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(ABSTRACT) 

The propagation of optical plane waves through a one-dimensional Gaussian phase 

screen and a two-dimensional Gaussian extended medium are simulated numer-

ically, and wave statistics are calculated from the data obtained by the numerical 

simulation. For instantaneous realization of a random medium, a simplified version 

of the random-motion model [77] is used, and for wave-propagation calculation the 

wave-kinetic numerical method and/or the angular-spectral representation of the 

Huygens-Fresnel diffraction formula are used. For the wave-kinetic numerical 

method, several different levels of approximations are introduced, and the region of 

validity of those approximations is studied by single-realization calculations. Simu-

lation results from the wave-kinetic numerical method are compared, either with 

those from the existing analytical expressions for the phase-screen problem, or with 

those from the Huygens-Fresnel diffraction formula for the extended-medium prob-

lem. Excellent agreement has been observed. Extension to two-dimensional media 

with the power-law spectrum or three-dimensional problems is straight-forward. We 

may also deal with space-time correlations using, for example, Taylor's frozen-in hy-

pothesis. 
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1. Introduction 

When a wave field propagates through a medium with random fluctuations of 

refractive index, the wavefront and thus the resulting field or irradiance also undergo 

random fluctuations. Here, we restrict our discussion to continuous random media. 

The twinkling of starlight in the turbulent atmosphere and the scintillation of cosmic 

radio sources due to electron density irregularities in the ionosphere or the inter-

planetary medium have been of great concern to astronomers. To communication 

engineers, theoretical prediction concerning the scintillation of radio signals (fading) 

by the ionosphere is important for the design of communication links between satel-

lites and earth stations. These types of problems can be modeled by means of a 

phase screen. With the advent of the laser, people have become interested in 

optical-communication or laser-fusion systems. Thus, optical wave propagation 

through atmospheric turbulence has also been of great scientific interest since the 

early 1960s. 

A great deal of progress has been made in the last two decades on theoretical 

studies of wave statistics through a random phase screen [1-28] and an extended 

medium [29-42], yet the behavior of electromagnetic waves in random media is not 

fully understood. Much effort has gone into finding analytical solutions of the prob-

lems. 
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The phase screen problem may be formulated rather easily, using the Huygens-

Fresnel diffraction formula [43-45]. For lower-order statistical moments of the electric 

field-, the resulting integral representations can be calculated either analytically [1-22] 

or numericatly [23-28]. For higher-order moments, however, there are some difficul-

ties. 

In extended media, scalar wave fields are governed by the reduced wave equation 

(or parabolic equation in the small-angle approximation regime) [See, for example, 

32-34]. Several methods have been proposed to solve this problem analytically. 

They are largely based on two techniques : perturbation theoretical methods (e. g. 

Born approximation, Rytov method, diagram method) and moment-equation methods. 

For strong fluctuations, diagram methods and moment-equation methods have been 

widely used [32-34]. We note that in this analytical approach, to obtain moments or 

moment equations we need a decoupling assumption for mixed correlations between 

the refractive index fluctuation and the corresponding wave field. For example, the 

moment equation for rnm in the small-angle approximation regime with the delta cor-

relation assumption (Markov approximation) is given by [32, 34] : 

{ :z - dk [(~1 + ... + ~n) - (~' 1 + ... + ~' mn + ~2 0nm} r nm= 0 

where 0nm is related to the transverse correlation function of the refractive index, and 

rnm = < U(P1, z) ... u(pn, z)u"(p/, z) ... u"(pm'• z) > • 

In general, it is difficult to find analytical and even numerical solutions for higher-

order moments. For lower-order moments, for example, 

r., = < u(p1, z)u(p2, z)u"(p,, z)u"(p2, z) > , asymptotic solutions are available in the limit 

of weak or strong fluctuations. There have also been many efforts to compute inte-

gral representations for moments, or to solve moment equations, numerically. The 

fourth-order moment of the field has been computed successfully [46-50], and the 
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differential equation for the coherence function or the Fourier transform of it (the 

second-order moment) has been solved either by the Monte Carlo method or by the 

finite-difference method [51-59]. 

In addition to rnm (e. g. r 22, covariance of irradiance), another important statistical 

quantity is the probability distribution of irradiance p(J) , which we need to describe 

random irradiance fluctuations completely. It would be very difficult to predict p(J) 

with the analytical approach mentioned above, since for a non-gaussian random 

process J(p) all the higher-order moments , that is, < Jn >, n = 1, 2, ... , are needed. 

We note that several probability functions, based on phenomenological models, have 

been proposed [60-76]. These are not well established, except in the weak fluctuation 

region where the scintillation index, al=< (I - <I> )2 > / < / >2 , is much smaller 

than 1, and in the saturation region where af is close to 1. 

Due to the limitations of the analytical approach, people began to seek solutions by 

numerical experiments, using fast modern computers. In a numerical experiment, 

we simulate wave propagation through a random medium by instantaneous realiza-

tions of the medium (or by instantaneous realizations of the random phase in case 

of the phase screen problem), and compute wave statistics a posteriori. Once a suf-

ficient data base for random irradiance fluctuations is obtained, any statistical quan-

tity can be calculated in principle. Two things are crucial for the numerical simulation 

: (i) a model for realizing a random medium; (ii) a method of computing wave propa-

gation through the medium. 

The random media we are interested in are usually assumed to be statistically ho-

mogeneous Gaussian random processes. In such media, the statistical properties 

of the media are completely described by the correlation function (or the spectrum) 

of the fluctuating part of the refractive index, Dn = n - < n > . At least one model for 

realizing Dn(r) with an arbitrary spectrum exists. In the random-motion model intro-
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duced by de Wolf [77], a random medium can be represented as a weighted sum of 

Gaussians the centers of which are moving around randomly. The number density 

of the Gaussian eddies for each scale size can be calculated analytically for a given 

spectrum.- This model can also be used to generate a random phase ¢(r) . 

Note that linear-systems methods are also available for generating random phase 

fluctuations. The key ideas are as follows. First, we generate Gaussian white noise, 

and then introduce arbitrary correlations appropriately, for example by using linear 

system theory [78-84]. Such methods may be useful for one-dimensional random 

processes, but extension to higher-dimensional problems would not be easy. 

Numerical studies of the one-dimensional phase screen exist [85-88]. The 

electromagnetic field behind a random phase screen can be represented by the 

Huygens-Fresnel formula with the corresponding initial random phase. (Note that for 

a very thick phase screen we have to use less well-understood techniques for ex-

tended media.) In preceding studies, the random phase ¢(x) is generated appropri-

ately (Franke et al. use the random-motion model [88], and Knepp and Rino et al. 

utilize the linear-system theory [86-87]), and the diffraction integral (or the angular-

spectral representation of it) is computed using a fast Fourier transform algorithm. 

At the completion of the present project, our attention was directed towards several 

numerical simulations in the area of underwater acoustics, which concern the fluctu-

ations of acoustic signals due to random variations in the sound-speed field (internal 

waves) [89-90]. DeFerrari used a simplified model for sound-speed fluctuation bc/c , 

and computed the propagation of the acoustic field by the ray theory. Flatte et al. 

generated bc/c for each predetermined rectangular mesh using a somewhat sophis-

ticated algorithm, and then solved the corresponding parabolic equation of the 

acoustic field by the split-step-Fourier algorithm [91] which is equivalent to one of our 
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simulation schemes, i.e. the method utilizing the angular-spectral representation of 

the Huygens-Fesnel for mu la. 

In this thesis, we present new simulation schemes and numerical results for both 

phase screen and extended medium. We are primarily interested in optical wave 

propagation in almost transparent refractive-index media with a large scale such that 

the smallest scale size of the medium is much larger than the wave length (e. g. at-

mosphere). The medium will also be assumed to be statistically homogeneous and 

Gaussian. 

The methods and models used for simulation are discussed in Chap. 2. We choose 

the random-motion model mentioned before [77] to realize a random medium, since 

our preliminary work has indicated that it is more efficient than the method utilizing 

the linear-system theory [78-84]. (It should be mentioned here that initially we used 

the latter method to generate one-dimensional random angle fluctuations which re-

su It from a random Gaussian phase function.) We will neglect space-time corre-

lations which can be incorporated in the random-motion model in its most general 

form, and thus different realizations are independent of each other. This general 

model is still complicated, numerically, and to reduce the computing time, we have 

to simplify it. In the simplified model, the entire volume of a medium is divided into 

thin slabs, and each slab is squeezed in such a way that all the Gaussian eddies in 

the slab are contained in a single transverse layer. 

To compute irradiance for each realization of the medium we use the wave-kinetic 

numerical method [110-112] and/or the angular-spectral representation of the 

Huygens-Fresnel diffraction formula [43, 85]. There were specific reasons for using 

both methods. At first, the simulations involved only the wave-kinetic numerical 

method, since the usefulness of the Huygens-Fresnel formula for extended media 

appeared to be limited. Later, we found that the latter could be applied to extended 
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media with the simplified model mentioned above. (We notice in retrospect that this 

turns out to be equivalent to the split-step-Fourier algorithm applied directly to the 

parabolic equation [90,91].) This gives us a means of comparing usefulness (or effi-

ciency) of-both methods to each other. 

The wave-kinetic theory has been introduced by Besieris and Tappert [93-100]. Re-

lated studies can be found elsewhere [101-108]. In the wave-kinetic theory, we de-

scribe the propagation of a wave in configuration space as the evolution of the Wigner 

distribution function (WDF) [92] in phase space (joint configuration-wavenumber 

space), which is governed by a wave-kinetic equation (or a transport equation). 

In general, it is not possible to solve the kinetic equation for an arbitrary inhomoge-

neous media analytically. A method for numerical implementation of the wave kinetic 

theory (which we call the wave-kinetic numerical method) has been developed and 

tested for simple canonical problems by de Wolf and Pack [109-112]. The essential 

points are the following. The initial WDF which corresponds to an input beam or a 

plane wave is discretized into a sum of elementary Gaussian beamlets. If each 

beamlet is narrow enough, then the calculation of beamlet propagation may be sim-

plified. Finally in the observation plane, all beamlets are put together again to yield 

the output WDF. 

The Liouville approximation facilitates the calculation of beamlet propagation, even 

though it has a certain limited region of validity. In the Liouville approximation, the 

trajectory of each beamlet is governed by the classical G. 0. (Geometrical Optics) 

trajectory equations [44-45], and the WDF is conserved along the ray trajectories. It 

follows that a closed-form expression for the output WDF (as a weighted sum of the 

elementary beamlets) can be found easily. The advantage of the wave kinetic ap-

proach over the conventional G. 0. method, is that even for this lowest-order ap-

proximation some of the diffraction effects are incorporated. We wish to apply the 
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lower-order approximations, whenever applicable, especially, the Liouville approxi-

mation. Its regime of validity is somewhat limited, however, it is the simplest, and it 

is applicable to any configuration of inhomogeneities. A third or higher-order ap-

proximatton tan be made if necessary. 

As we mentioned before, the well-known Huygens-Fresnel diffraction formula is very 

useful for a phase screen problem [1-28], since simulations for this problem can be 

done in various ways, simply by generating the random phase <J>(p). In this research, 

the angular-spectrum approach will be used, instead of direct application of the for-

mula. We note that for a one-dimensional phase screen we need two Fourier trans-

form operations, which can be done by the fast Fourier transform. The 

angular-spectral representation allows more efficient computation, especially for a 

plane wave, since the angular spectrum of a plane wave is very narrow. This may 

also applied to extended media by proper rearrangement of the Gaussian eddies, 

namely, by using the simplified model. This method is a good simulation algorithm 

in itself, and it can also be used as a check for the wave-kinetic numerical method. 

We have applied the simulation schemes to plane-wave propagation through a one-

dimensional Gaussian phase screen and a two-dimensional Gaussian extended me-

dium. The numerical results and discussions are presented in Chap. 3 and Chap. 4, 

respectively. To obtain data for wave statistics, we put receivers across the obser-

vation plane, and store the data from each receiver for many realizations (approxi-

mately 1000 realizations). To compute statistical quantities, we will use standard 

estimators for the quantities [114]. Sometimes, there appear extraordinary samples, 

so called outliers, for some realizations. If that happens, then those outliers may be 

removed by techniques generally used for statistical estimations. 

We note that the Gaussian correlation function (or spectrum) is not physical. A 

power-law spectrum is generally accepted as a more realistic model for atmospheric 
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turbulence. For the Kolmogorov spectrum, it is proportional to K- 1113 (or K- 813 for the 

two-dimensional problem). For the Gaussian spectrum, however, there is only one 

scale size, which permits simple formulations and a reduction in computation time. 

In addition, for the Gaussian phase screen an analytical expression for the covariance 

of irradiance Ct(x) which can be integrated numerically without any difficulty is avail-

able [26]. Thus, the results from the numerical simulation may be compared easily 

to a known analytical result. The numerical simulation for the power-law spectrum 

can be done similarly, because it may also be represented as a weighted sum of 

Gaussians. 

The simplified model mentioned above has certain advantages. It allows easier cor-

rections to the lower-order approximations for the wave-kinetic numerical method, 

and application of the Huygens-Fresnel formula to extended media. In addition, the 

model (together with the linear interpolation scheme used for phase and angle cal-

culations) reduces computing time considerably, and thus it permits the numerical 

simulation for extended media within a reasonable time. 
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2. Methods and Models for Simulation 

In this chapter, methods and models for simulation will be discussed in their general 

context. The detailed discussions and calculations for specific applications will be 

presented in subsequent chapters. 

As mentioned in the introduction, we choose the random-motion model and use a 

simplified version, to simulate refractive-index fluctuations numerically. To compute 

a wave field or irradiance for each realization, the wave-kinetic numerical method and 

the Huygens-Fresnel diffraction formula will be used. The usefulness of both meth-

ods will be compared to each other later. 

2.1 Assumptions for Refractive-Index Fluctuations 

Consider a wave propagating through a continuous random medium. The behavior 

of the wave field in this type of medium is entirely determined by refractive-index 

fluctuations. Let us define the fluctuating part of the refractive index as 

c5n(r) = n(r) - < n(r) > (2.1) 

We assume that c5n(r) is a statistically homogeneous Gaussian random function. The 

statistical properties of such a medium are adequately described by the correlation 

function of bn(r) ' 
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(2.2) 

or m_ore conveniently by the corresponding spectrum, 

(2.3) 

Further, we assume that the smallest scale size t of the medium is much larger than 

the wavelength ,l. , and that the fluctuation is weak, lcinl << 1 . In such a medium, 

an input wave scatters predominantly in the forward direction and the (backward) 

reflections are negligible, so that a small angle approximation (or a quasi-optical ap-

proximation) will hold. 

The electric field of a monochromatic optical wave satisfies the vector wave equation 

[33], 

(2.4) 

where the convention, e-iwt , is used for time dependence, and the medium is as-

sumed to be isotropic. With the aforementioned assumption, ( >> 1 , one may 

neglect the depolarization term, i. e. , the last term in (2.4). Since the resulting 

equation may be decomposed into three scalar equations, the wave equation reduces 

to the Helmholtz equation 

(2.5) 

For a wave propagating in the positive z- direction, it is convenient to let 

- - ikz E(r) = u(p, z)e . (2.6) 

Substitution of (2.6) and (2.1) with < n(r) > = 1 in (2.5) leads to 
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2 0 U - . au 2 
-- 2 + 2tk-;;- + t1U + 2k c5n U = 0 OZ uZ 

a2 a2 (11=-+-) ax2 ay2 
(2.7) 

where the_ condition, jbnl << 1 , is used. 

If the spectral content of the refractive-index fluctuation, <I>n(K) , is contained well 

within the wavenumber k, i. e., t >> 1 , then u(p, z) is a slowly varying function of 

z, and one can assume that 1a2u/8z 21 << 2k jou/ozl . It follows that the scalar wave 

equation becomes a parabolic wave equation [32-34, 116]: 

[ a; . - J-az - 2k V - tk bn(p, z) u(p, z) = O , (2.8) 

with an initial condition u(p, z = 0) = u0(p) . This is our starting equation. 

2.2 Random-Motion Model 

In the random-motion model [77], a random medium can be simulated with a 

weighted sum of Gaussian eddies: 

M Ni 

bn(r, t) =II qlj A(i'1) e-lr -R;p)l2lif, (2.9) 
J=1 i=1 

where % = :I:: 1 in a random fashion, A(ti) is a weight for each eddy with size ti, and 

R;/t) are eddy centers which are moving around randomly [cf. Fig. 2.1]. We note that 

t 1 may be continuous. In the following, we will neglect space-time correlations, and 

thus different realizations are independent of each other. 

To calculate statistics of the medium, it is more convenient to write (2.9) at any fixed 

time t as: 
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Figure 2.1 Random-motion model. 
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N 

t5n(r) = _I qi t/l;(r - R;, t;) . (2.10) 
i=1 

where 

~ - -r2;r; t/1 ;(r , t;) - A e . (2.11) 

Here, the weight for each Gaussian eddy, A(t) , is assumed to be constant. For 

convenience, we let A2 = < ,fo2 > in the following. Using this expression, one may 

show that [77]: 

< t5n(r) > = 0 , (2.12) 

and 

B,(i') = (2,)' ~ ~ f ~ d3K I '1',(i<, t';) 12 e;K.;-, 
-oo 

(2.13) 

~ 

where Vis the volume to which the Gaussian eddies are confined, and 'I';(K, t;) is the 

Fourier transform of t/J;(r, t;) , which is defined as 

~ ,(i' - R,. (1) = f ~ d3 K 'I',( K, t',) e ,K.(;" - ii,> . 
-oo 

(2.14) 

We now assume that the scale lengths f; = s are continuous, with s being the corre-

sponding size parameter. Let n(s)ds be the number density of eddies (per unit vol-

ume), the size of which lies betweens ands+ ds. It follows then that 

B,(i') = f ~ d3K <l>,(K) e;K.;-, 
-oo 

(2.15) 

with 

(2.16) 
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In (2.16), 'I'(K, 5) is the Fourier transform of r/l(r, 5) = < bn2 > 112 e-, 21•2 : 

(2.17) 

Let us now define p = K2 and ( = f 52 • Equation (2.16) then becomes 

(2.18) 

where G(p) and F(() are related to <l\(K) and n(5), respectively, by G(p = K2) = <Dn(K) 

and F(( = f 5 2) = 2-3 < bn2 > s5 n(5) . Thus, for a given spectrum <Dn(K) we may com-

pute F(() , and therefore n(5) , by the inverse Laplace transform of G(p). 

For a two-dimensional problem, this can be done similarly. We define a two-

dimensional spectrum as 

<Dn, ii<)= f 00 dKy <Dn(K, Ky) , K = (Kx, Kz) . 
-oo 

(2.19) 

Let r/lzCr, 5) = < bn2 >112 e-, 21•2 as in the three-dimensional case, where r = (x, z). Fol-

lowing the same procedure, we can show that 

- 2J00 
- 2 <Dn,2(K) = (2n) 0 d5 n(5) l'I'iK, 5)1 , (2.20) 

where 'I'z(i<, 5) = (2j;)- 2 < bn2 > 112 52 e-,c2•214 • As in the three-dimensional case, this 

may also be rewritten as the inverse Laplace transform relation, 

(2.21) 
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We <:1re interested mainly in two spectral models: the Kolmogorov spectrum and the 

Gaussian_ ;:;pectrum. Atmospheric turbulence is usually described by the Kolmogorov 

spectrum [32-34): 

for 2rr/L0 << K << 2n/t' 0 , {2.22) 

where ex~ 0.033 , and t'0, L0 are the inner- and the outer-scale of turbulence, re-

spectively. The structure constant C~ is related to the variance of refractive-index 

fluctuations < bn2 > by [34): 

C~ ~ 1.91 < bn2 > L0213 {2.23) 

Since the Kolmogorov spectrum is valid only for the so called inertial subrange, an-

other mathematical model, i. e., the von Karman spectrum, which is valid for all K, is 

often used [33, 34): 

(2.24) 

where km= 5.92/t' 0 • We note that this reduces to the Kolmogorov spectrum in the 

inertial subrange, but is mathematically more convenient in a number of relevent in-

tegrals. 

Although the Gaussian spectrum has little physical significance, it is often used due 

to its mathematical simplicity. It is given by 

(2.25) 

which is obtained by taking the Fourier transform [cf. Eq. (2.3)] of the Gaussian cor-

relation function, 
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(2.26) 

The corresponding two-dimensional spectra can be calculated using the relation 

given by (2.19) [cf. Appendix A2.1]. The two-dimensional von Karman spectrum is 

then given by 

r; r(4/3) 2 2 
<D ( ) 'V 7r. IX c~ (,<2 + Lo2)-4/3 e-1( /km ' 

n,2K ~ r(11/6) (2.27) 

for K << km, and the two-dimensional Gaussian spectrum becomes 

(2.28) 

By taking the inverse Laplace transforms properly, we can calculate the number 

densities of the eddies per unit volume (per unit area in case of two-dimensional 

problems) per unit scale length, n(s) , for the spectrums given above [cf. Appendix 

A2.2]. For the three-dimensional von Karman spectrum, we obtain 

213/6 IX Cn2 2 .2. 2 
n(s) = (s2 _ 21~)5/6 8 -s 9 -(s -2c;:,,)/2l.o 

r(11/6) < c5n2 > 
2 2 for s ~ 2t m , (2.29) 

where tm = 1/km. We note that n(s) = 0 for s2 < 2~. Substituting the values for IX and 

c~. we get 

(2.30) 

where the term e- 1itL0 2 is neglected since tm << L0 • 

For the two-dimensional von Karman spectrum, similar calculations lead to 
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(2.31) 
2 2 

~ 0.377 Lo2/3 s-7/3 [ 1 - 2(/ m/s)2J1/3 e-s /2Lii 2 2 for s ~ 2t m , 

and n(s) = 0 for s2 < 2{;,. 

The calculations for Gaussian spectra are straightforward: 

n(s) = ~12 t- 3 o(s - ttfi) , 
7t 

(2.32) 

for the three-dimensional Gaussian spectrum, and 

4 2 r;:: n(s)=nr o(s-t/...;2), (2.33) 

for the two-dimensional Gaussian spectrum, where o(s) is the Dirac delta function. 

Notice that there is only one scale size, t/ji, for the Gaussian spectrum. The cor-

responding number density per unit volume (or per unit area in case of two-

dimensional problems) can be calculated by integrating n(s) with respect to the scale 

sizes: 

Nv = f 00 n(s) ds 
0 

(2.34) 

For the van Karman spectrum (or for the Kolmogorov spectrum), however, the scale 

sizes are continuously distributed, the dependence on s being s- 1013 (or s-713 for the 

two-dimensional spectrum) in the inertial subrange. To implement this, one may 

discretize the scale size s , linearly with a spacing .1s (or in logarithmic scale) [cf. Eq. 

(2.9)]: 

Jsi +t:..s/2 
Nv = n(s)ds, • J 

si-t:..s/2 
(2.35) 
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Figure 2.2 Simplified model. 
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where S1=Smin+U-1/2)~s. U=1, 2, ... , M), with Smin=.fi tm and sm,x= S1,1+~s/2 

- O(L0). 

We can easily implement this general model directly. However, it is still complicated, 

numerically. To reduce the computing time, we have to simplify it. In the simplified 

model, we treat a phase screen as a thin slab if possible (if it exceeds a critical 

thickness, then it has to be treated as an extended medium), and for an extended 

medium we divide the entire volume of the medium into thin slabs. All the eddies in 

each slab are projected into a single transverse plane (or a line in case of two-

dimensional problems), as shown in Fig. 2.2. Here it is assumed that the refractive-

index fluctuation is weak enough, i. e., I bn I << 1 , so that the above simplification 

is valid. If not, we have to use the general form of the random-motion model (with the 

detailed calculations for refractive effects), for which vastly more computing time 

would be required. 

2.3 Wave-Kinetic Numerical Method 

2.3.1 Kinetic Equation for the Wigner Distribution Function 

In the wave-kinetic theory [93-100], we describe the wave propagation in configura-

tion space as the evolution of the Wigner distribution function (WDF) [92] in phase 

space [See below]. Here we define the WDF as 

foo ~ - -
- - 1 2 -ikB .-; - s • - s F(p, 8; z) =-- 2 d s e u(p + 2 , z) u (p - 2 , z) , 

(2rr) 
-oo 

(2.36) 

- - - -
where the parameter 8 is related to the corresponding wavevector K by K = k8 (i. e., 

8 really corresponds to an angle in the small-angle approximation regime mentioned 

in Sec. 2.1). In the following, we will thus use wavevector and angle interchangeably. 
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Two important properties of the WDF are: 

and 

Joo 2 ~ ~ ~ 2 ~ 
_ k d O F(p, 0; z) = I u(p, z) I = l(p, z) , 

-oo 

f 00 2 ~ ~ 1 ~ 2 
d p F(p, O;z)=-- 2 IU(8, z)I , 

(27'[) 
-oo 

(2.37) 

(2.38) 

-
where l(p, z) represents irradiance at z and U(O, z) is the Fourier transform of 

u(p, z) . In other words, wavenumber (or angle) integration of the WDF yields 

irradiance, and coordinate integration gives rise to power spectral density. We note 

that equations (2.37) and (2.38) may be combined to yield Parseval's theorem, i. e., 

(2.39) 

-
The kinetic equation of the WDF, which describe the evolution of F(p, O; z) in the 

four-dimensional p - 0 phase space, can be found from the parabolic wave equation 

(2.8). Substituting (2.8) in the definition of the WDF given by (2.36) and using the re-

lation 

(2.40) 

we obtain 

foo -8 F i 1 2 -ikO .; • • -a = 2k --2 VP, d s e (u_Vpu+- U+Vpu_) 
z (21t) 

-oo foo 
. 1 2 -ike.; • + ,k-- 2 d s e (c5n+ - c5n_) u+u- , 

(21t) 
-oo 

(2.41) 
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- - -
h (- s ) . '(- s ) 5: 5: (- s ) w ere u+_= up+ 2 , z, u_ = u p - 2 , z , un+ = un p + 2 , z, and f;n_ = 

f;n(p - ~ , z). After some manipulation, we find [112): 

This equation can be written symbolically as 

(2.43) 

- - -where VP = o/op operates only to the left and v'e = a;ae operates only to the right. 

The sine operator is merely a shorthand notation for a series expansion of the oper-

ator 2~ VP -V8 • To obtain irradiance, we solve the above kinetic equation for F with 
- -

an initial condition, F(p, 8; z = 0) = Fo(p, 8), and perform the wavenumber integration 

given by (2.37). 

It is interesing to note that the ensemble average of the WDF is the Fourier transform 

of the field coherence function. Let us introduce ["z(p, s; z) = 
- -

u(p + ~ , z) u'(p - ~ , z). The coherence function is usually defined as r2(p, s; z) = 

< ["z(p, s; z) > . From the definition, we have _. f oo - -- 1 2 -ikO ·S - -<F(p, O;z)>=-- 2 ds e r 2(p, s; z) 
(2n:) 

-oo 

(2.44) 

' The equation for r 2, which is equivalent to (2.42), can be shown to be [See, for ex-

ample, Refs. 121 and 122): 

The kinetic equation derived above is valid only in the parabolic approximation re-

gime. More general forms of kinetic equations can be found elsewhere [93-104]. 
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2.3.2 Liouville Approximation 

In general, the kinetic equation of the WDF given by (2.42) or (2.43) is difficult to solve. 

Expanding the sine operator in the Taylor series, we may rewrite (2.43) as 

In the Liouville approximation, we take only the first term of the series expansion, 

which results in 

(2.47) 

This equation is exact only for inhomogeneities whose spatial dependence is linear 

or quadratic, since in (2.46) the third and the higher-order derivatives of bn vanishes. 

However, for general higher-order inhomogeneities, say, cubic or exponential inho-

mogeneities, it is only an approximate equation. The validity of the Liouville approx-

imation will be discussed in the next chapter. 

The kinetic equation (2.47) can be solved easily using the method of characteristic 

equations (119). The characteristic equations are given by 

(2.48) 

~ 

dO(z) ~ 
dz = V Pbn[p(z), z] , (2.49) 

and the WDF is conserved along the characteristics, i. e., 

F[p(z), O(z); z] = F0[p(O), 0(0); OJ (2.50) 
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For notational convenience, we will use the following notations in what follows: 

- - - -
p, 8, Po and 80 for p(z), 8(z), p(O) and 8(0); x, y, 8. and 8y for x(z), y(z), 8.(z) and 8y(z); 

Xo, Yo, 8.o and 8y0 for x(O), y(O), e.(O) and 8y(O). 

In optics, the conservation of the WDF F along ray trajectories is often referred to as 

the Liouville theorem, which states, alternatively, that phase space volume is con-

served along the direction of propagation z [44). In other words, the Jacobian deter-

minant, which is related to phase space volume by 

(2.51) 

becomes unity in the Liouville approximation. This, in turn, may be viewed as the 

conservation of energy. 

We note that the characteristic equations (2.48) and (2.49) are the geometrical-optics 

(G.O.) ray equations. They are, however, different from the classical G.O. approxi-

mation in two respects. The WDF and other quantities concerned (e. g. irradiances, 

etc.) can be computed through caustics or ray crossings, and some diffraction effects 

are included in the Liouville approximation. The WDF F(p, 8; z) is not a fully 

geometrical-optical quantity, and the second term in (2.47) [or (2.43)) represents 

diffraction. 

As a simple example, consider a Gaussian beam propagating in free space [99). For 

an input beam-wave with beam width W0, 

- 2/W2 Uo(Po) = e - Po o ' (2.52) 

the input WDF can be calculated from its definition (2.36): 
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- w2 2 2 2 2 2 F (- 8 ) = _o_ e- 2po/W0 0 - k W0 e012 o Po, o 2rr 

In free sp.ace, /Jn = 0 and the trajectory equations become linear: 

- -() = 80 = canst. , 

Thus, the output WDF is given by [cf. Eq. (2.50)]: 

F(p, e; z) = Fo(P - 8z, 8) 
W2 -

o - 21-:.. - ez)2/~ 2 - k2W2 e212 =-- e ~ oe o 
2rr 

After some manipulation, we find 

- w2 2 2 2 2- - 2 
F(- 8· z) =-o- e-2p /W e-k w ce-p/R) 12 

p, ' 2rr 

where 

w2 = w~ [1 + 4z2/k2Wc1J , 

R = (z2 + 4k2Wcj)/z . 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

The evolution of the WDF described by (2.57) is plotted in Fig. 2.3. The r.m.s. 

spreading of ray angles is 1/k2W2, which indicates diffraction effects. Notice that it 

goes to zero as k-. oo in the classical G.O. approximation (which fails to include 

diffraction effects). 

Up to now, we have discussed three-dimensional problems. For two-dimensional 

-problems, all the formulations remain the same except that p, 8 are replaced by 
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X 

figure 2.3 Evolution of WDF in phase space: beam wave propagation in free space. 
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x, (}x , and the corresponding operations (e. g. differentiation or integration) should 

be modified appropriately. The details will be shown in the relevant chapters. 

2.3.3 Wave Propagation Calculation with Gaussians 

In order to obtain the output WDF from (2.50), we need to integrate the characteristic 

equations, (2.48) and (2.49), from O to z. If they can be integrated analytically, then 

we obtain the characteristic curves: 

.... 
P = fp(Po, Bo) , 

e = '(iPo, e0) • 

(2.59) 

If fp and f8 are invertible functions to give 

- 1 - -Po = r; (p, 0) , 
- 1 _. -00 = r; (p, 0) , 

(2.60) 

-
then F(p, O; z) can be easily obtained from Fo(p0, 00) as in the free-space case dis-

cussed before. In inhomogeneous media, however, fP and f8 are nonlinear functions 

of Po and 00, and hence they can not be inverted in general. We may overcome this 

difficulty by a method that includes Gaussian decomposition of the input WDF. 

-
The first step of the wave-kinetic numerical method is to discretize Fo(p0, 00) into a 

sum of Gaussians, utilizing the Poisson sum formula for a Gaussian function [78, 

112]: 

00 00 

~x I e-<x-m'1x) 2/ 2s2 = 1 + 2 I e- 2(1rms/L1x)2 cos(2rcmx/~) . (2.61) 
ji; S m=-oo m=1 
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If ~x ~ s, then we may drop the summation term in the right-hand side with error less 

than 10-a. By multiplying both sides of the resulting equation by an arbitrary function 

f(x) ,-we obtain 

f(x) ~ ~x I f(n~x) e- (x-nt.x)2/2s2 , (~x ::;; s) . 
Ji; S n 

(2.62) 

This discretization formula (or Gaussian interpolation) turns out to work very well for 

a smooth function f(x) , if ~x is sufficiently small. We may choose different values for 

sand&, but our experience indicates that the choice & = s is optimal[112]. 

-
After discretization with Gaussians, an input WDF Flp0, 00) can be formally repres-

ented as 

(2.63) 

where ?o = (x10, x20, X30, X40) = (x0, Yo, OxfJ, O.,o) represents the four-vector at z = 0 in 

the four-dimensional phase space, and ?a; = (x\0, x~0• x;0, x~) = (xb, Yb, O:c,, 0~) corre-

spond to Gaussian centers. 

Now, let us introduce new variables for difference coordinates, b~ = ?a - x~; and 

bx4 = x4 - xf , where ? = (x, y, Ox, Or) represents the four-vector at z = L and 

xf = (x', i, O~. 0~) are Gaussian centers. Since Xm and x~ (m = 1, 4) satisfy the same 
- -

trajectory equations, (2.48) and (2.49), bx4 can be found as a function of b~ , a non-

linear relationship in general. If for each Gaussian beamlet, a.~,, (m, n = 1, 4) are 

sufficiently large, then the beamlet is confined within a very small patch in four-

dimensional space around its center, and an inhomogeneous medium can be ap-

proximated as a locally homogeneous one within the corresponding region along the 
-

trajectory (of the Gaussian center in configuration space). Under this condition, b~ 
-

transforms linearly into bx4 as each beamlet moves along a ray trajectory, I. e., 
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~ 4 - i ~ 4 
bx = P bx0 , (2.54) 

where P' is a constant-coefficient matrix which will be referred to as a propagation 

matrix for convenience. Since energy is conserved in the Liouville approximation, 

Ip; I = J(fx4Jf>q) = 1 , and thus p; has its inverse. Let us introduce a transformation 

matrix which is defined as T' = (P1)- 1 • It follows that 

(2.55) 

Substitution of this into the discretized input WDF (2.63) results in the desired output 

WDF: 

(2.56) 

where ex~"= [(Ti)- 1 A' T'Jmn with A'= [C(~n] , and the Gaussian centers, "xt , can be cal-

cu lated (either analytically or numerically) from the trajectory equations. 

Once F/x4) is obtained, the expression for irradiance at z = L can be found analyt-

ically by wavenumber integration of FL(x4) as in (2.37). The result will express that the 

irradiance llp) as a weighted sum of Gaussians in configuration space, which can be 

computed numerically without any difficulty. 

Errors introduced by the discretization and the linearization (i. e., approximations for 

linear propagation matrices T' ) will tend towards zero as & -+ 0 . [Note that we 

chose & = s in the discretization formula (2.62).] As will be seen in the following 

chapters, ~x can be made relatively large for moderate accuracy. More importantly, 

errors involved in the Liouville approximation ( which will be referred to as the first-

order approximation in what follows) become significant as the refraction effects get 

large. When (r.m.s.) ray bending due to refraction (usually represented by r.m.s. 
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refractive angle fluctuation multiplied by distance) is large, we need higher-order 

approximations. Discussions concerning higher-order approximations and the valid-

ity of the first-order approximation will be presented in the following chapters. 

2.4 Huygens-Fresnel Diffraction Formula 

Let us consider a plane wave incident normally on an infinite screen at z = 0, which 

has a plane aperture. The field at z can be found from a diffraction integral. Scalar 

diffraction theory was first developed by Huygens and Fresnel. A more rigorous 

mathematical approach was made by Kirchhoff with two crucial assumptions about 

boundary conditions, which turned out to be inconsistent (43-45, 120]. The math-

ematical inconsistencies were removed by Rayleigh and Sommerfeld by making use 

of a proper Green's function for the scalar Helmholtz wave equation (2.5). The re-

sulting expression takes the form of [43-45, 120]: 

k f ikR . 
~ 2, e I ~, 

E(r) = 2n:i d p ~ ( 1 + kR ) E0(p ) , 
S' 

(2.67) 

where R = Ir - p 'I, r = (p, z), and S' represents the aperture plane. Assuming that 

R >> J (i. e., z >> J) and Eo("p ') = 0 outside of the aperture, we may write (2.67) as 

f oo ikR 
~ k 2, e ~, 

E(r) = 2n:i d p ~E 0(p ) . 
-oo 

(2.68) 

. Now consider a random phase screen (or a thin slab of random inhomogeneities). In 

the thin-screen approximation, only the random phase fluctuations through the 

screen are considered, with neglect of other scattering (e. g. refraction) effects. We 

may then apply the diffraction integral to the phase-screen problem with E0(p) = 

e;,i;>, where </>(p) is the random phase fluctuation at z = 0 introduced by the screen 
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of thickness D. In this case, S' in (2.67) corresponds to the output plane of the phase 

screen. (If the above approximation does not hold, then we have to treat the thin slab 

as an extended medium.) 

If the smallest scale size t of a phase screen (or the minimum aperture size of a 

conventional diffraction problem) is much less than the distance z, then R in the de-

nominator of the integrand of the diffraction integral (2.68) may be replaced by z. The 

phase factor kR can be expanded as 

-- _., 2 

kR = kJ z2 + (p - p ')2 ~ kz + (p -; ) 
~ ~ 4 

(p - p ') ----+··· 
8z3 

If the third and higher terms are negligible compared to unity (i.e., kt 4/z3 << 1), then 

we may keep only the first two terms (the Fresnel approximation). Using the defi-

nition for u(p, z) given by (2.6), i. e., u(p, z) = E(r) e-ikz , we obtain the Huygens-

Fresnel diffraction for mu la: 

u(p, z) - 2:iz f 00 d2 p' e ;,ip - p '>' 1" u0(P ') , 
-oo 

(2.69) 

where uo(p) = e;¢i;> with cp(p) being the random phase fluctuation introduced by a 

phase screen. Here we note the following. First, this expression is a formal solution 

of the parabolic wave equation with Jn = 0 [cf. Eq. (2.8)] for an initial condition u0(p) , 

i. e., this can be obtained directly from the corresponding Green's function. Sec-

ondly, if kf'l/z << 1, then this Huygens-Fresnel diffraction formula reduces to the 

Fraunhofer diffraction formula. 

Let us now reformulate scalar diffraction theory using the angular-spectral represen-

tation. We define a two-dimensional Fourier transform as 
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U (q) ~ - 1-J 00 
d 2p u0(p) e-,q·p , 0 (211:)2 

-oo 

(2.70) 

which is c~lled the angular spectrum of the field u0(p). It is noted that angular spec-

trum is usually represented by direction cosines (a, /3, y) such that q = (ka, k/3) and 

y = J1 - a2 - /32 , where q, Ct and p are equivalent to K, e. and eY defined in the 

previous section. (For small-angle diffraction, the direction cosines Ct, /3 become 

angles.) We now want to represent the field at z, E(p, z), as a superposition of plane 

waves propagating in different directions, 

E(P, z)- f = d2q E(q, z) e;qp . 
-oo 

(2.71) 

Since E must satisfy the scalar Helmholtz equation (2.5), E must also satisfy the cor-

responding differential equation 

a2 - -
- 2 E + (k2 - q2) E = O az (2. 72) 

A unit-amplitude plane wave travelling with direction cosines (!X, /3. y) is then simply 

given by 

(2.73) 

If we choose 

-- - i~Z E(q, z)=U 0(q)e - , (2.74) 

then E satisfies the differential equation (2.72). Substitution of (2.74) in (2.71) results 

in 

E(- ) -Jood2 iq,p ;J k2 -qi z U (...,,) p, z - q e e o q 
-oo 

(2.75) 
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For small-angle diffraction, q2 << 1<2 (or rx.2 + /JZ << 1 ). We note here that if 

rx.2 + /32 > 1 , then the components of the angular spectrum becomes evanescent 

waves. By taking only the first two terms in the binomial expansion of the term, 

J1 - (q/k'f , we obtain the angular-spectral representation of the Huygens-Fresnel 

diffraction integral: 

(~ ) -f 00d2 tq·p -izq2/2k U (~) up, z - q e e O q . 
-oo 

(2.76) 

This expression can also be obtained directly from the Huygens-Fresnel formula 

(2.69), by applying the convolution theorem for the two-dimensional Fourier transform 

to the diffraction integral, which is in the form of the convolution integral. The above 

derivation, however, gives us more physical insight. 

For the two-dimensional problem, this can be done similarly [See, for example, Ref. 

85]. In the small-angle approximation regime, the Huygens-Fresnel diffraction for-

mula and its angular-spectral representation are given by: 

u(x, z) = J;;f;. Joo dx' eik(x-x'/J2z Uo(x') ' 
-oo 

(2.77) 

and 

u(x, z) = Joo dq eiqx e- izq2/2k Uo( q) ' 
-oo 

(2.78) 

where the one-dimensional Fourier transform is defined as 

(2.79) 
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In our numerical simulation, the angular-spectral representation will be used. The 

reason is that it allows more efficient computation than the direct application of the 

diffraction integral [cf. Eq. (2.69) or (2.77)], since the chosen input spectrum U0 (which 

is the Fourier transform of e;,p for a phase screen problem) will be band limited. To 

compute u(p, z) [or u(x, z)] for a given u0 using the angular-spectral representation 

(2.76) [or (2.78)), we need two Fourier transform operations. We note that the 

Huygens-Fresnel formula may also be applied to an extended medium, by using the 

simplified model where an extended medium is approximated by many equally-

spaced phase screens. More details for implementation (with a fast Fourier trans-

form) and application to extended media will be discussed in the following chapters. 
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Appendix_A2.1 Calculation of Two-Dimensional Spectra 

For the von Karman spectrum, we have from (2.19) and (2.24): 

(A2.1) 

After some manipulation, this may be rewritten as 

(A2.2) 

where /32 = (K 2 + L02)/k?,, . Using the integral representation for the Kummer function 

[cf. 13.2.5 in Ref. 117], we obtain 

<I> ( ) _ C C2 ·'·( _1 _ J_ n2) ( 2 L-2)-4/3 - ,/f k! n, 2 K - v 7t ex n 'P 2 ' 3 ' ,., K + o e . 

For small P (i. e., K << km ), this may be simplified as 

r;; 1(4/3) 2 2 
<I> ( ) 'V TC c2 ( 2 + L-2)-4/3 - ,c /km 

n,2K ~ 1(11/6) ex n K o e ' 

where the asymptotic expansion of the Kummer function is used: 

r(b - 1) 
i/J(a, b, z) - r(a) 

1-b z as lzl-+ 0 . 

For the Gaussian spectrum, equations (2.19) and (2.25) lead to the expression 
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(A2.4) 

(A2.5) 

(A2.6) 

34 



A trivial integration of the Gaussian function results in 

(A2.7) 

Appendix A2.2 Calculation of Number Densities of the Gaussian Eddies 

von Karman spectrum (3-D): 

By replacing K in (2.24) by fp, we obtain 

(A2.8) 

where tm = 1/km. The inverse Laplace transform is given by the following Bromwich 

integral [118]: 

1 Jp+ioo 
F(O = -. dp G(p) eP' , 

2m p . -100 

(A2.9) 

where P is a real number such that P > - L02 • We note that p = - L02 is the only 

branch point (or singularity) in G(p). Let z = - (p + L02). Substituting (A2.8) in (A2.9) 

and changing the integration variable to z in the resulting expression, we can show 

that 

(A2.10) 

where the contour C' runs from P' - ioo to P' + ioo with P' < 0. Now we may deform 

the contour C' to the Hankel contour C, which starts at + oo on the real axis, circles 

the origin in the counterclockwise direction and returns to the starting point [cf. 6.1.4 

in Ref. 117]. It follows then that F(() becomes 
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F(C) =-[ r;1~}6) (( -t2,,,)5's e-<,-~>IL; , 

. 0 
(A2.11) 

Using the relation, 

1 2 -3 t 2 5 F(( = 2 s ) = 2 < un > s n(s) , (A2.12) 

we obtain 

(A2.13) 
2 2 

S < 2/m . 

von Karman spectrum (2-D): 

From (2.27), we have 

I'; 1(4/3) _,,2 
(p) V re c2 (p L-2)-4/3 -,xm 

G2 = r( 11 /6) ex n + o e . (A2.14) 

The same procedure as in the three-dimensional case leads to [cf. Eq. (2.21)]: 

(A2.15) 

After deforming the contour C' to the Hankel contour C , we obtain 

(A2.16) 
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Using the relation, 

we obtain 

n(s) = [ 
2s13;; ex c~ 

r(11/6) < ~n2 > 

0 

2 ,2 2 
( 2 _ 2 ~2 )1/3 -3 - (s -2cm)/2~ s f, m s e ' 

Gaussian spectrum (3-D): 

For <I>n(K) given by (2.25), we have 

From the relation (2.18), one can see easily that 

Using (A2.12), we obtain 

8 3 r;:; n(s)=~ r b(s-t/v2). 
TC 

Gaussian spectrum (2-D ): 

For <I>n,iK) given by (2.28), we have 

The relation (2.21) gives rise to 
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(A2.17) 

(A2.18) 
2 2 

S < 2{m. 

(A2.19) 

(A2.20) 

(A2.21) 

(A2.22) 
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(A2.23) 

From (A2.17), we obtain 

n(s) = ! t- 2 i5(s - t/ji) . (A2.24) 
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3. One-Dimensional Gaussian Phase Screen 

The simulation schemes discussed in the previous chapter are applied to the prob-

lem of a one-dimensional Gaussian phase screen with a (unit amplitude) plane-wave 

input. The simulation model and the wave propagation calculations with the wave-

kinetic numerical method and the Huygens-Fresnel diffraction formula for this specific 

problem are discussed in detail. An available analytical expression for the 

covariance of irradiance is also presented, and the results are compared with those 

from numerical simulations. 

In this and following chapters, we will normalize all the length parameters with re-

spect to the scale size t [See Sec. 3.1 for its definition), whenever convenient, and 

denote them by putting bars on top of the original variables, for example, k = kt, 

x = x/t, z (or[)= z/t (or L/t). 

3.1 Simulation Model 

Let us consider a plane wave propagating through a one-dimensional phase screen 

with a Gaussian correlation function given by 

z z .2. 
Bn(x, z) = 17~ e-<x +z )/c- , (3.1) 

where 11i is the variance of the refractive index, i. e., 11~ = < bn2 >, and t is the cor-

relation length or scale size. (Note that there is only one scale size, tf fi, in this 
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case as was shown in Sec. 2.1.) The geometry for this problem is sketched in Fig. 

3.1. Using the results from Sec. 2.1 [cf. Eqs. (2.10), (2.33), and (2.34)), the fluctuating 

part -of the refractive-index fluctuation bn(x, z) can be modeled by 

NE 
" c2 c2].2. bn(x, z) ='lo~ qm e-2[(x- xm> + (z- z,;,) /c ' (3.2) 
m=1 

where qm = ± 1 , and eddy centers, (.x;, z;), are uniformly distributed over the rec-

tangular region of thickness D and width W. (Later in this chapter, we will discuss 

criteria for choosing the values of these parameters D and W in our simulation.) The 

number density of Gaussian eddies (with the scale size tffi ) per unit area can be 

found from (2.33): 

2 Ns = 4/rct . 

It follows then that the total number of eddies NE in (3.2) is given by 

2 W 
N =----

x Ft 

(3.3) 

(3.4) 

where Nx and Nr represent the average number of eddies along the x- and the z- axis, 

respectively. 

For a phase screen problem, we usually assume a thin-screen approximation, i. e. 

that through a layer of thickness D with random inhomogeneities all other scattering 

effects except phase fluctuations are negligible [cf. Sec. 2.4). The phase screen 

problem is then simply described by a phase correlation function, 

(3.5) 
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plane 
wave 

X 
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1<.o 
z=O 

~ • • • 
~ 
receivers 

z=L 

Figure 3.1 Geometry for numerical simulation of one-dimensional Gaussian phase 

screen. 
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where <Po is the r.m.s. phase fluctuations in the layer of thickness D at z = 0. With the 

thin-screen approximation, the expression for </J(x) may be found from, 

</J(x) = k f O dz <5n(x, z) 
-D 

Provided that D >> t, we obtain 

Ne 

</J(x) ~ <Po£ I qm e-2(x-xilrt2 . 
m=1 

with 

<Po£= H kt110 . 

(3.6) 

(3.7) 

(3.8) 

Using this expression, we can generate a Gaussian random phase with an arbitrary 

<Po· 

The relationship between the correlation functions, Bn(x) and B.(x), can be found from 

(3.6): 

2 Joo Bq,(x) ~ k D dz Bn(x, z) . -oo 
(3.9) 

From this equation or directly from (3.7), we can show that the phase correlation 

function from this model results in the expression (3.5), with the variance of phase 

fluctuations at z = 0 being given by 

2 2 C 2 2 <Po = <PoE Nz = ...J 1r k tD110 , (3.10) 
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Since we are interested only in the resulting phase fluctuations at z = O , bn(x, z) 

given by (3.2) may be simplified as 

(3.11) 

which would be valid if the displacement of eddy centers ~ :$ D/2 does not change 

results at z = L appreciably, i. e. D << kf2. (If the condition does not hold, then we 

have to treat the phase screen as an extended medium.) This leads to the simplified 

model for the phase screen, which is shown in Fig. 3.1. This simplified model will 

be used in our numerical simulation. The continuous random variable~ is generated 

by a continuous uniform random number generator. The discrete random variable 

qm ( = ± 1) can be generated either by a discrete random number number generator 

or by a continuous random number generator. [When we use a continuous random 

number generator, we assign + 1 if the generated number is greater than 0.5 and 

- 1 otherwise.] We note that this simplified model reduces computing time consid-

erably, since we have only a single layer of Gaussian eddies. If the observation dis-

tance L is much larger than t, then this simplified model will give rise to the same 

results as the original model given by (3.2), asymptotically. In keeping with this 

notion, equation (3.11) may be simplified further: 

NE 

bn(x, z) ~ jf 170( L qm e- 2<x-xi/1t2 b(z) (3.12) 
m=1 

This will be referred to as an impulse approximation: an impulse in phase or angle 

is introduced at z = 0 [See Sec. 3.2 for similar treatment, i. e., equivalent approxi-

mation, for trajectory calculations in the wave-kinetic numerical method]. Note that 

this approximation is consistent with the thin-screen approximation mentioned be-

fore. 
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Another important quantity is a random angle which results from a random phase 

fluctuation cp(x) . Previously [cf. definitions for the WDF and the trajectory equations: 

Eqs.-(2.36), (2.48), and (2.49)], we have defined () at a.given point (x, z), as () = k./k, 
-

where k. is the x-component of the wavevector k = (k., kz) . In the small-angle ap-

proximation regime such that k. << k, this quantity is approximately an angle in 

radians, as well as a tangent of the angle. From the relation k. = 8cp/8x, we obtain 

O(x) = J_ dcp(x) 
k dx 

Using this, one can show that [See, for example, Ref. 78]: 

1 d 2 
8 (x) = ----8 -(x) 

0 k 2 dx2 <P 

Substituting (3.5) in (3.14), we find 

where 9~ is the variance of angle fluctuations at z = 0, 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Let us now introduce several important parameters which are very convenient for 

describing phase screen (or extended medium) problems. We define 

Y = LFf L , 
(3.17) 

( = L/f = 2c/>of Y , 

where LF = kt2 is the distance at which diffraction effects become significant (it is of-

ten referred to as the Fresnel distance), and f = LF/2¢0 represents the focal length 

of a Gaussian phase lens [3, 85]. Note that any two of the three parameters, 
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y, (, and <Po, describe a phase screen problem completely [See the analytical ex-

pression for C,(x) in Sec. 3.5]. The parameter y is a measure of diffraction. Diffraction 

effects are negligible (G.O. region) when y >> 1. In the Fraunhofer region, where 

diffraction- effects are important, this parameter is much less than 1 (y << 1). Next, 

the parameter ( is a measure of refraction. When ( - 1, we are in the random fo-

cusing region, and irradiance fluctuations are dominated by random spikes. In the 

limit of ( << 1, rays do not cross each other, and thus interference effects due to 

refraction becomes small, which results in weak irradiance fluctuations. When 

( >> 1, we are in a highly-saturated Rayleigh-statistics regime. 

The effects of ( (with y or <Po fixed) on the scintillation index af [cf. see Eq. (3.87) for 

its definition] are shown in Fig. 3.2. The curves are obtained by numerical integration 

of the analytical expression for af, which will be discussed in Sec. 3.5. The curves for 

af reach at their maxima (due to focusing effects) in the region, 0.5 < ( < 1.0, for given 

values of y and <Po , which are greater than certain lower limits. As y or <Po increases, 

random focusing effects appear at the values of ( close to 0.5. We are interested in 

the random focusing region, since the wave statistics in the two limiting cases, 

( << 1 (weak fluctuation regime, where af << 1) and ( >> 1 (saturation region, 

where af ~ 1), are rather well understood. Thus, in our numerical simulation, it is 

convenient to choose y = 13.856 (G.O. region), and the values for ( will be chosen 

between 0.0 and 1.0. 

Even though y and <Po (or () determine a phase screen completely, we will assume 

some specific values for the physical parameters, k and t, throughout this and the 

following chapter. We let k = 1.0472x10 7 (which corresponds to the wavelength of the 

He-Ne laser, ). = 0.6 µm), and t = 10-2 m . (Notice that in ground-level atmospheric 

turbulence, typical values for the inner- and the outer-scale of turbulence are given 
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Figure 3.2 The effects of ( on a:: with y (or z) fixed; with <Po fixed [see Eq. (3.87) for 

the definition of the scintillation index af ]. 
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respectively by /0 = 10-3 m and L0 = 10 m.) It follows that t >> A. and the small-angle 

approximation can be applied. 

3.2 Wave-Kinetic Numerical Method 

Consider an input beam wave, 

(3.18) 

where W0 is the beam width, and for a plane wave we let W0 -+ oo. As before, we use 

the following shorthand notations for 8(z) and x(z): 8 = 8(L) and x = x(L); 80 = 8(0) and 

x0 = x(O). For two-dimensional problems, we have [cf. Eqs. (2.36) and (2.37)]: 

- - 1 Joo - -ikOs - S • - S -F(x, 8; z) = 2n: ds e u(x + 2 , z)u (x - 2 , z) , 
-oo 

(3.19) 

and 

!(x, z) = i< f 00 d8 F(x, 8; z) , 
-oo 

(3.20) 

where the bar notations are used for the dimensionless parameters k, x, z, and s, 

as mentioned before, and F = F/t. From this definition, the input WDF is given by 

W - 2 - 2 :-2- 2 2 
F- (- 80) = __ o_ 9 -2x 0 /Wo 9 - k W0 00 /2 

oXo, ~ 
...; 2n: 

(3.21) 

Now we wish to compute the output WDF FL(x, 8) and the irradiance ((x) at z = [ for 

a given realization of the screen [cf. Fig. 3.1], using the wave-kinetic numerical 
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method. We· will discuss the Liouville approximation first, and then the third- and 

higher-order approximations. 

3.2.1 Liouville Approximation 

We first discretize the input WDF given by (3.21) with Gaussian beamlets to obtain 

. N, 

E (- (J ) _ A - (x0 -n llx) /2.:lx - k W0 00 /2 I - - 2 -2 :-2- 2 2 

ro Xo, o - n e e (3.22) 
n=1 

where we let the beamlet spacing & and the r.m.s. spread of each beamlet s be the 

same [cf. Eq. (2.62)]. The constant coefficient An is given by 

A _ Wo -2(n .1xNwa 2 
n - 2n: e ,. (3.23) 

and N, represents the number of rays. Here, F0 is discretized only for x0, since we are 

interested in a plane wave for which W0 -+ oo and the term e-K'lwo280 212 is already 

sharply peaked around 80 = 0. The trajectory equations for this two-dimensional 

problem are given by [cf. Eqs. (2.48) and (2.49)]: 

d x(z) 
dz = (J(z) ' 

d 8(z) a 
dz = ox on[x(z), z] 

(3.24) 

First we consider a single Gaussian eddy centered at (xc, zc) so that on(x, z) = 

r,0 e- 2c<x-xc>2 +<z-zc>21112 • For weak refractive-index fluctuations (r,0 ~ 10-e, typical in the 

atmosphere), we may integrate the trajectory equations by an iteration-perturbation 

method [111, 112]: 
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e = e6 + 6(L) 

_ x = x0 + 80 L + {Ldz 6(z) (3.25) 

where 

6(z) = f
0
2 dz' -#--[on(x, z')L-x +re . (3.26) J, OX - o o 

We note that 6(L) is very small compared to unity. For a beam wave with 

W0 ~ t - 0(10- 2 m), we have e - 1/kW0 << 1 since k is of 0(10 7 m- 1) in optics. Thus, 

for L-zc >> t, we obtain [111, 112]: 

e = 80 + 6 
(3.27) 

x = x0 + 80 L + (L - Zc) 6 , 

where 

(3.28) 

with d = [x(zc) - xcJ/t' = (x0 + zcOo - Xc)/t' . We now assume that the expressions for 

8 and X given above hold for Z ~ Zc, and 8 = 80 , X = X0 for Z < Zc • This will be called 

the impulse approximation [cf. Eq. (3.12)], i. e., we assume that impulses in phase or 

angle are introduced at z = Zc. This approximation does not describe accurately what 

happens to a ray within a few lengths t of the eddy center (xc, zc), but it is 

asymptotically accurate (within the validity of the approximations made for trajectory 

calculations). 

Now, consider the Gaussian eddies lined up along the x-axis as shown in Fig. 3.3, so 

that bn(x, z) can be represented by (3.11). Using results for a single Gaussian edrly 

and the bar notations, we obtain (with the impulse approximation): 
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Figure 3.3 Two-dimensional Gaussian eddies lined up along the x-axis. Parame-

ters for wave-kinetic numerical method are shown. 

One-Dlmenalonal Gaussian Phase Screen 50 



(3.29) 
x = x0 + z e0 + z ~ , 

where 

NE 

!l = - 2ji; 110 _L qm dm e- 2"i;, , (dm = Xo - ~) . (3.30) 
m=1 

1 d<f,(xo) 
We note here that !l(x0) =-=- d- . Similarly for the center of the n-th beam let, we 

k Xo 

have 

(3.31) 

where !ln = ~(x0 = xn0), i. e., 

(3.32) 

Let us introduce new variables for difference coordinates in two-dimensional phase 

space: <5x0 = x0 - Xno• M 0 = e0 - eno ; bx= x - xn, be= e - en . It follows then from 

(3.29) and (3.31) that 

(3.33) 

By expanding the first exponential in a Taylor series around dm = dnm , we obtain 
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Ne 
~ '\' ~ -2ir - -MJ ~ MJo - 2...; t:.TC 'lo L,; qm (1 - 4dnm) e nm (dm - dnm) 

m=1 (3.34) 

=:= '580 + dn' bx0 , 

where b..n' is the derivative of the angle impulse for the n-th ray, i. e., 

b..n' = dd_ b..(xo) I; _; 
Xo o - nO 

(3.35) 

Similarly for bx, we obtain 

(3.36) 

Equations (3.34) and (3.36) may be combined in a convenient matrix form: 

(3.37) 

with 

P = [1 + Lb..n' [] . 
n d I 1 n 

(3.38) 

Note the similarity between the propagation matrix Tn and the ABCD matrix in 

Gaussian optics. We note that I Tn I = 1 as mentioned before, which indicates that 

energy is conserved in the Liouville approximation. Now the initial coordinates '5x0 

and MJ0 can be related to the final coordinates '5x and '58: 

(3.39) 

with 

(3.40) 
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Substituting (3.39) in (3.22), where x0 - n 6x = fJx0 and 80 = fJ80 (since x,,0 = n 6x and 

8,,0 = 0 in this case), we obtain the output WDF: 

- - N, 

FL(x, 8) = I An e- [;, ox2 -2i,8 oxoe+ ae 682] ' (3.41) 
n=1 

where 

(3.42) 

with 

-2 ;-2- 2 cxx = 1/2/lx , a.8 = k W0 /2 . (3.43) 

Finally, the expression for the irradiance at z = L can be obtained by the wavenumber 

integration given by (3.20): 

N, 

h(x)= ~ I 
V 2rr n=1 

_1_ e-2(nt.x//Wo 2 e- (x - x,,)2/2S;tu2 ' 

lsnl 

where 

2 ( L )2 2 Sn= -- +Cn' 
kW 06x 

with 

and the ray center x,, is given by (with 8,,0 = 0 ): 
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(3.47) 

Notice that C~ in (3.45) is not the structure constant defined in Sec. 2.1. The ex-

pression for 6n and 6n' are given by (3.32) and (3.35), respectively. Now for a plane 

wave, W0 -+ oc and thus Sn in (3.44) may be replaced by Cn. It follows that (3.44) be-

comes 

1 - (x - ; >212c~2 -- e n n 

lcnl 
(3.48) 

which is the final expression for the irradiance at z = L from the Liouville approxi-

mation (or the first-order approximation). In the following section, the third- and 

higher-order approximations will be introduced, and the region of validity of the 

lower-order approximations will be discussed. 

3.2.2 Higher-Order Approximations 

First, we wish to re-derive the result of the previous section in a slightly different way. 

Using the idea of the thin-screen approximation, we let u(x, z = Q+) = e1-P<x> where 

</J(x) is given by (3.7), as in the Huygens-Fresnel diffraction integral formulation [cf. 

Secs. 2.3 and 3.3]. It follows then from the definition that the WDF at z = Q+ for a plane 

wave input can be represented as [cf. Fig. 3.4]: 

F-+(- () ) - _1_ Joo d- -/k(}o5 i[<f>(xo + 2S )-</>(Xo - S2-)] 
0 x0, 0 - 2n s e e . 

-oo 
(3.49) 

The phase difference in the above equation can be expanded in the Taylor series: 
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00 

¢(x0 + ! ) -¢(x0 - ! ) = 2k L 
m=O 

A(-) = _1 dcp(xo) 
u Xo - d-k Xo 

/l (2m)(Xo) 
------'-- ( s2- )2 m+1 , 
(2m + 1)! (3.50) 

(3.51) 

If we take only the first term in the series expansion of the phase difference and apply 

the discretization scheme, using the approximate equation (with error$ 10-1), 

1 __ 1_ ~ (Xo - xno>2/2t:..:ic2 (- A~) _ r;;:: L...i e , Xno = n ~ , 
....;2n: n 

(3.52) 

then (3.49) becomes 

F-+(- 8 ) __ 1 _ __ 1_ ~ Joo d- -iks[0 0 -6(Xo)] -(x 0 -xno}2/2t:..x2 
o Xo, o - 2n: r;;:: L...i s e e . 

....; 2n: n -oo 
(3.53) 

Since each Gaussian beam let is sharply peaked around Xno• ll(x0) ~ lln + ll/ (x0 - Xno), 

where lln = ll(Xno) and lln' = ll'(Xno) are given by (3.32) and (3.35). With this approxi-

mation, we obtain 

F-+(- 8 ) - _1 ___ 1_ ~ Joo d- -iks(68o - 6n'6xo) - oxi12t:..x2 
o Xo, o - 2n: r;;:: L...i s e e , 

....; 2n: n -oo 
(3.54) 

where 080 = 80 - lln and OX0 = X0 - Xno as before. 

The coordinate transformation in free space is described by [cf. Eq. (3.39)]: 
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[ bxo] = r' [ bx] 
b00 n be ' (3.55) 

with 

, [1 -1[] . Tn = 0 (3.56) 

Combination of (3.54) and (3.55) results in 

Now the irradiance can be calculated from the wavenumber integration of (3.57) as in 

(3.20). After a simple manipulation, it is given by 

where y = kf[ = k.t2/L [cf. Eq. (3.17)]. We note that the inner integral is in the form 

of a convolution integral. (Here we should mention the following. In this specific 

case, i.e., in the first-order approximation, it would be easier to dos-integration first, 

which will yield the expression (3.48) in the previous section. In the higher-order 

approximations which will be discussed in this and the next chapters, however, the 

resulting expressions for ((x) [cf. (A3.3), (3.68) and (A4.9)] can not be integrated with 

respect to s first. Since all the expressions include the same convolution integrals 

in their inner integrals, we utilize the convolution theorem which leads directly to 

closed form expressions for the irradiance spectrum /L(Q) [see below]. Thus, we use 

the convolution theorem even in this first-order approximation to find an expression 

for /L(Q), which will be compared with those from the higher-order approximations.) 

Let us define the Fourier transform of a function g(x) as 
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g(Q) = 2~ J00 dx e -IO.X g(x) 
- -oo 

(3.59) 

(We put the factor 2~ here to be consistent with the usual definition for the Fourier 

transform in the theory of random wave propagation [cf. Defs. (2.3), (2.36), (2.70), and 

(3.19)].) By replacing the terms in the brackets by their Fourier transforms, we obtain 

(3.60) 

After the integration with respect to s, this becomes 

JL(x) = Joo dQ eiO.X ~(Q) ' -oo (3.61) 

with 

~(Q) = ~: I e-lxnn 8-6x 2C~0.2/2 , (3.62) 
n 

Here, Cn and xn are given by (3.46) and (3.47), respectively. We note that this ex-

pression for JL(x) reduces to (3.48) in the previous section. Thus, the Liouville ap-

proximation is equivalent to the first-order approximation in the phase difference. 

Similarly, we can show that if we take the first two terms (the third-order approxi-

mation) in the series expansion of the phase difference, (3.50), then the spectrum of 

irradiance IL(Q) is given by [cf. Appendix A3.1]: 
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~(Q) = ~; L [ e-ix"n e-ilx2c~n2;2] [ e-ip~n3/3] ' (3.63) 
n 

where 

(3.64) 

It is interesting to note that this expression can also be obtained by applying the 

two-scale expansion (which is introduced by Frankenthal et al. [121]) to our problem 

with the discretization scheme [Appendix A3.2]. Notice that the third-order approxi-

mation has the correction factor e-iP~ 03 !3. Since /3~ - </J0/y3 - (/y2 , for a given y = kf[ 

this reduces to the first-order approximation if ( is sufficiently small. We can see this 

more clearly from Fig. 3.4. The irradiance at z = [ results from the field components 

u(x0 ± ; ) at z = 0 [cf. Eqs. (3.49) and (3.50)], wheres :s; s.,,. For a given phase screen 

with r.m.s. angle fluctuation 90, s.,, ~ 290[ (~ () as shown in Fig. 3.4. Thus, in order 

for the lower-order approximations (in the phase difference) to be valid, we need 

( << 1 (or beamwidth must be small if the beamwidth is smaller than s.,,) [cf. Eq. 

(3.50)]. Numerical results, which are presented in Sec. 3.6, indicate that the first-

order approximation is valid for ( :s; 0.2 . Since we are interested in the random fo-

cusing region where ( - 1 [cf. Sec. 3.1], we need a more accurate expression for 

IL(x), i. e., a higher-order approximation, which is valid for all ( (or at least for ( ;$ 1). 

Now, we wish to introduce approximations of higher order than third. Rewrite the 

phase difference given by (3.50) as: 

- -
</J(x'o + ; ) - </J(x'o - ; ) = k ~(xa)s + h(xo, s) ' (3.65) 

where 
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00 ~ (2m)(xo) 
(- ;::-\ - '\' ( s2- )2m+1 , h Xo, SJ= 2k ~ 

m= 1 (2m + 1)1 
(3.66) 

Following the same procedure as in the first-order approximation [cf. Eqs. 

(3.53)-(3.57)], we can show that 

(3.67) 

where hn(s) = h(x0 = Xno, s). As before [cf. Eq. (3.58)], the wavenumber integration of 

FL(x, 8) leads to: 

(3.68) 

The inner integral is again in the form of the convolution integral. After the same 

manipulations as in the first-order approximation, we obtain 

~(Q) = ~~ I [ 8 -ixn.Q 8-6Jc2c~n212J[ 8 -ihn(s=.0/y)J • (3.69) 
n 

where the oddness of the function hn(s) is used, and Xn and Cn are given by (3.47) and 

(3.46), respectively. Compare this with the expression (3.62) from the first-order ap· 

proximation. The second term in the square bracket, eihn<• =cw, is the correction term. 

Using the fact that Xn = Xno + [ ~n• we may rewrite the above equation as [cf. Eq. 

(3.65)]: 
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(3. 70) 

where the random phase cp(x) is given by (3.7). For the purpose of numerical calcu-

lation, we compute only the scattered part of the spectrum, i. e., 

where F represents the Fourier transform operation. Numerical results for various 

diffent values of y (or ¢,0) indicate that Qm••"' y. (We note that Xno"' 0(1), C~ ~ 1, and 
- Q Q -thus (,(Q) ~ {e-i(4><2y>-¢<-2y>l - 1} e-l!.x 202 12 <5(Q) = 0 for Q/y >> 1, where <5(Q) repres-

ents the Dirac delta function.) Notice that the Gaussian terms e-;;;;2c~o212 and e-;;;;202 12 

may be replaced by unity for sufficiently small ~x such that ~x << 1/y . Once the 

spectrum of irradiance is computed, irradiance /L(x) can be calculated by taking the 

inverse Fourier transform of /t,(Q) using a fast Fourier transform algorithm [cf. Eq. 

(3.61 )]. 

To check the validity of the higher-order approximation (3.70) [or (3.71)], we now wi~h 

to find the analytical expression for ~(Q) , starting off with the initial WDF F0 given by 

(3.49). Using the coordinate transformation in free space [cf. (3.55)]: 

(3.72) 

we obtain 

F- (- O) = _1_ f 00 ds- 9 -,iies 9 ,[<t>(x - Le+ ! >-<t>(x - Le- ! >J 
L X' 2tt 

-oo 
(3.73) 
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The wavenumber integration of the output WDF (i. e., integration with respect to kO) 

leads to 

- -
ISx)-= ;7t J00 ds J00 de e-iy(x -~)s ei[qi(~+; )-¢(~-; )] 

-oo -ex> 

(3. 7 4) 

from which we find 

(3.75) 

where Fx is the Fourier transform operator for the variable x. After performing the 

Fourier transforms with respect to x [See Eq. (3.59) for its definition], we obtain 

- . Joo - - Q - Q I (n) __ ,_ d- -ixO -i[¢(x +-)-¢(x --)] 
L .i." - 2n x e e 2y 2y . 

-oo 
(3.76) 

For sufficiently small dx, the Gaussian term in (3.70), e-e:;2c~o212, becomes unity, and 

the higher-order approximation (3.70) is essentially the trapezoidal-rule integration 

(or Riemann sum) of the analytical expression (3.76), which is exact within the validity 

of the thin-screen approximation, u0(x) = 9i¢<•> [cf. Eqs. (3.49) and (2.69)]. Thus, the 

higher-order approximation in the wave-kinetic numerical method is equivalent to the 

Huygens-Fresnel diffraction integral formulation. 

3.3 Huygens-Fresnel Diffraction Formula 

For a one-dimensional phase screen, by introducing the bar notations in the 

angular-spectral representation of the Huygens-Fresnel diffraction integral (2.78), we 

have 
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u(x) = r)O dq eiqx e-iq2/2y Uo(q) ' 
- -oo 

(3.77) 

where y = kf[ = k/2/L, and 

U ( ) __ 1_ J 00 d- -iqx i,p(x) o q - 2rr x e e . 
-oo 

(3.78) 

Here, ¢,(x) is given by (3.7) with x/t and x,./t being replaced by x and x,., respectively. 

The irradiance at z = [ is then calculated from llx) = I u(x) I z [cf. Eq. (2.37)]. Note that 

for the spatial angular frequency q the bar notation is not used since this would not 

cause any confusion in the following. Thus, q in the above equations is a 

dimensionless quantity. In the expression (3.77), two Fourier transform operations 

are involved. A little manipulation facilitates a direct application of an existing fast 

Fourier transform algorithm (i. e., it allows us to avoid operations involved in an FFT 

like shift and flip around the ( 1 + 1)-th data point, where N is the number of discrete 

data points for FFT) [85]. 

We may introduce the following discrete data points: 

N-x =(n-1--)~ n 2 ' 
N qm = (m - 1 - 2 )6q , 

where ~q = 2rr/N ~x. It follows then that 
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N [- N, ] u n = 6.q L e iqmX-;, e -iq;/2y ~: L e i<J,k e -iq,,,xk 

m=1 k=1 

N 
·. 1. I . N N . 2 N 2m (m-1- - )(n-1- - )/N -i(!J.q) (m-1- - )/2y =- e 2 2 e 2 

N (3.80) 
m=1 

[f, i</>k -211:i (m-1- Ji_ )(k-1-}i_ )/NJ x LJ e e 2 2 , 
k=1 

where u,, = u(x = x,,) and <Pk= </J(x = xk). Let m' = m - N/2. Then (3.80) becomes 

(3.81) 

where 

N 
U" '\" -211:i (m'-1)(k-1)/N i</>k m•=LJe e. (3.82) 

k=1 

' ' ' We note that um. is periodic in m' with period N, i. e., um'+N = um. and similarly so for 

the first exponential term in (3.81). Thus, by shifting the summation index m' in the 

second summation term in (3.81) by N, we obtain: 

N 
1 '\" 2n:l(m-1)(n-1)/N -i(!J.q) 2 M 2/2y u" 

Un=fi LJ e e m (3.83) 
m=1 

where 

{
m -1 m ~ N/2 M- ' 
N+1-m, m>N/2 

(3.84) 

This expression can be written more compactly as 
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{3.85) 

where F1r and F;1 represent a forward FFT with respect to index k and an inverse FFT 

with respect to index m, respectively. 

3.4 Calculation of Statistics 

To compute wave statistics from many realizations, we put a number of receivers 

across the observation plane, which are equally spaced with a distance ~s [cf. Fig. 

3.1]. (In fact, the number of receivers is equal to the number of irradiance points for 

each realization.) In our numerical simulation, we put 11 receivers separated by 

~s ~ 0.1 t [cf. Sec. 3.6].) The data from each receiver (for many realizations) are 

stored, and the statistics are computed a posteriori. Let us denote the number of 

receivers and the number of realizations by N, and N,, respectively. For each re-

ceiver, we have N, sample data. In this section, we denote the irradiance at z = [ by 

/(x) (which was denoted by JL(x) in the preceding). 

First, we wish to define the statistical quantities of interest. The normalized 

covariance of irradiance is defined as 

_ < [l(x') - < , > J[J(x + x') - < , > J > 
c,(x) = 2 , 

<I> 
(3.86) 

where the bar notations are used, and <I> is the mean of irradiance fluctuation, 

which is set to be unity in our numerical simulation. The normalized variance of 

irradiance, which is usually referred to as the scintillation index, is then given by 

2 < [/ - < / > J2 > 
a1 = C1(0) = ------

< I >2 
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It is more convenient to use a differently normalized covariance, instead of the nor-

malized covariance (3.86). We define the normalized covariance as 

c,(x) = c,(x)/a1 (3.88) 

The statistical quantities given above can be computed using the following estima-

tors. 

Since we have a discrete set of data, we denote the covariance C,(k 6s) simply by 

Ci(k) . We use an estimator for C,(k) defined as 

N, 
/\ 1 '\" 
c,(k) = N 1....; 

/ 1=1 

where 

[11U) - i1J[/k+1U) - ik+1J 

(i1)2 

(k = 0, 1, 2, ... , Ns - 1) . 

(3.89) 

(3.90) 

In the above equation, we used t 1 just for convenience. We may replace ik+1 by 11, 

1 N, -1 _ _ _ 

or we may use N, _E lk+1 for /1 and lk+1• Since</>= 1.0 in our case, for large N, ( 

~1000), we may simply set~= t 1 ~ 1.0 as well. Using this estimator, the scintillation 

index and the normalized covariance can be computed [cf. Eqs. (3.87) and (3.88)]: 

/\2 /\ /\ /\ /\2 
a1 = C1(0) , c1(x) = C1(x)/a 1 • (3.91) 

Here, we need to mention the problem of outliers briefly. In numerical simulation, 

sometimes there appear unusually large or small samples for some realizations, 

which are often referred to as outliers. There are often statistical reasons for re-

moving those outliers. More details will be discussed in Sec. 3.6. 
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To obtain error bounds of the estimators, we need analytical expressions for the 

variances of the estimators. The standard error of an estimator, which is used as a 

convenient measure for error bounds, can be calculated from the corresponding 

variance by taking its square root. To compute the variances of the estimators ex-

actly, we have to know the probability distribution (of irradiance), which is of course 

unknown (except a few limiting cases). Thus, to get crude error bounds, which seem 

to be sufficient for our purpose, we assume that J(x) is a homogeneous Gaussian 

random function with a variance at, We note here that /(x) is homogeneous, but not 

Gaussian, in general. (Several probability distribution functions for irradiance have 

been proposed, which include log-normal, Rayleigh, Rice-Nakagami, K, 1-K, etc. [cf. 

Refs. 60-76].) Under the assumption, one can show that [114] 

- 2 Var(/)= a1 /N1 , (3.92) 

" 2 2(N1-1) 
Var(a1) = 2 

N, 

4 2 4 
a1 ~ N, a1 (3.93) 

To get some idea of error bounds for c,(k), let us now consider a standard type of 

(normalized) covariance estimator, 

(3.94) 

with 

N,-k 

I (k = 0, 1, 2, ... ) , (3.95) 

where /1, j = 1, ... , N,, correspond to irradiance samples for a single realization. The 

covariance estimator Rk is different from C,(k). However, if ergodicity holds (and N, 
for Rk and N, for C,(k) are large enough), then Rk becomes equivalent to C,(k) [78, 114, 

123]. We could then use Rk with large N, (or take an average of Rk for a relatively large 
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number of realizations), but our preliminary numerical study indicates that it is more 

efficient to use C,(k) (with small N, and large N,). In other words, it turns out that 

simulations with small number of sample points and many realizations are preferable 

to simulations with more sample points and fewer realizations. According to Box et 

al. [123], the variance of rk for large N. is given by (with the same assumptions for 

l(x) as mentioned before): 

00 

Var(rk) ~ ~ I {r; + rv+k rv-k - 4 rk rv rv-k + 2 r; rz} . 
S V=-oo 

(3.96) 

This can be used as a crude estimate for the variance of c,(k) . To see the behavior 

of Var(rk), consider an exponential covariance function, r1c = e-s 11c1 • One can show that 

[123]: 

Var(r1<) ~ ~ (1 + /J )(1 ; /J ) - 2k p21< , [ 
2 21< ] 

s 1 - ft 
(3.97) 

It is informative to note that the standard error of the normalized covariance estimator 

is zero at k = 0, it becomes maximum at k ~ 1/(1 - /J2) (i. e., a corresponding integer 

value), and it approaches J(1 + p2)/N1 (1 - p2) as k goes to infinity. (We can see this 

behavior from the simulation results in Sec. 3.6, i. e., the errors become maximum 

around x for which c,(x) is close to zero.) 

We note that the covariance estimator R1c (equivalently C,(k) ) is a biased estimator, 

but the variance of R1c is much smaller than the variance of the corresponding unbi-

ased estimator R/ [ = R~./(N, - k)] fork> O [114]. 
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3.5 Analytical Expression for Covariance of lrradiance 

From the Huygens-Fresnel formula (2.77), we have 

u(x, z) = .g,. J'xi dx1 
-oo 

i,P(x,) ik(x- x,>2 /2z e e , (3.98) 

where </J(x) is a random phase fluctuation at z = 0 [cf. Eq. (3.7)]. Thus, irradiance at 

z = L is given by 

/( ) _ _ k_ J°" d J°" d i [¢(x 1)-¢(x 2)] ik [(x-x,>2- (x-x/J/2L 
X, z - 2nL X1 X2 e e . 

-oo -oo 
(3.99) 

The correlation of irradiance can be found from this expression, i. e., 

Bi(x) = < l(x/2) /( - x/2) > 

= f 00 dx1 f 00 dx2 f 00 dx3 f 00 dx4 1 40(x 1, x2, X3, X4) 
-oo -oo -oo -oo 

(3.100) 

where 

(3.101) 

with </Ji = </J(x). 

Since </J(x) is a Gaussian random function with zero mean, r 40 can be represented as 

1 2 
14o(X1' X2, X3, X4) = e - 2 < (¢1 - ¢2 + <P3 - <P4) > 

_ - 24>~ +< <P1 <Pz >+< <P3 <P4 >+< <P1 <P4 >+< ¢2 <P3 >-< ¢1 <P3 >-< <Pz <P. > -e ' 
(3.102) 

with < </J; </J, > = </J~ e-<x;-x/;e2 [cf. Eq. (3.5)]. Let us introduce new variables: 
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1 
X = 4 [(x1 + X3) + (x2 + X4)] 

c; = (X1 + X3) - (X2 + X4) 
1 c!1 = 2 [(x1 - X3) + (x2 - X4)] 

(3.103) 

1 c!2 = 2 [(x1 - x3) - (x2 - x4)] 

We note that dx1 dx2 dx3 dx4 = dX de; dc;1 dc;2• For a statistically homogeneous medium, 

f' .u is independent of X. Since the exponential term in (3.100) becomes 

(3.104) 

with the new variables, we obtain, after performing integration with respect to X: 

B1(x) = ( 2~L ) 2 f'° dc;1 f 00 c!2 f'° de; [ 2rr £5( ~ c;) J I4o(c!1, c;2, c; = 0) 
-oo -oo -oo (3.105) 

X ei( ~ >,2<~1 -x) 

(3.106) 

where 

(3.107) 

We may rewrite B,(x) as 
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(3.108) 

By letting e/ = - e1 and e/ = - e2 in the second and the fourth term, respectively, and 

by using the fact that r(e,, e2) = r(e2, e,) = f( - e,, e2) = r(e,, - e2), we obtain, after a 

simple manipulation for trigonometric functions: 

(3.109) 

If we let LJ = e,/t, V = e2/i', and X = x/t, then the correlation of irradiance becomes 

B1(x) = 2I t:io du tu dv e-4'~ f(u, v) [ cos(yxu) + cos(yxv)J cos(yuv), (3.110) 

where 

2 2 2 2 
f(u, v)=2-2e-u -2e-v +e-<u+v) +e-<u-v) (3.111) 

For numerical calculation, it is more convenient to rewrite this as 

a,(x)=: J 00 du Judv e-4'~f(u, v){2cos(yxu) cos(yuv) 
0 0 (3.112) 

+ cos[yv(u + x)J + cos[yv(u - x)J} . 

The covariance of irradiance and the scintillation index can be calculated from 

c,(x) = a,(x) - 1.0 , 2 a1 = C1(0) (3.113) 
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We notice that when <N >> 1 (good even for cp~ ~ 6 ), f(u, v) can be approximated as 

f(u, v) ~ J_ ( ,/r ) v2 = 2 P(u) v2 , 
2 ov2 V=O 

(3.114) 

where 

2 
P(u) = 1 - (1 - 2u2) e-u (3.115) 

To compute the integral given by (3.112), we use an adaptive quadrature (a truncated 

Chebyshev series) algorithm useful for integrals with strongly oscillating integrand, 

introduced by Piessens et al. [113). Using this algorithm, we can compute one or both 

of the integrals, 

[ S(w)J Jb [ sin(wt) J = dt f(t) ' 
C(w) a cos(wt) 

(3.116) 

to within a user-specified absolute tolerance e., or relative tolerance e,. 

3.6 Numerical Simulation 

We first discuss some important input parameters for numerical simulation. The in-

put parameters are defined, and general criteria for choosing the values of those pa-

rameters are discussed, in Sec. 3.6.1. The implementations of the wave-kinetic 

numerical method and the Huygens-Fresnel diffraction formula are studied by 

single-realization calculations, and results for single realizations from both methods 

are compared to each other, in Sec. 3.6.2. Finally in Sec. 3.6.3, we present simulation 

results for af and c,(.x) from the wave-kinetic numerical method. The results are 
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compared with those obtained from analytical expressions given by Eqs. (3.112) and 

(3.113). 

3.6.1 Important Input Parameters for Numerical Simulation 

As shown in Fig. 3.5, in numerical simulation the width of the screen W must be finite, 

which can cause edge effects. 

First, we wish to discuss the edge effects in view of the wave-kinetic numerical 

method. Let the width of the region occupied by the receivers at z = L be w.. Let 

us also introduce the spread parameter L. such that 

(3.117) 

Since we are realizing a medium with Gaussian eddies, although the eddy centers 

are confined within the region of width W (and thickness D, or along the x0-axis in 

case of the simplified model), the numerically generated inhomogeneity is rather 

smooth (not very sharp) around both edges at x0 = ± W/2, but statistically it is highly 

inhomogeneous in the region within a scale size t' from the edges. It follows that 

irradiance data within several L. 's (~3 L.) from the edges in the observation plane ( 

x = ± W/2), where rays from the edge regions arrive, include errors. From prelimi-

nary numerical simulations, we found the following rule of thumb: 

(3.118) 

Using the relations for 90 and { given by (3.16) and (3.17), this also may be written 

as 

• (3.119) 

where the bar notations are used (i. e., W = W/t', W, = W,/t'). 
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Figure 3.5 Geometry for numerical simulation, which explains edge effects. Rele-

vant parameters are indicated. 
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In the Huygens-Fresnel diffraction integral formulation, edge effects may be explained 

in terms of edge diffraction. Suppose now that the edges are very sharp, for con-

venience. Using the Huygens-Fresnel formula, we can derive (more systematically) 

a similar criterion for the margin of the screen width, W - W,. Substituting the 

angular-spectral representation for u0(x) given by (2.78) in the Huygens-Fresnel for-

mula (2.76), we obtain [cf. Appendix A3.3 or Ref. 85]: 

u(x, [)=Joo dq e;qi e-1Lq2/2ii Uo(q) G(x, L, q) ' 
-oo 

(3.120) 

with 

G(x, [, 

(3.121) 

Here, the bar notations are used, and the function gF represents the Fresnel integral, 

defined as 

(-) JidJ: ei1re12 . gF X = <:, 
0 

(3.122) 

Since the scale of u0(x) [ = ei4><•>] is of order 1/¢ 0 for <Po> 1 [85], most of the spectrum 

of U0(q) is contained within I q I ~ 2n</J0• Now, compare (3.120) with the angular-

spectral representation for an infinite phase screen, (3.77). It follows that G must be 

close to unity within the bandwidth (BW). Since g/x) ~ J;fi for x ~ 2, using the BW 

given above, we obtain the condition 

ff -- nL 
LHF = 2 + 2</Jo -=-

k k 
(3.123) 
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Using the parameters y and ( [cf. Eq. (3.17)], this may be written as 

W - W s ~ 4 jf + 2n: ( . (3.124) 

In our numerical simulation, y = 13.856 >> 1 and O < ( < 1, since we are interested 

in the random focusing region [See the discussions following (3.17) in Sec. 3.1]. 

Hence it is certainly true that 

(3.125) 

We will therefore use (3.119) [or (3.118)] as the condition for the margin of the screen 

width W, which is required for avoiding edge effects. 

For a given W1 (in our numerical simulation, we put 11 receivers separated by ap-

proximately 0.1 t so that W1 =::::: 1.0 [cf. Sec. 3.41), we have to choose a W which satis-

fies the relation (3.119). As mentioned before, the two important parameters, by 

which a phase screen problem is completely determined, are y (= ki'2/L = k/L) and 

<l>a [cf. analytical expression for C,(x), Eq. (3.112)]. For these two, the parameter ( is 

determined by the relation, ( = 2 </>0/y. Thus, we have three important parameters, y, 

</>0, and W, assuming that W1 and k are fixed (W, =::::: 1.0, and k = 1.0472x10 5 [cf. Secs. 

3.4 and 3.11). 

For a given </>0, we are free to choose the number of eddies, i.e., the average number 

of eddies along the z-axis, Nz , or thickness of the screen D [cf. Eqs. (3.4) and (3.10)1. 

In other words, if we change D (= D/t') for a given </>0, then the number of eddies 

changes and thus the r.m.s. value of refractive-index fluctuations, 170, also changes for 

a given k. A large D is required for enough randomness for each realization. The 

results for numerical simulation of random phase fluctuations [Eq. (3.7) is used to 

simulate a Gaussian random phase with the correlation function given by (3.5)], 

showed that D ~ 100 seems to be enough. 
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Figure 3.6 Variance of phase vs receiver location: cp~ = 1.0. The receiver sepa-

ration is 0.1, and the number of receivers are 21. 
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Figure 3.7 Normalized covariance of phase vs receiver separation: <Po= 1.0. 

One-Dimensional Gaussian Phase Screen 78 



Simulation results for¢>~= 1.0 with W = 5.0 and D = 200 are shown in Figs. 3.6 and 

3.7, where the data are obtained for W, = 2.0 with 21 sample points which are sepa-

rated by 0.1. We note that for N, = 1000, the simulation result for the normalized 

covariance of <f>(x) (normalized with respect to the sample variance at x = - 1.0) is in 

good agreement with the desired one, e-x2, and the sample variances Ji~ at 21 sample 

points are well within the range, 1.0 ± Si¢~). where Si¢~)= j2fii; = 0.045 (More 
A > 

accurately, ¢>~±Si¢>~) include the desired variance ¢>~ = 1.0). 

There are several other parameters related to implementation of the wave-kinetic 

numerical method and the Huygens-Fresnel diffraction formula. First, for the wave-

kinetic numerical method [cf. Eqs. (3.48), (3.61), and (3.71)], the ray spacing ~x must 

be small enough so that errors involved in the discretization and the linearization for 

the wave-kinetic numerical method [cf. Secs. 2.3.3 and 3.2.1] become negligible. 

We note that to implement the higher-order approximation given by (3.71), where we 

first compute the spectrum of irradiance /(Q), we need an inverse FFT [cf. Eq. (3.61)] 

to compute irradiance ((x). [For the Liouville approximation, we use the direct sum-

mation formula (3.48). We may use the spectral representation (3.62), in which case 

an inverse FFT is also needed.] We denote the sampling interval in the spatial fre-

quency domain by ~f. which is related to ~Q by M = ~Q/2n. Discussions regarding 

the choice of ~f will be given in the next section. 

Next, to implement the Huygens-Fresnel diffraction integral [cf. Eq. (3.83)], we need 

two Fourier transform operations. The sampling interval for a FFT will also be de-

noted by ~x. which is related to ~f by ~x = 1/Nm~f. where Nm is the number of 

sampling points. The interval in the spatial angular frequency domain, ~q. in (3.79) 

and (3.83) is related to ~f by ~q = 2n~f. [Note that in the wave-kinetic numerical 

method, the ray spacing ~x is not directly related to ~f.] For the Huygens-Fresnel 

formula, ~x must satisfy the Nyquist criterion, i.e.,~~ 1/2 fmax,u, where fmax,u is such 
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that I u0(q) I ~ 0 for I q I ::C: 2rrfmax,u. It turns out from single-realization calculations [cf. 

Sec. 3.6.2] that Llx for the wave-kinetic numerical method can be chosen to be ap-

proximately one half of that for the Huygens-Fresnel formula. This may be explained 

as follows. In the wave-kinetic numerical method, we compute the spectrum of 

irradiance / (Q) [or /(x) in case of the Liou ville approximation], whereas in the 

Huygens-Fresnel diffraction integral formulation we compute u(Q) [U(q) in the previ-

ous notation]. Since /(Q) is the autocorrelation of u(Q) , the BW of /(Q) is twice as 

wide as u(Q) [U(q) in the previous notation for H-F], and thus the corresponding factor 

for dx seems to follow. 

Finally, we wish to mention a linear interpolation scheme briefly. In numerical sim-

ulation, much computing time is spent in calculating the random phase <f>(x) or the 

random angle .1(x) (= </>'(x)/k). Thus, if we first compute and store discrete data <l>k 

and dk with a certain interval dp for each realization, and then compute intermediate 

values, whenever necessary, by a linear interpolation, then we may reduce comput-

ing time by making dp as large as possible. Numerical calculations indicate that for 

the Huygens-Fresnel formula [cf. Eqs. (3.83) and (3.85)], we do not need the linear 

interpolation scheme, since we need to compute only discrete phases, 

<l>n = </>(x = n .1x) , in this case, and for dp larger than .!lx, the linear interpolation in-

troduces significant errors. On the other hand, for the wave-kinetic numerical method 

(especially for the higher-order approximation given by (3.70) or (3.71)), we have to 

- - 2n compute discrete spectral values / (ndx ± -Y- m.1f), (n, m = 0, ± 1, ... ), which in turn 

- 2n -requires the data <l>nm = </>(nllx ±-y- mdf) and d" = d(n Llx). [For the Liouville ap-

proximation given by (3.48) or (3.62), we need to compute only .1".] Thus, we will use 

a linear interpolation scheme for the higher-order approximation. It turns out that the 

interpolation interval dp can be made as large as dx for the Huygens-Fresnel formula. 

[Thus, the interpolation scheme will also be useful for the Liouville approximation, 
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since (~x)HF ~ 2 (~)wK .] Numerical calculations show that this works very well and 

reduces computation time considerably. 

In our current research, we are not interested in the optimization of the simulation 

algorithms, i. e., choosing the values of the input parameters in such a way that 

computing time is minimized for moderate accuracy. We are rather interested in the 

accuracy of the simulation schemes discussed before. Since we do not want any 

unexpected errors due to a marginal choice of the values of the input parameters, 

we will allow enough of a margin for those parameters, and thus the values of the 

input parameters used for numerical calculations in the following sections will be 

somewhat different from those discussed in this section. 

3.6.2 Single-Realization Calculations 

In this section, the implementations of the wave-kinetic numerical method and the 

Huygens-Fresnel formula with specifically chosen values of the input parameters are 

discussed, and the results for single realizations from both methods are compared to 

each other. In this and the subsequent section, we will use the following abbrevi-

ations for convenience. We denote the wave-kinetic numerical method with the 

Liouville approximation by W-K(LV). The wave-kinetic numerical method with 

higher-order correction to the Liouville approximation (which we called the higher-

order approximation before) will be denoted simply by W-K. The angular-spectral 

representation of the Huygens-Fresnel diffraction formula will be abbreviated by H-F. 

We noticed before that W-K is equivalent to H-F, within the validity of the thin-screen 

approximation [cf. Sec. 3.2]. 

The phase-screen parameters for numerical calculations in this and the subsequent 

section are: y = 13.856, 1.0 ~ cj:,0 ~ 10.0. We first discuss a criterion for choosing the 

value of the parameter ~f for a FFT (for W-K, we need an inverse FFT to compute 
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/(x) and for H-F we need a forward and an inverse FFT to compute u(x)). In single-

realization calculations, we have computed /(x) for lxl ~ w.,,/2, where W,,, ( > W) is 

large enough so that all the scattering effects from a finite screen with width W are 

included within the region, i. e., for Ix I > w.,,/2 , /(x) = 1.0, which is the irradiance 

from the input plane wave with a unit amplitude. Numerical results [cf. Figs. 3.9 and 

3.1 O] indicate that for y = 13.856 and <Po~ 10.0, w.,, $ 8.0 . Thus, to avoid the aliasing 

effects, which may be introduced by an inverse FFT operation, we need !if$ 1/W.,,. 

Assuming that w.,, ~ 10.0 (for W ~ 7.0 and the values of y and <Po given above), we 

choose tir~ 0.1 in our nurr.erical calculations. 

Throughout this section, we choose y = 13.865, W = 5.0, and D = 1000.0. The values 

for !ix used to implement W-K and H-F are (!ix)w1< = 0.04 and (tix)HF = 0.08 . For 

W-K(LV), we set !ix= 0.005 , which is considerably smaller than (llx)w1<, since we are 

interested only in the errors inherent in the Liouville approximation and we wish to 

avoid errors due to discretization. The interpolation interval tip is chosen to be 0.08. 

For both W-K and H-F, we choose Nm= 128 and !if= 0.09766[ = 1/(0.08x128)]. The 

number of sampling points for a FFT is chosen in such a way that Nm~ w.,,/tix . 

Similarly, for a given !ix and w.,,, the number of rays (i.e., the number of the Gaussian 

beam lets) is given by N, ~ w.,,/tix for the wave-kinetic numerical method. Notice that 

- -the entire spectral content of J(f) [ = /(Q = 21tf)] is contained within f-:$ fm,x,, = 

Nmx!if/2 = 6.25, which is shown in Fig. 3.8. It follows that for a given !if, Nm for W-K 

is large enough. We also note that (!ix)HF = 0.08 is small enough for H-F, since 

1/2 fmex,u ~ 1/fmax,I ~ 0.16. 

The irradiance data /(x) for Ix I ~ 4.0 from single realizations are plotted in Figs. 3.9 

and 3.10. The results from W-K(LV) and H-F are presented in Fig. 3.9, which indicates 

that W-K(LV) is accurate for </)0 = 1.0 [C = 0.144], but introduces some errors for 

</>0 = 2.0 [( = 0.289]. More detailed numerical calculations for a single Gaussian eddy 
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Figure 3.8 Spectrum of irradiance for a specific realization: W-K (f = D./2rr). 
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Figure 3.9 Instantaneous realization of irradiance at z = L (y = 13.856): </>0 = 1.0 
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indicate that W-K(LV) is valid for ( :$ 0.2 . If we include all the higher-order terms 

(W-K), then the results become accurate, which is shown in Fig. 3.10. It is interesting 

to note that for (;::::: 0.2, the Liou ville approximation introduces extra peaks in the place 

where irradiance peaks appear. This seems to be due to ray crossings which occur 

in those places. Thus. we can say that the Liouville approximation is good for smaller 

( for which the ray crossings do not occur. 

Finally, we note that computing times for W-K and H-F are comparable. In the array 

processor FPS 164 (manufactured by Floating Point System, Inc.), the CPU time for 

the data in Fig. 3.10 from W-K and H-F are 5.50 secs. and 4.66 secs., respectively. 

3.6.3 Computation of Statistics from Many Realizations 

In this section, the statistical quantities af and ct(x) for one-dimensional Gaussian 

phase screens are computed by numerical simulation. For wave propagation calcu-

lations, W-K(LV) and W-K are used. The simulation results are compared with those 

obtained from numerical integration of the corresponding analytical expressions, 

(3.112) and (3.113). The values for the phase-screen parameters are y = 13.856 and 

</>~ = 1.0, 12.0 (( = 0.144, 0.5). For the parameters W and D, we choose W = 5.0, 

D = 1000.0 for</)~= 1.0; W = 7.0, D = 4000.0 for</)~= 12.0. 

First, we wish to discuss the results from W-K(LV). To implement this, we let 

~x = 0.005. The corresponding number of rays are N, = w.,,/~x. where we let W,,, = 

10.0 [cf. Sec. 3.6.2]. We put 11 receivers separated by 0.1 t so that W, = 1.0 in this 

case. 

lrradiance fluctuations for <Pt= 1.0 at the receiver at x = - 0.5 are plotted in Fig. 3.11, 

which shows that there are some unusually large samples. (Note that for irradiance, 

we do not have smaller outliers since irradiance is always positive and its average 
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Figure 3.11 lrradiance fluctuation at the receiver at x = - 0.5: y = 13.856, <P~ = 1.0 

(( = 0.144); W-K(LV). 
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is 1.0 in our case.) To see this more clearly, we computed p(/) (i. e., histogram from 

the data with an interval !),,I= 0.005). This is plotted in Fig. 3.12. The outliers are 

usually classified into two groups: mild outliers and extreme outliers. For small N,, 

or even for large N, [- 0(1000)], the effects of a few extreme outliers are significant, 

especially for small scintillation index af. It appears that we have to remove the 

outliers, to obtain a good convergence of the estimators as N, increases. The effects 

of the outliers on variance are shown in Fig. 3.13. 

For this problem(</>~= 1.0), we have a!= 0.066 from the analytical calculation [cf. Eq. 

(3.112) or Fig. 3.2]. Thus, we define outliers as I?:. l0ut , with 

lout= < I > + 7 a1 = 2.8 , 

and we neglect the data for a specific realization, if any of the irradiance data from 

11 receivers is larger than 2.8. We note here that this procedure for removing outliers 

creates some difficulties in the general case for which af is unknown. More system-

atic approaches used in statistics, especially in the area of EDA (Exploratory Data 

Analysis), are recommended in that case. In EDA, the outliers are usually defined as 

samples larger than 0 3 + 3s or smaller than 0 1 - 3s , where 0 1 and 03 are lower and 

upper quartiles, ands is a sample standard deviation. In this way, we may define and 

remove outliers from stored irradiance data, even when al is unknown. 

The simulation results for cp~ = 1.0 [with the outliers (?:. 2.8) removed] are shown in 

Fig. 3.14, together with the result computed from the analytical expressions (3.112) 

and (3.113). We observe that c,(x) from numerical simulation and analytical calcu-

lation are in good agreement. We notice also that the scintillation index from simu-

lation, af = 0.068 is fairly close to af = 0.066 . Since the number of realizations N, is 

1500 in this case, from (3.93) the standard error for af is given by 

Se(a:) = af j2fii; = 0.0024. Thus, we observe that af is within the range, af ± Se(a:) . 
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For the data in Fig. 3.14, we chose a rather large W, i. e., W = 5.0, as mentioned be-

fore. The rule of thumb given by (3.119) [or (3.118)] says that for W,= 1.0 and 

( = 0.144, we need W ~ 2.0. The results for W = 2.0 (all the other parameters are the 

same and N, = 1950) are plotted in Fig. 3.15, which confirms the rule of thumb for edge 

effects. 

Next, the simulation results for¢~= 12.0 from W-K(LV) are shown in Fig. 3.16. Since 

af = 0.962 in this case, outliers larger than 8.0 (= < / > + 7 a,) have been removed. 

The number of realizations is 900. As expected, since W-K(LV) is not valid for 

( = 0.5, the normalized covariance and the scintillation index from simulation are 

quite different from those calculated from the analytical expressions. 

Up to now, we have discussed the results from W-K(LV). We will now discuss the 

results from W-K for the same phase screens (i. e., y = 13.856 and ¢~ = 1.0, 12.0). 

As discussed in Sec. 3.6.2, we choose dx = 0.04 and dp = 0.08. Also, we let 

df = 0.09766 ( = 1 /0.08x 128) for ¢~ = 1.0 and df = 0.08224 ( = 1 /0.095x 128) for 

</>~ = 12.0. The number of sampling points for the inverse FFT, N,m is 128. The values 

for W and Dare the same as before. We note that for the values of df given above, 

the receiver separations ( = 1/Nmdf) are 0.08 and 0.095 for¢~= 1.0 and 12.0, respec-

tively. 

lrradiance fluctuations for¢~= 12.0 at two receivers separated by 0.095 (t) are plotted 

in Fig. 3.17, and their magnified versions are shown in Fig. 3.18. We observe some 

correlations between the data from the two receivers. Outliers also appear in the 

irradiance data from W-K. Simulation results obtained without removing any outliers 

[cf. Figs. 3.19 and 3.20], however, indicate that the effects of the outliers are insig-

nificant. It turns out that outliers in this case are mild (i. e., the outliers are not ex-

cessively larger than /ovt). On the other hand, the outliers in case of W-K(LV) are 

extreme ( >> /0ut). We can explain this as follows. For each realization, eddy centers 
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Figure  3.14 Normalized  covariance  of  irradiance  vs  receiver  separation: y = 13.856, 

¢,~ = 1.0 (( = 0.144); W-K(LV). 
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Figure 3.15 Normalized covariance of irradiance vs receiver separation: y = 13.856, 
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Figure  3.16 Normalized  covariance  of  irradiance  vs  receiver  separation: y = 13.856, 
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Figure 3.18 Detailed view of Figure 3.17. 
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(including random signs, ± 1, for the eddies) are distributed in a different fashion. 

For any specific realization, eddy centers can be unusually grouped (possibly with 

unusual distribution of random signs), which is common in numerical simulation, 

which utilizes a random number generator. In the region, where the unusual local 

grouping occurs, effective local </>a (or() would be very large compared to an average 

value, and thus outliers appear. It follows that even for a phase screen with small 

(( ;$ 0.2), effective local values of ( can be larger than 0.2, and thus, in those regions, 

W-K(LV) introduces extra spikes [cf. Figs. 3.9 and 3.10], which results in extreme 

outliers. 

The simulation results for </>a= 1.0 and 12.0 (without removing outliers) are shown in 

Fig. 3.19 and Fig. 3.20, respectively. The number of realizations are 1500 for ¢a= 1.0 

and 2495 for ¢a= 12.0. The results for c,(x) from numerical simulation and analytical 

calculation are in good agreement. We note that c,(x) has larger errors around x = 0 

as we mentioned in Sec. 3.4. The scintillation index for </>a= 1.0 from both methods 

are fairly close to each other, i. e., af = 0.067 lies well within af ± Slat), where 

af=0.066 and Siat)= 0.0024. For <t>a=12.0, af=0.840 is quite different from 

af = 0.962. Our experience shows that for strong phase fluctuations it is not easy to 

obtain accurate results for af by numerical simulation, even though the normalized 

covariance of irradiance c,(x) comes out correctly. The standard error for N, = 2495 

and af = 0.962 is 0.027. It follows that af ~ af - 4.5 Siat). [Notice that if we remove 

the mild outliers mentioned above, then af becomes slightly sm1ller than this, and 

c,(x) remains almost the same.] It appears that it is more difficult to simulate af than 

c,(x) , in general. 
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Figure 3.19 Normalized covariance of irradiance vs receiver separation: y = 13.856, 

q,~ = 1.0 (( = 0.144); W-K. 
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Figure  3.20 Normalized  covariance  of  irradiance  vs  receiver  separation: y = 13.856, 

</>~ = 12.0 (( = 0.5); W-K. 
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Appendix A3.1 The Third-Order Approximation in the Phase Difference 

If we take the first two terms in the Taylor series expansion of the phase difference, 

<t,Cx0 + ; )- </,Cx0 - ; ), given by (3.50), then 

(A3.1) 

Substituting this in (3.49) and following the same procedure as in the first-order ap-

proximation, we obtain 

'F/x, 0) = 2~ ;__ I J00 ds e-iks[68- 6,,'(ox- L 68)] e' ! 6,," s3 
.J2rr n -oo (A3.2) 

x 8 -(ox - 'C 68//26x 2 , 

where we let ~(.x0) ~ ~" + ~,,'(x0 - .x,,0) and ~"(x0) ~ ~,," for each beam let. It follows 

that the irradiance IL(x) is given by 

(A3.3) 

Since the inner integral is in the form of the convolution integral, after replacing the 

terms in the brackets by their Fourier transforms and performing integration of the 

resulting expression with respect to the variables, we obtain 

IL(x) = f 00 d!J. e1o.; ~(Q) , 
-oo 

(A3.4) 

where 
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In the above equation, all the parameters are the same as in Sec. 3.2.1. 

Appendix A3.2 Two-Scale Expansion 

From (2.45), we have (using the bar notations): 

where 

A - -r (- -) (- s -) ·(- s -) 2 x, s; z =ux+ 2 . z u x- 2 , z 

- -

(A3.5) 

(A3.6) 

(A3.7) 

Including the first two terms in the series expansion of bn(x + ; ) - bn(x - ; ) , we 

obtain 

[ a . a2 .A a ~ (vi ; ( A)3 a3 ~ (-)] r-(- A 71 0 ~--1--:::-;::-,s~_unx,- 24 es ~unx 2 x,s;z 1 =, 
vZ OXOS vX ox (A3.8) 

where e = k-213 = (kt)-2!3, s = ks, and f z(x, s = ks; z) = I\(x, s; z). Here, we notice 

that there are two scales, s and es. Thus, we rewrite (A3.6) as 

{ a . a2 . -3/2 [ ~ (- e312 ;;"\ ~ (- e3;2 ;;"\]} r-(- A 71 o OZ -I OXOS -le unx+-2-s,-unx--2-s, 2X, s; z,= ' (A3.9) 

and solve the equation for f 2 [with the initial condition f z(x, s; 0) = r 20(x, s) = 

r20(x, s = s/k) ], using a perturbation-series expansion with two scales s0 = s and 
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' ' s1 = es. After somewhat lengthy manipulations [See, for example, Ref. 121], the ea 

terms in the perturbation-series expansion yield: 

{A3.10) 

where 

a a <1> - a It'q = a- + ea -:;-=-+on (xa) -::;--e ' 
Z OXa O a {A3.11) 

(A3.12) 

' ' -and F is related to rz(x, s; .z) = rz(x, s = ks; z) by 

{A3.13) 
I\ 

X F(xa, K1 = t:Ka, ea, S1 = eks; .z) = 0 . 

In (A3.11) and (A3.12), on<m>(xa) = 0°:: on(x0). Note that in this section, x0 and 80 rep-
Xo' 

resent xo(z) and Oo(z), not x(O) and 8(0) as defined in Sec. 3.2. From (A3.13), we can 

see that if F is not a function of K1 and s1, then it becomes the same as the WDF de-

fined as (3.19). If we neglect the correction term, It'c, then the resulting kinetic 

equation is the same as that from the Liouvilfe approximation. We denote the sol-

ution for the equation by Fq(x0, ea; z). Since F is not a function of K1 and s1 at z = 0, 

the initial condition is given by F(Xo, K1, Oo, s,; 0) = Fq(xo, eo; 0) . From (A3.11), the 

trajectory equations for x0 and ea are given by 

dOa a -
-d- = -a- on(xa) ' 

Z Xa 
(A3.14) 
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which are the classical G.O. trajectory equations. It follows that Fq can be calculated 
A A 

as before [cf. Eq. (3.41)]. Now, we let F = H Fq. It can be shown that F defined in this 

way is the solution of (A3.10), provided that H satisfies the equation, 

(A3.15) 

with the initial condition H(x0, K,, 80, s,; 0) = H0 = 1. Using the expressions for ft\ and 

!t' 0 , we can show that H can be obtained from the equation, 

(A3.16) 

The characteristic equations for K1 and s, are 

" ds 1 
dz = K1 ' (A3.17) 

where x0, in turn, satisfies (A3.14). 

It is difficult to solve the characteristic equations for s,(z) and K,(z) in the forward di-
A 

rection. To compute the irradiance, we need rix, s = O; z), i. e. , 

" J(x; z) = rix, s = o; z) 

- _1_ Joo d i,c,,x Joo d- -iXoKo Joo d8 F" (- 8 '7\ - 2n Ko e Xo e o , Xo, Ko, o; z J ' -oo -00 -oo 
(A3.18) 

where F1(x0, K0, 80; z) = F(x0, K1 = t:K0, 80, s, = O; z) . Thus, we can compute H by 

tracing s1 and K1 backwards with the conditions, s1(.z = [) = O and K,(z = [) = t:K0 • Let 

us introduce a new variable { = [ - z. We replace z in x0, 80, s1, K1, H by [ - {, divide 

the resulting expressions for s1 and K1 by t:K0 , and denote the results by x0, 00, s,, i<:1, 

-and H, respectively. We also introduce 

P = [3i/(t:K0)3] ln[H(O)/H(()J (A3.19) 
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It follows then that characteristic equations given by (A3.14), (A3.16), and (A3.17) 

becomes: 

-dxo. - d8o a -
d(= -ea ' d( = - axa c5n(xo) ; 

ds1 _ dK1 - <2> -d( = - K1 ' d( = - S1 c5n (xo) ; (A3.20) 

d/J 1 -3 (3) -
d( = - B S1 c5n (Xo) , 

where the corresponding initial conditions are x0(0) = Xa, Oo(O) = 0 0, s,(O) = 0, and 

/J(( = 0) = 0 . Note that Xa = x0(z = L), 0 0 = 00(z = L). Since X0 is only a function of X0 

and 0 0, i. e., X0 = x0(.X0, 0 0; (), so are S1 and {J. Let /J(Xa, 0 0; ( = L) = fJ.(Xa, 0 0) • Us-

ing the fact that H(( = 0) = H(z = L) and H(( = L) = H0 = 1 , from (A3.19) we obtain: 

(A3.21) 

A A 

from which F = H Fq (and thus F,) can be calculated. Substituting the resulting ex-
A 

pressions for F, in (A3.18), one can show that 

1 Joo Joo = 21r d0o d.Xo 
-C>O -(X) 

where Ai(x) is the Airy function defined as 

(3a)-1/3 Ai[(3a)-1/3 x] =-1-Joo dt e'(at3+xt). 
21t -oo 

(A3.22) 

(A3.23) 

For a one-dimensional Gaussian phase screen, we can calculate P. without any diffi-

culty, using the impulse approximation. After straight-forward but tedious calcu-

lations, we obtain 
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- - 3 - -Ps(X0, 0 0) ~ (k/2y) ~"(X 0 - L0 0) (A3.24) 

The expression for F/X0, 0 0) are given by (3.41), with x and (} being replaced by Xo 

and 8 0• Substituting the expressions for P. and Fq in (A3.22) and assuming that each 

beamlet is sharply peaked around (xn, On) [cf. Eq. (3.41)), we obtain 

(A3.25) 

where Pn = e P!'3(Xo = Xn, ea= en) ' and Xn and en are the same as in Sec. 3.2.2 [cf. Eqs. 

(3.46) and (3.47)]. Using Xno = n ~x = xn - [en, (On= ~n) [cf. Eq. (3.55)], we can show 

that 

(A3.26) 

Note that (A3.25) is the convolution integral. The Fourier transform [defined as (3.59)) 

of (an)Ai( - ax) is given by ~ e-ia 3o313 • Replacing the terms in the square brackets 

by their Fourier transforms, we obtain 

l&i) = f 00 dQ e;Q.x'~(Q) , 
-oo 

(A3.27) 

where 

~(Q) = ~: L [ 8 -ixnn 8 -L\x 2c;n212] [ 8-;p!n3/3] , (A3.28) 
n 

which is reproduced as (3.63) in the text. It is interesting to compare the complexity 

involved in the above derivation with that in Appendix A3.1, which is much simpler. 
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Appendix A3.3 Edge Diffraction 

For a screen with width W, we have from (2.76) and (2.78) (with the bar notations): 

(A3.29) 

where u0(x') can be represented as the inverse Fourier transform, 

Uo(x') = f)O dq eiqx' Uo(q) 
-oo 

(A3.30) 

Substituting (A3.30) in (A3.29), we obtain 

u(x, [) = J ~-Joo dq Uo(q) JW/2 dx' eiqx' /i<<x -x')2/2L 
21r:1L -oo - w;2 

(A3.31) 

Let us change the integration variable: t = x' - x . After a simple manipulation, this 

becomes 

u(x, [)=Joo dq eiqx' e;[q2/2"i< Uo(q) G(x, L, q) , 
-oo 

(A3.32) 

where 

(A3.33) 

Define the Fresnel integral as 
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(-) Jid): ein e12 . 9FX = <:, 
0 

(A3.34) 

Let~= g. (1 + ~ q). It follows then that G can be represented as 

G(x, L, 

(A3.35) 

which is reproduced as (3.121) in the text. 
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4. Two-Dimensional Gaussian Extended Medium 

In this chapter, the simulation schemes discussed in Chap. 2 are applied to a two·· 

dimensional Gaussian extended medium. The input is assumed to be a plane wave 

with unit amplitude. The covariance of irradiance, for which no analytical expression 

is available in this case, is computed by numerical simulation. The simplified model 

is used for realization of an extended medium, and for wave propagation calculations 

the wave-kinetic numerical method and the Huygens-Fresnel diffraction formula are 

used. The resu Its from both methods are compared to each other. As in the previous 

chapter, we will use the bar notations, whenever convenient. 

4.1 Simulation Model 

Let us now consider a plane wave propagating in a two-dimensional extended me-

dium with a Gaussian correlation function given by (3.1). The geometry for this 

problem is sketched in Fig. 4.1, where L represents observation distance. As in the 

one-dimensional phase-screen problem in Chap. 3, the fluctuating part of the 

refractive-index fluctuation, bn(x, z), can be modeled as a sum of weighted two-

dimensional Gaussian eddies, the centers of which are uniformly distributed over the 

rectangular region of thickness Land width W. For convenience, we reproduce (3.2) 

here: 
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Figure 4.1 Geometry for numerical simulation of two-dimensional Gaussian ex-

tended medium. 
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NE 

bn(x. z) = 'lo I qm e-2 [(x-x:..i2 + (z-z':,/J,r • (4.1) 
m=1 

where 17a = < c5n2 > 112, qm = ± 1, and (x;., z;,) represent eddy centers. The number 

density of Gaussian eddies per unit area is given by (3.3), i. e., N, = 4/rrf'l, and the 

total number of eddies NE is the same as in (3.4), except that now we have to replace 

0 in (3.4) by L: 

2 W N =---
x Ft 2 L N=---

z Ft (4.2) 

In the simplified model as shown in Fig. 2.2 or 4.1, the medium is divided into thin 

slabs, and all the eddies in each slab are projected into a single transverse line. We 

denote the number of layers and the thickness of each layer, respectively, by N and 

Z so that 

Z = L/N . (4.3) 

It follows then that the general model described by (4.1) becomes [cf. Fig. (3.11 )]: 

N NLE 

bn(x. z) = 110 I I qm, e-2 [(x-x';,,>2 + (z-z':,,,>2]/r 
1=1 m=1 

N 

= L c5n1(x, z) , 
/=1 

where Nu is the number of eddies for each layer, i. e., 

and (x;,,, z;.,) represent eddy centers for the I-th layer with 
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z~1 = Z (I - 1) , (/ = 1, 2, ... , N) . (4.6) 

With the impulse approximation, which is equivalent to the thin-screen approximation 

for each layer as discussed in Sec. 3.1 [cf. Eq. (3.12) and discussions following the 

equation], equation (4.4) may be simplified further as: 

N Nu ,; ( ) rx p '\' '\' -2 (X- x~,>2/.f -'( C ) un x, z ~ '\I 2 'Tor, L L qm 1 e u z - Zmi (4.7) 
/=1 m=1 

We assume that I bn I << 1 and Z is small enough (or N is large enough for a given 

L), so that the thin-screen approximation holds for each layer. As in the phase-screen 

problem, the phase fluctuation from each layer becomes an important quantity. We 

denote the phase fluctuation introduced by the I-th layer by cpi(x), which is related to 

bn,(x, z) by 

J~1 +Z/2 
c/>1(x) = k dz bn1(x, z) . 

~ 1-Z/2 
(4.8) 

From (4.8) and (4.4) [or (4.7)], we find [cf. Eqs. (3.6)-(3.8)]: 

Nu 

c/>,(x) ~ c/>oE _L qm, e-2(x-x~,>2;t2 ' (4.9) 
m=1 

where 

(4.10) 

We note that to describe an extended-medium problem completely we need three 

parameters [cf. Eq. (2.7)]. (In the parabolic approximation regime, we need only two 
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parameters as in the phase-screen problem, i. e., an electric field u(x, [) or moments 

of the field ["nm can be determined completely by two parameters [cf. Eqs. (2.8) or 

(1.1)], which will be discussed in detail later in this section. In our numerical simu-

lation, however, we need three parameters since we have to realize an extended-

medium.) A convenient choice of the parameters would be 170, k and [. To be 

consistent with the phase-screen problem in Chap. 3, however, we will use the pa-

rameters k, <Po and y (or () to describe an extended-medium problem. [Notice that 

for the phase-screen problem the parameters <Po and y (or () have been used.] Using 

the bar notations, we define y and ( as before [cf. Eq. (3.17)]: 

y = k/L , ( = 2</>o/Y . ( 4.11) 

For convenience, we also introduce a parameter VL such that 

YL=k/Z=yN. (4.12) 

For physical implications of the parameters y (or VL) and{, similar arguments as in the 

previous chapter [cf. discussions following equation (3.17)] will hold. The parameter 

<Po represents the (total) r.m.s. phase fluctuation at z = [. 

Now for <Po, we note that the following. For an extended-medium problem, in general, 

it is not easy to find an expression for ef>(x) (and thus an expression for ¢ 0) for a given 

c5n(x, z), where ef>(x) represents the phase fluctuation at z = L. One may therefore say 

that <Po is not a proper parameter in this case. In this thesis, however, we are inter-

ested in the random focusing region as mentioned in Sec. 3.1. Since random focus-

ing effects occur at (...., 1 and y >> 1, we choose y = 13.856 and O < { ;$ 1.0 in our 

numerical simulation. It follows that we are in the G.O. region (y >> 1) and ef>(x) is 

given by [cf. Eqs. (3.6) and (3.7)]: 
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cp(x) ~ k lL dz On(X, z) . (4.13) 

From this equation and (4.1), we find [cf. Eqs. (3.5), (3.9) and (3.10)]: 

,1..2 ,1..2 , T"'2 - 2 
'+'O = '+'OE Nz = ..J n: k L 'To • (4.14) 

The corresponding angle O(x) is related to cp(x) by (3.13), and the relationship between 

80 and <Po is given by (3.16). [If the equation (4.13) does not hold, then it would be 

better to use a different set of parameters, for example, 'To, k and [.] 

As in the phase-screen problem, we let k = 1.0472x107 (A= 0.6 µm) and t = 10-2 m 

throughout this chapter, so that the small-angle approximation (or the parabolic wave 

equation) can be applied. As mentioned before, to determine an electric field 

u(x, [) or moments of the field rnm we need only two parameters in the parabolic 

approximation regime (but for numerical simulation three parameters are required 

even in this case). Just for reference, possible choices of the two parameters will 

be discussed briefly. In the moment equation (1.1), 0nm is given by 

n n n m 

0nm =LL A(p, - P1) - LL [A(p, - P/) + A(pj - p/)] 
i=1 /=1 i=1 /=1 
m m (4.15) 

+ L L A(p,' - P/) ' 
i=1 /=1 

with 

A(p) = r)O dz Bn(p, z) . 
-<X> 

(4.16) 
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For a two-dimensional extended medium, we have to replace p, P;, p/, ~;,and~/ in 

(1.1), (4.15), and (4.16) by X, X;, x/, 02/oxf, and 02/ox/2, respectively, and Bn(x, z) is 

given by (3.1). One can therefore see from (1.1) that the parameters y and ( such that 

[see, for example, Ref. 50]: 

y=L/k(=1/y). " ,-- 2 ;-3 2 " (=.Jrr riok (=</Jo/Y), ( 4.17) 

would suffice to determine rnm completely. [Or equivalently, any two of the parame-

ters y, ( and ¢ 0 will do.] If one is interested in a field itself, u(x, [), then one may 

choose k/L and r,0k2, instead of y and ( [cf. Eq. (2.8)]. 

4.2 Wave-Kinetic Numerical Method 

In our numerical simulation, we approximate an extended medium by N layers of 

eddies, as discussed in the previous section. In this section, the irradiance at z = [ 

for a given realization of the extended medium will be computed, using the wave-

kinetic numerical method. For convenience, we introduce different variables for 

transverse coordinate x(z), angle O(z), and the WDF F(x, O; z), for each layer. The 

transverse coordinate for the I-th layer, x[z = (/- 1)ZJ, will be denoted by x,_1, which 

is shown in Fig. 4.2. 

The variable 81_ 1 represents the angle just before passing through the I-th layer, and 

O, represents the angle right after passing through the I-th layer. (Note that the im-

pulse approximation will be used in wave propagation calculations.) The corre-

sponding variables for the n-th ray center will be denoted by Xn.1-,, On,1-1• and On,, 

respectively. For the WDF's just in front of and behind the I-th layer, the notations 

F,_1(x1-1, 81_ 1) and F,+__1(x,_1, O,) will be used, respectively. In the observation plane, 

z =NZ=[, we denote XN, ON, XnN• (JnN• and FixN, SN) simply by X, 8, Xn, On, and 

FL(x, 0), to be consistent with the notations used in the previous chapter. 
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Figure 4.2 Simulation model which shows relevant variables for wave-kinetic nu-

merical method. 
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The input WDF is given by [cf. Eq. (3.21)]: 

- W -2 ::72 ;"<::72 2 F (x- 0 ) = __ o_ 9 -2x 0/W0 - k W080/2 o o, o r,::::: e , 
....;2rr. 

(4.18) 

where we let w0~00 for a plane wave. To compute the output WDF FJx, 0) and thus 

the irradiance /Jx), we will first use the Liouville approximation. Next, the idea of the 

higher-order approximations in the phase-screen problem will be extended to this 

extended-medium problem, to obtain a more accurate expression for /Jx). 

4.2.1 Liouville Approximation 

Let us first introduce new variables for difference coordinates in two-dimensional 

phase space: bx,= x, - xn,, b01 = O, - On, . As before, we denote a discretization inter-

val and the number of rays by ~x and N,, respectively. With these notations, the 

discretized input WDF can be represented as [cf. Eqs. (3.22) and (3.23)]: 

N, 

F- (- 0 ) _ A - OXo/2/lx - k Wo 680/2 I -z -z :-.::72 2 

o Xo, o - n e e (4.19) 
n=1 

where 6x0 = x0 - Xno with Xno = ntu, M)0 = e0 -:- Ono with Ono= 0 in this case, and 

Wo -2(n llx) 2/w2 A =-e 0 
n 2rr. (4.20) 

For calculation of ray trajectories, we utilize the impulse approximation for each 

layer, as in the single-layer problem (i. e., the phase-screen problem). It follows that 

the I-th layer introduces an angle impulse ~,(x) = -J:-d~~x) , and thus the angle im-
k X 

pulse for the n-th ray center becomes !J.n, = !J.,(x = Xn,1-1) [cf. Eqs. (3.29)-(3.32)]. Using 

the expression (4.9) for </:>,(x), we find 
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NLE 

~nl = - 2ji; 'To L qml dnm,I e- 2 ~m., • - - -c (dnm I= Xn /-1 - Xm1) · 
' ' 

(4.21) 
m=1 

Here we have assumed that the thickness of each slab, Z, is large enough, i. e., 

Z >> 1. [Note that Z is also assumed to be sufficiently small, in order that the sim-

plified model and the thin-screen approximation for each slab may be valid. For a 

specific value of Z used in numerical simulation, see Sec. 4.4.]. From the results of 

Sec. 3.2.1 [cf. Eqs. (3.39) and (3.40)], the coordinate transformation for the I-th layer 

is then given by 

[bx,_1 J = r [bx,] 
be nl be ' 

/-1 / 
(4.22) 

where 

(4.23) 

with 

~n,' = ~ dd~x) Ix- x-k X = n.l-1 

NLE (4.24) 
= - 2ji; 'To I qm, (1 - 4 cl;m.,) e-2 ~m., . 

m=1 

Since angle impulses and (transverse) ray bendings are added up for each layer, xn, 

and en, in the above equation [cf. bx,= x, - xn,, be,= e, - en,] are given by 

I 

Xnl = Xno + z I e np 
P=1 
I 

en, = e no + I ~np • 
P=1 
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where x,,0 = n~ and Ono= 0 in our case. 

Let us now introduce transformation matrices T,,,, (I= 1, 2, ... , N), such that 

Tn, =[A, a,] 
c, o, ( 4.26) 

= Tn, Tn,1+1 ... TnN · 

It follows then that initial coordinates transform into final coordinates by 

(4.27) 

where the simplified notations (i. e., X = XN, e = eN, x,, = x,,N and e,, = e,,N) are used, and 

bx= x - x,,, be= e - e,,. We note that I f,,,I = A,D, - B,C, = 1 for all/, since energy is 

conserved in the Liouville approximation, i. e., I T,,,I = 1 [cf. Eq. (4.23)1. Substituting 

(4.27) into (4.19), we obtain 

N, 

FL(x, 8) = I An e- [a. 6x2 -2a.s 6x 68+ as 682] ' 

n=1 

where 

" 2 2 C.Cx = CXx A1 + C.C9 C1 

~x8 = - (ax A1B1 + t.c9 C1D1) 

(4.28) 

(4.29) 

The irradiance at z = [ can be calculated by the wavenumber integration of FL(x, 8) 

[cf. Eq. (3.20)]. Using the fact that I f,,1 I = A1D1 - B1C1 = 1, after straight-forward cal-

culations we obtain 
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(4.30) 

where 

2 ( L )2 2 Sn= --- + en ' kW06x 
(4.31) 

with 

(4.32) 

In the above equation, the n-th ray center at z = [ is given by 

N 

Xn = Xno + z I e nl ' (Xno = n6x) (4.33) 
1=1 

As in the phase-screen problem, we let W0 - oo for a plane wave, and thus Sn in (4.30) 

may be replaced by en. It follows that the final expression for /t('x) from the Liouville 

approximation (or the first-order approximation) becomes 

1 - (x - x )2/2C~ 2 -- e n n 

lenl 
(4.34) 

Compare this with the corresponding expression (3.48) for a phase-screen problem. 

Only the expressions for en and Xn are different [cf. Eqs. (4.32), (4.33), (3.46), and 

(3.47)]. For a single layer (N = 1) with Z replaced by [, Tn1 in (4.26) becomes Tn in 

(3.39), and en and xn given above reduce to those for a phase-screen problem. 
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For later comparison with the results from higher-order approximations, we wish to 

find an expression for the spectrum of irradiance IL(Q) [cf. Eqs. (3.61) and (3.62)]. In-

troducing a Fourier transform as before, i. e., 

JL(x) = Joo dQ e,xn ~(Q) , 
-oo (4.35) 

we find 

- N, 

~(Q)= ~; I (4.36) 
n 

Notice the formal similarity between this and (3.62). 

4.2.2 Higher-Order Approximations 

In this section, we will extend the idea in Sec. 3.2.2 to an extended-medium problem 

[cf. Fig. 4.2]. Let us denote the electric fields at z = z, and zj, where z, = (/ - 1).Z, by 

u,_,(,Xi_,) and ui(,Xi_,), respectively. It follows then from the impulse approximation that 

(- ) (- ) i<P/..Xi-1) u1 x1_ 1 = u1_ 1 x1_ 1 e , (4.37) 

where </J,(x) is given by (4.9) with (x - ~,)ft being replaced by x - x;.,. From the de-

finition of the WDF (3.19), the WDF at z = zj is given by 

F-+ (- 8) _ _ 1_ f 00 d- -ikO,s [ I 6tp/..Xi-,, s) r" (- -. - -)J ,_ 1 x1_ 1, 1 - 27t s e e 2 x1_ 1, s, z1 , 
-oo 

(4.38) 

where 

~</JiCx,_1, s) = </J(x,_1 + s/2) - </J(x,_1 - s/2) , (4.39) 
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and 

(4.40) 

' Using the relationship between fz(x,_,, s; z,-) and the WDF at z = z,-, 

r2(x,_1, s; z, -) = k J'Y) d&,_1 /i<e,_,s Fi-1(.x,_1, e,_1) • 
-oo 

( 4.41) 

we obtain 

F,~1(X1-1, 81) = t J"° ds e-ikO,s ei6<P/.X1-1, s) 
-oo 

x [ L: de,_, .,,,,_,, F,_,(x,.._,, e ,_,)] 
(4.42) 

The phase difference 6<f>, in the above equation can be expanded in the Taylor series 

[cf. Eqs. (3.65) and (3.66)]: 

(4.43) 

with 

Ioo i1(,2m)(x,_1) ( s- )2 1 
- -2 m+ ' h1(x1_1, s) = 2k (2m + 1 )I 

m=1 
(4.44) 

1 d<f,/x) cP'"A, 
where A,(x) = k dx [cf. Eq. (4.21)] and '11217'>(.x) = dxl"' . 

Now for the first layer, we have 

F-+(- O ) __ 1_ f 00 d- -ik9 1So i 6<P1(x0, So) 
o Xo, 1 - 2n: so e e ' 

-oo 
(4.45) 
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which  is  obtained  by  substituting u0(x0) = 1 in  (4.36).  Application  of the  discretization 

scheme [cf. Eq. (3.52)] to  the  above  equation  leads  to 

F-+(- e ) -_1_ ~ Joo d- -1i<e,5o ; c5¢1(xo, So) G(- - ) 
o Xo, 1  - 211: ~ so e  e Xo -Xno ' 

n -oo 

(4.46) 

where Xno = n6x, and 

G(x) = _1_ e-i2/2ilx2 . 

Ji; 
(4.47) 

Using  the  series  expansion of~</>,, which  is  given  by  (4.43), we  obtain 

(4.48) 

be  made  arbitrarily  small  so  that ~x << 1), we  may  let 

~1(x"o) ~ ~n1 + ~n1 '(xo -Xno) 

h1(:Xo, so)~ hn1(so) + hn/(so) (xo -Xno) , 
(4.49) 

where ~n1 = ~1(Xno) and ~ni' = ::,a_ ~,(xo) I •o=•no [cf.  Eqs.  (4.21)  and  (4.24)]; 
uX0 

hnlso) = hlxnO• So) and hn/(so) =  }_ h,(Xo, So)l;o=•no. Note  that  for  a  single-layer  prob-
uXo 

lem  we  have  let ~(x0) ~ ~n + ~n'(x0 - xno) and h(x0, s) ~ hn(s) [cf. Eqs. (3.54) and  (3.67)], 

which  is  accurate  enough  for  a  sufficiently  small 6x. For  a  multiple-layer  problem, 

however,  even  the  more  accurate  approximations  given  above  introduce  some  er-

rors,  since  small  errors  from  each  layer  are  accumulated.  In  addition,  for  the  layers 

other  than  the  first  one  (i.e.,  for  the  layers  such  that  2 ~ ~ N ), we  need  another  kind 

of approximation  to  obtain  a closed-form  solution.  This  also  introduce  errors.  Details 
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will be discussed later in this section. Substituting (4.49) in (4.48) and using the no-

tations, c5x0 = x0 - xno and MJ1 = e, - en1 with en1 = ~n,, we obtain 

(4.50) 

For free-space propagation (of distance Z), we have [cf. Eq. (3.55)]: 

[ <>x,_1 ]=[1 -ZJ [<>x,], (/= 1, 2, ... ,N). Je,_1 o 1 Je, (4.51) 

Substitution of (4.51) in (4.50) gives rise to the WDF at z = z-: 

n 

~ 2~ I Joo dso eihn,(So) eihn1'(5c)(OX1-Z 08,) 

n -oo 
(4.52) 

where Xn1 and en, (which are included in bx, and <>8,) are given by (4.25). 

Next for the second layer, we have from (4.42), (4.43) and (4.52): 

F{(X1, 82) = ! I Joo ds1 eih2(X1, ~) e-ik~(82-6ix,)] 

n -oo 
(4.53) 

where Ft(x1, 82) is the WDF at z = z+. The Gaussian function G is given by 

G(T z-i:a ) __ 1_ -(x1 -xn1 -z oe,>2/2.ix2 
uX1 - uu 1 - r,:;:: e , 

\J 21t 
(4.54) 
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which is now sharply peaked around x1 = x,,1 + Z b81, i. e., I x1 - xn1 - Z b81 I ~ 
fu' << 1. It follows that to use the same level of approximation as in (4.49) we have 

to let 

62(x1) ~ 6ixn 1 + Z Ml1) + 62'(xn1 + Z b81) (x1 - xn1 - Z b81) 

h2(x1, s1) ~ h2(xn1 + Z b81, s1) + h2'(xn1 + Z b81, s1) (x1 - xn1 -z b81) , 
(4.55) 

which is valid if fu' << 1. This approximation, however, does not allow a closed 

form expression for IL(x) . In order to obtain one, we need further approximations. 

Note that 

where 6~J. = dP~~x1) I;_:: . A similar approximation holds for hi(x1, s1) • Since 6~] Xf 1-•n1 

oPhix,, s,) 1 and h~J(s,) = 0_ ;; -, have the same order of magnitude for all p, assuming Xf 1- n1 

that I Z b81 I - Z90 << 1 (where 90 is the r.m.s. angle fluctuation at z = [) we may 

simplify (4.55) further: 

62(X1) ~ 6n2 + 6n2' (X1 - Xn1) 
hix 1, s1) ~ hnis 1) + hn/(s 1) (x1 - .xn1) . 

( 4.57) 

Notice that for the N-th layer (i. e., at z = zN, where zN = (N - 1)Z ), the exponent of the 
_ J-1 _ J-1 

Gaussian function G becomes (bxN_1 +ZZ:: b8,)2/2fu'2 [cf. Eq. (A4.3)] and lzz:: b8,l -
~1 ~1 

(N - 1) Z90 ~ [90 • Thus, to apply the above approximation to all the remaining 

(N - 2) layers, [9 0 - ( must be small enough even for a sufficiently small fu'. Incor-

porating the approximation (4.57) in (4.53), we obtain 

Two-Dimensional Gaussian Extended Medium 124 



Ft(x1' 82) ~ ! I fx, ds1 e ihn2(S1) eihn2'(S1) OX1 e -iks1(682 - -1nz' OX1) 

n -oo 

X Joo d81 eiks1691 Fn1(X1, 81) ' 
-oo 

(4.58) 

where we used the fact that [cf. Eq. (4.25)): 

b8, - b8,_1 = 8, - 8,_1 - ~nl • (4.59) 

After free-space propagation (of distance Z) described by (4.51), the WDF at z = z3 ( 

z3 = 2.Z) becomes 

(4.60) 

See Appendix A4.1 for details. 

We repeat the above procedure for the remaining (N - 2) layers to obtain Flx, 8). In 

the final expression for llx), which results from the wavenumber (k8) integration of 

FJx, 8), all 8, integrals decouple and we obtain [cf. Appendix A4.1]: 

N 

i;_ ( Q) _ ~ ~ { e -li,,il e - t.,'[<l+ g,,(<l)]' /2} { e -I~ h"J' = ojil)]} (4.62) 

with 

N 

gn(n) = I b</>n/[s = cx,(nn • (4.63) 
1=1 

where the Fourier transform is defined as (4.35), and cx,(Q) satisfies the recursive re-

lation, 
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N 

cx,=cx1+1+[n+ L b</:>n/(s=cxp)]IYL, (/=N-1, N-2, ... ,1). 
P=l+1 

In the above equations, 

b¢,n,(s) = b¢,,(x1_ 1 = xn,,-1, s) 

b¢,n/(s) = 8! 6¢,,(x1_1, s)lx =x x,_1 /-1 n,/-1 

hn,(s) = h1(x1_ 1 = xn,1-1, s) = b¢,n,(s)- kt1.n,s , 

(4.64) 

( 4.65) 

and xn is given by (4.33). [For b¢,,(x,_1, s) and h,(x,_1, s), see Eqs. (4.39), (4.43) and 

(4.44).] Representing hn, in terms of b¢,n,, we may rewrite (4.62) as: 

N N 

-,L(n) = 11.2n:x ~ -i [xn!l-JILL(Zon,> ex,] - 6.x2[n+ 9n(!l)]2/2 -i'i, o<Pnl.cx,) .:." '--' e ,= 1 e e 1=1 , ( 4.66) 
n 

which is more convenient for numerical calculation. The equation (4.62) [or (4.66)] is 

the least limited closed-form expression for /L(Q) we can find using the wave-kinetic 

numerical method. In what follows, we will denote the wave-kinetic numerical 

method with the approximation (4.57) [which leads to the above expressions for 

l,(Q), (4.62) or (4.66)] by W-K(III), and the wave-kinetic numerical method with the 

Liouville aproximation [cf. Eq. (4.34) or (4.36)] by W-K(LV). In the above derivation, 

we have assumed that L80 - ( is not large (and 11.x << 1.) Numerical calculations in 

Sec. 4.4.2 indicate that W-K(III) is valid for ( ;$ 1.2, which seems to be sufficient for 

our purpose. (Note that we are interested in the random focusing region, 

0.5 ;$ ( ;$ 1.0, where wave statistics are not well understood.) 

The irradiance spectrum IL(Q) from W-K(III) looks somewhat complicated, and is not 

easily expressed as the product of the expression (4.36) from W-K(LV) with a cor-
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rection factor. However, further simplified expressions can be obtained. First, let us 

neglect hn,' in b</>n,', i.e., let b¢n,'(s) = k!ln,'s + hn,'(s) ~ k!ln,'s [cf. Eq. (4.65)], and de-

note the resulting a., by ( ~ )ix, . Note that &, is now a constant, not a function of Q 

[see below]. This simplification is equivalent to the approximation, say for the second 

layer [cf. Eq. (4.57)]: 

ll2(X1) ~ lln2 + lln/ (X1 - Xn1) 
hix1, s1) ~ hn2(s1) , 

(4.67) 

which is the same approximation as in the phase-screen problem [cf. Sec. 3.2.2]. 

Replacing b<f>n,'(s) in (4.63) and (4.64) by k!ln,'s, after some manipulations we obtain 

[cf. Appendix A4.2]: 

N 

~(Q) - : ~ [ .-,X,,il .-"''c:n'12] [ e -,b,,;:,<>IY,>J (4.68) 

where Xn and Cn = D1 are the same as in the Liouville approximation [cf. Eqs. (4.32) 

and (4.33)), and 

a., = a,/( - l) 
N 

= a.1+1 + (1 + Z L !ln/ a.p) , (a.N = 1) . 
(4.69) 

P=l+1 

For numerical implementation, it is more convenient to use the recursive relations for 

D, and fx., [cf. Eq. (A4.34)] which allows the simultaneous calculation of&, and D, (and 

a.N = 1 ' ON= dN = 1 + z !).nN' 

a.,= 'a.,+1 + D1+1 

Equation (4.68) may also be rewritten as 
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( 4. 71) 

The wave-kinetic numerical method with the approximation (4.67), which leads to the 

expression (4.68) [or (4.71)], will be simply called W-K(II). Note the similarity between 

(4.68) and (3.69). For a single layer, ex1 = 1 and (4.68) reduces to (3.69). Comparing 

(4.68) with (4.36) from W-K(LV), we now can see clearly the correction factor, i. e., the 

former is a sum of products of h0>(Q) = e-ixn° e-~ 2c~c212 with correction factors 

The correction factor (in fact the parameter ex,) in (4.68) can be simplied further. 

Neglecting lln,' in the expression (4.69) for ex,, we may approximate ex, as 

a1 ~ N + 1 - / . (4.72) 

T'·, .: wave-kinetic numerical method with this additional approximation will be called 

W-K(I). The resulting irradiance spectrum is given by 

(4.73) 

or 

(4.74) 

where we have used the fact that [cf. Eqs. (4.71) and (4.33)]: 
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N I 

Xno = Xn - Z L L '1np 
1=1 P=1 

N 

~ Xn - Z L (N + 1 - /) '1np . 
1=1 

(4.75) 

In equation (4.73), which is the simplest expression with a higher-order correction to 

W-K(LV), the term in the brace is the correction term. Notice that in the expression 

(4.73), 11n,' in en= D1 (or D,) is not neglected. It is just for formal comparison with the 

result from W-K(LV) [cf. Eq. (4.36)]. To be more consistent, we have to neglect 11n,' in 

en (or D,) as well. In that case, D, = 1 for all /, which can be seen easily from (A4.27), 

and thus en= 1. In view of numerical calculations, however, it does not make any 

difference since the Gaussian term, e-;;;;2c~c:i212, can be neglected for a sufficiently 

small L\x [see below]. 

Up to now, we have discussed several different levels of approximations in the 

wave-kinetic numerical method, i. e., W-K(LV), W-K(I), W-K(II), and W-K(III). The cor-

responding expressions for irradiance or irradiance spectrum are given respectively 

by (4.36) [or (4.34)], (4.73) [or (4.74)], (4.68) [or (4.71)], and (4.62) [or (4.66)]. The va-

lidity of those approximations will be discussed in Sec. 4.4.2. In numerical calcu-

lations, we compute only the scattered part of the spectrum as in the phase-screen 

problem [cf. Eq. (3.71)], i.e., 

-/Ls(Q) = F{IL(x) - 1} 

- (A) L.l)I -iXno.O - !!.x .a /2 A~ I - -2 2 

= IL :." - 2n e e ' 
(4.76) 

n 

where F represents the Fourier transform operation defined by (4.35). Finally, we 

note the following. Since nm,x - y, I en I - 1, and In+ gn(Q) I - I cn~21 ;5 y, the 
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pressions given above can be neglected for a sufficiently small ~ ( << 1/y), as in 

the phase-screen problem. 

4.3 Huygens-Fresnel Diffraction Formula 

Consider the simplified model for an extended medium, which represents an ex-

tended medium by N layers of Gaussian eddies as shown in Fig. 4.2. The idea for a 

single-layer problem in Sec. 3.3 can be easily extended to a multiple-layer problem. 

Let us denote the electric field at z = z, by u,_1(x), where z, = (I - 1)Z. It follows then 

that u,(x) represents the field behind the I-th layer, and uix) is the field in the obser-

vation plane, z = [. Applying the result from the single-layer problem to each layer 

repeatedly, we obtain 

u1(x)= J°" dq e;qie-iq2/2YLLJ1-1(q)' (/=1, 2, ... ,N), 
-oo 

(4.77) 

with 

D (q)=- 1-J00 dx e-iqi[u (x'eii;~i>] 1-1 27t 1-1 ") ' 
-oo 

(4.78) 

where u0(x) = 1, YL = k/Z = kf2/Z, and <l>,(x) is given by (4.9). We may represent this 

symbolically as: 

Uo(X) = 1 

(-) _ z:-1{ -/q 2/2yL F [ (v\ /ip~i>J} u1 x - r q e x u1_ 1 x, e , (/ = 1, 2, ... ,N) , 
(4.79) 

which indicates that two Fourier transform operations are required for each layer. 

From (3.83) and (3.82), we have 
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(4.80) 

with 

NFFT 

UI\ "\' -2-iri (m-1)(k-1)/NfFT iq,kl 
m,1-1 = ~ e uk,1-1 e , (4.81) 

1<=1 

expression for M is given by (3.84). Now, an existing algorithm can be applied di-

rectly to (4.80) and (4.81). 

As we mentioned briefly in Chap. 1, the expression (4.79) is equivalent to the split-

step-Fourier algorithm applied directly to the parabolic wave equation (2.8) (with the 

simplified model for bn) [90, 91]. The resulting expression from the split-step-Fourier 

algorithm is given by [cf. Appendix A4.3]: 

(4.82) 

which is valid for ~ << 1 due to the approximate integration involved in (A4.38), i. 

e., 

rz+iu 
J = k. J.. dz' bn(x, z') 

z (4.83) 

~ k bn(x, z) ~ . 

In principle, this algorithm may be applied to the general model for bn(x, z) [cf. Eq. 

(4.1)], but it would take excessively large amount of computing, since !lz << 1 and 

the two-dimensional function bn(x, z) has to be computed. On the other hand, in the 
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expression (4.79) the interval Z can be made relatively large (since we use the ana-

lytical expression for the integral J, i. e., <l>,(x) [cf. Eq. (4.8) or discussions given be-

low]), and the random phase <l>,(x) is a one-dimensional function. [Numerical results 

in Sec. 4.4.3 indicate that z ~ 80 >> 1 for the given values of the extended-medium 

parameters.] Now, if we use the simplified model for c5n(x, z) [cf. Eq. (4.4) or (4.7)] in 

(4.83) or (A4.38) with the corresponding notational changes, i. e., dz. - Z, 
z, - z, = (I - 1)Z, and c5n(x, z') - c5n,(x, z'), then the integral J can be calculated ana-

lytically (i. e., J = <l>,(x) [cf. Eq. (4.9)]), and (4.82) becomes 

F { (- - )} -iq 2/2yL F { (- -) hpf..x>} x U X, Z1+1 = e x U X, z, 8 , (4.84) 

which is the same as (4.79) where u,(x) = u(x, z,+1) • 

4.4 Numerical Simulation 

Some important input parameters for numerical simulation are discussed briefly in 

Sec. 4.4.1. The implementations of the wave-kinetic numerical method and the 

Huygens-Fresnel diffraction formula are studied by single-realization calculations, in 

Sec. 3.6.2. The validity of the various different levels of approximations involved in 

the wave-kinetic numerical method, i.e., W-K(LV), W-K(I), W-K(II), and W-K(III), is also 

discussed, by comparing the results for single realizations with those from the 

Huygens-Fresnel dffraction formula (which will be simply referred to as H-F in what 

follows). (Here we assume that results from H-F are accurate enough for a suffi-

ciently small Z [cf. Sec. 3.6.2].) Finally in Sec. 3.6.3, we present simulation results for 

af and c,(x) from W-K(I) and H-F. 
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4.4.1 Important Input Parameters for Numerical Simulation 

As in the phase-screen problem, let us denote the width of an extended medium and 

the region occupied by receivers, respectively, by W and W,. Similar edge effects 

occur in this case, and from the result in Sec. 3.6.1 we have the criterion for the 

margin of the screen width: 

(4.85) 

In our numerical simulation, we put 11 receivers separated by approximately 0.1 t so 

that W, ~ 1.0, and W must be chosen by the above criterion. It follows that regarding 

an extended medium we have five important parameters: k (which is actually fixed 

as 1.0472x10 5 ), y (or [), ¢0, W and NL [cf. Sec. 4.1]. (Note that the parameter C is 

determined by C = 2¢ 0/y, once ¢ 0 and y are given.) The parameter NL represents the 

number of layers, which is denoted simply by N in the preceding. For a given [, NL 

must be large enough so that the numerical results converge to certain values. For 

this, we perform a convergence test for given values of the parameters k, y, <Po (and 

W). 

For parameters related to the implementation of the methods for wave-propagation 

calculation, the same notations as in the phase-screen problem will be used, i. e., 

/lx, ~f (= ~q/2n or ~0./2n), ~p. N,, NFFT and N,. The parameters N,, NFFT and N, repre-

sent the number of rays (in the wave-kinetic numerical method), the number of sam-

pling points for a FFT, and the number of realizations, respectively. The parameter 

~f denotes the sampling interval in the spatial frequency domain for a FFT, and /lx 

stands for the ray spacing in the wave-kinetic numerical method, or the sampling in-

terval for a FFT in the Huygens-Fresnel formula (i. e., /lx = 1/NFFT~f) [cf. Sec. 3.6.1]. 

Finally, the parameter ~p represents the interval of discrete data points (<Pk or ~k) for 

the linear interpolation scheme used for the wave-kinetic numerical method [cf. Sec. 
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3.6.1 ]. The criteria for choosing the values of the parameters are discussed in detail 

in Secs. 3.6.1 and 3.6.2. 

4.4.2 Single-Realization Calculations 

In this section, we first discuss the implementation of the methods for wave-

propagation calculation, briefly. Next, the results from the several different levels of 

approximations in the wave-kinetic numerical method are compared with those from 

H-F. The region of validity of W-K(LV), W-K(I), W-K(II) and W-K(III) is also discussed. 

The expressions used for numerical calculations are as follows: (4.34), (4.74), (4.71) 

and (4.66), respectively for W-K(LV), W-K(I), W-K(II) and W-K(III); (4.80) and (4.81) for 

H-F. [Notice that for W-K(I), (II) and (Ill) the corresponding expressions are actually 

used together with (4.76) as mentioned in Sec. (4.4.4).) 

The values of the extended-medium parameters in this section are: [ = 2560 11: (or 

y = 13.021 with k = 1.0472x105 ), 1.0 ~<Po~ 10.0, W = 5.0, and NL= 100. To determine 

the value of NL, we have performed a convergence test. For the given values of the 

extended-medium parameters, NL= 100 seems to be large enough [cf. Fig. 4.3]. In 

single-realization calculations, we compute llx) for Ix I ~ w."/2 (where w." > W is 

such that /Ls(x) = IL(x) - 1.0 = 0 for Ix I > w.,,/2 ) to see all the scattering effects from 

an extended medium with width W, and thus we need &f $ 1/W.,, to avoid the aliasing 

effects for an inverse FFT, as in the phase-screen problem. Numerical results indi-

cate that for the above values of the parameters, w.,, $ 8.0 [cf. Figs. 4.5 - 4.9]. Al-

lowing for some margin, we let w.,, = 10,0 (but the irradiance data IL(x) are plotted 

only for lxl ~4.0 ), and thus we choose Af~ 1.0 in our numerical calculations. 

The values of the parameters for wave-propagation calculations are the following. 

We choose (&x)wK = 0.04 and (&x)HF = 0.08 for W-K(I), (II), (Ill) and H-F, respectively. 

For W-K(LV), we set &x = 0.005. The reasons for choosing different values of &x are 

Two-Dimensional Gaussian Extended Medium 134 



,... 
_J 

' X 

-

8 
CD 

X H - F C 100) 

8 ~ H - F (800) 
U) 

8 
~ 

8 . 
N 

8 . 
0 

-3.00 -2.00 -1.00 -4.00 0.00 1.00 2.00 3.00 4.00 

X/L 

Figure 4.3 Convergence test for the layer thickness. Instantaneous irradiance 
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5.0 (( = 0.768) ; W-K(LV), W-K(I), W-K(II), W-K(III) and H-F. 
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Figure 4.7 Instantaneous realization of irradiance at z/t = 2560 1r (y = 13.0) : ¢,0 = 

2.0 (( = 0.307) (top), ¢,0 = 4.0 (( = 0.614) (bottom); W-K(I) and H-F. 
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discussed in Secs. 3.6.1 and 3.6.2. The interpolation interval 11p is chosen as 0.08. 

For W-K(I), (II), (Ill) and H-F, we choose Nm= 128 and 11f= 0.09766 [= 1/(0.08x128)], 

where Nm is chosen such that Nm~ We,,/11x with We,,= 10.0 . For the given 11x and 

We,,, the number of rays [for W-K(LV), W-K(I), (II), (Ill)] is determined by N, ~ We,,/11x. 

The irradiance spectra IL(() for <Po= 5.0 and 10.0 are plotted in Fig. 4.4. The entire 

spectral content of IL(() is contained well within f :$ fm,., = Nmx11f/2 = 6.25, which in-

dicates that the NFFT for W-K is large enough for the given 11f. It also indicates that 

(!1x)HF = 0.08 is small enough for H-F, since 1/2fm,x, u ~ 1/fm,x,I;;:;:; 0.16. 

The irradiance data for <Po= 5.0 from W-K(LV), W-K(I), (II), (Ill), together with those 

from H-F, are plotted in Fig. 4.5, which shows the errors involved in the different lev-

els of approximations in the wave-kinetic numerical method. We note that errors (i. 

e., extra peaks) occur in the place where irradiance peaks appear, as in the phase-

screen problems. More detailed numerical calculations [cf. Fig. 4.6 - 4.9) indicate that 

W-K(LV), (I), (II) and (Ill) are valid for ( :$ 0.2, 0.5, 0.9, and 1.2, respectively. As we 

mentioned before [cf. Secs. 3.1 and 4.2.2], W-K(III) is sufficient for our purpose, since 

we are interested in the random focusing region (0.5 :$ ( :$ 1.0), where wave statistics 

are not well understood. Note that wave statistics in the two limiting cases, i. e., in 

the weak-fluctuation region ( ( << 1, af << 1 ) and the saturation region ( 

( >> 1, af ~ 1 ) are reasonably well understood. 

Finally, we wish to mention computing times, briefly. In the array processor FPS 164, 

the CPU times for the data in Figs. 4.5 - 4.9 from W-K(I), (II), (Ill), and H-F are 49.57, 

59.05, 66.31, and 35.59 secs, respectively. Notice that for Nm= 256 (with 

11f = 0.09766), the corresponding CPU times are 59.19, 69.68, 91.84, and 70.56, re-

spectively. The data indicate that computing times are comparable. 
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4.4.3 Computation of Statistics from Many Realizations 

In this section, the normalized variance of irradiance al and the normalized 

covariance of irradiance c,(x) (which are defined in Sec. 3.4) are computed by nu-

merical simulation. For wave-propagation calculations, W-K(I) and H-F are used, and 

the simulation results are compared to each other. The values of the extended-

medium parameters are y = 13.856, </>~= 1.0, 5.0 (( = 0.144, 0.323), W = 5.0, and 

NL= 100 . The values of the parameters for wave-propagation calculations are the 

same as in the previous section. 

lrradiance fluctuations for</>~= 5.0 at three receivers separated by 0.08 (t) are plotted 

in Fig. 4.10, and their enlarged versions are shown in Fig. 4.11. Some correlations 

among the three data sets are observed. Let us define outliers as before, i. e., 

I~ /0ut = <I>+ 7 a, with < / > = 1.0 . Since al is unknown in this case, we may use 

al obtained from numerical simulation. If we use al from W-K(I), i. e., al= 0.128 

(a,~ 0.358) [cf. Fig. 4.13], then /out= 3.5. The irradiance data in Fig. 4.10 indicate that 

there appear outliers, but they are mild outliers (i. e., not excessively larger than /0ut) 

[cf. discussions in Sec. 3.6.3]. 

The simulation results for </>~ = 1.0 and 5.0 (obtained without removing outliers) are 

shown in Fig. 4.12 and Fig. 4.13, respectively. The number of realizations are 1500 for 

both cases. The results from W-K(I) and H-F are in good agreement, which confirms 

the region of validity of W-K(I) (( ;$ 0.5). The scintillation index from W-K(I) and H-F 

are fairly close to each other: for <I>~= 1.0, al= 0.0213 and 0.0215, respectively; for 

<I>~= 5.0, al= 0.128 and 0.123, respectively. The standard error of al is given by 

Slan = alM [cf. Eq. (3.98)]. Since al is unknown, we may use al, instead, i. e., 

SE(al) ~ MM . For N, = 1500, Slan is approximately 3.7 % of the corresponding 

values of al . 
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Figure 4.10 lrradiance fluctuations at 3 receivers separated by 0.08 t : y = 13.856, 

cp~ = 5.0 (( = 0.323); W-K(I). 
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Figure 4.12 Normalized covariance of irradiance vs receiver separation: y = 13.856, 

<N = 1.0 (( = 0.144); W-K(l) and H-F. 
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<P~ = 5.0 (( = 0.323); W-K(I) and  H-F. 
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Appendix A4.1 Higher-Order Approximation: W-K(III) 

When the number of layers becomes large (say, N ~ 5), the resulting expressions for 

JL(x) or FL(x, 8) can not be manipulated easily. Thus, we first calculate IL(x) for three 

layers, and then generalize the result to N layers. 

For convenience, we introduce h", and t/ such that 

(A4.1) 

where 

hn,(s) = h,(x = Xn /-1• s) , hn/(s) = aa_ h,(x, s) Ix--x- , ' X - n,1-1 (A4.2) 

and h,(x, s) is defined by (4.44) [or (4.43)). From Eqs. (4.60), (4.58) and (4.52) in the 

text, we have for the second layer [i. e., at z = z3 = (2Z)-]: 

F- (- 8 ) = _1_ k ~ Joo ds- eikhnz(S,) Joo ds- eikhn,(So) 
2 X2, 2 2n 2n ~ 1 o 

n -oo -oo 
X 8 -ik{s, 602 - [~nz'S, + hn2'(s,)](ox2 - Z 602)} 

X J00 d81 eiks,6e, e-ik{5ooe,-[~n1'So+hn1'(5o)][(OXz-l OOz)-Z oe,J} 
-00 

(A4.3) 

where ll",' is given by (4.24) and bx,= x, - x"'' b8, = 81 - On, [for xn, and 8"'' see Eq. 

(4.25)]. Now for the third layer, we can find Flx 3, 83) by following exactly the same 

procedure as for the second layer. The result for Fix 3, 83) will not be presented here, 

since it is too complicated. For simplicity, we use the notations defined by (4.23), i. 

e., 

c1 = - lln/ , d1 = 1 + Z lln/ = 1 + b c, , (b = - Z) . (A4.4) 
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Performing wavenumber (k() 3) integration of Fix3, () 3), we obtain 

lt('i3) = ( ! )3 ~ L: ds2 /i<t1n3(Sz) L: ds1 /itinz(s,) L: dso eikhn,<So) 

x /ii ox3 {34 J':,o d03 0 -,ic 00 3 /33 JO<) d()2 0 -ik 002 {32 f 00 d()1 0 -;ic 00 1131 

-oo -oo -oo 

where the Gaussian function G(x) is given by (4.47), and 

A A A 
Piso, S1, S2) = - (c1 So+ C2 S1 + C3 S2) + [hn1'(so) + hn2'(s1) + hn3'(s2)J · 

(A4.5) 

(A4.6) 

Introducing a new integration variable~= - b('5()3 + <5()2 + <5()1) for ()3 and using the fact 

that p4 = (s2 - P3)/b , after a simple manipulation we may rewrite (A4.5) as: 

IL(X3) = I Joo ds2 eikhn3(Sz) Joo ds1 
n -oo -oo 

ikhnz<s,) Joo d- ikhn1(So) e s0 e 
-oo (A4.7) 

X J1 J2 J3 • 

where 

(A4.8) 

J (- - ) _ k Joo d() -ik <Pz - /J3) 
2 S1' S2 - 2n 2 e ' 

-oo 
(A4.9) 

and 
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J (- S-2) = ...!J:__1 _Joo dJ! [e-iYLSi~J 3 X3, So, S1 • ~ 'o 
2n: ..J 2n: -oo (A4.10) 

with YL = k/Z = kt2/Z. Substitution of (A4.6) in (A4.8) and (4.9) gives rise to 

(A4.11) 

and 

where c5(s) represents the Dirac delta function. We note that J3 is in the form of a 

convolution integral. Compare this with (3.58). Applying the convolution theorem to 

(A4.10) as in Chap. 3 [cf. Eq. (3.60)], we obtain 

J3 = ~: Joo dQ ei!l(x3-Xn3) c5(s2 + ~ ) e-tv<2(k/34-n}2/2 . 
-oo 

(A4.13) 

We now substitute (A4.11)-(A4.13) in (A4.7). The resulting equation contains three 

delta functions, and thus after the integration with respect to s0, s1 and s2, the param-

eters s,_1, (/ = 1, 2, 3), are replaced by the corresponding expressions determined 

from the three delta functions. Let us denote the resulting expressions for s,_1 by 

- rx1• It follows then that 

IL(x3) = Joo dQ eix3n li_(Q) ' 
-oo 

(A4.14) 

with 
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where 

and 

9n(Q) = - Pisa= - rx1, S1 = - 0:2, S2 = - 0:3) 
3 

= - I k [c, s,_1 - hn/(s,_1n . 
i=1 

I\ I\ 

CX1 = d2 0:2 + d3 0:3 - b hn2'(0:2) - b hn3'(ri.3) · 

(A4.15) 

(A4.16) 

(A4.17) 

In the derivation of the above equations, we have used the oddness of hn,(s) 

[ = hn1(s)/k] and t/(s) [cf. Eq. (A4.1)] and (A4.2)]. Replacing band d, in (A4.17) by 

b = -z = - k/yL and d, = 1 +be,= 1 - kc,/YL [cf. Eqs. (4.12) and (A4.4)], and using the 

definition of '5</Jn,'(s) = J_ t5</)(x, s)I,-, [cf. Eqs. (4.43), (A4.1) and (A4.4)], i. e., 
uX - n,/-1 

'5</Jn,'(s) = klln,'s + hn,'(s) = -k[ci5- hn,'(s)], we may rewrite (A4.16) and (A4.17) as: 

N 

gn(Q) = L '5</Jn,'(a.,) • (A4.18) 
/=1 

and 

ri.3 = Q/YL 
rJ.2 = rJ.3 + [Q + t5</Jn3'(a.3)]/YL (A4.19) 
a.1 = rJ.2 + [Q + '5</Jn2'(a.2) + '5</Jn3'(ri.3)]/YL · 
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Now, we generalize this result to the N-layer problem. With the simplified notations, 

JL(XJ = Joo dQ eixQ li_(Q) ' 
-oo 

(A4.20) 

with 

N 

li_(Q) = ~: I -ix Q _ .lx2[Q+ g (Q>J2,2 -iI h"f..rx,> e n e n e 1=1 (A4.21) 
n 

where 

N 

9n(Q) = L '5</>n/(aJ , (A4.22) 
1=1 

and the recursive relation for rx, is given by 

N 

ex,= <X1+1 + [n + I '5</>np'(cxp)] f YL 
(A4.23) 

P=l+1 

[Calculations for N = 4 have been carried out, and the resulting expression is con-

sistent with the generalized ones given above.] 

Appendix A4.2 Higher-Order Approximation: W-K(II) 

-For convenience, the definitions for matrices Tn, and Tn, given respectively by (4.23) 

and (4.26) in the text will be reproduced here: 
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(A4.24) 

and 

Tn, = [A, a,] 
c, o, (A4.25) 

= Tnl Tn,1+1 ··· TnN · 

We note a few important properties of Tn, and Tn,. First, I Tn, I = a,d, - b,c, = 1, and thus 

I iJ = 1. Next, from the definition, i.e., 

(A4.26) 

where we simply let a,= 1 and b, = b ( = - Z), one can show easily that 

N-1 N 

o, = DN + I Cp Bp = 1 + I Cp Bp , (A4.27) 
P=I P=I 

and the recursive relations for 81 and D,, 

BN = b ' DN = dN 

a,= B1+1 + b D1+1 
1 

D1=b(d 18 1 - 8 1+1) 

(A4.28) 

Now, let b</Jn,'(s) = klln,'s + hn,'(s) ~ klln,'s (=kc;§) and a,= ( ~ ) &., in (4.64) and 

(4.63). It follows then that 

fl 
aN= 1 

N 

~I= ~/+1 + (1 + b I Cp ~p) , 
(A4.29) 

p=l+1 

and 
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N 

9n(.Q) = (b I c, a,) n . (A4.30) 
/=1 

After a simple manipulation, we find 

a1 = 81/b = Bi/( - Z) , (A4.31) 

and 

(A4.32) 

where (A4.27), (A4.28) and the definition of en, i. e., en= D1 [cf. Eq. (4.32)], are used. 

To find an expression for IL(Q), we substitute (A4.32) and fx.tJ,/yL, respectively, for 

9n(Q) and a, in (4.62). The result is that 

N 

~(Q) = ~= ~ [ e -1X"n e - ox'c)n'12] [ 8 - 1b ""1:,n1,,l J (A4.33) 

where Xn is given by (4.33), and en ( = D1) and &, can be calculated from the recursive 

relations for D, and&, [cf. Eqs. (A4.27) and (A4.31)]: 

aN= 1 , DN= dN 

a,= a,+1 + o,+1 (A4.34) 

o, = d, a, - a,+1 , (d, = 1 + Z t:.n,') 

Appendix A4.3 Split-Step-Fourier Algorithm 

The parabolic wave equation for a two-dimensional problem is given by [cf. Eq. 

(2.8)]: 
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a c- :;-'I [ i a2 .- .. c- -)] c--) a- U X, z, = -=---2 + Jk un X, Z U X, Z , 
z 2k ax (A4.35) 

where the bar notations are used. Using the operator notations A and B such that 

1 a2 
A=-- B=k bn(x, z), 

2"i< ax2 • 
(A4.36) 

we may rewrite (A4.35) as 

~~ = i (A+ 8) u (A4.37) 

We use the split-step algorithm to solve the above equation, i. e., 

1: Hz 
_ I J (A+B) dz' 

u(x, z + d.Z) = e 1 u(x, z) (A4.38) 
i Ill (A+B) (- -) :::::: e U X, Z , 

which would be valid for a sufficiently small d.Z. If we now take the Fourier transform 

[cf. definition (3.78), (4.78) or (4.35)] of the above equation with respect to x, then the 

operator A can be replaced by - q2/2k and the result becomes 

(A4.39) 

which is called the split-step-Fourier algorithm [90, 91]. 
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5. Concluding Remarks 

The propagation of optical plane waves through a one-dimensional Gaussian phase 

screen and a two-dimensional Gaussian extended medium has been simulated nu-

merically, and wave statistics, i. e., the normalized variance of irradiance al and the 

normalized covariance of irradiance c,(x), have been calculated from the data ob-

tained by the numerical simulation. To realize a random medium instantaneously, 

we have used a simplified version of the random-motion model [77), and to compute 

irradiance for each realization of the medium we have used the wave-kinetic numer-

ical method and/or the angular-spectral representation of the Huygens-Fresnel 

diffraction formula. 

Several different levels of approximations are used for the wave-kinetic numerical 

method. The region of validity of those approximations has been studied by single-

realization calculations. The Liouville approximation (the first order approximation) 

[W-K(LV)] is the simplest and is applicable to any configuration of inhomogeneities, 

but its region of validity is somewhat limited. It turns out that it is valid for ( :;5 0.2, 

where ( = 2¢ 0/y [see (3.17)]. We are able to introduce higher-order corrections to the 

first-order approximation. For a phase-screen problem, we can include all the 

higher-order terms in the phase difference [cf. Eqs. (3.50) and (4.43)), and the result-

ing expression (W-K) becomes equivalent to the Huygens-Fresnel formulation (H-F), 

which is exact within the validity of the thin-screen approximation. For an extended 

medium, however, there is an extra limitation, since we need to introduce an addi-
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tional approximation to obtain a closed-form expression for irradiance (or irradiance 

spectrum). We have derived three different expressions of higher-order approxi-

mations, W-K(I), W-K(II) and W-K(III), which have different forms (or levels) of cor-

rection factors to the first-order approximation. The higher-order approximations can 

extend the region of validity about 2 -- 6 times (compared to the Liouville 

approximation): C ;5 0.5, 0.9 and 1.2 for W-K(I), (II) and (Ill), respectively. This exten-

sion suffices to include strong refractive focusing effects. 

For the Gaussian phase-screen problem, the statistical quantities c,(x) and af obtained 

by numerical simulation [with W-K for wave-propagation calculations] show excellent 

agreement with those from the existing analytical expressions [26] which can be in-

tegrated numerically without any difficulty. For the Gaussian extended-medium 

problem, there exists no analytical solution. However, Tur [50] has computed the 

fourth-order moment of the field, r 4 , for several values of the extended-medium pa-

rameters, but these are different from the values used in our numerical simulation. 

The results from the wave-kinetic numerical method [W-K(I)] and the Huygens-

Fresnel diffraction formula are compared to each other. Good agreements between 

the two have been observed. 

Computing times for the expressions from the wave-kinetic numerical method and the 

Huygens-Fresnel formula are comparable. Finally, we note that the simplified model 

(together with the linear interpolation scheme for phase and angle calculations) re-

duces computing time considerably. It also allows simpler corrections to the lower-

order approximations for the wave-kinetic numerical method, and application of the 

angular spectral representation of the Huygens-Fresnel diffraction formula to ex-

tended media, which turns out to be equivalent to the split-step-Fourier algorithm 

applied directly to the parabolic wave equation (with the simplified model for on). 
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High computational costs force us to limit computation of wave statistics only to af 

and c,(x). In principle, we can predict the probability distribution of irradiance for 

various different values of the random-medium parameters, if sufficient data sets are 

available. The Gaussian spectrum of refractive-index used in this thesis has little 

physical significance. It has computational and analytical advantages because it im-

plies the existence of only one scale size of irregularities and because manipulations 

with Gaussian functions are often analytically tractable. In general, physical irreg-

ularities require other spectral models, e.g. various power-law spectra within certain 

limiting wavenumbers. These imply a continuum of scale sizes, but the analysis may 

be simplified because such spectra can be approximated well by a weighted sum of 

Gaussians. Obviously, the number of numerical computations will increase, and this 

extension is not covered in the present thesis. Likewise, extensions to three-

dimensional situations are relatively straight-forward analytically but represent ap-

preciable complications in obtaining useful approximations for numerical 

computation as well as sizable increases in computer time. Finally, the treatment in 

this thesis can be extended to space-time correlations for some idealized situations, 

e. g. when Taylor's frozen-in hypothesis is valid. 
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