the AR estimates of the a polynomial. ˆ,2ap

 The SNR estimates obtained for a number of randomly selected 20 sample EEG 

segments collected from randomly chosen subjects, low-pass filtered at 10 Hz and re-

sampled at 20 Hz, are presented in Figure 4.28. 
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Figure 4.28: SNR estimates of EEG, N = 20, fs = 20 Hz. 

 

We see in Figure 4.28 that the EEG SNR estimates vary over a wide range. The 

average SNR (i.e. power estimates averaged and then converted to dB) for the estimates 

presented in Figure 4.28 was 11.1 dB. Based on this result and the findings in Section 

4.3.2, one iteration of matched filtering signal enhancement is used for the processing of 

the EEG data. 

For the discrimination experiment, the subjects were arbitrarily divided into six 

pairs; each pair contained one non-ADHD and one ADHD participant. The MS coherence 

estimates were compared for the non-ADHD and the ADHD individual within each pair. 

Examples of the MS coherence estimates between electrodes Fp1 and F3, obtained at 

randomly chosen times for two pairs of participants for the “Math” task, are shown in 

Figure 4.29. 
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Figure 4.29: Examples of estimated MS coherence between electrodes F -Fp1 3 for two pairs of non-ADHD 

and ADHD individuals as observed over 1 sec. 

 

 We see in Figure 4.29 that – for two participant pairs shown – MS coherence is 

considerably higher at very low frequencies (i.e. below 1 Hz) for the ADHD subject than 

for the non-ADHD individual. We also see that the θ rhythm MS coherence 

(approximately 4 – 6 Hz) is higher (more specifically, it forms a peak) for a non-ADHD 

subject than for an ADHD individual. 

MS coherence estimates for both non-ADHD and ADHD participants were 

observed over time and found to be changing significantly over time and between 

subjects. However, the general trends depicted in Figure 4.29 were consistent over time 

as Figure 4.30 illustrates. MS coherence was estimated for all participants for shifted in 

time 20 sample-long (1 second) windows. The value of coherence is represented by the 

color bar. 

 124



 
Figure 4.30: MS coherence estimated over time and (a) for all non-ADHD participants, (b) for ADHD 

subjects as observed over 1 sec intervals. 

(b) (a) 

 

As Figure 4.30 indicates, the previously observed differences between coherence 

of non-ADHD and ADHD participants – MS coherence being considerably higher at very 

low frequencies (i.e. below 1 Hz) for the ADHD subject than for the non-ADHD 

individual and the θ rhythm MS coherence (approximately 4 - 6 Hz) being higher (more 

specifically, it forms a peak) for a non-ADHD subject than for an ADHD individual – can 

be clearly seen on four out of seven non-ADHD participants and on all ADHD subjects. 
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Comparing the results presented in Figure 4.30 with the phase synchrony-based 

classification discussed in Section 3.4.3, we note that one of the three non-ADHD 

subjects, whose coherence estimate is inconsistent with the rest of the non-ADHD group, 

“Subject 5”, was excluded from the phase synchrony processing as discussed in Section 

3.4.3. Two other subjects, “Subject 4” and “Subject 6”, exhibit low percentages of correct 

classification in the δ rhythm as depicted in Figure 3.37 (a). 

Higher rhythms were also tested but no obvious differences between MS 

coherence of non-ADHD and ADHD individuals were found. 

We point out two major observations. 

1. MS coherence is generally higher for non-ADHD individuals than for ADHD 

participants when computed for the EEG collected from the frontal lobe for θ rhythm 

(approximately 4 – 7 Hz). This observation is consistent with the report of Barabasz, 

Crawford, and Barabasz [14], who reported “more desynchronized” low θ  (i.e. 4 – 6 Hz) 

in ADHD. 

2. MS coherence is consistently higher for ADHD subjects than for non-ADHD 

individuals when computed for the EEG collected from the frontal lobe for very low 

frequencies (i.e. below 1 Hz). 

These effects are more pronounced when MS coherence is computed for the 

frontal lobe. No significant difference was observed between right and left hemispheres. 

Also, the observed differences between the MS coherences of non-ADHD and ADHD 

individuals are more pronounced for the “Math” task then for the “Reading” task. It is 

important to observe MS coherence as computed repeatedly for a series of overlapping 

time intervals (windows) since MS coherence is changing over time.  

Our observation of MS coherence being different in δ rhythm between non-

ADHD and ADHD participants is in agreement with the results reported in Section 3.4.3, 

where δ rhythm phase synchrony was found to be different between non-ADHD and 

ADHD individuals. 

However, we emphasize that MS coherence and phase synchrony are two 

completely different measures. While MS coherence is based on the signal power in a 

particular frequency band, phase synchrony indicates whether two sequences are at the 
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same frequency. In other words, high phase synchrony in the specific frequency band 

does not imply high MS coherence in the same band and vice versa. 
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Chapter 5 

Conclusions and Future Research 

 A Phase Synchrony Processor (PSP) is proposed and the influence of its 

parameters on the reliability of phase synchrony estimates is explored on the basis of 

known signals. Our study shows that to decrease bias in phase synchrony estimates, the 

processor parameters need to be selected judiciously. Namely, the bias in phase 

synchrony estimates can be minimized by applying long analysis windows or frames and 

by the use of wide-band filtering. 

The value of the phase synchrony (coefficient), as evaluated by the PSP, is also 

affected by the difference in frequency of the two input signals. The phase synchrony 

value is robust to additive Gaussian noise, and the frequency difference in the PSP input 

components can be characterized by the absolute value of the periodic (Dirichlet) sinc 

function. 

Application of phase synchrony processing to EEG suggests that it is possible to 

distinguish between children with and without attention deficit disorder on the basis of 

phase synchrony computed from the EEG recorded while performing attention intensive 

tasks. For many electrode pairs, δ rhythm and γ1 rhythm phase synchronies were 

observed to be higher on average for non-ADHD subjects than for ADHD subjects. 

Euclidean distance-based classification, performed on phase synchrony, may help – with 

a careful choice of rhythm, task, and appropriate selection of electrode pairs to be 

processed – in assigning a subject accurately to a non-ADHD or ADHD group. Using 

phase synchrony-based Euclidean classification in the δ and γ1 rhythms to decide between 

ADHD and non-ADHD subjects, an average of 66.3 percent of correct classification was 

found. 

On average, γ1 rhythm phase synchrony differs between high schizotypy smokers 

and high schizotypy nonsmokers, between high and low schizotypy individuals, and 

between the experimental conditions of eyes open and eyes closed. Euclidean distance-
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based classifiers yield 78 percent correct classification in discriminating between the eyes 

open and eyes closed conditions.  

  A new coherence estimator is developed, for the specific aim of analyzing short 

frames degraded by Gaussian noise. This parametric coherence estimator is targeted for 

processing locally stationary EEG segments. We confirmed the plausibility that short 

EEG segments can be modeled as AR(3) processes. We also found that – for the EEG 

data used – SNR is approximately 11-12 dB. 

Application of the parametric coherence estimator to EEG records suggests that 

MS coherence is generally higher for non-ADHD individuals than for ADHD participants 

when evaluated for the θ rhythm of EEG. Also, MS coherence is consistently higher for 

ADHD subjects than for non-ADHD individuals when computed for the lower end of the 

δ rhythm (i.e. below 1 Hz). These effects are more pronounced when MS coherence is 

computed between EEG records acquired from the frontal lobe and for participants 

performing attention intensive tasks (i.e. “Reading” or “Math”). By visual inspection, 

four out of seven non-ADHD subjects and all six ADHD participants can readily be 

assigned to the correct group. 

The above observations suggest that coherence and phase synchrony can serve as 

important concepts in neuro-studies. Application of phase synchrony processing and 

parametric MS coherence estimation for the analysis of EEG for individuals diagnosed 

with various disorders such as epilepsy, seizures, schizophrenia, and sleep disorders 

could be worthwhile. An interesting open issue is whether coherence and phase 

synchrony can be used to evaluate the extent and/or existence of head injuries, tumors, 

infections, degenerative diseases, and metabolic disturbances that affect the brain. It 

remains an open issue as to whether automatic classification between non-ADHD and 

ADHD individuals based on MS coherence estimated from EEG can be done with high 

accuracy. While our initial results in this direction are encouraging, it would require a 

much larger database to build a better classifier. A successful classifier would be useful 

for a quick preliminary – and inexpensive, relative to interviews and MRI – diagnosis of 

attention disorders.
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Appendix A 

Frequency bands corresponding to EEG rhythms 

EEG rhythm Frequency band (Hz) 

0 – 4 δ (delta) 

4 – 7 θ (theta) 

8 – 12 α or μ (alpha or mu) 

13 – 20 β  (beta one) 1

20 – 30 β   (beta two) 2

30 – 40 γ  (gamma one) 1

40 – 50 γ  (gamma two) 2

12 – 14 σ (sigma – sleep spindle) 
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