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Abstract

The advent of synchronized phasor measurements allows the problem of real time predic-
tion of instability and control to be considered. The use of direct methods for these on-line
applications is assessed.

The classical representation of a power system allows the use of two reference frames: Center
of angle and one machine as reference. Formulae allowing transition between the two reference
frames are derived. It is shown that the transient energy in both formulations is the same, and
that line resistances do not dampen system oscillations.

Examples illustrating the mathematical characterization of the region of attraction, exit-
point, closest u.e.p. and controlling u.e.p. methods are presented.

Half-dimensional systems (reduced-order systems) are discussed. The general expression
for the gradient system which accounts for transfer conductances is derived without making
use of the infinite bus assumption. Examples illustrating the following items are presented: a)
Effect of the linear ray approximation on the potential energy (inability to accurately locate
the u.e.p.’s); b) Comparison of Kakimoto’s and Athay’s approach for PEBS crossing detection;
c) BCU method and; d) One-parameter transversality condition.

It is illustrated that if the assumption of the one-parameter transversality condition is not
satisfied, the PEBS and BCU methods may give incorrect results for multi-swing stability. A
procedure to determine if the u.e.p. found by the BCU method lies on the stability boundary of
the original system is given. This procedure improves the BCU method for off-line applications
when there is time for a hybrid approach (direct and conventional), but it does not improve
it for on-line applications due to the following: a) It is time consuming and b) If it finds that
the u.e.p. does not belong to the stability boundary it provides no information concerning the

stability /instability of the system.
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Chapter 1

Introduction

Our interest in direct methods for transient stability analysis stems from the problem of real-
time prediction of instability and control. It has become possible to contemplate such tasks
because of the newly developed technique of synchronized phasor measurements and their use
in adaptive out-of-step relaying and other real-time control functions.

We began by considering the TEF (transient energy function) method as a likely candidate
for these applications. Phasors can track system behavior, and through them, a prediction
about the outcome of an evolving swing could be made. We wanted to investigate if the TEF
method, or the PEBS (potential energy surface) method, or the BCU (boundary of stability
region based controlling unstable equilibrium point) method, offer a practical technique for
instability prediction.

Since we are interested in assessing the use of direct methods for on-line stability prediction,
where computing time is an important factor, the classical model of a power system will be

used throughout this dissertation.

1.1 Chapter outline

1. Introduction. The next section of this chapter is the statement of the problem where
power system transient stability is defined from the point of view of both conventional and

direct methods. The last sections describe the scope of this dissertation and the related

bibliography.



2. Transient energy method for the one-machine infinite bus system. The second
chapter provides the background information needed to undertake a study of transient
stability analysis, and as such, the reader familiar with the subject may skip it. The basics
principles of Newton’s second law and Faraday’s law are discussed within the context of
rotating machines, allowing the derivation of the swing equation. Equilibrium points, as
related to electric power system transients, are discussed. Two methods of determining
stability for the one-machine infinite-bus case are presented: the equal area criteria and

the transient energy method. These methods are shown to be equivalent.

3. Transient energy function for multi-machine systems. The third chapter extends
the notion of transient energy to the multi-machine case. Classical modeling of electric
power systems is presented and is used throughout the paper. The use of this model
allows the reduction of any power system to its internal nodes. Two formulations for
the state equations of the power system are then presented: Center of Angle (COA) and
one machine reference frame. These formulations provide two means of determining the
transient energy function. The formulae to go from one reference frame to the other
are found. It is shown that both of these reference frames result in the same transient
energy function. The reduction to internal nodes may yield an admittance matrix with
non-negligible transfer conductances. This in turn causes the transient energy to be path-
dependent or non-integrable. To circumvent this problem, the projection of the post-fault
trajectory onto the angle subspace is assumed to be linear allowing the use of the linear

ray approximation. The effect of line resistances on system damping is discussed.

4. Fundamentals of direct methods. In this chapter, the exit point, the closest u.e.p.,
and the controlling u.e.p. methods are presented. The notion of a region of attraction
is mathematically described and several step-by-step procedures which help characterize
such a region are delineated. It is concluded that the controlling u.e.p. method is superior
to the other two methods, but that finding the controlling u.e.p. is difficult especially for

large systems.

5. PEBS and BCU methods. The last chapter investigates two methods of transient
stability assessment: the Potential Energy Boundary Surface (PEBS) method and the



Boundary of stability based Controlling U.e.p. (BCU) method. Both of these methods
require a lower dimensional system which is described. It is shown that the BCU method,

although superior to all other current methods, may fail if insufficient damping is present.

6. Conclusions. The most important results of this dissertation are briefly stated.

1.2 Problem statement

1.2.1 Power system transient stability analysis

The following definitions taken from [42] define power system transient stability..

1. Power System: A network of one or more electrical generating units, loads, and/or power

transmission lines.

2. Operating Quantities of a Power System: Physical quantities, which can be measured
or calculated, that can be used to describe the operating conditions of a power system.

Operating quantities include rms values or corresponding phasors.

3. Steady-State Operating Condition of a Power System: An operating condition of a power
system in which all of the operating quantities that characterize it can be considered to

be constant for the purpose of analysis.

4. Synchronous Operation

(a) Synchronous Operation of a Machine: A machine is in synchronous operation with
a network or another machine to which it is connected if its average electrical speed
(product of its rotor angular velocity and the number of pole pairs) is equal to the
angular frequency of the ac network voltage or to the electrical speed of the other
machine.

(b) Synchronous Operation of a Power System: A power system is in synchronous op-
eration if all its connected synchronous machines are in synchronous operation with

the ac network and with each other.

5. Asynchronous Operation



(a) Asynchronous Operation of a Machine: A machine is in asynchronous operation with
a network or another machine to which it is connected if it is not in synchronous
operation.

(b) Asynchronous Operation of a Power System: A power system is in asynchronous
operation if one or more of its connected synchronous machines are in asynchronous

operation.

6. Hunting of a Machine: A machine is hunting if any of its operating quantities experience

sustained oscillations.

. Disturbance in a Power System: A disturbance in a power system is a sudden change or

a sequence of changes in one or more of the parameters of the system, or in or more of

the operating quantities.

(a) Small Disturbance in a Power System: A small disturbance is a disturbance for which
the equations that describe the dynamics of the power system may be linearized for
the purpose of analysis.

(b) Large Disturbance in a Power System: A large disturbance is a disturbance for which

the equations that describe the dynamics of the power system cannot be linearized.

. Steady-State Stability of a Power System: A power system is steady-state stable for a
particular steady-state operating condition if, following any small disturbance, it reaches
a steady-state operating condition which is identical or close to the pre-disturbance op-

erating condition. This is also known as Small Disturbance Stability of a Power System.

. Transient Stability of a Power System: A power system is transiently stable for a partic-
ular steady-state operating condition and for a particular disturbance if, following that

disturbance, it reaches an acceptable steady-state operating condition.

10. Power System Stability Limits

(a) Steady-State Stability Limit: The steady-state stability limit is a steady-state op-
erating condition for which the power system is steady-state stable but for which



an arbitrarily small change in any of the operating quantities in an unfavorable di-
rection causes the power system to lose stability. This is also known as the Small
Disturbance Stability Limit.

(b) Transient Stability Limit: The transient stability limit for a particular disturbance
is the steady-state operating condition for which the power system is transiently
but for which an arbitrarily small change in any of the operating quantities in an

unfavorable direction causes the power system to lose stability for that disturbance.

11. Critical Clearing Time: If a particular disturbance includes the initiation and isolation
of fault on a power system, the critical clearing time is the maximum time between the

initiation and the isolation such that the power system is transiently stable.

We are interested in transient stability and not in steady-state stability. However, the
definitions related to steady-state stability were kept to make the rest of the definitions easier

to understand. The following paragraph taken from [66], answers to our question.

What is transient stability analysis? Power system stability may be defined as that property
of the system which enables the synchronous machines of the system to respond to a
disturbance from a normal operating condition so as to return to a condition where the
operation is again normal. Transient stability analysis is aimed at determining if the
system will remain in synchronism following major disturbances such as transmission

system faults, sudden load changes, loss of generating units, or line switching.

1.2.2 Conventional or step-by-step transient stability analysis

In conventional transient stability analysis the state equations are numerically integrated (step-
by-step integration). Assuming that the disturbance includes the initiation and isolation of a
fault on a power system, conventional analysis proceeds as follows. The initial system state
is obtained from the pre-fault system. This is the starting point used for the integration of
the fault-on dynamic equations. After the fault is cleared, the post-fault dynamic equations
are used in the numerical integration. These simulations yield the fault-on and post-fault

trajectories. The angles relative to a reference machine may be plotted versus time and if

these angles are bounded, the system is stable, otherwise it is unstable. This is illustrated in

5



Fig. 1-1. This figure corresponds to a three-machine power system. The reference machine is
machine 3. Notice that for this particular disturbance, the critical clearing time is some value
between 0.1950 and 0.1955 seconds. Multiple runs were required to obtain these bounds on the
critical clearing time. This trial and error approach is a major disadvantage of the conventional

method.
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clearing time = 0.1950 s Ume () ciewring tme = 0.1985 time (8)
(a) Stable case (b) Unstable case

Figure 1-1: Conventional transient stability analysis

1.2.3 Transient stability analysis by direct methods

A direct method for transient stability analysis was defined in [41) as “a method to determine
stability without ezplicitly solving the differential equations”. In [10] it was defined as “a method
to determine the stability of a post-fault system based on energy functions without ezplicitly
integrating differential equations describing the post-fault system.”

The following paragraph, taken from [1], gives an excellent description of direct methods in
transient stability analysis: “The transient energy method offers the opportunity of assessing
the transient stability of power systems more directly and effectively than the conventional
approach based on simulation. For example, it allows critical clearing times to be calculated

directly from a single solution. More fundamentally and, in terms of potential applications,

6



more significantly it also provides a quantitative measure of how stable or unstable a particular
case may be.”

Direct methods have one disadvantage when compared to conventional methods - the models
used in direct methods are less detailed, e.g. turbine governors, voltages regulators, and static
VAR compensators are not considered.

A definition of transient stability analysis more suitable for direct methods is as follows [95).
“The stable equilibrium point of a nonlinear dynamic system is surrounded by a stability region,
or region of attraction. Whether a given initial state is within this region is a fundamental
question underlying many engineering problems such as the monitoring of electric power system

stability.”

1.3 Scope of this dissertation

In this dissertation we are interested in power system transient stability analysis by direct
methods and we will concentrate on a simplified model called the classical model. All of the
books on power system transient stability by direct methods begin their study with the classical
model [56], [55], [25]. As mentioned, before, because we are interested in assessing the use of
direct methods for on-line stability prediction where computing time is an important factor,
this model will also be used throughout this dissertation. More advanced analysis using direct
methods must consider a more detailed model of the power system. For information on structure
preserving methods see [7], [38], [37], [79], [82], [83], [86], [55] and [25). For information on energy
function methods with detailed models see [68], [69], [26], [55] and [25).

1.4 About the bibliography

The bibliography presented at the end of this dissertation contains more than ninety items
and has been sorted in alphabetical order by author’s last name. Some additional items, not
referenced in the paper, are included so that the bibliography can serve as a complete list of
sources on the subject of transient stability analysis by direct methods.

The core of this dissertation comes from the following references:

o Books on direct methods: [56], [55] and [25).

7



e Survey papers: [33], [41), [64], [78] and [83].
— Mathematical characterization of the region of attraction: [20] and [95].

o Closest unstable equilibrium point, potential energy boundary surface, controlling unsta-
ble equilibrium point, and boundary of stability based controlling unstable equilibrium
point methods: [1], 2], [9], [10], [11], (13], [17], [43] and [46].



Chapter 2

Transient Energy Method for the

One-machine Infinite-bus System

2.1 Background

2.1.1 Notation

We will begin by describing the notation used in deriving the swing equation. Quantities in
bold face are phasors; E = Ee’® means that the phasor E has a magnitude E and a phase angle
é.

A variable with no subscript is an electrical quantity in a synchronously rotating frame. A
variable with the subscript “a” only, is an electrical quantity in a stationary frame. A variable
name with the subscript “m” only is a mechanical quantity in a synchronously rotating frame. A
variable with both subscripts “m” and “a” is a mechanical quantity in a stationary frame. The
subscript “s” indicates synchronous frequency. Fig. 2-1 illustrates examples of these electrical

and mechanical quantities.

fs Synchronous frequency, f, = 60 Hz

ws Synchronous angular velocity, rad/s, w, =2 -7 - f, = 120 - x rad/s

wms Mechanical synchronous angular velocity, mec-rad/s. wy,, = %w,, where P is the
number of poles

wma Mechanical angular velocity in a stationary frame, mec-rad/s

9



SYNCHRONOUSLY
ROTATING AXIS
SYNCHRONOUSLY
ROTATING AXIS
FIXED AXIS
ELECTRICAL QUANTITIES CORRESPONDING MECHANICAL QUANTITIES FOR P=4

Figure 2-1: Electrical and Mechanical Variables

wy Mechanical angular velocity in a synchronously rotating frame. wy, = Wyg — Winy-
wq Electrical angular velocity with respect to a stationary axis, rad/s

w Electrical angular velocity with respect to a synchronously rotating axis. w = w, —w,.
04, 64 Electrical angles in a stationary frame, rad

Oma, 6ma Mechanical angles in a stationary frame, mec-rad. 0,,, = $0., where P is the

number of poles

6, 6 Electrical angles in a synchronously rotating frame. § = §, — w,t

2.1.2 Faraday’s law

In Fig 2-2, the angle 6 is the rotor angle in a synchronously rotating frame in rad/s. The
flux linkage due to the field is then A = Aye’®. The active convention of Faraday’s law states
that ey = —%J-, where its phasor form is Ef = —j - w, - Ar. The phasor form of Faraday’s law
can be obtained from e; = —%‘ in the same way that the E — I relationship in an inductor is
determined. If Eg = Ee’®, then § = 6 — x/2.

2.1.3 Newton’s second law
This law, f = m - a, takes the form 7 = J - oy, for angular motion.

J is the moment of inertia in kg m.

10



Figure 2-2: Elementary Synchronous Machine

7T is the resulting torque in N m.

Qmq is the angular acceleration in mec-rad/s?.

Fig. 2-3 shows a solid cylinder of radius r and the formula for obtaining its moment of
inertia. The rotational kinetic energy for a solid cylinder rotating about the shown axis is given
by the equation

2
.J.wma

2.1.4 The swing equation

Let us apply Newton’s second law with the resulting torque equal to 7, — 7.. From Fig. 2-4 we
get the equation

Tm"Te=(Jp+Jg)'a,N'm

11




na

J= Nr 2

Figure 2-3: Moment of Inertia of a Solid Cylinder with Radius r

or
J . ama = Tm -— TC (2.1)
Tm is the torque due to the prime mover inN-m
T, is the torque due to the generator in N-m, and is opposite to 7,

Qumg is the angular acceleration in mec-rad/s?, this is a mechanical quantity in a station-

ary reference frame.

PRIME
MOVER

GENERATOR

Figure 2-4: Generator and Prime Mover

By multiplying both sides of Eq. 2.1 by wy,,, the units change from Newton meters to watts.

J - Wmg - Gmg = Py = Poy W (2.2)

12



Wmq is the angular velocity in mec-rad/s
P,, is the mechanical power in W

Pe is the electrical power in W

Per unit (pu) electrical quantities are more convenient. Replace the mechanical quantities
by their electrical equivalents and divide both sides of Eq. 2.2 by the complex power base,
Sbase- The following equations illustrate the relationships between the electrical and mechanical
quantities. The angular acceleration is the first derivative of the angular velocity and the second
derivative of the angle. The variable P is the number poles and § is the phase angle of the

induced voltage.

bma= 30 = 3(0+w,-1)
Wma = %wa = ]25(%% +wa)
T

By substituting these equations into Eq. 2.2 and dividing each side by Sy, We get the

following equation:
2. — =P, -P.,pu (2.3)

By substituting M(w,) in Eq. 2.3 we get Eq. 2.4.

d?é

M(w.,)-ﬁ =

P, - P., pu (24)

If wy and w, are nearly equal, M may be defined as Eq. 2.5,

_(2\? J-w, pu-s?
= (7) S B )

Eq. 2.4 can be written as the swing equation, Eq. 2.6.

d?s
MW & Pn - P., pu (2.6)
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2.1.5 Electric power and the Power-angle Curve

Let us assume that the synchronous machine is connected to an infinite bus through a lossless

line as shown in Fig 2-5. The power transferred from the synchronous machine to the infinite

bus is given by
P, = Ppq8in(6)

Praz = E;}éﬂ’ pu

Figure 2-5: One Machine Infinite Bus System

The plot of P, vs. § is known as the power-angle curve, see Fig 2-6. Also shown in Fig 2-6

is the mechanical power P,, and the equilibrium points §s and §u.

Pe(d)} Proax sind

&
8‘.
On'

Figure 2-6: Power Angle Curve

14



2.1.6 Stable and unstable equilibrium points

The equilibrium points are obtained by making the left-hand side of Eq. 2.6 equal to zero.
0=PFP,-PF, pu

0 = Py, — Ppgg sin(é)

P,
§ = sin~! (—"‘ )
Pm“

The equilibrium point §, is a stable one (s.e.p.), whereas é, is unstable (u.e.p.). We have
two ways to determine whether or not an equilibrium point is stable.

In one method, the system has to be linearized, then the roots of the linearized system are
evaluated at that equilibrium point. If the roots are on the left-hand side of the complex plane
then the equilibrium point is stable, otherwise it is unstable. For a small system, the second
method is simpler, let us assume that § = §, + Aé and w = 0, (§, + A§,0). The acceleration
a = [Py — P.(6)]/M is negative, then w and, hence, § will decrease with time. Therefore, the

system torque will move the system towards §,, see Fig 2-7.

Pe(8) 4

& & +86

Figure 2-7: Stable Equilibrium Points

Following the same analysis it can be proven that §, is unstable. Any displacement of the
system from that equilibrium point, no matter how small the displacement is, will move the

system away from it.

15



2.2 Equal-area criterion

Fig 2-8 a) shows one machine connected to an infinite bus through two parallel lossless lines.

At pre-fault P, is given by

E- Voo
(1) —
Pmu Xg+Xl’ pu
2X
Xg
+
E[& 2x VelO

(s) PRE-FAULT

2X
Xg
—+
Elé b (] XI% v.&
(®) FAULT
Xg 2X
ElS VelO_

(o) POST-FAULT

Figure 2-8: Fault in the Middle of One Line

X+ X, is the reactance connecting the two machines. The fault is a solid three-phase short
circuit in the middle of one of the lines as shown in Fig 2-8 b). Pp,, during the fault can be

obtained using the A —Y conversion formulas to eliminate the node without injection and it is

16



given by the equation
E-Voo

@) — — "~ —
me 3X +2XI’ pu

From Fig. 2-8 c), the post-fault P, is given by the equation

E-Voo

(@ - 27X
Pmax Xg+2Xl, pu

Fig. 2-9 shows the corresponding three power-angle curves. Now, let us make some remarks

about the points on these three curves.

Pe(é) |
Pimax sin(6)
PRE-FAULT
®
Pmax sin(5)
Pm POST-FAULT

Pmax sin(8)
FAULT

Figure 2-9: Equal Area Criterion

o Pre-fault:
— Point a. The system is in equilibrium, % = P, — P.(§) = 0,w =0, and § = §,.
o Fault:

— Point b. § and w can not change suddenly. Therefore, w = 0 and § = §,. We have

accelerating power, since the acceleration is given by the equation

_ E P Pmaz Sln(&o)
T odt M

a
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— Point c. At this point the breakers in the faulted line open and the system has moved

to (8c1,we). The acceleration is given by the equation

d(d P - Pmaz snl(&cl)

dt M

a=

o Post-Fault:

— Point d. The state is still the same (6.4, wy) but now the acceleration is negative,

hence decelerating power.
dw  Pn—-P$): sm(Jd)

=" M

— Point e. Now the system decelerates and reaches this point where the state is
(6maz,0). The speed will continue decreasing and will be negative. The deceler-

ating power is still present.

The equal-area criterion establishes that 6,4 is such that the decelerating area is equal to

the accelerating area, i.e. Ay = A,. In order to prove this let us start with Eq. 2.6.

d26
M-Jt—2=Pm—Pc’ pu

After multiplying both sides by w = d§/dt we get the equation

dw dé MW rad

The dt’s cancel, yielding the equation
MW rad
Mwdw = [Pm - P,(J)] . d&, -m—

Now let us integrate this differential equation from é, to 6,4, to obtain the equation

(Fmas) MW rad
/W(SO) Mwdw = / Pn = P8)] db, 22

18



Noting that w(émaz) = w(6,) = 0 we get the equation

bmaz MW rad
0= [ 1Pn - R0 a5,

The above integral has to be evaluated in two parts due to P.(6) being one function from 6, to

6. and another from 6 t0 6.

6‘:[ Smn
/ [P — P2)_ sin(8)] d6 + / [P — P, sin(6)] ds = 0
bo 6@!

bt Smasz
/8 [P — P2). sin(8)] dé = /6 [P)_sin(8) — Po]d
0

cl
Note that the left-hand side of the above equation corresponds to the accelerating area A, and

the right-hand side corresponds to the decelerating area Aq.
A, = Ag

Although w is zero at point e, the system will keep moving until it reaches point g. Remarks

about points e, f and g in Fig. 2-10 follow.

Frhax sin(s)

POST-FAULT

Figure 2-10: Post Fault Accelerating and Decelerating Areas
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— Point e. (6maz,0). The speed is zero; but there is decelerating power.

_dw _ Pn — P sin(6a)
*=u T M <0

The transient kinetic energy is zero, the transient potential energy is maximum.

— Point f. This is the s.e.p.; therefore, there is no acceleration.

dw _ Pm — Pilssin(s,) _o

dt M

a=

The angular velocity is a minimum,~wmqz, the transient kinetic energy is maximum,
and the transient potential energy is zero. Since the speed is not zero, the system

will continue moving towards point g.
— Point g. At this point, (6min,0), the angular velocity is zero and the angle is mini-
mum. The system will not remain here due to the accelerating power.

_ dw _ Pn — PQ)sin(§min)

dt M >0

(44

The transient kinetic energy is zero, the transient potential energy is maximum, the

angle 6,,in is such that the equal-area criterion is satisfied, A4, = A,,.

According to our model, the system will oscillate between points e and g forever, this is

because our model does not include any damping.

2.3 Transient energy

Fig 2-11 is similar to Fig 2-10 but the arrows indicate motion from point g to e. At point g
the system has zero speed, and as the system moves towards §, it gains speed, hence, kinetic
energy. We stated previously that the expression for the kinetic energy was the equation

1

Wkema = 3

Jwgm, J

Notice the subscripts “m”and“a” in Wkey,,, they indicate that this energy is mechanical
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Frhax sin(8)

POST-FAULT

Figure 2-11: Post Fault Accelerating and Decelerating Areas

and it is a function of the speed in a stationary reference frame. Let us define kinetic energy of
speed deviation as Eq. 2.7.

1., 1.(2\%2,
Wke,,. = -2'me =§J (F) w ,J (2.7)

The kinetic energy of deviation speed is zero at synchronous speed as shown in Fig 2-12.
Notice that this kinetic energy has the same units as the mechanical one. Also notice that
it is not a linearization of the mechanical kinetic energy. A question may arise now, does A,,

in Fig 2-11 represent this kinetic energy of deviation; the answer is no. In order to prove this

we will again make use of Eq. 2.6.

dw MW
ME—[Pm-Pe@)],m

We will multiply this equation by w = dé/dt, and cancel dt on both sides to get the equation

MW rad

Mwdw = [Pm - Pe(J)] d6, W

We now multiply and divide the left-hand side of the above differential equation by 2 in order
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Naa™)
f
W, W
Weea™y T w
1 - Wa
Vs
Figure 2-12: Kinetic Energy
to complete the differential d(w?).
M MW rad
?2wdw = [Pm — P.(6)]d6, VA
Mo MW rad
—2—d(w ) = [Pm — P(6)] d6, MVA

We must then integrate the above differential from é,,;, to 4.

MW rad

M [« §
M @)= [P~ P(8)]db, g

W(bmin)
Since w(6min) = 0 we get the equation

Mo, /8 MW rad
3w’ = |, [Pn = P6))-dé,=om

If we make the upper limit equal to §, we will get the accelerating area A,; depicted in Fig.
2-11.

M bs MW rad
S = [ [P = PO 8,

Ao = / [P~ P.(8)] 6, il
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We can see that A, is not equal to the kinetic energy of speed deviation; it is equal to a
2
similar expression which has M in it instead of J (%) .
The transient kinetic energy is defined in Eq. 2.8.

_1 5 MWrad
Vie = 2Mw ' “MVA (2.8)

Replacing M by Eq. 2.5 we get the equation

Vie =

1J(2)2 w, 2 MW rad

2" \P) Siere ' MVA

From Eq. 2.7,

2
Wke,, = %J (%) w2, ]

From the last two equations the following equation is obtained.

Vie = %Wkem, %

At point f in Fig. 2-11, the kinetic energy is at a maximum because w = wy4;. As the
system moves from f to e the transient kinetic energy Vi. deceases until it gets to zero exactly
at point e. At this point the transient kinetic energy has been converted to transient potential
energy, Vpe(6). This occurs because the system has no losses. As in the case of mechanical
potential energy, the transient potential energy, Vp., is a function of displacement. The maxi-
mum potential energy is equal to the decelerating area A4;. As in the case of total mechanical

energy, the total transient energy is the sum of the potential and kinetic energies.

MW rad
V(&, w) = V,,(&) + Vk,(w), —m
Since there are no losses, dV/dt = 0.
. - MW rad
0= Yoot Vi JvAs

From Eq. 2.8 we can find that Vi, = Mwd. Substituting this result in the above equation,
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yields the equation
Vpe = -Mww

According to the chain rule,
dVpe _ dV,,,(&) dé

dt ds  dt
Therefore,
dV,.(6) dé .
PN/
& @ Mwe

We can cancel d§/dt on the left-hand side with w on the right hand-side to get the equation

dVye(6) .
Zrpell) _
TS Mo

After multiplying both sides by dé,we get the following equation:
dVpe(6) = —Mwdé

Muw is the left hand-side of the swing equation and after substituting by the right-hand side,

we get the following equation:
dVpe(6) = — (P — Pe(6)) d6

We can integrate this differential equation from 4§, to 4.

/ O e /6 8 (Pm — P.(6)) 6

Vie(8s)

Since V,e(4,) = 0,
Vyel(8) = - / (Pn ~ P.(6)) a8, 27220 (2.9)

2.4 A few remarks about the transient energy

When a disturbance occurs, the system gains transient energy. Even if no fault occurs, the
system gains transient energy. In a change of topology, like the opening of a line, there is no

fault, but the system gains transient potential energy because the stable equilibrium point,
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s.e.p., changes. Fig. 2-13 explains these ideas. Before the disturbance, the system has zero
transient energy. The disturbance will inject transient energy into the system. When the
disturbance disappears we have a system which has gained transient energy. The issue now is

whether or not the system is stable after a disturbance.

PRE-FAULT
V=0 SYSTEM
FAULT \
dVAT > 0 }\ SYSTEM
POST-FAULT
V>0 SYSTEM
dVAMdT >0 +
v

Figure 2-13: Injection of Transient Energy

2.5 The equal-area stability criterion and the transient energy

method

The equal-area criterion establishes that A, = Ay when the system is stable. Referring to Fig

2-14 a), the accelerating and decelerating areas are given by Eq. 2.10 and Eq. 2.11.

A, = /6 & [P — P, sin(5)] db (2.10)
Ag= /5 P [P, sin(6) - Pn] dé (2.11)

A different way of stating the equal-area stability criterion is using the inequality A, <
Admaz. These areas are shown in Fig 2-14 b). Agmq is obtained by replacing 8o, by 6, in
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Eq. 2.11, yielding the following equation:

Su
Admas = / [P&), sin(8) - Pu] dé
Sl

Pe(8)4 . Pe(8)4

Prix sin

PRE-FAUL

Prix sin(8
Pm POST-FAULT Pm
sin() sin
FAULT @
6° 6d &_ 6u 6 69 6d 6u 76
) Aa=Ad b) Aa < Admax

Figure 2-14: Equal Area Stability Criterion

The inequality A, < Admaz simply establishes that following a disturbance, the system is
transiently stable if the accelerating area is less than the maximum decelerating area.

The case for which 6maz = 6u, and A; = Agmas, is critically stable (Fig 2-15). The system
will reach the state (6,,0) as time tends to infinity. This theoretical situation will never happen
in reality, because any disturbance, no matter how small, will move the system either towards
8, or towards instability as shown in Fig 2-15.

The equal-area criterion of stability and the transient energy method are the same.

Fig 2-16 shows the accelerating area, A,, the decelerating area, A4, and an area labeled

as A.. The equal-area stability criterion is mathematically stated by Eq. 2.12.

Aa < Admaz (2.12)

We can add area A. to both sides of this inequality to get Eq. 2.13.

Ag + Ac < Ac + Admas (2.13)
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Pe(8)} "

PREFAULT

Prax sin(8)

' POST-FAULT
A A’A\r

Figure 2-15: Critically Stable Case
A, is given by the equation

1.9 MW rad

The accelerating area equals the transient kinetic energy injected into the system by the

disturbance.

A, is given by the equation

A = /5 f" {~ [Pn = P sin(6)]} db

By comparing this equation to Eq. 2.9, we can see that A, is the transient potential
energy at clearing time, i.e. A, = Vp.(64), %‘%".

Now, we must find out what (A.+ Agmaz ) represents. A+ Agmqz is given by the equation
bu
Ac + Adma.t = -/6. {- [Pm - P,ﬂ, Slﬂ(&)]}d&

Ac + Admaz 18 the transient potential energy at 6,. Ac + Admaz = Vpe(6u)

We have just obtained the following results: A, = Vi(wa), Ac = Vpe(6a), and A; +
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Pe(8) 3 .
sin
PnE-FAuﬁ
Pm Piax sin(8)
POST-FAULT
Pritx sings)
FAULT
8o 8 ba & *s

Figure 2-16: Modified Equal Area Criterion

Admaz = Vpe(6y). After substituting them in inequality 2.13 we get the equation

MW rad

Vie(wet) + Vpe(8e1) < Vie(84), VA

This inequality is the mathematical way of stating the transient energy method. The
above inequality must hold not only at clearing time, but also during the post-fault.

Vie(@) + Vie(8) < Ve84 (2.14)

%wz — Py (6 - 8,) — P&), (cos & — co88,) < —Ppy (6, — 6,) — PO, (cos 8, — cos §,)

Following a disturbance the system is transiently stable if the total transient energy

is less than the potential energy evaluated at the u.e.p.

2.6 Phase plane trajectories

We will find the trajectories corresponding to the pre-fault, fault and post-fault intervals.

e Pre-fault
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— The equilibrium point at prefault is given by

5, = sin~! (%) ,rad; w = 0, rad/s
max

The trajectory during pre-fault is the point (,,0).
o Fault

— The motion during the fault starts at (6,,0), since these quantities cannot change

instantaneously. The model during the fault is represented by the following equa-

tions.
9™
dt s
dw MW
= _ — pl2) o —_—
Mdt Py, - P} sin(6), MVA

The accelerating area A, equals the transient kinetic energy.

A, = ~Mu?

1
2

)
A, = / " [Pn - P, sin(8)] a5
do

_ |2 fba @) .. ira.d
w—\/ﬂ-LO [Pm-—Pmsm(G)]dG, T

The positive radical was taken because we know that the system is accelerating

during the fault.

e Post-fault

— After the fault is cleared the model is represented by the following equations:

@ ™
dt s
dw MW
& _ — pB3) & i
Mdt Py, — Py, sin(8), MVA
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— Since the idealized model provides no damping, V(é,w) is constant and equal to
V(641,wei) after the fault, i.e. '
1

Esz + Vpe(8) = V(ba1,war), or

w= ﬂ:\/—::l- {V(Jd,wd) + Pp(6-6,)+ P& [cos(6) — cos(6,)]}, %.

This equation gives the trajectory after the disturbance.

Fig 2-17 a) shows the potential energy vs. § according to Eq. 2.9. The parameters of the
system used to obtain this plot are the following:

Ppostfault = 1.5 pu,

P, = 1.0 pu,
M =0.025 e,
Using these parameters we get that

Vie(6.) = 0.554 and
Vpe(6y — 2 - 7) = 6.837.

Fig 2-17 a) also illustrates the following results:
Ac = Vie(ba)

A, = ch(wcl)
Ac + Admaz = pc(éu)

Fig 2-17 b) shows the pre-fault stable equilibrium point, 6,; the faulted trajectory, which
initiates at (6,,0) and ends at (6c, wy); the post-fault trajectory (constant V'); and the contour
map for the transient energy, this contour map has increments of V,.(6,)/5, i.e. the inner-most
contour represents a level of V},.(6,)/5, the second contour represents twice as much. The solid

contour represents the post-fault trajectory corresponding to the critically stable case, the state
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tends to (é,,0) as time tends to co. A small amount of energy less than this critical energy
makes the system stable. Whereas a small amount of energy more than this critical energy
makes the system unstable, i.e. if the fault is cleared when the total energy is less than V,..(6,)
then the system is stable, otherwise is unstable

From Fig 2-17 c) we gain a better understanding of the way the areas relate to transient

energy.

Fig 2-18 is the 3-D plot of the transient energy vs. é§ and w. From this figure we can see
why this plot is sometimes called the energy well. This plot has stacked contour lines with a

contour interval of 0.5 M¥zad,
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Vpe(é)

FAULTED POST-FAULT THA.ECTOHY
TRAJECTORY A) STABLE
B) UNSTABLE

Figure 2-17: Transient Energy Method
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Figure 2-18: Transient Energy Function
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Chapter 3

Transient Energy Function for

Multi-machine Systems

3.1 Power system representation

The synchronous machines are represented as a constant voltage source behind the direct-axis
transient reactance, X). The loads are modeled as constant admittance, and the input power
from the prime mover, P,, is assumed constant. These parameters constitute the classical

representation of a power system.

3.2 Reduction to internal nodes

In order to get an expression for the electrical power at the internal nodes of the machines, it is
convenient to reduce the system to the internal nodes. The steps to accomplish this reduction

are the following [56]:

1. Use the prefault load-flow, Yy = (Pioad — jQioaa)/V?,to obtain the admittance value of

the loads. These values are included in the diagonal of the admittance matrix, Ypy,.

YPew(i, i) =Yuo (i, )+ Yi(i) (see Fig. 3-1 and Fig. 3-2).

2. Update Y} to include the transient reactances. Create the Y2, Y1, and Y22 matrices.
These three matrices are part of the extended matrix, Y..:, which includes all of the
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1 m+1 nbus +1
PH1 +jQN Xd1
Pim+1 + ] Qim+1
2 m+2 nbus+2
|~
Yous ' xd2' i @‘
Pi2 +jQi2
Pim+2 + j Qim+2
.m nbus nbus+n
— e O
Pim + | Qim n
Pinbus + j Qinbus

Figure 3-1: Original System

original buses plus the internal nodes (see Fig. 3-3). The partition of Y., is the following
matrix:

Y5 Y

Y X

Y..:=

If n is the number of buses with generation and nbus is the number of buses in the system,

then

Yjcv is of order (nbus x nbus)
Y,; is of order (nbus x n)
Y., is of order (n x nbus)

Y, is of order (n x n)
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Yi{ Yim+1
2 m+2 nbus+2
new L o~
| Yous " oxd2r @
Yi2 Yim+2

m nbus  nbug+n
Xdn'

Yim Yinbus

-

Figure 3-2: Loads Modelled as constant Admittances

3. Notice from Fig. 3-4 that for the extended system the following system of equations holds:

(1] b Y2 Yy
Lint Ys: Yo E

The following equation eliminates all external nodes.

Xred = Xzz - 121 [Xi‘::" ]_l Y,
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| |
m Yim-+1 %de nbus +1
@)

[ Yext
Y2 Yim+2 ? Xd2' nbus+2

| |
Yim Yinbus % '
|
Xdngen' ' @.

Figure 3-3: Extended System

3.3 Electrical power

Now we will find an expression for the electrical power at the internal node i [56]. The complex

power at node i is given by the equation
Pi + jQgi = EiIf, pu (3.1)
The current injection, I;, is given by Eq. 3.2
I = z": [(Gix + 7 Bi) Ey] (3.2)

k=1

Gk + jBii is the element %, k of the reduced admittance matrix. After substituting Eq. 3.2 into
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Yred

Figure 3-4: System Reduced to Internal Nodes

Eq. 3.1 we get
n
Pyi+3Qui=) [(G,-,c - jBit) E: Ekej(s;—s,,)]
k=1

The imaginary term is ignored to yield
n
Py = E [Bik EiEy sin(8; — 6i) + Gix E; Ex cos(6; — 6;))
k=1

or

n
P, = Gi+E? + E [Bir E; E sin(6; — 8k) + Gix E; Ey cos(6; — 6;)]
k=1,#i

Let us define the following terms:
Cik = Bi E;E}
Dix = GixE;Ex
Py = 22=1’# [Cik sin(8; — 6 ) + Djx cos(8; — &)
Eq. 3.3 results.
P =G E? + P.; 3.3)
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3.4 Differential equations

The swing equation (Eq. 2.6) for machine ¢ results in the following equation:

d%5;

MG

= Ppi — Py, pu

After substituting Eq. 3.3 into the above equation we get

a5

gz = Fmi = Gii E? - P, pu

M;

If we define P, = Py,; — G;E?, the swing equation results in Eq.3.4.

d%é;

Mige

= F; - P, Py, i=1,--m

3.5 Number of state variables

(3.4)

From Eq. 3.4 we have n second-order differential equations. For the state equation, we need

the following 2n first-order differential equations:

&i = w;, rad/s;
b = E‘ﬁ;&‘, rad/s?, fori=1,---,n

(3.5)

In the right-hand side of the swing equation (Eq. 3.4), angle differences are used instead of

the angles with respect to a synchronously rotating axis, i.e. we need §; — §; instead of only §;.

This reasoning suggests that the number of state variables is 2(n — 1) instead of 2n. In order

to assess the transient stability of a power system, we must consider relative angles instead of

the actual angles in a synchronously rotating frame (Eq. 3.5). As explained in reference [56]

there are two choices:

o Angles-with-respect-to-a-reference machine formulation

¢ Center of angle formulation
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both choices lead to 2 - (n — 1) state variables. Eq. 3.5 is not the state equation.

3.6

nstate = 2(n — 1)

One-machine reference frame

In this formulation, the machine with the largest inertia is usually chosen as the reference. We

will designate the last machine as reference . From Eq. 3.5, the first-order differential equation

of the reference machine is

%a = w,, rad/s
-

After subtracting the above equation from Eq. 3.5 we get the state equation with machine-n as

the reference formulation (Eq. 3.6).

where

%ﬂ = Win, rad/s
Loin — fiﬁ?‘i—&ﬁfﬂ,ra.d/s’ (fori=1,---,n-1)

bin = 6; = by,

Win = Wi — Wy,

P, = Pp; - G;; E?

Pei = 7321 4i[Cijsin(8in — 85n) + Dij c08(8in — 8jn)] + Cin 5in 8in + Din €08 6in

Pen = E?;ll [Cnjsin(—&jn) + Dnj cos(—6jn)]
Cij = Bi; E;E;
D;; = G;; E; E;

Gi; + j B;; is the element ij of the reduced admittance matrix.
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If we define the angle subspace as

6ln

6271

| Sn-1yn |

and the angular velocity subspace as

Win

Wan

| Y(n=-1)n |

then the state vector is the following vector:

(]
W

I8
I

3.7 Center of angle reference frame

This formulation uses the inertia-weighed average of the n angles as reference [73). The center

of angle is defined as Eq. 3.7

S Mibi; M=) M; (3.7)

t=1 i=1

1
b = —
o M,
The angles with respect to the center angle are

The same is taken into account for the angular velocities.

bo = wo
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1 n
wﬁ:EZM“"i

i=1

The first derivatives of the angles in center of angle, COA, are

Wi =W — W

To obtain the dynamics of the COA, multiply Eq. 3.7 by M; to get Eq. 3.8.
n .
M;-6,=) M;-§ (3.8)
=1

After taking the second derivative we obtain M; -§, = "%, M; - §;. Notice that the right-hand

side of this equation is the sum of all n swing equations.

M,-5, = Tim B — X Pei
= ?:l 'Pl -2 Zn—l E;‘=5+l Dt] cos 3:]

=1

If we define the power of the center of the COA as

n n-1 n
Pcoa=EPi-2E 2 D.-,-coss,-,-
=1 =1 j=i+1

then the dynamics of the COA are given by Eq. 3.9.

5o=wo

o P (3.9)

According to Eq. 3.4, P, is also equal to the mechanical input power minus the electrical
output power,i.e. Peog = Y 0y Prmi — Y1y Py

Now we can subtract Eq. 3.9 from Eq. 3.5 to get

%‘? = @;, rad/s (3.10)
@i = BoPu _ Baa rad/s? fori=1,2,-,n '

Notice that we still have 2 - n equations, but we will show that only 2-(n — 1) are required. We

42



can rewrite Eq. 3.8 as
n
D> Mi;=0 ' (3.11)
=1

By taking the first and second derivatives we get

?:1 Mi“-)t' =0
" (3.12)
?:l Mlm" =0

From the last equation we can conclude that any pair of the 2n equations in Eq. 3.10 can be
expressed as a linear combination of the rest. We will arbitrarily choose the pair corresponding

to ¢ = n in order to get the state equation in COA (Eq. 3.13).

% = ‘:’ia ra.d/s;

) _ (3.13)
Wi = Bplei  Fepa, rad/s? (fori=1,2,---,n~1)
where

P; = Ppi - Gi; E}
P, =%n1 {C,'j sin(S,- - EJ) + D;; cos(5.- - SJ)} + Cin sin(5.~ - 3,.) + D;y cos(S‘,- - 5,,)

J=1,#i
Ci; = Bi; E;E;
D;; = Gi;E;E

Gij + j B;; is the element ij of the reduced admittance matrix.

Peoo = Ty B = 2805 T32hy Dij cos(8; — &) =TIz Din cos(d; - 5,)

From Eq. 3.11 and Eq. 3.12, §, and &, are given by the following equations:
b = — 3 T2 Mi§;
Gn = — g T Mio;
Notice that although 4, appears in Eq. 3.13, it is given as a function of the angle subspace in
Eq. 3.14.

(3.14)
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Now, if we define the angle subspace as

&
. b2
é= .
Sn—l
and the angular velocity subspace as
[
- w2
w= .
b Qn-l -

the state vector results in the following equation:

8

[ 1]
]
130

3.8 Step-by-step transient stability analysis

At prefault, ¢t = 0. Before the fault the system is in equilibrium, i.e. the initial angular velocity

subspace is zero, &° = 0; and the initial angle subspace, §°, is obtained from the following

load-flow solution:
o Eiedbi =V, +J'X.'1Q'#§"£
e P, + jQ, is the complex power supplied by machine i,
e V; is the phasor voltage at the terminals of machine ¢, and

¢ X is the transient reactance of machine ¢.

During the fault, 0 < t < tel. The state equation is given by Eq. 3.13 if the reference is
the COA or Eq. 3.6 if the reference is an arbitrary machine. We then integrate this equation



numerically. For instance, Runge-Kutta fourth order can be used. P/, C/, and D}, are obtained

considering the fault.
During postfault, tc! < t < t;. The state equation is again integrated numerically. But P;,
Cix and D;;; are not the same as those of the fault-on period since these do not include the

fault, and generally a line opens in order to clear the fault.

3.9 The transient energy in the center of angle formulation

The following steps obtain the transient energy function in COA formulation for multimachine-

systems [57).

1. Obtain the swing equation in COA formulation. Eq. 3.4 is the swing equation for machine
i.
d?5;

i"dt—2=P,'—Pe,', fori=1,...,n

Eq. 3.9 represents the dynamics of the center of angle.

d%ég

Tl-tT = coa/Mg, rad/s’

To get the swing equation in COA formulation (Eq. 3.15), we have to multiply the last
equation by M; and subtract the result from the swing equation (Eq. 3.4).

M;%{i =FP-P,; - %Pm, fori=1,---n
or :
M,-%‘;i — P+ P + %Pm =0 (3.15)
i=12,---,n
where

P; = Pn; - Gi; E}
Pei = Y71 [C.'j sin 5,',‘ + D;; cos 5:';’]
Cij = B,JE,EJ
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D,'j = G,’jE,'Ej
Gi;j + 7 B;; is the element j of the reduced admittance matrix.
Peos = L0y P — 2375 Ty Dij cos b

= E?:l Mi
2. Multiply Eq. 3.15 by%é;i.

%H’ b M b

db; d2é;
- : et dt 'M-‘ can

q@t ar =0

M; - F
i=12,---,n

3. Add all n previous equations.

n -
ZMw. ZP +z: E [C.,sm&.,+D,,cos§u] ZPﬂMiiJS_.:O
=1 dt 1j=1 M, dt
B i=1i=14# =1
(3.16)

Let us do some algebra on the underlined terms.

n n - d' n-1 n N _
> 2 Cysindy;— = E > Cijsin(§; - §)=(5: - §))
i=1 j=1,% i=1 j=i+1
n n d' n-1 n . d . .
> 2 Dijcos; d-:Z 0s(8; — &;) (8 + 5;)
=1 j=1,#¢ i=1 j=¢

If Ci; = Cj; and D;; = Dj;,

Z M, 'dt ;M‘

=1

From Eq. 3.12 3%, M;%‘ = 0; therefore, %ﬂﬂ pINA M;%‘ = 0. Substituting these
results into Eq. 3.16 we get Eq. 3.17.

= Y= Mo dg. -X= P %
d 5.'—5,' = d 5.'+3J' (3'17)
+ Yo, Ej:i-{-l {C,'j sin 6,',' -+ D;; cos é;; 7 }
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4. As mentioned in the previous chapter, in the absence of damping, the transient energy
remains constant, i.e. % = 0. During the disturbance, transient energy is injected to the
system. After the disturbance (postfault), the transient energy V(§,&) remains constant.
The last equation is —%.To obtain V(E, &) we must integrate from ¢ to ¢,;

aw [ (%)

V) = /t( ‘fi‘t’) dt (3.18)

where t > ¢, and ¢, is the time when the stable equilibrium point, s.e.p., is reached.

or

Notice that this is a mathematical trick. Because of the absence of damping, the s.e.p. is

never reached. After substituting Eq. 3.17 we get

VEe) = [Tk Mo -sn, Rd
+ T Tiein [Cij sin §;; 4 6:; + Dij cos(8; — §;) % (5; + 55)] dt

or
VED) = [50) [Sh M) das - [ (22, P dB;
{ -
\ + f"((:,)) T Tiis1 Cijsin 5.','] dé;;
+ Loty (T8 Tieiea Dijeos = )] d(li + )

H @&i(t,) = 0, @(t) = &, 8;(t,) = 6 and §;(t) = §;, then

V()

Tt [M: 1] - 2 | s Pid]
+ E?:ll 21=s+1 fs, Cijsin 60 d6'1]
+ S Thin fs‘;:;z D;; cos(é; — &;) d(5; + §; )]
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After integrating we get the transient energy in COA formulation:

(6d) = Tt st p A
- P, (5 - 5') -2 * i1 Cij (cos b:; — cos 3&)
- Y1 Cin cos 6;n — cO8B 6:n)

1=1

+ DI i [t D conthi - ) dlfi + )
- wit [t Do cosh; - ) i +5,.)]

Although &, and b, appear in the above equation they are expressed as functions of @
and § (Eq. 3.14). The notation, V(4,), is therefore correct. For simplicity we will use
Eq. 3.19.

|4 (E,Q) = T %o -TL, P (5‘ -8 )

- 2 i=it1Cij (cos 5:1 — cos 5:’;’) (3.19)
+ T i [ Dy cos(ls - 8 d6i+ 5|

Now, let us discuss each of the terms in Eq. 3.19.

— The first term in Eq. 3.19 is the transient kinetic energy: Vi.(@) = 1 3%, Mo

v

The remainder is the transient potential energy, which, as proposed in reference [56], may be

decomposed in the following two terms:

- V(@) = -, P (5-‘ - & ) = I51 i Tlmiga Cij(cos b; — cos 57), Mgrad
- Vad) = T Shin f:,j_:,; D;; cos(8; — 8;)d(5; + &;), YW, This term is path
*, dependent, i.e. the term is integrable only if the path from §(t) to 4(t,) is known

orif n = 2. This problem may be overcome by using the linear ray approximation

ﬁroposed originally in reference [80).
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3.10 Ray approximation in center of angle formulation

MW rad (3:20)

The trajectory from § to §* can be approximated by a linear trajectory, [1]. Let us define I;; as
MVA

3.'+3,' - - = £
L= / ., cos(8; — 6;)d(b; + 6;),

The following equation results.
n-1 n

Va@® =Y > Dj; I
=1 j=i+1
Now, let us find an expression for I;; using the ray approximation. Fig 3-5 shows the ray from

(5,', 5;) to (82,8¢); &; as a function of 51- is given by the following equation:

5= :-’ + a(3,- - 5;)

where the slope is given by a.
L 3.2
- (321
7Y
5 #
AR
(83,80
> ~
)

Figure 3-5: Ray Approximation
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By subtracting 5,' from both sides we get Eq. 3.22.

- -

b; — §; = 8! — ab? + (a - 1)§; (3.22)

By adding 5,- to both sides we get Eq. 3.23.

b+ 8 = 8 - a8l + (a +1)§; (3.23)

After substituting Eq. 3.22 and Eq. 3.23 into Eq. 3.20 we get
55 . . - .
I = /6 cos [§¢ - abf + (@ - 1)§;] (a—1)d5;
3

If we integrate we get

L;= :-_i- i {sin [(a— 1)6; + 8¢ — agj] —sin [(a— 1)3;+5,’ —a5}]}

From Eq. 3.21 the following new expression for I;; :

bi—-8r48;-8 . . -
=g g o (58) e (i)

The transient energy function in COA using the ray approzimation is given by
Ve (§,@) = Vi (@) + Vin (8) + V32 (8) + Vi (§) (3.24)
where
Vi (@) = § TI Mid? + {Mol]
Vo (8) = -zt [ (8- )] - P (B0 - B2)
V2 ( ) ) DN Dyt [C,-,- (cos b;; — cos 8% )] -0 Cin [cos (5 -4
Vi (8) = o152 Spch { Dot i (5 ) - s (i - ) }

+ 3o {Dm—-t——n‘;"s +00=34 [sin (§; ~ §,) — sin (87 - 5')]

=1 88 =B +82

) - o it - &)
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According to Eq. 3.14

and
n-1

@ (@) = _ML,. E Mo
There is no mathematical justification for using the ray approximation. Many attempts
have also been made to include the transfer conductances in the transient energy; this has
not been accomplished either. An attempt was also made to use the fault-on trajectory as an
approximation to the post-fault trajectory, but since §° and §* (Fig. 2-6) are not equal, this
approximation is worse than the ray approximation [1]. There are two options: a) to neglect

Va(8) or b) to use vy %(§). The ray approximation seems to be the most accurate choice.

Figure 3-6: Fault on and Post Fault Trajectories

3.11 The transient energy in one-machine reference frame

The transient energy function with machine n as reference is given by the following equation:

V($,w) = Vi (w)+ Vi1 (8) + Vp2 (8) + Va(8) (3.25)

where
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n— n— M;M; - .
Vi) = T Tk ot -t (Win win)® + Xt %‘ﬁf‘w?n
ne2sn—1 M;Pi=M;P; ,
Vi (8) = - i ach, MBGME (5, — 5, — 82, +683,)
- T MaBaMPa (6, - 63,)
Ve (§) = =232k, Cij |cos (8in — 8jn) — cos (82, — 62
p2\< 1=1 Luj=i+l Vi in m n n
=01 Cin[co8bin — cos62,]
Va(®) = T Tk DijLij + T Dinkin
I = f;";"si’:_:'::: €08 (§in — 8jn) d (Ein + 85 + 25,
I = fg"_::‘f:" cos 6;, d (6.-,. + 25,.)
8 (8) = -3 T Mibia

The proof for this energy function can be found in Appendix A. The transient energy

function with machine n as reference cannot be evaluated. The ray approximation must be

used.

3.12 Center of angle formulation compared to one-machine

reference frame formulation

The state vectors in these formulations are the following:

61 6ln
62 2n
. i 61;—1 é 6(»—1)1:
z= j = ) s = =
@ w @ Win
wo Wan
| Wn-1 i I Win-1)n i

The first question is how they relate to each other, i.e. how to go from one representation

to the other . We will consider the angle subspace only since the relations are the same for the
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angular velocity subspace.

1. From machine n as reference to COA. According to Eq. A.5,
. n—1
oy = "'_ E M;bin
t =1
By definition
bi=6-16

or
;= 6;— 6n— (8, — 6,) = bin + by

By summarizing, we get Eq. 3.26

bn (&) = — 3 T2 Mibin

) i (3.26)
5;(8) = bin + bp,fori=1,---,n—1

2. From COA to machine n as reference. From Eq. 3.14
n-1
( ) = - Z M;5;

" =1

From the second row of Eq. 3.26

summarizing

6,,()= }:}‘ oM (3.27)
6,-,.(&)—6;—6,.,forz=1,---,n—1

The second question is how V(§,&) and V(§,w) relate to each other.

¢ Kinetic energy
Vi(@) = Vi(w)
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¢ Path independent potential energy
V(@) = V(9)
o Path dependent potential energy
Va(8) = Va(8)
According to these results, the transient energy is the same for each formulation.

V(6,@) = V($,w)

The proof for these results can be found in Appendix B.

3.13 Ray approximation in one-machine reference frame

We have shown that V3(8) = V4 (&) ; this equality must hold after the ray approximation is
used, i.e.
V;av (ﬁ) = Vdrav (5)

From Eq. 3.19,
Vi () =

= b; — (8 + 82 o o
§ J-S:l.-.:_l D;; 5. i. 5,- — gs: :*_- 53 [sin (6.- - 6j) —sin (6,’ - 6;)]

According to Eq. 3.27, however, §; = 6ip + 8,,i=1,---,n— 1.
Vi (@) =

B2 0ol G By + 26, — (88, + 62, + 252)

2 > Dy

=1 j=it1 d Sin — 8jn — (5.". - 6_1"71)

[sm (6in — 6jn) — 8in (6 - & )] +
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nol b+ 26, — (8, +282)
n

in 6;n, — sin &;
= GGy e = ind]

In conclusion, the transient energy function with machine-n-as-reference and using the ray
approzimation is given by:

VT (§,w) = Vi (@) + Vi1 (8) + V32 (8) + V7V (§)

(3.28)
where 2 met X
~— - plm M M
Vi (w) = Z 2 ("-’m wjﬂ)2 + Z =5 2
=t+1 =1
Va(6) =
n-2 n-1 n-1
M;P;, — M;P; . M, P; — M;P,
=X X T b i (B - 8) | - T G- 88
i=1 j=i+1 i=1 t
n-2 n-1 n-1
Vp2(8) = — E Z Ci; [cos (8in — bn) — cos (6,9" )] Z Cin (coséiy, — cosél,)
=1 j=i+l i=1
Vi (8) =
n2 2l i+ bjn + 26, — (85, + 62, + 262
+ z Z D;; in + Ojn + 280 - (0 + md £) [sin (8in — 8;n) — sin (6in — in)]
=1 j=i+1 bin — 6.1"" - (6:1: - 6;»)
n=1 o + 26, — (82, + 252
+ z Din = 6" ( 6: n) (sin 6;, — 5in &%)
i=1 n = Yn
. n-1
6n (é) v E M; 6m
t i=1

Notice that although §, is in COA, the last equation gives this quantity as a function of the
angle subspace in the machine-n-as-reference formulation
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3.14 Transient energy function and the ray approximation for

two-machine systems

As mentioned before, the ray approximation is not required for n = 2. The energy function in

this case is obtained from Eq. 3.19.
V(6o) = Yof+¥pof-P(5-8)-P(5h-5)
~C1z (cos(8; — b2) — cos(8} - .5))

+Dua | [fiths con(hy - 5) (B + 8)|

According to Eq. 3.14

= M, - - M, .
62 = ——Miﬁl and Wy = —F;wl
31—52—%6 and61+62—M—lM-:&51

Substituting with these equations, the transient energy function for a two-machine system in

COA formulation is obtained.

V(onm) = 4 (+8)5t- (7~ #P) (5 - i)
-C12 {cos [(1 + Aﬁ;‘) 51] — cos [( %;-) 52 ]} (3.29)
+D1o e {sin [(1+ ) &) - sin [(1+ 2) 52]}
Notice that the ray approximation was not used. It can be easily shown in this case the
ray approximation of the energy function results in the above equation (Eq. 3.24 results in Eq.

3.29 if n=2).

The energy function in one machine as reference formulation is obtained from Eq. 3.25.

V(biz,wn) = Njffaut, - MBRMB (5, - 67,)

—C12[cos (612) — cos (62,)] (3.30)
+Ds3 |, 5,‘2:_':3} cos (612)d (512 + 252)
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Also from Eq. 3.25 the following results.

§, = Mz
2T MM,
= =M+ M;
é 26 = ———————=6
12 + 262 M, + M, 12

Substituting this result into Eq. 3.30 yields the energy function for a two-machine system with

machine-n-as-reference formulation

V(612,w12) = A—gﬁ'{‘“’fz - M’ﬁﬁ,&& (612 — 61;)
~C2 [cos (812) — cos (64,)] (3.31)

+ D12 572 [sin (812) — sin (68,)]

To repeat, the ray approximation was not used and it can be easily shown that substituting
n = 2 in the ray approximation of the energy function results in the above equation (Eq. 3.28
results in Eq. 3.31 if n=2).

We have seen that V" (state) = V (state) if n = 2. Which means that in a two-machine
system, even if ray approximation formulas are used, the transient energy obtained is exact.
Furthermore, if 2 multimachine system swings as a two-machine system, the ray approximation

is very accurate [80].

3.15 Three machine example

The system shown in Fig. 3-7 has three buses, all of them with generation [2].
The arrows pointing to the generators indicate the active power supplied by each machine.

C and D result in the following matrices:

i j Cj Dy

2 1.1957 0.1874
3 2.6726 0.6728
3 6.7053 1.2869

B e

Notice that the transfer conductances are not negligible since the ratio of %‘-J'- is not negligible.
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1<15

2.49 J.088
H=10 |
1.5+).45
1<15
4.21 .05

12.4+25

— (2~
H=15 r

1.0+}.3

Figure 3-7: Athay’s 3 - Machine SystemA

The angles at the s.e.p., the powers, F;, and the voltages, E;, are shown in the following

table:
i 6 6. bt P; E;

1 26.7167 20.0092 14.1671 1.73905 1.07363
2 26.4731 19.7656 13.9235 3.66147 1.05729
3 6.7075 —5.8421 -1.33908 1.05299

Fig. 3-8a) shows the potential energy (COA formulation) as given by Eq.3.19. This fig-
ure closely resembles the one shown in reference [2]. Fig. 3-8 b) shows the potential energy
(machine-n-as-reference formulation) as given by Eq. 3.28.

By substituting the proper values into Eq. 3.27, we get the following results:

613 = 708 601

623 = 106,47,

These equations can verify that Vp.(8) = Vp. (5) For instance, if §; = 8, = 200° then
813 = b23 = 258.33° and V,e(5),82) = Vpe(b13,823) = —12.5 MWzed 1 §, = §, = —100° then
613 = 83 = —141.67° and V,,(El, by) = Vie(613, 623) = 26.5 %ﬂ. It can also be seen that the
energy level at the lowest saddle is almost 4, where the top of the hill is slightly more than 8.
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The values of V}, in the grid files used to create these surfaces matched up to six digits.

Voe
, -12 -4 4 12 2 29

Voe
! 12 -4 4 12 29 25

b) MACHINE N AS REFERENCE FORMULATION

Figure 3-8: Potential Energy Surface, 3 - Machine System

Fig. 3-9 shows the variation of the state variables in COA for a self-clearing three-phase

fault on bus 1; the fault clears in 0.1 seconds.

The same results were obtained using the machine—n — as-reference formulation for the

dynamics and converting the state variables to COA. With this figure we can verify that due
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to the absence of damping, the s.e.p.

is never reached. Instead our model will oscillate forever.

2
40
degrees o> —8’1
— &
e
-20
0.0 0.5 1.0 1.5 2.0 2.5 t{ime,s
a) ANGLES
5
3
nds o Wy
w2
-3
-5
2.2 0.5 1.0 1.5 2.0 2.5 {ime,s
b) ANGLE DERIVATIVES

Figure 3-9: State Variable vs. Time, Self Clearing Fault on bus 1, tcl=.1s

Fig. 3-10a) shows the corresponding plots of kinetic, potential, and total energies versus
time, as given by Eq. 3.19. Since the s.e.p. and the pre-fault state are the same, there is no
sudden change in potential energy at ¢t = 0. As mentioned in the preceding chapter, the fault
injects energy into the system. Once the fault is cleared, t > ¢ = 0.1 s, the total energy remains

constant. Fig. 3-10b) shows the potential energy, the ray approximation of its path-dependent
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b) POTENTIAL ENERGY AND ITS COMPONENTS

Figure 3-10: Transient Energy vs. Time, Self Clearing Fault on busl, tcl=.1s

component, and its path-independent component.

V% results from the transfer conductances of the reduced admittance matrix, which in
turn result from the resistance of the lines and the loads modeled as fixed impedances. This
energy has nothing to do with the integral of the 2R losses. This energy is “real” energy in
MW hr, whereas the transient energy is a “conceptual” energy in MVMV‘;F__ We saw in the
previous chapter that the transient kinetic energy is zero at synchronous speed. The kinetic
energy is not actually zero at synchronous speed. Similarly, we know that the energy due to
ohmic losses is always dissipated; it increases or remains constant (i2R is > 0), but it never
decreases. We see from Fig. 3-10b) that V;°Y decreases and even goes below zero. We can
see that the diminishing of V; occurs even without the ray approximation. Vj is not integrable

because it is path dependent. We would have to know the path until the s.e.p. is reached, which
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we know does not occur, since the total energy is constant once the fault is cleared, V3 = (Some
constant) — Vi, — V,. From the shapes of Vi, and V}, in Fig. 3-10 we see that V; has to decrease.
The resistance of the lines does not dampen the swing.

With a swing in angle comes a swing in power; power comes and goes from one generator
to another while these swings in power increase the losses in the resistance of the lines. What
happens with this increase in the losses and why does this not dampen the swings of the angles?.

In order to answer to these questions, let us make use of Eq. 3.9:

& = wo, rad/s

Yo = J- - Peoa(), rad/s?

where

n-2 n-1 n—-1
Peou (8) = ZP 22 Z D;; cos6._,~ —22D.nc056m
i=1 =1 j=141

After inspecting the above equality we can say that the following equation holds.
Pupo = P — (Pis + PI2)

P, is the sum of all input mechanical powers. P is the sum of all real power loads of the
reduced system. P53 is the sum of the losses in the transfer conductances of the reduced
system. The sum of the loads and the losses in the transfer conductances of the reduced system
equals sum of the constant-impedance power loads plus the losses in the lines of the original
system,t.e.

Pcoa = Pm - (Pload"l'Plou)= Pm "Pge'n
The rate of change of the angular velocity of the center of angle also given by

dw,
dt

1
= -M—t . [Pm - (Pload + Plon)]

Now we can see that the increase in losses in the lines will affect the dynamics of the center of
angle. The increase in the losses in the lines, however, does not dampen the oscillation of each

machine with respect to this inertia-weighed average of the angles. In the following example,

we will illustrate these ideas.
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3.16 Three machine system with line resistance

The system shown in Fig. 3-11 is based on Athay’s three-machine system with resistance added
in the lines. R/X = 0.20 for all the lines, which is unusually large in order to exhibit large losses
in the lines. The slack bus is bus three; notice that this machine supplied power to compensate

the increase in the losses in the system. P, at bus three went from 8.20 to 8.418.

1<15.1
249 088

— (1)

H=10 r
1.5+}45
1<15.2
4.21 j.05

12.4+2.5

—D@M
H=15 r

1.0+}3

.0161+].0806

Figure 3-11: R/X=.2 for 3 - Machine System

A three-phase fault near bus 2 occurs at ¢ = 0. with a fault impedance of Z; = 1.e - 5+
jl.e — 5, the fault clears itself at 0.2 seconds. Fig. 3-12a) shows the angle subspace versus
time. We can see that although the swing in machine two is decreasing with time, the swing in
machine one is increasing, i.e. the transient energy remains constant as shown in Fig. 3-12c).
Fig. 3-12b) shows the angular velocity subspace in COA, @, versus time.The power of the
center of angle equals the input mechanical power minus the power generated in the system,
Peoa = P — Pyen = Pyen(t = 0) — Pyen. This is illustrated in Fig. 3-12¢) and Fig. 3-12f). This
figure shows that the losses in the lines have increased drastically due to the angle oscillations.
P,.q, however, averages more than zero due to the reduction in the power at the loads.

In this example we have seen that due to the angle oscillations, the power dissipated in the
lines increases. This will affect the dynamics of the center of angle, but this increase in the

losses will not dampen the oscillations of individual machines with respect to the center of angle.
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Figure 3-12: Self Clearing Fault on bus 2, tcl=.2s
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Chapter 4

Fundamentals of Direct Methods

4.1 Uniform damping

So far damping has been neglected. It will be included now because it plays an indispensable
roll in the characterization of the region of attraction. In order to characterize the region of
attraction, the equilibrium points must be hyperbolic, and this requires damping. In Appendix
C a detailed model and a classical model are presented along with their linearized versions.
Using the data of two large machines, three procedures to obtain the damping coefficient are
illustrated. For these two machines damping is 10 percent on their own base and the ratio ﬁ
is D
ﬁ ~ 2.5

D steam
— =~ 3.3661
M steam

Although the ratio ﬁ is not the same for all the machines in a power system, it will be
assumed that this ratio is the same because the number of state variables is the same as with
zero damping.

Nstate — 2(n -_— 1)
where

n is the number of buses with generation.
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Uniform damping is mathematically stated as

A useful result is presented now:
If
D, = 2?:1 D;

M = 2?:1 Mj

then

The following equations show that this result is true.

Di:  Dy+Dy+---+ D,

M Mi+My+---+ M,

After substituting the last equation in the previous one we get the following equation:

D _ Di(1+§+-+ %)

Mo M (143 +-+4)

or

4.1.1 State equation in the one-machine reference frame formulation

The differential equations for machine ¢ and n are the following:

b = w;

d,i=fi—_}’i'7:_Diﬂi

(4.1)



By subtracting the equation corresponding to machine n from the one corresponding to machine

1, the state equation with machine n as reference results.

bin = Win

Win = Eﬁ{:ﬂ' - Enﬁf“ — ADWin

i=1,2,...,n—-1

4.1.2 State equation in center of angle formulation

The swing equation for machine i is
M;8; = P; — Poi — Diw; (4.2)
The COA center of angle is defined as

bo = Z M;6;; My = Z M; (4.3)
t j=1 J=1

Taking the first derivative, the center of angular velocity is obtained.

wo = z M;w;
M, t i

The angle and the angular velocity of machine ¢ in COA are

5 =06-6

Wi =W —wo
The summation from i = 1 to n of the product M;é; is zero, as shown in the following:

maME = Ty M- X0, Mibo
= Y, M6 — Myby

From Eq. 4.3
YR Ms = YR Misi - Y0, M;6;
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Y Miébi=0 ' (4.4)

=1

By taking the first derivative of Eq. 4.4 the following is obtained.

zn: Mo, =0 (4.5)

=1

To obtain the differential equation of the COA, let us multiply Eq. 4.3 by M; and take the
second derivative,

n
Mo = Y M;5;

i=1
From Eq. 4.2 we get the following:
. n n-1 n n -
Mbo=) Pi—2)_ Y Dijcosd;j — Y Duw;
=1 i=1 j=i41 =1
where
Liz1 Diwi = ity Di (@; + wo)
The following equation results.
. n n-1 n n
Mibo=) Pi—2) Y Dijcosb;j — Dy — Y Dii;
s=1 =1 j=i+1 =1

Now we will show that for uniform damping, the last term in the above equation is zero.

z": D, = i ADM;@;

=1 i=1

From Eq. 4.5 we get the following equation.

i=1
The power of the COA is defined as
n n-1 n
Pcos = ZP. - 22 Z D;; cos 6;;
=1 =1 j=i+1
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The differential equation of the COA for uniform damping then results.
Mido = Pooa — Do
If the last equation is multiplied by %‘i, the following results

Mo = -"%’Pcm - ﬁjntwo

M M
or
M;bo = %:PCOA ~ Diwo
Subtracting the above equation from Eq. 4.2 we get
Mi%{‘ =P — Pi - %PCOA + Do — Diw;
or _
Mi% =FP,-P,; — %:PCOA - Di@;fori=1,2,...,n

As indicated by Eq. 4.5 and Eq. 4.4, any of the n equations above may be expressed as

a linear combination of the rest. The last equation is chosen; the state equation using COA

results. )
% - a
dd; P-P.; P, -
H = - SHA - Aod
i=12,...n-1

4.2 Characterization of the region of attraction

4.2.1 Definitions, theorems and procedures

The definitions and theorems in this section are adapted from [20] and [95]. Several background
definitions should be understood when trying to determine whether or not a multi-machine

power system is transiently stable. These definitions include the following:

- equilibrium points (e.p.’s)
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- Jacobian matrix

hyperbolic equilibrium points and sources

type-k equilibrium points

stability region or region of attraction or domain of attraction

stability boundary

stable and unstable manifolds

The state equation in both COA formulation and machine-n-as-reference formulation was

found in the previous section. This state equation may be expressed in this more general form:

z=f(z)

This equation describes a non-linear autonomous dynamical system. The equilibrium points,

the set of which is denoted by E, are defined as the points satisfying the equation

0= f(z)

From the second chapter we obtain the following result for a multi-machine system in the

COA formulation:

0 = &;, rad/s;
0= L’.‘ﬁ?‘;_ B, rad/s? (fori=1,2,---,n—1)

The derivative of f with respect to z is called the Jacobian matrix.

_df
=73

An e.p. is said to be hyperbolic if the Jacobian evaluated there has no eigenvalues on the
imaginary axis.
For a stable e.p. (s.e.p.), the Jacobian matrix has no eigenvalues in the positive real plane;

an s.e.p. is denoted by z,.
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For an unstable e.p. (u.e.p.), the Jacobian matrix has at least one eigenvalue in the positive
real plane; a u.e.p. is denoted by z,,.

An e.p. is called a source if all eigenvalues of the Jacobian matrix at the e.p. are in the
positive real plane. The type of the e.p is defined by the number of Jacobian matrix eigenvalues
in the real plane. For instance, a type-one e.p. has exactly one unstable eigenvalue.

The solution curve of £ = f(z) starting at z is called a trajectory and it is denoted by
®(z,-) : R — R"state nstate = 2(n — 1).

The stability region or region of attraction of an s.e.p. is denoted by A(z,). This region is
the set of all state points such that the trajectory of the system starting at these points tends

towards the s.e.p. as time tends toward infinity.

Alz,) = {z| lim ®(z,t) = z,}

The stability boundary is denoted by dA(z,).

In order to characterize the region of attraction, the notions of stable and unstable manifolds
and the stability boundary should be understood. If z; is a hyperbolic e.p., its stable and
unstable manifolds are defined by the following:

We(z;) = {z| ®(z,t) > z; a8 t > o0
We(z;) = {z| ®(z,t) > 2; a8t = —o0
The unstable manifold W* (z;) of a type-k equilibrium point z; is a k-dimensional smooth
manifold. The stable manifold W*(z;) of a type-k equilibrium point z; is a nstate — k-
dimensional smooth manifold.
Using these definitions and the following assumptions, we may describe the region of at-

traction mathematically.

Assumptions:

A1l. All e.p.’s on the stability boundary of the system are hyperbolic.

A2. Theintersection of W*(z;) and W¥(z;) satisfies the transversality condition, for
all e.p.’s z;, z; on the stability boundary. (The stable and unstable manifolds of

u.e.p.’s on the stability boundary satisfy the transversality condition {17]). The
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transversality condition is satisfied if a) the tangent lines of each manifold at
the intersection point span the state space or b) the manifolds do not intersect
at all.

A3. There exists a C! function V : Rr#stc . R for the system such that
i V(®(z,t))<0atz¢ E
ii If x is not an e.p., the set {t€ R : V(&(z,t)) = 0} has measure 0 in R
iii V(®(z,t)) is bounded implies ¥(z,t) is bounded. We will refer to this func-

tion as the energy function of the system.
After these assumptions are met, two theorems describe the region of attraction.

Theorem 1 (Necessary and sufficient condition for a u.e.p. to lie on the stability boundary)
{20] For the dynamical system satisfying the previous assumptions, x; is a u.e.p. on the

stability boundary 8A(z,) of an s.e.p. x, if and only if W*(z;) N A(z,) # ¢ .

Theorem 2 (Characterization of the stability boundary) [20] For the dynamical system satis-
fying the previous assumptions, let z;,¢ = 1,2, ...be the u.e.p.’s on the stability boundary
0A(z,) of an s.e.p. This theorem results in the following union:

0Az)= U W)
z€EndA
Theorem 2 states that the boundary is defined by the union of the stable manifolds of the
u.e.p.’s that lie on that boundary. In order to characterize the stability boundary, the u.e.p.’s
on this stability boundary must be found.

Procedure 1 The unstable manifold of the type-1e.p. Z may be found using the following pro-
cedure (as mentioned above, the unstable manifold of a type-1 u.e.p. is a one-dimensional
smooth manifold):

(a) Find the Jacobian at £.
(b) Find the normalized unstable eigenvector of the Jacobian ( y,). (Note that the

Jacobian has only one unstable eigenvector for a type-1 e.p.)

(c) Find the starting points £+0.01y, and £-0.01y,.
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(d) Numerically integrate the state equation starting from these points.

(e) Since the unstable manifold integrating in forward time tends either to infinity or
to an s.e.p., stop the integration when the absolute value of any of the elements
of the angle subspace exceeds some large value, (270°) or after detecting that

the trajectory approaches an s.e.p.

Procedure 2 To determine if a u.e.p. lies on the stability boundary. This procedure is a direct
application of Theorem 1, i.e. if the unstable manifold of an u.e.p. intersects with the
region of attraction of an s.e.p., the u.e.p. lies on the stability boundary of the region of
attraction. .

(a) Go through Procedure 1.

(b) If any of these trajectories approach z,, then £ is on the stability boundary.

Procedure 3 A one-dimensional stable manifold of 2 may be found using the following pro-
cedure:
(a) Evaluate the Jacobian at £.

(b) Find the normalized stable eigenvector of the Jacobian. and designate it by

¥

1. Find the starting points £ + 0.01y, and & — 0.01y,

(a) Using the above starting points, integrate the state equation in reverse time.
This integration is equivalent to integrating the following state equation in for-

ward time.

i=-f(z

(b) The region of attraction of a classical power system is unbounded. Therefore,
stop the numerical integration when any of the absolute values of the angles

exceed 270°.

Procedure 3 can be applied to find the stability boundary of power systems with at most

two machines. It can also be used to find the region of attraction of the associated-reduced
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order systems of power systems with at most three machines. Associated reduced order systems
are introduced in the next chapter.

In order to explain the reason for this limitation, let us consider a system with three ma-
chines. The Jacobian matrix at a type-1 u.e.p. will have one positive real eigenvalue, one
negative real eigenvalue and a complex conjugate pair of eigenvalues with negative real part.
Using the positive real eigenvalue and its corresponding eigenvector in Procedure 1 the unsta-
ble manifold is found. The rest of the eigenvalues and their corresponding eigenvectors define
the stable manifold, a 3-dimensional smooth manifold. Unfortunately, we do not know of a

procedure to find such a manifold. This is a subject which requires further research.

4.2.2 OMIB example

For a one-machine infinite-bus system, the state equation is the following:

) Em—l-’n-ﬁmi-ﬂu-’-‘

The s.e.p is given by

. T -6,
Ey1 =
0
. - - &,
Ly2 =
0

The Jacobian results in the following matrix:

1

0
’l'[-f-ﬁﬂ -
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The eigenvalues of the Jacobian are given by

cos §

D (D)’_P;;,

D\?  Pua
Mr=-oar T (m) Y Bt

The corresponding normalized eigenvectors are

n (V)

L 1 o

n=

% (Ve |

To illustrate stable and unstable e.p.’s, eigenvalues, eigenvectors and manifolds, let us assign

¥ =

values to the following parameters:

Prax = 1.5 pu
P, =1.0 pu

M =0.025 AW e,
D =0.01 e,

The following values are obtained:
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Iy iul iu?
41.81° 138.2° —9221.81°
e.p.
0 0 0
0 1 0 1 0 1
|
—44.72 —0.4 44.72 -0.4 44.72 -0.4
A —0.2 + 76.684 6.4904 6.4904
.148 — .0044 0.1523 0.1523
y
1 §0.989 0.9883 0.9883
A2 —0.2 — j6.684 —6.8904 —6.8904
.148 + 7.0044 —0.1436 —0.1436
¥
2 —0.989 0.9896 0.9896

The Jacobian evaluated at z, has no unstable eigenvalues (eigenvalues with positive real
parts). The u.e.p.’s are type-1. Now, we will follow Procedure 1 above to find the unstable
manifolds of £,, and £,,. Once these unstable manifolds are found we will determine which of
these u.e.p.’s are on stability boundary of z,.

For £,,, the two starting points are the following:

2.411865 1 | 0.1523 2.413388

+ — =
0.0 100 | o.9883 0.009883

As shown in Fig. 4-1, the trajectory corresponding to this starting point tends to infinity

as time increases.
2.411865 1 0.1523 2.410342

0.0 100 | 0.9883 —0.009883

The trajectory corresponding to this starting point tends towards z,; therefore, £,, is on

the stability boundary of z,.
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Figure 4-1: Unstable Manifolds

For £,, the two starting points are the following:

-3.871320
0.0

-3.871320
0.0

0.1523
0.9883

0.1523

0.9883

—3.869797
0.009883 ]

.

—3.872843

—0.009883

As shown in Fig. 4-1, the unstable manifold of £,, does not intersect with the region of

attraction of z,; therefore, £,, does not belong to the stability boundary of z,.

We have determined that the u.e.p. in the accelerating direction, £,,,, is on dA(z,); whereas,

the u.e.p. in the decelerating direction, £,,, does not belong to dA(z,). This result is true for

the values of the parameters used, but £,, may also be on 9A(z,).

According to Theorem 2, the stability boundary dA(z,) is the union of the stable manifolds

of the u.e.p.’s on 8A(z,). For the OMIB system, the only u.e.p. belonging to 3A(z,)is £,;
therefore, 3A(z,) = W?(£,,). The stable manifold of Z,, is shown in Fig. 4-2. The starting
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Figure 4-2: Stabilty Boundary of the s.e.p. or stable manifold of u.e.p. 1

points are the following:

2.411865 L1 ~0.1436 2.410429
0.0 100 | 0.9896 0.009896
2.411865 1 | -0.1436 [ | 2.413301

0.0 100 | 0.9896 —0.009896

4.3 Exit point method

4.3.1 Definitions and procedures

The ezit point, z., is the point where the fault-on trajectory intersects the stability boundary
[20]. The transient energy evaluated at this point is the true critical energy, the corresponding

clearing time is the true critical clearing time.

Virue = V(2e) = Vi) + Vo(&e)
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For a fault cleared when the energy is less than the critical energy, the system is stable;
otherwise, it is unstable. Notice that according to its definition the true critical energy is
fault-dependent.

The exit-point must then be found. We will first define the controlling u.e.p as the u.e.p.
whose stable manifold intersects with the fault-on trajectory [20], i.e. it is the u.e.p. whose
stable manifold contains the exit point [10].

The ezit-point method is as follows:

1. Obtain the controlling u.e.p. from the fault-on trajectory and designate it as z.,. This

procedure will be discussed in detail later.
2. Follow Procedure 3 above to find W*(z.,).

3. Find the first intersection of the fault-on trajectory with W#(z.,). This is the exit point.
The corresponding time is the critical clearing time, c.c.t., and the corresponding energy

is the true critical energy.

As explained before, the stability boundary of a 2-machine system can be found easily
by locating the two u.e.p.’s and applying Procedures 1 to 3 and Theorems 1 and 2 above.
Unfortunately, we can not find the stable manifold of a type-1 u.e.p. for a power system
with more than two generator buses. Therefore, for more than two machines this method is a

conceptual one.

4.3.2 Two-machine example, exit-point method
The two-machine system shown in Fig. 4-3 is used to describe the exit-point method.
The disturbance consists of a self-clearing, 3-phase fault, By = 0.25 pu, Xy = 0.0 pu. The
fault-on parameters of the system reduced to internal nodes are
P! = -1.2254, P{ = —0.5679, C{; = 1.5076, and D{, = 0.8773
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Pm1 = 2.49 Pm2 = 12.41
DIM1 = =006+
E1 = 1.08<38.76 M1 = D2/M2 = 0.06 * n

E2 = 1.05<8.18
uniform dam
H1 =10s ( ping) H2=75s
<:> ] 1<27.09 1<0 _/vv\_@
jo8s }012

j48

1.5+).45 r j 13.4+28

Figure 4-3: Two-machine system with uniform damping

The corresponding post-fault parameters are
P, =1.3275, P, = -0.5072, C;; = 1.8028, and Dig = 0.4765

The stable manifold of z., is shown in Fig. 4-4. The Jacobian evaluated at z.,, the stable

eigenvalue and the corresponding eigenvector are

0 1 ~0.1789
J(z.,) = , Ao = —5.4981, y =
29.1933 —0.1885 0.9839

The two starting points are

2.2071
Z,+ 0.01 L =
0.0098
2.2107
2,—-001y =
-0.0098

The critical clearing time is 0.1158 s. It is worthwhile to notice that this particular fault

caused machine 1 to decelerate.
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w, rad/s
100 -
Xs = (0.5338,0)
1 &' =(220890
50 - 110 =.1016s
t11 =.1160s
7] t12=.1311s
x’ *
00 4 e 8
S50 _|
11 t10
/\/ |
-10.0 T T T T T T T T ]
6.0 4.0 2.0 0.0 20 4.0
8, rad

Figure 4-4: Exit-point method

4.4 Closest or nearest unstable equilibrium point method

4.4.1 Definitions

This section is adapted from [20]. In this method the region of attraction is approximated by

{2V (2) < V§sest}r Where

Velosest = min [V@’V(ﬂ)’“"v(fm)]

T1,Z2;°""s Znuep i6 the set of u.e.p.’s on the stability boundary 9A(z,)

The nuep is the number of u.e.p.’s on the stability boundary dA(z,) . Notice that Vg,,,, is

not fault dependent and its use may yield conservative results.

Procedure 4 Determination of V,.,,-

81



1. Find all the type-1 u.e.p.’s. (For an excellent algorithm to find the possible u.e.p.’s
on 9A(z,) see chapter V of [56]) '

2. Order these type-1 e.p.’s according to the values of their energy function.

3. Starting from the u.e.p. with the lowest value of transient energy, follow Procedure
2 to determine if it lies on JA(z,). The first u.e.p. belonging to dA(z,)is the closest

u.e.p.

1. The critical energy is
Vc‘i::ed = V(Qdoaed) = Vp(écloaeat)

— édoceat
ZLelosest =
Welosest = 0

4.4.2 Two-machine example, closest u.e.p. method

Pmi1 =249 Pm2 = 12.41
‘DIM1=D2/M2= 120*w
Ef = 1.08<38.76 E2 = 1.05<8.18
( uniform damping )
H1=10s H2=75s
@ A~ 1<27.09 1<0 L/vv\_@
J.088 012
j46
1.5+)45 ‘ * 13.4+)2.8

Figure 4-5: Two-machine system with increased uniform damping

Let us consider the two-machine system shown in Fig. 4-5. This system is the same as
the one shown in Fig. 4-3 but in order to get Z,, to belong to dA(z,), the damping has been
increased from D = 0.01 to D = 0.2 M%Z%' As shown in Fig. 4-6, the equilibrium points are

the same as before
0.5339 _ | 22089 . —4.074286
o |’ 0 0
Notice that the left branch of W*(£,;) (the unstable manifold of £,,) converges to z,, and
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its right branch converges to z,. Since £,; and £,; belong to dA(z,), 8A(z,) = W?(£,,) U
W* (%.,), as illustrated in Fig. 4-6. '

w(rad/e)  gapiity boundary of (s,0)

18 1
R stable manifold
of (5u1,0)
10
5 -
-
(8ut,0
o 1
5 -
-107]

Figure 4-6: Two u.e.p.’s on the stability boundary

The post-fault parameters of the system reduced to internal nodes are
P, =1.3275, P, = —0.5072, Cy = 1.8028, and Dy, = 0.4747

The Jacobian evaluated at the u.e.p.’s and the stable eigenvalue and stable eigenvector are

) 0 1 -0.1303
-‘l(ﬁul) = ’ A = -7.6074, ¥ =
29.1936 -—3.7699 0.9915

Il(itﬂ) = al(iul)

As shown in Fig. 4-7, Vo0t = Vo(8ctosest) = Vp (8u1) = 0.6711 MYWzad Two values of fault

impedance are considered (both faults are self-clearing on bus 1).

1. Z; = 0.0+ j 0.00001, which accelerates machine 1. The fault-on parameters of the system
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w (rad/s) :
15 - fault-on trajectory in the
accelerating direction
) @ =j1E4)
10 4 \N / N \N /S \N .
] 19s
5 -
] (5u1,0)
o
4
-5
01/ AN constant energy
: / . S contour V(5u1,0)
N S~
-15 T T T T T T T 1 & (l’ld)
-12 8 4 0 4

Figure 4-7: Closest unstable equilibrium point method

reduced to internal nodes are
Pf =2.4900, Pf = —0.3792, C{, = 2.5837 x 1074, and D{, = 3.9210 x 10~°
The critical clearing time obtained by using the closest u.e.p. method is 0.13 s; using the
exit-point method, it is 0.19 s.
2. Z; = 0.15 + j 0.0, which decelerates machine 1. The fault-on parameters of the system
reduced to internal nodes are
P! = —2.2533, Pf = —0.5856, C{, = 1.2568, and D{, = 1.0186
The critical clearing time obtained by using closest u.e.p. method is 0.09 s; using the
exit-point method it is 0.63 s.

From these results, we can see that when the exit-point is contained by the manifold of

the closest u.e.p. (the closest u.e.p. is the controlling u.e.p.), the closest u.e.p. method yields
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a good approximation for the critical clearing time. These results also show that the contour
of constant energy evaluated at the closest u.e.p. gives a good approximation of the stability
boundary. However, the closest u.e.p. method may be extremely conservative when the exit-
point does not intersect with the stable manifold of the closest u.e.p. (the controlling u.e.p. is

not the closest u.e.p.).

We can also learn from this example that the fault-on trajectory depends on the value of the
fault impedance. It also depends on the fault location, the type of the fault, and the clearing

time [56].
4.5 Controlling unstable equilibrium point method

Let us list the advantages and the disadvantages of the methods described so far.
Ezit-point method

o Advantages:

1. It yields true critical clearing time.
2. It yields true critical energy (fault dependent).

3. It is not based on an approximation of the region of attraction.

¢ Disadvantages:

1. Once the controlling u.e.p. has been found, its stable manifold must be determined.

This method is only practical for a small number of machines.
Closest u.e.p. method

o Advantages:

1. It can be applied to a multi-machine system.

2. The closest critical energy must be found only once, since it is not fault depen-

dent. The closest critical energy is used for different fault configurations, but not for

different post-fault configurations.
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¢ Disadvantages:

1. It may yield very conservative results.

2. For a large number of machines it is very difficult to determine all of the u.e.p.’s on
the stability boundary. If the closest u.e.p. is missed, a very optimistic result may

be obtained by using a wrong u.e.p.

It is clear that a method yielding less conservative results and a method feasible for a large
number of machines is required. The controlling u.e.p. method is this method, since it is not

required to find the stable manifold of any u.e.p. and the critical energy is fault dependent.

4.5.1 Definitions and procedures

The controlling u.e.p. was defined as the u.e.p. whose stable manifold intersects with the fault-
on trajectory [20]. This definition means that the controlling u.e.p. is the u.e.p. whose stable
manifold contains the exit point [10].

In this method, the region of attraction is approximated by
{z1V(z)<V3}

where

VI =V (2g)

Zco is the controlling u.e.p., also known as the relevant u.e.p.

The controlling u.e.p. method is the following procedure:

1. Obtain the controlling u.e.p. from the fault-on trajectory and designate it as z.,. This

procedure will be discussed in detail later.

2. Evaluate the energy function at z.,, VS = V (zg) = Vp (&), Where §, is the angle

subspace of z,.

$e
_z_m=
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3. Find the first intersection of the fault-on trajectory with the boundary of the region
defined by '
{zIV(@<V3}

In other words, evaluate the transient energy along the fault-on trajectory, the time at
which the transient energy reaches V< is the critical clearing time, c.c.t.. It is important
to emphasize that the parameters of this system, reduced to internal nodes, used in cal-
culating the fault-on trajectory are not the same as those used in evaluating the transient
energy. The fault-on trajectory is obtained by the numerical integration of 2= f(z) us-
ing P,-f,C,-fJ-, D{j fori =1,2,---,n; j # 1. The energy function, as well as the s.e.p., are
evaluated using the post-fault parameters, P;, C;j, D;; for i = 1,2,---,n; j # 1.

4.5.2 Two-machine system example, controlling u. e. p. method

The two-machine system shown in Fig. 4-5 will be used again.
As shown in Fig. 4-8, two values of the fault impedance are considered (both faults are

self-clearing on bus 1).

1. Zy = 0.0 + j 0.00001, which accelerates machine 1. The controlling u.e.p. for this
particular fault is 2., = (8u1,0). The critical energy is V (8u1,0) = V,(8,1) = 0.6711
MM‘%’H' The region of attraction is approximated by the segment of this contour level
as shown in Fig. 4-8.The critical clearing time obtained by using the controlling u.e.p.
method is 0.13 s; using the exit-point method it is 0.19 s. This result is the same as the
one obtained by closest u.e.p. method because 2., = Z joscst-

2. Z; = 0.15+ j 0.0, which decelerates machine 1. The controlling u.e.p. for this particular
fault is ., = (642,0). The critical energy is V (8y2,0) = V, (6u2) = 8.4057. The region of
attraction is approximated by the segment of this contour level as shown in Fig. 4-8.The
critical clearing time obtained by using controlling u.e.p. method is 0.59 s; using the

exit-point method it is 0.63 s.

The thick, dotted lines in Fig. 4-8 are the approximation of the stability boundary using

the controlling u.e.p. method. Notice the following:
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Figure 4-8: Controlling unstable equilibrium point method

1. the closer the exit-point gets to the controlling u.e.p., the more accurate the approximation
is.

2. the controlling u.e.p. method always yields a conservative result. Theorem 6-4 in [17].
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Chapter 5

PEBS and BCU Methods

5.1 Associated reduced-order systems

Associated reduced-order systems have been presented in (1), {83}, {76], [17], [55] , [10] and [77].

In this section we will obtain these associated reduced-order systems.

1. Reduced system in center of angle formulation. This reduced system is presented in

reference [77)

2. Reduced system in machine-n-as-reference formulation. This reduced system is presented

in [10] and [9].

3. Associated gradient system in center of angle formulation.

We will show that the reduced system and the gradient system are the same only if the

reference machine is an infinite bus.

5.1.1 Reduced system using center of angle

To obtain the reduced system we will start with the state equation of the original system.

% = Wi
& = B - Bpe - oo (5.1)
i=1,2,...n-1
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Let us consider the following equation of angular acceleration:

doi P —FPi Pooa

@ - M, M, D%
or
di; . M;
Mid—t' + Di&; = P, — P - EPCOA

Notice that the right-hand side of the above equation is a function of the angle subspace, i.e.

fre (5) =P, - Pi - %:PCOA

The reduced system is then defined by the following state equation:

dé; M; : ~
Tt"=Pi'Pei"'F:PCOA’ t=12,...,n—-1 (52)
Notice that the original system is a second-order dynamic system and the reduced system
is a first-order dynamic system. Therefore, they have different dynamics. However, there is a
one-to-one correspondence between the equilibrium points of the original system (Eq. 5.1) and

the equilibrium points of the reduced system (Eq. 5.2).

The equilibrium points of the original system must satisfy the following equations.

0 = @;

0 = Bgfu— Bpa o

i=1,2,...,n—1

0=0
0=f(8) - rp-0=f(3)

The equilibrium points of the reduced system must satisfy the following equation.

0 = P,-P.i-Pcoa

1=12,...,n-1
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0=1(2)

Therefore, if an e.p. of the original system is (E, Q) , the corresponding e.p. of the reduced

system is (E) .

Notice that in Eq. 5.2 ¢ goes from 1 to n — 1. We will show that Qf{b may be expressed as a

linear combination of the rest, i.e. there are only n — 1 state variables.

or

=1
The following equation results.
b _ 2 di
dt ~ dt

5.1.2 Reduced system using machine n as reference
The starting point will be the state equation of the original system.

bin = Win

Win = f‘ﬁ?“ — BagFen — X puwin

t=12,...,n—-1

Let us consider the following equation corresponding to angular acceleration:

. P;-P; P,-PF

or

. 1
Win + 37 Win = -

M; M; M,
If we multiply Eq. 5.4 by M; the result is

. M;
Miwin+-Diwin=Pi_Pet'_ﬁ'(Pn_Pen)
n
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The reduced system is the following equation:

6.|'n=Pi_Pei"ﬁl:'(Pn_Pm)

5.5
= f,‘"d ( i) ( )

The equilibrium points of the original system must satisfy the following:

0 = win

0= Bgfu — BigPa _ pu,

i=1,2,...,n—1

O0=w
Q=£r°d(§)—/\D'Q=fed(§.)

The equilibrium points of the reduced system must satisfy the following:

0 = P,—Pi— - (Pn—Pen)

i=1,2,...,n~1

0= Lred (é)

Therefore, if an e.p. of the original system is (8, 0) the corresponding e.p. of the reduced system
is (8).

5.1.3 The associated gradient system using center of angle

The gradient system is a reduced-order system whose state equation is defined by the following

equation:

Vpe is the potential energy.
According to Eq. 3.17 and Eq. 3.18 the potential energy is given by Eq. 5.6.

Ve (5) = /t: {E“: [—P.' + P (5) + %PCOA (5)] %} dt (5.6)

=1
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Since Vpe( ) ft ) [ P, + P ( )] %idt + J, fg%@ [Z 1 M,fft] dt, the following re-

sults.

EM, t=0

=1

/ E [-P:+ P (8)] ?t'dt

By taking the summation out of the integral, canceling dt and changing the limits of integration

the following potential energy function results.

2/ [-P: + Pu: (£)] db:

=1

The last angle, 8, is a function of the angle subspace.

_ n-1
= A z M&-
“ =1
G M
dé; M,

N el 2T AT .= én(£) AT =
Ve (B) = X /5 [-P:+ Pui (8)] dfi + /& [Pn + Pun (£)] b
To obtain %._@2 we will make use of the chain rule as indicated in Eq. 5.7

el 2 ([ enen@a)s O e @))% o0

Therefore, the potential energy gradient in COA formulation is the following:

mot = ~Rit P (B) = 37t [Pa+ P (9)] (5:8)

i=1,2,--,n—1

This result can be verified by using n = 2 in Eq. 3.24 and taking the derivative of the
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potential energy with respect to §;. This yields

OL:;};(Q =—P+ Pgy (5) - % [—Pz + Pe; (5)]
This result agrees with Eq. 5.8.

Except for a two-machine system, the potential energy can be found only if the transfer
conductances are neglected . In the presence of loads, which in the classical model are modeled
as constant impedances, the transfer conductances are not negligible. The ray approximation
of the potential energy is used to overcome this problem. The potential energy gradient does
not make use of the ray approximation, i.e. the potential energy gradient as given by Eq. 5.8
is not an approximation.

The state equation of the gradient system using COA formulation is

dé;

= (R-Pa)= 3 (Pu= P) (5.9)

i=1,2,---,n-1

From the fact that the gradient system and the reduced system in machine-n-as-reference
formulation are given by the same equation, it follows that there is a one-to-one correspondence
between the e.p.’s of the gradient system and the e.p.’s of the original system.

If the reference machine is an infinite bus then the reduced system of Eq. 5.2 and the
gradient system of Eq. 5.9 are given respectively by Eq. 5.10 and Eq. 5.11.

@& = P - Pi-YPoos
= P.- P, (5.10)

i1=12,...,n-1

(P; = Pax) = 4+ (Pa = Pen)
= P, -P,; (5.11)

t1=1,2,...,n-1

afS
I
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We can see that these lower dimensional systems are the same if the reference machine is

an infinite bus.

5.1.4 A conservative system and the potential energy gradient

An interesting situation to verify the potential energy gradient as given by Eq. 5.8 is to consider
a conservative system, i.e. a system with no damping (regardless of transfer conductances). In

this case the total transient energy after the disturbance is constant.

Vk (@) = -iV (é)

To simplify matters we will assume n = 3. The angle subspace, the angular velocity of
machine 3, its angular acceleration, the vector of accelerating powers, and the transient kinetic

energy are respectively given by the following equations:

- L1
@=| _
@y
. My. M.
W3 = —M3w1 - M3w2 (5.12)
d. _ Md. Md,
T VA Tl VAP T (5.13)
My i P - Pq (E) ~ - Pooa (~)
Myda, | =| P—Po (-) — ¥2Pcoa (-) (5.14)
M3 403 P;— P ( ) MrPcoa (~)
Vi(@) = %M@f + %Mza:g + %Msog (5.15)

Substituting Eq. 5.12 into Eq. 5.15 results in the following equation:

M? o2 + M3 o2 MM, .

- 1 - 1 - -
Vk(&)=§M1wf+§M2w2+2M A @5 + 7 @2
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The rate of change of the transient kinetic energy is obtained from this equa.tion.

Ml Madin)] (g By (Madin
V(@) = [Ml +M1(M3 ot | ot [ e (S M )]

Notice that the expression enclosed by parenthesis, i.e. (%g% + %g-%), is the negative
of the angular acceleration of unit 3, Eq. 5.13. Therefore, a more convenient expression for

rate of change of the transient kinetic energy is obtained.

@ ds dwz _dis
Vi (@) = dt ~ dt ] & + M r G
Substituting Eq. 5.14 into the last result yields Eq. 5.16.
dé dé
Vi (@) = [Pl P, - —(P3 ] 14 [P2 P.; - —(P3 P,3)] = (5.16)

Now, we have to get the negative of the rate of change of transient potential energy.

v (5 = e (2) 4z, 8Vie (£) a3,
5% (&) = - 05, dt  o9k2 dt

Replacing the gradient of the transient potential energy as given by Eq. 5.8 results in the
following equation. The right-hand side is identical to Eq. 5.16.

d&l d62

[Pl Py - = (Pa — P.3) [Pz Py — — (Pa — P.3)

This proves Eq. 5.8 to be correct.

5.1.5 Three-Machine system example

Since the potential energy gradient is not an approximation it is possible to illustrate, with an
example, the error introduced due to the ray approximation in the path dependent component
of potential energy.

Two cases are considered. In the first case, the power system reduced to internal nodes has
transfer conductances hence, the ray approximation has to be used. The second case consists

of a power system with no loads, therefore the system reduced to internal nodes has no transfer
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Figure 5-1: 3 - machine system of reference [1]

conductances, hence there is no need for ray approximation.
Power system with transfer conductances

Let us consider the three-machine system of reference [1] shown in Fig. 5-1. The contour
map of V'Y (5) is shown in Fig. 5-2. Also shown are the 0-level contours of E%VP’ (E) and
E%VP‘ (E) . The intersections of these 0-level contours are the equilibrium points of the gradient

system, i.e. the equilibrium points must satisfy the following equation:

0] _ Pl_Pel-Aﬂ’:'(P3_Pc3)
0 Py — Py — {2 (Ps — Pe)

Notice that the ray approximation of the potential energy does not reflect all of the equilib-
rium points. A source and a saddle are missing in the lower right-hand corner of the contour
map near 26-level contour. The tangent of the contour level of Vpe at the intersection with
0-level contour of ;%Vpe (E) is not always parallel to §;-axis. Similarly, the tangent of the
contour level of V,, at the intersection with 0-level contour of %Vw (E) is not always parallel

to 52-a.xis.
Power system without transfer conductances
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Figure 5-2: Contour map of potential energy approximation for the 3-machine system of refer-
ence [1]

The power system shown in Fig. 5-3 is based on the three-machine system of reference
[1). The loads have been eliminated. The mechanical input power of each machine has been

modified to include the loads as indicated by the following equation:
pnew — pold _ pload
ms ms 3

Since this system has no load, the system reduced to internal nodes has no transfer con-
ductances, hence the contour map of the energy function shows all of the saddles and sources,
see Fig. 5-4. For comparison with the previous case, notice the presence of a saddle point with
energy level slightly above 26 MW rad / MVA. Another interesting comparison between the
two cases is that the tangent of the contour level of V},. at the intersection with 0-level contour
of 5%;1’,,, (E) is always parallel to §;-axis. Similarly, the tangent of the contour level of V,,. at

the intersection with 0-level contour of EaE;Vpe (E) is always parallel to §;-axis.
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1<14.9419

Figure 5-3: 3 - machine system with no loads

5.2 The Potential Energy Boundary Surface

The Potential Energy Boundary Surface, PEBS, method was proposed in 1978 by Kakimoto
et. al. [46], and in 1979 by Athay et. al. [1]. It is also described in [56}, in [44], and in [25].
As defined in [1], [56] and [25], the Potential Energy Boundary Surface, PEBS, is obtained by
setting the directional derivative of the potential energy (along a ray emanating from the s.e.p.)
equal to zero. In 1985 Varaiya et. al. [83] defined the PEBS as the stability boundary of the

gradient system. In the following subsections, these two definitions are analyzed and presented.

5.2.1 PEBS setting the directional derivative of the potential energy equal

to zero

The PEBS is obtained by setting the directional derivative of the potential energy along a ray
emanating from the s.e.p. equal to zero. The directional derivative is the dot product of the
gradient and the normalized vector along . Therefore, before getting the directional derivative

of the potential energy we need to obtain its gradient. Neglecting damping, the swing equation
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Figure 5-4: Contour map of potential energy for a 3-machine system with no loads

of machine i is given by the following equation:

do; = M; =
Mi5 = P~ Pei () - 37 Pooa (§)

The right-hand side are the accelerating powers, and the vector of accelerating powers is

P - P, (5) — ¥+ Pcoa (5)
£(0) - P, - P (§) - ¥2Pcoa (8) (5.17)
P = Per (5) — MaPcoa (5)

The potential energy gradient is the negative of the vector of accelerating powers [2].

w5 =~ (10"
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The normalized ray emanating from the s.e.p. is

[ 6, -5 |
8, — 8 1
L= . - -~ \2 - ~\2 - -~ \2
\/(61—6f) +(b-8) 4+ (8a-82)
| bn =83 |

The dot product of this two vectors is the directional derivative.

n i (&) x (8- &
VIIPC.!L:_Z: - . 2L(_) x-(2 ) = = \2
i=1 \/(61 —6{) + (62—65) oot (67; _6,")

As mentioned before the PEBS is obtained by setting this directional derivative equal to

zero. Therefore, the PEBS is the angle subspace which satisfies

n

Y 5(8) (5-8)=0

=1

zn: [Pi — Fei (5) - %:PCOA (ﬁ)] . (5,- - 5,-') =0 (5.18)

=1
This result, although obtained in a different way, can be found in [1], [56], [55], and [25].

The potential energy gradient is not given by the vector of accelerating powers as in [2], i.e.

2l - () - Moroon 9)

t=1,2,---,n

The following is the potential energy gradient as given in Eq. 5.8.

a_V;}‘(_E)=_[P.--P,,- (5)_%:[}’,.—&“(5)]]

However, the PEBS as stated in Eq. 5.18 is correct. To prove it, let us find the PEBS using
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the above equation of the potential energy gradient.

Py = P (8) = 2 [Pa - P (9)]
P - P (8) - “-‘,. [P =~ Pen (2)]

Ve = -
Pary = Pony () = Mgzt [Pa = Pen ()]
The normalized ray emanating from the s.e.p. is

f g5 )

b — 83 1

\/(3, ~8) 4 (f=8) 4t (Bama -2y

e
I

| 311-1 - 57’1—1 i
The dot product of this two vectors is the directional derivative.

Woou= -3 {P - Pi () - #: [P - P (B)]} x (B2 - 1)
VVee iz_;\[(gl_gl) +(5,_52) +...+(5"_1_5;_1)z

Setting this directional derivative equal to zero, the PEBS is the angle subspace which

satisfies Eq. 5.19.
n—1 . - . .
; {P.- - P (B) - % [P - Pun (ﬁ)]} (&-8) =0 (5.19)

Now, it will be shown that Eq. 5.18 is the same as Eq. 5.19.
Since T2y 4 Peoa (£) - (: - 8t) = 0, the following holds:

i=1

Z [P Pe; (ﬁ) - %PCOA (Q)] (3-' - & ) E [P Pei ( )] ‘ (5" —53)

=1

or

g; [Pe - P (5) - %;—:PCOA (E)] . (5.' - 5.") =
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S lr-re@)]- (- 8) + [P @) - (0= )

The angle of the last unit is a function of the angle subspace. The following results.

3 [ s 8) - Hipoon (9] (5-) =

g [P.' - P, (5)] : (5; - 5{) + [P,, - P, (ﬁ)] "z_:l -All‘f (5‘ _ 5:)

=1

or

Z [P - P, (d) - %:PCOA (5)] . (3.' - 3;') =

=1

n—1
N M; . -
> [P P () - 37 [P - P (B)]] - (B:- )
Therefore, the left-hand side of Eq. 5.18 is the same as the left-hand side of Eq. 5.19. This
implies that either equation can be used to obtain the PEBS.

5.2.2 Three-machine system example

Let us consider the three-machine system of Fig. 5-3. As mentioned before, due to the absence
of loads, the ray approximation of the potential energy is not required. To illustrate that
the negative of the vector of accelerating powers is not the potential energy gradient we will
refer to Fig. 5-5(a), in which the contour map of the potential energy along with the 0-level
contour of P, — P, — !‘ﬁ;PCOA and the O-level contour of P, — Py — %%Pco 4 are shown.
Notice that the tangent of the contour level of V,, at its intersection with the 0-level contour of
P-P,;- %’;Pco A is not always parallel to &,-axis. Similarly, the tangent of the contour level
of Vp. at its intersection with the 0-level contour of P; — P.; — %’f;Poo A is not always parallel
to §,-axis. For comparison, see in Fig. 5-5(b) that the tangent at the intersections is always
parallel to the corresponding axis.

Fig. 5-6 shows the contour map of the potential energy and the PEBS. It was verified that
both Eq. 5.18 and Eq. 5.19 yield the same PEBS.
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O-evel contour of P2-Pe2-M2*Pcoa/Mt O-evel contour of P2-Pe2-M2*(P3-Pe3)/M3
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paraliel to §1-ads

T paraliel to 51-ads

O-level corrtour of P1-Pe1-M1*Pcoa/Mt | Olevel contour of P1-Pe1-M1#(PS-Pes)/Ms
() Gradient of Vpe as in reference [2] (b) Gradient of Vpe as obtained here

Figure 5-5: Potential energy gradient as in reference [2] compared to potential energy gradient
as obtained here

5.2.3 PEBS redefined as the stability boundary of the gradient system

In 1985 Varaiya et. al. [83] defined the PEBS as the stability boundary of the gradient system.
The formulation used in [83] includes an infinite bus. This allows us to rewrite the state equation

to include the potential energy gradient. This is shown as follows.

The negative of the potential energy gradient is

_%=R-m(&)—%[l’n-”m(§)]

If the reference machine is an infinite bus, then

WV, (8 B
- 3_5,-() = P, - P (£) (5.20)
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Figure 5-6: PEBS as defined in reference {1]

The state equation is

&S

B) - o (8) - o

If the reference machine is an infinite bus, then

v

%=ﬁ‘[l’.‘—1’a

RS

=&
. - . (5.21)
% = [P 2o (0] - oo
From Eq. 5.20, Eq. 5.21 can be written as
C (5.22)
5: Vpe(8 . .
% = & [- 259 - pa

Comment 1 It is possible to write the state equation as in Eq. 5.22 only when the reference

machine is an infinite bus.
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Comment 2 The PEBS is the stability boundary of the gradient system.

dé;

M;
a’=(Pi_Pcl)-E(Pn—Pen)

i=12,---,n—-1
It is not the stability boundary of the reduced system

d& _ b M
T =FP; - Pei - M‘PCOA

i=1,2,--,n—1

5.2.4 Three-machine system example

Let us consider the three-machine system of Fig. 5-3. As mentioned before due to the absence
of loads, the ray approximation of the potential energy is not required. Fig. 5-7 shows the
contour map of the potential energy, the region of attraction of the reduced system as given
by Eq. 5.2 and the region of attraction of the gradient system as given by Eq. 5.9. It can be
seen from this figure that the region of attraction of the gradient system is orthogonal to the
equipotential curves, whereas the region of attraction of the reduced system is not.
Concluding, in this example we have seen that the region of attraction of the gradient system

is orthogonal to the equipotential lines. The PEBS intersects the level surface {6 : V, (6) = ¢}
orthogonally [17].

5.3 The Potential Energy Boundary Surface method

This method may be summarized by the following steps.

1. Integrate the fault-on trajectory. The parameters used in this step-by-step integration

are the fault-on parameters.

2. Project the fault-on trajectory onto the angle subspace, i.e. drop @.
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Figure 5-7: PEBS - Region of attraction of gradient system

3. Determine when this projection crosses the PEBS, let us designate this point on the angle
subspace 8pEBs . The potential energy at this point is the critical energy.

Vcr = Vpc (&PEBS)

It is worthwhile to emphasize that the transient energy is calculated using the post-fault

parameters.

4. Use the surface {(E,Q) i 4 (&,(g) = V,,} as a local approximation of 84 (&,, Q). In

other words, determine when the total energy on fault-on trajectory equals V,,. This is

the critical clearing time.

The question now is: How to determine the intersection of the projection of the fault-on

trajectory with the PEBS.

There are two approaches, one proposed by Kakimoto et. al [44], and one proposed by
Athay et. al [1].
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Let us present the method of Kakimoto first. Fig. 5-8 corresponds to a three-machine
system with no loads. The thick arrows represent the projection of fault-on trajectories onto
the angle sub-space. It has been assumed that these projections intersect orthogonally with the
PEBS. From this figure it is clear that at the intersection, V. (E) is a maximum. Therefore, to
determine the intersection of the projection of the fault-on trajectory with the PEBS, Kakimoto
et. al proposed to monitor the rate of change of potential energy, and the intersection occurs
when the sign of £V, (ﬁ) changes from positive to maximum. The intersection occurs when

Ve (E) reaches a maximum [17].

-7 EQUIPOTENTIAL CURVES

Assuming that the projection of
the fault-on trajectory intersects
orthogonally with the PEBS, the

potential energy is a medmum STABILITY BOUNDARY
at the intersection OF GRADIENT SYSTEM
OR PEBS

Figure 5-8: Assuming that the projection of the fault-on trajectory intersects orthogonally with
the PEBS, Vpe at the intersection is a maximum

The method proposed by Athay et. al [1] is based on their definition of the PEBS.
n o M" R . .
'; [Pe — Py (Q) - EPCOA (Q)] . (5.' - 5:") =0

The idea is to monitor this quantity along the fault-on trajectory. The intersection with the
PEBS occurs when the sign of this quantity changes from negative to positive. It must be kept

in mind that the fault on trajectory uses the fault-on parameters, whereas the parameters in
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the equation defining the PEBS are post-fault parameters.

Fig. 5-9 shows the PEBS as defined by Varaiya et. al (stability boundary of the gradient
system) and the PEBS as defined by Athay et. al (curve obtained by setting the directional
derivative along a ray emanating from the s.e.p. equal to zero). Notice that they match in the

following situations:

(a) When the PEBS - stability boundary of the reduced system is orthogonal to the ray
emanating from the s.e.p. as indicated by the dotted lines

(b) At the e.p.’s

PEBS - Setting the directional derivative
along a ray emanating from the s.e.p.
equal to zero

PEBS - Stabiilty boundary of —_|
the gradient system

Figure 5-9: Comparing PEBS

The region of attraction of the gradient system is orthogonal to the equipotential lines.
This corresponds to the original definition by Kakimoto et. al in [46], “O;,02 and O3 are the
curves which are orthogonal to the equipotential curves and go through the points u;, u; and
u3 respectively”. The points u;, u; and ug are e. p.’s of the gradient system. The curves 0,,0;
and O3 are the PEBS. We can see From Fig. 5-9 that the PEBS defined by Athay et. al differs
considerably from the stability boundary of the gradient system. Therefore, from now on we

will refer to the stability boundary of the gradient system as PEBS.
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There are two methods for assessing when the projection of the fault-on trajectory onto the

angle subspace exits the PEBS, these are the following:

(a) The potential energy, V;. reaches a maximum along the fault-on trajectory.

b) The directional derivative of V,. along a ray emanating from the s.e.p. is zero, i.e.
p ’

z (i~ P (8) - 35:Pooa (§)] - (5 - ) =0
i=

In the first method, it is assumed that the projection of the fault-on trajectory crosses the
PEBS orthogonally. If this is not the case, the assessment is in error. The second method is
equivalent to assume that the projection of the fault-on trajectory onto the angular subspace is
a ray emanating from the s.e.p., and if the projection of the fault-on trajectory onto the angle
subspace exits the PEBS near an u.e.p. it yields a good assessment even if the crossing is not

orthogonal. None of these methods is error free; however they are our only choices.

5.3.1 Conditions for the PEBS method to yield a conservative result

This subsection has been adapted from [17]. The PEBS may yield an optimistic result, i.e. a
critical clearing time which exceeds the true critical clearing time. It is desirable to obtain a
conservative result, i.e. a critical clearing time whick is less than the true critical clearing time.
Two conditions must be satisfied for the PEBS to yield a conservative result. Before describing

these two conditions, let us make the following designations:

1. §pgps denotes the intersection of the projection of the fault-on trajectory onto the angular

subspace with the PEBS, or gradient system exit point.
2. E,,,p denotes the u.e.p. whose stable manifold contains the gradient system exit point,
EPEBS'

3. (L,Qc) denotes the exit point, i.e. the intersection of the fault-on trajectory with the
stability boundary of the post-fault system.

4. W (Eca,Q) denotes the stable manifold containing (L,Qe) .

S

5. (L,,,Q) is the controlling u.e.p. T E Ty,



6. aV (ﬁpEB S» Q) denotes the constant energy surface used to approximate the local stability

boundary, i.e.
v (E7°.0) = {(56) v (68) = e ()}

7. (E‘f(t),[i_)f (t)) denotes the fault-on trajectory.

The two conditions which must be satisfied for the PEBS method to yield a conservative

result are the following:

(a) &pEps is on the stable manifold of Euep implies (L,G_)c) is on W* (Eco,Q).
(b) The fault-on trajectory (ﬁf(t),gf (t)) passes through the constant energy surface
v (EPEB 3,0) before it passes through the stable manifold W* (ECO,Q).

Condition 0a implies that the equilibrium point Euep is on the PEBS if and only if the
equilibrium point (Euep,Q) is on the stability boundary of the original system (5,‘,,, = §,,, we
will see that this is not always the case). Condition 0a requires the following:

i. The one parameter transversality condition is satisfied.

ii. The number of equilibrium points on the stability boundary is finite.

Condition 0b is difficult to check. If we can find the stable manifold W* (L,,Q) of the
controlling u.e.p. (&o,ﬂ) and the exit point (&,Qe), then we do not need the PEBS!

The limitation of the PEBS yielding optimistic results may be overcome if the stability
boundary is locally approximated by the following surface:

OV (Bueps0) = {(£.2) : V (£:2) = Vye (duer) }

This secures condition 0b. Notice that if Lep = §,,, this method is the same as the
controlling u.e.p. method. Theorem 6-4 in [17] asserts that the controlling u.e.p. method
always yields conservative results. The main issue now is to determine the controlling u.e.p., this

problem is solved by the Boundary of stability region based Controlling Unstable equilibrium
point, BCU, method.
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54 The BCU method

The Boundary of stability region based Controlling Unstable equilibrium point, BCU, method
is a very ingenious combination of the PEBS method and the controlling u.e.p. method. It has

received many names:
1. Modified PEBS method [17], [55].
2. Algorithm to find the controlling u.e.p. method {11].
3. Hybrid method using the gradient system [55].
4. Exit point method [25].
5. Modified exit point [25].
6. BCU method [10], [9], [77).

For convenience in reading the following paragraphs, some equations obtained in previous

sections are shown now.

o The state equation of the original system in COA is given by Eq. 5.23.

= &;
Pi—P.($ P § -
Puld) _ Pooall) _ i (5.23)

affs afss

i=1,2,...n—1.
¢ The state equation of the gradient system is given by Eq. 5.24.

% = P~ P (§) - #f: [P - P (9) (524

t=1,2,---,n-1

o The state equation of the reduced system is given by Eq. 5.25

% = P, — P.; (§) - ¥-Pcoa (&) (5.25)
1= 1,2,...,n— 1.
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The rest of this section has been adapted from [10], [9], [11] and [77]. The BCU method
presented here differs from the one in the above references because the formulation of the state
equations does not include an infinite bus. The state equation of the original system cannot
include the gradient system. We have shown that the PEBS is the stability boundary of the
gradient system, Eq. 5.24. The PEBS is not the stability boundary of the reduced system, Eq.
5.25. It has also been shown that in the presence of an infinite bus these two lower dimensional
systems are the same. The previous references refer to reduced system which corresponds to
the gradient system used here.

Let us present the following results which are the foundation of the BCU method:

(R1) (&,) is a s.e.p. of the gradient system if and only if (&,, Q) is a s.e.p. of the original

system.

(R2) (&) is a type-k e.p. of the gradient system if and only if (&k, Q) is a type-k equilibrium
of the original system.

(R3) If the one-parameter transversality condition is satisfied, then (&uep) is on the stabil-
ity boundary dA (L) of the gradient system if and only if (ﬁu,p,Q) is on the stability
boundary 94 (&,Q) of the original system.

As result (R1) asserts, it has been shown that there is a one-to-one correspondence between

the e.p.’s of the original system and the e.p.’s of the gradient system, i.e.
(8) — (&r0)

Result (R2) follows from Theorem 5-1 in [17], which asserts that the Jacobian matrix of
both systems has no eigenvalues with zero real part. It also asserts that the number of Jacobian
matrix eigenvalues with positive real part is the same for both systems.

Result (R3) establishes that when the one-parameter transversality condition is satisfied, a
u.e.p. is on the PEBS if and only the corresponding original system u.e.p. is also on the original
system stability boundary. In a later section, we will show examples of simple power systems

where this may be true or not depending on the damping.

The BCU method is the following:
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. From the fault-on trajectory (Ef(t),Qf (t)) , detect the point § pgpg at which the projected
trajectory Ef(t) reaches the first local maximum of potential energy. Also compute the
point §ppps that is one step behind of §pgps along Ef(t), and the point E;EB s that is

one step after §pgps.

. Use §ppps as initial condition and integrate the post-fault gradient system to find the

first local minimum, at §,, of

n-1 . M' ) _ 2
g {P.- - P (§) - A [P. - P.n (ﬁ)]} (5.26)
. Repeat the previous step with §prpg and E;EBS as initial condition to find §; and E,”

respectively.

. Compare the values of the Euclidean norm, Eq. 5.26, at §, , &y and E," . The one with
the smallest value is used to find the e.p. of the gradient system, i.e. the one with the

smallest value is used to solve the following equation:

0= P Pu (§) - #f [Pa - Pun (8)]

i=1,2,---,n—1

Let us call this point Ew_gmd. This is the controlling u.e.p. of the gradient system.

. The controlling u.e.p. of the original system with respect to the fault-on trajectory is
(Eco—grab Q) sie.
(co0) = (Bco-graar0) (5.27)

In step 1 an approximation of the PEBS crossing is found. This approximation is good
if the projected fault-on trajectory is orthogonal to the PEBS and the time step is small.
Because there is no control on the way the projected fault-on trajectory intersects with
the PEBS and because the time step can not be reduced without limit, three points are

considered as “candidates”.
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o In steps 2 and 3, three post-fault gradient system trajectories are found. Each trajectory
has one of the above “candidates” as an initial condition. Of these candidates, the one
with a trajectory which gets closer to the controlling u.e.p. of the gradient system is
PEBS crossing point. A measure of how close the post-fault trajectory of the gradient
system is to its controlling u.e.p. is the Euclidean norm, Eq. 5.26. Notice that, exactly at
the controlling u.e.p. (at any e.p. as a matter of fact), this norm is zero. Therefore, the
candidate with the lowest value of the Euclidean norm along this trajectory is the PEBS
crossing point. The point with the lowest norm (out of the three minimums found) is

used as an initial guess in solving the set of non-linear equations of the gradient system.

0= P P (8) - 8 [Pa - Pun (B)]

i=1,2--n-1.

Notice that the reduced system can also be solved, since they have the same equilibrium

points.
e In step 4 the controlling u.e.p. of the gradient system is found.

o In step 5 the controlling u.e.p. of the gradient system is related to the controlling u.e.p.
of the original system. It has to be remembered that this is correct if the one-parameter
transversality condition holds. Furthermore, if the one-parameter transversality does not
hold, then (Eco_ymd,ﬂ) may not be the controlling u.e.p. of the original system. It may
be only a u.e.p. not belonging to the stability boundary of the original system.

5.4.1 Three-machine system example

A three-machine system without loads (no transfer conductances) is considered now. However,
the application of BCU method is not restricted to any number of generator buses nor to
systems with negligible transfer conductances. The reason for using a three machine system is
to be able to show its PEBS. The reason for using a system with zero transfer conductances is
that, in this case, the potential energy is not path dependent, and we need no approximation

for it. As shown in a previous example, if transfer conductances are negligible, the potential

energy will show the equilibrium points accurately.
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Let us consider the three-machine system of Fig. 5-3. As mentioned before due to the
absence of loads, the ray approximation of the potential energy is not required. For convenience,

this three-machine system is also shown in Fig. 5-10.

1<14.9419
0.96067 :
H=10
3.21008 !
H=15

Figure 5-10: 3 - machine system with no loads

A uniform damping of Ay = 2.5 gR-L: is used. The disturbance is a self-clearing fault on

bus 1,Z; = (1435 1) x 1075 pu.
e STEP 1.

— The fault-on parameters are the following:

P/ = 0.9887
P{ = 3.2100
P{ = -4.2002

cf, = 2.0037 x 10-4
cf, = 4.5806 x 10-4
cl, = 6.3661
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Df, = 2.0030x 10-*
Df; = 4.5790 x 10—*
D, = 6.8940 x 10-5

— These fault-on parameters are used in a step-by-step simulation where the state

equation is the following:

61 ‘;'1

d 62 (:)2

# o || Hgist - B - o
| @2 | _E’,ﬁ?‘-%!ff—/\DGz_

— The potential energy is calculated along the fault-on trajectory. The post-fault

parameters, which are used in calculating the potential energy, are the following:

P, = 0.9900
P, = 3.2100
P; = -4.2000
Ci2 = 1.1804
Ciz = 2.6985
Ca = 6.7723

This power system has no constant impedance loads. Therefore,

Di2=D13=Dy3=0

i.e. the transfer conductances are zero.

— The potential energy is monitored and three points are chosen as candidates for the
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PEBS crossing point: §pgps, Spess and Sppas.

&1 .
t . Voe (81,52)
o2

®) deg)  (m)
—— 147.676

0.6250 QPEBS= 4.6866_9
4.85594
- 148.521

0.6275 $ppps = 4.68689
4.72041
t 149.367

0.6300 ﬁPEBS= 4.686Q§
4.58555

Notice that At = 0.0025 s. Steps 1 to 4 are illustrated in Fig. 5-11

¢ STEPS 2 and 3.

~ The point §pgps,dpeps and E;EBS are three initial conditions for the gradient
system. The step-by-step integrations ends when a local minimum of the Euclidean

norm is found. The local minimum of the norm and the corresponding points are

the following:

0.08795 0.16824 0.29758
a— 14742 | . 149.93 -+ 151.15
8.7082 8.0809 7.3646
e STEP 4.
- 147.42
— Since §y = has the lowest Euclidean norm, it is used as an initial guess
8.7082

to find the controlling u.e.p. of the gradient system.
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THE EUCLIDIAN NORM WITH
THE LOWEST VALUE YIELDS 0.1

ERIN.

INITIALGUESSTOFIND g . .
THE CONTROLLING u.e.p. 148 1«8 150 182

OF THE GRADIENT SYSTEM —————— §1.COA (deg) | -
148 148 180 182 m
10 1y CONTROLLING u.e.p. OF
—
THE GRADIENT SYSTEM
-— a —
g STEPS2AND 8
<
8 . TRAJECTORIES OF THE
STEP 1 8 ¢ | POST-FAULT GRADIENT
FROM THE FAULT-ON SYSTEM
TRAJECTORY PROJECTED
ONTO THE ANGLE SUB-SPACE

CALCULATE THE POINT &ypy

Figure 5-11: BCU method applied to a 3 - machine system with no loads

— The controlling u.e.p. of the gradient system is

- 148.33
~grad =
9.0112

o STEP 5.

— Assuming that the one-parameter transversality condition is satisfied, the controlling
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u.e.p. of the original system is

[ 148.33°
9.0112°
0d
0z

(ﬁco—grcd ’ Q) =

— Once the controlling u.e.p. has been found, the controlling u.e.p. method can be
applied.

* The transient energy at the controlling u.e.p. is

V (o) = Vo () = 4006 “rict

* The point along the fault-on trajectory when this value of transient energy is

reached is some point between the following two points:

t(s) 6T (deg) S (deg) @ (rad/s) @ (rad/s)
0.5100 110.501 11.5975 5.3689 -1.05126
0.5125 111.271 11.4469 5.3819 —-1.05242

The corresponding energies are

t(s) Vi MigRd v, Migpd vaMighd v Mg
05100 087215  3.7812 0 4.6533
05125 087633  3.8145 0 4.6909

* The critical clearing time is 0.5100 s. This is not the true critical clearing time,

but a conservative assessment of it.
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5.5 BCU method and the one-parameter transversality con-
dition |

Of all the methods explained in the last two chapters, the best is the BCU method. It was

explained in Chapter 3 that the controlling u.e.p. method has advantages over the closest u.e.p.

and the exit-point method. However, the controlling u.e.p. method of Chapter 3 is a conceptual

u.e.p. method, whereas the BCU method is a practical controlling u.e.p. method. There is at

least a problem with it and in this section we will discuss it.

When Kakimoto et. al [46] proposed the PEBS, they addressed the so called first-swing
stability problem. As we have seen, Chiang et. al [17] gave the foundations of the PEBS method
and addressed the multi-swing stability problem. Later, they proposed the BCU method in
which the controlling u.e.p. of the original system is determined by finding first the controlling
u.e.p. of the gradient system. Then, assuming that the one-parameter transversality condition
is satisfied, the controlling u.e.p. of the original system (ﬁw,Q) is related to the controlling
u.e.p. of the gradient system (&o_gmd) (controlling u.e.p. on the PEBS) as follows.

(Ecm Q) = (Eoo-grad’ Q) (5'28)

5.5.1 The one-parameter transversality condition

This subsection is adapted from [17]. Before establishing the one-parameter transversality
condition, we will introduce some of the notations used in {17]. To simplify matters, we will
also use an infinite bus in our formulation. Let us remember that this allows us to write the

dynamical equation of the original system as Eq. 5.29.

b = wi

Mw; = [—M] — Dijw;

a6;
i=1,2,-,n—1

(5.29)
nis the infinite bus

o d,(M,D) denotes the dynamical equation Eq. 5.29. Matrix M is the inertia diagonal
matrix, M; > 0. Matrix D is the damping diagonal matrix, D; > 0.
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o 8A,(M, D) denotes the stability boundary of the s.e.p. of the system given by Eq. 5.29

o dy (Q'l) denotes the following system (generalized gradient system):

; —19Vpe (§)
_—— 1
§d=-D a8

e d,(I) denotes the gradient system:

j= V(@)
08

Now the one-parameter transversality condition can be established.
One-parameter transversality condition

o Let us consider the dynamical system d, (M, D), with My = AM + (1 — A) el, where ¢

is a small positive number, and X € [0,1].
o Let us consider the dynamical system d, ([Q‘I] ’\) , with [Q'I] L= AD™14+(1-X)I, and
Aefo,1].
o The one-parameter transversality condition s satisfied if the dynamical systems dp, (M 5, D)
and dp ([Q'I]A) satisfy the following assumptions:
— (Transverse intersection) The intersections of the stable and unstable manifolds of
the equilibrium points on the stability boundary satisfy the transversality condition.

— (Finite number of points on the stability boundary) The number of equilibrium points
on the stability boundary is finite.

Theorem 6-8 in [17]
If the one-parameter transversality condition is satisfied then the following is true.

1. The equilibrium points (§;) on the PEBS correspond to the equilibrium points (§;,0)
on the stability boundary of the original system Eq. 5.29, 04, (M, D).

2. The stability boundary of the original system dA, (M, D) is the union of the stable
manifolds of the equilibrium points on the stability boundary A, (M, D).
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5.5.2 One-parameter transversality condition on a OMIB system
To simplify matters, a one-machine infinite-bus power system is considered now. The dynamical

equation of the original system from Eq. 5.29 is the following:

§=
d,(M,D): “ (5.30)
Mo = [Py, — Ppaxsiné] — Diw;

The s.e.p. is [0,,0], 6, = arcsin ,T’:f: and its stability boundary is 34, (M, D).
The generalized gradient system d, (D™!) is given by the following:

This system becomes the gradient system when D~1 = 1.
6 = [P — Praxsin 4] (5.31)

Let us consider the dynamical system d, (M, D). If we choose ¢ = %, then the inertia

constant M) is given by the following:
M, =(09A+01)M

This result is a linear relation, My—-¢ = 0.1M, M _; = M.

b=w

d,(M>,D):
M)\& = [Py, — Puaxsin 8] — Dyw;

The previous dynamical system, therefore, differs from the original system Eq. 5.30 only because
it has an inertia M), which changes from 0.1M to M. Notice that they are the same when
A=1.

Let us consider the dynamical system d, ([D~!],) . The parameter [D~!], is given by the

following:
[p7], =» (-113 - 1) +1
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This is a linear relation, [D~!],_,=1, [D7Y],_,= .
a,([01],): d= [D“]A [P — Paaxsin 6]

Therefore, the previous dynamical system differs from the gradient system Eq. 5.31 only because
of [D-1], , which changes from 1 to };. Notice that they are the same when A = 0.

The original system Eq. 5.30 satisfies the one-parameter transversality condition if its
associated systems (one with a changing inertia the other with a changing inverse of damping)
satisfy the transverse intersection and have a finite number of equilibrium points on the stability
boundary.

Now we will present two cases of OMIB (one-machine infinite bus) systems. One system
will have some damping, and the one-parameter transversality condition will fail. The second

example has increased damping and satisfies the one-parameter transversality condition.

5.5.3 Normal Damping

X X
SR LA B LS
Ef [ @ fault VelO_

Figure 5-12: OMIB System

We will use the system shown in Fig. 5-12 as the example system in both cases. The

damping is D = 0.15 a2 in this case; the rest of the parameters are the following:
g MVA rad g

E; = 1.05 pu
Voo = 1.00 pu
X' =0.10 pu
X;=0.25 pu

M =005 piie
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Pn = 2.00 $i%

Prax = Yh% = 3.0
Since the value ﬁ- = 3, we decided to call this case Normal Damping.

S(rad)

®
- o
®

100 —

Figure 5-13: Region of attraction-Normal Damping

Let us consider the lower dimensional order system first. The dynamical system d,, ({D~],)

is given by the following:

d, ([D“]’\) : §= [D“]A [2 — 3.05in 4]
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The s.e.p. for this dynamical system is

é, = arcsin -32—0 = 0.72973 rad = 41.81°

The two u.e.p.’s surrounding it are
b1 =7 — 6, = 2.4119 rad

6,,2 = 6,,1 - 27 = —-3.8713 rad

The region of attraction of §, is the part of the § — azis bounded by 6,2 and 6,;. This is
shown in Fig. 5-13. Notice that the stability boundary is 6,2 U 6,1. And also notice that the
stability boundary does not change with lambda. The following questions must be answered

now:

(a) Does this lower dimensional satisfy the transverse intersection? The answer is yes.

(b) Does this lower dimensional system have a finite number of equilibrium points on

the stability boundary? The answer is yes.

Let us consider the dynamical system d, (M), D). If we choose ¢ = %, then the inertia

constant M) is given by the following:

005if A=1
M,=(0924+01)M =
0.005if A=0
The s.e.p. for this dynamical system is
6 | | 0.72973 rad
W, 0 rad/s
The two u.e.p.’s surrounding it are
bu1 a 2.4119 rad
Wyl 0 rad/s
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bu2 —-3.8713 rad

Wy2 0 rad/s

The region of attraction of this system changes with lambda as shown in Fig. 5-13. Notice
that the stability boundary changes with lambda and there is a value of lambda which yields a

non-transverse intersection. The following questions must be answered now:

(a) Does this lower dimensional system have a finite number of equilibrium points on

the stability boundary? The answer is yes.

(b) Does the dynamical system dp (M), D) satisfy the transverse intersection? The

" answer is no. When A\ = 0.403780151 there is a saddle connection. In this sit-

uation part of the unstable manifold of (6,2,0) is also part of the stable mani-

fold of (641,0). The tangent space at this intersection is of dimension 1. No-

tice that for this non-transverse intersection the stability boundary 8A, (M), D)

€ W*(6y2,0) U W*(6,1,0). When the transversality condition holds, i.e. for any
other value of A, 34, (M, D) = W* (8,2,0) U W* (6,1,0.).

This case does not satisfy the one-parameter transversality condition.

5.5.4 High Damping

The damping in this example is changed to D = 0.25 M%ﬁ' Since the value }% = 5,
we decided to call this case High Damping. Fig. 5-14 shows that the region of attraction of
the lower dimensional system d, ([D~!],) is identical in both cases. It has two equilibrium
points on the stability boundary. Furthermore, they constitute the stability boundary. As in
the previous case, we answer yes the above questions.

Fig. 5-14 also shows the region of attraction of the full-dimensional system. It also shows
that there is no value of A between 0 and 1 for which a non-transverse intersection occurs.

This case satisfies the one-parameter transversality condition.
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§ (rad)

Figure 5-14: Region of attraction-Highl Damping

5.5.5 Effect of uniform damping on the one-parameter transversality condi-
tion

Two cases of OMIB systems are presented in this section. First, it is shown that a system with

a typical uniform damping of three does not satisfy the one-parameter transversality condition

and that the BCU method may fail under this condition. This is in contrast to the second

case in which increased damping ensures the satisfaction of the one-parameter transversality

condition, allowing the BCU method to work correctly.
Normal damping

As mentioned before, the ratio of % is 3, and the one-parameter transversality condition is

not satisfied. The fault impedance is Zy= 0.075 + 7O self clearing. The rest of the parameters
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are as follows,

E; =1.05 pu

Voo = 1.00 pu
X’'=0.10 pu

X; = 0.25 pu

M =0.05 pie,
Pn = 2.00 }%

Poax = i = 3.0

Fig. 5-15(a) shows the stability boundary for both the gradient system and the original
system. These systems are one-dimensional and two-dimensional respectively. The region of
stability of the original system is the shaded area. It can be seen that 4,2, when projected
from the gradient system onto the original system, does not even lie on the stability boundary
of the full system. This figure also illustrates that, when a decelerating fault occurs, and the
system is insufficiently damped, the critical energy contour, V(6,w) = V,,, is a very inaccurate
approximation of the stability boundary of the original system. In the next section, only the

damping changes, the gradient system remains the same.
High damping

The ratio of ﬁ is 5 in this case. The one-parameter transversality condition is therefore
satisfied. Fig. 5-15(b) shows that the region of attraction of the gradient system is identical
in both cases. When a fault, represented by the decelerating fault-on trajectory in the figure,
occurs in the system, the contour representing the critical energy, V(6,w) = V,,, is a good
approximation of the stability boundary of the original system. With this approximation, the
critical clearing time is accurate. It may also be seen here that (4,2,0) lies on the stability
boundary of the original system and (é,2) lies on the PEBS. This result occurs because the
one-parameter transversality condition is met.

It is evident that the amount of system damping can have a major effect on the ability of the
BCU method to correctly determine the controlling u.e.p.. The previous example shows that a
power system may satisfy the one-parameter transversality condition at one value of damping

(the high damping case), but may fail to do so at a lower value (the normal damping case).
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Figure 5-15: Stability regions of the original system and the gradient system with a) normal
damping and b) high damping

5.5.6 Effect of system loading on the one-parameter transversality condition

Two cases of OMIB systems are presented in this section. First, it is shown that a system with
a high loading does not satisfy the one-parameter transversality condition and that the BCU
method may fail under this condition. This is in contrast to the second case in which decreased
loading ensures the satisfaction of the one-parameter transversality condition, allowing the BCU
method to work correctly. A uniform damping of three is considered in both cases, Ay = 3. The

rest of the parameters are as follows,

Ej = 1.05 pu
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Voo = 1.00 pu

X’ =0.10 pu
X;=0.25pu

M = 0.05 e,
Pn =2.00 $i%

E4Voo
Puax = 3% = 3.0
We may use the following norm as a measure of system loading :

loading = ll%%

High loading

The input mechanical power to machine one is two, P,; = 2.0. Fig. 5-16 (a) shows the
stability boundary and the potential energy function for this case. Also shown are the e.p.’s,

these are the following:
(85,0) = (0.72973 rad, 0 rad/s)

(641,0) = (2.4119 rad, 0 rad/s)
(642,0) = (-3.8713 rad, 0 rad/s)

Notice that Vj, (642) = 14 L&VVAM and Ve (61) = 1.5 %ﬂ. The back-wall of potential
energy is very tall and the front-wall is very shallow.

Light loading

The input mechanical power to machine one is P,,; = 0.5. Fig. 5-16 (b) shows the stability
boundary and the potential energy function for this case. Also shown are the e.p.’s, these are

the following:
(65,0) = (0.16745 rad, 0 rad/s)

(641,0) = (2.9741 rad, 0 rad/s)
(6u2,0) = (—3.3090 rad, 0 rad/s)
Notice that Vi (6u2) = 7.5 %99 and Vpe (841) = 4.0 %-Vv'fd. The back-wall of potential
energy is not as tall as the previous case and the front-wall is not so shallow.

It is evident that the degree of system loading can also have a major effect on the ability
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Figure 5-16: Effect of system loading on the one-parameter transversality condition. (a) high
loading and (b) light loading

of the BCU method to correctly determine the controlling u.e.p.. The previous example shows
that a power system may satisfy the one-parameter transversality condition at one loading
condition (the light loading case), but may fail to do so at a higher value (the high loading

case).

5.6 Verification of BCU u.e.p.(s)

A discrepancy results in the BCU method when insufficient damping or excessive loading is

present in the system. The third result of [10] is stated as follows,

o If the one-parameter transversality condition is satisfied, then § is on the stability bound-

ary A(4,), of the gradient system if and only if (§,0) is on the stability boundary,
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dA(4,,0), of the original system.

This result always applies, regardless of damping. The difficulty in this result is finding

when the one-parameter transversality condition is satisfied in a multi-machine system. In

the previous two cases, the one with insufficient damping did not satisfy this condition.If the

one-parameter transversality condition is not satisfied, the result obtained by the BCU method

may not be correct for multi-swing stability. In order to find if the u.e.p. obtained lies on the

stability boundary of the original system, the following method is proposed:

1. Define the normalized vector z as the following:

2. Find the starting point as the following point:

(éco—grad + 0.01z, Q)

3. Integrate the state equation of the original system using the previous starting point.

(2)

(b)

If the trajectory tends toward (4,,0) then the point (ﬁw_g,ad, Q) lies on the stability
boundary of the original system. The stability boundary may be locally approxi-
mated by the following surface:

OV (beo—graarQ) = {(8:2) : V (£:2) = Vpe (8co-graa) }

The critical clearing time may be approximated by the time at which the fault-on
trajectory intersects with this surface. This results in a multi-swing assessment of
stability.

If the trajectory tends towards infinity then the point (éco_gmd, Q) does not lie on the
stability boundary of the oﬁginal system. The intersection of the fault-on trajectory
with the above surface will only yield an upper bound for the critical clearing time

and conventional methods will be required to determine the critical clearing time.
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The idea of using direct methods and conventional methods is not new, see page 1 of [1].
There is a method which combines direct and conventional methods, it is called as Hybrid

method of power system transient stability [53].

5.6.1 Three-machine system example

The three-machine system of reference [1] shown in Fig. 5-17 is used to illustrate the suggested

procedure. A small uniform damping Ay = 0.02 is used.

1<18 1<15
240  jO88 240  Joss
H=10 r H=10 r‘ 1015 820
1.5+48 1.5+)48
1<18 1<18
421 jos 421 _ }oS
124+28 124428
H=18 r H=158 +—
1.0+]3 1.0+)3
(a) (b)

Figure 5-17: (a) 3 - machine system of reference [1], (b) Post-fault system with line 1-2 open

Four faults on line 1-2 are considered (2 faults near bus 1 and 2 faults near bus 2), in
all cases line 1-2 opens to isolate the fault. Fault location, fault impedances, gradient system

controlling u.e.p.s, corresponding energy level and critical clearing times as found by the BCU

method are as follows,

1. Near bus 1, Z; = j5 x 107, §; = (121.32°, —.89302°) , V}. (§;) = 2.0062 M¥cxed ¢ ct. =
0.17s

2. Near bus 1, Z; = 0.06, §; = (—196.32°,41.460°) , V, (6;) = 10.729 MWxad ¢ ct. = 0.325
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3. Near bus 2, Z; = j5 x 1076, §3 = (—13.512°,119.612°), V;. (65) = 5.8383 MWzad c.ct.
= 0.1955 s |

4. Near bus 2, Z; = 0.03, §4 = (50.017° — 176.86°), Vpe (6,) = 25.713 M¥czed ¢ ct. = 0.455

]

The PEBS, the u.e.p.’s on the PEBS, and the equipotential curves are shown in Fig. 5-18,
§; to §4 are type-one e.p.’s, §5 to §s are type-two e.p.’s.

-250 -150 -80 50 180 250
&1-coa (deg)

Figure 5-18: Contour map of potential energy using ray approximation and PEBS for three-
machine system of reference [1] with line 1-2 open

The post-fault trajectories of the above procedure projected onto the angle subspace are
shown in Fig. 5-19. We can see that (§;,0) lies on the stability boundary of the original system,
but the rest of the type-one e.p.’s - (§,,0), (d3,0) and (44,0) - do not. We can conclude that
this power system does not satisfy the one-parameter transversality condition since there are

three type-one e.p.’s on the PEBS, A (4,), for which their corresponding e.p.’s of the original
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system do not belong to the stability boundary of the original system, A (4,,0).

(81) € 0A(4,) (61,0) € 3A(4,,0)
(82) € 0A(4,) (82,0) ¢ 9A(&,,0)
(83) € 0A(4,) (45,0) ¢ 94 (4,,0)
(84) € 0A(S,) (44,0) € 9A(4,,0)

An interesting result is that when the one-parameter transversality condition is not satisfied,
the number of e.p.’s on the PEBS is greater than the number of e.p.’s on the stability boundary
of the original system. When it is satisfied the number of e.p.’s on the PEBS is the same as
the number of e.p.’s on the stability boundary of the original system.

This particular example shows failure of the one-parameter transversality condition on both
accelerating (fault 3) and decelerating faults (faults 2 and 4). This is not a common situation.

It is easier to find cases which do not satisfy this condition for decelerating faults only.
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Unstable equilibrium point (51,0) lies
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on the stability boundary of (5s,0)

53

§2-coa
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Unstable equilibrium point (53,0) does not lie
on the stabiiity boundary of (5s,0)

82-coa
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Unstable equilibrium point (54,0) does not lie
on the stabiiity boundary of (5s,0)

Figure 5-19: Post-fault trajectories projected onto the angle subspace
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Chapter 6

Conclusions

Both system damping and loading can have major effects on the ability of the BCU method
to correctly determine the controlling u.e.p.. A power system may satisfy the one-parameter
transversality condition at one value of uniform damping or loading, but may fail to do so at a
lower damping value or higher loading condition. Power systems not satisfying the assumption
of one-parameter transversality condition are not uncommon, especially for power systems with
high loading and/or low uniform damping.under decelerating faults. However, power systems
exposing the failure of this assumption under accelerating faults are rare indeed.

When the one-parameter transversality condition is satisfied, the number of e.p.’s on the
PEBS is the same as the number of e.p.’s on the stability boundary of the original system.
When it is not satisfied the number of e.p.’s on the PEBS is greater than the number of e.p.’s
on the stability boundary of the original system.

Failure to satisfy the one-parameter transversality condition may result in the PEBS and
BCU methods giving incorrect results for multi-swing stability. A procedure to determine if the
u.e.p. found by the BCU method lies on the stability boundary of the original system is given.
This procedure is appropriate for off-line applications when there is sufficient time for a hybrid
approach (combination of direct and conventional methods). Its use for on-line applications is
limited due to the following: a) it is time consuming and b) if it finds that the u.e.p. does not
belong to the stability boundary it provides no information concerning the stability /instability
of the system, it only provides an upper bound for the critical clearing time.

The BCU and PEBS methods as presented here are appropriate methods for off-line appli-
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cations. For on-line applications they must be combined with very fast conventional methods or
they must be improved to avoid their failure when the one-parameter transversality condition

is not met.
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Appendix A

Finding the Transient Energy in the

One Machine Reference Frame

In this formulation, machine n will be the reference [85].

1. The starting point is the swing equation of machine ¢ (Eq. 3.4).

d2§; .
M,'—de- —P+P;=0,1=1,2,--,n
2. The set of n(n — 1)/2 equations of relative acceleration must be obtained. We will begin

with a 4-machine system and then generalize to an n-machine system.

Ml%?'-Pl‘*'Pel:o
M4 - P+ Py =0
M3;&% — P34+ P3=0
MyG8 - Py+ Py =0

(A.1)

Multiply the first row of Eq. A.1 by M, the second row by M, and subtract the resulting

equations.
d%5,
+M1M2d—t2- - M;P + MaP.y =0
d?s
—MMp—2t + MyPy ~ MiPp =0
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d6
MleT;z — (M2P, - MyP2) + (M2Pey — My Fe3) = 0

We just got the first of the n(n — 1)/ 2 equations of relative acceleration. By repeating

the above procedure using the corresponding Ms we will get:

My My &2 — (Ma Py — My P) + (M2 P — My P3) =0
My M3E8 — (Ms Py — My Ps)+ (M3 Py — My P3) =0
My MyShe — (My P — My P)+ (My P — My Poy) =0
My M3E8 — (M3 P, — M; Ps)+ (M3 Py ~ M; Pe3) =0
My M S5 — (M4 Py — My Py)+ (My P = My Pey) =0
Ms M558 — (My Py — M3 P)+ (M4 Pes — Ms Poy) =0

We can see from the above equations that, in general,

M;M; S5 ~ (M;P; = M;P;) + (M;Psi - MiP.j) = 0

fori=1,--,n—1;j=1+1,--,n

3. We then multiply the above generalized equation of relative acceleration by the correspond-

ing relative speed §;;.

MiM;b; 55 — (M;P, — MiP;) %t + (M;Pi - MiPej) G = 0

fori=1, n=ljj=i+1-n

4. We will add these n(n — 1)/2 equations in the following manner:

n-1 n 1

. d6-. d6i' déi‘
E Z MiMjaijT;L - (M;P; - Min) # + (M;P.; — M;P,;) ‘d_tJ =0
1=1 j=i+l

This equation is —Mt% = 0, and, to get V(§,w), we must integrate the following equation:

V(b,w) = /t * (‘fi—‘t’) dt
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or . v
v [ -(§)a

Since —% = 0, we know that V(§,w) = constant.
At t, the s.e.p. is reached, i.e. wi(t,) = 0, 6i(t,) = 62.

vV _
_Mt{i_t_

n—1y-n N -T P — M. P;) % p. p \dbi (A2)
Ei:l Zj=i+1 M'MJG'J?'{L_(MJ 1 = M J)?TL+(MJP€'_M‘P¢J)7?L

(5

. Before integrating Eq. A.2, we must find a convenient expression for the underlined term,

since P.; and P.; are functions of the relative angles §;;.

n-1 n
Z z (M;P; — M;F.;) =
i=1 j=i+l
n-1 n n n
S |M; Y (Ciksin ik + Dik cosdix) — M; > (Cjisinjx + Djx cos 6jk)]
i=1 j=i+1 k=1 k=1
or
n-1 n
Z Z (M;Pei — M;P.;) =
i=1 j=i+l
n-1 n n n
z E M; Z (Cigsin b)) — M; E (Cjksin bji)
=1 j=i+l k=1,#¢ k=1,#j
n-1 n n n
+ z E M; Z (Dix cos b;x) — M; Z (Djk cos ;1)
i=1 j=i+1 k=1,#¢ k=1,#5

Notice that in the right hand side of the above equation, the first summation of ¢ from
1 to n — 1 corresponds to the transfer susceptances of the postfault reduced admittance

matrix. The second corresponds to the transfer conductances.

— Corresponding to transfer susceptances for n = 4
+M; (+Ciz5in 613 + Ch3sin 613 + Crasin b14) b1z

—M; (~Ciz8in 813 + Ca3sin b33 + Caqsin b24) 619
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+Mj3 (+Cyz25in 8y + Chasin 13 + Cr4sin b14) b33
— M, (—Chasin 613 — Caasin &g3 + Caqsin 6a4) 63
+M, (+Cizsin 813 + Chasin §y3 + Crysindyy) by
— My (—Ch45in 614 — C248in 634 — C3ysin b34) 314
4+ M3 (—Chasin 813 + Caasin b33 + Caqsin b24) b23
~M; (—Chasin 613 — Caasin 633 + Caqsin d34) b23
+M, (—~Cyz25in 813 + Caasin bz + Ca45in 824) 634
—M; (=C\48in é14 — C248in 824 — Caysin 34) b24
4+ M4 (—Ch3sin b3 — Caasin 8z + Cag sin 634) b24
—Mj3 (—C45in 614 — Cag5in 824 — C345inb34) 524

The coefficient of C125in 62 is

b12(My + Mz) + $13Ms + 614My — b33 M3 — 834 M,
= b1a(My + Ma) + Ms(b13 + b32) + Ma(b14 + b42)
= b12(My + Mz + M3 + M)
= b12M;

Similarly, the coefficients of Cy3 sinéy3, Ci4 siné14, Ca3 8ind23, C24 sindz4 and
C34 sinda4 are 513Mt, 614 M, 623 M, 524M¢, 534Mt, respectively, resulting in the

following equation:

4-1 4 4 4
Z E M; E (Ciksinbix) — M; Z (Cjrsinéji)] ;5 =
i=1 j=i+41 k=1,#i k=1,#j5

4-1 4 .
Mgz z C;;j sin §;;6;;

=1 j=i+41
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The general form of this equation is Eq. A.3.

e i [Mj k=1, (Cisin i) — M; 3751 2; (Cik sin ij)] bi; =

n-1yn I Y (A-3)
Mt Eg:l 2]:!1-1 C‘J sin 6'16'.7

— Corresponding to transfer conductances for n = 4
+M; (D13 cos 612 + D13 cos 613 + Dy4 co8 814) b12

—M; (D12 c08 832 + Da3c08 833 + Dag cos 824) b2
+M3 (Dy3 cos 12 + Dy3cos 813 + D1y cos b14) ;3
—M; (D3 cos 813 + D23 cos 623 + D3g cos 834) 13
4+ M (D13 co8 812 + Dy3 08 813 + Dyg cosb14) 614
— M (D14co8 814 + Doy cos 624 + Dag cos b34) 14
+M3 (Dy2co8 612 + D23 cos 833 + Doy cos §24) ba3
—M; (Dy3c08 613 + D23 cos 623 + D3y cos b34) 693
+M, (D13 cos 612 + D33 cos 823 + Dag cos 824) 624
—M; (Dy4c08 614 + D2y cos 834 + D34 cos 634) b24
+ M4 (D13 cos 813 + D23 cos 823 + D3y cos §34) 624
— M3 (D14c08 614 + D2y cos b24 + D3y cos b34) 624

The coefficient of D2 cos ;3 is

(Mg — My)éyz + Mabra + Mybyy + Mabos + Mabay
= (=M; + My + Mz + Mo)by + (My - My + Ms + My)bs — 2 Msbs — 2 Myb,
= M6y + My — 2(My by + Maby + Mabs + Maby)
= My(b, + 62 — 2 bo)
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Similarly, the coefficients of Dy3 cos 13, Dy4 cosd14, D23 coséaz, Da4 cosbzq and
D3y cos 834 are My(81+63—260), My(b1+64—2b0), My(82+63—260), My(82+64—2bo),
and Mg(53 4 64— 250), respectively, resulting in the following equation: “

4-1 4 4 4
Z M; Z (Dix cos §ix) — M; Z (Djk cos ij) 5,5 =
i=1 j=i4+1 k=1,# k=1,#3
4-1 4 . . .
MY Y Dijcosbij- (8 + 8; — 260)
i=1 j=i+1

The general form of this equation is Eq. A.4

) By A [M,- S R=1,i (Dik cos bix) — M; 3of=1 25 (Djx cos 5jk)] bij =

M. . D..cosbi;- (6: + 6: — 26 (A4)
tzl:l Ej=t+1 ij COS 0;5 (g+5J »260)

Substituting Eq. A.3 and Eq. A.4 into Eq. A.2 we get

dav
- MtI
n-1 n d6
+ 21 > | MiM;b;— ]

i=1 j=i+1

n-1 n 6
+ ). [ (M;P; - MP) " + M,C;;jsin §;; d;’]
i=1 j=i+1
n-1 n
+> [MtD., cos6,_,d (6 +6; 260)]
=1 j=i+l
By multiplying both sides of the above equation by IIZ.' we get
dV
n-1 n
M;
o8 5 [, 4]
=1 j=i+1
n-1 =n

_M; P M; P; dé;; dé;

+Y 3 |- 278 + Cyysind; 2|

1=1 j=i+41
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n-1 n
+Z Z [D,, cosé,,d (6: +6; —260)]

=1 j=1+41

8. We then integrate the above equation from ¢ to t, (post-fault).

v [ ()
[ ()

V(dw=

+Z: Z/ Mt’6.,#]dt

=1 j=i+1

n-1 =n
M; P M;P; db;;
+22 Z.:H/ [ "7 +C.,sm6., 7t ]dt
t=1 j=1

n-1 n

t d
+ Z Z / [D,'j cos 5,','5 (6: + 65— 260)] dt

t=1 j=i+1 ts
or
| 4 (éy Q) =

n-1 =n
+ Z /o wijdwi;

=1 j=i+1

-l o » MP M;P;

- E Z d6.,

=1 j=i+1 6.
n-1 n 5j

+3 ¥ c; / sin 6;;d5;;
i=1 j=1+1 j

n-1 n 6i+6;—26

o
+ E Z Ds‘j/ cos (6.‘ - 6j)d(6,' + 5j - 250)

i=1 j=it+l 5¢+565-263

The transient energy in relative angle formulation results in the following equation:

- MM; M;P,—M;P; . ,
T i S Mg, - MIBEME (55 §8) - Cij (cos 8 — cos ;) + Disli

where [;; = f;.-;fg:-ggg cos (6; — 6;)d (8 + 8; — 260) .
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7. Notice that the transient energy function given by the previous equation is formulated in

relative angle. To get the formulation with one machine as reference, we must use the

following equations:

bij = bin = bjn,
Wij = Win — Wjn

8i 4+ 8; — 26, = bip + 6jn + 26,

Now we must find an expression for §, as a function of the angle subspace

According to Eq. 3.7,

bp — 6

or

§= {6t'nvi= 17"'7"’_1}

6, = —ZM.

bn — 3 Loy Mids
bn — ¥pbn — 3 S0 Mié;

. M;)bn—Mnbn n—
(&g_a,__ - _L :_11 [M (6m + 6n )]

o Do Miba — 5 2:':1l M;bin — 3 T Mib,
n-1
Z M;bin (A.5)
z—l
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Appendix B

The Equality of the COA and One

Machine Reference Frames

To obtain the relationship between V(§,&) and V(8,w), we will begin with the kinetic energy.

— Kinetic energy.

n—-2 n-1 n—-1
M; M! M: M,
Vk (w) = E : }: (w'" an)Z + E : 2M "wz
1=1 j=i+1 =1

Vi (@) = Z M; -f
i-—l

Vi(@) = E M; (Wi — w,)?

t=1

n

= 23 M (u? — 20 + B)

=1

[y

n
by E tw — W Z Miw; + E M;
=1 i=1

=1

N

= - ZM,QJ Mtwg + %Mtwg
t-—l

n

1 M,
= EEM,‘(J? - —2—tw3

=1
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i=1 =1

1 n 1 n 2
_ 1 2
=3 ;M,w, 2M, (; M.w.)

=1 =1 j=i41

1 i n 1 n n-1 n
= oM, ZMk) (E Mew?) =3 (E M?? + 22 2 M.'w;M_,'wJ-)
1 ki n n n-1 n
= m I:E (Al'w"2 Z Mk) - ZM;? :'2_ Z Z 2M;w.-MJ-wj]

=1 k=1 i=1 i=1 j=i+1

n Lid n n n-1 n
= 2+Mt I:Z M} E Mk) +EM3“":2"ZM;2 ? - Z z: 2M;w,-Mjwj]

=1 k=1,#1 =1 =1 i=1 j=i+1
1 n-1 n ) . n-l- - n
= m—t 2 j;{d (MiMjw.' + M.M,w,) - ;jjz'._:‘_l 2M.'w,'MJ'wJ-
= L’f Zn: [M.- M; (c..'-2 - 2wiw; +w?)] = —l—nz-:l i M; M (w; — w;)?
2M, o J=i+l ' ! 2M: 5 j=i+1 ! !
— =% M"MJ' 2 = M;M, 2
R

Vi(@)=Vi(w)

— Path-independent potential energy.

() = Vor (6) + % (8)

where el
Vo (8) = - ; [P (5: - &)] - Pu (30 - 83)
Vo (§) =
- 1:2—:2 nz—:l [C.-,- (cos 5,-,- — CO0S 5;’,-)] - "Z-‘} Cin [COS (5.‘ - 5n) — Cos (Sf - 5:)]
i=1 j=i+1 i=1

[Machine n as reference:| V, (8) = Vi1 (8) + Vp2(6)
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where
n-2 n-l M,P M;P; (5

Va(@®=-Y >

=1 j=i+1

_n—l M!‘P'__A!!ﬂ( in — 62.)
M,

=1
V2 (§) =
n-2 n-1 n-1
- E E Ci; [cos (6in — 8jn) — cos (6,-’,, - 61'-,,)] z: Cin [c086in — c0s6],]
i=1 j=i+1 i=1
* Let us consider Vp;.
n-1 n
V@ == Y Cj (cos&.-,- - cos6fj)
=1 j=i+1
n-1 n _ .
= - E Y G (cos b;; — cos 6,-J~)
i=1 j=i+1
n-2 n-1
=- Z E [C;j (cos 0;j — cos 82 )] Z Cin [cos ( ) — cos (5,’ - 3;)]
i=1 j=i+l

This equation is also equal to V), (5)

* Now, let us consider Vj;.
Vpl (ﬁ)

_ -1 M;Pi—M;P;
TRl MO (- b 45
- Ty MaBigifa (6 — 87,

- M;P;-M;P;
= - Z?:ll E?=i+l _J_M,_—L (6".5 - 6:,1)

= - T Tlein (M P + MiP;8; — PiM;6; — PiMé;)
+3; TS Tieinn (MjPi&; + M P;6 — P.M;67 — PjMi52")

= - Xk (P i Yok=1,2i Mk — Pi Yk=1 2 Mk6k)
+ar Ty (Pi5£ Yoh=1,5 Mi — Pi Yk i Mkﬁ;’,)
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= - E?:l (5‘;61Mt - ﬁ;&lMt - TF}: ZE:],;&.' Mk&k)
+ 0 (GO Me — B8 M — i Shes s M)

= -3 Ty (P6iM, — P T, Miby)
+#, 2?:1 (Rﬁ:Mt - -Pt 22=1 Mk&l‘:)

= —35 Tk (P8 M, — PiM:&o) — (Pi8¢ M, — P:M;53))
= —T% {Pi[(6 - 80) - (67 - 63}
= -ThP(6-5)

This equation is also equal to Vj,; (&) . In conclusion, we get the following result:

Vo () =V, (§)

— Path-dependent potential energy.

A ol on bi+b; L. L
n@)=% 3 0 Jress oo (= 8) a6+ 5)
[ Machine n as reference: | Vy (§) =
n=2 n-1 sin+6jn+2gn -
Di'/ 6i'n_ in) d 6:'1; 5; 2 n
n-1 6in+23n -
+ Z D;y, /s Y vais cos §in d (5.". + 25n)
=1 tn n

Va(8) = T3 Tlmisr Dij J5; 15126 cos (6 = &) (6 + 6 — 260),, since & - 6; =
5 — 6-,- and 6;+6; -2 6 = 5+ 55. We can then conclude that the following equation
holds.

Va()=Va(8)
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1.e.

The transient energy is the same in the COA and one-machine-as-reference formulations,

v (57 Q) =V(-6-7 Q)
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Appendix C

The Synchronous Machine

C.0.2 State equation, detailed model.

This section has been adapted from [47]. Usually, the following parameters are given:

1.

2.

10.

11.

rating Spase

line to line voltage Vi,

. number of poles P

combined inertia of generator and turbine J

. stator resistance per phase r,
. stator leakage reactance per phase Xj,

. g-axis reactance X,

resistance and leakage reactance per phase of the g-axis damper winding-1 referred to the

stator, kg1, Xikq

. resistance and leakage reactance per phase of the q-axis damper winding-2 referred to the

stator rre2, Xikge2
d-axis reactance Xg
resistance and leakage reactance of the field winding referred to the stator rs4, Xis4
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12. resistance and leakage reactance per phase of the d-axis damper winding referred to the

stator Tixd, Xikd

Let us assume that the machine is connected to an infinite bus with voltage V; pu, then

Vas cos (wst)
v, = Vi cos (w,t - Zgr_) pu
Ves cos (w,t + 235)

After taking Park’s transformation, the following applies:

vgs = Vi cos(6)
vg, = V; cos(é) pu

vO’ = 0-

Let us define the following variables before obtaining the state equation.

V2
Zpase = =LL- Q
ba Sba:e
w, = 1207 5:-‘1
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(E]=

H= , 8
Sba:e

0 -L, 0 0 Lyma Lng

X X X
0 —Lpg —r'!':"‘ 0 0 L jd-,.‘;':‘ Lmd—r;n:
0 ~Lmd 0 0 Lma Liq
0 0 0 0 0 0
0 0 0 0 0 0

Iy
»
|
3

Ws

L, = ia_{l

X,

Ly = -“-:
Lpg = Lg-1Ly,
Liygg = %fi
Liyg = Liga+ L
Lg = S

qul = leql+Lmq

_ X
Lz = 2
qu2 = leq2+Lmq

— Xikd
Lira = o
Lia = Lid+ Lmd

Xmd = ws Lind

Xmg = W, Lmq

1 ($w)

. . rad
, reactances in pu, w, In =

» pu

T
£=[iq. ids tkql %he2 ifd tka w O ]
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E(z)=

Vi cos (6) + Tsiqs + (w + wa) Lgtas — (w + wa) Ly (ifd + ikd)

Visin (8) — (w + wa) Lyiqs + Toids + (@ + ws) Lmg (kg1 + ikg2)
—Tkq1tkq1
—Tkq28kq2
~Xmdigd
—Tkdikd
—Xmd (5d + tkd — 1ds) tgs = Xmgq (s — tkq1 — tkq2) tds

w

T
!=[0000V,,c0T10]

The state equation results.

& = [E]™" {[F(2)) + u}

(C.2)

The input torque, 7}, and the voltage of the field supply referred to the stator, V,., are the

only forcing functions in this particular case.

C.0.3 State equation, classical model

For comparison, the state equation of the classical model is

where

. _ P=P. _ D
W= MY

b=w

WE . MW
Pe (6) = -)‘(—ésm(6), m

2H

Wy

M=

(C.3)

According to [47], the transient reactance X relates to the reactances of the detailed model

by

(X4 — Xi,)°

- p—
Xa=Xa Xiga+ Xa — Xis

Now the only parameter to determine is the damping factor D. The damping power Fj is
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proportional to the angular velocity deviation w, i.e.
Pi=Dw

Friction and windage losses also contribute to the damping power [6], but this contribution
is negligible. The damping is mainly due to asynchronous torque and, since the angular velocity
deviation is small, it will be assumed that the damping power is proportional to the angular

velocity deviation w = w, — w, rad/s.

C.1 Linearized state equations

C.1.1 Detailed model

Given a state equation of the form & = f(z) + u the linearized state equation around the

operating point zo is

0f(z)

e 49 acran

Zg

The corresponding homogeneous system is the following:

Now, this result is used to obtain the homogeneous linearized equation. Matrix £ in Eq.

C.2 remains constant. All then that is needed is [Q%-iﬂ
= 4%

OF (z
58,
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i -
+ L4l
r Xi 0 0 —Xmd ~Xma ] ~sindo
—Lmalsa
-X, Ts Xmq Xomg 0 0 —L,I,, cos ép
0 0 —Tkq1 0 0 0 0 0
0 0 0 —Tkq2 0 0 0 0
0 0 0 0 —Amd 0 0 0
0 0 0 0 0 —Tkd 0 0
Xao 13
d:/ ’ quIqa quIds quIds - deqa "dech 0 0
0 0 0 0 0 0 1 0

The stable equilibrium point is
T

Given the line current phasor Iy = Iy, + j Isi = I, | —0, the voltage phasor at the infinite
bus V; = V; | 0, the operating point is obtained by the following:

—15lqi + Xanr
Vi + rolor — Xani

6o = arctan [

Ips = I, cos (6o + 0); Igs = Ips | b0
I, = \/Ig - Ig,; Igs = Igs| 60— /2
Voe = Vi+r,1a+ 5 Xealgs+i Xg1gs

Note: These equations correspond to §p+6 > 0; in this case I3 lags Iqs by 90°. These equations
do not apply if I, leads Iqs by 90°. To conclude, the linearized homogeneous equation is

Az = [A] Az (C.4)
where
Al = [E]? ___3E(_:§)
= e 252
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T
A.@-’-[Ai,,, Atgy, Aigyy Atpgz Atyg Adpg Aw A6]

[E] is given by Eq. C.1.

C.1.2 Classical model

The linearized homogeneous equation is
Ad | 0 1 AS
Aw — 34 Pmax 08 (60) —§ Aw

0 1
— 3¢ Prax c0s(60) —&

The Jacobian is

The Jacobian’s eigenvalues are

re-2 g \/(£)2 )

2M 2M M

C.2 Machine data
Data taken from [47].
The data corresponding to a large hydro turbine generator is the following
Sbase = 325 MVA
power factor = 0.85
VoL =20 kV
P =64

J =35.1210° J s2

H = 7.5 s on its own base

24.375 s on a 100 MVAbase
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rs = 0.00234
Xi, =0.1478 Q

X, =05911Q  X;=10467Q
r74 = 0.00050 ©

Xia = 0.2523 Q

Tkgz = 0.01675 @ 144 = 0.01736
Xikgz = 0.1267 @ Xyig = 0.1970 Q.

The data corresponding to a large steam turbine generator is the following:

Stase = 835 MVA
power factor = 0.85
Vi = 26 kV
P = 2 poles

J = 0.0658z10° J &2

H = 5.6 s on its own base

46.76 s on a 100 MVAbase

r, = 0.00243 Q
Xi, = 0.1538 Q2

X,=14570Q  Xy=14570Q
e = 0.00144 @ 754 = 0.00075
Xikgr = 0.6578 @ Xipgq = 0.1145 Q@
kg2 = 0.00681 @  rig = 0.01080 @
Xikgz = 0.0762 @  Xpka = 0.06577 Q.
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C.3 Damping calculation - Free acceleration

To illustrate the effect of the damper windings, a simulation called free acceleration is realized

using Eq. C.2 with V. = 0 and 7} = 0 and the following initial conditions:

[ tgs - [ 0 ]
tds 0
tkeq1 0
20 = tkq2 _ 0
ifd 0
tkd 0
w —Wws
L 6 Jo L 0 .

Notice that in this simulation, the applied voltage to the field winding is zero. The results of

these simulations are shown in Fig. C-1. The base torque is the following;:

Toase = ;b::e Nm

The torque shown is the asynchronous torque and the simulations can be used to determine

the damping factor D. This factor is given by

D= & MW s
~ w MVArad
where
P=T, w+w,
Wy

Both P; and T, are in pu. Therefore, if we plot the damping power P; versus the angular
velocityw, an estimate of D may be obtained graphically. This result is illustrated in Fig. C-2.
These plots start with an angular velocity of —30 % because the region of interest is for small

angular velocity deviations. The average damping power is drawn, and the slope after the knee
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Figure C-1: Asynchronous torque versus angular velocity deviation in pu

is D. The damping coefficient for the hydro turbine unit is the following:

D=8 _ 103 MWs

155 MVA rad’ Stese = 325 MVA

For the steam turbine unit the damping is

D=2 _ 106 MWs

132 MVA 1aq’ Jbese = 835 MVA

C.4 Damping calculation - Step increase in input torque

A second procedure to determine the damping consists on simulating a sudden change in input
torque, the asynchronous torque is obtained from subtracting the steady state synchronous
torque T,, from the electro-magnetic torque T, i.e. Ty = T, — T,,. The steady state torque is

given by the following equation:

T, =

ViV . veli1 1)\.
4+ =— - — §
x, n0)+5 X, Xi)™" (28)
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Figu're C-2: Damping power versus angular velocity deviation-Free acceleration

We will define the internal power as

The steady state power is defined as the following equation:

w+ w,
Ws

Pu-_- ss

The damping power results in the following:

w + W,

Pi=P. - Pyy=Ty

W,

It will be assumed that the input torque was zero before time zero, and in order to avoid

non-linearities, the input step will be 0.1 pu. It will also be assumed that the open circuit

voltage is 1.0 pu. Therefore, with T} = 0.1 pu, V.. = 1.0 pu, the initial conditions are the
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following:

ige 0
1ds 0
tkoql 0
tkq2 0
Qo = =
ifd Xmd
1kd 0
w 0
é 0
L 40 L p

The results of these simulations are shown in Fig. C-3. Notice that for the hydro turbine
unit the new stable equilibrium point is reached promptly, however for the steam turbine unit
the oscillations disappear promptly but it takes considerably longer to achieve the new stable

equilibrium point.

0.16
0.14

0.12
0.10

Pe, Pss, Pd (MW/MVA)

0.04

0.02

time (o) time (s)

@) Hydro turbine unit b) Steam turbine unit

Figure C-3: Power versus time for a step input torque of 0.1 pu

The damping power is plotted versus the angular velocity deviation. After drawing the
average damping power, the corresponding slope is D. Notice that due to the slow dynamics

involved in the steam turbine unit, this method of finding D can not be applied for this unit.
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Figure C-4: Damping power versus angular velocity deviation-Step input torque
According to Fig. C-4, the damping for the hydro turbine unit is

_ 005 MW s

D= 5785 = "1y VA rad

C.5 Damping calculation - Eigenanalyisis

A third method of finding the damping factor consists of the following:

1. Calculate the eigenvalues of the homogeneous dynamic equation of the detailed model,
Eq. C.4, and identify the swing mode eigenvalue, Asuwing-

2. Find the eigenvalues of the homogeneous dynamic equation of the classical model, Eq.

C.5. As mentioned before, these eigenvalues are

D D \? _ Pmax cos(é
Adlassical = —27 o \/(m) - _%8(9)

3. Set the real part of the classical model eigenvalues equal to the real part of the swing

mode eigenvalue, i.e.

D
-5 = (real part of Aswing)
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or

D= —21—H (real part of Aswing)
Rated operating conditions for the hydro turbine unit are the following:
Ve=1+430

Ia = 0.8500 + j 0.52678

Voe = 1.602
T, = 0.8519
The stable equilibrium point is
[ I, | [ 064474 ]
I, 0.76440
Ijg | =1 21935
Iiq 0
Wwo 0
| b0 | | 0.3153 |

The eigenvalues at the rated operating condition are

-3.5769 £ j376.89 7
—1.3270 £ ;8.6843
—24.401
-22.910
—0.45282

The swing mode eigenvalue must be complex conjugate, and its natural frequency must be low.

Aswing = —1.3270 + 78.6843
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Therefore

2x17.5 MW s
D=2 1207 1.327 = 0.106 MVA 1ad

Rated operating conditions for the steam turbine unit are the following:

Ve=1+30

I, = 0.8500 + j 0.52678

Voe = 2.4779
T = 0.8530
The stable equilibrium point is
[ 1, | [ 034330 ]
Iy, 0.93923
Ik 0
Iyq 1.5394
Iiq 0
wo 0
8o 0.66456

The eigenvalues at the rated operating condition are

[ _4.4514 + 376.89 |

~1.7042 + 10.476
~11.105
~32.103
—0.34959
~0.85578
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Again, the swing mode eigenvalue must be a complex conjugate, and its natural frequency

must be low.
Aswing = —1.7042 + 10.476

Therefore

2x5.6 MW s
D=2 120m 1.7042 = 0.101 MVA tad

C.6 Comparison of results

The damping coefficient has been obtained for twolarge machines, using three different methods.

Let us compare these results.

Hydro turbine unit
Free acceleration 0.103
Step input torque 0.103

Eigenvalue 0.106

Steam turbine unit
Free acceleration 0.106
Step input torque 0.10

Eigenvalue 0.101

As shown in [47], the swing eigenvalue does not change drastically with the operating condi-
tions. It seems from the results obtained, that a typical value of damping for a large synchronous

machine is 0.1 %’ﬁ on its own base.
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C.6.1 Uniform damping

In direct methods for transient stability, uniform damping is usually assumed. Uniform damping

means that the ratio % is the same for all the machines in the system.

Dhydra - 0.1 ~ 2.5
Mpydro  0.039761 '

D steam = 0.1
M‘team 0.029708

~ 3.3661

Although the ratio ﬁ is not the same for both machines we see that it does not change drasti-

cally.
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