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Abstract

The advent of synchronized phasor measurements allows the problem of real time predic-

tion of instability and control to be considered. The use of direct methods for these on-line

applications is assessed.

The classical representation of a power system allows the use of two reference frames: Center

of angle and one machine as reference. Formulae allowing transition between the two reference

frames are derived. It is shown that the transient energy in both formulations is the same, and

that line resistances do not dampen system oscillations.

Examples illustrating the mathematical characterization of the region of attraction, exit-
point, closest u.e.p. and controlling u.e.p. methods are presented.

Half-dimensional systems (reduced-order systems) are discussed. The general expression
_ for the gradient system which accounts for transfer conductances is derived without making

use of the infinite bus assumption. Examples illustrating the following items are presented: a)

Effect of the linear ray approximation on the potential energy (inability to accurately locate

the u.e.p.’s); b) Comparison of Kakimoto’s and Athay’s approach for PEBS crossing detection;

c) BCU method and; d) One·parameter transversality condition.

It is illustrated that if the assumption of the one-parameter transversality condition is not

satisfied, the PEBS and BCU methods may give incorrect results for multi-swing stability. A

procedure to determine if the u.e.p. found by the BCU method lies on the stability boundary of

the original system is given. This procedure improves the BCU method for off~line applications

when there is time for a hybrid approach (direct and conventional), but it does not improve

it for on-line applications due to the following: a) It is time consuming and b) If it finds that

the u.e.p. does not belong to the stability boundary it provides no information concerning the

stability/instability of the system.
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Chapter 1

OIntroduct1011

Our interest in direct methods for transient stability analysis stems from the problem of real-
time prediction of instability and control. It has become possible Sto contemplate such tasks

because of the newly developed technique of synchronized phasor measurements and their use

in adaptive out-of-step relaying and other real-time control functions.

We bega.n by considering the TEF (transient energy function) method as a likely candidate
for these applications. Phasors can track system behavior, and through them, a prediction

about the outcome of an evolving swing could be made. We wanted to investigate if the TEF
method, or the PEBS (potential energy surface) method, or the BCU (boundary of stability
region based controlling unstable equilibrium point) method, offer a practical technique for

instability prediction.

Since we are interested in assessing the use of direct methods for on·line stability prediction,
where computing time is an important factor, the classical model of a. power system will be

used throughout this dissertation.

1.1 Chapter outline

1. Introduction. The next section of this chapter is the statement of the problem where

power system transient stability is defined from the point of view of both conventional and

direct methods. The last sections describe the scope of this dissertation and the related

bibliography.
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2. Transient energy method for the one·machine infinite bus system. The second
chapter provides the background information needed to undertake a study of transient
stability analysis, and as such, the reader familiar with the subject may skip it. The basics
principles of Newton’s second law and Faraday’s law are discussed within the context of
rotating machines, allowing the derivation of the swing equation. Equilibrium points, as
related to electric power system transients, are discussed. Two methods of determining
stability for the one·machine infinite·bus case are presented: the equal area criteria and
the transient energy method. These methods are shown to be equivalent.

3. Transient energy function for multi-machine systems. The third chapter extends
the notion of transient energy to the multi·machine case. Classical modeling of electric
power systems is presented and is used throughout the paper. The use of this model
allows the reduction of any power system to its internal nodes. Two formulations for
the state equations of the power system are then presented: Center of Angle (COA) and
one machine reference frame. These formulations provide two means of determining the
transient energy function. The formulae to go from one reference frame to the other
are found. It is shown that both of these reference frames result in the same transient
energy function. The reduction to internal nodes may yield an admittance matrix with
non-negligible transfer conductances. This in turn causes the transient energy to be path-
dependent or non-integrable. To circumvent this problem, the projection of the post-fault
trajectory onto the angle subspace is assumed to be linear allowing the use of the linear
ray approximation. The effect of line resistances on system damping is discussed.

4. Fundamentals of direct methods. In this chapter, the exit point, the closest u.e.p.,
and the controlling u.e.p. methods are presented. The notion of a region of attraction
is mathematically described and several step·by-step procedures which help characterize
such a region a.re delineated. It is concluded that the controlling u.e.p. method is superior
to the other two methods, but that finding the controlling u.e.p. is difficult especially for

large systems.

5. PEBS and BCU methods. The last chapter investigates two methods of transient

stability assessment: the Potential Energy Boundary Surface (PEBS) method and the
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Boundary of stability based Controlling U.e.p. (BCU) method. Both of these methods
require a lower dimensional system which is described. It is shown that the BCU method,
although superior to all other current methods, may fail if insufficient damping is present.

6. Conclusions. The most important results of this dissertation are brieily stated.

1.2 Problem statement

1.2.1 Power system transient stability analysis

The following definitions taken from [42] define power system transient stability..

1. Power System: A network of one or more electrical generating units, loads, and/or power
transmission lines. .

2. Operating Quantities of a Power System: Physical quantities, which can be measured
or calculated, that can be used to describe the operating conditions of a power system.

Operating quantities include rms values or corresponding phasors.

3. Steady-State Operating Condition of a Power System: An operating condition of a power
system in which all of the operating quantities that characterize it can be considered to
be constant for the purpose of analysis.

4. Synchronous Operation

(a) Synchronous Operation of a Machine: A machine is in synchronous operation with
a network or another machine to which it is connected if its average electrical speed
(product of its rotor angular velocity and the number of pole pairs) is equal to the
a.ngular frequency of the ac network voltage or to the electrical speed of the other
machine.

(b) Synchronous Operation of a Power System: A power system is in synchronous op-

eration if all its connected synchronous machines are in synchronous operation with

the ac network and with each other.

5. Asynchronous Operation
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(a) Asynchronous Operation of a Machine: A machine is in asynchronous operation with
a network or another machine to which it is connected if it is not in synchronous

operation.

(b) Asynchronous Operation of a Power System: A power system is in asynchronous
operation if one or more of its connected synchronous machines are in asynchronous

operation.

6. Hunting of a Machine: A machine is hunting if any of its operating quantities experience
sustained oscillations.

7. Disturbance in a Power System: A disturbance in a power system is a sudden change or
a sequence of changes in one or more of the parameters of the system, or in or more of

the operating quantities. ‘

(a) Small Disturbance in a Power System: A small disturbance is a disturbance for which
the equations that describe the dynamics of the power system may be linearized for

the purpose of analysis.

(b) Large Disturbance in a Power System: A large disturbance is a disturbance for which
the equations that describe the dynamics of the power system cannot be liuearized.

8. Steady·State Stability of a Power System: A power system is steady·state stable for a

particular steady·state operating condition if, following any small disturbance, it reaches
a steady·state operating condition which is identical or close to the pre-disturbance op-

erating condition. This is also known as Small Disturbance Stability of a Power System.

9. Transient Stability of a Power System: A power system is transiently stable for a partic-

ular steady·state operating condition and for a particular disturbance if, following that

disturbance, it reaches an acceptable steady·state operating condition.

q 10. Power System Stability Limits

(a) Steady-State Stability Limit: The steady-state stability limit is a steady-state op-

erating condition for which the power system is steady-state stable but for which
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an arbitrarily small change in any of the operating quantities in an unfavorable di-
rection causes the power system to lose stability. This is also known as the Small
Disturbance Stability Limit.

(b) Tmnsient Stability Limit: The transient stability limit for a particular disturbance

is the steady-state operating condition for which the power system is transiently
but for which an arbitrarily small change in any of the operating quantities in an
unfavorable direction causes the power system to lose stability for that disturbance.

11. Critical Clearing Time: If a particular disturbance includes the initiation and isolation
of fault on a power system, the critical clearing time is the maximum time between the •

initiation and the isolation such that the power system is transiently stable. •

We are interested in transient stability and not in steady-state stability. However, the
definitions related to steady-state stability were kept to make the rest of the definitions easier
to understand. The following paragraph taken from [66], answers to our question.

What is transient stability analysis? Power system stability may be defined as that property

of the system which enables the synchronous machines of the system to respond to a

disturbance from a normal operating condition so as to return to a condition where the
operation is again normal. Transient stability analysis is aimed at determining if the
system wiH remain in synchronism following major disturbances such as transmission
system faults, sudden load changes, loss of generating units, or line switching.

1.2.2 Conventional or step-by—step transient stability analysis

In conventional transient stability analysis the state equations are numerically integrated (step-

by—step integration). Assuming that the disturbance includes the initiation and isolation of a
fault on a power system, conventional analysis proceeds as follows. The initial system state
is obtained from the pre-fault system. This is the starting point used for the integration of
the fault-on dynamic equations. After the fault is cleared, the post-fault dynamic equations

are used in the numerical integration. These simulations yield the fault-on and post—fault

trajectories. The angles relative to a reference machine may be plotted versus time and if

these angles are bounded, the system is stable, otherwise it is unstable. This is illustrated in

5



Fig. 1-1. This figure corresponds to a three~machine power system. The reference machine is
machine 3. Notice that for this particular disturbance, the critical clearing time is some value

between 0.1950 and 0.1955 seconds. Multiple runs were required to obtain these bounds on the
critical clearing time. This trial and error approach is a major disadvantage of the conventional

method.

62-6: 61-6: 62-6: 61-6:

{1 ,1 ’_
"' ] \ \ \

'

\ I , \ I [
‘

1 \ \ 1ßllllljl ll lll'\·1 1 1 1 .
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’
\I la \; "

-100-1000
1 2 0 4 6 0 1 2 s 4 s

(0) Shbh ¤•••
(b) Un•hbI• ¤•••

Figure 1-1: Conventional transient stability analysis

1.2.3 'Iransient stability analysi by direct methods

A direct method for transient stability analysis was defined in [41] as "a method to determine
stability without ezplicitly solving the dißerential equations". In [10] it was defined as

“a
method

to determine the stability of a post-fault system based on energy functions without explicitly
integmting dißerential equations describing the post-fault system. "

1 The following paragraph, taken from [1], gives an excellent description of direct methods in
transient stability analysis: “The transient energy method offers the opportunity of assessing
the transient stability of power systems more directly and eßectively than the conventional

approach based on simulation. For example, it allows critical clearing times to be calculated
directly from a single solution. More fundamentally and, in terms of potential applications,
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more significantly it also provides a quantitative measune of how stable or unstable a particular

case may be.” ”

Direct methods have one disadvantage when compared to conventional methods - the models
used in direct methods are less detailed, e.g. turbine governors, voltages regulators, and static
VAR compensators are not considered.

A definition of transient stability analysis more suitable for direct methods is as follows [95].
“The stable equilibrium point of a nonlinear dynamic system is surrounded by a stability region,

or region of attraction. Whether a given initial state is within this region is a fundamental

question underlying many engineering problems such as the monitoring ofelectric power system

stability.”

1.3 Scope of this dissertation —

In this dissertation we are interested in power system transient stability analysis by direct

methods and we will concentrate on a simplified model called the classical model. All of the
books on power system transient stability by direct methods begin their study with the classical

model [56], [55], [25]. As mentioned, before, because we are interested in assessing the use of
direct methods for on—line stability prediction where computing time is an important factor,

this model will also be used throughout this dissertation. More advanced analysis using direct
methods must consider a more detailed model of the power system. For informationon structure

preserving methods see [7], [38], [37], [79], [82], [83], [86], [55] and [25]. For information on energy
function methods with detailed models see [68], [69], [26], [55] and [25].

1.4 About the bibliography

The bibliography presented at the end of this dissertation contains more than ninety items
and has been sorted in alphabetical order by author’s last name. Some additional items, not

referenced in the paper, are included so that the bibliography ca.n serve as a complete list of

sources on the subject of transient stability analysis by direct methods.

The core of this dissertation comes from the following references:

• Books on direct methods: [56], [55] and [25].
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• Survey papers: [33], [41], [64], [78] and [83].

— Mathematical characterization of the region of attraction: [20] and [95].

• Closest unstable equilibrium point, potential energy boundary surface, controHing unsta—

ble equilibrium point, and boundary of stability based controlling unstable equilibrium
point methods: [1], [2], [9], [10], [11], [13], [17], [43] and [46].
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Chapter 2

OTrans1ent Energy Method for the
O OOne-mach1ne Infimte-bus System

2.1 Background

2.1.1 Notation

We will begin by describing the notation used in deriving the swing equation. Quantities in
bold face are phasors; E = Eejö means that the phasor E has a magnitude E and a phase angle
6.

A variable with no subscript is an electrical quantity in a synchronously rotating frame. A
variable with the subscript

“a”
only, is an electrical quantity in a stationary frame. A variable

name with the subscript
“m”

only is a mechanical quantity in a synchronously rotating frame. A

variable with both subscripts
“m”

and
“a”

is a mechanical quantity in a stationary frame. The
subscript

“s”
indicates synchronous frequency. Fig. 2-1 illustrates examples of these electrical

and mechanical quantities.

f, Synchronous frequency, f, = 60 Hz

w, Synchronous angular velocity, rad/s, w, =2 · 1r - f, = 120 · 1r rad/s

wm, Mechanical synchronous angular velocity, mec-rad/s. w,„, = %w,, where P is the

number of poles

wma Mechanical angular velocity in a stationary frame, mec—rad/s

9



SYNCHRONOUSLY
I

ROTATINGAXIS

~

wvt m 8YNG·|RONOUSLY
ROTATING Axis

Fmms nxsums

ELEOTRICAL QUANTITIES ®RRE8POND|NG MEOHANICAL OUANTITI ¤= FOR P-4

Figure 2-1: Electrical and Mechanical Variables

w„, Mechanical angular velocity in a synchronously rotating frame. w,,, = w,,,, — w,,,,.

w, Electrical angular velocity with respect to a stationary axis, rad/s

w Electrical angular velocity with respect to a synchronously rotating axis. w = w, —w,.

0,, 6, Electrical angles in a stationary frame, rad

0„,,, 6„,, Mechanical angles in a stationary frame, mec—rad. 0,,,, = §0,, where P is the

number of poles

0, 6 Electrical angles in a synchronously rotating frame. 6 = 6, — w,t

2.1.2 Faraday’s law

In Fig 2-2, the angle 0 is the rotor angle in a synchronously rotating frame in rad/s. The
ilux linkage due to the field is then Af = Ajeja. The active convention of Faraday’s law states
that Cf =

—éj\{-, where its phasor form is E; = —j · w, • A;. The phasor form of Faraday’s law

can be obtained from Cf = —%-{ in the same way that the E — I relationship in an inductor is
determined. If E; = Efejö, then 6 = 0 - 1r/2.

2.1.3 Newton’s second law

This law, f = m · a, takes the form ·r = J · a„,, for angular motion.

J is the moment of inertia in kg m.

10



nereasnos ’
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)e>
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Figure 2-2: Elementary Synchronous Machine

1* is the resulting torque in N m.

0:,,,,, is the angular acceleration in mec-rad/sz.

Fig. 2-3 shows a solid cylinder of radius r and the formula for obtaining its moment of
N

inertia. The rotational kinetic energy for a solid cylinder rotating about the shown a.xis is given

by the equation
1 1 J ° wäre

2.1.4 The swing equation

Let us apply Newton’s second law with the resulting torque equal to 1*,,, — 1*,. From Fig. 2-4 we

get the equation

1*„, -1*, = (Jp+Jg)·a,N·m

11



J ¤ P4-I 2

Figure 2-3: Moment of Inertia of a Solid Cylinder with Radius r

or

J · 0:,,,, = 1*,,, - 1*, (2,1)

1*,,, is the torque due to the prime mover inN·m

1*, is the torque due to the generator in N-m, and is opposite to 1*„,

am, is the angular acceleration in mec-rad/s2, this is a mechanical quantity in a station-

ary reference frame.

Pm P•J
ll HTm

PRIME
MOVER GENEHATOR

Figure 2-4: Generator and Prime Mover ·

By multiplying both sides of Eq. 2.1 by w„,,,, the units change from Newton meters to watts.

J'wma°ama=Pm“P¢•W (2*2)

12



wm, is the angular velocity in mec-rad/s

P,„ is the mechanical power in W
U

P6 is the electrical power in W

Per unit (pu) electrical quantities are more convenient. Replace the mechanical quantities
by their electrical equivalents and divide both sides of Eq. 2.2 by the complex power base,

5,,,,. The following equations illustrate the relationships between the electrical and mechanical
quantities. The angular acceleration is the first derivative of the angular velocity and the second
derivative of the angle. The variable P is the number poles and 6 is the phase angle of the
induced voltage.

0,,,, = %0, = %(0+w, -t)

wmaBy

substituting these equations into Eq. 2.2 and dividing each side by 5;,,,,, we get the

following equation:
2 2 J · w, d26 pm —P¢,Pu (2-3)

Now let us define the following function of w, :

2 2 J · w, pu ·
s2

Sbasc
,

rad

By substituting M(w,) in Eq. 2.3 we get Eq. 2.4.

d’6
M(wa)‘Ü=Pm’P¢1puIf

w, and w, are nearly equal, M may be defined as Eq. 2.5,

2 2 J · w, pu • s2M · (F) (M)
Eq. 2.4 can be written as the swing equation, Eq. 2.6.

d’6M P„„ — Ps, pv (2-6)
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2.1.5 Electric power and the Power-angle Curve

Let us assume that the synchronous machine is connected to an infinite bus through a lossless
line as shown in Fig 2-5. The power transferred from the synchronous machine to the infinite

bus is given by
E

P, = P,„„ sin(6)

4 P Pu

Xg xl

+

zu " an

Figure 2-5: One Machine Infinite Bus System

The plot of P, vs. 6 is known as the power-angle curve, see Fig 2-6. Also shown in Fig 2-6
is the mechanical power P„, and the equilibrium points 6s and 6u.

'°°"’
Pmuma

Pm

au 6

Figure 2-6: Power Angle Curve
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2.1.6 Stable and unstable equilibrium points

The equilibrium points are obtained by making the left-hand side of Eq. 2.6 equal to zero.

0 = P„. — P., pu

0 = P,„ — P,„,, sin(6)

P- - -1 m‘ · (1-...)
The equilibrium point 6, is a stable one (s.e.p.), whereas 6,, is unstable (u.e.p.). We have

two ways to determine whether or not an equilibrium point is stable.

In one method, the system has to be linearized, then the roots of the linearized system are

evaluated at that equilibrium point. If the roots are on the left-hand side of the complex plane
then the equilibrium point is stable, otherwise it is unstable. For a. sma.ll system, the second

method is simpler, let us assume that 6 = 6, + A6 and w = 0, (6, + A6, 0). The acceleration

a = [P„, — P,(6)]/M is negative, then w and, hence, 6 will decrease with time. Therefore, the
system torque will move the system towards 6,, see Fig 2-7.

P•(6)

rm

6

Q Q + 6

Figure 2-7: Stable Equilibrium Points

Following the same analysis it can be proven that 6,, is unstable. Any displacement of the

system from that equilibrium point, no matter how small the displacement is, will move the

system away from it.

15



2.2 Equal-area criteriou

Fig 2-8 a) shows one machine connected to an infinite bus through two parallel lossless lines.
At pre-fault P„,„, is given by

m=Pw Xg + XI. pv

2 xn
M

+

EI! 2** wg

(•) rn:-|=AuL1*
I

2 XI
xa . ..
l I l

+

El! E E um

(b) FAIILT

xg 2x!

EI! i
ä

POST-FAULT

Figure 2-8: Fault in the Middle of One Line

Xg +X; is the reactance connecting the two machines. The fault is a. solid three-phase short

circuit in the middle of one of the lines as shown in Fig 2·8 b). P,„„ during the fault can be

obtained using the A — Y conversion formulas to eliminate the node without injection and it is

16



given by the equation
E · Voo 4p(2) = ..M 6 X, + 2 X,* p"

From Fig. 2-8 c), the post-fault P„,,„, is given by the equation

E · Voop(3) = _.lmh! Xg + 2X, 7 Pu

Fig. 2-9 shows the corresponding three power·angle curves. Now, let us make some remarks

about the points on these three curves.

P•(6) “’
••¤<6>Pns—r=Au1.1'

r vV'C'Q »

$$:;%:*6 „—:.„.„.«„"“ . :·:·:=:·:¢$
,•;g·,,·,g·,~··<<=>

6, 6,, 6 „„,, 6,, 6

Figure 2-9: Equal Area Criterion

• Pre-faultz

— Point a. The system is in equilibrium, äf = P„, — P,(6) = 0, w = 0, and 6 = 6,.

• Fault:

- Point b. 6 and w can not change suddenly. Therefore, w = 0 and 6 = 6,. We have

accelerating power, since the acceleration is given by the equation

dw - ") · 6a_ _ _ P„, Pmg;S1I1( ,) > 0_
dt ” M

17



— Point c. At this point the breakers in the faulted line open and the system has moved

to (6,;,w,;). The acceleration is given by the equation '

a _ g__w_ _ 1>„, - 1>,Q.2,s1„(6„,) > 0—
dt

_
M

• Post·Fault:

— Point d. The state is still the same (6,;, w,;) but now the acceleration is negative,

hence decelerating power.

a _ _ 1>,„ - P,9„l„sin(6,;) < 0° dt
_

M

— Point e. Now the system decelerates and reaches this point where the state is

(6,,,,,,0). The speed wiH continue decreasing and will be negative. The deceler-

ating power is still present.

The equal-area criterion establishes that 6„,,, is such that the decelerating area is equal to

the accelerating area, i.e. A, = A,. In order to prove this let us start with Eq. 2.6.

d’6
= Pm — Pc, P11

After multiplying both sides by w = d6/dt we get the equation

dw d6 MW rad

The dt’s ca.ncel, yielding the equation

MW radMwdw - [P„, — P,(6)] ·d6,Now

let us integrate this differential equation from 6, to 6„,,„, to obtain the equation

W(6mc:) smc: radr Manu:] P—P6d6——((60) so lm .< >1 „ MVA

18



Noting that w(6,,,,,,) = w(6,,) = 0 we get the equation

‘····= MW rad
A

0 —
A0 [Pm · P¢(6)ldä,The

above integral has to be evaluated in two parts due to P,(6) being one function from 6, to
6,,; and another from 6,; to 6,,,,,,.

6,, 6,,,,,
/ [1¤„, - pg}, sin(6)] d6 + / [11,, - pg), sin(6)] d6 = o
6Q6,,

2 _ 6.,..,, 3 _
Ä

[P„, — Pa}: s1n(6)] d6 = Ä
s1n(6) — P„,] d6

0 cl

Note that the left-hand side of the above equation corresponds to the accelerating area A, and

the right-hand side corresponds to the decelerating area A,. .

A, = A,}

Although w is zero at point e, the system will keep moving until it reaches point g. Remarks
about points e, f and g in Fig. 2-10 follow.

P•(6) „ . •

6 mln 6• Ömnx Öu 6
¤

Figure 2-10: Post Fault Accelerating and Decelerating Areas ‘
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— Point e. (6„,„,0). The speed is zero; but there is decelerating power.

0- dt
—

M

The transient kinetic energy is zero, the transient potential energy is maximum.
— Point f. This is the s.e.p.; therefore, there is no acceleration.

a _ _ P,. - 1>.£?.2,sa¤(6,) _ 0_
dt

—
M

—

The angular velocity is a miuimum,—w,,,,,,, the transient kinetic energy is maximum,

and the transient potential energy is zero. Since the speed is not zero, the system

will continue moving towards point g.

— Point g. At this point, (6,,,;,,,0), the augular velocity is zero and the angle is mini-
mum. The system will not remain here due to the accelerating power.

0—
dt - M

The transient kinetic energy is zero, the transient potential energy is maximum, the

angle 6,,,;,, is such that the equa.l~area criterion is satisfied, Ad; = Ad;.

According to our model, the system wiH oscillate between points e and g forever, this is
because our model does not include any damping.

2.3 Transient energy

Fig 2-11 is similar to Fig 2-10 but the arrows indicate motion from point g to e. At point g

the system has zero speed, and as the system moves towards 6, it gaius speed, hence, kinetic

energy. We stated previously that the expression for the kinetic energy was the equatiou

1 2Wke,,,,, = §Jw„„,, J

Notice the subscripts
“m”and“a”

in Wkc„,,,, they indicate that this energy is mechanical
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P•(6)

__§¢.:_.___:_
Q?

6 mln
Ji 6• ömux Gu 6

¤

Figure 2-11: Post Fault Accelerating and Decelerating Areas

and it is a function of the speed in a stationary reference frame. Let us define kinetic energy of
speed deviation as Eq. 2.7.

Wke„, = lJw2 = la (2)2w2 J (2.7)2
"‘

2 P
’

The kinetic energy of deviation speed is zero at synchronous speed as shown in Fig 2-12.

Notice that this kinetic energy has the same units as the mechanical one. Also notice that
it is not a linearization of the mecha.nica.l kinetic energy. A question may arise now, does A,2

in Fig 2-11 represent this kinetic energy of deviation; the answer is no. In order to prove this
we will again ma.ke use of Eq. 2.6.

dw MWME — [pm — P¢(6)]•"

We wiH multiply this equation by w = dä/dt, and cancel dt on both sides to get the equation

MW adMwdw = [P„, — P,(ä)]dä,We

now multiply and divide the left-hand side of the above differential equation by 2 in order
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··

wa‘^'•

Figure 2-12: Kinetic Energy ‘

to complete the differential d(w2).

M MW rad?2wdw - [P,„ — P,(6)]d6,M

2 _ MW rad—;d(w )— [Fm P-(ä)] dä, MVA
We must then integrate the above diiferential from 6,,,;,, to 6.

M ···<‘> 2 ö Mw rad
'2'L(6m)d(“·'

)— Ämlpm - P-(ä)ldä,Since

w(6„,i•») = 0 we get the equatiou

M 2 _ /6 MW rad
öminlpmIf

we make the upper limit equal to 6, we will get the accelerating area A22 depicted in Fig.

2-11.
M 2 _ 6• MW rad
2 @(6-)) — Amlpm - P,(ä)]dä,6·

Mw ad
A22 = Äm[P,„ - P,(6)]d6, ——NR-5-A-

22



We can see that Ad; is not equal to the kinetic energy of speed deviation; it is equal to a

similar expression which has M in it instead of J . ”

The transient kinetic energy is defined in Eq. 2.8.

_ 1 2 MW rad ·
Vk, - 2Mw ,

MVA (2.8)

Replacing M by Eq. 2.5 we get the equation

1 2 2 w, 2 MW rad
Vkc —

Sßagcw

,FromEq. 2.7,

wkem = LJ J2 P
’

From the last two equations the following equation is obtained.

MW radV"° s,„„, °"" MVA

At point f in Fig. 2-11, the kinetic energy is at a maximum because w = w,„„. As the

system moves from f to e the transient kinetic energy Vk, deceases until it gets to zero exactly

at point e. At this point the transient kinetic energy has been converted to transient potential
energy, V„(6). This occurs because the system has no losses. As in the case of mechanical
potential energy, the transient potential energy, V1,,, is a function of displacement. The maxi-
mum potential energy is equal to the decelerating area Ad;. As in the case of total mechanical

energy, the total transient energy is the sum of the potential and kinetic energies.

MW ad

Since there are no losses, dV/dt = 0.

- - MW ad

From Eq. 2.8 we can find that V}., = Mwd:. Substituting this result in the above equation,
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yields the equation

According to the chain rule,
dVB,

=
dVB,(ä)Q

dt dä dt

Therefore,
dV (6) d6 ...1;- = -dä dt M"""

We can cancel d6/dt on the left-hand side with w on the right hand—side to get the equation

Heiß = -M,„
dä

After multiplying both sides by d6,we get the following equation: ~

dV,,,(ä) = —Md>dä

Mol: is the left hand-side of the swing equation and after substituting by the right—hand side,
we get the following equation:

dV»¤(ä) = — (P-„ — P„(6)) dä

We can integrate this differential equation from 6, to 6.

V„(6) 6dV = - {f P — P 6 d64 .< >>
Since V,,,(6,) = 0,

6 Mw radV„(ä) — QL (Pm — P¢(ä)) dä- (2-9)

2.4 A few remarks about the transient energy

When a disturbance occurs, the system gains transient energy. Even if no fault occurs, the
system gains transient energy. In a change of topology, like the opening of a line, there is no

fault, but the system gains transient potential energy because the stable equilibrium point,
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s.e.p., changes. Fig. 2-13 explains these ideas. Before the disturbance, the system has zero

transient energy. The disturbance will inject transient energy into the system. When the
disturbance disappears we have a system which has gained transient energy. The issue now is

whether or not the system is stable after a disturbance.

PRE·FALI.T
V • 0 SYSTEM

FAULT

>··
>— ä

Post-FAULT ·
V >

° svsrem
dV/dT > 0 +v

Figure 2-13: Injection of 'I‘ransient Energy

2.5 The equal-area stability criterion and the transient energy

method

The equal-area criterion establishes that A, = A, when the system is stable. Referring to Fig

2-14 a), the accelerating and decelerating areas are given by Eq. 2.10 and Eq. 2.11.

6a
A, = / [pm — p,$§,s1¤(6)] dä (2.10)

60

= mx s1n(ä) — P„,] dä (2.11)
6.:1

A different way of stating the equal-area stability criterion is using the inequality A, <
A,„,,,. These areas are shown in Fig 2-14 b). A,„,,, is obtained by replacing 6,,,,, by 6, in
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Eq. 2.11, yielding the following equation:

614
E

4,,,,,, = / [P§,?3,¤1¤(6) — P,] d6
Ösi

P•(6) P•(6)
Pnllxmqa) niüxmiq
PRE-FAUL PRE-FAUL

aß}; Prmx In
g•;$°•~•

Pfgxpm
AäiiäziFmÄ

«
FAULT

Ä «
FAULT

6, 6,, 6,,,,, 6,, 6 6, 6,. 6, 6
•) A1 ¤ M b) An < Admnx

Figure 2-14: Equal Area Stability Criterion

The inequa.lity A, < Ad,„,, simply establishes that following a disturbance, the system is

transiently stable if the accelerating area is less than the maximum decelerating area.
The case for which 6,,,,, = 6,, and A, = Ad„,,,,, is critically stable (Fig 2-15). The system

will reach the state (6,, 0) as time tends to infinity. This theoretical situation will never happen

in reality, because any disturbance, no matter how small, will move the system either towards

6, or towards instability as shown in Fig 2-15.

The equal-area criterion of stability and the transient energy method are the same.

Fig 2-16 shows the accelerating area, A,, the decelerating area, Ad, and an area labeled

as A,. The equal-area stability criterion is mathematically stated by Eq. 2.12.

We can add area A, to both sides of this inequality to get Eq. 2.13.

A, + A, < A, + A,„,,, (2.13)
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P•(6)
nllkmqsjPas-PAUL

. PlÄ’¤•1¤(6)r•••'•
X Pos?-FAuLr

Pßkmßa
Ä zw..„..„. . muur

60 Öd 6m¤t'Öu Ö

Figure 2-15: Critica.lly Stable Case

Ac is given by the equation
l

1 MW ad
Aa = =Vk¢(‘dCl)7The

accelemting area equals the transient kinetic energy injected into the system by the

disturbance.

Ac is given by the equation

‘°'
(3) -Ac =

A.
{— [pm

··By

comparing this equation to Eq. 2.9, we can see that Ac is the transient potential

energy at clearing time, i.e. Ac = V,,c(6c;),W.
l

Now, we must find out what (Ac+A,;„„,,) represents. Ac+A,g„„,, is given by the equation

6Il

,4,, {- [11,, - 1¤„g';3,,sa„(6)]}«16

Ac + A,;„,,„, is the transient potential energy at 6,,. Ac + Admc, = V,,c(6„)

We have just obtained the following results: Ac = V;,c(wc;), Ac = V,,c(6c;), and Ac +
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P•(6)
PS}!PRE·F¤hL8’

f•°Ö°Ö°€~ Pgeuln

Ä .·~·

_

{ FAILT
6. 6. ad 6u 6

Figure 2-16: Modified Equal Area Criteriou

Ad„,,,, = I§,,(6,,). After substituting them in inequality 2.13 we get the equation

MW rad

This inequality is the mathematical way of stating the transient energy method. The

above inequality must hold not only at clearing time, but also during the post·fault.

V;„(w) + V,,,(6) < V,„(6,,) (2.14)

%w2 — P„, (6 — 6,)- PE'}! (cos6 — cos 6,) < —P„, (6,, — 6,)- PQ (cos 6,, — cos 6,)

Following a disturbance the system is transiently stable U the total transient energy

is less than the potential energy evaluated at the u.e.p.

, 2.6 Phase plane trajectories

We will find the trajectories corresponding to the pre-fault, fault and post·fault intervals.

• Pre-fault
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— The equilibrium point at prefault is given by _

• _]
Pm6, = sm , rad; w = 0, rad/s1*.2.2.

The trajectory during pre—fault is the point (6,, 0).

• Fault

— The motion during the fault starts at (6,,0), since these quantities cannot change
instantaneously. The model during the fault is represented by the following equa-

tions.

E - , E32
dt

—
° s

dw _ (2) . MwM dt - P„,
MVA

The accelerating area A, equals the transient kinetic energy.

A, = lMw2
2

6a
.4,, = j [P, — 1¤,§Q,„s1¤(6)] dä

60

2 6d (2) . radw - ML,
[Pm Pm„s1n(6)] d6,

8

The positive radical was taken because we know that the system is accelerating
during the fault.

• Post·fault

— After the fault is cleared the model is represented by the foHowing equations:

E - , :2
dt

_
° s

dw _ (3) . MW
Mdt - P„, Pm„s1n(6),MVA
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— Since the idealized model provides no damping, V(6,w) is constant and equal to

V(6,;,w,;) after the fault, i.e.
”

-;Mw2 + IQ,,(6) = V(6,;,w,;), or

2 (3) radw = i -A-I- {V(6,;,w,,;) + P„,(6 — 6,)+ Pm„ [cos(6) — cos(6,)]}, T.

This equation gives the trajectory after the disturbance.

Fig 2-17 a) shows the potential energy vs. 6 according to Eq. 2.9. The parameters of the
system used to obtain this plot are the following:

1>z7_·;gf····'* = 1.5 pu,

P„, = 1.0 pu,

M =0.025Using

these parameters we get that

I§,,(6„) = 0.554 and

V„(6,, — 2 · 1r) = 6.837.

Fig 2-17 a) also illustrates the following results:

Ac = V„(6,;)

Aa = Vkc(wcl)

Ac ‘l'
Admaz = Vpc(6u)

Fig 2-17 b) shows the pre-fault stable equilibrium point, 6,,; the faulted trajectory, which
A

initiates at (6,, 0) and ends at (6,;, 02,;); the post—fault trajectory (constant V); and the contour

map for the transient energy, this contour map has increments of V,,,(6„)/5, i.e. the inner-most

contour represents a level of V„(6„)/5, the second contour represents twice as much. The solid

contour represents the post-fault trajectory corresponding to the criticaHy stable case, the state
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tends to (6,,,0) as time tends to oo. A small amount of energy less than this critical energy

makes the system stable. Whereas a small amount of energy more than this critical energy

makes the system unstable, i.e. if the fault is cleared when the total energy is less than V,,,(6,,)

then the system is stable, otherwise is unstable

From Fig 2-17 c) we gain a better understanding of the way the areas relate to transient

energy.

Fig 2-18 is the 3-D plot of the transient energy vs. 6 and w. From this figure we can see

why this plot is sometimes called the energy well. This plot has stacked contour lines with a.

contour interval of 0.5
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Figure 2-17: Transient Energy Method
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Chapter 3

O O’I&·ans1ent Energy Funct1on for
O OMult1-mach1ne Systems

3.1 Power system representation

The synchronous machines are represented as a constant voltage source behind the direct-axis
transient reactauce, XQ. The loads are modeled as constant admittance, and the input power

from the prime mover, P„,, is assumed constant. These parameters constitute the classical

l'€pl'€S€I1t3tlOIl of 3 POWGI SySt€II1.

3.2 Reduction to internal nodes

In order to get an expression for the electrical power at the internal nodes of the machines, it is

convenient to reduce the system to the internal nodes. The steps to accomplish this reduction

are the following [56]:

1. Use the prefa11lt load-flow, Yg_ = (1%,,,; — jQ;„d)/V2,to obtain the admittance value of
the loads. These values are included in the diagonal of the admittance matrix, Y;,,„.

Yl‘..°}"(i, i) =Ya„„(i, i)+Y1(i) (see Fig. 3-1 amd Fig. 3-2).

2. Update
X§„°;”

to include the transient reactances. Create the X12, L1, and X22 matrices.

These three matrices are part of the extended matrix, X„2, which includes all of the
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1 m+1 nbu•+1 4
QPI1 + 1 on I I

Xml
P|m+1 +1QIm+1

2 m+2 nbus+2
QPI2 + 1 QI2 N I

Xd?
PIm+2 +1 QIm+2

im ntius nbus+n ¢Pam +1 onm I I
Xd"

Plnbus +1 Qlnbus

Figure 3-1: Original System

original buses plus the internal nodes (see Fig. 3-3). The partition of1,,1 is the following
matrix:

Xu! = ITS" X12
X21 X22

If n is the number of buses with generation and nbus is the number of buses in the system,

then

Xfjf is of order (nbus x nbus)

X12 is of order (nbus x 11)

l
X21 is of order (n x nbus)

X22 is of order (11 x n)
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1 ***+1 nbu•+1
I

xd1'Ivu v1m+1 I
2 ***+2 nbu•+2

~«==·=* éXd2'v¤2 v¤m+2 I

m “b“* nbus+nXdn'
Ylm Ylnbus I

Figure 3-2: Loads Modelled as constant Admittances

3. Notice from Fig. 3-4 that for the extended system the following system of equations holdsz

9 _ XIS" X12 X
Isn: X21 X22 E

The following equation eliminates all external nodes.

Xrcd = X22 °° X21 lXl:‘::”l—l XI2
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Figure 3-3: Extended System

3.3 Electrical power

Now we will find an expression for the electrical power at the internal node i [56]. The complex

power at node i is given by the equation

Pgs + .iQ„a = EM, Pu (3-1)

The current injection, Ii, is given by Eq. 3.2

1; = E [(Gsk + ißsk) Eu] (3-2)
k=1

Gg, + jB;;, is the element i, k of the reduced admittance matrix. After substituting Eq. 3.2 into
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2 62 6
Yr•d

'° 6
Figure 3-4: System Reduced to Internal Nodes

Eq. 3.1 we get
fl

Pga + iQg¢ .iBek)k=1

The imaginary term is ignored to yield

7l

PF; = [B;},E;E;, 8Ill(6; — 6},) + G;),E;Ek cos(6; — 6},)]
k=1

Ol'
Tl

PF; = G;;E? + [B;),E;Ek 8lIl(6; — 6},) + G;},E;E;, cos(6; — 6},)]
k=l,¢i

Let us define the following terms:

Cu, = BiI:Ei-EI:

Dm = G6kEsEk

6},) + 1);;, cos(6; - 6;,)]

Eq. 3.3 results.

1¤,, = 6,, E? + P., (3.3)
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3.4 Differential equatious

The swing equation (Eq. 2.6) for machine i results in the following equation:

Pmi 'Pgis Pu

After substituting Eq. 3.3 into the above equation we get

d26· P".; — G6; E? — Ps;. Pu

If we define R = P„,; — G;;E?, the swing equation results in Eq.3.4.

dgö; .M;F=1%—P„;- pv-==1.···-n _ (3-4)

3.5 Number of state variables

From Eq. 3.4 we have n second·order differential equations. For the state equation, we need

the following 2n first-order differential equations:

ds'
= is ad ;F ‘° I /s (3.5)

for i = 1,·· ·,n

In the right·hand side of the swing equation (Eq. 3.4), angle differences are used instead of

the angles with respect to a synchronously rotating axis, i.e. we need 6;- 6), instead of only 6;.

This reasoning suggests that the number of state variables is 2(ra - 1) instead of 2n. In order

to assess the transient stability of a power system, we must consider relative angles instead of

the actual angles in a synchronously rotating frame (Eq. 3.5). As explained in reference [56]

there are two choices:

• Angles-with·respect·to-a-reference machine formulation

• Center of angle formulation
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both choices lead to 2 · (n — 1) state variables. Eq. 3.5 is not the state equation.

nstate = 2(n ·— 1)

3.6 One-machine reference frame

In this formulation, the machine with the largest inertia is usually chosen as the reference. We

will designate the last machine as reference . From Eq. 3.5, the first—order differential equation

of the reference machine is

w„, rad/s

rad/s2

After subtracting the above equation from Eq. 3.5 we get the state eqaation with machine-n as

the reference formulation (Eq. 3.6).

Q'} = — B¤Ü?,rad/62 (fori= 1,···,n—1)

where

6in = ös — 6m

win = wi - wna

H = Pma — G6; E2

6j„) + Dgj cos(6;„ - Öj„)] + Ü;„ Sil! 65,, + D;„ COS 6;,,

Pen [CM 8in(“6i¤) + D»1¢¤¤(—ö1»)]

Cgj = B;jE;Ej

D;} = Ggj E; Ej

Ggj + j Bgj is the element ij of the reduced admittance matrix.
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If we define the angle subspace as

öln

é =
6],1

6(n—1)n

and the angular velocity subspace as

L2 = _

w(n—1)n -

then the state vector is the following vector:

é

3.7 Center of angle reference frame

This formulation uses the inertia·weighed average of the fl angles as reference [73]. The center

of angle is defined as Eq. 3.7

1 7l fl
6„ = —

EM,6,; M, = E M, (3.7)M* 6=1 6=1
The angles with respect to the center angle are

gi = 6i " 60

The same is taken into account for the angular velocities.

$0 = wo
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1 71
wo - M„w. 9

The first derivatives of the angles in center of angle, COA, are

To obtain the dynamics of the COA, multiply Eq. 3.7 by M, to get Eq. 3.8.

11 .
M, · 11,, = ZM; · Ö; (3.8)

{:1

After taking the second derivative we obtain M, · Ü, = EL, M; · Ü;. Notice that the right-hand

side of this equation is the sum of all Tl swing equations.

Me ·ä¤ = XL1 R — XL1 Psa
= XL1 H · 2 XL1! XL6+1 D¢1¢¤S$61

If we define the power of the center of the COA as

7l 11-1 fl
~

Pwa = — D;jcos6;j
{:1 {:1 j={+1

then the dynamics of the COA are given by Eq. 3.9.

° °° (3.9)
U20 = con

According to Eq. 3.4, PM is also equal to the mechanical input power minus the electrical

output power, i.e. Pw = EL, P,„; —
EL, P9;. I

Now we can subtract Eq. 3.9 from Eq. 3.5 to get

5:;, rad/s
(3 10)

= Bifsi — Egg, rad/s2 for i = 1,2,---,11

Notice that we still have 2 · Tl equations, but we will show that only 2 · (11 — 1) are required. We
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can rewrite Eq. 3.8 as
fl

EMJ, = 0 ‘ (3.11)
i=l

By taking the first and second derivatives we get

fl: M,-i
= 0Zn ‘

Z;. (3.12)
2:6:1 Meqä = 0

From the last equation we can conclude that any pa.ir of the 2n equations in Eq. 3.10 can be
expressed as a linear combination of the rest. We will arbitrarily choose the pair corresponding
to i = n in order to get the state equation in COA 3.13).

dgl
= -ia ad i_ 7; w r /8 _ (3.13)geg: = L’¢,;,{3·¢- 1;*%, mi/S2 (for 6 = 1,2,···,n— 1)

where

B = Pms — G'66 E?

Dü 5,,)

Üü = BüE;Ej

Dü = G°üE;E

Gü + j Bü is the element ij of the reduced admittance matrix.

Fm = EE;1 R — 2 D66 ¢<>S(Ä — Ä) — ZZ;} Dm ¢¤S(Ä — Ä)

From Eq. 3.11 and Eq. 3.12, Ä, and 5:,, are given by the following equations:

" El; Z'·‘
' (3.14)

äm = -1:}; Z22} Miüe

Notice that although Ä, appears in Eq. 3.13, it is given as a function of the angle subspace in

Eq. 3.14.
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Now, if we define the angle subspace as

51

6:
’Ö“

571-1

and the angular velocity subspace as

Ö1
_ Ö2
2 = _

(:,71*1 .

the state vector results in the following equation:

_ 5
2 = _

2

3.8 Step-by-step transient stability analysis

At prefault, t = 0. Before the fault the system is in equilibrium, i.e. the initial angular velocity

subspace is zero, Q° = 0; a.nd the initial angle subspace, Ä°, is obtained from the following

load-flow solution:

• Ew = v. + jxgß-äifßl
• P9 + jQg is the complex power supplied by machine i,

• IQ is the phasor voltage at the terminals of machine i, and

• XQ is the transient reactance of machine i.

During the fault, 0 < t $ tcl. The state equation is given by Eq. 3.13 if the reference is

the COA or Eq. 3.6 if the reference is an arbitrary machine. We then integrate this equation
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numerically. For instance, Runge—Kutta fourth order can be used. Ef , C5: and Dgk are obtained
considering the fault.

”

During postfault, tcl < t 5 tf. The state equation is again integrated numerically. But R,
C;;, and D;;, are not the same as those of the fault-on period since these do not include the

fault, and generally a line opens in order to clear the fault.

3.9 The transient energy in the center of angle formulation

The following steps obtain the transient energy function in COA formu1a.tion for multimachine-
systems [57].

1. Obtain the swing equation in COA formulation. Eq. 3.4 is the swing equation for machine
i. -

M; · = E — P,;, fori= 1,...,n

Eq. 3.9 represents the dynamics of the center of angle.

d’6 —
T1; = Pw,/M,, rad/s2

To get the swing equation in COA formulation 3.15), we have to multiply the last
equation by M; and subtract the result from the swing equation (Eq. 3.4).

,125- M .
mj = E — P,;- ÜPM, for 1 = 1,···11

or
.125, M,

·I·
—- Ü (3.15)

i = 1, 2, · · · , n

where

H = pm; — G6;

Sin ägj + Dgj COS 5;;]

Cgj = B;jE;Ej
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Gü -|·- j Bü is the element ij of the reduced admittance matrix.
L

Pw: = XXL: B — 2 ZF;} E}‘=6+1 De: ¢¤¤ 565

Mt = Z?=1 Mi

2. Multiply Eq. 3.15 bygék

:15. ::25. :13. ::5. M. ::5.M' :1: :1:2 -12:1: +P°' :1: +M.P°°'* :1:
“0

i = 1,2, ·
•

· , Tl

3. Add all n previous equations.

n __
, ·· ~Pcoa;Maag? ·—-

+ ·[Ügj 8111Ögj + Dgj COS Ögjlw -I- : ()
:-1 :-1 •-1 _1-l,¢:

::1

(3.16)

Let us do some algebra on the underlined terms.

_
n vs I ~ n—1 n I ~ - d ~ -Ügj Ügj Öj)

i=1 j=1,¢i i=1 j=i+1

n n
~

n-1 rs
~ ~ d ~ ~

E Dgj COS Ögjä = E E Dgj cos(6; — 61)E(6.+ Üj)
i=1 j=1,¢i i=1 j=i+1

If Cgj = Üjg and Dgj = Djg,

— ” pm :15. pm ”
dä.

M. M·

dtFromEq. 3.12 :}*:1 Mgääi = 0; therefore, ggg :}*:1 Mgääi = 0. Substituting these

results into Eq. 3.16 we get Eq. 3.17.

0 = 22*:: M6ü>c‘*·§‘ — EE;. 1%%% _ _ _ (3 17)+ 2:;.2;*....46



4. As mentioned in the previous chapter, in the absence of damping, the transient energy

remains constant, i.e. 4% = 0. During the disturbance, transient energy is injected to the

system. After the disturbance (postfault), the transient energy V(Ä,Q) remains constant.

The last equation is —%.To obtain V(Ä,Q) we must integrate from t to t,;

V " · t' JV dtÄ (1.11) - Ä (E)
O!

-
_ ¤ dV dz (3.18)

where t 2 tc; and t, is the time when the stable equilibrium point, s.e.p., is reached.

Notice that this is a mathematical trick. Because of the absence of damping, the s.e.p. is

never reached. After substituting Eq. 3.17 we get —

V(£,Q) = LZ 22*:1 Miöidiä — 22*:1 1%%*
+

2?§1‘
2}*:1+1 [C11 sin 51152511 + Dü dt

01° _

wm = 1.*;‘2i*,121:1M11»11 111 — 1g§;£j*, 121: 111 döi
I '.. ..

-
Ä + f Sin

51>] d(5i + 51)
If 16,01,) : 0,1:1,(1) = 1:1,, 5,(1,) : 5; 11111 5,(1) :5,,111111

V(E,1Z1) = 22*:1 [M1 f6°‘ Gi d1ö1] — 22*:1
22*;} 22*:1+1 fä C11 Sin

D11 c°S(5i · 51) d(ä1 + 51)]

i
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After integrating we get the transient energy in COA formulationz

V (M:) = 22*;.* %'*¤>? + %*5»?. - 2:;.* H (5. - 5:*)
- P,, (5,, — 5;) — Ef;} 2;*;}+, Cgj (cos 5;, — cos 5fj)

C,„ (cos 5,,, - cos 53,)

+ >I?;.“ 22;}+. D6 ¢¤S(5¢ — 5:) d($« + 5:)]
— 22*;.* D:. ¤¤¤(5. — 5..) d(5: + 5..)]

Although Q,, and 5,, appear in the above equation they are expressed as functions of Q

and 5 (Eq. 3.14). The notation, V(5,6.':), is therefore correct. For simplicity we will use

Eq. 3.19.

v (5,:.) = 2:.. 3:-5: — 2}*..1% (5. -5:)
C6: (COS 561 — ws $$5) (3-19)

+ E?.} 2};:+. D6: c°s(5€ — 5:) d($e + 5:)]

Now, let us discuss each of the terms in Eq. 3.19.

— The first term in Eq. 3.19 is the transient kinetic energy: V;„(Q) =
.],·Z§‘=,

M;Q?,

The remainder is the transient potential energy, which, as proposed in reference [56], may be

decomposed in the following two terms:

— m5> = - 2:.. 5: (5: -5:) — 2:;.* . 2:.... C..<¤¤-5.. - ¤¤-5:). %:@
Dgj This t€1'II1 is path

, dependent, i.e. the term is integrable only if the path from to 5(t,) is known

or if n = 2. This problem may be overcome by using the linear ray approximation

proposed originally in reference [80].
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3.10 Ray approximation in center of angle formulation

The trajectory from Ä to Ä' can be approximated by a linear trajectory, Let us define 1;, as

(5 5)d(5+5) Mwmd 320ij
“ COS I J I J I

'Thefollowing equation results.

~
n-1 n

VM) = Z Z D21 122
i=1 j=i+l

Now, let us find an expression for Igj using the ray approximation. Fig 3-5 shows the ray from

(5,, Ä;) to (Ä}, Äf); Ä; as a function of Ä, is given by the following equation:

Ä; = Ä} + a(Äj — Ä;)

where the slope is given by a.

a = (3.21)
Üj — Ü;

2, . 2, ,
( 6} . 6 }>

gl

Figure 3-5: Ray Approximation
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By subtracting Ö; from both sides we get Eq. 3.22.

Ö; — Öj = — + (0 — 1)Ö; (3.22)

By adding Ö; to both sides we get Eq. 3.23.

6. + 6, = 6; - 66; + (11 + 1)6, (3.23)

After substituting Eq. 3.22 and Eq. 3.23 into Eq. 3.20 we get

$1 - - - -I;} =A cos [Ö? - a6? + (a — 1)Ö_;) (a — 1) dÖ;
1

If we integrate we get _

+ 1 . ~ ~ ~ . ~ - ~1;, = E'; {6111 [(6 - 1)6; + 6; — 6.6;] - S1I1[(ü - 1)Ö; + 6; - aögl}

From Eq. 3.21 the following new expression for I;} :

6--6;+6-6¤ _
- -

_
- -ki = [sm (Ö; — Ö;) - s1n (Ö?

—Thetransient energy function in COA using the ray approzimation is given by

vw (6, 66) = V1.(Q)+ v,. (6) + v,. (6) + v;·~ (6) (:1.24)

where

Vk (Q) = §XIZ‘§1‘ MQ? + %M·•Q?.

16.1 (5) = — 2:*;.* [H (5. — 5:)] — P. (5„ — 5:.)

{Q2 (cos Ö;_; — cos Ö?j)] - 2:};,1 C;,, [cos (Ö; — Ö,,) — cos (Ö? — Ö?,))

+ Ef;} { (sin (Ö; — Ö,,) - sin (Ö? — Ö?,)))
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According to Eq. 3.14
1n-16

= ——— M-6 ·„ (6) Mn . .
and

1 n—1Qu (Q) =
—mThereis no mathematical justification for using the ray approximation. Many attempts

have also been made to include the transfer conductances in the transient energy; this has

not been accomplished either. An attempt was also made to use the fault-on trajectory as an

approximation to the post-fault trajectory, but since Q° and Q' (Fig. 2-6) are not equal, this

approximation is worse than the ray approximation There are two options: a) to neglect

V,,(b) or b) to use V;“"(Ä). The ray approximation seems to be the most accurate choice.

^' ..,,1..,,4

"
16, .6, 1 _

fault-on
. posttault

~O
~°

rer.
~•

(öl nö] ) (öl rö] )

gl

Figure 3-6: Fault on and Post Fault Trajectories

3.11 The transient energy in one-machine reference frame

The transient energy function with machine n as reference is given by the following equation:

V (Q.sQ) = V1. (se) + V,1 (Q) + K12 (Q) + V4 (Q) (3.25)

where
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Vk ($*1) (win “ $*1511

)2vs-n- M6%* iP' gW1 (Q) = — Z22 Z22 -**-;:1%* (66,1 — 6,,, — 6,,, + 65,,)

W1 (Q) = — Z22? 23}*;,11, C1, [<=<>¤ (61,, — 6,,,) — ¤¤¤ (Q3., — 6;,.)]
— 2}:11 C;,, [co.s6;,, — cos6f„]

V6 (Q) = Z22 Z}‘§}+1 Dale, +
Z2‘ D¢·J6,•

1,1 = f cos (6,,, — 6,,,) d (6;,, + 6,,, + 26,,)

6,, (Q) = —ä7 Z2‘
M166»

The proof for this energy function can be found in Appendix A. The transient energy

function with machine n as reference cannot be evaluated. The ray approximation must be

used.

3.12 Center of angle formulation compared to one-machine

reference frame formulatiou

The state vectors in these formulations are the following:

51 6111

62 6211

_ Q 6,,-1 Q 6(,.-1),.
Q :

~
=

-
; Q : :

W W1 W W1,1

W2 W2,,

Ün—1 w(n—1)n

The first question is how they relate to each other, i.e. how to go from one representation

to the other . We will consider the angle subspace only since the relations are the same for the
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angular velocity subspace.

1. From machine n as reference to COA. According to Eq. A.5,

~ 1 n—1
6„ = —E

E Ms66„
i=1

By definition

66 = 6i — 60

or

5, :6,-6„-(6„—6„)=6,„+ä„

By summarizing, we get Eq. 3.26

~
6» (6) = rx}; ZF;} M66¢„ (3.26)

6;(6) = 6;,, +6,,, for i = 1,···,n— 1

2. Fmm COA to machine n as reference. From Eq. 3.14

- - 1 ***1
-6 6 = ——— M-6-7l I I

From the second row of Eq. 3.26

1

summarizing
1

6 6 = - Q1:1 M·6;_ " _ 61:2 *1 ‘
(3.27)

6;,, (6) = 6;-6,,, for i = 1,···,n— 1

The second question is how V(Ä,Q) and V(6,g) relate to each other.

• Kinetic energy

Vk(Q) = Vk(¢2)
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• Path independent potential energy l

WE) = V.(é)

• Path dependent potential energy

Va(6) = V6(6)

According to these results, the transient energy is the same for each formulation.

V(6,Q) = V(é.g)

The proof for these results can be found in Appendix B. °

3.13 Ray approximation in one-machine reference frame

We have shown that Vd (Q) = Vd ; this equality must hold after the ray approximation is

used, i.e.

V12 <6> = v;“” (6)
From Eq. 3.19,I

Vj"' (6) =

, "'1
" 6,;-I-6j—(6-$+6;) _ _ _ _ _ _

[SID8111.=.,...6 6. — 6, — (6, — 6,)
According to Eq. 3.27, however, Q, = 6.,, + Q,,, i = 1, · · ·, n — 1.

VI"' (6) =

··—¤
»-1 6- + 6- +26 - 6;,, + 6~,, + 26;, _

E E ]....(6,,, - 6,,,) - .1.. (6;,, - 6;,,)] +6:1 5:6+1 öin — 656. — (6,,, — 6,,,)
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#-1 6666 +26 - 6; +26;,
(sin 6;,, — sin 6;,]) _

i=l m in

In conclusion, the transient energy function with machine-n-as·reference and using the ray

approzimation is given by:

V'“1’(Q66Q) = V1 (sz) + V61 (Q) + W2 (Q) + WW (Q) (3-28)

where 2 1 1n- ln-
M;M· n- MMV6 (666)i=1

j=i+l ( i=l I

‘G»1(6)=

***1 ***1 M-1+ - M;P· , ***1 M P-- M;P· E E 7*E6:15:6+1 * 6:1 1

11-2 11-1 11-1
IQ; (6) = — C;) [cos (6;,, — 6;,,) - cos (6;, — 6;,)] — (cos6;,, — cos6;,)

i=1 j=i+1 i=1

VI"' (Q) =
#-2 #-1 6- +6- +26 - 66 +6¤ +26•

-|- E D [Sin (6;,, — 6;,,) — sin (6;,, - 6;,,)]
6:1 5:6+1 6in " 6jn * (6;,, ‘ 6;,,)

#-1 6- + 26 — 6; + 26·
+ Z .D{,,(Si116,,, - 8111 6;,,)

{:1 61**
_

6in

- 1
Mt i=l

Notice that although 6,, is in COA, the last equation gives this quantity as a. function of the

angle subspace in the machine-11-as-reference formulation.
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3.14 Transient energy function and the ray approximation for

tW0·IIl&ChiI16SySt€II1SAs

mentioned before, the ray approximation is not required for TI = 2. The energy function in

this case is obtained from Eq. 3.19.

V (612611) =
M5’·Öf

+ 1;%%- P1 (61 — 6i’) — P1 (62 — 65)
—C12 cos(51 — 52) — cos(5{ — 55))

52) d(51 + 52)]

According to Eq. 3.14
- M ~ - M -62 =

—•Ai61 3.11d(U2~

- M + M ~ ~ -
—M M -

Substituting with these equations, the transient energy function for a two-machine system in

COA formulation is obtained.

V (1 + 15%) G5 ‘ (P1 · 1’l1'ä1’1) (61 *61)
—C12{c0s ((1 51] — cos [(1 (3.29)
+012%% {1111 [(1 + 13:)*11] · 1111 [(1 + 1*6951}}

Notice that the ray approximation was not used. It can be easily shown in this case the

ray approximation of the energy function results in the above equation (Eq. 3.24 results in Eq.

3.29 if 11:2).

The energy function in one machine as reference formulation is obtained from Eq. 3.25.

V (612 — 6f2)
—C12 [ws (612) — ws (5£2)] (3-30)

COS (612) d (612 + 262)
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Also from Eq. 3.25 the following results.

52 =
_ M1612

M1 + M2

~ —M1 + M26 26=12+ 2 M1 + M2 12

Substituting this result into Eq. 3.30 yields the energy function for a two-machine system with
machine-n-as·reference formulation

(612 — 662)
—C;g [cos (612) — cos (6f2)] (3.31)

[sin (65;) — sin (6{2)]

To repeat, the ray approximation was not used and it can be easily shown that substituting

n = 2 in the ray approximation of the energy function results in the above equation 3.28
results in Eq. 3.31 if n=2).

We have seen that V"'*( (state) = V (state) if n = 2. Which means that in a two-machine
system, even if ray approximation formulas are used, the transient energy obtained is exact.
Furthermore, if a multimachine system swings as a two-machine system, the ray approximation

is very accurate [80].

3.15 Three machine example

The system shown in Fig. 3-7 has three buses, all of them with generation [2].

The a.rrows pointing to the generators indicate the active power supplied by each machine.
C and D result in the following matrices:

[ 6 i C65 D65

1 2 1.1957 0.1874

1 3 2.6726 0.6728

2 3 6.7053 1.2869

Notice that the transfer conductances are not negligible since the ratio of is not negligible.

l
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1<15
4

2.49 ].088

1<0 ‘

H=1° ]_Q1§ 8.20

1.5+].45 9
1<15 H-50

4.21 j.05 12 4 I2 50 . + .
].0806

H¤15

1.0+].3

Figure 3-7: Athay’s 3 · Machine System)

The angles at the s.¢.p., the powers, H, and the voltages, Eg, are shown in the following

table:
6 6: 6:.. 6: 1: 12.
1 26.7167 20.0092 14.1671 1.73905 1.07363

2 26.4731 19.7656 13.9235 3.66147 1.05729

3 6.7075 -5.8421 -1.33908 1.05299

Fig. 3-8a) shows the potential energy (COA formulation) as given by Eq.3.19. This fig-

ure closely resembles the one shown in reference Fig. 3-8 b) shows the potential energy

(machine—n-as·reference formulation) as given by Eq. 3.28.

By substituting the proper values into Eq. 3.27, we get the following results:

616 = Z2g"6:%5‘

626

=Theseequations can verify that IQ, (6) = VP, For instance, if 61 = 62 = 200° then

613 = 623 = 25s.66· and 14,45,,5,) = v,,(6.3,6„) = -12.5 Mgfvvgß. If 5. = 3, = -100· then
613 = 623 = —141.67° and VP,(61, 62) = VP,(613,623) = 26.5 Mgvjfd. It can also be seen that the

energy level at the lowest saddle is almost 4, where the top of the hill is slightly more than 8.
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The values of VP, in the grid files used to create these surfaces matched up to six digits.

12

·

_

L-
2 \

.-*'W ’

UQ 1% f " bx °

•) äN'I'ä0FAIßLEPOIIH|LA1'I0|I _

16i "1 1 O
~

.4d

' ·>
N}2*12 °$¤.g—*°° Ö

h) HAGIIINBREFEEIKSENKUATIMI

Figure 3-8: Potential Energy Surface, 3 - Machine System

Fig. 3-9 shows the variation of the state variables in COA for a self-clearing three-phase
fault on bus 1; the fault clears in 0.1 seconds.

The same results were obtained using the machine—n — as-reference formulation for the

dynamics and converting the state variables to COA. With this figure we can verify that due
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to the absence of damping, the s.6.p.

5;

E =
6;
0

0

is never reached. Instead our model will oscillate forever.

4

60

40

***9**** 20 i1
Fa

0

-20
0.0 0.5 1.0 1.5 2.0 2.5 umg,

Q) ANGLE8

5

3

'“V• 6 1* *21
*2

-3

-5
0.0 0.5 1.0 1.5 2.0 2.5 [ng.;

b) ANGLE DENATNES

Figure 3-9: State Variable vs. Time, Self Clearing Fault on bus 1, tcl=.1s

Fig. 3-10a) shows the corresponding plots of kinetic, potential, and total energies versus

time, as given by Eq. 3.19. Since the s.c.p. and the pre·fault state are the same, there is no

sudden change in potential energy at t = 0. As mentioned in the preceding chapter, the fault

injects energy into the system. Once the fault is cleared, t > tc; = 0.1 s, the total energy remains

constant. Fig. 3-10b) shows the potential energy, the ray approximation of its path·dependent
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Figure 3·10: Transient Energy vs. Time, Self Clearing Fault on busl, tcl=.1s

component, and its path-independent component.
V;°”

results from the transfer conductances of the reduced admittance matrix, which in

turn result from the resistance of the lines and the loads modeled as fixed impedances. This

energy has nothing to do with the integral of the i2R losses. This energy is
“real”

energy in

MW hr, whereas the transient energy is a “conceptual” energy in Mälyfj-E-. We saw in the

previous chapter that the transient kinetic energy is zero at synchronous speed. The kinetic

energy is not actually zero at synchronous speed. Similarly, we know that the energy due to

ohmic losses is always dissipated; it increases or remains constant (i2R is 2 0), but it never

decreases. We see from Fig. 3-10b) that 1/;*** decreases and even goes below zero. We can

see that the diminishing of V.; occurs even without the ray approximation. V.; is not integrable

because it is path dependent. We would have to know the path until the s.e.p. is reached, which
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we know does not occur, since the total energy is constant once the fault is cleared, IQ = (Some

constant) — V}., — IQ. From the shapes of V1., and IQ in Fig. 3-10 we see that Vd has to decrease.

· The nesistance of the lines does not dampen the swing.

With a swing in angle comes a swing in power; power comes and goes from one generator

to another while these swings in power increase the losses in the nesistanoe of the lines. What

happens with this increase in the losses and why does this not dampen the swings of the angles?.

In order to answer to these questions, let us make use of Eq. 3.9:

wo, rad/s

äjß = 7,}; · P„,(Q), rad/sz

where
n n-2 n-1 _ n—l

-Pw, (Q) = ZH — 2 E Dgj cos6;j — 2 D;„ cos6;„
i=l i=1j=1+l i=l

After inspecting the above equality we can say that the following equation holds.

Pcoa = Pm"P,„

is the sum of all input mechanical powers. Haß is the sum of all real power loads of the

reduced system. Baß is the sum of the losses in the transfer conductances of the reduced
system. The sum of the loa.ds and the losses in the transfer conductances of the reduced system

equals sum of the constant-impedance power loalds plus the losses in the lines of the original

system, i.e.

Pcoa = Pm “
(Hmd+Ho••)= Pm "Pgen

The rate of change of the angular velocity of the center of angle also given by

dw 1
Ä = E ' [pm ' (Hmd + Hon)l

Now we can see that the increase in losses in the lines will affect the dynamics of the center of

angle. The increase in the losses in the lines, however, does not dampen the oscillation of each

machine with respect to this inertia-weighed average of the angles. In the following example,

we will illustrate these ideas.
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3.16 Three machine system with line resistance

The system shown in Fig. 3-11 is based on Athay’s three—machine system with resistance added

in the lines. R/X = 0.20 for all the lines, which is unusually large in order to exhibit large losses

in the lines. The slack bus is bus three; notice that this machine supplied power to compensate
”

the increase in the losses in the system. P, at bus three went from 8.20 to 8.418.

1 <15.1

2-49 1-999 .052+}.26
0 1<0

H"l° }_g15 8.418

1.5+}.45.092+}.464.21

|.05

H,15 .0161 +}.®08

1.0+].3

Figure 3-11: R/X=.2 for 3 - Machine System

A three-phase fault near bus 2 occurs at t = 0. with a fault impedance of Z; = 1.e — 5 +
j1.e — 5, the fault clears itself at 0.2 seconds. Fig. 3-12a) shows the angle subspace versus

time. We can see that although the swing in machine two is decreasing with time, the swing in

machine one is increasing, i.e. the transient energy remains constant as shown in Fig. 3-12c).

Fig. 3-12b) shows the angular velocity subspace in COA, Q, versus time.The power of the

center of angle equals the input mechanical power minus the power generated in the system,

PM = P,„ — P,,„ = P,„,(t = 0) — P,,„. This is illustrated in Fig. 3-12e) and Fig. 3-12f). This

figure shows that the losses in the lines have increased drastically due to the angle oscillations.

PM, however, averages more than zero due to the reduction in the power at the loads.

In this example we have seen that due to the angle oscillations, the power dissipated in the

lines increases. This will aßect the dynamics of the center of angle, but this increase in the

losses will not dampen the oscillations of individual machines with respect to the center of angle.
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Chapter 4

OFundamentals of D1rect Methods

4.1 Uniform damping _

So far damping has been neglected. It will be included now because it plays an indispensable

roll in the characterization of the region of attraction. In order to characterize the region of

attraction, the equilibrium points must be hyperbolic, and this requires damping. In Appendix

C a detailed model and a classical model are presented along with their linearized versions.

Using the data of two large machines, three procedures to obtain the damping coefiicient are

illustrated. For these two machines damping is 10 percent on their own base and the ratio ß
is

‘ Dhydro— z 2.5
Mhydro

Dutcamlzu 3.3661
Mueam

Although the ratio ß is not the same for all the machines in a power system, it will be

assumed that this ratio is the same because the number of state variables is the same as with

zero damping.

nntate = 2(n

-where

n is the number of buses with generation.
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Uniform damping is mathematically stated as

ih = 22 = ...= Re - ,\
M1 M2 Mn - D

A useful result is presented now:

If
D: = 2}}*:1 D5
M1 = 2}*:1 Mi

then
D:

—

ÄDThefollowing equations show that this result is true.

Q: D1+D2+···+D„
M: M1 +M2+···+M„

MsD, - M1
D,

After substituting the last equation in the previous one we get the following equation:

p,= D¤(1+%:+···+%:)
M· M, (1+,'§,'}+···+§;·)

or
D:
M, '

’\’·’

4.1.1 State equation in the one-machine reference frame formulation

, The differential equations for machine i and n are the following:

dg = wg

wi = P|'—Pi:'TD|'W|'

sil = wu

gn
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By subtracting the equation corresponding to machine n from the one corresponding to machine

i, the state equation with machine n as reference results.
”

öin = iPP,
w" 6:1,2,...,11-1

Qin = ' Enüfni * ADwin

4.1.2 State equation in center of angle formulation

The swing equation for machine i is

M656 = H — Psa — Dawa (4.2)

The COA center of angle is defined as

1 TI Tl
l

60 = Me = 2Mj (4.3)
t j=l j=l

Taking the first- derivative, the center of angular velocity is obtained.

Mt j=1 J J

The angle and the a.ngular velocity of machine i in COA are

The summation from i = 1 to n of the product MÄ; is zero, as shown in the following:

XL1 M656 = XL1 M666 — XL1 Msöo
= XL1 M666 — Mzöo

From Eq. 4.3

XL1 Mega = XL1 Maße — XL1 M161
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0
U

(4.4)
g {=1

By taking the first derivative of Eq. 4.4 the following is obtained.

fl

ZM16), = 0 (4.5)
{:1

To obtain the differential equation of the COA, let us multiply Eq. 4.3 by M5 and take the

second derivative.
fl

M,3„ = E M13.
i=1

From Eq. 4.2 we get the following:

"
n n-1 7l n ·
2i=l

{:1 j={+1 {:1

where

XL1 Dsws = XL1 Di (Ö: + wo)

The following equation results.

” n n—1 n rs
M,6„ = Zn — 2 Z E Dücosögj - 12,610 - 212,6,

{:1 {:1 j={+1 {:1

Now we will show that for uniform damping, the last term in the above equation is zero.

fl fl

E Dsüa = Z «\DM6G>6
{:1 {:1

From Eq. 4.5 we get the following equation.

D;Ü; = 0
{=1

The power of the COA is defined as

n n-1 n

PCGA{:1
{:1 j:{+l
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The differential equation of the COA for uniform damping then results.

Mzöo = Pcoa — Dewo

If the last equation is multiplied by ät, the following results

·• M· M;M660 = EÜEPCOA — EDM0

or

Maöo = EPco.4 — Dawn

Subtracting the above equation from Eq. 4.2 we get

Dswo — Dev;

or _
n

d°6· M- - .
Mg? = — Pc; — üP(;0A - D;w;f0l'I = 1,2,...,11

As indicated by Eq. 4.5 and Eq. 4.4, any of the n equations above may be expressed as

a linear combination of the rest. The last equation is chosen; the state equation using COA

results. _
ät = <·°¤
ät =

·*1w”€°°
··if^P. ·^¤<°#

i= 1,2,...11- 1

4.2 Characterization of the region of attraction

4.2.1 Definitions, theorems and procedures

The definitions and theorems in this section are adapted from [20] and [95]. Several background

definitions should be understood when trying to determine whether or not a multi-machine

power system is transiently stable. These definitions include the following:

· equilibrium points (e.p.’s)
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· Jacobian matrix

— hyperbolic equilibrium points and sources

- type·k equilibrium points

- stability region or region of attraction or domain of attraction

- stability boundary

- stable and unstable manifolds

The state equation in both COA formulation and machine—n-as—reference formulation was

found in the previous section. This state equation may be expressed in this more general form:

Z = L(Z)

This equation describes a non-linear aatonomoas dynamical system. The equilibrium points,

the set of which is denoted by E, are defined as the points satisfying the equation

11 = HZ)

From the second chapter we obtain the following result for a multi-machine system in the

COA formulation:

0 = 5:;, rad/s;

0 = — th}, rad/s2 (for i = 1,2,-- ·,n— 1)

The derivative of L with respect to L is called the Jacobian matrix.

öl
·* · ä

An e.p. is said to be hyperbolic if the Jacobian evaluated there has no eigenvalues on the

imaginary axis.

For a stable e.p. (s.e.p.), the Jacobian matrix has no eigenvalues in the positive real plane;

an s.e.p. is denoted by L.
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For an unstable e.p. (u.e.p.), the Jacobian matrix has at least one eigenvalue in the positive

real plane; a u.e.p. is denoted by g„.

An e.p. is called a source if all eigenvalues of the Jacobian matrix at the e.p. are in the

positive real plane. The type of the e.p is defined by the number of Jacobian matrix eigenvalues

in the real plane. For instance, a type-one e.p. has exactly one unstable eigenvalue.

The solution curve of g = starting at g is called a trajectory and it is denoted by
{>(g, : R —» R""“‘°,

nstate = 2 (n — 1).

The stability region or region of attraction of an s.e.p. is denoted by A(g_,). This region is

the set of all state points such that the trajectory of the system starting at these points tends

towards the s.e.p. as time tends toward infinity.

A(;„) é {sl ,1}}; <P(2„¢) =

s.}Thestability boundary is denoted by 6A(g,).

In order to characterize the region ofattraction, the notions ofstable and unstable manifolds

and the stability boundary should be understood. If g; is a hyperbolic e.p., its stable and

unstable manifolds are defined by the following:

W'(z«) = {zI<I>(s„¢)—»zz: as ¢—> ¤¤
W"(2;) = {sl as t —> —¤<>

The unstable manifold W" of a type·k equilibrium point g; is a k-dimensional smooth

manifold. The stable manifold W' (gi) of a type·k equilibrium point gi is a nstate — Ic-

dimensional smooth manifold.

Using these definitions and the following assumptions, we may describe the region of at-

traction mathematically.

Assumptions:

A1. All e.p.’s on the stability boundary of the system are hyperbolic.

A2. The intersection of and W"(gj) satisfies the transversality condition, for

all e.p.’s g;, gj on the stability boundary. (The stable and unstable manifolds of

u.e.p.’s on the stability boundary satisfy the transversality condition [17]). The
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transversality condition is satisfied if a) the tangent lines of each manifold at

the intersection point span the state space or b) the manifolds do not intersect

at all.

A3. There exists a Cl function V :
R""“‘° —> R for the system such that

i V(<I>(Q,t)) 5 0 at g:_¢ E

ii If 1; is not an e.p., the set {t€
R : V(<I>(Q,t)) = 0} has measure 0 in R

iii V(<I>(Q,t)) is bounded implies <I>(Q, t) is bounded. We will refer to this func-

tion as the energy function of the system.

After these assumptions are met, two theorems describe the region of attraction.

Theorem 1 (Necessary and suflicient condition for a u.e.p. to lie on the stability boundary)

[20] For the dynamical system satisfying the previous assumptions, x; is a u.e.p. on the

stability boundary ÜÄ(§,) of an s.e.p. x, if and only if W"(::;) {1 A(Q_,) yé ¢ .

Theorem 2 (Characterization of the stability boundary) [20] For the dynamical system satis-

fying the previous assumptions, let Q;,i = 1, 2, ...be the u.e.p.’s on the stability boundary

8A(Q,) of an s.e.p. This theorem results in the following union:

<'*A(£.) = U W‘(£6)
ZÄEEOÜA

Theorem 2 states that the boundary is defined by the union of the stable manifolds of the

u.e.p.’s that lie on that boundary. In order to characterize the stability boundary, the u.e.p.’s

on this stability boundary must be found.

Procedure 1 The unstable manifold of the type-1 e.p. Q may be found using the following pro-
i cedure (as mentioned above, the unstable manifold of a type-1 u.e.p. is a one-dimensional

smooth manifold):

(a) Find the Jacobian at Q.

(b) Find the normalized unstable eigenvector of the Jacobian ( gb,). (Note that the

Jacobian has only one unstable eigenvector for a type-1 e.p.)

(c) Find the starting points Q+0.01gb, and Q—0.01gb,.
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(d) Numerically integrate the state equation starting from these points.

(e) Since the unstable manifold integrating in forward time tends either to infinity or

to an s.e.p., stop the integration when the absolute value of any of the elements -
of the angle subspace exceeds some large value, (270°) or after detecting that

the trajectory approaches an s.e.p.

Procedure 2 To determine if a u.e.p. lies on the stability boundary. This procedure is a direct

application of Theorem 1, i.e. if the unstable manifold of an u.e.p. intersects with the

region of attraction of an s.e.p., the u.e.p. lies on the stability boundary of the region of

attraction. .

(a) Go through Procedure 1.

(b) If any of these trajectories approach Q,, then Q is on the stability boundary.

Procedure 3 A one-dimensional stable manifold of Q may be found using the following pro-

cedure:

(a) Evaluate the Jacobian at Q.

(b) Find the normalized stable eigenvector of the Jacobian. and designate it by

ll,

1. Find the starting points Q + 0.01g, and Q - 0.01y,

(a) Using the above starting points, integrate the state equation in reverse time.

This integration is equivalent to integrating the following state equation in for-

ward time.

Q = —£(Q)

(b) The region of attraction of a classical power system is unbounded. Therefore,

stop the numerical integration when any of the absolute values of the angles

exceed 270°.

Procedure 3 can be applied to find the stability boundary of power systems with at most

two machines. It can also be used to find the region of attraction of the associated-reduced
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order systems of power systems with at most three machines. Associated reduced order systems

are introduced in the next chapter.
”

In order to explain the reason for this limitation, let us consider a system with three ma-

chines. The Jacobian matrix at a type—1 u.e.p. will have one positive real eigenvalue, one _

negative real eigenvalue and a complex conjugate pair of eigenvalues with negative real part.

Using the positive real eigenvalue and its corresponding eigenvector in Procedure 1 the unsta·

ble manifold is found. The rest of the eigenvalues and their corresponding eigenvectors define

the stable manifold, a 3-dimensional smooth manifold. Unfortunately, we do not know of a

procedure to find such a manifold. This is a subject which requires further research.

4.2.2 OMIB example

For a one-machine infinite-bus system, the state equation is the following:

6 w
'

Lg,Thes.e.p is given by
6,arcsin0

0

There are two u.e.p.’s surrounding the s.e.p., in and in :

_ 1r — 6,
lul =

0

_ -1r — 6,
Ä142 =

0

The Jacobian res11lts in the following matrix:

0 1
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The eigenvalues of the Jacobian are given by

0 0 M pm,^M· ‘m+~/(ml ‘
7„r°°M‘

0 0
“ pm,^=—·m·~/(m) ·61·MMMM

The corresponding normalized eigenvectors are

M ‘ l l
A, „

To illustrate stable and unstable e.p.’s, eigenvalues, eigenvectors and manifolds, let us assign
values to the following parameters:

Pm„ = 1.5 pu

P,„ = 1.0 pu

M = 0.025 gäl-

0 = 0.01 ggg;

The following values are obtained:
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E:-6 incl L2

41.81° 138.2° —221.81°
e.p.

0 0 0

l 0 1 0 1 0 1
-44.72 -0.4 44.72 -0.4 44.72 -0.4

A1 -0.2 + j6.684 6.4904 6.4904

.148 - j.0044 0.1523 0.1523
E1

j0.989 0.9883 0.9883

A2 -0.2 - j6.684 -6.8904 -6.8904
A

.148 -4- j.0044 -0.1436 -0.1436
ll2

-j0.989 0.9896 0.9896

The Jacobian evaluated at L has no unstable eigenvalues (eigenvalues with positive real

parts). The u.e.p.’s are type-1. Now, we wiH follow Procedure 1 above to find the unstable

manifolds of L11 and L12. Once these unstable manifolds are found we will determine which of

these u.e.p.’s are on stability boundary of L.

For L11, the two starting points are the following:

2.411865
+

1 0.1523 _ 2.413388

0.0
1°° 0.9883 0.009883

As shown in Fig. 4-1, the trajectory corresponding to this starting point tends to infinity

as time increases.
2.411865 1 0.1523 _ 2.410342

0.0 100 0.9883 -0.009883
The trajectory corresponding to this starting point tends towards L; therefore, L11 is on

the stability boundary ofL.
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Lg $01 6
3 / 1

·t -t

Figure 4-1: Unstable Manifolds

For @,,2 the two starting points are the following:

-3.871320
+

1 0.1523 _ -3.869797
0.0 100 0.9883 0.009883

-3.871320 1 0.1523 _ -3.872843
0.0 100 0.9883 -0.009883

As shown in Fig. 4-1, the unstable manifold of @,,2 does not intersect with the region of

attraction of @,; therefore, @,,2 does not belong to the stability boundary of @,.

We have determined that the u.e.p. in the accelerating direction, @,,1 , is on öA(@_,); whereas,

the u.e.p. in the decelerating direction, @,,2, does not belong to öA(@,). This result is true for

the values of the parameters used, but Lg may also be on ÜA(@,).

According to Theorem 2, the stability boundary öA(@,) is the union of the stable manifolds

of the u.e.p.’s on öA(@_,). For the OMIB system, the only u.e.p. belonging to äA(@,)is @,,1;

therefore, ÜA(@_,) = W'(@,,1). The stable manifold of @,,1 is shown in Fig. 4-2. The starting
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Figure 4-2: Stabilty Boundary of the s.e.p. or stable manifold of u.e.p. 1

points are the following:

2.411865
+

1 -0.1436 _ 2.410429

0.0 100 0.9896 0.009896

2.411865 1 -0.1436 2.413301

0.0 100 0.9896 -0.009896

4.3 Exit point method

4.3.1 Definitions and procedures

The exit point, gc, is the point where the fault-on trajectory intersects the stability boundary

[20]. The transient energy evaluated at this point is the true critical energy, the corresponding

clearing time is the true critical clearing time.
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éc
le 2 .

E6

td = tc.,

For a fault cleared when the energy is less than the critical energy, the system is stable;

otherwise, it is unstable. Notice that according to its definition the true critical energy is

fault·dependent.

The exit-point must then be found. We will first define the controlling u.e.p as the u.e.p.

whose stable ma.nifold intersects with the fault-on trajectory [20], i.e. it is the u.e.p. whose

stable manifold contains the exit point [10].

The exit-point method is as followsz

1. Obtain the controlling u.e.p. from the fault-on trajectory and designate it as ga,. This

procedure will be discussed in detail later.

2. Follow Procedure 3 above to find W'(;,„).

3. Find the first intersection of the fault-on trajectory with W'(;g,„). This is the exit point.

The corresponding time is the critical clearing time, c.c.t., and the corresponding energy

is the true critical energy.

As explained before, the stability boundary of a 2-machine system can be found easily

by locating the two u.e.p.’s and applying Procedures 1 to 3 and Theorems 1 and 2 above.

Unfortunately, we can not find the stable manifold of a type-1 u.e.p. for a power system

with more than two generator buses. Therefore, for more than two machines this method is a

conceptual one.

4.3.2 Two-machine example, exit-point method

The two-machine system shown in Fig. 4-3 is used to describe the exit-point method.

The disturbance consists of a self-clearing, 3-phase fault, RI = 0.25 pu, X_; = 0.0 pu. The

fault-on parameters of the system reduced to internal nodes are

Pf = -1.2254, P; = -0.5679, c{, = 1.5076, and 1>{, = 0.8773
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u
Pm1 = 2.49 Pm2 = 12.41

D1/M1= U2/M2=0.06"'1|
E1 = 1.08<38.76 E2 = 1,05<8,18
H1=10s

(unlfomdamplng)
H2=75s

1 <27.09 1 <0
|.088 |.012

|.46

1.5+].45 13.4+2.8

Figure 4-3: Two-machine system with uniform damping

The corresponding post—fault parameters are

P1 = 1.3275, P2 = -0.5072, C1; = 1.8028, and Dig = 0.4765

The stable manifold of Eco is shown in Fig. 4-4. The Jacobian evaluated at gw, the stable

eigenvalue and the corresponding eigenvector are

0 1 -0.1789
= , Ä, = -5.4981, L =

29.1933 -0.1885 0.9839

The two starting points are

2.2071
Eco + L :

0.0098

2.2107gw — 0.01 L =
-0.0098

The critical clearing time is 0.1158 s. It is worthwhile to notice that this particu1a.r fault

caused machine 1 to decelerate.

80



vv, rad/0 .
10.0xs

=(0.5336.0)X'
=(2.2009,0)6.0

t10=.10166t11
=.11606t12
= .1311

•„.„-6.0111 Q10
t-10.0 4

-6.0 -4.0 -2.0 0.0 2.0 4.0
6, rad

Figure 4-4: Exit-point method

4.4 Closest or nearest unstable equilibrium point method

4.4.1 Definitions

This section is adapted from [20]. In this method the region of attraction is approximated by

{g | V(;) < Vjzmt}, where

V.z..„ = müs [V so „V(sz).-·-.Vg,

gz, · ·
·,x„„E2 is the set of u.e.p.’s on the stability boundary 8A(;„)

The nuep is the number of u.e.p.’s on the stability boundary 8A(;r„) . Notice that Vjgnn is

not fault dependent and its use may yield conservative results.

Procedure 4 Determination of Vjgmt.
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1. Find all the type—1 u.e.p.’s. (For an excellent algorithm to find the possible u.e.p.’s

on 8A(@,) see chapter V of [56])
”

2. Order these type-1 e.p.’s according to the values of their energy function.

3. Starting from the u.e.p. with the lowest value of transient energy, follow Procedure

2 to determine if it lies on 6A(@,). The first u.e.p. belonging to öA(@,) is the closest

u.e.p.

1. The critical energy is

Vcllidaest = I/(lcloeenf) = ‘G*(£clo•c•t)

_ {closest
gelaunt '

Ecloscst = 0

4.4.2 Two-machine example, closest u.e.p. method

Pm1 = 2.49 [MM,
- mm:

_
130,, Pm2 = 12.41

E1 = 1.08<38.76
(uniform damping)

E2 = 1_g5<3_15

H1 = 10 s H2 = 75 s

1<27.09 1 <0
|.0B8 |.012

].46

1.5+].45 13.4+|2.8

Figure 4-5: Two-machine system with increased uniform damping

Let us consider the two-machine system shown in Fig. 4-5. This system is the same as

the one shown in Fig. 4-3 but in order to get @,,2 to belong to ÜA(@,), the damping has been

increased from D = 0.01 to D = 0.2 . As shown in Fig. 4-6, the equilibrium points are

[ the same as before

0.5339 _ 2.2089 _ -4.074286
la = 1 Earl = 1 £ar2 =

0 0 0

Notice that the left branch of W" (@,,2) (the unstable manifold of @,,2) converges to @,2 and
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its right branch converges to L. Since L2 and in belong to ÖA(;,), öA(L) = W' (@,,2) U
W·’

(L2,) , as illustrated in Fig. 4-6.
‘
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Figure 4-6: Two u.e.p.’s on the stability boundary

The post·fau1t parameters of the system reduced to internal nodes are

P1 = 1.3275, P2 = -0.5072, C12 = 1.8028, and D12 = 0.4747

The Jacobian evaluated at the u.e.p.’s and the stable eigenvalue and stable eigenvector are

_ 0 1 -0.1303
_,[(L,1) = , Ä, = -7.6074, =

29.1936 -3.7699 0.9915

¤L(-@42) = l(Ä:u1)

As shown in Fig. 4-7, Vjf„„, = lQ,(§,;,,„,) = V, (6,,1) = 0.6711 MFÄQVVF. Two values of fault

impedance are considered (both faults are self-clearing on bus 1).

1. Zj = 0.0 +j 0.00001, which accelerates machine 1. The fault-on parameters of the system
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Figure 4-7: Closest unstable equilibrium point method

reduced to internal nodes are

1>{ = 2.4900, P; = -0.:1702, c{, = 2.5837 X 10-*, and D{, = 3.9210 X 10-5

The critical clearing time obtained by using the closest u.e.p. method is 0.13 s; using the

exit-point method, it is 0.19 s.

2. Z; = 0.15 + j 0.0, which decelerates machine 1. The fault·on parameters of the system

reduced to internal nodes are

Pif = -2.2533, P{ = -0.5856, Cf, = 1.2568, and D{2 = 1.0186

The critical clearing time obtained by using closest u.e.p. method is 0.09 s; using the

exit-point method it is 0.63 s.

From these results, we ca.n see that when the exit—point is contained by the manifold of

the closest u.e.p. (the closest u.e.p. is the controlling u.e.p.), the closest u.e.p. method yields
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a good approximation for the critical clearing time. These results also show that the contour

of constant energy evaluated at the closest u.e.p. gives a good approximation of the stability

boundary. However, the closest u.e.p. method may be extremely conservative when the exit-

point does not intersect with the stable manifold of the closest u.e.p. (the controlling u.e.p. is

not the closest u.e.p.).

We can also 1ea.rn from this example that the fault-on trajectory depends on the value of the

fault impedance. It also depends on the fault location, the type of the fault, and the clearing

time [56].

4.5 Controlling unstable equilibrium point method

Let us list the advantages and the disadvantages of the methods described so far.

Exit-point method

• Advantages:

1. It yields true critical clearing time.

2. It yields true critical energy (fault dependent).

3. It is not based on an approximation of the region of attraction.

• Disadvantages:

1. Once the controlling u.e.p. has been found, its stable manifold must be determined.

This method is only practical for a small number of machines.

Closest u.e.p. method

• Advantages:

1. It can be applied to a multi-machine system.

2. The closest critical energy must be found only once, since it is not fault depen-

dent. The closest critical energy is used for different fault configurations, but not for

different post-fault configurations.
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• Disadvantages:

1. It may yield very conservative results.

2. For a large number of machines it is very difficult to determine all of the u.e.p.’s on

the stability boundary. If the closest u.e.p. is missed, a very optimistic result may

be obtained by using a wrong u.e.p.

It is clear that a. method yielding less conservative results and a method feasible for a la.rge

number of machines is required. The controHing u.e.p. method is this method, since it is not

required to find the stable manifold of any u.e.p. and the critical energy is fault dependent.

4.5.1 Definitions and procedures

The controlling u.e.p. was defined as the u.e.p. whose stable manifold intersects with the fault-

on trajectory [20]. This definition means that the controlling u.e.p. is the u.e.p. whose stable

manifold contains the exit point [10].

In this method, the region of attraction is approximated by

{2 I V (2) < VS}

where

V3 = V Qu)

gw is the controlling u.e.p., also known as the relevant u.e.p.

The controlling u.e.p. method is the following procedure:

1. Obtain the controlling u.e.p. from the fault-on trajectory and designate it as gw. This

procedure wiH be discussed in detail later.

2. Evaluate the energy function at gw,
Vo‘§,"

= V Qu) = V, (Qw), where Qw is the a.ngle

subspace of gu.

sim‘ Em. =
2.... = Q
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3. Find the first intersection of the fault-on trajectory with the boundary of the region

defined by
l

{sl V(2z) < V3}

In other words, evaluate the transient energy along the fault·on trajectory, the time at

which the transient energy reaches V,§,' is the critical clearing time, c.c.t.. It is important

to emphasize that the parameters of this system, reduced to internal nodes, used in cal-

culating the fault-on trajectory are not the same as those used in evaluating the transient

energy. The fa.ult-on trajectory is obtained by the numerical integration of g= [(g) us-

ing I§·f,Cé,Dé for i = 1,2, - · -,12; j 96 i. The energy function, as well as the s.e.p., are

evaluated using the post·fault parameters, 1%,0,,, Dü for i = 1,2, · · ·, n; j gé i.

4.5.2 Two-machine system example, controlling u. e.‘ p. method

The two-machine system shown in Fig. 4-5 will be used again.

As shown in Fig. 4-8, two values of the fault impedance are considered (both faults are

self-clearing on bus 1).

1. Zj = 0.0 + j 0.00001, which accelerates machine 1. The controlling u.e.p. for this

particular fault is gw = (6,,1,0). The critical energy is V(6,,1,0) = I§,(6,,,) = 0.6711

%-{-ff. The region of attraction is approximated by the segment of this contour level

as shown in Fig. 4-8.The critical clearing time obtained by using the controHing u.e.p.

method is 0.13 s; using the exit-point method it is 0.19 s. This result is the same as the

one obtained by closest u.e.p. method because gw = g,,,„„,.

2. Zf = 0.15 +j 0.0, which decelerates machine 1. The controlling u.e.p. for this particular

fault is gw = (6,,2,0). The critical energy is V (6,,2,0) = lG,(Ü,,g) = 8.4057. The region of

attraction is approximated by the segment of this contour level as shown in Fig. 4-8.The

critical clearing time obtained by using controlling u.e.p. method is 0.59 s; using the

exit-point method it is 0.63 s.

The thick, dotted lines in Fig. 4·8 are the approximation of the stability boundary using

the controlling u.e.p. method. Notice the following:
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Figure 4-8: Controlling unstable equilibrium point method

1. the closer the exit-point gets to the controlling u.e.p., the more accurate the approximation

is.

2. the controlling u.e.p. method always yields a conservative result. Theorem 6-4 in [17].

88



Chapter 5

PEBS and BCU Methods

5.1 Associated reduced-order systems _

Associated reduced-order systems have been presented in [1], [83], [76], [17], [55] , [10] and [77].

In this section we will obtain these associated reduced-order systems.

1. Reduced system in center of angle formulation. This reduced system is presented in

reference [77]

2. Reduced system in machine-n·as-reference formulation. This reduced system is presented

in [10]and3.

Associated gradient system in center of angle formulation.

We will show that the reduced system and the gradient system are the same only if the

reference machine is an infinite bus.

5.1.1 Reduced system using center of angle

To obtain the reduced system we will start with the state equation of the original system.

ig = Qi
(5.1)

i= 1,2,...11- I

89



Let us consider the following equation of angula.r acceleration:

dQ6_H··P¢6 Pco.4 -_
az ' M, M, """"

OT

dir _ M;Maj + Dsws = H — Psa — EPc·oA

Notice that the right-hand side of the above equation is a function of the angle subspace, i.e.

~1:0*(1) = 1% - P,. - RPM

The reduced system is then defined by the following state equation:

dä M· . ·ä-=H—P,;—EPgQA, I=].,2,...,1‘L—1 (5.2)

Notice that the original system is a second-order dynamic system and the reduced system

is a first—order dynamic system. Therefore, they have different dynamics. However, there is a

one·to·one correspondence between the equilibrium points of the original system 5.1) and

the equilibrium points of the reduced system 5.2).

The equilibrium points of the original system must satisfy the following equations.

Ü = Ö;

0i=
1,2,...,n- 1

Q = Q0=g¢·‘
(1) — A„~0=;*··* (1)

0 The equilibrium points of the reduced system must satisfy the following equation.

0 = 10 — P.. - %;PM
i= 1,2,...,n- 1
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0 = 1*** (1)
Therefore, if an e.p. of the original system is (LQ) , the corresponding e.p. of the reduced

system is .
Notice that in Eq. 5.2 i goes from 1 to n — 1. We will show that gg may be expressed as a

linear combination of the rest, i.e. there are only n — 1 state variables.

”
dä;

”
Pco.4 °_.= (P._P.)__ M.I CI I

or _”
dä;E — = 0

i=1 dt

The following equation results.
.15,, _ **·‘ 115,

0

dt
— —

dt

5.1.2 Reduced system using machine n as reference

The starting point will be the state equation of the original system.

5. = ."‘ °“’"‘
1: 1,2,...,n — 1 (6.:1)

Let us consider the following equation corresponding to angular acceleration:

ür =
H-Pci_Pn-PenIn

Ifl

or
._ Di _ _}%"'-Pci Pn"Pcnwm 'l' Miwau •'

Mi
MnIfwe multiply Eq. 5.4 by M; the result is

. M1
Miwin+Diwin = “P¢i' Y(Pn-Pen)

fl
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The reduced system is the following equation:

5ir•=H“Pei“%(Pn'Pm)=
L'°" (Q)

The equilibrium points of the original system must satisfy the following:

0 = win

0 = · B15? · =‘¤w¤··
i= 1,2,...,n- 1

Q = az

The equilibrium points of the reduced system must satisfy the following:

0 = 1%-P,;-,'5,';(1>„-1>„,)

i= 1,2,...,n- 1

Therefore, if an e.p. of the original system is (Q, Q) the corresponding e.p. of the reduced system

is (Q)-

5.1.3 The associated gradient system using center of angle

The gradient system is a reduced-order system whose state equation is defined by the following

equation:

- 8V .
y

6j=——ää?, _7=1,2,...,n—1

V,„ is the potential energy.

According to Eq. 3.17 and Eq. 3.18 the potential energy is given by Eq. 5.6.

- = '* - M~ - dä-
V =/ [-1% + Pc; + JP

l
J dt 5.6,„ (12) t.92



611166 v,,, (1) = jf 1;;;, [-1% + 1%, (1)] gi-11 + LQ 11, the 16u6w1„g 6;-
sults.

'* dä,
E-E

M,-E - 0

_ ¢ **
_ dj.V„ (1) [-1% + 1%; (1)] ja:

By taking the summation out of the integral, canceling dt and changing the limits of integration

the following potential energy function results.

-
” 56 ., ..E36 (1) = [-1% + 1%; (1)] 16;

The last angle, 5,, is a function of the angle subspace.
l

- 1 'if -6,, =
——— M;6·

Mn i=l
l

ß- -M1
dä, M„

-

”_1
gi .. ... .. .,v„ (1) = + 1%; (1)] 16; + [-1%; + 1%.. (1)] dä,.

To obtain we will make use of the chain rule as indicated in Eq. 5.7

6161 (1) 6 6; - - 6 616) - - däT=T —P· P- dä- T- —P P dä T 5.7

Therefore, the potential energy gradient in COA formulation is the following:

ÖVP, _ M. __
*·•

= *1% P ' -
;

·P P .im + „.(1) M"] „+ „;(1)] (58)

i= 1,2,···,n— 1

This result can be verified by using n = 2 in Eq. 3.24 and taking the derivative of the

93



potential energy with respect to Ü;. This yields

övpe .. M ..—-— = -P + P - 4 -P + P
661

1 el M2 [ 2e2This

result agrees with Eq. 5.8.

Except for a two-machine system, the potential energy can be found only if the transfer

conductances are neglected . In the presence of loads, which in the classical model are modeled

as constant impedances, the transfer conductances are not negligible. The ray approximation

of the potential energy is used to overcome this problem. The potential energy gradient does

not make use of the ray approximation, i.e. the potential energy gradient as given by Eq. 5.8

is not an approximation.

The state equation of the gradient system using COA formulation is

dä, M,
E=(H'Pc1)"'E(Pn'Pcn)i=1,2,···,n—

1

From the fact that the gradient system and the reduced system in machine-n·as-reference

formulation are given by the same equation, it follows that there is a one-to-one correspondence

between the e.p.’s of the gradient system and the e.p.’s of the original system.

If the reference machine is an infinite bus then the reduced system of Eq. 5.2 and the

gradient system of Eq. 5.9 are given respectively by Eq. 5.10 and Eq. 5.11.

: P} — Pc, (5.10)

i= 1,2,...,n- 1

= (H'P¢1)-%(Pn‘Pm)

= R - Pc, (5.11)

i= 1,2,...,n- 1
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We can see that these lower dimensional systems are the same if the reference machine is

an infinite bus.
3

5.1.4 A conservative system and the potential energy gradient

An interesting situation to verify the potential energy gradient as given by Eq. 5.8 is to consider

a conservative system, i.e. a system with no damping (regardless of transfer conductances). In

this case the total transient energy after the disturbance is constant.

V (L2) = 0

d , d -$10- (2) — WV.- (1)

To simplify matters we will assume n = 3. The angle subspace, the angular velocity of

machine 3, its angular acceleration, the vector of accelerating powers, and the transient kinetic

energy are respectively given by the following equations:

- Ö1
#.2 = _

W2

- M1 - M2 -= —— — — 5.12U3 MBÖ1 MSÖ2 ( )

d , _ M1 d , M3 d ,
dz""" ' M3 dtwl M3 a:"" (5*13)

M1 P1Iüfpco.4M3
303 = P3 — P.3 (Zi) (ä) (0-14)

M31é«-03 P3 — P.3 (ä) (5)

- 1 ,2 1 ,2 1 ,2
V}, (Q) (5.15)

Substituting Eq. 5.12 into Eq. 5.15 results in the following equation:

, 1 , 1 , M2, M2, MM,-
V}, (Q) -I— üglwlwg
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The rate of change of the transient kinetic energy is obtained from this equation.

· - _ düi M1 JÖ1 M2 - ( JÖ2 (M1 ÖÖ1 dÜ2 -"3(33> · [M3 M + M3 (M3 M + M3 M 333 + MP M + MP M3 M + M3M)) *33

Notice that the expression enclosed by parenthesis, i.e. + is the negative

of the angular acceleration of unit 3, Eq. 5.13. Therefore, a more convenient expression for

rate of change of the transient kinetic energy is obtained.

-
_, _ dr-51 dd-33) ,, (dc-T22 dä-33 -V"(“)“M‘ [ dz dt

°‘”‘+M’
dz dt [W

Substituting Eq. 5.14 into the last result yields Eq. 5.16.

. _ M -15 M -15
V1- (Q) = (P1 — Pai —

ü
(Ps — 1%:3.)) ä + [P2 — Ps2 ·· ü

(P3 — 113)) ä (5-16)

Now, we have to get the negative of the rate of change of transient potential energy.

-iV (Q)..dtP° “
65, dt 652 dt

Replacing the gradient of the transient potential energy as given by Eq. 5.8 results in the

following equation. The right·hand side is identical to Eq. 5.16.

. - M -15 M -15·"··3 (3) = [P3 ‘ P33 ‘ M (P3 ‘ P333] M 3 (P3 ‘ P=3 · M (P3 · P33>] M
This proves Eq. 5.8 to be correct.

5.1.5 Three-Machine system example

Since the potential energy gradient is not an approximation it is possible to illustrate, with an

example, the error introduced due to the ray approximation in the path dependent component

of potential energy.

Two cases are considered. In the first case, the power system reduced to internal nodes has

transfer conductances hence, the ray approximation has to be used. The second case consists

of a power system with no loads, therefore the system reduced to internal nodes has no transfer

96



1<15
l

2.49 ].088
26

°

° 1 <0'”"‘°
1.015 8-2¤

1.5+1.451
<15 Hsw

4.21 1.05

6
12.4+12.5

H=151.0+].3

Figure 5-1: 3 - machine system of reference [1]

conductances, hence there is no need for ray approximation.

Power system with transfer conductances

Let us consider the three·machine system of reference [1] shown in Fig. 5-1. The contour

map of Ig"' is shown in Fig. 5-2. Also shown are the 0·level contours of §%VP, and

3%-VP, . The intersections of these 0-level contours are the equilibrium points of the gradient

system, i.e. the equilibrium points must satisfy the following equation:

0 _ P1 'pel · %§(P3—Pea)
0 P2—P,2—%ä·(P3—P,3)

l Notice that the ray approximation of the potential energy does not reilect all of the equilib-

rium points. A source and a. saddle are missing in the lower right-hand corner of the contour

map near 26·level contour. The tangent of the contour level of VP, at the intersection with

0-level contour of is not always parallel to Ö1-axis. Similarly, the tangent of the

contour level of VP, at the intersection with 0—level contour of is not always parallel

to 52-3.XlS.

Power system without transfer conductances
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Figure 5-2: Contour map of potential energy approximation for the 3-machine system of refer-
ence [1]

The power system shown in Fig. 5-3 is based on the three-machine system of reference

[1]. The loads have been eliminated. The mechanical input power of each machine has been

modified to include the loads as indicated by the following equation:

Pnew = Polgi _ Pload
ml 'WII I

Since this system has no load, the system reduced to internal nodes has no transfer con-

ductances, hence the contour map of the energy function shows all of the saddles and sources,

see Fig. 5-4. For comparison with the previous case, notice the presence of a saddle point with

energy level slightly above 26 MW rad / MVA. Another interesting comparison between the

two cases is that the tangent of the contour level of VP, at the intersection with 0—level contour

of {gig, is always parallel to 51-axis. Similarly, the tangent of the contour level of VP, at

the intersection with 0-level contour of is always parallel to 52-axis.
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Figure 5·3: 3 - machine system with no loads

5.2 The Potential Energy Boundary Surface

The Potential Energy Boundary Surface, PEBS, method was proposed in 1978 by Kakimoto

et. al. [46], and in 1979 by Athay et. al. It is also described in [56], in [44], and in [25].

As defined in [1], [56] and [25], the Potential Energy Boundary Surface, PEBS, is obtained by

setting the directional derivative of the potential energy (along a ray emanating from the s.e.p.)

equal to zero. In 1985 Varaiya et. al. [83] defined the PEBS as the stability boundary of the

gradient system. In the following subsections, these two definitions are analyzed and presented.

5.2.1 PEBS setting the directional derivative of the potential energy equal

to zero

The PEBS is obtained by setting the directional derivative of the potential energy along a ray

[ emanating from the s.e.p. equal to zero. The directional derivative is the dot product of the
\

gradient and the normalized vector along . Therefore, before getting the directional derivative

of the potential energy we need to obtain its gradient. Neglecting damping, the swing equation
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Figure 5-4: Contour map of potential energy for a 3~machine system with no loads

of machine i is given by the following equation:

düi - . . — M6 ·M1? - 1: — P, (5) - —AZPcoA (5)

i = 1, 2, · · · , n

The right-hand side are the accelerating powers, and the vector of accelerating powers is

P1 —· PO1 (Ä)
P - P, 5 - M P 5

=
2 2() zu?COAP„

— Pw (Ä) (Ä)

The potential energy gradient is the negative of the vector of accelerating powers

1zw = — [6 (66)]
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The normalized ray emanating from the s.e.p. is

6, -6;

u
_ Ö; — Ö; 1

E ,/(6,—6,)’+(6,-6,)%--+(6,.-6,,)’
6,, — 6;,

The dot product of this two vectors is the directional derivative.

6 Ä 6 x 6- — 6;
.W ‘Ä = ‘

-6;) + (62 -6;) + ···+ (6,, -6;)

As mentioned before the PEBS is obtained by setting this directional derivative equal to

zero. Therefore, the PEBS is the angle subspace which satisfies

" - - -§36(6> · (6 -6) = 6
•=1

B
~ - - ~

E [16 - 1=,, (6) - ERGO, (6)] - (6,- 6;) = 0 (5.18)
i=l Ä

This result, although obtained in a different way, can be found in [1], [56], [66], and [25].

The potential energy gradient is not given by the vector of accelerating powers as in [2], i.e.

ÖVP, _ M. _
l1——

=
— P- ·· P (—wi[ • 6 (Ä) Mt 00.4 (Ä)

i = 1, 2, · · · , n

The foHowing is the potential energy gradient as given in Eq. 5.8.

ÖVP, _ M. _
-:-16-11, -AP-P ]6,, [ (Ä) M„ l 6 ='· (Ä)l

i= 1,2,···,n— 1

However, the PEBS as stated in Eq. 5.18 is correct. To prove it, let us find the PEBS using
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the above equation of the potential energy gradient.

P. — P,. (6) — .1%,*; [P,. — P,,. (6)]
Y&=_ P2“Pe2(ä)'ää:]Pn‘Pen(£)]

P,.-. — P,,.-. (6) — @.6:;; [P,. — P,. (6)]
The normalized ray emanating from the s.e.p. is

5. — 5;

„ = S6 — S6 _...__;_.__
E [[51 _ 5{)2 +(52571*1

—
5:1-1

The dot product of this two vectors is the directional derivative.

E/Eu: Jig {P- P,. (6) — [P,.
;

P,. (6)]] >< (6.- 6':)2

6:) + (6, — 6;) + ·-·+ (6,,-. — 6;,4)

Setting this directional derivative equal to zero, the PEBS is the angle subspace which

satisfies Eq. 5.19.

71*1
~

M_
- - ~Z [P — P,. (6) — T [P,. — P,. (6)]] - (6.- 6:) = 0 (6,10)

6:1 '*

Now, it will be shown that Eq. 5.18 is the same as Eq. 5.19.

Since (Ä; — Ü:) = 0, the following holds:

R
~ M' - ~ ~

R
~ - ~Z [P — P,. (6) — im,. (6)] - (6.- 6:) = Z [P — P,. (6)] · (6. — 6:)

6:1 6:1

Ol' n
P,. (Ä) (Ä6 ·· Ä!) =
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n-1

E [1: — P5 (5)) ·(5· - 5:) + IP: — 1:: (5)) · (5: -5:) 6
{:1

The angle of the last unit is a function of the angle subspace. The following results.

Tl
~ ~ ~ -Z [1: — 15.; (6) — jM*PcoA (6)] - (6; — 6:) =

{:1 t

H*1
- ~ ~ ~

7l*l —
- ~R*P{ ° 6{'6: +Pn“Pcn '

'; 6{'6:gg) ·(5))( )) (5)) gM„( )
or

fl
~ Mi ~ ~ ~[1: — 15.; (6) — ERGO.; (6)] · (6; — 6:) =

11-1
« « « ~15.; (6) (6)]] · (6;

-
6:)

Therefore, the left-hand side of Eq. 5.18 is the same as the left-hand side of Eq. 5.19. This

implies that either equation can be used to obtain the PEBS.

5.2.2 Three-machine system example

Let us consider the three—machine system of Fig. 5-3. As mentioned before, due to the absence

of loads, the ray approximation of the potential energy is not required. To illustrate that

the negative of the vector of accelerating powers is not the potential energy gradient we will

refer to Fig. 5-5(a), in which the contour map of the potential energy along with the 0-level

contour of P1 — P,1 — ÄEQPCOA and the 0-level contour of P2 — P,2 — %PCOA are shown.

Notice that the tangent of the contour level of VP, at its intersection with the 0-level contour of

P1 — P,1 — ät-PCOA is not always parallel to 61-axis. Similarly, the tangent of the contour level

of VP, at its intersection with the 0—level contour of P2 — P,g - %}PgOA is not always para.l1el

to dyaxis. For comparison, see in Fig. 5-5(b) that the tangent at the intersections is always

parallel to the corresponding axis.

Fig. 5-6 shows the contour map of the potential energy and the PEBS. It was verified that

both Eq. 5.18 and Eq. 5.19 yield the same PEBS.
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• Figure 5-5: Potential energy gradient as in reference [2] compared to potential energy gradient
as obtained here

5.2.3 PEBS redefined as the stability boundary of the gradient system

In 1985 Varaiya et. al. [83] defined the PEBS as the stability boundary of the gradient system.

The formulation used in [83] includes an infinite bus. This allows us to rewrite the state equation

to include the potential energy gradient. This is shown as follows.

The negative of the potential energy gradient is

ÜV E _ M. _

If the reference machine is an infinite bus, then

av,. (ä)
Ä8..<> < >
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Figure 5-6: PEBS as defined in reference [1]

The state equation is

$1* = ¢>¤
2;- = 2 [12 — P,. (£)] — 2;;1=.... (ä) — ;%§ü>6

If the reference machine is an infinite bus, then

gl] = Ü‘
(6 21)

dä. " , ·3;* = [H — P6; — pjws

From Eq. 5.20, Eq. 5.21 can be written as

ät = Oi (6 22)
-

_
é ~ '

•

2 - 2 [2:2]
—Comment1 It is possible to write the state equation as in Eq. 5.22 only when the reference

machine is an infinite bus.
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Comment 2 The PEBS is the stability boundary of the gradient system.

dä- M-
= (H-Pc1)* X{':?(Pn“Pcn)

i= 1,2,---,n- 1

It is not the stability boundary of the reduced system

d5· M-

i= 1,2,···,n- 1

5.2.4 Three·machine system example

Let us consider the three-machine system of Fig. 5-3. As mentioned before due to the absence

of loads, the ray approximation of the potential energy is not required. Fig. 5-7 shows the

contour map of the potential energy, the region of attraction of the reduced system as given

by Eq. 5.2 and the region of attraction of the gradient system as given by Eq. 5.9. It can be

seen from this figure that the region of attraction of the gradient system is orthogonal to the

equipotential curves, whereas the region of attraction of the reduced system is not.

Concluding, in this example we have seen that the region ofattraction of the gradient system

is orthogonal to the equipotential lines. The PEBS intersects the level surface {6 : V, (6) = c}

orthogonally [17].

5.3 The Potential Energy Boundary Surface method

This method may be summarized by the following steps.

1. Integrate the fault-on trajectory. The parameters used in this step-by-step integration

are the fault-on parameters.

2. Project the fault-on trajectory onto the angle subspace, i.e. drop Q.
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Figure 5-7: PEBS - Region of attraction of gradient system

3. Determine when this projection crosses the PEBS, let us designate this point on the angle

subspace äpggg . The potential energy at this point is the critical energy.

Vcr = Vpc (äpmas)

It is worthwhile to emphasize that the transient energy is calculated using the post—fault
‘ parameters.

4. Use the surface : V = VC,} as a local approximation of ÜA @,,0). In

other words, determine when the total energy on fault-on trajectory equals VC,. This is

the critical clearing time.

The question now is: How to determine the intersection of the projection of the fault-on

trajectory with the PEBS.

There are two approaches, one proposed by Kakimoto et. al [44], and one proposed by

Athay et. al [1].
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Let us present the method of Kakimoto first. Fig. 5-8 corresponds to a three-machine

system with no loads. The thick arrows represent the projectiou of fault-ontrajectories onto

the angle sub·space. It has been assumed that these projections intersect orthogonally with the

PEBS. From this figure it is clear that at the intersection, VP, is a maximum. Therefore, to

determine the intersection of the projection of the fault·on trajectory with the PEBS, Kakimoto

et. al proposed to monitor the rate of change of potential energy, and the intersection occurs

when the sign of %VP, changes from positive to maximum. The intersection occurs when

VP, reaches a maximum [17].

\ scunrorsmuu. cunvss
· JN T6

"*‘
§¢mumungumam pmpeuen ee

upeueynnumeu····~·¤······~·'~·—··‘··¤¤S—··—·pohnH•I•n•rgyI••m•xImum V ä °
ä

STABILITYBOUNDARY

on Peas

Figure 5-8: Assuming that the projection of the fault-on trajectory intersects orthogonally with
the PEBS, Vpe at the intersection is a. maximum

The method proposed by Athay et. al [1] is based on their definition of the PEBS.

7l
- ~ ~P. _

P . _ 4 . . _ ·! =„ „ (Q) (Ä Ä) 0

The idea is to monitor this quantity along the fault-on trajectory. The intersection with the

PEBS occurs when the sign of this quantity changes from negative to positive. It must be kept

in mind that the fault on trajectory uses the fault-ou parameters, whereas the parameters in
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the equation defining the PEBS are post-fault parameters.

Fig. 5-9 shows the PEBS as defined by Varaiya et. al (stability boundary of the gradient

system) and the PEBS as defined by Athay et. al (curve obtained by setting the directional

derivative along a ray emanating from the s.e.p. equal to zero). Notice that they match in the

following situations:

(a) When the PEBS - stability boundary of the reduced system is orthogonal to the ray

emanating from the s.e.p. as indicated by the dotted lines

(b) At the e.p.’s

PE =< - S•ttlng tha dlracllonal d•r|vatlv•

2
along a ray amanaüng from fha •.•.p.

,\ : A- _
J

aqualtozaro

......„
..........I?

¤=< ·8fab|fllyboundaryof —··‘'
lilyl

hgudbmwüm
.

lggnuFigure5-9: Comparing PEBS

The region of attraction of the gradient system is orthogonal to the equipotentia.l lines.

This corresponds to the original definition by Kakimoto et. al in [46],
“O1,

O2 and 03 are the

curves which are orthogonal to the equipotential curves and go through the points ul, ug and

ug respectively”. The points ul, ug and ug are e.
p.’s

of the gradient system. The curves O1, 02

and O3 are the PEBS. We can see From Fig. 5-9 that the PEBS defined by Athay et. al differs

considerably from the stability boundary of the gradient system. Therefore, from now on we

will refer to the stability boundary of the gradient system as PEBS.
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There are two methods for assessing when the projection of the fault-on trajectory onto the

angle subspace exits the PEBS, these are the following:
(

(a) The potential energy, VP, reaches a maximum along the fault-on trajectory.

(b) The directional derivative of VP, along a ray emanating from the s.e.p. is zero, i.e.

fl
- M' ~ - -[1: — 1=.. (6) — üjrco. (6)] - (6. — 6:) = 0

In the first method, it is assumed that the projection of the fault-on trajectory crosses the

PEBS orthogonally. If this is not the case, the assessment is in error. The second method is

equivalent to assume that the projection of the fault-on trajectory onto the angular subspace is

a ray emanating from the s.e.p., and if the projection of the fault-on trajectory onto the angle

subspace exits the PEBS near an u.e.p. it yields a good assessment even if the crossing is not

orthogonal. None of these methods is error free; however they are our only choices.

5.3.1 Conditions for the PEBS method to yield a conservative result

This subsection has been adapted from [17]. The PEBS may yield an optimistic result, i.e. a

critical clearing time which ezceeds the true critical clearing time. It is desirable to obtain a

conservative result, i.e. a critical clearing time which is less than the true critical clearing time.

Two conditions must be satisfied for the PEBS to yield a conservative result. Before describing

these two conditions, let us make the following designations:

1. EPEBS denotes the intersection of the projection of the fault-on trajectory onto the angular

subspace with the PEBS, or gradient system exit point.

2. EMP denotes the u.e.p. whose stable manifold contains the gradient system exit point,

£PEBS·

3. denotes the exit point, i.e. the intersection of the fa11lt-on trajectory with the

stability boundary of the post·fault system.

4.
W’

(E,„,Q) denotes the stable manifold containing .

5. (EPMQ) is the controlling u.e.p. {P „ = ii,.
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6. 6V (ÄPEBS, Q) denotes the constant energy surface used to approximate the local stability

boundary, i.e.
A

W (ä””’”»“) = {(M) = V (M) = V- (ä’”“”)}

7. denotes the fault-on trajectory.

The two conditions which must be satisfied for the PEBS method to yield a conservative

result are the following:

(a) ÄPEBS is on the stable manifold of Le? implies is on W' (£„,Q).

(b) The fault-on trajectory (Äf(t),Qf passes through the constant energy surface

6V (jpßßs,0) before it passes through the stable manifold W' (ÄCMQ).

Condition Oa implies that the equilibrium point ÄMP is on the PEBS if and only if the

equilibrium point (Ä„„,Q) is on the stability boundary of the original system (6,,,1, = fw, we

will see that this is not always the case). Condition Oa requires the foHowing:

i. The one parameter transversality condition is satisfied.

ii. The number of equilibrium points on the stability boundary is finite.

Condition Ob is difficult to check. If we can find the stable manifold W' (Ä„,Q) of the

controlling u.e.p. (ÄCMQ) and the exit point (Ä¢,Qc), then we do not need the PEBS!

The limitation of the PEBS yielding optimistic results may be overcome if the stability

boundary is locally approximated by the following surface:

6V (£..,„¤) = {(ä,a) = V (LQ) = ra,. (5..,)}
)

This secures condition Ob. Notice that if Lw = L, this method is the same as the

controlling u.e.p. method. Theorem 6-4 in [17] asserts that the controlling u.e.p. method

always yields conservative results. The main issue now is to determine the controllingu.e.p., this

problem is solved by the Boundary of stability region based Controlling Unstable equilibrium

point, BCU, method.
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5.4 The BCU method

The Boundary of stability region based Controlling Unstable equilibrium point, BCU, method

is a very ingenious combination of the PEBS method and the controlling u.e.p. method. It has

received many names:

1. Modified PEBS method [17], [55].

2. Algorithm to find the controlling u.e.p. method [11].

3. Hybrid method using the gradient system [55].

4. Exit point method [25].

5. Modified exit point [25].
l

6. BCU method [10], [9], [77].

For convenience in reading the following paragraphs, some equations obtained in previous

sections are shown now.

• The state equation of the original system in COA is given by Eq. 5.23.

ii? = _ <?>¢ _
*~ P¢—Pe6 Q P Q - (5.23)

i= 1,2,...11- 1.

• The state equation of the gradient system is given by Eq. 5.24.

·*" =1>·-P, ' — M‘1¤„-P 'ml
° ° l

°”
(5_24)

i= 1,2,···,11- 1

• The state equation of the reduced system is given by Eq. 5.25

·*" :15-P,. ' - MP 5ur (é) im ¤¤A (—) (525,
i=1,2,...,11—l.
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The rest of this section has been adapted from [10], [9], [11] and [77]. The BCU method

presented here differs from the one in the above references because the formulation of the state

equations does not include an infinite bus. The state equation of the original system cannot

include the gradient system. We have shown that the PEBS is the stability boundary of the

gradient system, Eq. 5.24. The PEBS is not the stability boundary of the reduced system, Eq.

5.25. It has also been shown that in the presence of an infiuite bus these two lower dimensional

systems are the same. The previous references refer to reduced system which corresponds to

the gradient system used here.

Let us present the following results which are the foundation of the BCU method:

(R1) is a s.e.p. of the gradient system if and only if @,,0) is a s.e.p. of the original

system.

(R2) is a type-k e.p. of the gradient system if and only if (Äk, Q) is a. type—k equilibrium

of the original system.

(R3) If the one-parameter transversality condition is satisfied, then (dw,) is on the stabil-

ity boundary ÜA of the gradient system if and only if (Ä„„,Q) is on the stability

boundary 6A (9,,9) of the original system.

As result (R1) asserts, it has been shown that there is a one-to-one correspondence between

the e.p.’s of the original system and the e.p.’s of the gradient system, i.e.

(M) ·— (M,¤)
Result (R2) follows from Theorem 5-1 in [17], which asserts that the Jacobian matrix of

both systems has no eigenvalues with zero real part. It also asserts that the number of Jacobian

matrix eigenvalues with positive real part is the same for both systems.

Result (R3) establishes that when the one-parameter transvcrsality condition is satisiied, a

u.e.p. is on the PEBS if and only the corresponding original system u.e.p. is also on the original

system stability boundary. In a later section, we will show examples of simple power systems

where this may be true or not depending on the damping.

The BCU method is the following:
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1. From the fault-on trajectory (Äf(t),Q·’(t)) , detect the point EPEBS at which the projected

trajectory Äf(t) reaches the first local maximum of potential energy. Also compute the

point E;-3EBS that is one step behind of ÄPEBS along Äf(t), and the point ÄÄEBS that is

0116 step 3„ft€I' &PEBS•

2. Use ÄPEBS as initial condition and integrate the post·f'au1t gradient system to find the

first local minimum, at Ä0, of

u—l
‘

2• •

{11 - 11, (1) —
Mn [11. — 11,. (6)]] (5.26)

3. Repeat the previous step with &;|EBS and E;EBS as initial condition to find Ä; and Ä;

respectively.4.

Compare the values of the Euclidean norm, lilq. 5.26, at 5;, EO and Ä; . The one with

the smallest value is used to find the e.p. of the gradient system, i.e. the one with the

smallest value is used to solve the following equation:

¤=¤-P«<@>—#:lP»—P«<ä>l
i= 1,2,·•·,n— 1

Let us call this point Ä„_g„d. This is the controlling u.e.p. of the gradient system.

5. The controlling u.e.p. of the original system with respect to the fault-on trajectory is

(£co—gradvi

@...0) = @..-,....0) (5-27)

• In step 1 an approximation of the PEBS crossing is found. This approximation is good

if the projected fault-on trajectory is orthogonal to the PEBS and the time step is small.

Because there is no control on the way the projected fault-on trajectory intersects with

the PEBS and because the time step can not be reduced without limit, three points are

considered as “candidates”.
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• In steps 2 and 3, three post-fault gradient system trajectories are found. Each trajectory

has one of the above “candidates” as an initial condition. Of these candidates, the one

with a trajectory which gets closer to the controlling u.e.p. of the gradient system is

PEBS crossing point. A measure of how close the post-fault trajectory of the gradient

system is to its controlling u.e.p. is the Euclidean norm, Eq. 5.26. Notice that, exactly at

the controlling u.e.p. (at any e.p. as a matter of fact), this norm is zero. Therefore, the

candidate with the lowest value of the Euclidean norm along this trajectory is the PEBS

crossing point. The point with the lowest norm (out of the three minimums found) is

used as an initial guess in solving the set of non-linear equations of the gradient system.

o = 1% — P.. (ä) — .%;,5 [P. — P.. (£)]
i= 1,2,···n— 1.

Notice that the reduced system can also be solved, since they have the same equilibrium

points.

• In step 4 the controlling u.e.p. of the gradient system is found.

• In step 5 the controlling u.e.p. of the gradient system is related to the controlling u.e.p.

of the original system. It has to be remembered that this is correct if the one-parameter

transversality condition holds. Furthermore, if the one-parameter transversality does not

hold, then (Ä„_g„d,Q) may not be the controHing u.e.p. of the original system. It may

be only a u.e.p. not belonging to the stability boundary of the original system.

5.4.1 Three-machine system example

A three-machine system without loads (no transfer conductances) is considered now. However,

the application of BCU method is not restricted to any number of generator buses nor to

systems with negligible transfer conductances. The reason for using a three machine system is

to be able to show its PEBS. The reason for using a system with zero transfer conductances is

that, in this case, the potential energy is not path dependent, and we need no approximation

for it. As shown in a previous example, if transfer conductances are negligible, the potential

energy will show the equilibrium points accurately.
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Let us consider the three·machine system of Fig. 5-3. As mentioned before due to the

absence of loads, the ray approximation of the potential energy is not required; For convenience,

this three-machine system is also shown in Fig. 5-10.

1<o
H·*° lm; azooss

1<14.e•u H-•¤

3.21NO ]_g5

0
3.00oa

H¤15 ·

Figure 5-10: 3 - machine system with no loads

A uniform damping of Ad = 2.5 is used. The disturbance is a self-clearing fault on

bus 1, Z; = (1 +j 1) X 10*5 pu.

• STEP 1.

— The fa.ult-on parameters are the following:

Pf = 0.9887
P; = 3.2100
pg = -4.2002

C{2 = 2.0037 X 10**

C{3 = 4.5806 X 10**

0;, = 6.3661
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D{2 = 2.0030 X 10”‘

D{3 = 4.5790 X 10"
U

D{3 = 6.8940 X 10'5

— These fault-on parameters are used in a step·by-step simulation where the state

equation is the following:

5, 0,

d 52 _ Ü2— * !_ J _dt ,;,1 Ermär - Bär - ADW,
.. Y

-
Y

-··== $*66% - $6% — ^¤~¤
— The potential energy is calculated along the fault-on trajectory. The post-fault

parameters, which are used in calculating the potential energy, are the following:

P1 = 0.9900

P3 = 3.2].00

P3 = -4.2000

C12 = 1.1804

C13 = 2.6985

C33 = 6.7723

This power system has no constant impedance loads. Therefore,

D12 = D13 = D23 = 0

i.e. the transfer conductances are zero.

— The potential energy is monitored and three points are chosen as candidates for the
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PEBS crossing point: ÄQE-BS, ÄPEBS and ÄÄEBS.

5 - -t
_‘

06.. (6.,6-)
62

(S) (des)-_
147.676

0.6250 éPEBS = 4-6866.9
4.85594

-
148.521

0.6275 QPEBS = 4-68689
4.72041

-+ 149.367

4.58555

Notice that At = 0.0025 s. Steps 1 to 4 are illustrated in Fig. 5-11

• STEPS 2 and 3.

— The point £;EBS,äPEBS and Ä;EBS are three initial conditions for the gradient

system. The step-by-step integrations ends when a local minimum of the Euclidean

norm is found. The local minimum of the norm and the corresponding points are

the following:

0.08795 0.16824 0.29758
-_ 147.42 - 149.93 -+ 151.15
éo = éo = éo =

8.7082 8.0809 7.3646

0 • STEP 4.

_ -_ 147.42
- Since éo = has the lowest Euclidean norm, it is used as an initial guess

8.7082
to find the controlling u.e.p. of the gradient system.
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Figure 5-11: BCU method applied to a 3 - machine system with no lcads

— The controlling u.e.p. of the gradient system is

- 148.33
éco-grad = 9.0112

• STEP 5.

— Assuming that the one-parameter transversality condition is satisfied, the controlling
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u.e.p. of the original system is

148.33°

(ico Q) _ 9.0112°—grad• 0 gg
0 *%

— Once the controlling u.e.p. has been found, the controlling u.e.p. method can be

applied.

·•= The transient energy at the controlling u.e.p. is

- - MW radV (6..-,....0) =V,.=•=

The point along the fault-on trajectory when this value of transient energy is

reached is some point between the following two points:

0 (0) ÖIT (des) $2 (des) wi (red/S) 0102 (red/S)
0.5100 110.501 11.5975 5.3689 -1.05126

0.5125 111.271 11.4469 5.3819 -1.05242

The corresponding energies are

V„%$—.“0.51000.87215 3.7812 0 4.6533
0.5125 0.87633 3.8145 0 4.6909

·•= The critical clearing time is 0.5100 s. This is not the true critical clearing time,

but a conservative assessment of it.
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5.5 BCU method and the one-parameter transversality con-

dition
[

Of all the methods explained in the last two chapters, the best is the BCU method. It was

explained in Chapter 3 that the controlling u.e.p. method has advantages over the closest u.e.p.

and the exit—point method. However, the controlling u.e.p. method of Chapter 3 is a conceptual

u.e.p. method, whereas the BCU method is a practical controlling u.e.p. method. There is at

least a problem with it and in this section we will discuss it.

When Kakimoto et. al [46] proposed the PEBS, they addressed the so called first-swing

stability problem. As we have seen, Chiang et. al [17] gave the foundations of the PEBS method

and addressed the multi-swing stability problem. Later, they proposed the BCU method in

. which the controlling u.e.p. of the original system is determined byfinding first the controlling

u.e.p. of the gradient system. Then, assuming that the one-parameter transvcrsality condition

is satisfied, the controlling u.e.p. of the original system @...11) is related to the controlling

u.e.p. of the gradient system (controlling u.e.p. on the PEBS) as follows.

=(£O0•gl'Gd7Q)5.5.1

The one-parameter transversality condition

This subsection is adapted from [17]. Before establishing the one·parameter transversality

condition, we will introduce some of the notations used in [17]. To simplify matters, we will

also use an infinite bus in our formulation. Let us remember that this allows us to write the

dynamical equation of the original system as Eq. 5.29.

$6 = we
M6 °s =

—ä’“im — Ds ‘w l 86; l w'
(5_29)

i= 1,2,---,n- 1

nis the infinite bus

• dp (M,Q) denotes the dynamical equation Eq. 5.29. Matrix M is the inertia diagonal

matrix, M; > 0. Matrix Q is the damping diagonal matrix, D; > 0.
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• 6Ap (M,Q) denotes the stability boundary of the s.e.p. of the system given by Eq. 5.29

• dp (Q'1) denotes the following system (generalized gradient system):

Ä = _Q-1 öVög¢6(é)

• dp (L) denotes the gradient system:

Ä =
_ ÜVE (Q)

öé

Now the one-parameter transversality condition can be established.

One-parameter transversality condition

• Let us consider the dynamical system dp (My,Q) , with My = AM+ (1 —— A) 6L, where 6

is a sma.ll positive number, and A 6 [0, 1].

• Let us consider the dynamical system dp (]Q"] Ä) , with ]Q"] A =
AQ“‘

+ (1 — A)L, and
A 6 [0,1].

• The one-parameter transversality condition is satisfied if the dynamical systems dp (My, Q)

and dp (]Q"]A) satisfy the following assumptions:

- ( Tmnsverse intersection) The intersections of the stable and unstable manifolds of

the equilibrium points on the stability boundary satisfy the transversality condition.

— (Finite number ofpoints on the stability boundary} The number ofequilibrium points

on the stability boundary is finite.

Theorem 6-8 in [17]

If the one-parameter transversality condition is satisfied then the following is true.

1. The equilibrium points (Q;) on the PEBS correspond to the equilibrium points (Q;, Q)

on the stability boundary of the original system Eq. 5.29, öAp (M, Q).

2. The stability boundary of the original system ÜAp (M, Q) is the union of the stable

manifolds of the equilibrium points on the stability boundary ÜAp (M, Q).
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5.5.2 One-parameter transversality condition on a OMIB system

To simplify matters, a one-machine infinite·bus power system is considered now. The dynamical

equation of the original system from Eq. 5.29 is the following:

6 = w
dp (M, D) : (5.30)

Md! = [Pm — Pm¤SlI1Ü]— Dgwg

The s.e.p. is [6,,0], 6, = arcsin and its stability boundary is 6Ap (M, D) .

The generalized gradient system dp (D'l) is given by the following:

-1
_

° _
L —

•
dp (D ). 6- D

[P„, Pmnxßlhd]

This system becomes the gradient system when D'1 = 1. '

6 = [P,„ — Pm,,, sin 6] (5.31)

Let us consider the dynamical system dp (MA,D). If we choose 6 = fg, then the inertia

constant MA is given by the following:

MA = (0.9Ä + 0.1)M

This result is a linear relation, MA:}} = 0.1M, MA:} = M.

6 = w
dp (MA, D) : •

·MAw = [P„, — P„„„„ sin 6] — D;w;

The previous dynamical system, therefore, differs from the original system Eq. 5.30 only because

it has an inertia MA, which changes from 0.1M to M. Notice that they are the same when

Ä = 1.

Let us consider the dynamical system dp ([D"1] A) . The parameter [D"] Ä is given by the

following:
-1 .. i ..[17 1)+1
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This is a linear relation,
[D“‘]

,:0 = 1, [D”‘] ,:0=-1

.
‘ _ -1 _ ·4, ([12 [Ä). 0 - [12 [A [1:,, 1>„„,,sm6)

Therefore, the previous dynamical system differs from the gradient system Eq. 5.31 only because

of [D"] , , which changes from 1 to Notice that they are the same when A = 0.

The original system Eq. 5.30 satisfies the one-parameter transversality condition if its

associated systems (one with a changing inertia the other with a changing inverse of damping)

satisfy the transverse intersection and have a finite number ofequilibrium points on the stability

boundary.

Now we will present two cases of OMIB (one·machine infinite bus) systems. One system

will have some damping, and the one-parameter transversality condition will fail. The second

example has increased damping and satisfies the one-parameter transversality condition.

5.5.3 Normal Damping

X' XI

+

5* Ii um v„&

Figure 5-12: OMIB System

We wiH use the system shown in Fig. 5-12 as the example system in both cases. The

damping is D = 0.15 in this case; the rest of the parameters are the following:

Ej = 1.05 pu

V„ = 1.00 pu

X
’
= 0.10 pu

X; = 0.25 pu
2M =0.06124



1=,„ = 2.00 %
E v,„ -3.0

Since the value ß- = 3, we decided to call this case Normal Dumping.

6 (red)
-10 -5 0 5

•.\XX.X
iX. _
AX

XX,
Xä„.....X2..

0 E o °' '

Itmbdt 0405700151 _
1

_.„

X X
X X
X X
X X
X '.

X-100
-10 -5 0 5

6 (Md)

Figure 5-13: Region of attraction-Normal Damping

Let us consider the lower dimensional order system first. The dynamical system dp ([D"1] A)

is given by the following:

11,, ([12-*]) ; 5: [1>—*]A [2 - 3.0sin6]

^ ä ar A = 1
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The s.e.p. for this dynamical system is

. 2 ,6, = arcsin E = 0.72973 rad = 41.81

The two u.e.p.’s surrounding it are

6,,1 = 1r — 6, = 2.4119 rad

6,,2 = 6,,1 - 21I' = -3.8713 rad

The region of attraction of 6, is the part of the 6 — azis bounded by 6,,2 and 6,,,. This is

shown in Fig. 5-13. Notice that the stability boundary is 6,,2 U 6,,,. And also notice that the

stability bouudary does not change with lambda. The following questions must be answered

now:

(a) Does this lower dimensional satisfy the transverse intersection? The answer is yes.

(b) Does this lower dimensional system have a finite number of equilibrium points on

the stability boundary? The answer is yes.

Let us consider the dynamical system dp (M,\,D). If we choose 6 = then the inertia

consta.nt M,\ is given by the following:

0.05 if A = 1
M2 : (0.9A + 0.1)M :

0.005 if A = 0

The s.e.p. for this dynamical system is

6, 0.72973 rad

w, 0 rad/s

The two u.e.p.’s surrounding it are

6,,, 2.4119 rad

w,,1 0 rad/s
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6,,2 -3.8713 rad

w,,2 0 rad/s

The region of attraction of this system changes with lambda as shown in Fig. 5-13. Notice

that the stability boundary changes with lambda and there is a value of lambda which yields a. ’

non—transverse intersection. The following questions must be answered now:

(a) Does this lower dimensional system have a finite number of equilibrium points on

the stability boundary? The answer is yes.

(b) Does the dynamical system dp (M;,,D) satisfy the transverse intersection? The
I

answer is no. When A = 0.40378015l there is a saddle connection. In this sit-

uation part of the unstable manifold of (6,,2,0) is also part of the stable mani-

fold of (6,,1,0). The tangent space at this intersection is of dimension 1. No-

tice that for this non-transverse intersection the stability boundary 6Ap (M,1,D)

6 W' (6,,2,0) U W' (6,,1,0). When the transversality condition holds, i.e. for any

other value of A, 6Ap (MA, D) = W' (6,,2,0) U W' (6,,1,0.) .

This case does not satisfy the one-parameter transversality condition.

5.5.4 High Damping

The damping in this example is changed to D = 0.25 . Since the value il} = 5,

we decided to call this case High Dumping. Fig. 5-14 shows that the region of attraction of

the lower dimensional system dp ([D‘°1] Ä) is identical in both cases. It has two equilibrium

points on the stability boundary. Furthermore, they constitute the stability boundary. As in

the previous case, we answer yes the above questions.

Fig. 5- 14 also shows the region of attraction of the full-dimensional system. It also shows

that there is no value of A between 0 and 1 for which a non—transverse intersection occurs.

This case satisfies the one-parameter transversality condition.
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Figure 5-14: Region of attraction-Highl Damping

5.5.5 Effect of uniform damping on the one-parameter transversality condi-

tion

Two cases of OMIB systems are presented in this section. First, it is shown that a system with

a typical uniform damping of three does not satisfy the one-parameter transversality condition

and that the BCU method may fail under this condition. This is in contrast to the second

case in which increased damping ensures the satisfactiou of the one-parameter transversality
condition, allowing the BCU method to work correctly.

Normal damping

Q As mentioned before, the ratio of ß is 3, and the one-parameter transversality condition is

not satisiied. The fault impedance is Z}: 0.075 + j0 self clearing. The rest of the parameters
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are as follows,

Ef = 1.05 pu
(

Vw = 1.00 pu

X
’
= 0.10 pu

X; = 0.25 pu

M = 0.06 Eäqäeäi
1>„, =2.00pm,

= = 3.0
Fig. 5-15(a) shows the stability boundary for both the gradient system and the original

system. These systems are one·dimensional and two-dimensional respectively. The region of

stability of the original system is the shaded area. It can be seen that 6,,2, when projected

from the gradient system onto the original system, does not even lie on the stability boundary

of the full system. This figure also iHustrates that, when a dccclemting fault occ1u·s, and the

system is insufiiciently damped, the critical energy contour, V(6,w) = Vu., is a very inaccurate

approximation of the stability boundary of the original system. In the next section, only the

damping changes, the gradient system remains the same.

High damping

The ratio of ß is 5 in this case. The one·parameter transversality condition is therefore

satisfied. Fig. 5-15(b) shows that the region of attraction of the gradient system is identical

in both cases. When a fault, represented by the decclerating fault-on trajectory in the figure,

occurs in the system, the contour representing the critical energy, V(6,w) = V„, is a good

approximation of the stability boundary of the original system. With this approximation, the

critical clearing time is accurate. It may also be seen here that (6,,2,0) lies on the stability

boundary of the original system and (6,,2) lies 011 the PEBS. This result occurs because the

one·parameter transversality condition is met.

It is evident that the amount of system damping can have a major effect on the ability of the

BCU method to correctly determine the controlling u.e.p.. The previous example shows that a

power system may satisfy the one-parameter transversality condition at one value of damping

(the high damping case), but may fail to do so at a lower value (the normal damping case).

i
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Figure 5-15: Stability regions of the original system and the gradient system with a) normal
damping and b) high damping

5.5.6 Effect of system loading on the one-parameter transversality condition

Two cases of OMIB systems are presented in this section. First, it is shown that a system with

a high loading does not satisfy the one—parameter transversality condition and that the BCU

method may fail under this condition. This is in contrast to the second case in which decreased

y loading ensures the satisfaction of the one—parameter transversality condition, allowing the BCU

method to work correctly. A uniform damping of three is considered in both cases, Ad = 3. The

rest of the parameters are as follows,

Ef = 1.05 pu
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V,, = 1.00 pu

X
’
= 0.10 pu

l

X; = 0.25 pu

M = 0.06 5*%%%
1>,„ = 2.00 5%

E v,,, _
3-0

We may use the following norm as a measure of system loading :

- _ IILIIloading - n _ 1

High loading

The input mechanical power to machine one is two, P„,1 = 2.0. Fig. 5-16 (a) shows the

stability boundary and the potential energy function for this case. Also shown are the e.p.’s,

these are the following:
(6,,0) = (0.72973 rad, 0 rad/s)

(6,,1,0) = (2.4119 rad, 0 rad/s)

(6,,2,0) = (-3.8713 rad, 0 rad/s)

Notice that VP, (6,,2) = 14 and VP, (6,,1) = 1.5 . The back·wall of potential

energy is very tall and the front-wall is very shallow.

Light loading

The input mechanical power to machine one is P„,; = 0.5. Fig. 5-16 (b) shows the stability

boundary and the potential energy function for this case. Also shown are the e.p.’s, these are

the following:
(6,,0) = (0.16745 rad, 0 rad/s)

(6,,2,0) = (2.9741 rad, 0 rad/s)

(6,,2,0) = (-3.3090 rad, 0 rad/s)

Ngtica that IQ, (6,,2) = 7,5 and VP, (6,,,) = 4.0 . The back-wall of potential

energy is not as tall as the previous case and the front·wall is not so shallow.

It is evident that the degree of system loading can also have a major effect on the ability
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Figure 5-16: Effect of system loading on the one-parameter transversality condition. (a) high
loading and (b) light loading

of the BCU method to correctly determine the controlling u.e.p.. The previous example shows

that a power system may satisfy the one-parameter transversality condition at one loading

condition (the light loading case), but may fail to do so at a higher value (the high loading

case).

5.6 Verification of BCU u.e.p.(s)

A discrepancy results in the BCU method when insufficient damping or excessive loading is

present in the system. The third result of [10] is stated as foHows,

• If the one-parameter transversality condition is satisfied, then Q is on the stability bound-

ary öA(Q,), of the gradient system if and only if (Q,Q) is on the stability boundary,
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öA(§_„ Q), of the original system.

This result always applies, regardless of damping. The difficulty in this result is finding

when the one·parameter transversality condition is satisfied in a multi-machine system. In

the previous two cases, the one with insuflicient damping did not satisfy this condition.If the

one-parameter transversality condition is not satisfied, the result obtained by the BCU method

may not be correct for multi-swing stability. In order to find if the u.e.p. obtained lies on the

stability boundary of the original system, the following method is proposed:

1. Define the normalized vector 1 as the following:

z =

_
éco-grad

'éco—grad2.

Find the starting point as the following point:

(éco-grad +0.01Äs3.

Integrate the state equation of the original system using the previous starting point.

(a) If the trajectory tends toward (§_,, Q) then the point (§„_g,.„,d, Q) lies on the stability

boundary of the original system. The stability boundary may be locally approxi~

mated by the following surface:

6V (@,.-,....0) = {(5.62) = V (ie) = V,„ (é..-,.....)}

The critical clearing time may be approximated by the time at which the fault-on

trajectory intersects with this surface. This results in a multi-swing assessment of

stability.

(b) If the trajectory tends towards infinity then the point (§„_g,.„d, Q) does not lie on the
i

stability boundary of the original system. The intersection of the fault·on trajectory

with the above surface will only yield an upper bound for the critical clearing time

and conventional methods will be required to determine the critical clearing time.

133



The idea of using direct methods and conventional methods is not new, see page 1

ofThereis a method which combines direct and conventional methods, it is called as Hybrid

method of power system transient stability [53].

5.6.1 Three-machine system example

The three—machine system of reference [1] shown in Fig. 5-17 is used to illustrate the suggested

procedure. A small uniform damping «\,1 = 0.02 is used.

1<16 1<16

2.40
10••

2.40 1.000

°

1<0
26

1<0
H-10 ]_°15 8.20 H¤10 1-015 ggg

1.5+1.46
Q

1.5+1.46
1<15 H•N 1<15 Heß

421 106 421 1.06
g 124+125 12.4+12.6

H¤15
Lau

H¤15
[uu

1.0+].3 1.0+1.3

la) <¤>

Figure 5-17: (a) 3 - machine system of reference [1], (b) Post-fault system with line 1-2 open

Four faults on line 1-2 are considered (2 faults near bus 1 and 2 faults near bus 2), in

all cases line 1-2 opens to isolate the fault. Fault location, fault impedances, gradient system

controlling u.e.p.s, corresponding energy level and critical clearing times as found by the BCU

method are as follows,

1. Near bus 1, Z; = j5 >< 10'6, Q1 = (121.32°, —.89302°) , IQ, (Q1) = 2.0062 , c.c.t. =

0.17 s

, 2. Near bus 1, Z; = 0.06, Q2 = (—196.32°,41.460°) , VP, (Q2) = 10.729 , c.c.t. = 0.325

s

134



3. Near bus 2, Z; = j5 X 10'6, Q3 = (—13.512°, 119.612°) , VP, = 5.8383 , c.c.t.= 0.1955 S A
4. Neu bus 2, Z, = 0.03, Q, = (60.017· - 176.s6·), V1., (Q,) = 25.713 %"Vg¤é, c.c.1. = 0.455

s

The PEBS, the u.e.p.’s on the PEBS, and the equipotential curves are shown in Fig. 5-18,

Q1 to Q4 are type-one e.p.’s, Q; to Q3 are type-two e.p.’s.

150 1Jfr;11
gi i J P,.J.¥,JJJ.¢ , _ LIT, ä

ZM
(

gM·‘°°

·:;;§}”—Ti‘L.·_;lÜlI§ „..._ g”''J·*5Z1*;*·*?;"*ä"*"‘*‘:.L__
-·al-260~150 -60 60 160 250

61-con (d•g)

Figure 5-18: Contour map of potential energy using ray approximation and PEBS for three-
machine system of reference [1] with line 1-2 open

The post-fault trajectories of the above procedure projected onto the angle subspace are

shown in Fig. 5-19. We can see that (Q1, Q) lies on the stability boundary of the original system,

- but the rest of the type-one e.p.’s - (Q2,Q), (Q3,Q) and (Q,,Q) · do not. We can conclude that

this power system does not satisfy the one-parameter transversality condition since there are

three type-one e.p.’s on the PEBS, 8A (Q,), for which their corresponding e.p.’s of the original

1 135 ° P



system do not belong to the stability boundary of the original system, 8A (§_,, Q).

(Q1) 6 öA(Q„) (QM!) 6 öA(Q„§!)
(Q2) 6 öA(Q„) (QM!) ¢ öA(Q„§!)
(Q4) 6 öA(Q„) (QM!) ¢ öA(Q„§!)
(Q4) 6 öA(Q„) (QM!) ¢ öA(Q„£!)

An interesting result is that when the one-parameter transversality condition is not satisfied,

the number of e.p.’s on the PEBS is greater than the number of e.p.’s on the stability boundary

of the original system. When it is satisfied the number of e.p.’s on the PEBS is the same as

the number of e.p.’s on the stability boundary of the original system.

This particular example shows failure of the one·parameter transversality condition on both

accelerating (fault 3) and decelerating faults (faults 2 and 4). This is not a common situation.

It is easier to find cases which do not satisfy this condition for decelerating faults only.
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Figure 5-19: Post-fault trajectories projected outo the a.x1g1e subspace
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Chapter 6

Coriclusions

Both system damping and loading can have major effects on the ability of the BCU method

to correctly determine the controlling u.e.p.. A power system may satisfy the one~parameter

transversality condition at one value of uniform damping or loading, but may fail to do so at a

lower damping value or higher loading condition. Power systems not satisfying the assumption

of one-parameter transversality condition are not uncommon, especially for power systems with

high loading and/or low uniform damping.under decelerating faults. However, power systems

exposing the failure of this assumption under accelerating faults are rare indeed.

When the one—parameter transversality condition is satisfied, the number of e.p.’s on the

PEBS is the same as the number of e.p.’s on the stability boundary of the original system.

When it is not satisfied the number of e.p.’s on the PEBS is greater than the number of e.p.’s

on the stability boundary of the original system.

Failure to satisfy the one-parameter transversality condition may result in the PEBS and

BCU methods giving incorrect results for multi-swing stability. A procedure to determine if the

u.e.p. found by the BCU method lies on the stability boundary of the original system is given.

This procedure is appropriate for off-line applications when there is sufficient time for a hybrid

approach (combination of direct and conventional methods). Its use for on—line applications is

limited due to the following: a) it is time consuming and b) if it finds that the u.e.p. does not

belong to the stability boundary it provides no information concerning the stability/instability

of the system, it only provides an upper bound for the critical clearing time.

The BCU and PEBS methods as presented here are appropriate methods for off-line appli-
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cations. For on·line applications they must be combined with very fast conventional methods or

they must be improved to avoid their failure when the one-parameter transversality conditionis not met.

l
139



Appendix A

O O O OF1nd1ng the Trans1ent Energy 1n the
OOne Mach1ne Reference Frame

In this formulation, machine n wiH be the reference [85].

1. The starting point is the swing equation of machine i (Eq. 3.4).

,
Mi? -H+P¢i = 01*: 1121°°°1n

2. The set of n(n — 1)/2 equations of relative acceleration must be obtained. We will begin

with a 4-machine system and then generalize to an n-mazhine system.

M1%i:"—P1+P¢1 =0

P3 + P¢3 = Ü

M4£§;§*—P4+P¤4 =0

Multiply the first row of Eq. A.1 by M2, the second row by M1, and subtract the resulting

equations.

+MlM2Eé' · M2P1 + M2P¢1 = 0

d26
—M1M2ää + MIP2 — MlPc2 = 0140



d26M1M2% ·· (M2Pl ·· M1P2)+ (M2Pel — M1P62) =

We just got the first of the n(n — 1)/ 2 equations of relative acceleration. By repeating

the above procedure using the corresponding Ms we will get:

M1 (M2 P1 — M1 P2) + (M2 Per — M1 P62) = 0

M1
Ma%%‘* — (Ms P1 — M1 Pa) + (Ma Pa — M1 Psa) = 0

M1 (M4 P1 — M1 P4) + (M4 Pa — M1 P¢4) = 0

M2 Ms%i" — (Ms P2 — M2 P6) + (Ma Paz — M2 Psa) = 0

M2 — (M4 P2 — M2 P4) + (M4 Ps2 — M2 P¢4) = 0

Ma — (M4 Pa — Ma P4) + (M4 Psa · Ma P64) = 0

We can see from the above equations that, in general, .

·· (MJ? · MJ?) +
(MJ’¤¢ — MJ?6) = 0

fori= 1,·-·,n- 1;j = i+ 1,···,n

3. We then multiply the above generalized equation of relative acceleration by the correspond-

ing relative speed äü.

° dä; dä; dä;M¢Mi6ijT1iL — (MJ? — MJ?) 1;* + (MJ?6 ·· MJ°¢6) 1;* = 0
fori=1,···,n—1;j=i+ 1,-··,n

4. We will add these n(n — 1)/2 equations in the following manner:

“·‘ “ . 66-- d6;· d6;·M;MjÖgj¥'l· — — Mgpj) —L
+ (Mjpcg — = 0

. . . dt dt dt•=1 _1=•+1

This equation is -116,% = 0, and, to get V(Q,zi), we must integrate the following equation:

t' dV
V(Q,g) -Ä dt
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or ‘
dV .VM — Z. - (1-) de

Since -% = 0, we know that V(Q,g,_:) = constant.

At t, the s.e.p. is reached, i.e. w;(t,) = 0, 6;(t,) = öf.

.414,% =
11-1 Il ° d6i'
d6i‘26:1Ej=i+1 MeM16e11z‘ — (Meß ·· Meß) 1% + (MeP¢e — MePee)1;'“

5. Before integrating Eq. A.2, we must find a convenient expression for the underlined term,

since Pd and Pd are functions of the relative angles 6;,.

11-1 n

i=l j=i+1

11-1 71 11 fl

(C5}, Sin 6;;, + D5}, COS 651;) — M; (Cjk Sin dj}, + Dj}, cos 6j},)]
i=1 j=i+1 k=1 k=1

or
11-1 n

(Mjpd — Mgpej) =
i=1 j=i+1

11-1 II fl fl

M5 (Cue Sil! 6611) — Me Sil! 651)
i=l j=i+l k=1,¢i k=1,¢j

11-1 fl 7l fl

·I- Mj (D5}, COS 6;;,) — M; (Dj}, COS Öjk)

i=l j=i+l k=1,¢€ k=1,¢j

Notice that in the right hand side of the above equation, the first summation of i from

1 to n — 1 corresponds to the transfer susceptances of the postfault reduced admittance

matrix. The second corresponds to the transfer conductances.

i
- Corresponding to transfer susceptances for TL = 4

+M2 (+012 Sil! 612 + C13 Sil! 613 + C14 Sil! 614) 612

—M1 ('C12 Sil! 612 + C23 Sil! 623 + C24 Sil! 624) 612
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+M3 (+C12 Sil! 612 + C13 Sil! 613 + C14 Sil! 614) 613

-M1 (*013 Bill 613 — C23 Bill 623 + C34 Bill 613

+M4 (+C12 Sil! 612 + C13 Sil! 613 + C14 Sil! 614) 614

-M1 (-C14 Bill 614 - C24 Bill 624 - C34 Bill 614

+M3 ('C12 Sil! 612 + C23 Sil! 623 + C24 Sil! 624) 623

-M2 (*C]3 Bill 613 - C23 Bill 623 + C34 Bill 634) 623

+M4 (*C12 Bill 612 + C23 Bill 623 + C24 Bill 624) 624

-M2 (-C14 Bill 614 - C24 Bill 624 - C34 Bill 624

+M4 (-C13 Bill 613 — C23 Bill 623 + C34 Bill 634) 624

-M3 (-C14 Bill 614 —
C24 Bill 624 - C34 Bill 624

The coefficient of C12 sin 612 is

612(Ml + M2) + ä13M3 +ö14M4 — 623M3 — $24M4
= 512(M1 + M2) + M3($l3 +632)+ M4($l4 +642)

= äl2(M1 + M2 + M3 + M4)

= $12Mt

Similarly, the coefficients of C13 sin 613, C14 sin 614, C23 sin 623, C24 sin 624 and

C34 sin 634 are 513Mt, 614M1, 623M1, 624M1, 634M1, respectively, resulting in the

following equation:

4-1 4 4 4
·Mj (C5}, Bill 6;;,) — Mg (Cjk Bill 6jk) 6gj =

i=1 j=i+l k=l,¢i k=1,#j

4-1 4
·M1 Cgj Bill 6;j6;j

i=1j=i+1
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The general form of this equation is Eq. A.3.

[Mi 2,1;:1,,6; (Cik Bill 6ik) — Mi 22:1,46j (Cjk Bill 6511))6;jM:

ZF;} Z§‘=6+1 C6 Slll 62611

— Corresponding to transfer conductanccs for n = 4

-I-M2 (D12 COS 612 ·I· D13 COS 613 ·I· D14 COS 614) 612

—M1
(D12 COS 612 + D23 COS 623 + D24 COS 624) 612

+M3 (D12 COS 612 + D13 COS 613 + D14 COS 614) 613

—M1 (D13 ws 613 + D23 ws 623 + D34 ws 634) 613

+M4 (D12 cos 612 + D13 cos 613 + D14 cos 614) 614

—M1 (D14 cos 614 + D24 cos 624 + D34 cos 634) 614

+M3 (D12 COS 612 + D23 COS 623 + D24 COS624)—M2

(D13 cos 613 + D23 cos 623 + D34 cos 634) 623

+M4 (D12 COS 612 + D23 COS 623 + D24 COS 624) 624

—M2 (D14 cos 614 + D24 ccs 624 + D34 cos 634) 624

+M4 (D13 cos 613 + D23 cos 623 + D34 cos 634) 624

—M3 (D14 cos 614 + D24 cos 624 + D34 cos 634) 624

The coeflicient of D12 cos 612 is

(M2 — M1 )$12 + M3$13 + M4äl4 + M3523 + M4624
= (—M1 + M2 + M3 -I· M4)61 + (M1 - M2 -·I— M3 + M4)62 — 2 M353 — 2 M464

= Mtäl + Mt$2 — 2(Mläl + M262 + M363 + M4£4)
= M,(6, +6, - 2 6.,)
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Similarly, the coeflicients of D13 cos 613, D14 cos 614, D23 cos 623, D24 cos 624 and

D64 ¢¤S 664M6and

M,(63 + 64 — 260), respectively, resulting in the following equation:
¢

4-1 4 4 4 _
Mj (D5}, 6066;;,) — M; (Dj}, cos6j;,) 6gj =

{:1 j={+1 k:1,¢{ k=l,¢j

4-1 4 _ _ _
M1 Dgj COS 65j · (6; + 6j — 260)

{:1 j={+1

The general form of this equation is Eq. A.4

[Mi (Dil: ¢¤S 6611) — M; 2},*:1,,4, (Djk cos 6,1,)] 6ij = (A 4)
M6 2E*-3* 2}*-6+1 D6; ¢<>S 666 · (66 + 66 -1266)

Substituting Eq. A.3 and Eq. A.4 into Eq. A.2 we get

dV

11-1 11 ·
dt{:1 j={+1

”"
" 66,, , d6,,

Mgcgj81111-1
5-1+1

fl-]. 1l
COS 6gjF (6; + 6j - 260)]

{=1j={+1 t

By multiplying both sides of the above equation by Ü we get

JK -
dt

—

11-1 II °M·M · - d6··

11-1 fl M*H—M;P·d6;· _ 116;*+ E.21:15:1+1
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11-1 11
[Dgj COS Ügjy (Ö; + Öj — 26,5)] V

{:1 j={+1 t

6. We then integrate the above equation from t to t, (post-fault).

6, dy

‘
dV

V (Q, 2,1) =
'*—1

'*1.1. [6‘.;J.] dtjgl 6, M, J dt

""I ” ‘
M·R-M·P·d6·· d6;

+ Ä
-I- Ügj Siuögjjl dt

i=1 j=i+1
‘

11-1 7l t d

+2 2 / [D;jC0SÖ;jI(Ö;+Öj -26,,)] dt
i=1j=i+1 t' t

or

V11-1TI ~/Wü
+

_
wi .

M;H — M;P; /66: döü
6:1 5:6+1 M* ‘€5

11-1 1l gü

+ C;j~/ sin6;jd6;_;
6:1 5:6+1 sf;

66-1 61 6,+6,-26,,
+ D;] cos(6;-6·)d(6-+6--26)ig, J 6;+6;-26; J J J 0

The transient energy in relative angle formulation results in the following equation:

(66} " 665) ‘ C6} (ms 66} ’ °°S 665) + Dijlii
where I;j = fgiggägg cos (6; - 6_;)d(6; + 6; - 260) .

i
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7. Notice that the transient energy function given by the previous equation is formulated in

relative angle. To get the formulation with one machine as referencejwe must use the

following equations:
665 = 66,. — 65,.,

wsj = Win — wj,.

6, + 6, - 26,, = 6,,, + 6,,, + 26,,

Now we must find an expression for 6,, as a function of the angle subspace

6: {6,,,,i: 1,···,n— 1}

1 fl
6 = — M· 6·0 Mt I I

According to Eq. 3.7,
6

6n “ 60 = 6n ' ü' EF:] Miöi

= 6,. — $6,. — fg; 2};.1 M66;
7,*; 2,:,* {M. (6.. + 6„>1

= Ü; 2;:11 Miön
‘ 1}; El;11 Miöin

“
Ü;

El;-11
Miön

or
- 1 n-1
7l (-)
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Appendix B

The Equality of the COA and One

Machine Reference Frames

To obtain the relationship between V(Ü,&':) and V(6,w), we will begin with the kinetic energy.

— Kinetic energy.

7l—2 7l•l M_M_ YP-].

=
‘

in ' wjn 2
'

n gnV6,( ) (w )+§ 2Mt LU

Vk (Q) = gi: M6Qf
6:1

V}, = Mg (wg — wo)2

6:1
Zwgwo{:1

{:1 {:1

= }—äM·w? -Mw2+ lMw2
2 i=1 ' 8 t O 2 Ü Ü

läéwg

i
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1 " M 1 "
2‘* (ügßliwi) .

- üM.w.
2

-26:1
2 2 2M' 6:1

2 2

- J. .L
:1

k
6:1

2 2 2Mt i=1
2 2

i=1j=i+1
2 2 J J

71 VI 11-1 Tl

: E M,) - ZM?6,.»? - E E 2Mw;Mjwj]
2 i=l k=l i=1 6=1j=i+1

: ä (Mw?
$2:

M1,) + - - 2Mw;M_wjj|
2 i=1 k=1,¢i i=l 6:1 6:1 j=i+1

1 11-1 11 11-1 · fl
= (M;M_;w? -I- M;M_;w?) - Z; 2M;w;Mjwjj|

1:1 _1=•+1 6:1 j:6+1

1 11-1 fl 1 11-1 71
[M; Mj M;Mj (w; —wj)2

2 {:1 j=f+l t 1:1 j:i+1

— 7l»··2 il-]. 2 7I-l MiMn 2
wfg

V1(Q)=V1(@)

— Path-indegndent Botential energy.

com IQ (5) = 14.6 (5) + 16,6 (5)

where 1
(5) = — Z [P1 (56 — 5:)] — P,. (5,. -5:,)

6:1
VP2 (Ä) =

11-2 11-1 _ _ 11-1
~ ~ -ws 6:,)] 0,,, [ws (6, - 6,,) - cos (6: - 6:,)]

Machine n as reference: V, (Q) = V,1 (Q) + IQ; (Q)149



where 2 1'*'“ ”'
M-E — M;P· .(6611 — 65,1 — 6},, + 6},,)

11 —° t•,- J-1+1

"" M 1>~ - M—1>
fl I 8 VI— Z ———— (6,, — 6:,1

{:1 Mt

V162 (Ö) =
n—2 n—1 n—1

C;} [cos (6;,, — 6},,) — cos (6},, —6},,)]•=1
_1=•+1 ::1

=•= Let us consider IQ;.

11-1 fl
VP; (6) = — (cos6;_, — cosöfj)

{:1 j={+1

11-1 n

Cgj (cos
ldgj — COS 6;})

{:1 j={+1

n-2 n-1 n-1
: : E E [6,, (,,,,6,, : cos6;’_,)] : E 6,,, [6,,, (6, : 6,,) : 66, (6, : 6;,)]

i=1 j={+1 {:1

This equation is also equa.1 toVP;=•·

Now, let us consider VP,.

Vvl (Ö-)

= - 2::3 2:;:2,, 6,, — 6:, + 61,)
— 2:*;,* --1,-M

‘°"f”"° (6,,, - 6:,.)

= — 2::1* 2;*:,,,, (6,, — 65)

= -155 2}*:1* 2}*:,+1(M1H6¢+ MJÜÖ1 - RM661 - 1%M666)

+15; 2}:1* 2}:,+1 (Mjßöä + M¢P16§ -
HM165’ — P1M66:’)

= *71}; XL1 (166,z7::1„,6, Mk — E 2:2:1,,66 Mkök)
+5; 2}*:1 (166:2},*:1,,,, Mk - R 2},*:1,,6, Mköß)
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= — 2:*:1 1’,e61M1— 1'1;—61M1— 2*6- 22„*:1,161M:16¤1( { { l

+ 21:1 (1*616:166 — 1'1;g6:M1 — 151 221*:1,161M6161:)

= -ü 22*:1 (R66M¢ — R 221*:1 MM)

+1}; 22*:1
(H6:’M1

- R 221*:1 M16;)

= -1}; 22*:1 [(1266661 — !%M16o) - (R62M1 — HM16ö)l

= - 22*:1 {1’%[(66 — 611) - (62 — 66)]}

1
6 = -2:‘:11=6(51-5:)

This equation is also equal to VP; . In conclusion, we get the following result:

ww=m@
2

— Path·deRendent Rotential energy.

~
n-] fl §‘+§j

~ ~ ~ ~com V1 (6) : E E D11 _ ms (61 - 61) 6 (61 + 61)
6:1 5:6+1 6$+6}

Machine n as reference: V11(6) =
„_2 ”_1

6in+6jn'l'2än
-'l' _ 6i·n'6' d 6in‘l'6‘j J7!) J7! )

n-1 6in+2gn
_

D;„ cos 6;,1 d (6;,1 ·-|- 26,1)

V1¢(é) = 22*;} Z?=i+1 DÜ 66) d(61+ 66 — 266% 86666 6i - 66 =
6; — 61 and 6;+ 61 - 2 60 = 61+61. We can then conclude that the following equation

holds.
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The transient energy is the same in the COA and one-machine—as—reference formulations,

i.e.
‘

v(£,Q)=v<§.,g>
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Appendix C

The Synchronous Machine

C.0.2 State equation, detailed model.

This section has been adapted from [47]. Usually, the following parameters are given:

1. rating 5;,,,,

2. line to line voltage Vu,

3. number of poles P

4. combined inertia of generator and turbine J

5. stator resistance per phase r,

6. stator leakage reactance per phase Xg,

7. q-axis reactance Xd

8. resistance and leakage reactance per phase of the q-axis damper winding-1 referred to the

stator, 17,,,1, Xgkql

9. resistance and leakage reactance per phase of the q-a.xis damper winding-2 referred to the

stator Tkqg, Xum

10. d-axis reactance Xd

11. resistance and leakage reactance of the field winding referred to the stator rjd, Xgfd
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12. resistance and leakage reactance per phase of the d·a.xis damper winding referred to the

stator rkd, Xgbd
A

Let us assume that the machine is connected to an infinite bus with voltage W pu, then

vd, cos (w,t)

Üb, = W cos (w,t — Pu

vc, cos(w,tAfter

taking Park’s transformation, the following applies:

vd, = M c0s(6)

vd, = E cos(6) Pu

vg, = Ü.
l

Let us define the following variables before obtaining the state equation.

V2
. z = szbau

Sbusc

w, = 120 1r E-Q
s
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L1, = Tie

L,Lm, = L, — L1,

Lg = ig? .

Lm,1 = La — L1,
Llfd

reactances in pu, w,

inLkql= L11,q1 + L„,q

Lkq2 = Llkq2 + Lmq

Lu,4Lka
= Llkd + Lma

Xma = w, Lma
X„,, = w,

Pu

11 (1~•)’
H sSbasc

-L, 0 L,„, L,„, 0 0 0 0

0 —L,g 0 0 Lmd Lmd 0 0
—L,„, 0 Lk,} L„,, 0 0 0 0

[E] = —L„,, 0 L„,, Lk,g 0 0 0 0 (CJ)
0 0 0 L,,,§;¤ Lmqézd 0 0
0 ·-Lmd 0 0 Lmd Lkd 0 0

0 0 0 0 0 0 2,% 0
0 0 0 0 0 0 0 1

T
£= [ iq, ia, ikql ikqz ifa im w 6
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IG cos (6) + r,i„, + (w + w,) Ldid, — (w + w,) Lmd (ifd + ikd)

W sin (6) - (w + w,) Lqiq, + r,i„;_, + (w + 1.1.1,) L,„q (ikql + ikqg)

"rkq1 ikql

E(I)
_ 'FI:q2ikq2

—
'Xmdifd

—•‘1«1i1«1
“Xmd (ijd + ilcd "" id:) iq: * Xmq (iq: " ikql " ikq2) id:

w

T
1l.=[0000V„0T}0[

The state equation results.

i = IE]" {IF (@2)] + 2} I (C-?)

The input torque, T}, and the voltage of the field supply referred to the stator, V„, are the

only forcing functions in this particular case.

C.0.3 State equation, classical model

For comparison, the state equation of the classical model is

¢> = · gw
. M cc-3)
6 = w

, where
ME . MW—
Ü

8111,M

= Ei
we

According to [47], the transient reactance XQ relates to the reactances of the detailed model

by 2(X11 — X1,)
X' = X — ——l-l

d d XIfd+Xd“Xl:

Now the only parameter to determine is the damping factor D. The damping power Pd is
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proportional to the angular velocity deviation w, i.e.

Pd = Dw

Friction and windage losses also contribute to the damping power [6], but this contribution

is negligible. The damping is mainly due to asynchronous torque and, since the angular velocity

deviation is small, it will be assumed that the damping power is proportional to the angular

velocity deviation w = w, — w, rad/s.

C.1 Linearized state equations

C.1.1 Detailed model

Given a state equation of the form Q = + Q the linearized- state equation around the

operating point Q0 is
. Ü -A; = Aa + AnL Eo

The corresponding homogeneous system is the following:

_ 6A; = A.;
ä äo

Now, this res111t is used to obtain the homogeneous linearized equation. Matrix E in Eq.

C.2 remains constant. A11 then that is needed is [ggü] .
- äo

[äE(;)] =ÜQ Io
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L IT, xd 0 0 -1:,,,,, -x,,,d + " "* - $106,,
—LmdIfd

—X,, r_, X„,d XM 0 0 —L,,I,_, cos 60

0 0 -17,,; 0 0 0 0 0

0 0 0 —r;,qg 0 0 0 0

0 0 0 0 -X„,d 0 0 0

0 0 0 0 0 —Tkd 0 0

X I
XdqIqs Xmqlds XmqIds 'XmdIq• 'XmdIq• 0 0

0 0 0 0 0 0 1 0

The stable equilibrium point is

T
£Q=[Id, Id, 0 0 Ijd 0 0 60]

Given the line current phasor I, = Id, + j Id; = IaLi, the voltage phasor at the infinite

bus E = I4 LQ , the operating point is obtained by the following:

_ 'ralai
‘l' Xqlar

60 _ arctau ‘l' rn-[ar ° Xqlail

Id, = Id cos (60 + 0); Iqs =
I,,_,@

Id, = ,/1,} — 1,},; Id, = Id, [ 60 — 1r/2

Vo, = V: +•'•I¤ +.iXaIdg+.iXqIqs

Note: These equations correspond to 60+0 > 0; in this case Id, Iags Iqs by 90°. These equations

do not apply if Id, Ieads Iqg by 90°. To conclude, the linearized homogeneous equation is

Al = [A] Ax (C.4)

where

- ÜE SQ[A1 = [E1 ‘—
fo
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T
Al = [ Aiq, Aid, Aik,1 Aik,2 Aifd Aikd AwA6[E]

is given by Eq. C.1.

C.1.2 Classical model

The linearized homogeneous equation is

A6 0 1 A6
= (C.5)

Aw —£;P„„,,, cos (60) -ß Aw

The Jacobian is
0 1

—§P„„„„ cos (60) -ß _

The Jacobian’s eigenvalues are

,\ - -2 i(2)2—
2M 2M M

C.2 Machine data

Data taken from [47].

The data corresponding to a large hydro turbine generator is the following

$5,,, = 325 MVA

power factor = 0.85

VLL = 20 kV

P = 64

J = 35.1::106 J 62

H = 7.5 s on its own base

= 24.375 s on a 100 MVAbase
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1*, = 0.00234 Q

X1, = 0.1478 Q
4

X, = 0.5911 O Xd = 1.0467 Q
1‘j,;

= 0.00050 Q

X;j,; = 0.2523 Q

rk,2 = 0.01675 Q 17,,; = 0.01736 Q

X;;,,2 = 0.1267 Q X;;,,; = 0.1970 Q.

The data corresponding to a large steam turbine generator is the foHowing:

$5,,, = 835 MVA

power factor = 0.85
6

VLL = 26 kV

P = 2 poles

J = 0.06582106 J 62

H = 5.6 6 on its own base

= 46.76 6 on a 100 MVAbase

1*, = 0.00243 S1

Xg, = 0.1538 O

X, = 1.4570 Q Xd = 1.4570 Q

17,,1 = 0.00144 Q 1*;,; = 0.00075 Q

X;;,,1 = 0.6578 Q X;j,; = 0.1145 Q

17,,2 = 0.00681 Q 17,d = 0,01080 Q

Xlkq2 = 0-0762 Ü Xun; = 0.06577 O.

l
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C.3 Damping calculation - Free acceleratiou

To illustrate the effect of the damper windings, a simulation called free acceleration is realized

using Eq. C.2 with Vo, = 0 and T} = 0 and the following initial conditions:

F
iq, 0

id, 0

{kcal 0

20 =
tdqqg

=
Ü

lfd Ü

ikd Ü

w —w,

6 0 ‘
0

Notice that in this simulation, the applied voltage to the field winding is zero. The results of

these simulations are shown in Fig. C-1. The base torque is the following:

i
Tbasc N mfl "’•

The torque shown is the asynchronous torque and the simulations can be used to determine

· the damping factor D. This factor is given by

D
_ E MW s—

w MVA rad

where
pd = Te ‘i.*’.1

ws

Both Pd and T, are in pu. Therefore, if we plot the damping power Pd versus the angular

velocityw, an estimate of D may be obtained graphica.lly. This result is illustrated in Fig. C-2.

These plots start with an angular velocity of -30 % because the region of interest is for small

angula.r velocity deviations. The average damping power is drawn, and the slope after the knee
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1 . 2 1 . 0 V
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13 -0. 0 1B -@- 5
’ 1 *2 -1 .0
- 1 . 6

- 2 . 0 — 1 . 5
-1.0 -0.5 0.0 -1.0 -0.5 0.0

w /w S w /w S

a) Hydro turbine unlt b] Steam turbine unlt

Figure C—1: Asynchronous torque versus angular velocity deviation in pu

is D. The damping coefücient for the hydro turbine unit is the following:

1.6 MW sD - E - 0.103 , $1,,,, - 325 MVA

For the steam turbine unit the damping is

1.4 MW s
D = —- = .1 6 ———-, = VA13.2 0 5 MVA Ma

S"°” 555 M

C.4 Damping calculation - Step increase in input torque

A second procedure to determine the damping consists on simulating a sudden change in input

torque, the asynchronous torque is obtained from subtracting the steady state synchronous

torque T„ from the electro-magnetic torque T,, i.e. Td = T, — T„. The steady state torque is

given by the following equation:

WVM . W2 1 1 .
ss = 'W T ' "" 6T Xd

s1n( )+
2 Xq Xd

s1n(2)
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•) Hydro turbIn• unlt b) Sham turbIn• unlt

Figuie C-2: Damping power versus angular velocity deviation-Free acceleration

We will define the internal power as

Pc = Tea: + w,
ws

The steady state power is defined as the foHowing equation:

+Pu

=Thedamping power results in the following:

+
Pd =Pc-PuIt

wiH be assumed that the input torque was zero before time zero, and in order to avoid

non—linearities, the input step will be 0.1 pu. It will also be assumed that the open circuit

voltage is 1.0 pu. Therefore, with T} = 0.1 pu, V„ = 1.0 pu, the initial conditions are the
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following:
iq, 0 ‘

id: 0

ikqql Ü

ikq'2 0
go :

·
:

#14 Xn.4

ik; 0

w 0

6 00

The results of these simulations are shown in Fig. C-3. Notice that for the hydro turbine

unit the new stable equilibrium point is reached promptly, however for the steam turbine unit

the oscillations disappear promptly but it takes considerably longer to achjeve the new stable

equilibrium point.

0.20 0.10

P. 0.14
0.15 g? ? 0.12

é Q 10 ä 0.10
P•• E 0.00

0.00
P••

ef Pd 10 =am 0.04
0.02 Pd

-0.05 am
0 2 4 0 0 6 10 15

tIm• (0) 1Im• (0)

I) Hydro 1lJI’Ü')0 unlt b) Stum turbIn• unlt

Figure C-3: Power versus time for a step input torque of 0.1 pu

The damping power is plotted versus the angular velocity deviation. After drawing the

average damping power, the corresponding slope is D. Notice that due to the slow dynamics

involved in the steam turbine unit, this method of finding D can not be applied for this unit.
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Figure C-4: Damping power versus angular velocity deviation-Step input torque

According to Fig. C-4, the damping for the hydro turbine unit is

0.05 MW sD · ·

°·‘°“C.5Damping calculation - Eigenanalyisis

A third method of finding the damping factor consists of the following:

1. Calculate the eigenvalues of the homogeneous dynamic equation of the detailed model,

Eq. C.4, and identify the swing mode eigenvalue, «\_„„;„g.

2. Find the eigenvalues of the homogeneous dynamic equation of the classical model, Eq.

C.5. As mentioned before, these eigenvalues are

D / D Z pm 6
Aclauioal = Zt

'3.Set the real part of the classical model eigenvalues equal to the real part of the swing

mode eigenvalue, i.e.

(real part of «\,,„;„g)

165



or

D = -2% (real part of «\„„;„g)
”

Rated operating conditions for the hydro turbine unit are the foHowing:

Vg = 1 + 0

10 = 0.8500 + 0.52678

VM, = 1.602

CI) = 0.8519

The stable equilibrium point is

Iq, 0.64474
V Id, 0.76440

Ikqg 0

Ijd = 2.1935

Ikd 0

wg 0

60 0.3153

The eigenvalues at the rated operating condition are

-3.5769 zh j376.89

-1.3270 zh j8.6843

-24.401

-22.910

-0.45282

The swing mode eigenvalue must be complex conjugate, and its natural frequency must be low.

«\„„;„g = -1.3270:h j8.6843
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Therefore
2 x 7.5 MW s .D - 2qE-6;-1.327 -0.106Rated

operating conditions for the steam turbine unit are the following:

V; = 1 + 0

In = 0.8500 + 0.52678

V0., = 2.4779

7} = 0.8530

The stable equilibrium point is

Iq, 0.34330

Id, 0.93923

[ggg 0

Igqg _ 0

[jd 1.5394

[kd 0

wg Ü

60 0.66456

The eigenvalues at the rated operating condition are

-4.4514 zi: 376.89

-1.7042 i 10.476

-11.105

-32.103

-0.34959

-0.85578
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Aga.in, the swing mode eigenvalue must be a complex conjugate, and its natural frequency

must be low. °

)\_,„,;„g = -1.7042 :h 10.476

Therefore
2 X 5.6 MW sD - 2-üE-1.7042 -0.101C.6

Comparison of results

The damping coefficient has been obtained for two large machines, using three different methods.

Let us compare these results.

Hydro turbine unit

Free acceleration 0.103

Step input torque 0.103

Eigenvalue 0.106

Steam turbine unit

Free acceleration 0.106

Step input torque 0.10

Eigenvalue 0.101

As shown in [47], the swing eigenvalue does not change drastically with the operating condi-

tions. It seems from the results obtained, that a typical value of damping for a large synchronous

machine is 0.1 on its own base.

168



C.6.1 Uniform damping

In direct methods for transient stability, uniform damping is usually assumed. Uniform damping

means that the ratio ß is the same for all the machines in the system.

Dhydro = 0.1 2 5
u

Mpwd,-0 0.039761 ·

Dateam _ 0.1
~M,;,,„„

_
0.029708

N 33661

Although the ratio ß is not the same for both machines we see that it does not change drasti-

cally.
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