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Designing Reactive Power Control Rules for

Smart Inverters using Machine Learning

Aditie Garg

(ABSTRACT)

Due to increasing penetration of solar power generation, distribution grids are facing a

number of challenges. Frequent reverse active power flows can result in rapid fluctuations

in voltage magnitudes. However, with the revised IEEE 1547 standard, smart inverters

can actively control their reactive power injection to minimize voltage deviations and power

losses in the grid. Reactive power control and globally optimal inverter coordination in real-

time is computationally and communication-wise demanding, whereas the local Volt-VAR

or Watt-VAR control rules are subpar for enhanced grid services. This thesis uses machine

learning tools and poses reactive power control as a kernel-based regression task to learn

policies and evaluate the reactive power injections in real-time. This novel approach performs

inverter coordination through non-linear control policies centrally designed by the operator

on a slower timescale using anticipated scenarios for load and generation. In real-time,

the inverters feed locally and/or globally collected grid data to the customized control rules.

The developed models are highly adjustable to the available computation and communication

resources. The developed control scheme is tested on the IEEE 123-bus system and is seen

to efficiently minimize losses and regulate voltage within the permissible limits.



Designing Reactive Power Control Rules for

Smart Inverters using Machine Learning

Aditie Garg

(GENERAL AUDIENCE ABSTRACT)

The increasing integration of solar photovoltaic (PV) systems poses both opportunities and

technical challenges for the electrical distribution grid. Although PV systems provide more

power to the grid but, can also lead to problems in the operation of the grid like overvoltages

and voltage fluctuations. These variations can lead to overheating and burning of electri-

cal devices and equipment malfunction. Since the solar generation is highly dependent on

weather and geographical location, they are uncertain in their output. The uncertainity in

the solar irradiance can not be handled with the existing voltage control devices as they

need to operate more frequently than usual which can cause recurring maintenance needs

for these devices.

Thus, to make solar PV more flexible and grid-friendly, smart inverters are being devel-

oped. Smart inverters have the capability of advanced sensing, communication, and control-

lability which can be utilized for voltage control. The research discusses how the inverters

can be used to improve the grid profile by providing reactive power support to reduce the

power losses and maintain voltages in their limits for a safer operation.
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Chapter 1

Introduction

1.1 Motivation

Electricity is an inevitable and integral part of life in today’s world. In the past carbon fossil

fuels were the main conventional sources of producing electricity. These sources were not

environmental friendly, involved emission of greenhouse gases and depletion of non-renewable

sources such as coal, petroleum and natural gas which have limited availability. But, with

increased awareness of the harmful effects of the gases, governments in many countries are

assigning topmost priority to improve energy efficiency and reduce our carbon footprint on

the planet [3].

In addition, to limited sources of generation, there is an increase in peak consumption

with the increase of demand on basis of rising per capita kWh consumption [4]. Thus,
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the gap between generation and consumption capacities of the grid is reducing, leading to

increased pressure on the grid [4]. Increase in demand and limited amount of generation

resources makes the grid highly dynamic and vulnerable to voltage fluctuations [5]. Thus,

finding new sources of energy has become very essential. Renewable generation is one of the

key solutions used to provide electricity and stability to the grid.

Figure 1.1: Solar generation from Pecan street data [1].

The most common renewable energy resources used in the present world are photovoltaic

and wind energy. Increased penetration of renewable sources into the grid provides a logical

solution to handle the environmental issues. Since solar energy is locally available near

the load, it is easy to harness. Nevertheless, with increasing quantum of these renewable

sources results in more problems for the grid, such as reverse power flow, voltage regulation

etc. For example, a solar farm connected at the end of a long rural feeder can introduce

voltage regulation problems to all the residential buses along the feeder. Moreover, frequent

power flow reversals due to remote injection of renewable energy, strain the apparent power
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Figure 1.2: Bus voltage profile.

capabilities of substation transformers [6]. Solar generation from residential photovoltaics

(PVs) can fluctuate by up to 15% of the PV nameplate rating within one-minute intervals

bringing in the issue of uncertainty in generation too. Active power generated over a day

taken from Pecan street [1] is shown in Fig. 1.1. Although the active solar generation is

seen to peak during the daytime when there is maximum sunlight, there are lot of variations

in the real power output from the solar cell. This uncertainty depends mostly on climate

and geographical location of the solar cells. Hence, making the real power generation highly

dynamic and unpredictable. Moreover, in Fig. 1.2 the voltage profile is shown where the

consumption and generation data is taken from pecan street data [1]. Figure. 1.2 depicts

that voltage fluctuates rapidly during the day, overvoltage is seen during daytime due to

excess of solar power generation but undervoltage is seen during the night due to lack of

enough generation. Thus, to avoid these fluctuations and have a stable grid operation,

voltage regulation is required.
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Traditionally, voltage regulation is carried out using on-load tap changing in substation

transformers, switching of capacitor banks, and step voltage regulators. These equipment

have an operational delay of 30-90 sec [7]. due to their control techniques. The voltage regu-

lators need to carry out switching operations frequently due to high frequency of PV-induced

voltage fluctuations. This reduces the longevity of the voltage regulator as it depends on

the life of its switch. Since the real power generation and loads are increasingly becoming

more uncertain.Increased uncertainty leads to frequent switching actions, perhaps more in-

stallations might be needed, thus critically challenging reactive power control in distribution

grids.

These problems can be alleviated through the use of smart inverter technologies. Presently,

PV units interface with the inverters to provide advanced communication, metering, and con-

trol functionalities [8]. These inverters provide smart multi-unit control through control of

real power limit, controlled ramp rate for real power limit, control of reactive power output or

power factor, ride-through capability for specific grid disturbances, bi-directional power flow

capability, and alternatives to conventional transfer trip schemes [8]. Use of smart inverters

for reactive power control provides a fast responding solution for various grid objectives such

as power loss minimization and voltage regulation [6]. With the increasing penetration level

of PV into the grid more sophisticated rules for interconnection are emerging too. Intelligent

solutions to the problems present in the grid harnessing the inverter control capabilities will

be key to the successful implementation of large-scale PV generation in distribution grid. In

future, with a large range of control functions incorporated into newer PV inverter designs,
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will allow them to play an important role in the operation of the distribution grid [8].

According to the amended IEEE 1547 standard [9], inverters are allowed to operate

at non-unit power factors, giving inverters the freedom to improve the grid voltage profile.

Studies have shown that inverters can improve the grid voltage profile, or even displace

utility-owned voltage regulating equipment at more than 50% solar penetration [10]. With

hundreds of inverters in the grid, it must be noted that coordination of each inverter needs

to be taken into consideration to keep the grid stable.

1.2 Prior Works

In a typical distribution grid setup, the instantaneous loads and solar generation from each

node are communicated to a central utility controller; the controller minimizes ohmic losses

subject to voltage regulation constraints; and the computed setpoints for reactive power

injections are sent back to each of the inverters. The problem of finding the optimal reactive

injection setpoints for inverters is an instance of the optimal power flow (OPF) task, which is

non-convex in general. In radial networks, the OPF can be relaxed into a second-order cone

program (SOCP) via polar coordinates [11], where the problem of power loss and voltage

deviation minimization is solved. To alleviate the complexity of the involved optimization

problems, approximate grid models have been employed in [12], [13], [14].

Reactive power control problem can be solved using centralized, decentralized or local

techniques [15]. Centralized approaches need good communication setup as global infor-
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mation is needed for control actions. While, decentralized methods require local or neigh-

bouring inputs like voltage or power values for evaluating the control settings for single-

and unbalanced multiphase grids [16, 17]. Purely localized schemes provide reactive power

support using only local measurements. Thus, centralized schemes incur high computational

complexity as large sets of data have to be communicated between the controller and each

inverter; decentralized solvers require multiple communication exchanges among inverters;

and local schemes have no performance guarantees as the control set point only depends on

these local inputs making the system highly unreliable to disturbances happening on other

nodes.

Reactive power control policies can be mapped as linear or non linear policies with

respect to its input features. Linear policies, however, are restricted to capturing linear

relations between the features and dependent variables, and very often only capture second-

order statistical relations. Such limitations call for extensions to nonlinear and higher order

algorithms. To overcome this, kernel methods are adopted in this research. In this research

reactive power control policies are modeled by creatively cross-pollinating ideas from machine

learning and using the powerful tool of kernel-based learning which are practically feasible.

1.3 Thesis Outline

The content in this thesis has been organized as follows. The theory and application behind

the reactive power injection control using kernel methods is described in Chapter 2. Chapter
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3 describes the grid model and various forms of problems formulations for reactive power

control. Chapter 4 explains the prior control strategies, points out the shortcoming in each

method and motivates the problem utilized in this research. Chapter 5 presents our research

contribution towards developing kernel based policies for reactive power control. The novel

approach developed is tested on the IEEE 123-bus system and the results are shown in

Chapter 6. The thesis is concluded in Chapter 7.

1.4 Notation

Regarding notation, lower- (upper-) case boldface letters denote column vectors (matrices),

with the exception of the line complex power flow vector S. Calligraphic symbols are reserved

for sets. Symbol > stands for transposition. Vectors 0 and 1 are the all-zeros and all-ones

vectors, while en is the n-th canonical vector. Maxtrix IN represent a N×N identity matrix.

⊗ denotes the kronecker product. Symbol ‖x‖2 denotes the `2-norm of x and dg(x) defines

a diagonal matrix having x on its diagonal. A symmetric positive (semi)definite matrix is

denoted as X � 0 (X � 0), while |X| and Tr(X) are the determinant and trace of X. The

symbol ‖ · ‖F denotes the Frobenius matrix norm with ‖X‖2
F = Tr(X>X).



Chapter 2

Linear Regression and Kernel

Methods

With the increasing PV penetrations and variability in loads, the grid is becoming highly

dynamic and vulnerable to changes. To minimize losses and keep voltage of the power

grid within limits, reactive power control is required. The control rules can be modeled

using supervised learning learning methods like linear regression. This chapter first explains

linear regression method which can predict values for continuous target variables using linear

functions. Next, kernel methods are explained which offer the opportunity to translate high

dimensional data to a finite dimension in kernel space while still working with linear algebra.

Thus, kernel methods allows us to exploit all the intuitions and properties of linear algorithms

and parallely evaluating non-linear policies which are fast to compute and evaluate.

8



9

2.1 Linear Regression Model

Regression model estimates the relationship among input data set xn with corresponding

target value tn. The goal is to predict the value of t = [t1, · · · , tN ]> for a new value of

x = [x1, · · · , xN ]> where N is the dimension of input data. A simple linear model for

regression involves linear combination of input variables [18]

y(x,w) = w0 + w1x1 + · · ·+ wNxN (2.1)

where w = [w0, · · · , wN ]> are unknown parameters or coefficients. This is known as linear

regression[18]. The model shown above has a target value that is a linear combination

parameters w0, · · · , wN . Also, linear methods can be applied to transformations of the input

data sets. These transformations can be extended as a linear combination of fixed non-linear

functions φ(x) known as basis functions of the input variables. Putting these functions into

(2.1) the linear regression model can be reformulated as

y(x,w) =
M−1∑
i=0

wiφi(x) = w>φ(x) (2.2)

where w = [w0 · · · wM−1]> and φ = [φ0 · · · φM−1]>. Thus, the total number of parameters

in this model is given by M . w0 is the bias parameter to provide a fixed offset in data.

φ0 is a dummy basis function φ0(x) = 1 [18]. By adding a nonlinear basis function the

function y(x,w) becomes non linear in x. The non linear basis functions φx can be chosen

from a variety of family of functions such as polynomial φi(x) = xi, exponential family

φi(x) = exp −(x−µi)2
2s2

where µi governs the locations of basis functions in input space and s
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governs the spatial space, sigmoidal basis function φi(x) = σ x−µi
s

where σ(a) is the logistic

sigmoid function given by σ(a) = 1
1+exp (−a)

, Fourier basis etc.

2.1.1 Regularized Least Squares

For a successful implementation of an algorithm the model must be able to predict the results

as accurately as possible with minimal assumptions. But this results in a trade off between

making assumptions and having an accuracy for the model. For example, if the method is

too restrictive on assumptions the model might give inaccurate results or a wrong detection

of patterns due to a misfit with the learning algorithm whereas if lot of assumptions are

made the fit will be good. This might happen when the data used in input might not be

generated in the way it is assumed, say for example the model assumes the data to be taken

from a Gaussian distribution while it was from a non Gaussian distribution. Thus resulting

in misfitting the data. Whereas if model is given a lot of flexibility to assume the way data

is generated or by providing a large set of hypothesis there is a high chance that it might

fit the model with them. This is known as overfitting [19]. Thus, in order to control model

overfitting, a regularization term is added to the error function. The regularized sum of

squares error function is given by

RSSE(w) = SSE(w) + µ(RSE(w)) (2.3)

where the sum of squares of error term is given as SSE(w) = 1
2

∑N
n=1 (tn −w>φ(xn))

2
, µ is

a regularization coefficient that controls the problem of overfitting by evaluating the relative
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importance of the data dependent error SSE(w) and the regularization term RSE(w). The

regularizer term for error is given by

RSE(w) =
1

2
w>w. (2.4)

Thus, the total error function can be written as

RSSE(w) =
1

2

N∑
n=1

(tn −w>φ(xn))
2

+ µ
1

2
w>w. (2.5)

Since the above equation is quadratic in w its exact minimizer can found in closed form [18].

To evaluate the minimizer the gradient (2.5) is set to zero with respect to w. Solving for w

as before, ŵ is obtained as

ŵ = (µI + φ>φ)−1φ>t. (2.6)

Thus, as shown above the problem of regularized least squares is solved. This type of a linear

regression adjusts the cost function with a small modification of adding the regularizer to

avoid overfitting of the model. The complete model complexity is dependent on the com-

plexity of the basis functions. If the number of basis functions is larger the problem becomes

more complex. This must be controlled according to the size of the data set [18]. Adding a

regularizer term avoids over fitting and can be controlled by choosing effective regularization

coefficient. The effective regularization coefficient can be evaluated by doing cross-validation.

It must be noted, there is a trade-off in the choice of number of basis functions and evaluating

the overall evaluation of the model. If one uses maximum likelihood function it might lead

to over fitting or highly complex models. Thus, to decide an appropriate model complexity

for a given regression model [18] kernel methods can be used.
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2.2 Kernel Methods

In this section, kernel methods are explained in detail, the concept of reproducing kernel

Hilbert spaces (RKHS), and the representer theorem is stated. Kernel methods provide an

elegant mathematical approach to representing an infinite number of basis functions using a

finite amount of computational power, which is complementary to the emerging deep learning

approach. Kernel methods build upon the notion of kernel functions and RKHSs [20].

Using, kernel methods, a data set S that is defined over an input or attribute feature

space X (S ⊆ X ) can be mapped into a higher (possibly infinite-dimensional) Hilbert space

H, also known as kernel feature space. With this in view a nonlinear algorithm is built

with respect to the input data space but linear with respect to the kernel feature space.

Thus, kernel processes allows the model to comprise on linear algorithms expressed in an

Euclidean space and, by means of kernelization procedure or taking the dual it derives a

nonlinear counterpart of the algorithm, hence providing a set of nonlinear properties to the

linear algorithms as explained in section 2.2.1. The kernelization procedure involves two basic

steps, firstly evaluation of an expression for kernel and secondly, substitution of the Euclidean

dot product by a dot product into an RKHS [20]. This process will be explained in detail

in section 2.2.2. Although the nonlinear version of linear algorithms provide an increased

flexibility, when a new sample coordinates is evaluated explicitly in a high-dimensional space

the computational load increases accordingly. To reduce this computation load the kernel

trick can be used. Another advantage of using kernel methods is its ability to generalize for
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all cases under consideration even if the structural complexity of a machine is too high. Since,

nonlinear learning machines introduce a variety of parameters so that the model becomes

extremely flexible but it falls into pit fall of overfitting the training set. Thus, the concept of

regularization is also used in kernel methods explained in section 2.2.3. In summary, kernel

methods allow the exploitation of a vast variety of kernel functions that can be designed

and adapted to the application at hand and can be widely adopted in various types of

applications.

2.2.1 Dual Representation

Kernel function for a models which span on the basis of a fixed nonlinear feature space

mapping φ(x), can be shown as

k(x,x′) = φ(x)>φ(x′). (2.7)

From the above definition it is seen kernel function is symmetric such that k(x,x′) = k(x′,x)

[18]. For example of a kernel function for an identity mapping for the feature space in (2.7)

such that φ(x) = x gives the kernel function as k(x,x′) = x>x′. Linear models for regression

can be reformulated in terms of a dual representation in which the kernel function is seen

to be present and the predictions are seen to be a linear combinations of a kernel function

evaluated initially at the training data points. The linear regression model for a regularized

sum of squares (2.3) is considered. Solution for ŵ is evaluated by taking the gradient of
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RSSE(w) with respect to w given as,

w = − 1

µ

N∑
n=1

(w>φ(xn)− tn)φ(xn) =
N∑
n=1

anφ(xn) = Φ>a (2.8)

where Φ = [φ(x1), · · · , φ(xN)]> is the design matrix and the entries of vector a =

[a1, · · · , aN ]> are defined as

an = − 1

µ
(w>φ(xn)− tn). (2.9)

In this expression, ŵ is seen to be a linear combinations of vectors φ(xn), with coefficients

as functions of w. The dual of problem can be taken by reformulating it in the terms of

parameter vector a. Using the results from (2.8), w = Φ>a, RSSE(a) takes the form

RSSE(a) =
1

2
a>ΦΦ>ΦΦ>a− a>ΦΦ>t +

1

2
ΦΦ>t +

1

2
t>t +

µ

2
a>ΦΦ>a (2.10)

where t = [t1, · · · , tN ]>. The Gram matrix K is defined as

K = ΦΦ>.

This Gram matrix is symmetric with elements as of a kernel function k(x, x′) given as

Knm = φ(xn)>φ(xm) = k(xn, xm).

Rewriting (2.10) in terms of the Gram matrix, the regularized sum of squares can be written

as

RSSE(a) =
1

2
a>KKa− a>Kt +

1

2
t>t +

µ

2
a>Ka. (2.11)

Setting the gradient of RSSE(a) with respect to a to zero, â is evaluated as

â = (K + µIN)−1t. (2.12)
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Using the above result, output of the linear regression model for a new incoming x can be

evaluated as

y(x) = ŵ>φ(x) = â>Φφ(x) = k(x)>(K + µIN)−1t (2.13)

where vector k(x) consists of elements kn(x) = k(xn, x). As expected the prediction at a

new input x is given by a linear combination of the target values t from the training set.

Hence, its seen that the dual formulation allows the solution to regularized least squares to

be completely expressed in terms of the kernel function k(x, x′). Thus without explicitly

getting into the feature space which can be of infinite dimensionality the model evaluation

can be carried out directly in terms of kernels. The solution for a can be expressed as a

linear combination of the elements of φ(x), and the original formulation can be recovered in

terms of the parameter vector w. This expression is known as dual formulation [18].

2.2.2 Constructing Kernel

Valid kernel functions needs to be evaluated to exploit kernel trick. If a feature space is

chosen as φ(x) the corresponding kernel can be evaluated as

k(x, x′) = φ(x)>φ(x′) =
N∑
i=1

φi(x)φi(x
′) (2.14)

where φi(x) are the basis functions. Here the kernel function is seen to be defined for a one-

dimensional input space. The kernel functions can also be evaluated by finding the scalar

product in some feature space which may be infinite dimensional too. For example,

k(x, z) = (x>z)2
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where x, z are two two input vectors. To test the validity whether a function constitutes

a valid kernel or not without having to construct the function (x) explicitly one needs to

evaluate the Gram matrix K. According to [19] the Gram matrix K, whose elements are

given by k(xn, xm) is given as

K =



K(x1, x1) K(x1, x2) · · · K(x1, xN)

K(x2, x1) K(x2, x2) · · · K(x2, xN)

...
...

. . .
...

K(xN , x1) K(xN , x2) · · · K(xN , xN)


.

Gram matrix K must be positive definite for all possible choices of set{xn}. Now one needs to

prove if the function gives a valid kernel k(x, x′) that is it is positive definite and symmetric

or not and that it expresses the appropriate form of similarity between x and x′ according

to the intended application [18].

Thus, kernel functions help in detecting non linear relations using linear algorithms in a

given feature space. The formulation helps in decoupling the design of model from its input

feature space, eventually making the model modular.

2.2.3 RKHS and Representer’s Theorem

As seen previously, kernel methods evaluate dot products of vectors in Hilbert space through

a mapping function. If the space is complete that is every Cauchy sequence converges inside

the space, then it is called a Hilbert space [20]. For given positive definite kernel k(·,x), the
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corresponding space function is called a reproducing kernel Hilbert space HK if the elements

of HK are complex or real valued functions f(·) defined on any set of elements x and for

every element of x, f(·) is bounded. The RKHS HK for a kernel K is generated by x where

x belongs to any set, is given by K(·,x). Another property of RKHS states that an RKHS

contains a single reproducing kernel and a reproducing kernel has a unique RKHS [20].

Given pairs {(xt, yt)}Tt=1 of features xt belonging to a measurable space X and target

values yt ∈ R, kernel-based learning aims at finding a mapping f : X → R. The mapping f

is constrained to lie on the linear function space [21]

HK :=

f(z) =
∞∑
i=1

K(x, xi)ai, ai ∈ R

 . (2.15)

defined by a given kernel (basis) K : X × X → R and corresponding coefficients ai. The

minimization problem for a loss function L(y, f(x) can be written as

arg min
f∈H

N∑
i=1

L(yi, f(xi), b) (2.16)

s.to ‖f‖2
HK <∞

where ‖f‖HK is the induced norm by K, b is an intercept term that is also unknown. The loss

function L depends on f only through the input-output pairs {f(xi), yi}. The loss function

can be chosen from a variety of functions, typical choices for L include the least-square fit(
yi − f(xi)− b

)2
, or the ε-insensitive loss max{|yi − f(xi) − b| − ε, 0} for regression; and

the hinge loss max
{

1− yi
(
f(xi) + b

)
, 0
}

, or the logistic function log
(

1 + e−yi(f(xi)+b)
)

for
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binary classification [21]. This can rewritten as a class of regularization problems given as

(f̂ , b̂) := arg min
f∈H

N∑
i=1

[L((yi, f(xi), b)) + µ‖f‖2
HK ] (2.17)

where the penalty function for RKHS is defined as RSE(f) = ‖f‖2
HK and µ is the regulariza-

tion coefficient. The regularizer is an increasing function of ‖f‖K. This increasing function

ensures that f ∈ HK and facilitates generalization over unseen data. The parameter µ > 0

balances the two terms and is typically tuned via cross-validation [21]. According to [22]

solution to (2.17) is finite dimensional given as

f̂(x) =
N∑
i=1

K(x, xi)âi. (2.18)

For f ∈ HK , it can be seen that 〈K(·, xi), f〉HK = f(xi)[21]. The basis function hi(x) =

K(x, xi) is known as the representer of evaluation at xi in HK . This theorem is known as

the representer’s theorem. It must be noted (2.18) is the sought function that is described

only by N rather than infinitely many ai’s [cf. (2.15)]. Moreover, to evaluate f̂(x) at any

x ∈ X , one merely needs to know {âi}Ni=1 and be able to evaluate the kernel function at

{K(x, xi)}Ni=1. Thus the infinite dimensional optimization problem has been reduced to a

finite dimensional convex problem making it computationally easier and faster.

Consider a kernel matrix K ∈ SN++ having entries [K]i,i := K(xi, xj), and the vector

f̂ := [f̂(x1) · · · f̂(xN)]> collecting the function values at {xi}Ni=1. Evaluating f̂ at the given

data based on (2.18) yields

f̂ = Kâ (2.19)

where â := [â1 . . . âN ]>. Using properties of RKHS’s, it can be shown that the function norm
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inHK admits the matrix-vector expression ‖f‖2
K = â>Kâ. Thus, the functional minimization

in (2.17) is equivalent to finding the optimal â. If for example L(f(zt), yt) =
(
yt − f(zt)− b

)2

where in actually you are minimizing the error between the predicted and target values and

he regularizer term is given as s2, the functional problem (2.17) is equivalent to the finite-

dimensional minimization

(â, b̂) := arg min
a,b
‖y −Ka− b1‖2

2 + µ‖a‖2
K (2.20)

where ‖a‖2
K := a>Ka and y := [y1 · · · yN ]>.

It must be noted, the expression in (2.18) can be applied to the given data {xi}Ni=1 as

well as a new point of interest xj ∈ X . Prior to evaluating at the new point of interest f̂(xj)

requires knowing the kernel evaluations between the point of interest and the training data,

i.e., {K(xj, xi)}Ni=1, and the minimizers (â, b̂). These minimizers can then be fed into the

validation step to evaluate the new data point be used to evaluate the f̂(xj) as given below

f̂(xj) =
N∑
i=1

Kn(xj, xi)âi + b̂i.

Thus, using the kernel evaluations, minimizers, the training and new data, the functon can

be evaluated for the new data point in real-time.



Chapter 3

Grid Modeling and Problem

Formulation

Minimization of power losses and maintenance of voltage within limits are one of the key

concerns faced by the grid operator. One solution to this problem is reactive power control

generated by smart power inverters. With increasing PV installations distributed all through

the grid, there is an excess of the inverter capacity available to generate or consume reactive

power in grid. With the amendments in IEEE 1547 standard, question of how, when and

how much reactive power must be dispatched is still significant. This section reviews an

approximate grid model and formulates the reactive power control problem.

20
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3.1 Grid Modeling

To evaluate the dispatch of reactive power by the inverters, an approximate linearized dis-

tribution flow (LDF) model is reviewed below. A radial single-phase grid with N + 1 buses

indexed by n = 1, · · · , N + 1, M branches is considered. For a radial system, the number of

branches M = N , every bus n = 1, . . . , N is connected to a unique parent bus πn via distri-

bution line n, while n = 0 is the substation bus as shown in Fig. 3.1. The line connecting

bus πn and n is numbered as n. The grid is modeled by the branch flow equations [23].

sn =
∑
k∈Cn

Sk − Sn + `n(rn + jxn) (3.1a)

vn = vπn − 2 Re[(rn − jxn)Sn] + `n(r2
n + x2

n) (3.1b)

|Sn|2 = vπn`n (3.1c)

where for every line n the line impedance is zn = rn + jxn; `n is the square of current

magnitude in line n; Sn = Pn+ jQn is the complex power flow from sending bus πn to bus n;

sn = pn + jqn is the complex power injection at bus n; vn is the squared voltage magnitude

at bus n; Cn is the set of children buses for n; and the initial condition s0 =
∑

k∈C0
Sk. The

equations follow the notations as explained next. For all nodes n = 1, . . . , N the real power

injection is collected as a vector in p := [p1 · · · pN ]>, reactive power injection q := [q1 · · · qN ]>,

where these injections can be written as

p = pg − pc (3.2a)

q = qg − qc. (3.2b)
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Figure 3.1: Line n feeding bus n from its parent bus πn.

Complex nodel injections are s = p + jq; squared voltage magnitudes are stacked as v :=

[v1 · · · vN ]>. All lines have resistance, reactance collected together as r := [r1 · · · rN ]>, x :=

[x1 · · ·xN ]> respectively. Real and reactive line flows are defined as P := [P1 · · ·PN ]>, and

Q := [Q1 · · ·QN ]> respectively, complex power flows are given as S = P + jQ.

As per (3.1c) there exists a non linearity which complicates the power flow equations.

To take care of this, the distribution grid is often remodelled as a linear model using linear

distribution flow (LDF) model [23]. It must be noted that since the line resistance, reactance

is small and its multipication with squared current magnitude will be even lesser the, for

evaluating the power flow equations at flat voltage profile, the last summands in the right-

hand sides of (3.1a)–(3.1b) can be dropped to formulate them as a linearized model.

Grid connectivity is captured in the branch-bus injection matrix Ã. Ã ∈ {0,±1}M×(N+1)

it can be partioned into its first column and rest of its columns as Ã = [a0 A]. Thus, the

reduced branch-bus injection matrix can be written as A. A is a square matrix which is
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invertible where F := A−1 [24]. Also, A follows

a0 + A1 = 0. (3.3)

Using this connectivity matrix the LDF can rewritten as

s = A>S (3.4a)

Av = 2 Re[dg(r− jx)S]− a0v0 (3.4b)

where v0 is the squared voltage magnitude at the substation. Using (3.3) S can be eliminated

from (3.4) giving the squared bus voltage magnitude for all buses n = 1, . . . , N as [25]

v ' 2Rp + 2Xq + v01N (3.5a)

where

R : = F> dg(r)F (3.5b)

X : = F> dg(x)F. (3.5c)

Since F ≥ 0, the matrices R, X are also R ≥ 0, X ≥ 0. Moreover by properties of

matrices, it can be easily seen that R and X are symmetric positive definite with positive

entries [24]. Hence, bus voltages for all the buses in the grid are seen to increase if real or

reactive power injections increase in the grid [24]. Since losses have been ignored in (3.1c)

squared voltage magnitudes are an overestimate with respect to its original squared voltage

magnitudes (3.5a) with the bias depending on `n’s. But still, according to the numerical tests

the approximation errors in voltage magnitudes is seen to be less than 0.001 pu [24, 26].
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3.2 Problem Formulation

The active and reactive power injections p,q can be decomposed into generation and inelastic

load components as shown in (3.2). For known solar generation pgn and to comply with its

apparent power limit s̄gn, the reactive power injected by inverter n is constrained through

the linear inequalities

|qgn| ≤ q̄gn :=
√

(s̄gn)2 − (pgn)2. (3.6)

Moreover, to cater to the voltage regulation as mentioned in IEEE 1547 std, a linear set of

inequalities can be added.

v ≤ v ≤ v̄ (3.7)

where v, v̄ are set according to the regulation guidelines and are usually taken as ±(3%−5%)

about the nominal value.

To evaluate voltage deviations at each bus in the grid, let the sum of squared voltage

magnitude deviations
∑N

n=1 (vn − v0)2. Using the approximation in (3.5a) and upon dropping

an inconsequential scaling factor of 4, the squared voltage deviations are

∆s(q
g) := ‖Rp + Xq‖2

2. (3.8)

In addition to voltage deviation the ohmic power losses is another critical quantity in

distribution grid operation. The active power losses can be expressed as L =
∑N

n=1 rn`n or∑N
n=1 rn

P 2
n+Q2

n

vπn
. For small voltage deviations, as advocated in [6] the power losses can be
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approximated as

L = v−1
0

[
P> dg(r)P + Q> dg(r)Q

]
. (3.9)

Using (3.5b) and ignoring the inconsequential scaling by v−1
0 ' 1, the power losses can be

expressed as

L = p>Rp + q>Rq. (3.10)

Since p>Rp is a constant for a given set of data, the control variable q, which appears

only the second summand is the the function of interest. The power loss function can be

expressed as

L(qg) := q>Rq. (3.11)

The positive definiteness of R guarantees that L(qg) is a positively-valued convex quadratic

function. The objectives of voltage deviations ∆s(q
g) and power loss L(qg) are contradicting

in general. Thus a multi objective problem can be solved to cater to these contradiction. A

convex combination of the objectives can be posed to formulate the reactive control opti-

mization problem given as

min
qg

λ∆s(q
g) + (1− λ)L(qg) (3.12)

s.to q ∈ Q

where the setQ ⊆ RN captures the linear constraints in (3.6) for all n ∈ N . This formulation

minimizes ohmic losses and voltage deviations according to the different parameter values

λ ∈ [0, 1], with respect to the apparent power constraints.
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It must be noted, in the above formulation voltage regulation constraints are not en-

forced but the voltage deviations are minimized in the cost function. To enforce the voltage

regulation constraints the problem can also be formulated as

min
qg

L(qg) (3.13)

s.to q ∈ Q

v ∈ V

where the set V ⊆ RN captures the linear constraints in (3.7) for all n ∈ N . Thus, in

this formulation ohmic losses are minimized with respect to apparent power constraints and

voltage regulation constraints.

Both formulations evaluate a reactive power control rule for a specified set of constraints.

These formulations are exploited in this research to evaluate the reactive power support. The

control rules can be centralized or decentralized depending upon the input features and model

used in analysis. These are explained in detail in next chapter.



Chapter 4

Prior Works

Reactive power control can be provided for voltage regulation and minimization of ohmic

losses in the power grid. The control can be provided by using the excess of PV inverter

capacity to inject or reject reactive power in the distribution grid. With the amendments

in IEEE 1547 standards the inverter can operate non unit factor and thus, provide reactive

power support to the grid. Two approaches which can be used to provide reactive power

support are centralized and decentralized (local) approaches. The uncertainty in loads and

solar generation over the next reactive control period can be accounted through stochastic

and robust formulations [27, 28].

Centralized approaches need global system information that is sent to the distribution

network central controller (substation). The information sent requires network model and

distribution network load estimation results [29]. The central controller evalautes the control

27
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points according to the optimization technique, and sends them back to the inverters at each

bus for implementation. Tap setting of transmission transformer is solved centrally in [30].

The paper evaluates the setting for a radial grid for increasing renewable penetration in the

distribution grid. Another approach of model predictive control which uses time dependency

is used in [31] to carry out voltage/VAR optimization with wind and PV as distributed

generators. It considers the load uncertainities and captures optimal tap positions of on-

load tap changer and switch statuses of capacitor banks. Additional method includes genetic

algorithm used in [32]. Although, it considers forecast error of load and generation to evalaute

voltage control global optimal solution is not gauranteed.

On the other hand decentralized (local) methods receives inputs from local or neighbour-

ing and evaluates reactive power support locally. Purely localized schemes suggest having

inverters implement Volt-VAR or Watt-VAR curves given only local measurements [6]. Al-

though local Q-V rules have been analytically shown to be stable and fast-converging, their

equilibria unfortunately do not coincide with the sought OPF minimizers [12, 33, 24]. In fact,

there exist cases where local rules perform worse than the no-reactive support option [29].

Few prior works are explained below in detail, which motivated us to formulate the

reactive power control problem as a data driven learning algorithm.
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4.1 Local Rules

Local rules to evaluate reactive power control are introduced in [6]. The paper uses only

local injection data to evaluate the reactive power support with respect to apparent power

constraints. For the apparent power constraint (3.6) the size of PV inverter is considered

to be constant. The apparent power inequality has been depicted in Fig. 4.1. As it can

Figure 4.1: Apparent Power of the inverter.

be seen from the phasor diagram in Fig. 4.1, when the active power generation from PV is

maximum that is pgn = s̄gn, there is no room for reactive power to be dispatched and hence

qgn = 0. But, if pgn ≤ s̄gn, reactive power can be dispatched according to (3.6). The paper

emphasizes on developing rules which dispatch reactive power according to a scheme which

reduces ohmic power losses or voltage deviations in the grid as given in (3.12). The ohmic

losses are taken as (3.10). Another cost inherent in the distribution grid is voltage deviation.
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The author devises a rule to minimize the voltage deviation of each bus given as

δV = max
n

∣∣∣∣Vn − V0

V0

∣∣∣∣ < ε, (4.1)

where δv is the maximum absolute voltage deviation with respect to substation voltage

V0, Vn is the voltage at bus n, ε is the voltage deviation the grid must follow for example

ε ' (0.03− 0.05). The author minimizes the voltage deviation and ohmic power losses with

respect to the power flow equations as

arg min
qg

[L, δV ]> (4.2a)

s.to (3.4)(3.6) (4.2b)

The scheme in [6] evaluates qg using only the local inputs, that is qgn = Fn(pgn, p
c
n, q

c
n). A

helper function is introduced in [6] to impose the apparent power constraint on the inverter.

This helper function, Constr is given as

Constr(x, x̄) =


x |x| ≤ x̄

(x/|x|)x̄, otherwise

(4.3)

where x is the variable under minimization and x̄ is the maximum permissible value of x.

Thus, using the above helper function objective, the loss minimization can be evaluated as

qgloss = Constr(q, q̄) (4.4)

where q̄ is given by (3.6). For evaluating the voltage deviation, the scheme assumes a

constant ratio α = rn/xn for each line. Thus for an objective of minimizing voltage deviation,
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the helper function is given as

qgdev = Constr(qc +
pc − pg

α
, q̄) (4.5)

where q̄. The scheme, then evaluates a rule that can strike a balance between the voltage

deviations and ohmic power losses on the basis of parameter λ given as

qg = Constr(λqgdev + (1− λ)qgloss, q̄) (4.6)

where λ is the trade off parameter, controlling the participation of each objective. Thus, this

paper solves the problem (3.12) locally to provide reactive power support. Few shortcom-

ings in this paper are: the local rule reported above evaluates the reactive power injection

assuming all the lines have same α but, this is not true in the distribution grid where the

ratio of rn/xn varies with respect to each line and cannot be considered as a constant; the

scheme only depends on the local injections and fails to improve the profile of other buses

for cases in which the inverter has room for reactive power injection but fails to provide it

due to absence of any input for it. Although these rules provide control locally and do not

require communication yet they fail to provide reactive power support optimally.

4.2 Optimal Rules

Centralized approaches require data from all the buses to evaluate reactive power support

optimally. To minimize losses and voltage deviations an optimal rule can be evaluated as

given in (3.12). In fact, problem (3.12) can be simplified as detailed in the ensuing lemma.
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Lemma 1. Problem (3.12) can be equivalently expressed as

q̃ := arg min
qg
‖Cqg + y‖2

2 (4.7)

s.to qg ∈ Q

where matrix C := [(1 − λ)R + λX2]1/2; vector y := C−1[−(1 − λ)Rqc + λXR(pg − pc) −

λX2qc]; and the operator [·]1/2 represents the unique square root of a symmetric positive

definite matrix.

It is worth mentioning, C only depends on the distribution network, while y and

set Q encompasses variable loads and solar generations collected in vector χ := [(pc −

pg)> q̄g> qc>]>.

Moreover, to minimize losses with respect to voltage regulation as constraints, the

problem (4.8) can be simplified as detailed in the ensuing lemma.

Lemma 2. Problem (3.12) can be equivalently expressed as

q̃ := arg min
qg

q>Rq (4.8)

s.to qg ∈ Q

v ∈ V .

Set V encompasses variable loads and solar generations collected in vector χ := [(pc −

pg)> q̄g> qc>]>.

Thus while evaluation, the model follows three specific steps to evaluate the optimal

reactive power injection in the grid:
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1. Each bus communicates its (pc − pg, q̄g,qc) to the operator.

2. The operator solves (4.7) knowing the current χ.

3. The operator sends the optimal setpoints q̃ to inverters.

To take into consideration the uncertainity in solar generation the formulation can

be extended as a process repeated on a per-minute basis or more frequently to reduce the

communication and cyber overhead. As seen in the process of communicating data between

nodes S1) establishes N inverter-utility communication links, and S3) requires another N

utility-inverter communication links. Thus, the operator could adopt a scenario sample

approach. In this rather than evaluating the problem for a long period of time, the operator

may decide to issue setpoints less frequently, say every 10 minutes. But, one has to take care

for the variability in χ the feeder may encounter over this longer period. Thus, the problem

(4.7) can be posed as draw a collection of anticipated {χt}Tt=1; and solve the problem

q̂ := arg min
qg

T∑
t=1

‖Cqg + yt‖2
2 (4.9)

s.to qg ∈ Qt, t = 1, . . . , T

The constrained ohmic losses minimization problem with respect to voltage regulation con-

straints can be solved as

q̃ := arg min
qg

T∑
t=1

‖R1/2(qg − qct)‖2
2 (4.10)

s.to qg ∈ Qt, t = 1, . . . , T

v ∈ Vt, t = 1, . . . , T,
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where (yt,Qt,Vt) depend on χt for t = 1, . . . , T . One of the drawbacks of this approach is,

a scenario-based problem (4.9) is solved rather than the deterministic problem in (4.7). The

procedure steps S1)-S3) is solved less frequently for example 10 minutes, but the control pro-

cess makes it inflexible for the setpoints q̂ to change. The control points remain unchanged

over the next 10 minutes but to take into consideration the uncertainity in χt, affine control

policies in the form of qg(χt) have been suggested in [29], [34].

Although this approach solves the problem optimally, it requires frequent communica-

tion between each bus and substation making it a computationally and communication-wise

challenging task.

4.3 Affine Policies

In an affine policy or linear decision rule, the solutions to the problem are restricted to be an

affine function of the uncertain parameters [34]. In this section two works are explained which

formulate the reactive control problem as affine policies for a robust 4.3.1 and probabilistic

4.3.2 approach. These two approaches follow different formulations wherein one minimizes a

multi-objective function without any voltage constraints whilst, the other minimizes ohmic

losses under voltage regulation as constraints.
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4.3.1 Affinely Adjustable Robust Control Policies

A robust affinely adjustable control rule for evaluating the reactive power injection from

PV inverters is introduced in [29]. The control rule focuses on minimizing the convex com-

bination of power losses and voltage deviations in the grid. The reactive power injection

is derived from an affinely adjustable robust optimization framework using a decentralized

multi objective control formulation [29]. The method uses the approximate model Yv = s∗

but, for convinience and uniformity the problem is reformulated for the linear model ex-

plained in section 3.1. The paper uses a linear decision rule for evaluating the reactive power

injection at each inverter. Moreover, an uncertainty budget is allocated for the robustness

of the PV active generation using the dualization of constraints. To minimize power losses

the epigraph trick is used, the problem can be formulated as

min
tloss

(tloss)>tloss + p>Rp (4.11)

s.to − tlossn ≤
√
rnf

T
n q ≤ tlossn n = 1, . . . , N

Moreover, using (3.5a) voltage deviation with respect to slack bus voltage is given as

δv = v − 1Nv0 = Rp + Xq. (4.12)

Using the epighraph trick to minimize voltage deviation, the problem can be formulated as

min
tdev

1>Ntdev (4.13)

s.to −tdev ≤ Rp + Xq ≤ tdev
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The apparent power constraint (3.6) in complex form can be written as |pg + jqg| ≤ s̄g.

Since it’s difficult to handle the above constraint, [29] uses the polyhedral formulation for

2k sided polygon as

−s̄g ≤ cos(αl)p
g + sin(αl)q

g ≤ s̄g l = 1, 2, ..k, αl =
π

k
(4.14)

Consider a matrix which stores all the cosine and sine coefficients of α = [α1, α2....αk]
T , in

H,G respectively. This is defined as

H = cos(α)⊗ IN (4.15)

G = sin(α)⊗ IN . (4.16)

Consider K = [H> G>;−H> −G>]>. Reformulating (4.14) the apparent power constraint

can be reformulated as

K

pg

qg

 ≤
sg

sg

 . (4.17)

As seen earlier, the paper also solves a multi-objective problem to minimize power losses and

voltage deviations. The problem is formulated as

min
q,tdev,tloss

(1− λ)((tloss)>t + p>Rp) + λ(1>Ntdev) (4.18)

s.to − tloss
n ≤

√
rnf

T
n q ≤ tloss

n n = 1, . . . , N

−tdev ≤ Rp + Xq ≤ tdev

K[(p)>(q)>]> ≤ [(sg −Hpc −Gqc)> (sg −Hpc −Gqc)>]>
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where λ is the participation factor of each objective function. The author considers

uncertainty in solar generation, the active power generation belongs to the uncertainty set

p ∈ [0,pgmax] (4.19)

where pgmax := [pgmax1
pgmax1

· · · pgmaxN
]> is the maximum value of active power generation. A

linear decision rule for the reactive power control is introduced on the reactive power control,

given as

qg = q0 + βpg. (4.20)

When these policies are applied to reactive power generation a robust optimization problem

is formulated using an affinely adjustable robust counterpart (AARC) [29]. The problem is

posed as

min
u,β,q0,θ

1

2

∑
j

aju
2
j +

∑
j

cjuj (4.21)

s.to
∑
j

Aijuj +
∑
j

Bijq0j +
∑
j

θijp
g
maxj

≤ bi, ∀i

θij ≥ 0, θij ≥ Bijβj−Cij , ∀i, ∀j

where a,b, c,A,B,C are appropriate vectors and matrices as derived from (4.18),(4.19),(4.20).

The robust formulation allows the local control to remain within its maximum capacity

for all realizations of active power. This problem evaluates the coefficients for the linear

decision rule and optimizes the power losses and voltage deviations according to the partic-

ipation factor. Few shortcomings of this implementation are that the proposed algorithm

fails to evaluate voltage deviation according to the regulation limits as it only minimizes
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the voltage deviation without any regulation constraint on it; the minimum value for photo

voltaic active power has been assumed to be zero which is unrealistic.

4.3.2 Probabilistic Control Policies

A probabilistic approach to evaluate reactive power control is introduced in [34]. The control

rules are assumed to be affine policies of the real and reactive power consumption and active

power injection. The inputs are stacked in a vector w := [pc qc pg]> ∈ R3N where, w stores

the injection information from all the buses and could be as large as 3N and reactive power

control variable is given as qg. To take care of the uncertainty in the consumption and active

power injections, a Gaussian distribution is assumed for a given mean and covariance. The

author evaluates the problem (3.12) for minimizing ohmic losses that is λ = 0. The voltage

constrainst can be reformulated as

v ≤ Dqg + Ew + 1Nv0 ≤ v̄

where D,E are appropriate matrices for input vector {q = qg − qc,w}, 1N is a vector of all

1 with N rows. Thus, the optimization problem is given as

min
qg

qg>Bqg + w>Cw + qg>Dw + w>D>qg (4.22)

s.to v = Dqg + Ew + 1Nv0

− q̄g ≤ qg ≤ q̄g

Kv ≤ κ
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where κ = [v − v̄]>. It can be seen from (3.5a) the uncertainity in w affects the voltages at

each bus. The author utilizes a probabilistic approach for α as the probability level given as

Prob[Kv ≤ κ] ≥ α. (4.23)

An affine policy for the reactive power control is considered in [34] which is dependent on w

given as

qg = Mw + h (4.24)

where M,h will be the optimization variables estimated for the problem. Moreover since the

objective function becomes uncertain due to the uncertainty in w the expected value of losses

will be minimized. The probabilistic constraint (4.23) can be converted to a deterministic

constraint [35] by considering a probability distribution on w. Substituting the affine policy

into the constraint (4.12) it can be reformulated as

Prob[K(D(Mw + h) + Ew + 1Nv0) ≤ κ] ≥ α (4.25)

K(DM + E)w̄ + φ−1(α)‖(G>(DM + E)>K)‖2 ≤ κ−K(Dh + 1Nvo) (4.26)

where from Cholsky decomposition for distribution parameters of w, covariance Σ = GG>,

φ−1(α) is inverse cumulative distribution function for a standard Gaussian random variable

at a probability level α. Thus, a second order cone program (SOCP) constraint is formulated

in [34] which utilizes a probalistic approach to satisfy voltage and apparent power constraints

for a given distribution of w. Few shortcomings of this approach [34] are, firstly the con-

straints on voltage and reactive power injection are not always satisfied and is supposed to
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be satisfied only α% of the time; secondly, the affine rule needs injection inputs from all

nodes making it computationally and communication-wise challenging. Thus, this approach

would work well if the communication bandwidth availability is high, and the substation is

able to communicate the reactive power injections to the inverters quickly.

4.4 Proposed Formulation

As seen from the prior works, existing approaches either solve problem locally or centrally

considering a linear decision rule on the input parameters. Local rules suffer from sub-

optimality while the central rules require heavy communication and computation. In this

research a decentralized approach is developed to evaluate reactive power control policies for

a multi-objective or a voltage regulation constrained problem. The policies are modeled as

non-linear functions of the input feature vector. The proposed approach utilizes kernel based

learning algorithm to evaluate control policies on the basis of input scenario data. Thus, the

approach is practically feasible and hits the sweet spot in the performance-communication

trade-off. Methodology to evaluate reactive power control is explained in the next section.



Chapter 5

Methodology

To keep the network’s net power loss and voltage drop minimum, the model needs to evaluate

reactive power to be injected at each node. This injection varies according to the size of the

inverter, it’s placement, network’s topology and configuration. In this research, the reactive

power injection qgn by inverter n can be modeled as

qgn(zn) = fn(zn) + bn (5.1)

whose inputs (fn, zn, bn) are described below.

5.1 Control Policies

Controller inputs: Vector zn ∈ Zn ⊆ RMn is given as an input to inverter to evaluate the

reactive power injection at node n. Vector zn can purely depend on its local values or have

41
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few non-local or neighbouring inputs appended in the end like real power flow, squared

magnitude. With only local inputs zn := [pgn− pcn q̄gn qcn]> where q̄gn :=
√

(s̄gn)2 − (pgn)2. The

first entry of zn relates to the net active power injection at node n; second entry gives the

maximum reactive injection possible at node n; and third entry relates to the reactive load at

that node. This input is thus purely local to its respective node. Various variations in zn can

be done to improve the fit of control policies. This can be done by appending few important

global inputs to the vector zn. It must be noted, by appending squared voltage magnitude

vn in zn, the stability of the resultant closed-loop control would be hard to analyze even

when fn is linear [25, 33, 24].

Since these inputs are locally available the burden on communication channels is min-

imal and the evaluation is fast. Ideally, if communication resources are abundant, the un-

certain quantities from all buses {q̄gn, pcn − pgn, q
c
n}n∈N could be forwarded to all inverters.

Thus, in this case the control inputs in zn would be identical to all the inverters in the

network and would be of a larger size 3N . It must be noted that the input variables are ex-

tremely flexible and can be varied depending upon the available communication bandwidth

of the network. Non-local, shared control inputs can also be added to input vector zn to

study the results for local inputs and few global inputs common for all inverters for example

zn := [pgn− pcn q̄gn qcn Pi Pj Pk]
> where i, j, k represent the line numbers and Pi is the real

power flow on line i. These lines are selected on the bases of topology of each network and

these inputs will be identical to each inverter.

Controller function: Next step involves the control function policy fn. The control
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function can be evaluated as a linear or non linear policy as delineated below. Using the

theory of kernel based learning, the reactive power control from inverter n is postulated to

lie in the RKHS.

HKn :=

{
fn(zn) =

∞∑
t=1

Kn(zn, zn,t)an,t, an,t ∈ R

}
. (5.2)

that is uniquely determined by the kernel function Kn : Zn ×Zn → R.

Linear policies can be implemented by evaluating a linear kernel Kn(zn,t, zn,t′) = z>n,tzn,t′ .

Nonlinear policies can be designed by selecting a polynomial kernelKn(zn,t, zn,t′) =
(
z>n,tzn,t′ + γ

)β
,

or a Gaussian kernel Kn(zn,t, zn,t′) = exp
(
−‖zn,t − zn,t′‖2

2/γ
)

with design parameters β and

γ > 0 or a linear combination of linear, polynomial, gaussian kernels.

Intercept: The control function also needs to evaluate an intercept value bn ∈ R in (5.1).

Although it could be incorporated into fn, e.g., by augmenting zn by a constant entry of 1,

it is usually kept separate to avoid its penalization through ‖f‖Kn .

5.2 Learning Policies from Scenarios

With the control function and input vector finalized, the reactive power control policies (5.1)

needs to be evaluated for the input data. As per the policy the n-th entry of qg for scenario

t can be replaced with the policy qgn(zn,t) = fn(zn,t) + bn from (5.1). Thus the algorithm

evaluates the optimal function and intercept pairs {f̂n, b̂n}Nn=1 which can be found via the
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functional minimization

min
T∑
t=1

C
(
yt, {fn(zn,t)}n,b

)
+ µP

(
{‖fn‖Kn}

)
(5.3a)

over {fn ∈ HKn}Nn=1,b (5.3b)

s.to |fn(zn,t) + bn| ≤ q̄gn,t, ∀n, t (5.3c)

vn,t ≤ rn(pgn,t − pcn,t) + xn(fn(zn,t) + bn − qcn,t) ≤ v̄n,t, ∀n, t (5.3d)

where b := [b1 · · · bN ]>, constraint (5.3c) represents the apparent power constraint, contriant

(5.3d) represents the voltage regulation constraint. The regularizer P
(
{‖fn‖Kn}

)
has been

added in (5.3a) to avoid overfitting of control policies to scenario data.

In a regular machine learning regression setup, the dependency between input (feature)

data and output (target) data is analyzed and the closest fit is evaluated. In this formulation

the grid quantities feeding each controller serves as a feature data, and the reactive injections

as target values. Ideally, the designed function should behave well even for feature-target

pairs not seen during the training or fitting process. In direct analogy, the inverter control

policies are posed as a joint function fitting task based on scenario data. Once the functions

(policies) have been designed, they can be applied to unseen feature data. While, the appar-

ent power constraint (5.3c) is enforced for training data, it is possible for the policies obtained

through (5.3) may not satisfy the apparent power limits for zn,t′ ’s with t′ /∈ {1, . . . , T} as

policies has only been trained for the data upto scenario T in which the constraint is ac-

tively present. This limitation of kernel-based learning appears also in scenario-based and

chance-constrained designs [34]. To overcome this limitation the reactive power evaluated at
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t
′

scenario for node n can be heuristically projected within [−q̄gn,t′ ,+q̄
g
n,t′ ] as

[
qgn(zn,t′)

]
q̄g
n,t′

:= max

{
min

{
qgn(zn,t′), q̄

g
n,t′

}
,−q̄gn,t′

}
.

In this formulation, the optimal policies (functions) are evaluated for each inverter n

separately as compared to single one evaluated in (2.17). But, the inverter policies are

coupled through the loss term L in (2.17) as the voltage deviation and power losses are

affected by each reactive power injection feeder wise. Similar multi-function setups can be

found in collaborative filtering or multi-task learning [36]. In this thesis a regularizer is

adopted which is separable over all the inverters given as

P
(
{‖fn‖Kn}Nn=1

)
=

N∑
n=1

‖fn‖2
Kn . (5.4)

The well known Representer’s Theorem can be applied successively over n in (5.3). Thus,

this ensures that

f̂n(zn) =
T∑
t=1

Kn(zn, zn,t)ân,t.

still holds for all n. Thus, after the optimal policies are evaluated, the coefficients {ân,t}n,t,

the control policies {f̂n} can be evaluated at any other point. As seen earlier, the inverter

policy f̂n over the test data {zn,t}Tt=1 can be examined as

f̂n = Knân, ∀n (5.5)

where [Kn]t,t′ = Kn(zn,t, zn,t′) for t, t′ ∈ {1, . . . , T}, and ân := [ân,1 · · · ân,T ]>. Moreover the

regualarizer term, the RKHS norms can be expressed as

‖fn‖2
Kn = â>nKnân, ∀n. (5.6)

Examples for various policies are delineated next.
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5.2.1 Examples

Example 1: Affine policies. If the policies in (5.1) are affine, the sought policy functions

can be written as

fn(zn) = z>nwn, ∀n (5.7)

where wn ∈ RMn ’s are to be determined. Given input data {zn,t}n∈N and the desired feeder

output yt for t = 1, . . . , T , the {wn, bn}n∈N needs to be found via (5.3). Let us consider the

input data for inverter n is collected in the Mn × T matrix

Zn :=
[
zn,1 · · · zn,T

]
. (5.8)

According to the Representer’s Theorem, the ŵn corresponding to the optimal fn can be

expressed as ŵn = Znân for some ân. Then, the policy evaluated at any input zn is

qn(zn) = f̂n(zn) + b̂n = z>nZnân + b̂n.

Evaluating the policy specifically at the input data {zn,t}Tt=1 provides

f̂n = Knân

where the kernel matrix now is Kn = Z>nZn. The function norm is ‖fn‖2
Kn = ‖ŵn‖2

2 =

â>nZ>nZnân = â>nKnân.

Example 2: Non-linear policies. For non-linear policies the input vector zn needs to

transformed into a vector φn := φn(zn) where φn : RMn → RΦn is a non-linear mapping. We

saw that the simple linear kernel contained only terms of degree one only. But, the entries
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of φn could be for example the first- and second-order monomials formed by the entries of

zn. Then, the control function can evaluated as

fn(zn) = φ>nwn (5.9)

with wn ∈ RΦn constitutes a non-linear policy in zn. Thus, from Example 1, Example 2

can related using Kn = Φ>nΦn with Φn := [φn,1 · · · φn,T ]. Depending on the mapping φn,

the vectors φn,t may be of finite or infinite length [21]. It must be noted, since in kernel

an inner product of φ>n,tφn,t′ for any t and t′ is evaluated the f̂n does not deal directly

with φn,t’s. These products can be efficiently calculated through the kernel function as

φ>n,tφn,t′ = Kn(zn,t, zn,t′). Apparently, selecting the kernel function Kn induces the mapping

φn.

5.3 Optimal Policies

5.3.1 Voltage Drop and Power Loss Minimization

After evaluating the control policies, the optimal function needs to be evaluated for mini-

mizing the voltage drops and power losses in the network. Thus, the cost of (4.9) and the

regularizer of (5.4) in (5.3) can be posed as a linearly-constrained quadratic program as

explained next.

Lemma 3. If the data-fitting term in (5.3) is selected as

C
(
yt, {fn(zn,t)}n,b

)
= ‖Cqgt + yt‖2

2, t = 1, . . . , T
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and the regularizing term as

P
(
{‖fn‖Kn}

)
=

N∑
n=1

‖fn‖2
Kn

the functional optimization in (5.3) can be transformed to the vector minimization

min
1

T
(‖CQ + Y‖2

F + µ
N∑
n=1

a>nKnan) (5.10a)

over Q ∈ RN×T , {an ∈ RT}Nn=1,b ∈ RN (5.10b)

s.to Q> = [K1a1 + b11 · · · KNaN + bN1] (5.10c)

− q̄gn ≤ Knan + bn1 ≤ q̄gn, ∀n (5.10d)

where Y := [y1 · · · yT ] and the entries of vector q̄gn := [q̄gn,1 · · · q̄
g
n,T ]> have been defined in

(3.6).

Proof of Lemma (4): Based on (5.1) and (5.5), the reactive power injection of inverter

n for scenarios t = 1, . . . , T can be expressed by the vector Knan + bn1. Then, the apparent

power constraint for inverter n and across all scenarios can be expressed as in (5.10d).

Consider now the first summand in (5.10a). Based on the equality in (5.10c), the t-th

column of Q denoted by qgt contains the reactive injections from all inverters for scenario

t. Because the squared Frobenius norm of a matrix equals the sum of the squared `2-norms

of its columns, it follows that
∑T

t=1 ‖Cqgt + yt‖2
2 = ‖CQ + Y‖2

F . The second summand in

(5.10a) follows directly from (5.6).
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5.3.2 Power Loss Minimization under Voltage Constraints

Another model implemented in this research minimizes power loss in the network with respect

to apparent power and voltage regulation constraints. This model stresses on keeping the

voltage under regulation limits. Thus, after the control policies is evaluated, the optimal

function is evaluated for minimizing power losses with respect to the constraints as described

above. Again this problem can be posed as a linearly-constrained quadratic program as

explained next.

Lemma 4. If the data-fitting term in (5.3) is selected to minimze losses given as

C
(
yt, {fn(zn,t)}n,b

)
= ‖R1/2(qgt − qct)‖2

2, t = 1, . . . , T

and the regularizing term as

P
(
{‖fn‖Kn}

)
=

N∑
n=1

‖fn‖2
Kn

the functional optimization in (5.3) can be transformed to the vector minimization

min
1

T
(‖R1/2(Q−Qc)‖2

F + µ
N∑
n=1

a>nKnan) (5.11a)

over Q ∈ RN×T , {an ∈ RT}Nn=1,b ∈ RN (5.11b)

s.to Q> = [K1a1 + b11 · · · KNaN + bN1] (5.11c)

− q̄gn ≤ Knan + bn1 ≤ q̄gn, ∀n (5.11d)

V = R(Pg −Pc) + X(Q−Qc) + v01N×T (5.11e)

vt ≤ vt ≤ v̄t, ∀t (5.11f)
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where real and reactive power consumption vectors are stacked as columns of the N × T

matrix Pc := [pc1 · · · pcT ] and Qc := [qc1 · · · qcT ] respectively. Voltage at each bus are

stacked as columns of the N × T matrix V := [v1 · · · vT ]. Similarly real power generation

is Pg := [pg1 · · · pgT ] and the entries of vector vt := [v1 · · · vN ]>, v̄t := [v̄1 · · · v̄N ]>,

q̄gn := [q̄gn,1 · · · q̄
g
n,T ]> where the limits for voltage regulation are defined in (3.7), reactive

power have been defined in (3.6).

Proof of Lemma (4): Based on (5.1) and (5.5), the reactive power injection of inverter

n for scenarios t = 1, . . . , T can be expressed by the vector Knan + bn1. Then, the apparent

power constraint for inverter n and across all scenarios can be expressed as in (5.11d). From

the LDF equations (3.5a) voltage constraint is expressed as shown in (5.11e). To keep the

voltage within limits linear constraint is added for all buses N across all scenarios that is

given in (5.11f).

Figure 5.1: Control rules design and real time operation.
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Consider now the first summand in (5.11a). Based on the equality in (5.11c), the t-th

column of Q denoted by qgt contains the reactive injections from all inverters for scenario t.

Because the squared Frobenius norm of a matrix equals the sum of the squared `2-norms of

its columns, it follows that
∑T

t=1 ‖R1/2(qgt−qct)‖2
2 = ‖R1/2(Q−Qc)‖2

F . The second summand

in (5.11a) follows directly from (5.6). The total cost is normalized by T .

5.4 Implementing Reactive Control Policies

After setting up the type of policy and regularizer for the problem the reactive power

control policies follows the following steps:

1. The scenario data {χt}Tt=1 is created by the operator for all the scenarios from t =

1, . . . , T .

2. The operator solves (5.10).

3. Each inverter n receives the optimal policy coefficients (ân, b̂n) and training data

{zn,t}Tt=1 from the operator.

4. Over the next τ min, each inverter n collects the new zn,t′ and applies its projected

control policy [
qgn(zn,t′)

]
q̄g
n,t′

=

 T∑
t=1

Kn(zn,t′ , zn,t)ân,t + b̂n


q̄g
n,t′

.

Figure. 5.1 shows the proposed methodology divided into a control rule design step and

real time operation step. The steps are explained in detail below. Right before step 1) the



52

operator collects the input data {pcn, pcn, qcn}Nn=1 from forecasts, perturbation of feeder data,

historical data. This data is collected and arranged in {χt}Tt=1.

Next, the operator solves (5.10) linearly constrained quadratic program minimization prob-

lem to learn the policies. In step 3) the operater sends each inverter n the learned parame-

ters (ân, b̂n) and its training data {zn,t}Tt=1. This step is repeated every τ minutes according

to the operater’s need and available communication bandwidth. It is worth mentioning if

zn,t ∈ RMn , the operator needs to send (Mn + 1)T + 1 data to inverter n. Also, the number

of scenarios T affects the amount of data being communicated to each inverter. If T is

increased the bandwidth needs to be large to send the data quickly.

Following this, in step 4) the inverter applies the control policies as learned to the parame-

ters in step 2. Recall, as all the learned parameters (ân, b̂n) and {zn,t}Tt=1 are already readily

available to each inverter n, step 4 may run more frequently say around every 30 second as

compared to τ minutes of collecting data.

If the control input zn is purely local the control policy can be applied without needing

any more additional information. In contrast to this, if the control input is shared or non-

local, entries of real time input zn,t needs to be sent by the operator or the origin to each

inverter n. Also, if the input data is shared among inverters, bandwidth-efficient broadcasting

protocols can reduce the communication overhead. For example, each zn could have a

common power flow input from major lines appended in the end of input data for each

inverter n. Both scenarios have been implemented for evaluation and a comparison is carried

out to see how the model functions for added global inputs as shown in the next chapter
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Numerical Tests

The developed inverter reactive control rules were tested using the recommended IEEE 123-

bus benchmark feeder [2], which was converted to a single-phase grid using the procedure

described in [26]. One line diagram of the 123-bus feeder system is shown in Fig. 6.1. A volt-

age base of 12.35 kV and a power base of 100 kVA were used. Residential load (Real power

consumption) and solar generation data were generated from a Gaussian mixture model for

a given mean and variance. The mean value of real power generation and real power con-

sumption were taken as pgmean = 2.5kW , pcmean = 10.25kW respectively. The variance σ was

varied from (0− 20)% in steps of 10. Reactive loads (Reactive power loads) were taken at a

constant lagging power factor of 0.97. The analysis was carried out for 20%, 50%, 100% pen-

etration of solar power generation. The percentage of penetration represents the percentage

of buses having solar power with respect to the total number of consumption buses. To allow

for reactive power compensation even at peak solar irradiance, the inverters were assumed

53
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to be oversized by 10%, yielding an apparent power capacity of s̄gn = 1.1p̄gn for all n.

Figure 6.1: IEEE 123-bus feeder [2].

The numerical tests included five schemes: i) the unit-power factor option where in-

verters provide no reactive power support; ii) the fixed Watt-VAR control rules detailed in

[6, Eq. (12)-(14)]; iii) the optimal reactive power setpoints obtained by solving (4.9) at each

time instant; iv) the kernel-based approach of (5.10) and (5.11) for the linear; and v) the

Gaussian kernel based approach for (5.10) and (5.11). The kernel-based rules were trained

using the load and generation data observed during the most recent T = 10 scenarios, while

the parameters µ and γ were decided through 5-fold cross-validation [21]. Controller n was

tested for T ′ = 20 different sceanrios with only the local inputs (LI) zn = [q̄gn p
c
n − pgn qcn]>

for each n, with global inputs (GI) of power flows zn = [q̄gn pcn − pgn qcn P15 P16 P17]>,
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where line 15, 16, 17 were chosen as the important lines which bifurcate the grid at the

first level into three separate branches. The schemes iii)–v) were solved using the OSQP

solver [37]. Initially, to minimize voltage deviations in the problem formulation in (5.10) the

cost λ∆s(q
g)+(1−λ)L(qg) was evaluated for λ = 1. Later results are evaluated to minimize

power losses and regulate the voltage at bus for the cost L(qg) was evaluated according to

problem formulation (5.11). The results are shown as below.

6.1 Tests for Voltage Drop Minimization

For the problem formulation as stated in section 5.3.1 the voltage drop was minimized

with respect to the apparent power constraints as shown in (5.10). Each of the test scenarios

T = 10 was optimized by evaluating the optimal policies and tested over T = 20 scenarios.

The evaluated control policies were compared against the five schemes. The comparison

against the schemes and no reactive control is carried out for a Monte-Carlo simulation

of 1000 runs. In this the input vector zn is drawn from the Gaussian distribution set as

explained previously, then the reactive power injection is evaluated for each of the scheme.

For each run the percentage improvement is evaluated with respect to no reactive power

support (qg = 0).

Improvement in Cost(i) =
1

T

T∑
t=1

C|qg=0 − C|Scheme(i)

C|qg=0

× 100% (6.1)

where C|Scheme(i) = (‖Rp + Xq‖2)|Scheme(i) is the cost of the optimization, i ∈ {2, 3, 4, 5} for

each scheme as listed above. It must be noted, the local control can perform even worse as
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compared to the no reactive support scheme as local scheme [6] only evaluates the reactive

power control with respect to the local solar generation and load only. Thus, in few cases the

percentage improvement can be seen as negative values too. These improvement percentages

are enumerated in Table. 6.1.

Table 6.1: Reactive power control for voltage drop minmimization ∆s(q
g) λ = 1

Percentage improvement (%) relative to no reactive power support qg = 0

(LI)= With local inputs only, (GI)= With local and global inputs.

Network Local [6] Optimal (4.9) Linear (5.10) Gaussian (5.10)

Penetration Variance (σ) LI GI LI GI

20 0.1 4.47 99.51 95.93 98.8 95.99 99.29

20 0.2 74.25 99.98 96.7 99.31 97.77 99.42

50 0.1 88.46 99.99 97.74 99.66 97.95 99.62

50 0.2 90.92 99.99 92.12 99.5 93.1 99.56

100 0.1 69.65 99.99 94.67 99.16 94.86 99.25

100 0.2 96.35 99.99 96.12 99.1 97.04 99.21

From Table.6.1 it is seen that the optimal control techniques performes the best in

comparison to the other four techniques. It evaluates the reactive power control to an

optimal value with all inputs from all the buses. This is true, as the optimal control solves

the problem (4.7) globally and hence, performs well. The drawback in this method is the
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cyber overhead which needs a high data bandwidth to transfer data from each node to the

substation at every instant making the policy slow and insecure. On the other hand, Since

local rules evaluate the reactive power injection only on the basis of local inputs and considers

a constant x/r ratio for all the lines, local rules are not able to dispatch the reactive control

very accurately thus giving very low percentages of improvements. Whereas the proposed

kernel policy provides high improvement percentages for both linear and non-linear policies.

Moreover, the performance is seen to be very close to the optimal rule as well. As seen in the

table the addition of global inputs (real power flow from line 15, 16, 17) to policies estimates

a better reactive power injection and giving higher percentages of improvement as compared

to only local inputs.

Figure 6.2: Reactive power control for λ = 1 , penetration=20%, σ = 10% for each scheme

(i-v) without global inputs.
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Figure 6.3: Reactive power control for λ = 1 , penetration=20%, σ = 10% for each scheme

(i-v) with global inputs (real power flows of line 15, 16, 17 as global inputs).

Validation results are shown in Fig. 6.2, 6.3. Fig. 6.2 shows the log scale value of

(‖Rp + Xq‖2) versus each scenario. In this figure it is seen that the local control behaves

similar or worse to no reactive control scheme whereas the linear and non linear policies

proposed in the research behaves very close to the optimal control scheme. On comparing

the results Fig. 6.2, Fig. 6.3 it is seen with the addition of global inputs to the policies, the

proposed method behaves even better and comes closer to the optimal control. Although

adding these global inputs might lead to an increase in data communication and cyber

overhead but this increase will be small if the number of added input features is kept low. In

this analysis only 3 features were added and it was seen that the policies efficiency improved

tremendously. Thus addition of a few global inputs can improve the kernel policies efficiency

a lot. It is worth mentioning that the linear and non linear policies were seen to behave very
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similarly. These results inspired us to evaluate the power loss minimization with voltage

regulation constraints in which the grid is expected behave differently for linear and non-

linear policies.

6.2 Tests for Power Loss Minimization under Voltage

Constraints

The results for power loss minimization with respect to voltage and apparent power con-

straints (5.11) are discussed below. In this implementation, a voltage violation of 3% of base

voltage value is permitted, that is v = 0.97 p.u., v̄ = 1.03 p.u.. Each of the test scenarios

T = 10 was optimized by evaluating the optimal policies and tested over T = 20 scenarios.

The evaluated control policies were compared against the five schemes as described earlier.

For each of the scenario, the average feeder voltage drop was evaluated as

∆v̄ =
‖Rp + Xq‖1

N
. (6.2)

The average voltage drop was compared against the reactive power losses. Fig. 6.4 shows the

average voltage drop for each scheme with respect to the power losses for a solar penetration

of 100%, solar generation and real power consumption variance of 10%. Since, for local rules

λ = 0, the rule only minimizes power losses irrespective of the voltage drop as seen in (4.4),

the power losses are seen to be minimal but the voltage drop is very high. Thus local rules are

unable to keep the voltage within the regulation limits. Whereas, the linear and non linear
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policies are seen to closely follow the optimal control scheme. Since the voltage constraint

is only active during the training step, the model can violate the voltage constraints while

testing. As seen in the figure these violations are not very high on an average. Moreover,

comparing Fig. 6.4 (a) to Fig. 6.4 (b), it can be seen that with addition of the global inputs

to the model the voltage drop reduces on an average and the model behaves more close the

optimal. It is worth mentioning that in this case non-linear policies give a better regulated

voltage and power losses as compared to the linear policies. In each case Fig. 6.4 (a),(b)

it is seen that the non linear policies might have a little more power loss but the voltage

regulation is better as compared to the linear policies. Similar trend is seen in Fig. 6.5 which

shows the average voltage drop for each scheme with respect to the power losses for a solar

penetration of 50% and 20%, solar generation and real power consumption variance of 10%.

The figures show that the non-linear policies are perform better as compared to the linear

policies. Moreover, on an average the voltages at each bus have lower voltage deviations

with respect to the nominal voltages for non-linear policies as compared to linear policies.



61

(a) (b)

Figure 6.4: Average voltage drop vs power loss for power loss minimization under voltage

constraints for 100% penetration and 0.1 variance (a) With local inputs (LI) only,(b) With

local inputs and global inputs (GI).
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(a) (b)

(c) (d)

Figure 6.5: Average voltage drop vs power loss for power loss minimization under volt-

age constraints for scenarios, (a) 20% penetration and 0.1 variance with only Local inputs

(LI),(b) 20% penetration and 0.1 variance with Local inputs and global inputs (GI), (c)

50% penetration and 0.1 variance with only local inputs (LI),(d) 50% penetration and 0.1

variance with local inputs and global inputs (GI).



Chapter 7

Conclusions

In this research we have developed a framework which helps to mitigate impacts of vary-

ing loads and high PV penetrations in the distribution grid. Since, commonly used voltage

regulation devices like voltage regulators, switched capacitor banks have high response time

to react to the changes in PV power generation, smart inverters have been used for reactive

power control in the grid. Smart inverters can participate in feeder voltage regulation in

a faster timescale and are capable to operate for various techniques and methodologies as

programmed in its chipset.

Kernel-based reactive power control algorithm has been proposed in this research. The

model has been evaluated for linear and non linear control policies. The policies have been

designed to evaluate the control set-points for every half an hour and estimation has been

done for the reactive power control in real-time using local and/or global grid data. The

63
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model takes into consideration the cyber overhead and data communication requirements

for fast and easy computation. The suggested designs are extremely flexible and adjustable

to the available cyber resources. Tests have been carried out for minimization of power

losses and voltage regulation. The tests corroborate that this innovative framework is able

to provide reactive power support to the grid according to the objective of the framework.

The model is able to achieve the desirable trade-off between reactive control performance

and computational/communication requirements.

In future, this research can be extended for varying the controller inputs by adding

voltages as control inputs which closes the loop of input data. Another exciting area to look

into shall be designing of the kernels wherein, the kernel can be evaluated as a combination

of kernels and an optimal set can be used for evaluation of the problem. This thesis is

just an initialization of reactive power control problem and there are wide range of works

that can be achieved using this technique as a base, like having multi-stage formulations

by incorporating conventional voltage regulation equipment such as step-voltage regulators,

capacitor banks or energy storage devices into the optimization problem; evaluating meshed

network distribution grids for reactive power control etc.
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