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Synopsis

We study the linear eigenvalue problem for the distribution function associated with Hookean and

FENE dumbbell models. For Hookean dumbbells, the eigenfunctions can be expressed by

generalized Laguerre polynomials. The eigenvalue problem for the FENE dumbbell leads to a

confluent Heun equation. The first few eigenvalues are calculated numerically. We also calculate

these eigenvalues using perturbation of the Hookean case. We show how the knowledge of the

eigenvalues and eigenfunctions can be used to construct the stress relaxation modulus. VC 2013
The Society of Rheology. [http://dx.doi.org/10.1122/1.4816631]

I. INTRODUCTION

Dumbbell models for dilute polymer solutions lead to a diffusion equation for the con-

figurational distribution function. For stress relaxation in absence of flow, the diffusion

equation has the form [Bird et al. (1977)]

@w
@t
¼ 2kT

f
Dwþ 2

f
r � ðFwÞ: (1)

Here, f is a drag coefficient, and F is the connector force which, for Hookean dumbbells,

has the form

F ¼ HR; (2)

while for FENE dumbbells, we have

F ¼ HR

1� ðjRj=R0Þ2
: (3)

We may write Eq. (1) in the schematic form

@w
@t
¼ Lw: (4)
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The operator L is self-adjoint in the weighted Hilbert space

w j
ð

expðU=kTÞw2 <1
� �

; (5)

where U is the potential associated with F, i.e., rU ¼ F. We can, therefore, obtain a gen-

eral solution of Eq. (1) by a superposition of eigenfunctions of L.

Notwithstanding the fundamental role of these eigenfunctions, I have not been able to

find them in the literature. For Hookean dumbbells, it may be that the problem has attracted

little attention, since the distribution function in an arbitrary flow was found by Lodge and

Wu (1971). (Even so, there may be a flow history leading to an initial condition that is not

given by the Lodge–Wu solution if the past evolution of the distribution function was

affected by something other than flow, e.g., molecular diffusion, electromagnetic effects,

etc.) For FENE dumbbells, on the other hand, the eigenvalues and eigenfunctions are

needed to determine the stress relaxation function for linear viscoelasticity. Ilg et al. (2000)

consider a one-dimensional version of a finitely extensible dumbbell model, but with a

force law different from the usual FENE dumbbell, and determine eigenvalues and eigen-

functions. Vincenzi and Bodenschatz (2006) consider a one-dimensional approximation of

the FENE model in a strong steady elongational flow. Their analysis leads to the confluent

Heun equation, which will also play a role in our analysis below.

We shall use a dimensionless form of the equations. We scale length with
ffiffiffiffiffiffiffiffiffiffiffiffi
kT=H

p
and time with f=ð2HÞ. As is well known, this length scale represents the radius of gyra-

tion and the time scale is twice the relaxation time of a Hookean dumbbell. We obtain

the dimensionless equation

@w
@t
¼ Dwþr � ðRwÞ (6)

for Hookean dumbbells, and

@w
@t
¼ Dwþr � R

1� ðjRj=LÞ2
w

 !
(7)

for FENE dumbbells, where L ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffi
kT=H

p
.

We remark that, for the FENE dumbbell model, there is a difference between the cases

L2 � 6 and L2 < 6. If L2 < 6, a zero flux boundary condition

lim
R!L

@w
@R
þ HRw

1� ðjRj=LÞ2

 !
¼ 0 (8)

needs to be imposed. If L2 � 6, the weight in Eq. (5) grows strongly enough as R! L to

automatically ensure this boundary condition. The distinction is not important for the dis-

cussion of eigenfunctions below, and in any case, only L2 > 6 is physically relevant.

II. THE HOOKEAN CASE

We consider the eigenvalue problem associated with Eq. (6), i.e.,

kw ¼ Dwþr � ðRwÞ: (9)
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We use spherical harmonics to separate variables, i.e., we set

w ¼ vðrÞYm
l ðh;/Þ: (10)

The resulting eigenvalue problem is

kvðrÞ ¼ v00ðrÞ þ 2

r
v0ðrÞ � lðlþ 1ÞvðrÞ

r2
þ rv0ðrÞ þ 3vðrÞ: (11)

The substitution vðrÞ ¼ expð�r2=2ÞrlvðrÞ leads to the equation

kvðrÞ ¼ v00ðrÞ þ 2þ 2l

r
v0ðrÞ � rv0ðrÞ � lvðrÞ ¼ 0: (12)

This is a confluent hypergeometric equation, and the solution which is regular at the ori-

gin is given by

vðrÞ ¼ 1F1

kþ l

2
; lþ 3

2
;
r2

2

� �
: (13)

For large r, we have [Abramowitz and Stegun (1965)] the asymptotic behavior

vðrÞ �
C lþ 3

2

� �

C

�
kþ l

2

� expðr2=2Þrðk�l�3Þ=2; (14)

unless kþ l is an even nonpositive integer, in which case v is a polynomial. Except in

this specific case, the behavior at infinity is inconsistent with membership in the weighted

Hilbert space defined by Eq. (5). Therefore, the condition that v is a polynomial identifies

the eigenvalues.

Therefore, the eigenvalues are given by k ¼ �l� 2n, where n is an non-negative inte-

ger. In this case, the corresponding eigenfunction is

vðrÞ ¼ 1F1ð�n; lþ 3

2
;
r2

2
Þ ¼ n!

ðlþ 3=2Þn
Lðlþ1=2Þ

n

r2

2

� �
: (15)

Here,

lþ 3

2

� �
n

¼ lþ 3

2
þ n� 1

� �
lþ 3

2
þ n� 2

� �
::: lþ 3

2

� �
(16)

and LðaÞn is the generalized Laguerre polynomial.

Above we have used spherical coordinates because we want to consider the FENE

case later. For the Hookean dumbbell, separation of variables in Cartesian coordinates

actually yields a simpler representation of the eigenfunctions. By separating variables in

Cartesian coordinates, we find eigenfunctions of the form w ¼ w1ðxÞw2ðyÞw3ðzÞ, where

R ¼ ðx; y; zÞ, the function wi satisfies

kiwi ¼ w00i þ xw0i þ wi (17)

and the eigenvalue is k ¼ k1 þ k2 þ k3. The solution for this eigenvalue problem is

ki ¼ �n, where n is a non-negative integer, and

1313EIGENFUNCTIONS FOR DUMBBELL MODELS

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

128.173.125.76 On: Thu, 30 Jan 2014 15:37:29



wiðxÞ ¼ e�x2=2Hnðx=
ffiffiffi
2
p
Þ; (18)

where Hn is the Hermite polynomial of order n. In summary, we find the eigenfunctions

w ¼ e�r2=2Hlðx=
ffiffiffi
2
p
ÞHmðy=

ffiffiffi
2
p
ÞHnðz=

ffiffiffi
2
p
Þ; (19)

with associated eigenvalue k ¼ �ðlþ mþ nÞ.
It is instructive to see how the Lodge–Wu solution fits in with this. The Lodge–Wu

solution is of the form

w ¼ expð�R � AðtÞ � R� bðtÞÞ; (20)

where A is a symmetric matrix. By inserting this into the governing equation, we find

that in the absence of a flow, we have

_A ¼ �4A2 þ 2A;
_b ¼ 2tr A� 3:

(21)

Thus if there is no flow, the principal axes of A remain invariant, and we may assume

they are aligned with the coordinate axes. Moreover, in equilibrium, we have A ¼ 1
2

I.

We, therefore, set

A ¼

1

2
þ c1 0 0

0
1

2
þ c2 0

0 0
1

2
þ c3

0
BBBBB@

1
CCCCCA (22)

and

b ¼ b1 þ b2 þ b3 (23)

and we obtain the set of equations

_ci ¼ �4c2
i � 2ci;

_bi ¼ 2ci: (24)

The solution of this set of equation can be given as

ci ¼
s

2ð1� sÞ ;

bi ¼ Cþ 1

2
lnð1� sÞ: (25)

Here, C is a constant and s ¼ K expð�2tÞ, where K < 1 is another constant. We now find

that, up to a constant factor,

expð�cix
2
i � biÞ ¼ exp � x2

i

2

s
1� s

� �
ð1� sÞ�1=2: (26)

By the well-known formula for the generating function of the generalized Laguerre poly-

nomials, this equals
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X1
k¼0

skL
ð�1=2Þ
k ðx2

i =2Þ ¼
X1
k¼0

sk

ð�4Þkk!
H2kðxi=

ffiffiffi
2
p
Þ: (27)

This last expression shows how the Lodge–Wu solution can be expressed as a superposi-

tion of eigenmodes.

III. THE FENE CASE

We now turn to the FENE dumbbell. We again use spherical harmonics to separate

variables, and the eigenvalue problem for Eq. (7) becomes

kvðrÞ ¼ v00ðrÞ þ 2

r
v0ðrÞ � lðlþ 1Þ

r2
vðrÞ þ r

d

dr

vðrÞ
1� r2=L2

� �
þ 3

vðrÞ
1� r2=L2

: (28)

We substitute vðrÞ ¼ rlvðr2=L2Þ, substitute s ¼ r2=L2, and obtain the equation

4sðs� 1Þ2v00ðsÞ þ ðs� 1Þð�6þ 4lðs� 1Þ � 2sðL2 � 3ÞÞv0ðsÞ
þ L2ð3� lðs� 1Þ � kðs� 1Þ2 � sÞvðsÞ ¼ 0: (29)

This equation has regular singular points at s¼ 0 and s¼ 1 and an irregular singular point

of rank 1 at infinity; hence it is a confluent Heun equation. We can transform it to stand-

ard form by setting vðsÞ ¼ ð1� sÞL
2=2wðsÞ. The new equation is

4sðs� 1Þw00ðsÞ þ ð�6þ 4lðs� 1Þ þ 2ð3þ L2ÞsÞw0ðsÞ þ L2ðl� kðs� 1ÞÞwðsÞ ¼ 0:

(30)

Equation (30) can be put in the form

w00ðsÞ þ c
s
þ d

s� 1

� �
w0ðsÞ þ as� r

sðs� 1ÞwðsÞ ¼ 0; (31)

where

c ¼ lþ 3

2
; d ¼ L2

2
; a ¼ � kL2

4
; r ¼ � L2ðkþ lÞ

4
: (32)

This is the nonsymmetrical canonical form given as (1.2.27) in Ronveaux (1995), p. 94.

In the notation of Maple, the solution of Eq. (31) which is regular at s¼ 0 is given by

wðsÞ ¼ HeunCð0; b; c; d; e; sÞ; (33)

where

b ¼ c� 1 ¼ lþ 1

2
;

c ¼ d� 1 ¼ L2 � 2

2
;

d ¼ a ¼ � kL2

4
;

e ¼ �rþ 1

2
ð1� cdÞ ¼ 1

2
þ L2 k

4
� 3

8

� �
:

(34)
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Maple has the capability of evaluating the function HeunC. This is used for computing

the eigenvalues below.

The eigenvalues k are determined by the requirement that w must be analytic at s¼ 1.

As long as L2 > 2, nonanalytic solutions of Eq. (30) are infinite at s¼ 1, and we can

obtain a quite accurate approximation to the eigenvalues by a numerical solution of the

equation wð1� �Þ ¼ 0, where � is a small number. In this fashion, we computed the first

few eigenvalues for the case L2 ¼ 10 and L2 ¼ 20. We used � ¼ 0:001 for L2 ¼ 10 and

� ¼ 0:01 for L2 ¼ 20. We have verified that the results do not change if � is decreased

further. Table I shows the computed eigenvalues k; the Hookean case (L2 ¼ 1) is also

included for reference. It is apparent from the numbers that the eigenvalues for L2 ¼ 10

differ approximately twice as much from the Hookean ones as those for L2 ¼ 20, i.e., the

difference is approximately proportional to 1=L2. We shall return to this point later. We

note that a proportionality to 1=L2 is also predicted for the FENE-P dumbbell. The relax-

ation time for the FENE-P model should be compared with the reciprocal of the first

eigenvalue for l¼ 2. As is well known [see e.g., Herrchen and €Ottinger (1997)], the relax-

ation time for the FENE-P dumbbell decreases by a factor L2=ðL2 þ 3Þ compared to the

Hookean case, i.e., the relaxation rate increases by a factor of 1þ 3=L2. For the first

eigenvalue for l¼ 2, this would predict �2.6 for L2 ¼ 10 and �2.3 for L2 ¼ 20. As we

can see, this does not compare well with the actual FENE model. Of course, if L2 is really

large, the eigenvalue will be close to the Hookean one, regardless if we use FENE or

FENE-P. But as far as predicting the difference from the Hookean case, the FENE-P

underpredicts it by more than a factor of 2! If we consider the evolution of the full distri-

bution function rather than just the stress, the agreement is even worse, since the FENE-P

model would predict that all the eigenvalues other than those for l¼ 0 should simply be

the Hookean ones multiplied by ðL2 þ 3Þ=L2.

While the method of calculation described above yields accurate eigenvalues, it is not

very suitable for the calculation of the eigenfunctions, since the Heun function will blow

up at s¼ 1 if the value of k is just a little bit off. To get better approximations of the

eigenfunctions, we can take advantage of the fact that the solution of Eq. (31) which is

analytic at s¼ 1 is given by

wðsÞ ¼ HeunCð0; c; b;�d; eþ d; 1� sÞ: (35)

This can be seen by substituting s ¼ 1� s in Eq. (31). Therefore, our eigenfunction is,

on the one hand, given by HeunCð0; b; c; d; e; sÞ, but it must also be a multiple of

HeunCð0; c; b;�d; eþ d; 1� sÞ. The former expression becomes numerically inaccurate

TABLE I. Eigenvalues for the FENE dumbbell.

L2 10 20 1

l¼ 0 0 0 0

�3.976 �2.989 �2

�10.069 �7.072 �4

�18.210 �12.205 �6

l¼ 1 �1.473 �1.241 �1

�6.542 �4.789 �3

�13.672 �9.403 �5

l¼ 2 �3.269 �2.656 �2

�9.410 �6.749 �4

�17.571 �11.888 �6
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near s¼ 1, but the latter expression is accurate precisely near s¼ 1. Hence a suitably

accurate eigenfunction can be constructed as

wðsÞ ¼ HeunCð0; b; c; d; e; sÞ; if s � a
lHeunCð0; c; b;�d; eþ d; 1� sÞ; if s > a

�
(36)

and the constant l is determined by the requirement of continuity at s¼ a. The number a
can in principle be anything between 0 and 1; the choice which is numerically optimal

depends on L2.

In Fig. 1, we have plotted the first three eigenfunctions vðrÞ for l¼ 2. We have chosen

l¼ 2 since this is the value of l which is relevant for linear viscoelasticity (see Sec. VI).

The eigenfunction as plotted has not been normalized. In generating these plots, we have

used a ¼ 0:8.

We can use the method of matched asymptotics to determine the behavior of large

eigenvalues. We set �kL2=4 ¼ k2 and rewrite Eq. (31) in the form

w00 þ c
s
þ d

s� 1
w0 þ k2

s
wþ L2l

4sðs� 1Þw ¼ 0:

��
(37)

We assume k is large. Near s¼ 0, we set s ¼ s=k2, wðsÞ ¼ w1ðsÞ. At leading order, we

obtain the equation

FIG. 1. Radial part of the eigenfunctions for the FENE model with l¼ 2.
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w001ðsÞ þ
c
s

w01ðsÞ þ
1

s
w1 ¼ 0: (38)

The solution of this which is analytic and equal to 1 at the origin is given by

w1ðsÞ ¼ CðcÞsð1�cÞ=2Jc�1ð2
ffiffiffi
s
p
Þ: (39)

Near s¼ 1, we set 1� s ¼ q=k, wðsÞ ¼ w2ðqÞ, and at leading order, we obtain

w002ðqÞ þ
d
q

w02ðqÞ þ w2ðqÞ ¼ 0: (40)

From this equation and the requirement of regularity at q ¼ 0, we find the solution

w2ðqÞ ¼ Cqð1�dÞ=2Jðd�1Þ=2ðqÞ: (41)

Away from the boundaries, we use a Wentzel-Kramers-Brillouin approximation. We set

wðsÞ ¼ eik/ðsÞyðsÞ; (42)

which, at leading orders, leads to the equations

�/0ðsÞ2 þ 1

s
¼ 0; /00ðsÞyðsÞ þ 2/0ðsÞy0ðsÞ þ d

s� 1
þ c

s

� �
/0ðsÞyðsÞ ¼ 0: (43)

This leads to

/ðsÞ ¼ 62
ffiffi
s
p

(44)

and

yðsÞ ¼ Cð1� sÞ�d=2s1=4�c=2: (45)

Thus, we find the approximate solution

w3ðsÞ ¼ ð1� sÞ�d=2s1=4�c=2ðC1e2ik
ffiffi
s
p
þ C2e�2ik

ffiffi
s
p
Þ: (46)

For s!1, we find [Abramowitz and Stegun (1965)]

w1ðsÞ � CðcÞ
ffiffiffi
1

p

r
s1=4�c=2cos 2

ffiffiffi
s
p
� p

4
� c� 1

2
p

� �
: (47)

By matching this with Eq. (46), we obtain

C1 ¼ �C2 ¼
1

2
k1=2�cCðcÞ

ffiffiffi
1

p

r
exp ip

1

4
� c

2

� �� �
: (48)

In a similar fashion, we can set
ffiffi
s
p � 1� q=ð2kÞ in Eq. (46) and then match with the so-

lution for w2 above. In this way, we obtain the relationship

k � p nþ c
4
þ d� 1

8

� �
; (49)
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where n is an integer. At leading order, k is therefore proportional to pn, and k is propor-

tional to �4p2n2=L2. We note that this behavior contrasts with the Hookean case, where

k is proportional to n. We note that eigenvalues proportional to n2 were also found in Ilg

et al. (2000).

IV. THE COHEN–PAD�E SPRING LAW

Instead of the Warner spring law (3), the Cohen–Pad�e law [Cohen (1991)]

FðRÞ ¼ Hð1� jRj2=ð3R2
0ÞÞR

ð1� ðjRj=R0Þ2Þ
(50)

is sometimes used as an improved approximation to an inverse Langevin function. In

this case, we can go through the exact same manipulations and transformations as above

for the Warner law, except that we set vðsÞ ¼ ð1� sÞL
2=3wðsÞ instead of

vðsÞ ¼ ð1� sÞL
2=2wðsÞ. We end up with the confluent Heun equation

w00ðsÞ þ c
s
þ d

s� 1
þ �

� �
w0ðsÞ þ as� r

sðs� 1Þ ðsÞ ¼ 0; (51)

where

c ¼ 3

2
þ l; d ¼ L2

3
; � ¼ L2

6
;

a ¼ L2

36
ð9þ 3lþ 2L2 � 9kÞ; r ¼ L2

12
ð3� l� 3kÞ:

(52)

The solution which is regular at s¼ 0 is now

wðsÞ ¼ HeunCða; b; c; d; e; sÞ; (53)

where

a ¼ � ¼ L2

6
; b ¼ c� 1 ¼ lþ 1

2
; c ¼ d� 1 ¼ L2

3
� 1;

d ¼ a� 1

2
ðcþ dÞ� ¼ L2

72
ð9þ 2L2 � 18kÞ;

e ¼ �rþ 1

2
ð1þ c�� cdÞ ¼ 4� 3L2 þ 6L2k

8
:

(54)

We recomputed the eigenvalues of Table I for the Cohen–Pad�e spring law. The results

are given in Table II. Generally, the eigenvalues are somewhat closer to the Hookean

ones, as would be expected.

V. PERTURBATION ANALYSIS FOR LARGE L2

If L2 is large, we may attempt a perturbation expansion. Expansion of Eq. (7) to the

leading order leads to
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@w
@t
¼ Dwþr � ðRð1þ jRj2=L2ÞwÞ: (55)

Separating variables in spherical coordinates as before, we obtain the eigenvalue problem

kv ¼ v00 þ 2
v0

r
� lðlþ 1Þ v

r2
þ rv0 þ r3

L2
v0 þ 3þ 5

r2

L2

� �
v: (56)

Again, we set v ¼ expð�r2=2Þrlv, which leads us to

kv ¼ v00 þ 2þ 2l

r
v0 � rv0 � lvþ 1

L2
ðð5þ lÞr2v� r4vþ r3v0Þ: (57)

We now make the perturbation ansatz

v ¼ v0 þ
v1

L2
þ � � �; k ¼ �l� 2nþ k1

L2
þ � � �: (58)

Then v0 is given by Eq. (15) above, and v1 must satisfy

k1v0 þ ð�l� 2nÞv1 ¼ v001 þ
2þ 2l

r
v01 � rv01 � lv1 þ ð5þ lÞr2v0 � r4v0 þ r3v00: (59)

The solution of this differential equation is in general quite complicated, but we can take

advantage of the fact that v0 is an even polynomial of degree 2n. We may therefore look

for a solution v1 that is also an even polynomial of degree 2nþ 4. We can then derive the

expression for k1 by equating the coefficients of r2nþ4, r2nþ2, and r2n in Eq. (59). We

omit the algebra and give the result

k1 ¼ �3l� 2l2 � 8n� 12ln� 12n2: (60)

Table III gives the approximations for the eigenvalues in Table I computed using

k ¼ �l� 2nþ k1=L2. We see that the approximation is quite good, even though the per-

turbation of the eigenvalues is not small.

For the Cohen spring, the perturbation is simply 2/3 of that for the Warner spring. The

analogue of Table III is given below as Table IV.

TABLE II. Eigenvalues for the Cohen dumbbell.

L2 10 20 1

l¼ 0 0 0 0

�3.608 �2.751 �2

�9.187 �6.448 �4

�16.742 �11.111 �6

l¼ 1 �1.372 �1.178 �1

�5.956 �4.392 �3

�12.521 �8.567 �5

l¼ 2 �3.021 �2.495 �2

�8.594 �6.179 �4

�16.146 �10.834 �6
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VI. STRESS RELAXATION AND LINEAR VISCOELASTICITY

In this section, we discuss how the eigenfunctions determined above are used to obtain

rheological information. Throughout, we shall use the dimensionless form of the equa-

tion. The spring force is given by F ¼ qðrÞR, where

qðrÞ ¼

1

1� r2=L2
for FENE;

1� r2=ð3L2Þ
1� r2=L2

for Cohen� Pade:

8>>><
>>>:

(61)

Moreover, U(r) will denote the potential associated with the spring force, i.e., F ¼ rU.

For each spherical harmonic Ym
l , we have a sequence of eigenvalues kln and corre-

sponding eigenfunctions vlnðrÞ. We shall count n starting from 0 to be consistent with our

notation for the Hookean case. If there is no flow, then, in general, the distribution func-

tion w is a superposition of these eigenmodes

wðR; tÞ ¼
X
l;m;n

clmnvlnðrÞYm
l ðh;/ÞexpðklntÞ: (62)

The functions vln satisfy the orthogonality relation

TABLE III. Approximations for the eigenvalues in Table I computed by perturbation theory.

L2 10 20 1

l¼ 0 0 0 0

�4 �3 �2

�10.4 �7.2 �4

�19.2 �12.6 �6

l¼ 1 �1.5 �1.25 �1

�6.7 �4.85 �3

�14.3 �9.65 �5

l¼ 2 �3.4 �2.7 �2

�9.8 �6.9 �4

�18.6 �12.3 �6

TABLE IV. Approximations for the eigenvalues in Table II computed by perturbation theory.

L2 10 20 1

l¼ 0 0 0 0

�3.333 �2.667 �2

�8.267 �6.133 �4

�14.8 �10.4 �6

l¼ 1 �1.333 �1.1675 �1

�5.467 �4.233 �3

�11.2 �8.1 �5

l¼ 2 �2.933 �2.467 �2

�7.867 �5.933 �4

�14.4 �10.2 �6
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ðL

0

r2expðUðrÞÞvlnðrÞvlpðrÞ dr ¼ 0 (63)

for p 6¼ n. We choose the vln to be normalized so that

ðL

0

r2expðUðrÞÞvlnðrÞ2 dr ¼ 1 (64)

and we shall also choose the spherical harmonics to be normalized with respect to inte-

gration over the sphere (“standard” conventions in this regard vary according to disci-

pline). If w satisfies the initial condition wðR; 0Þ ¼ w0ðRÞ, then we can determine the

coefficients in Eq. (62) as

clmn ¼
ðL

0

r2expðUðrÞÞvlnðrÞ
ðp

0

sinh
ð2p

0

w0ðRÞYm
l ðh;/Þ d/ dh dr: (65)

Stress relaxation refers to the relaxation of stresses to equilibrium after the cessation

of flow. Clearly, in this situation, w is given by an expression of the form [Eq. (62)]. The

stress tensor is given by

T ¼
ð

RFðRÞwðR; tÞ dR: (66)

The dyadic product RFðRÞ is given by r2qðrÞMðh;/Þ, and the matrix Mðh;/Þ involves

only spherical harmonics of orders l¼ 0 and l¼ 2. Specifically,

Mðh;/Þ ¼
sin2hcos2/ sin2hcos/sin/ sinhcoshcos/
sin2hcos/sin/ sin2hsin2/ sinhcoshsin/
sinhcoshcos/ sinhcoshsin/ cos2h

0
@

1
A: (67)

We consequently find, up to an isotropic term,

T ¼
X1
n¼0

X2

m¼�2

c2mnMmexpðk2ntÞ
ðL

0

r4qðrÞvlnðrÞ dr; (68)

where

Mm ¼
ðp

0

sinh
ð2p

0

Mðh;/ÞYm
2 ðh;/Þ d/ dh: (69)

The relaxation function for linear viscoelasticity can also be determined from the

eigenfunctions. In the presence of a flow, the diffusion equation becomes

@w
@t
¼ Dwþr � ðFðRÞwÞ � r � ððrvÞRwÞ: (70)

To determine the linear viscoelastic response, we assume rv is small, say of order �, and

then expand w up to first order in �. We shall assume a shear flow of the form

rv ¼ �jðtÞ
0 1 0

0 0 0

0 0 0

0
@

1
A: (71)
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This leads to

r � ððrvÞRwÞ ¼ �jðtÞy @w
@x

: (72)

We now expand w as w ¼ w0 þ �w1 þ Oð�2Þ. w0 is simply the equilibrium distribution

given by w0 ¼ K expð�UðrÞÞ, where K is a normalization constant. At the next order, w1

satisfies the equation

� @w1

@t
þ Dw1 þr � ðFðRÞw1Þ ¼ jðtÞy @w0

@x
¼ jðtÞ xy

r

@w0

@r

¼ jðtÞrsin2hsin/cos/
@w0

@r
: (73)

Next, we note that

sin2hsin/cos/ ¼ 1

2
sin2hsinð2/Þ ¼ 1

4i
sin2hðe2i/ � e�2i/Þ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=15

p
ðY�2

2 ðh;/Þ � Y2
2ðh;/Þ:

(74)

The solution of Eq. (73) is now given by

w1 ¼
X

n

ðanðtÞY2
2ðh;/Þ þ anðtÞY�2

2 ðh;/ÞÞv2nðrÞ; (75)

where

� _an þ k2nan ¼ jðtÞbn; (76)

and

bn ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=15

p ðL

0

expðUðrÞÞr3 @w0

@r
v2nðrÞ dr: (77)

Consequently, we find

anðtÞ ¼ �bn

ðt

�1
expðk2nðt� sÞÞjðsÞ ds: (78)

The shear stress T12 is given by

T12ðtÞ ¼
ð

r2qðrÞsin2hcos/sin/wðR; tÞ dR

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=15

p ð
r2qðrÞðY�2

2 ðh;/Þ � Y2
2ðh;/ÞÞwðR; tÞ dR

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=15

p
ðanðtÞ � anðtÞÞ

ðL

0

r4v2nðrÞqðrÞ dr: (79)

This finally yields the stress relaxation modulus

GðtÞ ¼
X

n

gnexpðk2ntÞ; (80)

where
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gn ¼ �
4p
15

ðL

0

expðUðrÞÞr3 @w0

@r
v2nðrÞ dr

ðL

0

r4v2nðrÞqðrÞ dr

¼ 4p
15

K

ðL

0

r4v2nðrÞqðrÞ dr

� �2

: (81)

For the Hookean case, the integrals can be evaluated analytically. We recover the well-

known result that g0 ¼ 1 and gn ¼ 0 for all n > 0.

VII. CONCLUSIONS

We have examined the eigenvalue problem associated with the Fokker–Planck equa-

tion for FENE dumbbells. The eigenfunctions can be determined in terms of confluent

Heun functions for the Warner spring as well as the Cohen–Pad�e spring. A perturbation

solution for large L2 has also been derived and has been found to do surprisingly well,

especially for the Warner spring. On the other hand, the relaxation time predicted by the

FENE-P model compares rather poorly with that of the full FENE model. The stress

relaxation modulus for linear viscoelasticity has been expressed in terms of the eigenval-

ues and eigenfunctions. This provides an analytic procedure to determine the stress relax-

ation modulus without any need for Brownian dynamics simulations [see, e.g., Herrchen

and €Ottinger (1997)].
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