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ABSTRACT 
 
 
 
Molecular modeling is a term referring to the study of proteins, nucleic acids, lipids, and other 
bio-, macro-, or small molecules at the atomistic level using a combination of computational 
methods, physico-chemical principles, and mathematical functions. It can be generally sub-
divided into two areas: molecular mechanics, which is the treatment of atoms and bonds as 
Newtonian particles and springs, and quantum mechanics, which models electronic behaviors 
using the Schrödinger equation and wavefunctions. Each technique is a powerful tool that, when 
used alone or in combination with wet lab experiments, can yield useful results, the products of 
which have broad applications in studying human disease models, oxidative damage, and other 
biomolecular processes that are otherwise not easily observed by experiment alone. Within this 
document, we study seven different such systems. This includes the mode of inhibitor binding to 
the enzyme monoamine oxidase B, the active site mechanism of that same enzyme, the dynamics 
of the unstructured p53 C-terminal domain in complex with globular, structured proteins, the 
process of the viral protein B2 unbinding from double-stranded RNA, and a focus on the 
dynamics of a variable loop in the antigenic peanut protein Ara h 2. In addition to those 
conventional molecular modeling studies, several of which were done in tandem with wet lab 
experiment, we also discuss the validation of charges and charge group parameters for small 
molecules used in molecular mechanics, and the development of software for the analysis of 
lipid bilayer systems in molecular mechanics simulations. As computational resources continue 
to evolve, and as more structural information becomes available, these methods are becoming an 
integral part of the study of biomolecules in the context of disease. 
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Chapter 1 
 
Introduction to Molecular Modeling 
 
 
 

The advent and development of new technologies can change how researchers approach a 

scientific question. One such tool that is changing how we approach questions in the life sciences 

is Molecular Modeling. Modeling, for short, is a method that uses structural information of 

biomolecules along with computational methods, physico-chemical principles, and mathematical 

functions to answer scientific questions from a unique perspective. Modeling is becoming much 

more widely used in part because of better availability of structural data in databanks such as the 

Research Collaboratory for Structural Biology (RCSB) (1), and also because of an increasing 

standard in computing power; many of the world’s fastest supercomputers have moved past 

teraflop capacity to the petaflop scale.  

Through modeling we can study nano-scale atomistic phenomena and interactions, things 

that are oftentimes quite difficult to study by wet-lab experimentation. Modeling has important 

applications in drug design, studying diseases of protein folding or aggregation, elucidating 

reaction mechanisms including those that are related to oxidative stress, and many other 

biophysical purposes. Pursuing this kind of research in tandem with wet-lab experiment can save 

researchers valuable time and money in the long run. Within this document, we will discuss 

projects that apply two specific sub-disciplines of molecular modeling – molecular mechanics 

and quantum mechanics, and their practical applications in certain disease models. 

 

 

Molecular Mechanics 

 

The goal of molecular mechanics (MM) is to find the potential energy minimum of a 

molecule by (i) calculating the potential energy of interaction between pairs of interacting atoms, 
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then (ii) systematically updating the position of each atom in small increments. This process is 

repeated until subsequent atomic position updates only result in a positive change in potential 

energy, at which point it can be said that a potential energy minimum has been reached. There 

are several important underlying principals that make MM possible. First, MM presumes that 

atoms and bonds act as spherical particles (of defined radius) connected by springs. Second, 

potential energies of interaction imparted on single atoms from multiple sources are additive. 

Third, because electronic motion is much slower than atomic motion, individual electrons need 

not be modeled; rather each atom is assigned a charge state. In pure MM, bonds are never broken 

or formed, and the charge state of nuclei cannot change. This final assumption is called the Born-

Oppenheimer approximation. 

Molecular dynamics (MD) simulation is a technique that uses the underlying principles of 

MM to solve Newton’s equations of motion for systems of interacting atoms. (It is this technique 

and its applications that form the bulk of the experiments described in this document). Several 

software packages have been developed to perform MD simulations, and the exact equations 

each one used may vary slightly between different distributions. Below, we will be discussing 

the theory used by the widely accepted open-source package GROMACS, which was employed 

for all of the MD simulation described in this document (2). To begin, we examine the different 

factors that contribute to the potential energy of interaction. There are three bonded terms – bond 

stretching (2-atom interactions), bond angles (3-atom interactions), and dihedral angles (4-atom 

interactions). The sum of these terms make up the bonded interactions: 
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To summarize this function, the bonded potential energy (Vbonded) of a given atom is the sum 

of all of the three types of bonded interactions. In the first term, bond stretching, kb is a harmonic 

spring constant, b is the measured bond length, and b0 is the equilibrium bond length – a value 

that is unique for different pairs of covalently bound atoms. In the second term, bond angles, kθ is 

a harmonic constant, θ is the measured bond angle, and θ0 is the equilibrium bond angle – 

another value that is unique for different triads of atoms. Finally, in the third term, dihedral 

angles, kφ is another harmonic constraint, and the (nφ - φS) term is the difference between the 
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measured dihedral angle and the equilibrium dihedral angle. In practice, these terms are 

measured and summed simultaneously for each atom in a system of N interacting atoms. 

In addition to the bonded terms, there are two non-bonded terms; the Lennard-Jones potential 

measures the van der Waals interactions between atomic radii, and the Coulomb potential 

measures the electrostatic interactions between atomic charges. The sum of the non-bonded 

interactions takes the form: 
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To summarize this equation, the non-bonded potential energy of a given atom is the sum of 

two terms. The first term, the Lennard-Jones potential, employs unique ε and σ values for each 

possible pair of atoms, i and j. The ε value is the minimum potential energy of interaction for the 

two interacting species at the ideal radius of separation, and the σ value is the distance at which 

the potential of interaction is zero. The final variable, rij is the radius of separation between 

atoms i and j. In the second term, the Coulomb potential, the energy of interaction between two 

atoms (i and j) depends on the charges of each atom (qi and qj), the permittivity of free space, ε0 

(a constant), and the radius of separation of the two charged atoms, rij. The sum of the bonded 

terms and non-bonded terms from each source is the total potential energy of interaction (Vtotal) of 

a given atom: 
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The negative derivative of potential energy with respect to position is equal to the force that 

is exerted on that atom. Forces on each atom are computed using a potential function of the form: 
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Where the force (Fi) is computed as the derivative of potential energies of an atom i (Vi) with 

respect to the position of that atom (ri). Finally, this information is used in Newton’s second law, 

which can be described as: 
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In this form of the equation, we can determine how the position of an atom i (ri) changes with 

respect to time (t), in response to forces derived from potentials of interaction (Fi) and taking 

into account the mass of the atom (mi). This equation is a simple rearrangement of the widely-

recognized F=ma. 

In MD simulation, forces and position updates are traditionally computed on the femtosecond 

time scale. The computation is repeated millions or even billions of times to gather an ensemble 

of structural conformations that are thermodynamically or statistically favorable for the system in 

question. In practice, there are many other factors to consider when performing MD simulations, 

the breadth of which will not be covered here. Included in the references cited below are 

excellent resources for further reading, especially (3). 

 

 

Quantum Mechanics 

 

In MM we treat electrons as uniform clouds rather than modeling them individually because, 

as the Born-Oppenheimer approximation states, electronic motion occurs on a much faster scale 

than does atomic motion. In quantum mechanics (QM), the approximation is reversed. We 

assume that atomic motion is much slower than electronic motion, so when modeling individual 

electrons, the kinetics of atoms is ignored. QM calculations are an appropriate computational 

method when the question at hand is related to electronic behavior. For example, QM can be 

used to (i) perform energy calculations of molecules, (ii) determine equilibrium or transition state 

molecular geometries, (iii) predict IR, NMR, or UV/Vis spectra, or (iv) analyze energy profiles 

along a reaction coordinate including the breaking or formation of a bond, or the rotation about a 

bond or dihedral.  
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The most widely used formulation in QM model s is the Schrödinger equation. It appears as 

follows: 
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Where H is what is known as a Hamiltonian operator, or a function that represents the 

combined kinetic and potential energy of an electron. The symbol Ψ is a wavefunction, 

describing the coordinates of the electrons in question, and E is the total energy of the system. It 

is said that for systems comprising more than one electron, it is impossible to solve the 

Schrödinger equation exactly. Previously, Heisenberg has shown that for multiple electron 

systems, we cannot know both the exact location (x) and momentum (p) of any given electron 

simultaneously. In fact, the more we know about one, the less we know about the other. This is 

known as the Heisenberg uncertainty principal: 
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In this equation, h is Planck’s constant. Therefore, in order to study systems of multiple 

electrons using QM, approximations must be made. The first approximation has been described 

previously – atomic motions are significantly slow and they may be neglected (the Born-

Oppenheimer approximation). Second, electrons move independently from one another within 

discrete energy functions about a central point at a certain probability. This concept is 

understood from chemistry as s, p, d, and f, orbitals. Finally, the Linear Combination of Atomic 

Orbitals (LCAO) approximation states that multiple-electron models are equivalent to the sum of 

their single-electron model components. 

In practice, performing QM calculations requires that the researcher choose a model 

chemistry. A model chemistry is made up of two components; a theoretical model and a basis set. 

A theoretical model describes the structure of electrons, and each model exists at a fine balance 

between accuracy and speed. For example, lower level theoretical models, such as Austin Model 

1 (AM1) make more approximations in favor of speedy calculations at the expense of accuracy. 

Higher level theoretical models, such as Hartree-Fock (HF) or Mφller-Plesset (MP), make fewer 
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approximations in favor of more accurate calculations but at the expense of speed. Theoretical 

models can be further divided into those that are defined purely by theory (“ab initio”), those that 

are defined by experimental observation (“empirical”), and those with roots in both theory and 

experiment (“semi-empirical”). Basis sets are sets of mathematical functions that describe the 

shape and populational probability of an electronic orbital. Similarly to theoretical models, basis 

sets with fewer approximations are generally accepted as more accurate, but are much slower in 

computation. 

These principals form the foundation of QM theory, and it is difficult to describe them in 

further detail while maintaining brevity. The references cited below are excellent resources for 

more information about QM, especially (4). 

 

 

Practical Applications 

 

Within this document we discuss seven unique applications of the techniques described 

above. The commonality among all of the projects is that they have some sort of medical 

application, particularly in disease models or in systems where oxidative damage occurs. Chapter 

2 deals with the enzyme monoamine oxidase B in a lipid bilayer. We discuss the interactions 

between the enzyme and the bilayer, as well as the dynamics of inhibitor unbinding. The 

following chapter, Chapter 3, also concerns monoamine oxidase, but in the context of the active 

site mechanism. We use QM techniques to study the barrier to ring-opening of certain cypromine 

analogues with the hope that we will be able to distinguish more specifics about the reaction 

mechanism. Chapter 4 is a study of the unstructured p53 C-terminal domain in complex with 

other protein-binding partners. Chapter 5 is a study of the viral suppressor of RNA silencing, B2, 

in complex with double-stranded RNA. In Chapter 6, we examine the dynamics of an epitope 

unique to peanut proteins that may be linked to allergenicity. The final two chapters steer slightly 

away from conventional molecular modeling and are more focused on method development and 

validation. In Chapter 7, we test the validity of small molecule parameters assigned by the 

widely used PRODRG server using a series of MM methods, and we propose a solution to derive 

better parameters using QM methods. Finally, in Chapter 8 we discuss a program that we 
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developed to analyze lipid bilayers in molecular dynamics simulations. Following Chapter 8, we 

will present a brief conclusion. 

Because each of the projects in this document is so distinct, there is no comprehensive 

literature review for the whole document. Rather, in the introduction of each chapter the 

appropriate literature will be reviewed and cited. Each chapter is formatted as a unique 

manuscript, complete with an independent references section. 
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Abstract 

 

Monoamine oxidase B (MAO B) catalyzes the degradation of certain monoamine 

neurotransmitters, including phenylethylamine, benzylamine, and dopamine. The oxidative 

process results in decreased dopamine availability in neuronal cells as well as increased 

production of hydrogen peroxide, a potent pro-oxidant species. For these reasons, MAO B is 

widely considered a drug target for neurodegenerative diseases, including Parkinson’s disease. In 

order to design more specific inhibitors for this monotopic bilayer enzyme, it is important to 

determine what factors govern the inhibitor binding process, including the role of the lipid 

bilayer, the active site loop, and several key residues within the binding pocket. We performed 

molecular dynamics simulations of MAO B embedded in a lipid bilayer and free in solution. The 

results of the simulations suggest that the bilayer controls the degree of fluctuation in two key 
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loops that form the greater part of the active site entrance (residues 85-110 and 155-165), a level 

of control that extends to the interaction of the protein with an inhibitor. We also simulated 

MAO B in complex with seven different reversible inhibitors that represent a wide spectrum of 

size, functional groups, and Ki values. We used steered molecular dynamics to simulate the 

release of these compounds from the active site in the presence and absence of the lipid bilayer. 

The results identify several specific residues and interactions that are important to inhibitor 

binding, and thus should be exploited when designing new inhibitors. 

 

 

Introduction 

 

There are two isoforms of the enzyme monoamine oxidase (MAO): A and B. The latter 

(designated MAO B) regulates synaptic levels of certain amine neurotransmitters including 

phenylethylamine, benzylamine, and dopamine by oxidative deamination, a process that also 

results in the production of hydrogen peroxide (1). MAO B expression increases with age, 

causing a decreased availability of dopamine and an increased degree of oxidative damage to 

neuronal cells by hydrogen peroxide – a pathway that, in combination with other factors, can 

lead to neurodegeneration and Parkinson’s disease (2). Treatment strategies have included 

supplementation with levodopa, a dopamine precursor, as a method to replenish depleted 

dopamine levels in patients showing parkinsonian-type symptoms. However, this treatment is 

only a temporary fix that does nothing to slow or reverse the progression of neuronal cell death 

(3). For this reason, a wealth of research has been devoted to the development of effective MAO 

B inhibitors to be used as anti-neurodegenerative therapeutics (3). 

The irreversible MAO B inhibitors selegiline (l-deprenyl) (4) and rasagiline (5) are currently 

used as therapies to slow the progression, but not prevent Parkinson’s disease. Additional studies 

have suggested that the effects elicited by selegiline and rasagiline are not solely due to MAO B 

inhibition, but instead a multitude of different pathways (6). Newer reversible inhibitors, 

including safinamide and coumarin analogues, show some promise for their high specificity to 

the MAO B isoform (7), but are not yet approved as therapeutics. As the general body of 

information grows, it is prudent to continue to design new MAO B inhibitors to be used as 

neuroprotectant therapeutics with higher specificities and fewer deleterious side effects. A 
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detailed understanding of the specific molecular interactions that govern MAO B inhibition is 

essential to this process. 

MAO B is a monotopic membrane protein embedded in the outer mitochondrial membrane. 

The 520-amino acid protein forms a homodimer with two helical tails that extend across the 

bilayer (8). The bulk of the solvent-exposed part of the protein is divided into a region that 

covalently binds a flavin adenine dinucleotide (FAD) cofactor (9), and a region that houses the 

active site. The active site is dipartite, divided into a catalytic cavity that is proximal to the 

isoalloxazine ring of the FAD, and an entrance cavity that is positioned closer to the interface of 

the bilayer. Their combined volume is approximately 700 Å3 (10). The crystal structure of MAO 

B was first solved in 2001 to 3 Å resolution (8). There are now (as of March, 2011) 36 unique 

crystal structures available in the Protein Data Bank (PDB, www.pdb.org) (11) of MAO B and 

MAO B mutants in complex with different reversible and irreversible inhibitors, at as high as 1.6 

Å resolution (7). The wealth of available structural data makes this enzyme an ideal target for 

rational structure-based drug design. 

Molecular dynamics (MD) is a useful computational tool that can offer insight into specific 

molecular interactions between protein and inhibitor at the atomic level – beyond what is learned 

from a static crystal structure. For example, crystal structures revealed that residues Ile 199 (12, 

13) and Tyr 326 (14) are important for ligand specificity. The “aromatic cage” formed by Tyr 

398 and Tyr 435 plays a role in coordinating ligands in the active site to the FAD molecule (15). 

In addition, the “active site loop”, formed by residues 99-112 could be important in allowing 

ligand access to the active site (8, 16). Aside from these static-structure derived observations and 

predictions, one can uncover more about specific molecular processes and interactions using MD 

simulations. For example, Apostolov et al. recently demonstrated that the bilayer itself plays a 

role in influencing the dynamics of the MAO A isoform, especially with regards to the entrance 

to the active site (17). 

Here we have performed MD simulations of several different inhibitor-MAO B complexes in 

an attempt to better understand the nature and the mechanism of inhibition of this isoform. We 

sought to identify specific residues that contribute importantly to the binding of MAO B 

inhibitors, as well as identify behaviors, especially pertaining to the active site and active site 

entrance, which might also influence inhibitor binding. The resulting dynamic model of inhibitor 
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binding and interaction within the active site is important in the design of novel anti-

neurodegenerative therapeutics. 

  

 

Materials and Methods 

 

File Preparation 

 

Seven crystal structures were downloaded from the PDB: 1OJ9, 1OJA (18), 2BK3 (13), 

2C67 (19), 2V5Z, 2V60, and 2V61 (7). Each crystal structure consists of two protein chains 

(chains A and B) comprising the MAO B homodimer. Each chain is covalently bound to an FAD 

cofactor and contains a reversible inhibitor in the active site unique to the crystal structure. 

Important chemical information and inhibitor structures are summarized in Table 2.1 and 

Scheme 2.1. In all cases, chain A includes residues Asn 3 to Ile 501 (Ile 501 is missing atoms), 

and chain B includes residues Asn 3 to Ile 496. The full-length homodimer contains 520 residues 

per chain; missing C-terminal residues were modeled in LEaP of the AmberTools 1.4 suite of 

programs (20), and dihedral angles characteristic of an α-helix were imposed to correctly reflect 

the trans-membrane nature of the residues. The two missing N-terminal residues were not 

modeled into the structure. 

The protein topology was based on the united-atom GROMOS96 43A1 force field. The FAD 

topology was assembled from the existing adenosine triphosphate (ATP) and flavin 

mononucleotide (FMN) topologies in that force field. Inhibitor topologies were generated by the 

PRODRG server (21). We previously showed that charges and charge groups generated by the 

PRODRG server are inconsistent with the GROMOS96 43A1 force field (22), and accordingly 

the charges were refined either by analogy from existing groups in the GROMOS96 43A1 force 

field, or by using the Hartree-Fock level of theory with the 6-31G** basis set in Titan 1.0.8 

(Wavefunction, Inc., Irvine, CA). The FAD and small molecule topologies are included as 

Supplemental Information (Table S2.1-S2.8). 
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Table 2.1. Summary of inhibitor structures arranged by Ki. 

a Ref. 18; b Ref. 19; c Ref. 13; d Ref. 7; e calculated by  ΔGdissoc=-RTln(Ki) 

 

 
Scheme 2.1. Structures of MAO B inhibitors used in this study. 

PDB code Res. (Å) Inhibitor Abbrev. Ki (µM) ΔGdissoc 

(kJ/mol)e 

1OJ9 2.3 1,4-diphenyl-2-butene 1PB 35a 26.4 

2C67 1.7 N-methyl-1(R)-aminoindan RM1 17b 28.3 

1OJA 1.7 1H-indole-2,3-dione (isatin) ISN 3a 32.8 

2BK3 1.8 farnesol FOH 2.3c 33.5 

2V5Z 1.6 (S)-(+)-2-[4-(fluorobenzyloxy-

benzylamino) propionamide] 

SAG 0.45±0.13d 37.7 

2V60 2.0 7-[(3-chlorobenzyl)oxy]-2-oxo-2H-

chromene-4-carbaldehyde 

C17 0.40±0.02d 38.0 

2V61 1.7 7-[(3-chlorobenzyl)oxy]-4-

[(methylamino)methyl]-2H-chromen-2-

one 

C18 0.10±0.02d 41.5 
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Lipid parameters (23) and the lipid bilayer starting structure (24) were obtained from the 

Biocomputing Group at the University of Calgary (http://moose.bio.ucalgary.ca/). The starting 

structure contained 128 pre-equilibrated palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids 

arranged in a periodic cell. The system was multiplied into a 2x3 array along the x-y plane, for a 

total of 768 lipid molecules, in order to create a sufficiently large foundation for the simulations. 

An in-house script was used to randomly select 329 lipids, and then mutate the choline group to 

ethanolamine, thereby creating palmitoyl-oleoyl-phosphatidylethanolamine (POPE) molecules. 

The final lipid bilayer contained 439 POPC lipids and 329 POPE lipids, a 4:3 ratio that mimics 

the composition of the in vivo outer-mitochondrial membrane (25) and a previous simulation 

(16). 

 

Conventional MD Simulations 

 

All simulations were performed using GROMACS 4.0.7 (26). A twin-range cutoff was used 

to calculate short-range non-bonded interactions, with electrostatic interactions truncated at 0.8 

nm and van der Waals interactions truncated at 1.4 nm. The particle mesh Ewald (PME) method 

(27, 28) was used to evaluate long-range electrostatic interactions with fourth-order spline 

interpolation and a 0.12 nm Fourier grid spacing. All bond lengths were constrained using a 

parallelized linear constraint solver (P-LINCS) (29, 30), and simulations were performed with a 

2 fs timestep. The simple point charge (SPC) water model was used (31). Isochoric-isothermal 

(NVT) simulations employed the Berendsen thermostat (32) with a temperature coupling 

constant (τT) of 0.1 ps. Isothermal-isobaric (NPT) simulations employed the Nosé-Hoover 

thermostat (33, 34) with a temperature coupling constant of 0.1 ps and a semi-isotropic 

Parrinello-Rahman barostat (35, 36) with a temperature coupling constant (τP) of 1.0 ps and a 

compressibility of 4.5e-5 bar-1 applied separately in the x-y and z directions, a common practice 

for membrane simulations (37). 

The bilayer system was minimized with a steepest descents integrator until the maximum 

force on any atom was less than 1000 kJ mol-1 nm-1. The system was then simulated under an 

NVT ensemble at 100 K for 200 ps. Following equilibration around the target temperature, the 

system was annealed to 310 K linearly over 900 ps under an NPT ensemble. Finally, a 
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production simulation followed under the same conditions for 20 ns, with this final conformation 

of the bilayer simulations being used as the starting platform for protein insertion. 

The seven crystal structures of MAO B described above were inserted into the bilayer using 

the “INFLATEGRO” methodology described by Kandt et al. (37). The apo-form of the crystal 

structure originating from PDB 1OJA (1.70 Å resolution) provided an eighth simulation 

condition that was simulated in triplicate. Minimization, equilibration, and production MD were 

performed in the same way as described for the bilayer. The protein backbone atoms were 

restrained until the production MD. These eight simulation conditions were then repeated in the 

absence of the bilayer, with the protein surrounded by bulk solvent (the apo-form was also 

simulated in triplicate). Following minimization, proteins simulated in a box of water were 

equilibrated at 310 K under an NVT ensemble for 200 ps, followed by 1 ns of NPT equilibration 

at the same temperature, and finally production MD as before. In the simulations of protein in 

bulk solvent, the pressure-coupling algorithm was applied isotropically and weak restraints were 

imposed on the backbone atoms of the helical portion of the protein tail (residues 488-520). 

(Previous simulations in our lab demonstrated that performing MD with the trans-membrane tails 

unrestrained in a box of solvent results in unnatural fluctuations between the protein subunits that 

consistently crashed the simulations, data not shown). The tails were retained even in the absence 

of the lipid bilayer in case their proximity to the active site entrance was shown to be important. 

 

Steered MD Simulations 

 

 Following production MD of inhibitor-bound systems, non-equilibrium pulling was 

performed independently on each reversible inhibitor in the direction of active site egress. In 

each case, the pulling simulation was performed in quintuplicate. The starting configurations and 

velocities for the pulling simulations were taken at 200 ps intervals. All constant-velocity steered 

MD simulations were implemented with a spring force constant of 1000 kJ mol-1 nm-2 and at a 

speed of 0.01 nm ps-1. 

Analyses were performed using utilities available in the GROMACS suite of programs or by 

scripts written in-house. Three-dimensional images were rendered with PyMol (38). Chemical 

structures were created in PubChem Sketcher (http://pubchem.ncbi.nlm.nih.gov/) and two-

dimensional line art was generated with Grace (39). Bilayer thickness calculations and area per 
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lipid (APL) were measured by the GridMAT-MD software (40) and plotted with Xmatrix 

(http://www.matpack.de). 

 

 

Results 

 

The simulation results will be discussed as follows. First, we discuss the triplicate, 

conventional MD simulations of MAO B in the apo-form. Thereafter, we will discuss the steered 

MD simulations of MAO B with inhibitors bound. Systems comprising MAO B in a bilayer will 

henceforth be referred to as MAO B-bilayer; systems of MAO B in bulk solvent will be referred 

to as MAO B-solvent.  

 

Molecular Dynamics of MAO B  

 

To obtain sufficient sampling, we simulated each replicate of MAO B-bilayer and MAO B-

solvent under production MD conditions for 50 ns. When measured as a function of time, the 

root mean square deviation (rmsd) of a protein is a good indicator of the convergence in protein 

structure change over the course of a simulation. The MAO B trans-membrane hydrophobic tails 

(residues 485-520) were restrained in the solvent simulations and therefore not considered for the 

rmsd calculations, nor were they considered for the rmsd calculations of the bilayer simulations 

for the sake of consistency. The backbone rmsd of the MAO B-bilayer replicates equilibrated to 

between 0.19 nm and 0.21 nm after approximately 20 ns of simulation (Figure 2.1). Similarly, 

the backbone rmsd of each MAO B-solvent replicate equilibrated just slightly higher, between 

0.21 nm and 0.24 nm, in the same time frame. The average rmsd over the last 30 ns of each set of 

three replicates was 0.19 ± 0.01 nm for MAO B-bilayer and 0.22 ± 0.01 nm for MAO B-solvent. 

The relative stability of each structure after the first 20 ns provides assurance that the final 30 ns 

of simulation are suitable for analysis. 
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Figure 2.1. The rmsd of the protein backbone, residues 1-485.  The rmsd value is averaged over the two monomers 

in each replicate simulation. 

 

As rmsd is a global measurement of protein motion, root mean square fluctuation (RMSF) is 

a local measurement that provides a higher resolution detail of residue fluctuations. Each of the 

triplicate simulations contained the full homodimeric form of MAO B, thus providing six 

individual monomers for analysis. During the last 30 ns of simulation, the differences in 

fluctuation pattern between MAO B-bilayer and MAO B-solvent in two particular regions of the 

enzyme demanded further investigation. These regions were residues 85-110, which includes 

most of the active site loop (residues 99-112), and residues 155-165. A representative RMSF plot 

is shown in Figure 2.2a (the other RMSF plots are included as Supplemental Information at the 

end of this chapter in Figure S2.1). On average, the degree of fluctuation exhibited by these two 

regions was larger for MAO B-solvent than it was for MAO B-bilayer. The fluctuation from 

residues 85-110 was 0.10 ± 0.03 nm when in a bilayer and 0.16 ± 0.06 nm when in solvent, a 

statistically significant increase as determined by a Student’s t-test (p < 0.05). The fluctuation 

from residues 155-165 was 0.081 ± 0.019 nm when in a bilayer and 0.101 ± 0.036 nm when in 

solvent, also statistically significant by the same test (p < 0.05). No other areas in the protein 

were consistently higher or lower in fluctuation. This observation is particularly significant 

because these two regions form the entrance to the active site cavity (Figure 2.2b), indicating that 

the bilayer exerts a degree of control over the fluctuations of these loops and subsequently the 

interactions that may occur in these regions. 
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Figure 2.2. MAO B fluctuation profile for bilayer and solvent forms. A representative RMSF plot is shown in panel 

(a), comparing degree of fluctuation per MAO B residue in solvent vs. bilayer. An example snapshot is shown in 

panel (b); residues 85-110 are highlighted red and residues 155-165 are highlighted blue. The bilayer was made 

transparent and the phosphorus atoms are represented as orange spheres. The FAD cofactor is shown as yellow 

sticks. One MAO B subunit and water atoms were removed for simplicity. 

 

As these two loop regions comprise the ring-like ‘mouth’ of the active site, it is convenient to 

then define the size of the active site entrance by measuring the best-fit ellipsoidal surface area 

formed by opposing residues in the loops. Thus, the center-of-mass distance between Lys 93 and 

Trp 107 was treated as one axis of the ellipse, whereas the center-of-mass distance between Tyr 

97 and Ser 160 was treated as the second axis. This concept is illustrated in Figure 2.3. It stands 

to reason that a larger ellipsoidal surface area would be reflective of a more open conformation, 

while a smaller surface area would indicate a more closed conformation. The following equation 

was used to calculate the surface area of the active site entrance opening: 
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The residue names in the equation refer to the center of mass position of those residues. The 

resulting surface area of each active site entrance is plotted with respect to time in Figure 2.4. In 

the MAO B-bilayer simulations, five of the six replicates converged to an active site entrance 

opening between 1.00 nm and 1.50 nm. One replicate of MAO B-bilayer, however, demonstrated 

a behavior that could be described as the opening of the active site entrance. The size of the 

opening in replicate 1, chain B, increased to more than 2.25 nm2, in the presence of the bilayer. 

We found that MAO B-solvent typically maintained an active site entrance surface area between 

approximately 0.75 nm2 to 1.50 nm2 during the simulations. Further, the fluctuation in this value 

was greater than it was for MAO B-bilayer, reflecting the previous observation that MAO B in 

the absence of the bilayer exhibited a higher RMSF in these regions. These data provide further 

evidence that the lipid bilayer regulates behaviors that occur near the entrance to the active site. 

To further explore how the lipid bilayer modulates the fluctuation of these loops, and to 

understand the mechanism by which the active site mouth opens and closes, we examined more 

closely the interaction between the protein and the bilayer. Qualitative analysis of the MD 

simulations indicated that the protein active site entrance that opened in the presence of the 

bilayer did so because it dipped down below the lipid head groups towards the hydrophobic fatty 

acid tails. In doing so, native interactions between residues in the loops were disrupted and new 

interactions with the hydrophobic tails were formed. Figure 2.3 compares two active site 

entrances – that of a closed conformation (Figure 2.3c) and that of an open conformation (Figure 

2.3d). From the snapshot of the open conformation we can see that the Tyr 97 moved up and 

away from the bilayer so the plane of the aromatic ring was parallel to the surface of the bilayer, 

and the Trp 107 moved further down into the bilayer, forming hydrophobic contacts with the 

lipid tail. In the closed conformation, these two residues formed pi-stacking interactions with one 

another. In addition, the Lys 93 and Ser 160 residues snorkeled into the lipid headgroups in the 

closed conformation, whereas the same residues were further into the aqueous phase in the open 

conformation.  
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Figure 2.3. Overview of MAO B homodimer embedded in a lipid bilayer. Each arrow indicates the direction from 

which the subsequent panels are viewed. (b) A view into the active site with opposing residues shown. Ellipse 

approximates active site entrance opening area. (c), (d) Active site opening residues shown in a closed (c) and open 

(d) conformation. 
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Figure 2.4. Comparison of the area of the active site channel opening when MAO B is in a bilayer (a) vs MAO B in 

a box of solvent (b). 

 

A measurement of partial densities as a function of the bilayer normal established a 

quantifiable and time-averaged comparison between closed and open conformations. The partial 

densities of each lipid component, the bulk of the protein, and the active site entrance of each 

monomeric subunit were measured (Figure 2.5). The key observation lies in the positioning and 

shape of the active site entrance in the open conformation. Its position was shifted along the z-

axis, further into the bilayer, creating a bimodal peak. Because the active site entrance of the 

other subunit within the dimer remained closed, one possible explanation is that the enzyme 

tilted with respect to the plane of the bilayer. Also, because all of the active site entrances in the 

MAO B-solvent replicate simulations remained in the closed conformation, we can hypothesize 

that it is the formation of new hydrophobic interactions that facilitated the active site entrance-

opening event. Table 2.2 shows the average height of the center-of-mass of the active site 

entrance opening with respect to the average position of the phospholipid headgroups. In each 

replicate, the average position of one of the active site mouths of the dimer dipped down with 

respect to the phospholipid heads, from 0.12 nm – 0.16 nm. The other chain in the same replicate 

stayed above the phospholipid head group, near 0.32 nm – 0.33 nm. In a single replicate, the 

active site entrance residues that dropped below the headgroups shifted into the open 

configuration, suggesting that interactions within this hydrophobic region control the size of the 

active site entrance. We note that the distance of the active site mouth to the bilayer surface did 

not always result in an observable opening of the active site (Figure 2.4a). This is likely due to 
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the short time frame of our simulations relative to the apparently slow period of active site 

channel opening and closing, and thus it would be improbable to observe this behavior in all 

replicates without applying non-physiological techniques such as locally enhanced sampling, or 

greatly extending the length of the simulations. 

 

 
Figure 2.5. Partial density plot for important lipid and protein components along the z-axis. Insert is a close-up of 

the active site entrance opening residues. The residues considered for this measurement are Lys 93, Tyr 97, Trp 107, 

and Ser 160. 

 
Table 2.2. Position of important groups along z-coordinate. 

Replica Lipid Head (nm) Glycerol (nm) Entrance to Active Site A 

(nm) 

Entrance to Active Site B 

(nm) 

1 0 -0.35 +0.33 +0.16 

2 0 -0.25 +0.33 +0.12 

3 0 -0.35 +0.13 +0.32 

 

In addition to the effects elicited by the bilayer on the active site entrance, the enzyme itself 

also changed the local structure and dynamics of the bilayer such that it may be more conducive 

to inhibitor or substrate trafficking. Foremost, over the last 30 ns of simulation, the average 
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bilayer thickness was notably decreased around MAO B when compared to a control bilayer 

(Figure 2.6). The control bilayer ranged in thickness (phosphorus atom – phosphorus atom) from 

about 4.0 nm – 4.7 nm, as most of the bilayer maintained 4.3 nm thickness. In the presence of 

MAO B, however, the same measure of thickness increased in range to about 3.7 nm – 4.8 nm, 

and the occurrence of extreme thickening or thinning was more frequent. This observation is best 

illustrated by the fact that there were two large pockets in close proximity to MAO B that 

exhibited a large amount of thinning. This observation is consistent for 5 of the 6 monomeric 

subunits. One monomer in the third replicate seemed to have no major effect on the thickness of 

the bilayer that immediately surrounds it, suggesting that the degree of thinning may not always 

be evident.  

 

 
Figure 2.6. Bilayer thickness plots. The top left plot is a top-down perspective thickness plot of a control bilayer. 

The remaining three plots are the thicknesses of the replicate simulations. The position of the MAO B homodimer is 

overlaid as a black, transparent surface. 

 

The presence of MAO B also influenced the area per lipid headgroup (APL) of the bilayer 

systems. The control bilayer maintained an average APL of 53.8 ± 0.2 Å2 per leaflet during 
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simulation. Once MAO B was inserted, the average APL in the top leaflet dropped to 50.2 ± 0.6 

Å 2 (p < 0.05) and the average APL in the bottom leaflet dropped to 51.7 ± 0.5 Å 2 (p < 0.05), as 

averaged over the last 30 ns of simulation.  

 

Steered Molecular Dynamics of MAO B Inhibitors 

 

 In addition to the simulations of apo-MAO B embedded in a bilayer and in bulk solvent, we 

performed several simulations of MAO B in complex with various reversible inhibitors. Herein, 

the inhibitors will be referred to by a three-letter identifier, which they were assigned in the PDB 

(Summarized in Table 2.1 and Scheme 2.1). Following a preliminary 20 ns production run of 

these inhibitor-bound systems, we saved full atomic coordinates and velocities in 200 ps 

increments. These snapshots served as starting points for non-equilibrium steered MD 

simulations, as described in the Methods. In this study we employed constant velocity pulling. 

Briefly, the inhibitor was tethered to a dummy atom (an atom having neither mass nor charge) by 

a classical spring. The dummy atom traveled along a pre-specified vector at a constant velocity. 

As tension in the spring increased, the inhibitor was steered away from its original position, 

along the same general path as the vector. The force in the spring was recorded with respect to 

time or displacement of the inhibitor. We performed five such steered simulations for each 

inhibitor in each condition (bilayer and solvent), for a total of 70 simulations. 

During a steered simulation, the force required to pull each inhibitor was plotted as a function 

of displacement from the original position, or distance traveled from the binding site, for each 

simulation (Figure 2.7). By integrating each curve we obtained the work performed on the 

system for each simulation. Jarzynski’s equality (41) equates the average work performed on 

replicate ensembles to the potential of mean force (ΔPMF) for a non-equilibrium process, or the 

overall change in free energy between two states along a reaction coordinate: 
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Figure 2.7. ΔPMF plots for inhibitor unbinding. The plots in the left column are bilayer simulations, the right 

column are solvent. The five replicates are colored differently (black = 1, red = 2, green = 3, blue = 4, orange = 5). 

The smooth curves are integrals of the irregular curves, corresponding to work, displayed on the right axis. 
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In Jarzynski’s equality, W is the work performed on a system, kB is the Boltzmann constant, 

and T is temperature in Kelvin. The angled brackets signify an average over ensembles. We 

considered the beginning of the reaction coordinate to be the MAO B-inhibitor complex, and the 

end of the reaction coordinate to be the state in which the distance of separation from any 

inhibitor atom and any protein atom was greater than or equal to 0.7 nm.  

From these data it is convenient to make two important comparisons: the pulling of different 

inhibitors into the same media (bilayer, for example), and the pulling of the same inhibitor into 

two different media (bilayer and solvent) (Figure 2.7 and Table S2.9). For example, pulling the 

weak inhibitor 1PB into the bilayer required a peak force of 606 ± 36 kJ mol-1 nm-1, whereas 

pulling the strong inhibitor C17 into the same media required a greater peak force, 730 ± 82 kJ 

mol-1 nm-1, a statistically significant increase (p < 0.05). Conversely, the inhibitor 1PB required a 

peak force of 373 ± 35 kJ mol-1 nm-1 to pull into solvent, a much smaller amount than was 

required to pull the same inhibitor into the bilayer. In fact, all seven of the inhibitors required a 

smaller peak force to pull into solvent with the exception of ISN. It is convenient to plot the 

Gibbs free energy of dissociation (ΔGdissoc) of each inhibitor by the greatest (peak) force required 

to pull the inhibitor from the binding site (Figure S2.2). The best-fit linear regression of that plot 

had a positive slope in each case, that is, the greatest amount of force required to pull an inhibitor 

from the binding site increased with increasing strength of the inhibitor. However, the correlation 

coefficient values were quite low; 0.04 for pulling into the bilayer, and 0.27 for pulling into 

solvent. Although there is no strong correlation between the strength of each inhibitor and the 

peak force required to pull, the general increase in force required between solvent and bilayer is 

apparent. At first glance it seems as if pulling into different media itself would cause the 

discrepancy, however, we find that the peak force typically occurs while the inhibitor is still deep 

within the binding pocket, before it encounters solvent or bilayer. Therefore, it stands to reason 

that the medium itself may allosterically regulate the dynamics of residues in the binding pocket. 

The ΔPMF of pulling 1PB, the weakest inhibitor, into the membrane was 770 ± 150 kJ mol-1, 

as averaged over five simulations (Figure 2.7 and Table S2.9). Conversely, the ΔPMF of pulling 

C17, a very strong inhibitor, into the membrane was 1201 ± 94 kJ mol-1, a statistically significant 

increase (p < 0.05). The two ΔPMF values of the weak inhibitor RM1 and of ISN fell below 800 

kJ mol-1. The ΔPMF of ISN was particularly low, which could be attributed to its diminutive size 

compared to the other inhibitors. The two ΔPMF values of two of the strongest inhibitors, FOH 
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and SAG, were above 1000 kJ mol-1 and 950 kJ mol-1, respectively. The inhibitor C18 seemed to 

be the most bothersome outlier, with a ΔPMF of 823 ± 72 kJ mol-1. It is difficult to determine the 

exact reason for the discrepancy, but it must be attributed to interactions between the secondary 

amide group and surrounding residues, for this group is the only difference between C18 and the 

structure of C17. In Figure 2.8, the average ΔPMF values required to pull each inhibitor into 

solvent or bilayer are arranged by the strength of the inhibitor. The correlation between ΔGdissoc 

and ΔPMF is slightly higher than it is for ΔGdissoc and peak force, and thus is a slightly better 

rubric for measuring the validity of the simulations. The best-fit linear regression for pulling 

inhibitors of different strength out of the binding pocket and into the bilayer or solvent are both 

positively sloped and have correlation coefficients of 0.19 and 0.40, respectively (Figure S2.3). 

Although the correlation is still quite low, the increase in correlation does indicate that the total 

amount of work performed on a system is a better indication of inhibitor strength than is the peak 

amount of force applied. In addition to the slightly improved correlations, we also observed a 

greater separation of data between pulling into the bilayer or solvent. For every inhibitor, it 

required more work to pull into the bilayer than it did to pull into solvent. The ΔPMF of pulling 

each inhibitor into bulk solvent is drastically decreased when compared to pulling each inhibitor 

into the bilayer. There are two simple explanations for why such a difference could occur: a 

decrease in force required to pull through the media (bilayer vs. solvent), or a decrease in 

interaction between the protein and inhibitor because the change in environment has made the 

protein less conducive to inhibitor binding. To address the first explanation, when the inhibitor 

was pulled through just media (between roughly 350 – 550 ps in Figure 2.7), the force required 

to pull through the bilayer was only 40 – 70 kJ mol-1 nm-1 higher on average. It is unlikely that 

simply the entrance into the media resulted in a change in work as great as observed for some 

inhibitors (Figure 2.8). In fact, to account for a 400 kJ mol-1 change in work, one would need to 

pull through the more viscous media an extra distance of 6 – 10 nm, much further than they were 

pulled in the actual simulation. Thus, it is likely that the change in medium from bilayer-bound 

to solvent-exposed effectively decouples native protein-ligand interactions that are typically 

occurring. These observations attest to the importance of studying the inhibitor-protein complex 

in the most appropriate physiological environment. 
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Figure 2.8. Average ΔPMF values for pulling inhibitors from the protein active site. Black bars represent inhibitor 

being pulled into the bilayer, white bars represent inhibitor being pulled into solvent. Inhibitors are arranged from 

left to right by increasing magnitude of ΔGdissoc. 

 

Quantification of average energy of interaction between each inhibitor and specific residues 

in the MAO B active site channel provided an excellent indication of which residues were 

important in inhibitor binding. For each steered MD simulation, we tabulated all MAO B 

residues that were within 0.7 nm of the inhibitor at any time. Then, the van der Waals and 

electrostatic contributions to the potential of interaction between inhibitor and individual 

residues were recorded. Finally, for each residue we took an average of any value that was above 

a 0.01 kJ mol-1 cut-off, and plotted those interactions that contributed the most to the protein-

inhibitor interaction (Figure 2.9). Some inhibitors interacted with as many as 45 different MAO 

B residues during active site egress, but we plotted only the 20 strongest interactions for 

simplicity. The weakest inhibitor, 1PB, had a total interaction of -176  ± 12 kJ mol-1 with MAO 

B residues. The total energy of interaction increased in magnitude for each sequentially stronger 

inhibitor, with the exception of the inhibitor FOH at -277 ± 10 kJ mol-1, and the inhibitor C18 at -

270 ± 6 kJ mol-1. In Figure 2.10, we arranged the sums of the individual energy components by 

increasing strength of the inhibitor. Most encouragingly, the sums of the individual energy 

components correlated strongly with the ΔGdissoc of the inhibitor (Figure S2.4). The correlation 

coefficient for the best-fit linear regression that describes the increasing potential of interaction 

(increasing in magnitude, that is) with increasing inhibitor strength is 0.67. Notably, the 

correlation coefficient for the same relationship, but only considering the electrostatic 

contributions is 0.86. The implication here is that the addition of electrostatic interactions 

contributes most meaningfully to the increased strength of the inhibitor. 
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Figure 2.9. Summated and averaged energies of interaction between specific inhibitors and MAO B when pulling in 

a bilayer. The black component of each bar represents electrostatic interactions, and the white component represents 

van der Waals interactions. The final panel is an average of the other seven panels. 
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Figure 2.10. Sum of binding energy components for each inhibitor. The black part of each bar corresponds to 

electrostatic interactions, and the white part of each bar corresponds to van der Waals interactions. Inhibitors are 

arranged from left to right by increasing magnitude of ΔGdissoc. 

 

From analysis of the energies of interaction, we are also able to identify residues and specific 

interactions that may be important to inhibitor binding. The last panel on Figure 2.9 summarizes 

the average energy of interaction between MAO B residues and all inhibitors. The number in 

parenthesis following the inhibitor name in the final panel of Figure 2.9 indicates the frequency 

with which that residue appeared in the other top-20 plots. The three strongest-interacting 

residues are Gln 206, Tyr 326, and Ile 199 (Figure 2.11). It is evident that a strong electrostatic 

contact near the site of Gln 206 or Tyr 326 (both of which sit above the active site very near to 

the FAD cofactor) is a core component that helps account for a large ΔGdissoc value. Further, a 

strong and large contribution to the interactions in the hydrophobic core is also essential to good 

inhibition. Of the top ten contributing residues, six are hydrophobic, five of which line the 

bottom of the active site and active site channel. Finally, His 90 and Asp 318 are also two 

important polar residues that contribute to the binding of the inhibitor. All of the inhibitors 

examined in this study bind adjacent to the FAD molecule in the back of the active site. From 

this position, these inhibitors are too short to form contacts with His 90 or Asp 318, which are 

positioned closer to the active site entrance. This indicates that the inhibitors only started 

interacting with these residues during the active site egress.  Therefore, it would make sense to 

design an inhibitor that is larger and contains the appropriate group to form electrostatic contacts 

or hydrogen bonds with His 90 and Asp 318. Finally, we must remember that although several of 
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the electrostatic contacts are tempting to exploit, most of the restoring force comes from 

hydrophobic van der Waals type contacts, which should be the focus of any pursuit in inhibitor 

design. 

To better characterize those specific interactions that are important to inhibitor binding, and 

to validate the model for inhibitor design proposed above, we briefly return to Figure 2.7. The 

peaks in the force curves correspond to different bound states of the inhibitors; the greater the 

height of the peak, the more tightly it is bound. Therefore it is useful to examine what specific 

interactions were occurring at the tallest peaks, and what interactions broke causing the 

downward slope in the curves. Presumably, at the top of the force peaks, the inhibitors should be 

most closely interacting with those residues identified as important in Figure 2.9. In fact, that is 

the case. For example, we examined the egress of C17 from the MAO B-bilayer active site. 

There are two notable peaks that occur during inhibitor egress, one at approximately 0.5 nm 

displacement, and another at 1.5 nm displacement (Figure 2.7). At 0.5 nm displacement, C17 

formed hydrogen bonds with Gln 206 and His 90, pi-stacking interactions with Phe 103 and Tyr 

326, and van der Waals interactions with Leu 171, Ile 198, Ile 199, and Ile 316. Therefore, the 

height of that first peak is a measure of the force required to overcome these interactions. 

Immediately past the tip of the first peak, those interactions were broken and the ligand moved 

further through the active site. At 1.5 nm displacement, the ligand formed electrostatic contacts 

with Phe 103, His 90, and Asp 318, and van der Waals contacts with Ile 316. The break in this 

second peak corresponded to a disruption in these specific interactions and total egress from the 

active site (Figure 2.11). This trend holds true for the other six inhibitors. In general, and 

especially in the case of the inhibitors with lower Ki values, the residues that are responsible for 

binding the inhibitor the most tightly are those that were identified as important by the energy 

profile in Figure 2.9. Increasing the strength of future inhibitors now becomes an exercise in 

modifying specific functional groups to optimize the strength of these interactions. 

 



 32 

 
Figure 2.11. View of the MAO B active site during inhibitor C17 (green) egress at 0.5 nm displacement (top) and 

1.5 nm displacement (bottom). Contacts between the inhibitor and hydrophobic (blue) or polar (red) residues under 

4 nm are shown as yellow dashes. 

 

 

Discussion 

 

We performed classical MD simulations of the MAO B homodimer in a POPC-POPE mixed 

bilayer and in bulk solvent, followed by steered MD simulations of several reversible MAO B 

inhibitors also in bilayer or solvent. Taken together, these data effectively describe the 

mechanism of inhibition of MAO B by reversible inhibitors, and the role of the bilayer in 

governing the dynamics of MAO B – especially around the active site entrance. 

The dynamics of two specific loops, residues 85-110 and 155-165 are closely modulated by 

the bilayer. Previously, it was suggested that the “active site loop”, residues 99-112, is important 

in inhibitor specificity (8). From our observations, it seems the modulation of the loop by the 

bilayer is a control mechanism in which the protein and bilayer work in a concerted effort to 

control ligand binding. The bilayer modulates these two loops by facilitating the transition 

between an open and a closed conformation. Fowler et al. (16) suggested that perhaps MAO B 
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undergoes a periodic tilting. While we did not find conclusive evidence to support or refute this 

hypothesis, we believe it could explain some behaviors we observed. When one active site 

entrance dipped down into the hydrophobic core of the bilayer, the change in the nature of the 

environment disrupted key interactions between residues at the mouth of the active site, 

facilitating the transition into the open conformation. We observed a dipping motion in these key 

active site residues with respect to the bilayer, and we found that the protein tended to be tilted 

with respect to the height of the active site entrance along the z-dimension. Previously, 

Apostolov et al. (17) examined a similar model, the monomeric MAO A isoform, and observed 

that the bilayer modulates the dynamics of the protein, and subsequently, ligand binding. 

However, they found that the same active site loop region (residues 105-115) fluctuates more in 

a bilayer, not less as we observed for MAO B. This difference could be due to subtle differences 

in the sequence between the MAO A and B isoforms, and may contribute to their distinguishing 

ligand specificities. The bilayer becomes thinner in the immediate vicinity of the protein, a 

phenomenon that was also observed by Fowler et al. (16). Here we showed that the thinning 

occurred especially at the protein interface with the bilayer. 

The dynamics of inhibitor egress from the active site were also modulated by the bilayer. The 

 ΔPMF of the unbinding process is a valuable measure that was weakly correlated to the strength 

of the inhibitor. We observed that the ΔPMF changed drastically in the presence of solvent, 

indicating that the bilayer maintained a level of control over the dynamics of MAO B in and 

around the active site. The increase in the number of contacts between MAO B and an inhibitor 

in the presence of a bilayer further illustrated this point. Finally, the energies of interaction, when 

taken together, provided key information that will be useful in designing new inhibitors. The 

right combination of hydrophobic and hydrophilic groups within the same inhibitor are 

paramount to the success of binding, and our model of the active site with important residues 

highlighted is key in designing such an inhibitor. Static crystal structures alone cannot fully 

describe the intricacies of the protein-ligand relationship. Dynamic models such as this are 

invaluable in identifying important interactions that may otherwise be missed.  

Recently, Colizzi et al. used a form of steered MD to pull several inhibitors from the active 

site of Plasmodium falciparum  β-hydroxyacyl-ACP dehydratase, thereby using the resulting 

ΔPMF values to distinguish between active and inactive inhibitors (42). Following that study, 

Jorgensen wrote a brief commentary in Nature describing the merits of steered MD simulations 
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and its utility in drug discovery (43). He questions whether the peak force applied during active 

site egress would correlate more strongly with inhibitor strength. In our study, we found that the 

peak force required to pull the inhibitor did not correlate more strongly with the strength of each 

inhibitor than did the ΔPMF value. However, the limitations of Jarzynski’s equality have been 

well described (44). The accuracy of ΔPMF measurements will continue to increase as the 

number of replicates increases, and as the pulling speed and force constant in the spring 

decrease, each of which, in practice, increases the computing hours required to perform the 

simulation. That being said, despite the number of replicates we used and the pulling conditions, 

we observed a very strong correlation between inhibitor strength and the sum of the per-residue 

energies of interactions from the energy profiles (Figures 2.9-2.10). We propose that this rubric 

be used in tandem with force and ΔPMF measurements to further discern between inhibitors of 

varying strength. 

In summary, the implication of these observations is quite profound. Foremost, we have 

demonstrated that MAO B in a bilayer does not behave similarly to MAO B in solvent, 

especially pertaining to the active site and active site entrance dynamics. Therefore, when 

studying MAO B, particularly in the context of drug design, the correct model should always be 

to study this enzyme in a bilayer. This suggestion extends well beyond just MAO B, and should 

be applied to any system studied by MD. Studying the biomolecules in the correct environment 

is key in obtaining accurate or meaningful results. Described herein are some important 

observations and implications that are useful to those taking a knowledge-based drug design 

approach to the design of powerful and reversible inhibitors of MAO B.  
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Supplemental Information 

 

Inhibitor and Cofactor Parameters 

 
Table S2.1. Parameters for 1,4-diphenyl-2-butene (1PB).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 CH -0.144 1 
2 HH 0.144 1 
3 CI -0.141 2 
4 HI 0.141 2 
5 CJ -0.151 3 
6 HJ 0.151 3 
7 CK -0.141 4 
8 HK 0.141 4 
9 CL -0.144 5 

10 HL 0.144 5 
11 CG -0.004 6 
12 CA 0.001 6 
13 CB 0.003 6 
14 CC 0.003 6 
15 CD 0.001 6 
16 C1 -0.004 6 
17 CN -0.144 7 
18 HN 0.144 7 
19 CO -0.141 8 
20 HO 0.141 8 
21 CP -0.151 9 
22 HP 0.151 9 
23 CQ -0.141 10 
24 HQ 0.141 10 
25 CR -0.144 11 
26 HR 0.144 11 
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Table S2.2. Parameters for N-methyl-1(R)-aminoindan (RM1).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 C1 -0.010 1 
2 C2 0.010 1 
3 C3 0.000 2 
4 C4 -0.140 3 
5 H4 0.140 3 
6 C5 -0.144 4 
7 H5 0.144 4 
8 C6 -0.144 5 
9 H6 0.144 5 

10 C7 -0.140 6 
11 H7 0.140 6 
12 C8 0.000 7 
13 C9 0.170 8 
14 N10 -0.620 8 
15 H10 0.270 8 
16 C10 0.180 8 
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Table S2.3. Parameters for 1H-indole-2,3-dione (isatin, ISN).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 O8 -0.380 1 
2 C7 0.380 1 
3 C1 0.000 2 
4 C2 -0.100 3 
5 H2 0.100 3 
6 C3 -0.100 4 
7 H3 0.100 4 
8 C4 -0.100 5 
9 H4 0.100 5 

10 C5 -0.100 6 
11 H5 0.100 6 
12 C6 0.000 7 
13 N1 -0.050 8 
14 H1 0.050 8 
15 C10 0.380 9 
16 O11 -0.380 9 

    
    
    
    
    

 

 
    

 
 
 



 38 

Table S2.4. Parameters for farnesol (FOH).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 C1 0.005 1 
2 C2 0.015 1 
3 C3 0.005 1 
4 C4 -0.035 1 
5 C5 0.010 1 
6 C6 0.005 2 
7 C7 0.015 2 
8 C8 0.005 2 
9 C9 -0.035 2 

10 C10 0.010 2 
11 C11 0.010 3 
12 C12 0.030 3 
13 C13 0.010 3 
14 C14 -0.050 3 
15 C15 0.320 4 
16 O1 -0.650 4 
17 H16 0.330 4 
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Table S2.5. Parameters for (S)-(+)-2-[4-(fluorobenzyloxy-benzylamino) propionamide] (SAG).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 C2 -0.190 1 
2 H2 0.190 1 
3 C3 0.420 2 
4 F3 -0.420 2 
5 C4 -0.190 3 
6 H4 0.190 3 
7 C5 -0.140 4 
8 H5 0.140 4 
9 C6 -0.144 5 

10 H6 0.144 5 
11 C1 -0.060 6 
12 C7 0.320 6 
13 O8 -0.680 6 
14 C9 0.420 6 
15 C14 -0.164 7 
16 H14 0.164 7 
17 C13 -0.115 8 
18 H13 0.115 8 
19 C10 -0.164 9 
20 H10 0.164 9 
21 C11 -0.115 10 
22 H11 0.115 10 
23 C12 -0.080 11 
24 C15 0.280 11 
25 N16 -0.400 11 
26 C17 0.150 11 
27 C18 0.050 11 
28 C19 0.720 12 
29 O20 -0.610 12 
30 N21 -0.745 12 
31 H75 0.325 12 
32 H21 0.310 12 
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Table S2.6. Parameters for 7-[(3-chlorobenzyl)oxy]-2-oxo-2H-chromene-4-carbaldehyde (C17).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 O4C -0.500 1 
2 C4C 0.550 1 
3 C4 -0.050 1 
4 C3 -0.005 2 
5 C2 0.570 2 
6 O2C -0.565 2 
7 O1 -0.600 3 
8 C9 0.520 3 
9 C8 -0.115 3 

10 H8 0.195 3 
11 C10 -0.100 4 
12 C5 -0.070 4 
13 H5 0.170 4 
14 C6 -0.144 5 
15 H6 0.144 5 
16 C7 0.330 6 
17 O7C -0.645 6 
18 C7B 0.350 6 
19 C1B -0.035 6 
20 C2B -0.140 7 
21 H2B 0.140 7 
22 C3B 0.260 8 
23 CL3 -0.260 8 
24 C4B -0.155 9 
25 H4B 0.155 9 
26 C5B -0.130 10 
27 H5B 0.130 10 
28 C6B -0.144 11 

 

 
 

29 H6B 0.144 11 
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Table S2.7. Parameters for 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one (C18).  

Structure Atom Atom 
Name Charge (e) Charge 

Group 
1 C4N 0.195 1 
2 N4C -0.620 1 
3 H8M 0.280 1 
4 C4C 0.205 1 
5 C4 -0.060 1 
6 C3 -0.005 2 
7 C2 0.570 2 
8 O2C -0.565 2 
9 O1 -0.600 3 
10 C9 0.520 3 
11 C8 -0.115 3 
12 H8 0.195 3 
13 C10 -0.100 4 
14 C5 -0.070 4 
15 H5 0.170 4 
16 C6 -0.144 5 
17 H6 0.144 5 
18 C7 0.330 6 
19 O7C -0.645 6 
20 C7B 0.350 6 
21 C1B -0.035 6 
22 C2B -0.140 7 
23 H2B 0.140 7 
24 C3B 0.260 8 
25 CL3 -0.260 8 
26 C4B -0.155 9 
27 H4B 0.155 9 
28 C5B -0.130 10 
29 H5B 0.130 10 
30 C6B -0.144 11 

 

 
 31 H6B 0.144 11 
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Table S2.8. Parameters for flavin adenine dinucleotide (FAD).  
Structure Atom Atom 

Name Charge (e) Charge 
Group 

1 AP 0.660 1 
2 AO1 -0.635 1 
3 AO2 -0.635 1 
4 AO5* -0.360 1 
5 AC5* 0.150 1 
6 AC4* 0.160 2 
7 AO4* -0.360 2 
8 AC1* 0.200 2 
9 AC3* 0.150 3 

10 AO3* -0.548 3 
11 HO3* 0.398 3 
12 AC2* 0.150 4 
13 AO2* -0.548 4 
14 HO2* 0.398 4 
15 AN9 -0.200 5 
16 AC4 0.200 5 
17 AC8 0.360 6 
18 AN7 -0.360 6 
19 AC5 0.000 6 
20 AN1 -0.360 7 
21 AC6 0.360 7 
22 AN6 -0.830 8 
23 HN61 0.415 8 
24 HN62 0.415 8 
25 AC2 0.360 9 
26 AN3 -0.360 9 
27 N1 -0.360 10 
28 C10 0.360 10 
29 C2 0.380 11 
30 O2 -0.380 11 
31 N3 -0.280 12 
32 H3 0.280 12 
33 C4 0.380 13 
34 O4 -0.380 13 
35 C4A 0.180 14 
36 N5 -0.280 14 
37 C5A 0.100 14 
38 C6 0.000 15 
39 C7 0.000 16 
40 C7M 0.000 16 
41 C8 0.000 17 
42 C8M 0.000 17 
43 C9 0.000 18 
44 C9A 0.200 19 
45 N10 -0.200 19 
46 C1* 0.000 20 
47 C2* 0.150 21 
48 O2* -0.548 21 
49 H2* 0.398 21 
50 C3* 0.150 22 
51 O3* -0.548 22 
52 H3* 0.398 22 
53 C4* 0.150 23 
54 O4* -0.548 23 
55 H4* 0.398 23 
56 C5* 0.150 24 
57 O5* -0.360 24 
58 P 0.660 24 
59 O1P -0.635 24 
60 O2P -0.635 24 

 

 

61 O3P -0.360 24 
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Tabulated ΔPMF and Peak Force Values 

 
Table S2.9. Average ΔPMF and peak force values for steered MD simulations. 

  Bilayer Solvent 

Inhibitor ΔGdissoc 
(kJ/mol) 

ΔPMF 
(kJ/mol) 

Peak Force 
(kJ/mol/nm) 

ΔPMF 
(kJ/mol) 

Peak Force 
(kJ/mol/nm) 

1PB 26.4 770 ± 150 606 ± 36 313 ± 34 373 ± 35 

RM1 28.3 798 ± 113 583 ± 25 492 ± 56 482 ± 56 

ISN 32.8 640 ± 134 477 ± 54 517 ± 113 614 ± 127 

FOH 33.5 1002 ± 171 646 ± 117 407 ± 22 419 ± 29 

SAG 37.7 958 ± 125 644 ± 58 490 ± 51 583 ± 69 

C17 38.0 1201 ± 94 730 ± 82 649 ± 55 651 ± 39 

C18 41.5 823 ± 72 560 ± 52 509 ± 27 482 ± 70 
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Additional RMSF Plots 

 

 
Figure S2.1. All six RMSF plots comparing degree of fluctuation per MAO B residue in solvent vs. bilayer. The 

identifiers (1A, 2A, 1B…etc.) refer to a replicate (1-3) and a protein chain (A or B). 
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Linear Regression Plots 

 

 
Figure S2.2. Linear regression plots and R2 value correlating the ΔGdissoc to peak force for inhibitor unbinding in 

both media. 
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Figure S2.3. Linear regression plots and R2 value correlating the ΔGdissoc to ΔPMF for inhibitor unbinding in both 

media. 
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Figure S2.4. Linear regression plots and R2 values correlating ΔGdissoc to the sum of interaction energies during 

steered MD. 
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Abstract 

 

A photochemical model study of benzophenone triplet (3BP) with the MAO B substrate 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP [1]) and two of its derivatives, 1-

cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine [2] and (+/-)-trans-2-phenylcyclopropyl-4-

phenyl-1,2,3,6-tetrahydropyridine [3] were performed. Literature precedent and calculations 

reported herein suggest that the barrier to ring opening for aminyl radical cations derived from 

N-cyclopropyl derivatives of tertiary amines (such as MPTP) will be low. The laser plash 
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photolysis results reported herein demonstrate that pathways for the reaction of 3BP with 1, 2, 

and 3 are very similar. In each instance, disappearance of 3BP is accompanied solely by 

appearance of bands corresponding to the diphenylhydroxylmethyl radical and neutral radical 

derived from MPTP and its two derivatives 2 and 3. These results suggest that the reaction 

between 3BP and tertiary aliphatic amines proceed via a simple hydrogen atom transfer reaction. 

Additionally, these model examinations provide evidence that oxidations of N-cyclopropyl 

derivatives of MPTP catalyzed by monoamine oxidase B may not be consistent with a pure 

single electron transfer pathway. 

 

 

Introduction 

 

Monoamine oxidase (MAO) A and B are flavoenzymes that catalyze the oxidation of various 

monoaminergic neurotransmitters, including serotonin and dopamine (1), as well as some 

xenobiotics (2). MAO A selectively catalyzes the oxidation of serotonin; the B isoform is the 

principal enzyme that catalyzes the oxidation of dopamine (3). MAO B has gained additional 

attention since it catalyzes the bioactivation of certain tetrahydropyridinyl derivatives to 

neurotoxic metabolites that mediate the degradation of dopaminergic neurons in the substantia 

nigra resulting in a parkinsonian syndrome closely resembling idiopathic Parkinson’s disease 

(4). 

Model studies have led to several proposals to account for the catalytic activity of MAO B. A 

polar pathway involving the addition of the aminyl substrate across the 4a–5 double bond of the 

covalently bound flavin adenine dinucleotide (FAD) co-factor, followed by an intramolecular 

redox reaction has been proposed by Mariano (5, 6) and, more recently, Edmondson (7). Two 

radical-based pathways also have been considered. Silverman has been a strong proponent of the 

single electron transfer (SET) mechanism (1, 8) and Castagnoli has presented evidence 

consistent with a hydrogen atom transfer (HAT) mechanism (2, 9) (Scheme 3.1).  

Scheme 3.1 outlines the differences between the SET and HAT proposals. Although these 

two pathways can account for some of the behaviour of substrates and inhibitors, it is our view 

that neither of these radical-based mechanisms nor the polar pathway account for all of the 

available experimental evidence. Since our interests are linked to the MAO-catalyzed metabolic 
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activation of cyclic tertiary allylamines, the discussion that follows will focus on the radical 

pathways since nucleophilic addition of tertiary amines across the 4a–5 double bond (the polar 

pathway) should be sterically prohibited. The present manuscript describes the results of our 

attempts to provide evidence to help distinguish the potential contributions of the SET and HAT 

mechanisms using photochemically-activated benzophenone as the electron or hydrogen atom 

acceptor and various tetrahydropyridinyl derivatives that are known MAO B substrates and/or 

for which independent documentation of the fate of electrochemically mediated 1-electron 

oxidations is available. 

 
H

H
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RCH2NH2 RCHNH2RCH2NH2

FADHFADHFAD
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RCH NH
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Scheme 3.1. Proposed Pathways for MAO oxidations. 

 

Over the past 30 years, much focus has been given to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-

pyridine (MPTP [1]; bold numbers in square brackets are specific compound abbreviations), a 

compound known to induce an irreversible parkinsonian disorder in humans and animal models 

(10, 11). Subsequent biochemical studies led to the discovery that MPTP is oxidatively 

metabolized in the brain to give the dihyropyridiniumyl species MPDP+ [2] that subsequently 

undergoes a two-electron oxidation to give the toxic pyridiniumyl product MPP+ [3] (9) (Scheme 

3.2). MPP+ is thought to mediate the degeneration of dopaminergic neurons (4). Mechanistic 

details of this important bioactivation pathway remain poorly understood. What is known is that 

the initial 2-electron oxidation is catalyzed efficiently by MAO B. 

 



 55 

N

Ph

CH3

N

Ph

CH3

N

Ph

CH3

N

Ph

CH3

N

Ph

CH3

- e-

2) SET

1) HAT

- H

- H+ - e- - 2e-

1 1 1 2+ 3+
 

Scheme 3.2. The MAO-B catalyzed bioactivation of MPTP [1] to MPDP+ [2+] and MPP+ [3+]. 

 

Benzophenone is a common photosensitizer; its chemistry with aromatic amines has been 

well characterized. Although the products of the reaction give the appearance of a HAT process, 

laser flash photolysis (LFP) experiments have shown that the reaction of benzophenone triplet 

[4] with aromatic amines proceeds by SET, generating a solvent separated ion pair (SSIP) 

consisting of benzophenone radical anion ([4•- ] λmax = 715 nm) and an aminyl radical cation [5•+] 

(12, 13). This caged-pair subsequently reacts via proton transfer, with the aminyl radical cation 

acting as an acid and the benzophenone radical anion as a base, generating diphenylmethanol 

radical ([6] λmax = 545 nm) and the neutral aminyl radical [5•] (Scheme 3.3).  

 

+
BP-OHBP
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BPN
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CH3H2C
N
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CH3H3C
N

Ph

CH2H3C

4                      5                        4                5                           6                     5  
Scheme 3.3. Reaction of benzophenone triplet (3BP) with aromatic amines. 

 

Similarly, 3BP reacts readily with aliphatic amines with a reactivity order 3˚ > 2˚ > 1˚ (9). 

Rate constants for tertiary and secondary amines are on the order of diffusion controlled, while 

primary amines are on the order of 107 M-1 s-1 (14). Although the reaction is also a formal HAT 

process, the details of the mechanism remain ambiguous. Assuming electron transfer occurs, 

proton transfer between the initially produced 4•−/5•+ caged pair may occur too rapidly for these 

species to be detected. Also, unlike aromatic amines, spectroscopic characterization of the 

initially formed R3N•+ is difficult because these species absorb weakly and thus are invisible by 

UV. Consequently, both HAT and SET mechanisms have been suggested for the reactions of 
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benzophenone triplet and aliphatic amines. Achieving an unambiguous assignment of the 

reaction mechanism has proven problematic.  

Recently, we reported rate constants for the reaction of t-butoxyl radical (tBuO•) with the 

potent neurotoxin MPTP (15, 16). In this study, tBuO• was generated by the photolysis of di-t-

butyl peroxide (DTBPO). This method was employed to measure the absolute rate constants for 

hydrogen atom abstractions from MPTP by tBuO·, generated by LFP, in order to gain insight into 

the radical-based chemistry of MPTP. Unlike the radicals derived from HAT in simple aliphatic 

amines (17,18), the MPTP derived radical [1•] gave rise to a transient species (λmax = 385 nm) 

that could be easily monitored. The strongly absorbing species was assigned to the α-allylic 

MPTP radical based on isotopic labeling studies. The observed rate constant for the formation of 

the MPTP derived radical was determined to be 2.27 x 108 M-1 s-1 (15, 16). 

 

NPh CH3

1  
Scheme 3.4. Structure of compound 1•. 

 

In principle, hydrogen atom abstraction can occur at each of the carbons alpha to nitrogen in 

MPTP, as was demonstrated for hydrogen abstractions by tBuO· (15). However, only neutral 

radical 1• possesses a suitable chromophore that can be readily monitored at 385 nm. 

Accordingly, it was envisioned that this radical would provide a unique spectroscopic handle to 

study the mechanism of the reaction between 3BP and aliphatic amines. This manuscript 

describes the photochemical investigation of reaction of 3BP with MPTP [1] and two of its 

derivatives; 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine [N-cyclopropyl MPTP] (7) and 

(+/-)-[trans-2-phenylcyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine] [N-cyclopropylphenyl 

MPTP] (8). 

 

NPh CH3

1

NPh

7

NPh
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Scheme 3.5. Structures of compounds 1, 7, and 8. 
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The N-cyclopropyl MPTP derivatives provide a unique way to probe the mechanism of these 
3BP-mediated oxidations because in direct analogy to the cyclopropylcarbinyl  homoallyl 

neutral radical rearrangement (Scheme 3.6), the derived radical cations (if produced) are 

expected to undergo instantaneous ring opening (19). Moreover, because the barrier to this ring 

opening is exceedingly small (vide infra), this process should be competitive with deprotonation 

of the aminyl radical cation.  

 

k = 10
8
 s

-1

  9                                                                           10  
Scheme 3.6. Ring opening of the cyclopropylcarbinyl neutral radical. 

 

Literature precedent suggests that 7•+ and 8•+ will have little or no barrier to ring opening. 

Indeed, 1-electron oxidation of 8 may occur via a dissociative electron transfer (DET) reaction, 

wherein electron transfer and ring opening occur simultaneously (20). Electron paramagnetic 

resonance (EPR) examinations of the radical cation generated from N-cyclopropylamine [11] 

support this statement (19). EPR experiments in a solid matrix have provided evidence for the 

distonic radical cation (ring opened) structure based upon hyperfine coupling constants and have 

shown that the aminyl radical cation ring-opens to the distonic radical cation rapidly upon 

electron removal (21, 22). Subsequent molecular orbital calculations at the second-order Mφller-

Plesset (MP2) and other levels of theory have suggested that the removal of an electron from N-

cyclopropylamine occurs simultaneously with ring opening; the only stable structure is the 

distonic radical ion, which collapses to a more stable aminopropenyl ion (23, 24).  

Studies on MPTP and the cyclopropyl analogs 7 and 8 by online coupling of electrochemistry 

and electrospray mass spectrometry (EC-ESI-MS) have been reported (25). The technique 

involves passing a substrate solution through a porous graphite electrode and varying the 

potential from 0 to 1500 mV. The concentrations of substrates and products resulting from 1-

electron oxidation are then monitored via liquid chromatography-mass spectrometry (LC-MS). 

Experiments conducted with compound 1 showed evidence for electron transfer to generate the 

aminyl radical cation 1+• followed by subsequent deprotonation at the allylic position to yield 1•. 

On the other hand, the analogous reactions with compounds 7 and 8 were consistent with rapid 

ring opening of the aminyl radical cations to give corresponding distonic radical cation. No 
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dihydropyridinium products corresponding to electron transfer followed by allylic α-carbon 

deprotonation were detected. These experiments were further probed by computational analysis 

at the unrestricted Hartree-Fock (UHF) level of theory. No global minima corresponding to the 

ring-closed aminyl radical cation 8+• was ever obtained, indicating that the electron transfer and 

ring opening proceed by a concerted process. 

Dinnocenzo, et al. (26) studied the fate of a series of structurally-related N-(2-

phenylcyclopropyl) aminyl radical cations ([11+•] and [12+•]) by nanosecond LFP. Ring opening 

of the radical cation was estimated to be exothermic by -26 kcal mol-1. It was suggested that ring 

opening and electron transfer were occurring in a concerted fashion and that N-(2-

phenylcyclopropyl) aminyl radical cations have virtually no barrier for ring opening (Scheme 

3.7).  

 

NR2

Ph

Ph NR2
+ e-

13 (R =H)                                         13
14 (R = CH3)                                    14  

Scheme 3.7. Ring opening of N-(2-phenylcyclopropyl) aminyl radical cations. 

 

Literature precedent as well as higher order molecular orbital calculations suggest that the 

barrier for ring opening of tertiary amine radical cations such as N-(2-phenylcyclopropyl) 

derivative [3] to be virtually nonexistent. Due to the unique chromophore derived from 3, LFP 

can be used to spectroscopically observe a reactive intermediate that is generated from 

excitation, be it radical or radical ion. Herein we report: (1) computational analysis of ring 

opening reactions of relevant cyclopropyl amines, and (2) the results of model studies on the 

photochemically-mediated oxidation of MPTP and two of its derivatives that are designed to 

evaluate the HAT vs. the SET pathways. 

 

 

Materials and Methods 

 

Materials. All solvents and fine chemicals used in this study were obtained from Aldrich and 

used as received unless otherwise noted. Benzophenone was recrystallized in methanol prior to 
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use. Syntheses of MPTP and derivatives have been described previously (20, 28); these 

compounds were stored as their oxalate salts. For sample preparation, the oxalate salts were 

suspended in saturated potassium carbonate and extracted using ethyl acetate to render the free 

base prior to use. Solution concentrations were calculated using the mass of the free base. 

Caution: MPTP is a known neurotoxin and should be handled in a well-ventilated hood and 

proper personal protective equipment should be worn while working with this material. 

Procedures for the safe handling of MPTP have been documented (29). 

Apparatus. Steady-state UV/Vis spectra were recorded on a Hewlett Packard diode array 

UV/Visible spectrophotometer (HP 8452A). LFP experiments were conducted using an Applied 

Photophysics LKS.60 spectrometer using the third harmonic of a Continuum Surelite I-10 

Nd:YAG laser (4 - 6 ns pulse, 355 nm). Absorption spectra were monitored by a Hewlett 

Packard Infinium digital oscilloscope and analyzed with an Applied Photophysics SpectraKinetic 

Workstation software package (v. 4.59). Experiments were preformed with a jacketed cell holder 

connected to a VWR Scientific Products (PolyScience) variable temperature circulating bath 

(model 1150-A) thermally equilibrated to 25 °C.  

Laser Flash Photolysis (LFP). Sample solutions were prepared in benzene or acetonitrile and 

deoxygenated with argon prior to use. (Steady-state UV/Vis spectra were recorded to ensure that 

benzophenone was the only species absorbing at the excitation wavelength). In most LFP 

experiments, 1:1 concentrations of the MPTP derivatives and benzophenone (4.5 mM) were 

examined in acetonitrile with varying concentrations of lithium perchlorate. 

Concentration profile for MPTP and benzophenone. Solutions containing varying 

concentration of amine and benzophenone (4 mM) were prepared. All solutions were degassed 

prior to use. Pseudo first order rate constants for the reaction of benzophenone triplet (3BP) with 

MPTP were obtained by plotting the experimentally observed rate (kobs) constants of 3BP decay 

as a function of amine concentration [MPTP] as follows:  

 

! 

k
obs

= k
0

+ k[MPTP] 

 

Transient Absorption Spectroscopy. Sample solutions containing approximately a 1:1 ratio of 

benzophenone and MPTP (4.5 mM) were prepared in distilled acetonitrile or benzene. Solutions 

were degassed prior to use. All experiments were conducted with the use of a flow cell to ensure 
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that fresh solution was used for all runs. UV/Vis spectra were recorded prior to runs to ensure 

benzophenone was the only absorbing species.  

Calculations. Density functional theory calculations were performed using the Titan (30) 

molecular modeling software and/or Gaussian ‘03 (31). Initial calculations for all four 

compounds [11-15] included the structure of the radical cation in the ring-closed form transition 

state, and ring-opened form – each of which were isolated at the Austin Model 1 (AM1) level of 

theory. Structural results were imported from the AM1 level calculations, followed by geometry 

optimization and frequency calculations at the UHF level of theory with the 6-31G* basis set. 

The results (structural coordinates) from this calculation were taken to a higher energy level, and 

once again geometry optimization and frequency calculations were performed at the second-

order unrestricted Mφller-Plesset (UMP2) level of theory with the 6-31G* basis set. Finally, the 

energies of the structures that were determined at UMP2 were calculated once more at the 

fourth-order unrestricted Mφller-Plesset level of theory with single, double, triple, and quadruple 

excitation states (UMP4SDTQ) and the 6-311G** basis set. 

 

 

Results and Discussion 

 

Calculations 

 

The ring opening of radical cations derived from: N-cyclopropylamine [11], N,N-

dimethylaminocyclopropane [12], 2-phenylcyclopropylamine [13], N,N-dimethyl-N-(2-phenyl-

cyclopropyl)amine and [14] 1-cyclopropylphenyl-1,2,3,6-tetrahydropyridine [15] were examined 

computationally. As noted, calculations pertaining to the ring opening chemistry of 11•+ have 

been previously reported (21-24), thereby allowing us to validate the computational methods 

before examining the chemistry of compounds 12•+ through 15•+. The following are the specific 

issues to be addressed: Will a tertiary aminyl radical cation such as 12•+ be more stable than 

primary radical 11•+, and thus have a barrier to ring opening? Will phenyl substitution on the 

cyclopropyl group lower or eliminate the barrier to ring opening, if indeed such a barrier exists? 
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Scheme 3.8. Structures of compounds 11-15. 

 

N-cyclopropylaminyl radical cation [11•+]. Consistent with published results (21-24), an 

energy profile (plot of energy vs. C-C bond length) of 11•+ at the UHF/6-31G* level of theory 

suggest that the ring-closed form of 11•+ does not exist at a potential energy minimum. Attempts 

to minimize the energy of the cyclopropyl ring-closed from of 11•+ led to a minimized structure 

corresponding to the distonic (ring-opened) radical cation. Similar results were obtained at the 

UMP2/6-31G* and UMP4SDTQ/6-311G** levels of theory/basis sets. Geometry optimization 

led exclusively to the ring-opened form. These results confirm that there is no barrier associated 

with the ring-opening of 11•+. Because these results correspond with previously published studies 

(21-24), it can be said with confidence that these computational methods can also be utilized to 

examine compounds 12•+ through 15•+. 

N,N-dimethyl-N-cyclopropylaminyl radical cation [12•+]. Energy profiles on 12•+ at the 

UHF/6-31G* (Figure 3.1), UMP2/6-31G*, and, UMP4SDTQ/6-31G** levels all reveal a) the 

ring-closed and ring-opened forms of 12•+ reside at potential energy minima (no imaginary 

frequencies), and b) that there is small barrier to the ring opening reaction. A transition state for 

ring opening was successfully located and characterized by one imaginary frequency 

corresponding to C-C bond cleavage. In the case of UHF/6-31G*, the energy of activation for the 

ring opening pathway was found to be 4.7 kcal mol-1. Ring opening was exothermic by ca. -7.5 

kcal mol-1. 
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Figure 3.1. Reaction coordinate diagram for the ring opening of 12•+ calculated at the UHF/6-31G* level of theory. 

 

N-(2-phenylcyclopropyl)aminyl radical cation [13•+]. As was the case for 11•+, calculations 

at the UHF/6-31G* (Figure 3.2) level of theory revealed that ring-opening of 13•+ occurs with 

essentially no barrier, consistent with the results of Dinnocenzo, et al. (26). The interaction 

between C1 and C3 is purely repulsive. Similar results were obtained at UMP2/G-31G*, and 

UMP4STDQ/6-31G** levels of theory, further confirming that the ring closed form of 13•+ does 

not exist at a potential energy minimum, and that no barrier to ring opening exists. 

 

 
Figure 3.2. Reaction coordinate diagram for the ring opening of 13•+ calculated at the UHF/6-31G* level of theory. 

 

N,N-dimethyl-N-(2-phenylcyclopropyl)aminyl radical cation [14•+]. Geometry optimizations 

at UHF/6-31G* revealed a stable ring-opened form and a stable ring-closed form of the radical 

cation with no imaginary frequencies for either. ΔEo for ring opening was found to be -27.0 kcal 
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mol-1, consistent with the results of Dinnocenzo, et al. (26). Curiously, an energy profile of the 

cyclopropyl ring opening reaction (Figure 3.3) did not reveal either a minimum for the ring-

closed form of 14•+ or a transition state for ring opening. Similarly, geometry optimization 

calculations at the UMP2 level of theory using the 6-31G* basis set also found both the ring-

opened and ring-closed form of 14•+. Again, the barrier to ring opening was nonexistent. 

(Unfortunately, the limitations of the computational system used in this study prevented us from 

probing this problem further as energy profiles at UMP2/6-31G* and UMP4STDQ/6-31G** 

levels of theory were unsuccessful). 

 

 
Figure 3.3. Reaction coordinate diagram for the ring opening of 14•+ calculated at the UHF/6-31G* level of theory. 

 

Careful inspection of the profile for 14•+, and varying the C-C bond length in very small 

increments (0.001 Å) in the vicinity of the ring-closed minimum proved informative. Variation 

of the C-C bond length is accompanied by a simultaneous rotation of one of the methyl groups as 

depicted in Figure 3.4. Thus, a simple, two-dimensional reaction coordinate diagrams such as in 

Figure 3.3 does not depict the full dynamics of the system, explaining why no minimum appears 

in this plot. All attempts to locate a transition state for ring opening failed, and as the calculations 

pertain to 0 K, we conclude that there is no significant barrier to ring opening of 14•+ at room 

temperature. 
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Figure 3.4. Depiction of how variation on C-C bond length of 14•+ is accompanied by simultaneous rotation of the 

N-methyl group. 
 

Because of the anomaly with rotation of the methyl groups in 14•+, ring opening of cyclic 

aminyl radical cation 15•+ was reexamined as a model for the ring opening of the radical cation 

generated from trans-2-phenylcyclopropyl-4-phenyl-1,2,3,6-tetrahydro-pyridine [8]. No 

minimum corresponding to a cyclopropane ring-closed structure could be located at any level of 

theory. The reaction coordinate diagram (Figure 3.5) is unambiguous in showing that the 

interaction between C1 and C3 is purely repulsive, consistent with earlier observations (20). 

Accordingly, it appears quite reasonable to assume that ring-opening of 8•+ is barrier-free. 

 

 
Figure 3.5. Reaction coordinate diagram for the ring opening of 15•+ calculated at the UHF/6-31G* level of theory. 

 

Comparison of 11•+ and 12•+. Computationally, we observed that 11•+ exhibits no stable ring 

closed form and opens spontaneously with the transfer of an electron, consistent with earlier 

reports on this system. On the other hand, 12•+ can lose an electron and remain a stable ring-

closed radical cation. A barrier to ring-opening exists, thus a transition state exists. A chemical 

reason for this is that the electron donating character of the methyl groups on 12•+ can stabilize 

the radical cation in the ring-closed form. 



 65 

Comparison of 12•+ and 14• +. Computational analysis of 12•+ clearly reveals a barrier to ring 

opening. Conversely, ring opening of 14•+ is highly exothermic (ΔEo = -27 kcal mol-1) with no 

significant barrier to ring opening, consistent with the report of Dinnocenzo and coworkers (26). 

One-electron oxidation of 8 and 14 likely occurs via a concerted DET reaction. This process is 

driven by the fact that the ring-opened form is stabilized by the formation of a benzylic radical 

(Scheme 3.9). For 12•+, no such stabilization exists resulting in a 4.71 kcal mol-1 barrier for the 

ring-opening pathway. 

 

NR2 NR2

 
Scheme 3.9. Resonance stabilization of the distonic radical cation derived from 8•+ and 14•+. 

 

Laser Flash Photolysis 

 

The transient absorption spectra for the reaction of 3BP with MPTP [1] in acetonitrile are 

presented in Figure 3.6; virtually identical results were obtained in benzene (Figure 3.7-3.8). The 

key features of these spectra are that for MPTP, the data suggest that the decay of benzophenone 

triplet [43* (λmax = 520)] (12) is accompanied by the formation of two new species at λmax = 545 

and 385 nm (12, 16). These two species are the diphenylhydroxylmethyl radical [6 (545 nm)] 

and MPTP-H• [1• (385 nm)], which are formed either by in-cage proton abstraction in the caged 

ion pair, or direct hydrogen atom abstraction (Scheme 3.10). The spectra showed no indication 

that the benzophenone radical anion [4•- (λmax = 650 nm)] was formed. 

In order to probe further the mechanism of this system, and to differentiate between the direct 

HAT and SET pathways, an analogous LFP study was conducted on the corresponding N-

cyclopropyl MPTP derivatives 7 and 8. In the case of MPTP, either hydrogen atom abstraction, 

or SET followed by in-cage deprotonation, would result in the formation of 1•. However in the 

case of the two cyclopropyl derivatives, if SET is occurring, cyclopropyl ring opening is 

expected to compete with deprotonation because there is little (in the case of 7•+) or no (in the 

case of 8•+) barrier to ring opening (vide supra). Electron transfer from 8 is likely to be concerted 

with ring opening. This system is an ultra-sensitive probe for SET – competitive with events 

such as deprotonation, which may be occurring within the lifetime of a caged-radical ion pair. 
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(i) 

 

 (ii)  

 

Figure 3.6. Transient absorption spectra of (i) MPTP [1] in CH3CN and, (ii) N-cyclopropylphenyl MPTP [8] in 

CH3CN. 

 

  
Figure 3.7. Transient absorption spectra of (i) MPTP [1] in benzene, (ii) MPTP [1] in CH3CN in the presence of 

LiOCl4. 
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Figure 3.8. Transient absorption spectra of (i) N-cyclopropylphenyl MPTP [8] in benzene, (ii) N-cyclopropylphenyl 

MPTP [8] in CH3CN in the presence of LiOCl4. 
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Scheme 3.10. Reaction pathways for 3BP with MPTP 1) SET, and 2) HAT. 

 

For each, the reaction of 3BP only produced species that absorbed at 540 nm, corresponding 

to diphenylmethanol radical (6) and 380 nm corresponding to the hydrogen atom abstraction 

product. In examining the chemistry of these compounds, using 3BP as a sensitizer it has been 

inferred that the “hydrogen atom abstraction” is the only observable process. 

These experiments were also conducted in the presence of 0.5 M lithium perchlorate (Figure 

3.7-3.8), which has been shown to aid in the separation of the contact ion pair to facilitate the 

diffusion of the contact ion pair forming a solvent separated ion pair (27). Lithium cation will 

complex with benzophenone radical anion, which can be monitored at λmax = 650 nm on a 

nanosecond time regime. Examination of all three compounds showed no evidence of 

benzophenone radical anion in the presence of lithium perchlorate. In the case of the N-

cyclopropyl derivatives, the MPTP derived radical absorption band [7•] should be diminished 
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and the band corresponding to the benzophenone radical anion should be visible in the 

absorption spectra, making the reasonable assumption that ring opening is competitive with 

deprotonation. In the case of compound 8, the molecule is expected to undergo a concerted DET 

reaction, and therefore neither the band at 385 nm (corresponding to the MPTP derived radical 

[8•]) or band at 545 nm (corresponding to 6•) are expected to be present. Because both of these 

bands are observed, it can be surmised that an electron transfer process is not occurring in this 

system. These results are fully consistent with the proposal that these oxidations of MPTP and its 

derivatives by benzophenone occur by a HAT process. 

Rate constants for the reaction of 3BP with 1 and 7 were examined by varying the 

concentration of MPTP derivatives and monitoring the growth of the MPTP radical species on a 

nanosecond time regime as described previously (14). For both substrates, the rate constants 

were on the order of diffusion controlled and not significantly affected by added electrolyte 

(Table 3.1). 

 
Table 3.1. Rate constants for the reaction of 3BP with 1 and 2. 

Substrate Solvent kobs (M-1 s-1) 

1 Benzene 2.12 x 109 

1 Acetonitrile 8.34 x 109 

1 Acetonitrile/ 

LiOCl4 

5.83 x 109 

7 Benzene 2.19 x 109 

7 Acetonitrile 5.47 x 109 

7 Acetonitrile/LiOCl4 6.37 x 109 

 

 

Conclusions 

 

Literature precedent and the calculations reported herein suggest for tertiary amines (such as 

these MPTP derivatives) that the barrier to ring opening of the corresponding radical cations is 

anticipated to be low for the N-cyclopropyl derivative (e.g., 7•+) (21-24) and non-existent for the 

N-(2-phenylcyclopropyl) derivative (e.g., 8•+) (20, 26). These systems are thus expected to be 

ultra-sensitive probes for SET. The LFP results reported herein demonstrate that for the reaction 

of 3BP with 1, 7, and 8, the intermediates formed are very similar. In each instance, 
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disappearance of 3BP is accompanied solely by appearance of bands corresponding to the 

diphenylhydroxylmethyl radical and neutral radical derived from MPTP and its derivatives. In 

principle, this is consistent with either an apparent hydrogen abstraction from the MPTP 

derivative, or deprotonation within the radical ion pair formed by SET. However, the results 

obtained for 7, and especially for 8 do not support an electron transfer pathway. Electron transfer 

from 8 is expected to lead immediately to the cyclopropyl ring opened product. If this were 

occurring, the observations would be drastically different: a) Bands corresponding to either the 

diphenylhydroxymethyl radical (λmax = 540 nm) or neutral radical derived from the MPTP 

derivative (λmax = 380) would not be observed because the ring opening would beat out 

deprotonation, and b) a band corresponding to the benzophenone radical anion (λmax = 650 nm) 

would be observed. Accordingly, these results suggest that the reaction between 3BP and tertiary 

aliphatic amines proceed via a HAT reaction. Additionally these models provide evidence that 

oxidations of N-cyclopropyl derivatives of MPTP catalyzed by MAO-B may not proceed by a 

pure SET pathway. 
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Supplemental Information 

 

Concentration Profiles for MPTP and N-cyclopropyl MPTP 

 

 
Figure S3.1. Concentration profile for the reaction of benzophenone triplet (3BP) with MPTP [1] in benzene. 

 

 
Figure S3.2. Concentration profile for the reaction of benzophenone triplet (3BP) with MPTP [1] in acetonitrile. 
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Figure S3.3. Concentration profile for the reaction of benzophenone triplet (3BP) with MPTP [1] in acetonitrile in 

the presence of 0.5M LiOCl4. 

 

 
Figure S3.4. Concentration profile for the reaction of benzophenone triplet (3BP) with N-cyclopropyl MPTP [2] in 

benzene. 
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Figure S3.5. Concentration profile for the reaction of benzophenone triplet (3BP) with N-cyclopropyl MPTP [2] in 

acetonitrile. 

 

 
Figure S3.6. Concentration profile for the reaction of benzophenone triplet (3BP) with N-cyclopropyl MPTP [2] in 

acetonitrile in the presence of 0.5M LiOCl4. 
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Abstract 

 

Fifty percent of all cancer cases result from mutations of the TP53 gene, which encodes the 

tumor suppressor p53, and it is hypothesized that the p53-mediated checkpoint pathway is 

compromised in most of the remaining cases. The p53 C-terminal domain (CTD) is an important 

site of p53 regulation, but by nature is difficult to study, as it is intrinsically disordered. In this 

study, we performed molecular dynamics simulations on the p53 CTD and five known regulatory 

binding partners. We identified distinct trends in fluctuation within and around the p53 CTD 

binding site on each partner demonstrating a behavior that facilitates association. Further, we 

present evidence that the size of the hydrophobic pocket in each p53 CTD binding site governs 
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the secondary structure of the p53 CTD when in the bound state. This information will be useful 

for predicting new binding partners for the p53 CTD, identifying interacting regions within other 

known partners, and discovering inhibitors that provide additional points of control over p53 

activity. 

 

 

Introduction 

 

The p53 protein has been extensively studied since it was discovered and identified as an 

important tumor suppressor protein (1). The p53 protein has the ability to promote cell cycle 

arrest, apoptosis, and anti-angiogenesis among other functions, which it commonly does in 

aberrantly growing cells as a means to cease tumorigenisis (2, 3). Non-functioning p53, or a 

malfunction in the p53-mediated signaling pathway, results in tumor cell formation and 

abnormal proliferation. Most often, the defect is a single mutation within the TP53 gene, but it 

can also result from altered expression or mutation of p53 regulatory proteins (2). The general 

consensus remains that restoration of p53 function in a malignant cell is of tremendous 

therapeutic benefit (4). 

The p53 C-terminal domain (CTD) represents a widely accepted site for its regulation (5, 6). 

It is promiscuous in both function and activity, performing many roles in the cell. The p53 CTD 

binds DNA non-specifically to promote linear diffusion along the DNA (7, 8), but it can also 

bind DNA in a more sequence-specific manner depending on its lysine acetylation state (9, 10). 

As a way to regulate this DNA-binding function, the p53 CTD also binds non-specifically to 

RNA (11). The p53 CTD also binds other proteins, some of which are transcription cofactors to 

be recruited to specific genes (12-14), some sequester or block p53 activity by directly binding to 

the C-terminus (15-16), and many others regulate p53 activity through post-translational 

modification (PTM) (17-20). The p53 CTD contains sites of methylation, acetylation, 

phosphorylation, and ubiquitination among others. The topic of PTM has been studied 

extensively and is well reviewed (4, 21, 22), and will not be further discussed here. 

A key feature that makes the p53 CTD promiscuous is the fact that the entire domain 

(residues 363-393) is disordered (23). Disordered proteins have several different functions, a 

major one being recognition and binding of various biomolecules (24, 25). The nature of being 
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disordered gives disordered regions the distinct advantage of being able to bind non-specifically 

to a multitude of different partners, in a sense becoming a “hub” of protein interaction (26). This 

phenomenon assumes importance when the hub in question is at the center of a cancer-

prevention pathway (27). 

The association of the p53 CTD to its various partners varies in specificity, type, and mode of 

binding. For example, when bound to S100 calcium-binding protein B  (S100B(ββ)), the CTD 

forms an α-helix that spans residues 377-387 (PDB:1DT7) (28), but when it binds to a Sirtuin 

protein (Sir2), it forms a β-strand from residues 380-385 (PDB:1MA3) (29). In addition to these 

distinct secondary structure elements, the CTD forms a β-turn when bound to cAMP response 

element-binding (CREB) binding protein (CBP) (PDB:1JSP), and it lacks any ordered secondary 

structure when bound to the histone methyltransferase Set9 (PDB:1XQH) (19) or the cyclin A / 

cyclin dependent protein kinase 2 complex (PDB:1H26) (30). Thus, these five binding partners 

were chosen for this study for their diverse range of size, function, and nature of interaction with 

the p53 CTD, as well as for their structure availability.  

Our knowledge of the binding process between the p53 CTD and its binding partners is 

limited. At present, there are two models under consideration: (i) the p53 CTD transiently forms 

the appropriate secondary structure in solution before binding to its partner (31), or (ii) the p53 

CTD adopts the appropriate secondary structure upon coming in close proximity to its binding 

partner – a process known as induced folding (32, 33). A recent study suggests that the p53 CTD 

is able to form α-helices transiently in solution, but in the case of binding to S100B(ββ), it only 

forms the secondary structure when induced by the binding partner (34). This conformational 

diversity gives the p53 CTD the advantage of being a viable binding site for its partners at all 

times, instead of merely when it happens upon the correct configuration. To our knowledge, 

there is no other evidence, theoretical or physical, that describes the binding event between the 

p53 CTD and any of its partners other than S100B(ββ). This limitation makes it very difficult to 

predict novel protein partners for the p53 CTD, as well as to identify their binding sites and the 

conformation that the p53 CTD adopts in the complex. 

Molecular simulation is a useful technique to study disordered proteins and their interactions. 

The disordered N-terminus transactivation domain (35-38), the structured DNA-binding domain 

(39-43), and the tetramerization domain (44), which is immediately N-terminal to the p53 CTD, 

have all been studied using molecular dynamics (MD) techniques. The p53 CTD has also been 
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studied by molecular simulation to a limited extent. Namely, there are MD and docking studies 

on the interaction between p53 CTD and various small molecules in complex with S100B (34, 

45, 46), as well as MD and docking studies on the p53 CTD binding region on CREB binding 

protein (47). Apart from these examples, no one has yet performed a rigorous MD study of the 

interaction between the p53 CTD and a broad spectrum of binding partners. 

This report seeks to answer a few fundamental questions about the nature of the interaction 

between the p53 CTD and its binding partners. First, what features of the recognition sites within 

the binding partners promote association to the p53 CTD? Second, what is the nature of the 

interaction among those two molecules? Third, what effect does the binding event have on the 

structural dynamics of the p53 CTD and of its interacting protein? Better understanding of these 

relationships will help the prediction of putative binding sites on other partners, or even in the 

identification of novel interacting proteins. 

 

 

Computational Methods 

 

PDB File Preparation 

 

Five files were downloaded from the Research Collaboratory for Structural Bioinformatics 

Protein Data Bank (PDB, www.pdb.org) (48). Each contains two important elements: some 

fragment of the p53 CTD, and some binding partner. In each structural file, an N-terminal acetyl 

cap and C-terminal amide cap were added to the p53 CTD fragment using the LEaP program in 

AMBER (49). All crystallographic waters were removed. The following subsections provide 

specific information on further file preparation. 

1DT7. This structure file contains forty nuclear magnetic resonance (NMR) spectroscopy 

models of the interaction between the rat protein S100B(ββ) homodimer and a human p53 CTD 

22-mer fragment (residues 367-388) (28). Of the forty models, the first one was chosen for the 

simulations (structure validation is discussed in the Analysis section). In the chosen model, the 

C-terminal carboxyl group was missing from each chain of the S100B(ββ) homodimer, so it was 

rebuilt using LEaP. The other two chains in the NMR model (Chain X and Chain Y) are p53 

CTD fragments, and each is bound to one of the S100B subunits. Chain X was also missing the 
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C-terminal carboxyl group, so it was rebuilt in LEaP before the cap was added as described in 

the previous section. Chain Y was removed for simplicity, and the other three modified chains 

(S100B(ββ) homodimer and one p53 CTD chain) were considered for the final model. Because 

p53 CTD binding to S100B(ββ) is calcium-dependent, all four calcium ions were also preserved. 

1MA3. This crystal structure solved at 2.00 Å contains Sir2 in complex with a p53 CTD 9-

mer fragment (residues 379-387) (29). Several residues of the Sir2 protein are missing, including 

a loop from residues 30-39 and residue 253; in addition there are atoms missing from residues 

Glu 29, Arg 112, and Glu 252. In order to rebuild the loop and repair the other inaccuracies, we 

employed Modeller 9v4 (50-53) using the complete protein sequence and the 1MA3 crystal 

structure as the template. We built ten different conformations for the loop from residues 30-39, 

and scored the models within the SWISS-MODEL Workspace (54). We chose the best scoring 

model and relied on the forthcoming MD simulations to further refine the loop. 

In the crystallization experiment, an 18-mer fragment of the p53 CTD (residues 372-389) 

was used, but only a 9-mer fragment (residues 379-387) was solved. The low electron density in 

the unsolved residues implies a large amount of flexibility and fluctuation. Avalos et al. (29) 

found that the essential interactions are the burying of AcLys 382 in a hydrophobic pocket and 

the formation of a β-sheet, both of which are conserved in our model. The Arg 379, however, 

was missing several atoms that were rebuilt in LEaP before adding on the caps as previously 

described. Further, residue Lys 382 of the p53 CTD is acetylated in the original structure. 

Finally, two other components had to be considered. First, a zinc ion coordinated by Sir2 was 

retained. Second, one molecule of 2-(N-morpholino)-ethanesulfonic acid that crystallized with 

the proteins as an artifact of the crystallization process was deleted. 

1H26. This crystal structure solved at 2.24 Å resolution contains several important elements 

(30). The foundation is formed by a complex of two proteins – cyclin A and phosphorylated 

cyclin-dependent protein kinase 2 (pCDK2) – of which there are two copies in the 

crystallographic asymmetric unit. A p53 CTD 9-mer fragment (residues 378-386) is bound to 

one of the cyclin A chains. The cyclin A / pCDK2 pair that was not bound to the p53 CTD was 

deleted. The two most C-terminal residues of pCDK2 were missing most of their atoms, and 

because the location is well removed from the binding site with the p53 CTD, the remaining 

atoms were deleted and the chain was terminated after Leu 296 with a carboxyl group in LEaP. 
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1JSP. This structure file contains twenty NMR models of a p53 CTD 20-mer fragment 

(residues 367-386) in complex with the CREB binding protein (CBP) bromodomain (14). The 

Lys 382 of the p53 CTD fragment is monoacetylated, a factor that is necessary for binding. The 

first of the twenty NMR structures was chosen for this study (structure validation is discussed in 

the Analysis section). No missing residues or atoms needed to be repaired or added other than 

the caps discussed previously. 

1XQH. This crystal structure contains the methyltransferase Set9 in complex with a p53 CTD 

fragment solved at 1.75 Å resolution (19). In the crystallization experiment, a 10-mer fragment 

(residues 369-378) of the p53 CTD was used, but only a 6-mer fragment (residues 369-374) was 

resolved. The crystallographic asymmetric unit contained two copies of the protein complex, and 

one of the pairs was deleted for simplicity. The N-terminal 14 residues of Set9 were also not 

distinguished by crystallography, but are located far enough from the p53 CTD binding site that 

they were not rebuilt. Finally, Lys 372 of the p53 CTD was monomethylated in the original 

crystal structure. 

 

Molecular Dynamics Simulations 

 

In total, fifteen systems were prepared for simulation. For each of the five PDB files, we 

simulated (i) the complex of the p53 CTD fragment and binding partner prepared as described in 

the previous sections, (ii) the p53 CTD fragment alone, and (iii) the binding partner alone. The 

initial coordinates of simulation groups (ii) and (iii) were taken directly from group (i). All MD 

simulations were performed with GROMACS 4.0.4 (55) in conjunction with the united atom 

GROMOS 53a6 force field (56). Methylated and acetylated lysine parameters were reasonably 

adapted by combining existing parameters in the 53a6 force field, and are included in the 

Supplemental Information at the end of this chapter (Table S4.1-S4.3, Figure S4.1). The systems 

were solvated using the explicit simple point charge (SPC) water model (57), and enough sodium 

and chloride ions were added to neutralize the charge of each system and bring the final 

concentration to a physiological level of 100 mM. Each system was then energy minimized using 

a steepest descents integrator (59) either until the maximum force was less than 1000 kJ mol-1 

nm-1 on any atom or until additional steps resulted in a potential energy change of less than 1 kJ 

mol-1. 
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A 50 ps NVT equilibration was performed at 200 K with position restraints applied to all of 

the backbone atoms in order to relieve any bad contacts at the side chain-solvent interface. The 

Berendsen thermostat (59) was used with a temperature coupling time constant (τT) of 0.1 ps. All 

bond lengths were constrained using the linear constraint solver (LINCS) algorithm (60), which 

allowed for a 2 fs timestep. Long-range electrostatic interactions were approximated using the 

particle-mesh Ewald (PME) method (61, 62) with a fourth-order spline interpolation and a 0.12 

nm Fourier grid spacing. 

After the initial equilibration, the position restraints were lifted and the Berendsen thermostat 

was raised to 310 K for a 100 ps NVT simulation. Once each system was sufficiently 

equilibrated around the target temperature, the Nosé-Hoover thermostat (63, 64) was applied 

because it generates a more correct canonical distribution for temperature, and simulated for 

another 100 ps (NVT) at the same temperature. Finally, a 100 ps NPT simulation was conducted, 

relaxing the system into an isotropic Parrinello-Rahman barostat (65, 66) set to 1.0 bar of 

pressure in all directions and a pressure coupling time constant (τP) of 1.0 ps. The production 

MD that followed was performed with the Nosé-Hoover thermostat and Parrinello-Rahman 

barostat, as well as the LINCS and PME treatments as described. 

Replicate systems were generated using the same starting configuration but with different 

initial velocities applied prior to the first NVT equilibration at 200 K. Each of the fifteen 

simulations was simulated in triplicate for 100 ns, for a total simulation time of 4.5 µs across all 

simulations. Simulations were performed on Virginia Tech’s System X Supercomputer, a 12.25 

Teraflop computer comprising 1100 Apple PowerMac G5 computers with dual 2.3 GHz 

PowerPC 970FX processors (67). 

 

Analysis 

 

All analyses were performed using the GROMACS suite of tools and a secondary structure 

recognition algorithm (DSSP) (68). The hydrophobic solvent-accessible surface area (SASA) of 

each p53 CTD binding site was determined by measuring the SASA of all hydrophobic residues 

that lie within the p53 CTD binding site and/or interact closely with the p53 CTD.  All of the 

pertinent residues that were considered are listed in Results and Discussion section. It is 

important to mention that a bug in the code for the GROMACS analysis tool “g_rmsf” was fixed 
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as outlined on the GROMACS website prior to performing our analyses. The program Grace (69) 

was used to plot the 2-D data, and the 3-D images were created with either PyMOL (70) or 

Chimera (71). 

In order to verify that our simulation subspace overlaps completely with the NMR structural 

subspace, thus validating our choice in starting structure for 1DT7 and 1JSP, we employed 

methods outlined in the literature (72, 73) (Figure 4.1, 4.2, and Table 4.1, 4.2). We found good 

overlap in the structural ensembles of the receptor proteins, but less overlap in the p53 CTD 

conformations. In each NMR structure, the solvent-exposed portion of the CTD is disordered and 

observed to be in many different random solvent-oriented conformations. It is unlikely that 

traditional MD on this timescale could reproduce the solvent-exposed configurations in the NMR 

structure, but we are satisfied that the ensemble of structures at the p53 CTD-binding partner 

interface for each structure was satisfactorily sampled across the three replicates. 

 

 
Figure 4.1. NMR and simulation subspace overlap for 1DT7. (Left) Overlay of forty 1DT7 NMR structures. 

S100B(ββ) subunits are shown in green and forest green, the p53 CTD is shown in red. (Right) Overlay of forty 

1DT7 structures from evenly spaced intervals along the 100 ns MD trajectory. S100B(ββ) subunits are shown in 

dark blue and light blue, the p53 CTD is shown in red. 
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Figure 4.2. NMR and simulation subspace overlap for 1JSP. (Left) Overlay of twenty 1JSP NMR structures. The 

CBP bromodomain is shown in green and the p53 CTD is shown in red. (Right) Overlay of twenty 1JSP structures 

from evenly spaced intervals along the 100 ns MD trajectory. The CBP bromodomain is shown in blue and the p53 

CTD is shown in red. 

 
Table 4.1. Radius of gyration (Rg). Values are in nm. 

  NMR MD 

S100B(ββ) 1.70±0.01 1.74±0.02 
1DT7 

p53 CTD 1.14±0.10 0.91±0.02 

CBP bromodomain 1.47±0.01 1.53±0.02 
1JSP 

p53 CTD 1.24±0.10 1.19±0.12 

 
Table 4.2. Secondary structure content. Values are in number of residues. 

   Coil α-Helix β-Sheet Bend Turn 

NMR 21.3±0.3 112.6±0.5 11.8±0.1 20.7±0.6 16.4±0.8 
S100B(ββ) 

MD 36.8±3.2 102.1±2.7 3.0±2.8 30.7±3.8 7.6±3.8 

NMR 8.1±1.3 7.3±0.6 - 1.7±1.3 3.6±0.8 
1DT7 

p53 CTD 
MD 10.5±1.2 7.0±1.0 - 4.9±1.6 0.5±1.0 

NMR 21.5±3.4 51.9±3.4 - 24.0±3.6 20.5±4.3 CBP 
bromodomain MD 35.5±3.7 53.7±3.4 - 15.4±4.0 13.9±4.4 

NMR 16.7±2.2 - - 2.6±1.4 0.8±1.6 
1JSP 

p53 CTD 
MD 13.6±2.0 - - 3.5±2.0 2.0±1.5 
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Results and Discussion  

 

In the following subsections, MD simulations will be discussed as follows. First, we will 

compare the dynamics of the p53 CTD fragment when bound to a binding partner or unbound in 

solution.  Second, we will compare the dynamics of each binding partner when bound to the p53 

CTD fragment and unbound in solution. Finally, we discuss specific interactions of interest for 

each p53 CTD-binding partner pair. Discussions are organized by the PDB identifier from which 

the structures originated. 

 

1DT7 

 

We first assessed the stability during MD of the p53 CTD fragment (residues 367-388) when 

bound to the S100B(ββ) receptor by analyzing the DSSP profile (Figure 4.3). When bound to the 

receptor, the p53 CTD underwent little change from the starting structure in all three replicates 

(Figure 4.3a-c). In the first and third replicates, the α-helix comprising residues 380-387 was 

well-conserved. In the second replicate, the same helix unwound at the ends slightly and was 

calculated by the DSSP algorithm to be a turn – one residue short of being considered a true α-

helix. When the p53 CTD was simulated unbound to the receptor from the same starting 

configuration, a major change in secondary structure content occurred that spanned all three 

replicates (Figure 4.3d-f). The peptide adopted many different secondary structure elements, 

most notably β-sheets, none of which retained any semblance to the original starting structure of 

the same peptide in complex with S100B(ββ). 

The root mean square deviation (RMSD) of the p53 CTD also varied between bound and 

unbound states. Specifically, when the p53 CTD was bound to S100B(ββ), the average backbone 

RMSD of the three replicates was markedly lower than when the p53 CTD was unbound (Figure 

4.4a). This evidence is in agreement with the DSSP evidence in that the p53 CTD fragment 

fluctuated less when bound to its receptor. 
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Figure 4.3. DSSP analysis for 1DT7. Panels (a–c) show the secondary structure content of the p53 CTD when 

bound to S100B(ββ). Panels (d–f) show the secondary structure content of the unbound p53 CTD. 

 

In the analysis of S100B(ββ), we find similar results. The average backbone RMSD of the 

three replicate simulations of S100B(ββ) bound to the p53 CTD was slightly lower than for the 

unbound form over the last 50 ns of simulation (Figure 4.4b). These data indicate that when in 

complex with the p53 CTD fragment, the S100B(ββ) receptor fluctuates less compared to when 

it is free in solution. It is also noteworthy that the RMSD of the bound form stabilized in less 

than 10 ns, whereas the RMSD of the unbound form stabilized in roughly 70 ns. A root mean 

square fluctuation (RMSF) analysis revealed specific parts of the protein that fluctuated more (or 

less) in the bound or unbound states (Figure 4.4c). The hinge region (residues 40-49), helix 3 

(residues 50-60), and helix 4 (residues 70-88) of the S100B β-subunit comprise the p53 CTD 

binding site (Figure 4.5), and they all exhibited a higher degree of fluctuation when the p53 CTD 
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was not bound. In contrast, residues important in calcium binding (residues 20-25) fluctuated 

more when the p53 CTD was bound. 

 

 
Figure 4.4. RMSD and RMSF analyses for 1DT7. Panel (a) shows the average backbone RMSD for the three 

replicates of the p53 CTD in complex with S100B(ββ) (solid line), and in the absence of S100B(ββ) (dotted line). 

Panel (b) shows the average backbone RMSD for the three replicates of the S100B(ββ) receptor in complex with the 

p53 CTD (solid line) and in the absence of the p53 CTD (dotted line). Panel (c) represents the RMSF of S100B(ββ) 

in complex with the p53 CTD (solid line), and in the absence of the p53 CTD (dashed line). 

 

The S100B β-subunit experienced a marked change in configurational principal components 

(PCs) upon p53 CTD binding. Briefly, PCs are eigenvectors that describe large collective (non-

translational and non-rotational) motions of atoms in a given protein that are observed over long 

time scales. PC vectors are determined in conjunction with a covariance matrix that illustrates 

correlated and anti-correlated motions of atoms. Figure 4.6a shows a covariance matrix for the 

two states of the S100B β-subunit, bound to the p53 CTD (bottom right) and in the absence of 

the p53 CTD (top left). When unbound, the S100B subunit experienced large areas of both 

correlated and anti-correlated motion, specifically between helix 3 and helix 4 – the helices that 
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shape the p53 CTD binding site. In Figure 4.6b, the first principal component is illustrated as the 

beginning (top) and end (bottom) of its eigenvector. In the absence of the p53 CTD, a drastic 

transition in the shape of helix 3 and of helix 4 and a change in relative position between the two 

helices is apparent from the two states, a transition which comprised 41.7% of the total motion in 

the protein. When the p53 CTD was bound, however, both correlated and anti-correlated motion 

dissipated between helix 3 and helix 4 (Figure 4.6a). The eigenvector that described the largest 

PC was a relatively small shift in the position of helix 3 (Figure 4.6b). Further, this PC 

represented only 25.5% of the total motion in the protein. 

 

 
Figure 4.5. Surface rendering and backbone trace of the p53 CTD (colored in red), bound to cartoon representation 

of one S100B β-subunit (colored in gray). The hinge region is colored in yellow. Polar and acidic residues of the 

S100B β-subunit are represented with blue carbon atoms. Hydrophobic and aromatic residues are represented with 

green carbon atoms. Other atoms are colored according to standard schemes (H = white, O = red, N = dark blue, S = 

yellow). 
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Figure 4.6. PC analysis for 1DT7. Panel (a) shows a covariance matrix illustrating correlated and anti-correlated 

motions within one S100B β-subunit in the absence of the p53 CTD (top left) and when bound to the p53 CTD 

(bottom right). The secondary structure of the S100B β-subunit backbone is represented along the axes (from left-to-

right, and from bottom-to-top). Panel (b) shows the motion of the largest eigenvector on the S100B(ββ) structure in 

the absence of the p53 CTD (left) and when bound to the p53 CTD (right). The sites on S100B(ββ) where the p53 

CTD binds are colored red and green. 

 

These data taken together, we observed a stabilization effect on the p53 CTD fragment upon 

binding to the receptor S100B(ββ), a characteristic that is in accordance with previous 

experimental observations (28). Because these simulation conditions are consistent with 
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experimental observations, we feel confident in making new observations about the dynamics of 

the receptor in both the bound and unbound state, as well as the interaction between the receptor 

and the p53 CTD fragment. 

The major contributing factors that stabilize the interaction between the p53 CTD and 

S100B(ββ) are summarized in Figure 4.7. Two important residues for this peptide-protein 

interaction are Arg 379 and Lys 382 of the p53 CTD, which exhibited large negative potential 

energies of interaction with the receptor. The residue Arg 379 formed persistent hydrogen bonds 

with His 42 and Glu 45 of S100B(ββ), whereas Lys 382 formed hydrogen bonds with Glu 86 and 

the backbone carbonyl oxygen of Phe 88. Residues His 368, Ser 378, and Lys 381 also formed 

many favorable electrostatic contacts with other S100B(ββ) residues, especially among those in 

helix 3 and helix 4 which exhibited a larger fluctuation in the apo-form of the protein, including 

residues Glu 45, Glu 46, Lys 48, Glu 49, Glu 51, Lys 55, and Glu 89. The Lys 386 residue of the 

p53 CTD also formed electrostatic interactions with Gln 71 and Glu 86 of the opposite β-subunit. 

 

 
Figure 4.7. Potential energy of interaction between the p53 CTD and S100B(ββ) by residue. The electrostatic 

contribution is shown in black, and the van der Waals contribution is shown in white. Error bars represent the 

standard deviation in the sum of the interactions. 

 

The van der Waals contacts formed by both Arg 379 and Lys 382 further contribute to the 

binding of the p53 CTD peptide to S100B(ββ). The hydrophobic binding pocket on S100B(ββ) is 
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defined by residues Leu 44, Val 52, Val 56, Met 79, Val 80, and Phe 87. The average 

hydrophobic solvent-accessible surface area (SASA) of the binding site on S100B(ββ) was 3.18 

± 0.22 nm2 over the last 50 ns of simulation (Figure 4.8). Residue Leu 383 of the p53 CTD faced 

invariably into this hydrophobic core, and contributed the greatest negative van der Waals 

potential of interaction to the peptide-protein interaction (Figure 4.7 and Table S4.4). Residues 

Met 384 and Phe 385 as well as the hydrophobic portion of several other p53 CTD sidechains 

further contributed to the binding event. 

 

 
Figure 4.8. Hydrophobic SASA of the p53 CTD binding site on each apo-binding partner. The typical secondary 

structure content that the p53 CTD adopts when bound to each partner is listed in the legend in parenthesis. The data 

presented are averaged over the three replicates of the apo-form of the binding partner and smoothed over a 20-point 

sliding window. 

 

One possible explanation for the specific conformation that the p53 CTD peptide adopts is 

that an α-helix enables alignment of the hydrophobic residues (Leu 383, Met 384, Phe 385) 

toward the hydrophobic binding site. This argument would be more convincing if there were 

additional hydrophobic residues further N- or C-terminus on the peptide that would also be 

aligned to the binding site only in an α-helical conformation. As it stands, a turn or even random 

coil could allow for three adjacent residues to be aligned such that they face the same binding 

site. Another explanation could have to do with the relative shortage of hydrogen bond donors or 

acceptors within the large hydrophobic core. Most side chain hydrogen bonds are satisfied by the 

surrounding ring of acidic and polar amino acids, as well as by the solvent, but the large 

hydrophobic patch does not provide sufficient hydrogen bond donors or acceptors for the p53 
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CTD backbone (Figure 4.9). Adopting a helical conformation solves this problem, as intra-chain 

backbone hydrogen bonds are readily formed.  

 

 
Figure 4.9. Average number of hydrogen bonds formed between the main chain of each p53 CTD residue and the 

receptor, S100B(ββ). 

 

The p53 N-terminal transactivation domain (TAD) is a good model for comparison of the 

intricate peptide-receptor relationship. In a series of recent publications, Dastidar et al. (74-76) 

showed that the MDM2-bound form of the p53 TAD is a helix dominated by van der Waals 

interactions. The authors suggest that the α-helix is formed so that three hydrophobic residues 

(Phe 19, Trp 23, and Leu 25) all face into the hydrophobic binding pocket. Further, they found 

that the initial complex formation is dominated by electrostatic interactions, much like Chen (34) 

proposes with the “fly-casting” mechanism (77). This fits with our RMSF measurements that 

describe large fluctuations in acidic and polar residues around the p53 CTD binding site in the 

apo-form, and increased fluctuations among the hydrophobic residues in the bound form of 

S100B(ββ) (Figure 4.4c). 

One important observation relates to the role of Ser 376 and Thr 377 of the p53 CTD. 

Rustandi et al. (28) suggested that these two residues are buried against the face of S100B(ββ), 

effectively blocking phosphorylation at these sites. Although our simulations agreed that Thr 377 
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tended to stay buried, forming hydrogen bonds with residues Glu 45, Glu 46, and Glu 49, we 

found that a small conformational shift that happened fairly quickly in all three replicates caused 

Ser 376 to become solvent exposed. This is illustrated by the very small potential energy of 

interaction between Ser 376 and the receptor (Figure 4.7) and by the infrequency of formation of 

mainchain hydrogen bonds to the receptor (Figure 4.9). Steric hindrance could still be a factor in 

preventing phosphorylation of that residue given its low angle along the protein surface. 

Another interesting feature of S100B(ββ) is the calcium-binding domain. In their 

investigation, Rustandi et al. (28) determined that calcium binding to each S100B β-subunit 

induces a major conformational change in helix 3, which forms part of the p53 CTD binding site. 

This change helps open part of the large hydrophobic core, including S100B(ββ) residues Met 

79, Val 80, Leu 44, and Val 56, which are necessary for p53 CTD binding, corroborating the 

importance of the hydrophobic binding site suggested by our MD simulations. Interestingly, the 

RMSF data show that fluctuation in the calcium-binding domain actually increased when the p53 

CTD was bound. It has previously been demonstrated that this observed redistribution of 

fluctuation can be a mechanism of entropic stabilization of the protein complex (78), or as a 

means for the receptor to bind its substrate (p53 CTD) more tightly. 

 

1MA3 

 

In this crystal structure, the p53 CTD fragment (residues 379-387) is solved in complex with 

the deacetylase Sir2. From the DSSP profile (Figure 4.10), we observed that the p53 CTD 

fragment exhibited very little secondary structure content when bound to Sir2. The only notable 

structure formed was a turn centered at residue Lys 381, which only appeared with any 

consistency in two of the three replicates (Figure 4.10a-c). In the absence of Sir2, however, the 

same p53 CTD fragment adopted many different ordered conformations (Figure 4.10d-f), most 

notably a very short strand-turn-strand structure that persisted for almost 80 ns in one replicate, 

and appeared for about 10 ns in another replicate. Concurrently, the RMSD analysis revealed an 

increase in average backbone deviation of the p53 CTD in the absence of Sir2 (Figure 4.11a). 

These data suggest that our MD simulations successfully reproduced the stabilization effect that 

Sir2 has on this p53 CTD fragment (29). 
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In the analysis of Sir2, we found that a trend in backbone deviation was not as apparent as for 

the p53 CTD (Figure 4.11b). When the p53 CTD was not bound, the average backbone RMSD 

was only slightly higher than when the p53 CTD was bound. The RMSF analysis, however, 

clearly indicated two main regions that fluctuated more in the unbound form of the enzyme – 

residues 45-60 and residues 150-175 (Figure 4.11c). These stretches of amino acids include 

several regions that form the p53 CTD-Sir2 interface, including Glu 48, Glu 167, and Gln 171, as 

well as a short extension into the zinc-binding module of Sir2. This region includes the FGE loop 

(residues 162-169), which, when perturbed, opens up a binding tunnel that acted as a receptacle 

for AcLys 382 of the p53 CTD (29). In contrast to the more flexible regions that existed in the 

unbound form of Sir2, there were a few regions that were more flexible in the p53 CTD-bound 

form of Sir2, most notably residues 69–77, 89–92, 106-112, 190-193, 206-211, and 219-225. 

Almost all of these regions are loops or helices that comprise the Rossmann fold domain 

(residues 1-27, 77-118, and 170-253). 

 

 
Figure 4.10. DSSP analysis for 1MA3. Panels (a–c) show the secondary structure content of the p53 CTD when 

bound to Sir2. Panels (d–f) show the secondary structure content of the unbound p53 CTD. 
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Figure 4.11. RMSD and RMSF analyses for 1MA3. Panel (a) shows the average backbone RMSD for the three 

replicates of the p53 CTD in complex with Sir2 (solid line), and in the absence of Sir2 (dotted line). Panel (b) shows 

the average backbone RMSD for the three replicates of the Sir2 receptor in complex with the p53 CTD (solid line) 

and in the absence of the p53 CTD (dotted line). Panel (c) represents the RMSF of Sir2 in complex with the p53 

CTD (solid line), and in the absence of the p53 CTD (dashed line). 

 

The largest PC (23.2%) in Sir2 while bound to the p53 CTD could be described as a pinching 

and releasing of the Rossmann fold domain (Figure 4.12b). This motion corresponded nicely 

with an increased fluctuation in this region when bound to the p53 CTD. In contrast to that, the 

largest PC (29.4%) in the unbound form of Sir2 was a hinging motion at the p53 CTD binding 

site. This hinging motion is the same motion that was diminished by the formation of a β-sheet 

upon the p53 CTD binding. Figure 4.12a shows that there was a general increase in both 

correlated and anti-correlated motion across the entire Sir2 backbone when the p53 CTD was 

absent. 
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Figure 4.12. PC analysis for 1MA3. Panel (a) shows a covariance matrix illustrating correlated and anti-correlated 

motions within Sir2 in the absence of the p53 CTD (top left) and when bound to the p53 CTD (bottom right). The 

secondary structure of the Sir2 backbone is represented along the axes (from left-to-right, and from bottom-to-top). 

Panel (b) shows the motion of the largest eigenvector on the Sir2 structure in the absence of the p53 CTD (left) and 

when bound to the p53 CTD (right). The sites on Sir2 that bind the p53 CTD are colored red and green. 
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Here, we observed another instance in which hydrophilic and acidic residues near the 

hydrophobic binding site tended to fluctuate more in the apo-form of the receptor, presumably as 

a method to aid in the formation of initial contacts with the target (76). Also, we detected another 

case in which the dynamics of a cofactor-binding site changed upon p53 CTD binding. The 

fluctuation and configurational dynamics (as calculated by the PC analysis) both increased in the 

NAD-binding domain when the p53 CTD was bound to Sir2. It is well established that increased 

fluctuations in active sites or cofactor-binding sites can be a means of induced catalysis (79-80). 

These observations, therefore, are in accordance with the known biochemistry of the p53 CTD-

Sir2 interaction, in that the binding event leads to deacetylation of the peptide (29). 

One interesting observation regarding the p53 CTD-Sir2 interaction is that the stretch of the 

p53 CTD from residue 380 to 385 formed a β-strand when in complex with Sir2, while residues 

from that same stretch formed an α-helix when in complex with S100B(ββ) (although the DSSP 

algorithm did not identify the p53 CTD as a β-strand, the molecular geometry and the pattern of 

hydrogen bond formation was indicative of a β-strand). This β-strand joined two other β-strands 

of Sir2 (denoted β7 and β9, see Figure 4.13), forming a stable β-sheet. Avalos et al. (29) termed 

the role that the p53 CTD plays in this process as a “β-staple”. One possible explanation for this 

observation is directly related to the proposed model of the formation of an α-helix in the p53 

CTD upon binding S100B(ββ). In the case of Sir2, the hydrophobic SASA in the binding pocket 

is relatively small, measuring 1.43 + 0.15 nm2 averaged over the last 50 ns of simulation (Figure 

4.8). An abundance of hydrogen bond donors and acceptors readily interact with the backbone of 

the p53 CTD (Figure 4.14), eliminating the need to form intra-chain hydrogen bonds, as is the 

case in an α-helix.  
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Figure 4.13. Cartoon representation of the p53 CTD (colored in red), bound to Sir2. The Rossmann fold domain is 

colored in cyan, the helical module is colored in yellow, the zinc binding module is colored in dark blue, and the 

FGE loop is colored in green. The two β-sheets (β7 and β9) with which the β-strand of the p53 CTD forms a β-

staple are also labeled. 

 

 
Figure 4.14. Average number of hydrogen bonds formed between the main chain of each p53 CTD residue and Sir2. 
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The important interactions that maintained this β-sheet structure involved main chain and 

backbone hydrogen bonds between highly conserved residues on the surface of Sir2 (29). For 

example, the main chain atoms of His 380 and AcLys 382 (p53 CTD) formed contacts with 

amino acids in the FGE Loop of Sir2, Gly 166, Glu 167, and Leu 169. Further, the backbone 

atoms of Leu 383 and Phe 385 of the p53 CTD formed contacts with Val 195 and Tyr 197 of the 

Rossmann fold domain. We found that these contacts persisted in all three replicate simulations. 

However, the residue that contributed the largest negative potential energy of interaction was the 

AcLys 382 of the p53 CTD (Figure 4.15). The modified residue was buried deep within 

hydrophobic pocket of the enzyme, a location that put it in proximity to the active site. Van der 

Waals interactions between AcLys 382 and several Sir2 residues (including His 118, Val 163, 

Phe 165, Leu 169, and Val 196) were the major contribution to the potential energy of 

interaction. In all three replicate simulations, the positioning of AcLys 382 remained unchanged. 

 

 
Figure 4.15. Potential energy of interaction between the p53 CTD and Sir2 by residue. The electrostatic contribution 

is shown in black, and the van der Waals contribution is shown in white. Error bars represent the standard deviation 

in the sum of the interactions. 
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1H26 

 

Regarding the interaction between the p53 CTD and cyclin A, we began again by assessing 

the stability during MD of the p53 CTD fragment by measuring the DSSP profile (Figure 4.16). 

In the three replicates in which the p53 CTD fragment was bound to cyclin A (Figure 4.16a-c), 

nearly all of the secondary structure manifested as a bend or a turn centered around residue His 

380. In some cases, the calculated secondary structure transitioned to coil during the simulation, 

and only very sparingly did any additional secondary structure other than coil appear within the 

p53 CTD fragment. In the three replicates in which the p53 CTD was not bound to its receptor 

(Figure 4.16d-f), the appearance of random secondary structure was much more abundant and 

sporadic. Bend and turn elements appeared and disappeared between residues 380 to 384 with 

very little to no observable consistency.  

 

 
Figure 4.16. DSSP analysis for 1H26. Panels (a–c) show the secondary structure content of the p53 CTD when 

bound to cyclin A. Panels (d–f) show the secondary structure content of the unbound p53 CTD. 

 

When comparing the average backbone RMSD between the replicates (Figure 4.17a), we 

found that the deviation in the p53 CTD fragment was slightly lower when it was in complex 

with the receptor, cyclin A. These data and the DSSP data together show that the bound form of 

the p53 CTD fragment was calculated to fluctuate less than the unbound form. 



 102 

The dynamics of cyclin A appeared to change very little between the two states of the 

protein. The RMSD profile (Figure 4.17b) shows an exceedingly slight increase in deviation 

between the bound and unbound states. Similarly, a PC analysis did not reveal much change in 

the large-scale correlated motions in the protein upon p53 CTD binding. There was some 

increased motion in the loop immediately N-terminus to the α1 helix, as well as in both of the 

protein termini when the p53 CTD was not bound (Figure 4.18a). Analysis of the greatest 

eigenvector in each system showed very little change in the actual p53 CTD binding site region 

(Figure 4.18b). One possible explanation for this observation is that the p53 CTD fragment in 

question is only nine amino acids in length, very small compared to the size of cyclin A (258 

amino acids) and the size of the cyclin A-associated pCDK2 (297 amino acids) (Figure 4.19). On 

this scale and in this timeframe, it is difficult to measure any broad changes such as total 

backbone deviation.  

Conveniently, we were able to measure local changes in the dynamics of the cyclin A 

receptor through a RMSF analysis (Figure 4.17c). The RMSF analysis of cyclin A in both the 

p53 CTD-bound and the unbound states revealed two interesting features. First, a short stretch 

from residues 241-253 experienced a sharp increase in fluctuation upon p53 CTD binding. This 

stretch of residues gave shape to the core of the hydrophobic binding pocket, and contains Leu 

253, one of the cyclin A residues that interacted with the hydrophobic residues of the p53 CTD. 

Several other peaks in cyclin A that are also consistently high in RMSF across the replicates in 

which the p53 CTD fragment was bound are loops that surround the hydrophobic core (residues 

194-207, 300-310, and 342-350). When the p53 CTD was not bound, the RMSF in cyclin A 

increased across residues 280-285, a loop that forms the outer ring of the binding pocket and 

encompasses Asp 283, a residue that is important in p53 CTD binding. 

 



 103 

 
Figure 4.17. RMSD and RMSF analysis for 1H26. Panel (a) shows the average backbone RMSD for the three 

replicates of the p53 CTD in complex with cyclin A (solid line), and in the absence of cyclin A (dotted line). Panel 

(b) shows the average backbone RMSD for the three replicates of the cyclin A receptor in complex with the p53 

CTD (solid line) and in the absence of the p53 CTD (dotted line). Panel (c) represents the RMSF of cyclin A in 

complex with the p53 CTD (solid line), and in the absence of the p53 CTD (dashed line). 
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Figure 4.18. PC analysis for 1H26. Panel (a) shows a covariance matrix illustrating correlated and anti-correlated 

motions within cyclin A in the absence of the p53 CTD (top left) and when bound to the p53 CTD (bottom right). 

The secondary structure of the cyclin A backbone is represented along the axes (from left-to-right, and from bottom-

to-top). Panel (b) shows the motion of the largest eigenvector on the cyclin A structure in the absence of the p53 

CTD (left) and when bound to the p53 CTD (right). The sites on cyclin A that bind the p53 CTD are colored red and 

green. 
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Figure 4.19. Surface rendering and cartoon of the p53 CTD (colored in red). Cyclin A is shown in green cartoon, 

whereas pCDK2 is shown in blue cartoon. The five helices that form the p53 CTD binding site (α1-α5) in cyclin A 

are labeled. 

 

The p53 CTD binding site on cyclin A is characterized by a small hydrophobic binding 

pocket that averaged 2.20 ± 0.17 nm2 of hydrophobic SASA over the last 50 ns of simulation 

(Figure 4.8). Residues Leu 383 and Phe 385 of the p53 CTD tended to form contacts in this 

pocket (which includes residues Ile 213, Leu 214, and Leu 253 of Cyclin A), comprising the bulk 

of the van der Waals contribution to the potential energy of interaction (Figure 4.20). In addition 

to these hydrophobic contacts, Ser 378, Arg 379, His 380, and Lys 381 of the p53 CTD formed 

recurring contacts with Glu 220, Glu 224, and Asp 283 of cyclin A, comprising a very large 

electrostatic potential of interaction (Figure 4.20). Two frequently-modified lysine residues of 

the p53 CTD (Lys 382 and Lys 386), tended to stay oriented toward the solvent in our 

simulations. It is noteworthy that the binding site in cyclin A has an abundance of readily 

available hydrogen bond donors and acceptors. These residues satisfied hydrogen bonds in the 

p53 CTD backbone, stabilizing the disordered conformation that the peptide maintained. Further, 

the hydrophobic pocket was much smaller in cyclin A than it was in S100B(ββ), and thus, there 
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was less opportunity for the p53 CTD peptide to form intra-chain backbone-backbone hydrogen 

bonds, and consequently no tendency to form an α-helix structure. 

 

 
Figure 4.20. Potential energy of interaction between the p53 CTD and cyclin A by residue. The electrostatic 

contribution is shown in black, and the van der Waals contribution is shown in white. Error bars represent the 

standard deviation in the sum of the interactions. 

 

The most interesting behavior seen in this binding pocket was the fluctuation pattern as 

measured by the RMSF analysis. Hydrophobic residues within the binding pocket increased in 

fluctuation upon p53 CTD binding, and polar and acidic residues near the entrance to the pocket 

increased in fluctuation when the p53 CTD was not bound. An explanation for this behavior is 

that when the p53 CTD bound to cyclin A, the hydrophobic residues from the p53 CTD 

effectively cap the hydrophobic pocket, creating a solvent-free hydrophobic cavity that the cyclin 

A residues may explore conformationally. When the p53 CTD was not bound, however, residues 

280-285 of cyclin A increased in fluctuation. This increase may serve a dual purpose. First, one 

of these residues, Asp 283, represents another example of an acidic residue that increased in 

fluctuation in the apo-form of the receptor to favor p53 CTD binding. Secondly, an increased 

fluctuation in this region partially conceals the hydrophobic binding site from the solvent, 

helping to preclude the exposure to water molecules.  

Overall, our data agree with interactions that have been previously described within the 

crystal structure of the complex (30). Residues Leu 383 and Phe 385 of the p53 CTD are 
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important residues for establishing hydrophobic contacts within the hydrophobic binding pocket, 

whereas Arg 379, His 380, and Lys 381 mediate important electrostatic interactions that occur 

between the p53 CTD and cyclin A. 

 

1JSP 

 

The DSSP profile of the p53 CTD taken from crystal structure 1JSP was very revealing 

(Figure 4.21). In the three replicate simulations in which the p53 CTD was bound to the CBP 

bromodomain, we observed a moderate change in secondary structure content over the course of 

the MD simulations (Figure 4.21a-c). The peptide fragment was typically characterized by turn 

or bend conformations along the middle of the chain. In the three replicate simulations of the p53 

CTD fragment in the absence of the CBP bromodomain, drastic changes occurred (Figure 4.21d-

f). The first 10 to 20 ns of simulation progressed similarly to the receptor-bound replicates, but as 

the simulations passed the 20 ns mark, the N- and C-terminal ends of the p53 CTD fragment 

came together as β-strands to form an anti-parallel β-sheet. This conformation was very stable 

and persisted for the rest of the simulation. 

The RMSD analysis of the same p53 CTD fragment (Figure 4.22a) showed that the average 

backbone deviation for the three replicates in which the peptide was not bound to the receptor 

was substantially higher than the same RMSD measurement for the three receptor-bound 

replicates. The secondary structure and RMSD analysis illustrated a considerable change in the 

structural features of the p53 CTD fragment in the absence of the CBP bromodomain. 

The average backbone RMSD of the CBP bromodomain, however, actually increased in the 

presence of the p53 CTD (Figure 4.22b), which is the only case in all five systems in which this 

phenomenon was observed. The RMSF analysis showed that the ZA Loop (residues 1115-1138) 

of the CBP bromodomain fluctuated more when the p53 CTD was not bound (Figure 4.22c). 

This loop contains several polar and acidic residues (including Asp 1124 and Asp 1127) that 

were oriented toward the solvent. Two loop regions increased in fluctuation once the p53 CTD 

was bound. These include the BC Loop (residues 1170-1190) and a short strand-turn-strand 

structure that is just to the C-terminal side of the ZA Loop (residues 1102-1112). Both of these 

loops flank the hydrophobic binding pocket (Figure 4.23). 
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Figure 4.21. DSSP analysis for 1JSP. Panels (a–c) show the secondary structure content of the p53 CTD when 

bound to the CBP bromodomain. Panels (d–f) show the secondary structure content of the unbound p53 CTD. 
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Figure 4.22. RMSD and RMSF analysis for 1JSP. Panel (a) shows the average backbone RMSD for the three 

replicates of the p53 CTD in complex with the CBP bromodomain (solid line), and in the absence of the CBP 

bromodomain (dotted line). Panel (b) shows the average backbone RMSD for the three replicates of the CBP 

bromodomain receptor in complex with the p53 CTD (solid line) and in the absence of the p53 CTD (dotted line). 

Panel (c) represents of the RMSF of the CBP bromodomain in complex with the p53 CTD (solid line), and in the 

absence of the p53 CTD (dashed line). 
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Figure 4.23. Surface rendering and cartoon of the p53 CTD (shown in red). The CBP bromodomain is shown in 

cartoon. α-Helices are colored dark blue, and loops are colored light blue. 

 

On a larger scale, a PC analysis showed that in the absence of the p53 CTD, the major 

eigenvector in the CBP bromodomain consisted of an opening and closing of the hydrophobic 

binding site between the ZA loop and the BC loop (Figure 4.24b). This motion described 58.4% 

of the total motion in the protein. When the p53 CTD was bound, however, the same motion was 

dampened and dropped to only 23.8% of the total motion in the protein. From Figure 4.24a it is 

evident that upon p53 CTD binding, there was a marked increase in both correlated and anti-

correlated motion in the CBP bromodomain, especially among the ZA loop, the BC loop, and 

both of the termini. This observation is in agreement with the marked increase in RMSD that was 

observed in the CBP bromodomain backbone upon p53 CTD binding.  
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Figure 4.24. PC analysis for 1JSP. Panel (a) shows a covariance matrix illustrating correlated and anti-correlated 

motions within the CBP bromodomain in the absence of the p53 CTD (top left) and when bound to the p53 CTD 

(bottom right). The secondary structure of the CBP bromodomain backbone is represented along the axes (from left-

to-right, and from bottom-to-top). Panel (b) shows the motion of the largest eigenvector on the CBP bromodomain 

structure in the absence of the p53 CTD (left) and when bound to the p53 CTD (right). The sites on the CBP 

bromodomain that bind the p53 CTD are colored red and green. 
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This case presents another example in which polar or acidic residues near the hydrophobic 

binding site tends to fluctuate more in the absence of the p53 CTD. This increase in fluctuation 

in the ZA loop is likely to assist in forming initial electrostatic contacts with the target peptide as 

was observed in the interaction of MDM2 and the p53 TAD (76). Further, we again observed a 

case in which hydrophobic residues that shape the binding site increased in fluctuation upon p53 

CTD binding. This likely happens because p53 CTD binding effectively caps the binding site 

such that hydrophobic residues within the site are no longer constrained to avoid water contact 

and are free to explore a new hydrophobe-friendly conformational space. The PC analysis further 

confirms this hypothesis because of the observed increase in motion in the hydrophobic binding 

site upon p53 CTD binding (Figure 4.24). 

This molecular system is different from the other four structures considered in this study in 

that the contact area between the p53 CTD fragment (residues 367-386) and the CBP 

bromodomain (residues 1081-1196) in the NMR structure is limited to only a few residues. Of 

the 20-mer p53 fragment, the N-terminal fourteen residues (367-380) are pointing away from 

CBP and exposed to the solvent, and the C-terminal six residues (381-386) are in close contact 

with CBP. However, during the simulations, these N-terminal residues of the p53 CTD fragment 

folded over and formed contacts with the surface of the CBP bromodomain in as quickly as 2 ns, 

and within 11 ns across all of the replicates. Specifically, polar residues along the p53 CTD 

backbone (His 368, Ser 371, Lys 373, Gln 375) interacted with Asp 1124 and Asp 1127 of the 

CBP bromodomain, depending on how the p53 CTD peptide folded during the simulation 

(Figure 4.25). This shift in the p53 CTD conformation may have induced slight conformational 

changes along the backbone of the receptor that would not occur in the absence of the peptide, 

accounting for the increase in RMSD. 
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Figure 4.25. Potential energy of interaction between the p53 CTD and the CBP bromodomain by residue. The 

electrostatic contribution is shown in black, and the van der Waals contribution is shown in white. Error bars 

represent the standard deviation in the sum of the interactions. 

 

Another key interaction between the p53 CTD and the CBP bromodomain is the location of 

the AcLys 382 residue. This modified amino acid consistently remained inserted into the 

hydrophobic cavity in the CBP bromodomain formed by Val 1115, Ile 1122, Tyr 1125, Tyr 

1167, Val 1174, and Phe 1177. The two residues to the C-terminal side of the acetylated lysine 

(Leu 383 and Met 384) also contributed to the negative potential energy of interaction within this 

pocket, while Phe 285 and Lys 386 formed contacts with the hydrophobic portion of Arg 1112 

(Figure 4.25). These hydrophobic contacts remained consistent across all three replicate 

simulations, indicating that they are likely the major contributing factor in the formation of the 

p53 CTD-CBP bromodomain complex. We measured the hydrophobic SASA in the binding site 

to be 2.61 ± 0.19 nm2 over the last 50 ns of simulation (Figure 4.8). This area falls closer to that 

which supports helix formation rather than strand formation, which seems appropriate because 

the p53 CTD forms a turn structure when bound to the CBP bromodomain, one residue short of 

an α-helix. 
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1XQH 

 

According to the DSSP analysis, when the p53 CTD was bound to the methyltransferase 

Set9, the only secondary structure detected was a bend centered at Ser 371 (Figure 4.26a-c). Ser 

371 formed a bend in all three replicates. The secondary structure content of the same fragment 

consistently changed in the absence of Set9 (Figure 4.26d-f), forming sporadic turn and bend 

conformations across residues 370-374. 

 

 
Figure 4.26. DSSP analysis for 1XQH. Panels (a–c) show the secondary structure content of the p53 CTD when 

bound to Set9. Panels (d–f) show the secondary structure content of the unbound p53 CTD. 

 

The average backbone RMSD of the same p53 CTD fragment was slightly higher when it 

was unbound compared to when it was bound early in the simulation, although they are 

comparable for the last 50 ns (Figure 4.27a). These data, along with the DSSP analysis, 

demonstrate that the fluctuation in the p53 CTD fragment was lower when it was bound to the 

receptor Set9. 

The average RMSD of the Set9 backbone was dependent on whether the p53 CTD fragment 

was bound (Figure 4.27b). In the uncomplexed form, the average backbone deviation was 
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slightly higher than in the bound form. A RMSF analysis identified three interesting regions 

within Set9 (Figure 4.27c). When the p53 CTD was not bound, residues 252-266, a stretch that 

includes Asp 256 and Thr 266 (residues important in p53 CTD binding), increased in fluctuation. 

When the p53 CTD was bound, however, two different loops increased in fluctuation. These 

included residues 217-227 of the Set domain and 278-288 of the Set-I domain, both of which 

help the formation of the hydrophobic binding pocket in which the methylated Lys 372 of the 

p53 CTD was inserted (Figure 4.28). 

 

 
Figure 4.27. RMSD and RMSF analysis for 1XQH. Panel (a) shows the average backbone RMSD for the three 

replicates of the p53 CTD in complex with Set9 (solid line), and in the absence of Set9 (dotted line). Panel (b) 

shows the average backbone RMSD for the three replicates of the Set9 receptor in complex with the p53 CTD (solid 

line) and in the absence of the p53 CTD (dotted line). Panel (c) represents the RMSF of Set9 in complex with the 

p53 CTD (solid line), and in the absence of the p53 CTD (dashed line). 
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Figure 4.28. Surface rendering and cartoon of the p53 CTD backbone (shown in red). The receptor Set9 is shown in 

cartoon, highlighting the N-terminal domain (blue), the Set domain (green), the Set-I domain (purple), and the C-

terminal segment (yellow). 

 

The PC analysis shows a very drastic difference in the dynamics of Set9 between the bound 

and unbound forms. When the p53 CTD was unbound, a single vector described 72.0% of the 

total motion in Set9. That vector corresponded to an opening and closing of the p53 CTD 

binding site region, or the area between the Set domain and the Set-I domain, through the major 

shift of the C-terminal segment (Figure 4.29b). When the p53 CTD was bound, the same motion 

remained the largest PC, but dropped to only a 38.3% contribution to overall motion in the 

protein. The major eigenvector revealed a much smaller shift of the C-terminal segment between 

the Set and Set-I domains (Figure 4.29b). Figure 4.29a supports these observations, as it shows a 

general increase in motion in Set9 when it was not bound to the p53 CTD. Much of this motion 

could be described by fluctuations in the N- and C-terminus flanking domains, which settled 

upon p53 CTD binding. 
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Figure 4.29. PC analysis for 1XQH. Panel (a) shows a covariance matrix illustrating correlated and anti-correlated 

motions within Set9 in the absence of the p53 CTD (top left) and when bound to the p53 CTD (bottom right). The 

secondary structure of the Set9 backbone is represented along the axes (from left-to-right, and from bottom-to-top). 

Panel (b) shows the motion of the largest eigenvector on the Set9 structure in the absence of the p53 CTD (left) and 

when bound to the p53 CTD (right). The sites on Set9 that bind the p53 CTD are colored red and green. 

 

Again we observed hydrophilic and acidic residues (Asp 256 and Thr 266) with an increased 

fluctuation near the entrance to the hydrophobic binding site in the absence of the p53 CTD. The 

PC analysis also described an increased motion in these residues in the absence of the p53 CTD, 
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indicating a propensity to form initial electrostatic contacts with its target, facilitating binding. 

Further, upon the binding of the p53 CTD to Set9, we observed increased fluctuation in loops 

that form both the hydrophobic binding pocket and the cofactor (AdoHcy) binding site. 

Presumably, residues from the p53 CTD complete the shape of the pocket upon binding in a way 

that allows hydrophobic residues within the pocket to explore more conformational space (as 

previously described), and in addition, promote methylation via induced catalysis (79, 80). 

Chuikov et al. (19) solved the crystal structure of a p53 CTD fragment in complex with 

methyltransferase Set9. Originally, a 10-mer fragment of the CTD was used in the experiment 

(residues 369-378), but only the first six residues were well resolved (residues 369-374). Residue 

Lys 372 of the p53 CTD is methylated, a PTM that regulates p53 by restricting it to the nucleus 

(19). In our simulations, we found that the MeLys 372 packed against Trp 260 of Set9, as it laid 

in a channel partly formed by the hydrophobic residues Val 255, Leu 267, and Val 158, with a 

hydrophobic SASA of roughly 1.60 ± 0.16 nm2 (Figure 4.8). It also formed transient hydrogen 

bonds with Asn 265, Tyr 335, and Tyr 337, adding a substantial electrostatic potential energy 

contribution to the interaction (Figure 4.30). Chuikov et al. proposed that this methylated lysine 

residue packs hydrophobically against Trp 260, but also they proposed that it forms hydrogen 

bonds with Arg 258 of Set9, for which we found no evidence in any of our three replicates. 

In addition to the interactions of the methylated Lys 372, we found that residues Asp 256, 

Thr 266, and Ser 268 of Set9 formed stabilizing hydrogen bonds with several backbone atoms of 

the p53 CTD fragment, as well as with Ser 371 and Lys 373 of the p53 CTD. Chuikov et al. (19) 

suggested Arg 258 of Set9 as an important residue in p53 CTD binding, but we found that this 

residue tended to orient itself towards the solvent, away from the p53 CTD in all three replicates. 
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Figure 4.30. Potential energy of interaction between the p53 CTD and Set9 by residue. The electrostatic 

contribution is shown in black, and the van der Waals contribution is shown in white. Error bars represent the 

standard deviation in the sum of the interactions. 

 

 

Conclusions 

 

We studied the dynamics and the interactions of five known p53 CTD-binding partner 

complexes by MD simulations. We looked for trends in the interactions and conformational 

dynamics that could be generalized and used to predict new binding partners for the p53 CTD, or 

locate binding sites on already known partners for which there is no structural information 

related to protein-protein interactions. 

We observed several important trends in the binding partners. Most importantly, the core of 

each p53 CTD binding site on the partners is a hydrophobic binding pocket that is variable in 

size. Further, these hydrophobic pockets typically increased in fluctuation upon binding of the 

p53 CTD. We propose that the binding event completes a cavity from which water is excluded, 

thereby allowing hydrophobic residues in the receptor to explore more conformational space. In 

addition, binding sites are typically surrounded by polar and acidic residues, which fluctuate 

more when the p53 CTD is not bound. This increased fluctuation suggests that the receptors 
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facilitate p53 CTD binding by forming initial electrostatic contacts with the target peptide, as has 

been shown previously for the p53 TAD (76). The complex, however, tends to rely heavily on 

van der Waals type contacts, especially within the hydrophobic cavity, for stabilization. Finally, 

in the case of receptors that also had a cofactor-binding site, we typically observed an increase in 

fluctuation at those sites upon p53 CTD binding. This is likely a mechanism to induce catalysis 

(79, 80) or bind the peptide more tightly by entropic stabilization (78). 

We also propose a correlation between the size of the hydrophobic binding site and the 

secondary structure that the p53 CTD adopts upon binding. The p53 CTD has been observed to 

be an α-helix, turn, β-strand, or unstructured when in complex with a binding partner. We 

believe that the larger the hydrophobic area on the receptor, the p53 CTD will have a greater 

tendency to form a helix. This is due to the lack of hydrogen bond donors in the hydrophobic 

area. The backbone of the p53 CTD will have unsatisfied hydrogen bonds, thus favoring a helix 

conformation, which forms intra-chain backbone-backbone hydrogen bonds. If the receptor has a 

very small hydrophobic area, we anticipate that the p53 CTD will favor a β-strand structure. The 

availability of hydrogen bond acceptors will be able to satisfy p53 backbone hydrogen bond 

donors. Receptors with medium-sized hydrophobic patches will induce unstructured or random 

coil structures on the p53 CTD backbone. 

Overall, this information could be useful in designing inhibitors for p53 CTD-binding partner 

interactions. We would suggest exploiting the mechanism of binding facilitation of the polar and 

acidic amino acids near the binding site, while keeping in mind with careful consideration the 

size of the hydrophobic patch and its implication on the structure of the inhibitor. Further, this 

report will be useful to those trying to determine new binding sites for the p53 CTD among novel 

partners.  
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Supplemental Information 

 

Modified Lysine Parameters 

 

Listed below are the parameters for acetylated lysine (Table S4.1), methylated lysine (Table 

S4.2), and the original lysine parameters from ffG53a6.rtp (Table S4.3). The numbers in the first 

column correspond to atom numbers as shown in Figure S4.1.  

 
Table S4.1. Acetylated lysine parameters. 

Atom Number Atom Type Charge Group Number Charge 
1 N 1 -0.31 
2 H 1 0.31 
3 CH1 2 0 
4 CH2 2 0 
5 CH2 3 0 
6 CH2 3 0 
7 CH2 3 0 
8 N 4 -0.31 
9 H 4 0.31 
10 C 5 0.45 
11 O 5 -0.45 
12 CH3 6 0 
13 C 7 0.45 
14 O 7 -0.45 

 

Table S4.2. Methylated lysine parameters. 

Atom Number Atom Type Charge Group Number Charge 
1 N 1 -0.31 
2 H 1 0.31 
3 CH1 2 0 
4 CH2 2 0 
5 CH2 3 0 
6 CH2 3 0 
7 CH2 4 0.127 
8 NL 4 0.129 
9 H 4 0.3085 
10 H 4 0.3085 
11 CH3 4 0.127 
12 C 5 0.45 
13 O 5 -0.45 
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Table S4.3. Original lysine parameters from ffG53a6.rtp (listed as [LYSH]). 

Atom Number Atom Type Charge Group Number Charge 
1 N 1 -0.31 
2 H 1 0.31 
3 CH1 2 0 
4 CH2 2 0 
5 CH2 3 0 
6 CH2 3 0 
7 CH2 4 0.127 
8 NL 4 0.129 
9 H 4 0.248 
10 H 4 0.248 
11 H 4 0.248 
12 C 5 0.45 
13 O 5 -0.45 

 

 

Figure S4.1. Atom numbering scheme for acetylated lysine (AcLys), methylated lysine (MeLys), and unmodified 
lysine (Lys). 
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Supplemental Tables for Energy Contributions 
 
Table S4.4. Energy contributions for the interaction between the p53 CTD and S100B(ββ) (PDB:1DT7). Values are 

in kJ mol-1. 

 Electrostatic van der Waals Sum 

Ser 367 -9.78±21.96 -4.29±7.38 -14.07±23.17 

His 368 -38.21±39.42 -14.69±11.56 -52.90±41.08 

Leu 369 -1.83±4.60 -14.66±8.45 -16.49±9.63 

Lys 370 -16.35±19.15 -4.29±6.66 -20.64±20.27 

Ser 371 -23.16±31.55 -0.59±7.67 -23.75±32.47 

Lys 372 -7.95±12.81 -0.98±3.14 -8.93±13.19 

Lys 373 -5.62±10.98 -7.99±7.90 -13.61±13.52 

Gly 374 -0.53±2.21 -2.77±3.47 -3.30±4.12 

Gln 375 -24.42±27.74 -7.17±8.52 -31.58±29.02 

Ser 376 -3.59±10.73 -1.89±3.05 -5.47±11.15 

Thr 377 -20.51±25.64 -2.60±7.01 -23.11±26.58 

Ser 378 -43.67±30.46 -6.12±8.90 -49.79±31.73 

Arg 379 -45.94±26.77 -24.62±15.15 -70.56±30.76 

His 380 -25.57±30.97 -4.63±7.29 -30.20±31.81 

Lys 381 -38.71±30.01 -10.66±12.03 -49.37±32.33 

Lys 382 -56.82±19.95 -26.29±11.21 -83.11±22.88 

Leu 383 -10.75±15.31 -27.56±5.52 -38.31±16.27 

Met 384 -10.74±15.39 -9.10±5.70 -19.84±16.41 

Phe 385 -0.80±2.58 -7.01±7.49 -7.81±7.92 

Lys 386 -25.20±22.44 -20.60±8.02 -45.80±23.83 

Thr 387 -18.38±27.80 -13.09±9.65 -31.47±29.43 

Glu 389 -18.64±20.40 -7.01±6.36 -25.65±21.37 
 
Table S4.5. Energy contributions for the interaction between the p53 CTD and Sir2 (PDB:1MA3). Values are in kJ 

mol-1. 

 Electrostatic van der Waals Sum 

Arg 379 -3.31±6.53 -15.32±8.05 -18.63±10.36 

His 380 -28.64±14.60 -18.51±7.65 -47.15±16.49 

Lys 381 -1.98±4.97 -23.63±3.52 -25.60±6.09 

AcLys 382 -60.22±13.35 -79.73±10.26 -139.95±16.84 

Leu 383 -25.40±9.28 -21.07±5.39 -46.47±10.73 

Met 384 -11.65±12.56 -37.76±7.54 -49.42±14.65 

Phe 385 -13.43±5.97 -18.65±5.10 -32.08±7.85 

Lys 386 -22.37±25.19 -6.49±9.22 -28.86±26.82 

Thr 387 -9.18±16.17 -8.88±7.47 -18.06±17.81 
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Table S4.6. Energy contributions for the interaction between the p53 CTD and cyclin A (PDB:1H26). Values are in 

kJ mol-1. 

 Electrostatic van der Waals Sum 

Ser 378 -49.03±24.72 -5.08±10.30 -54.11±26.78 

Arg 379 -45.77±22.86 -29.49±8.49 -75.26±24.38 

His 380 -85.52±15.74 -7.93±9.21 -93.45±18.23 

Lys 381 -58.98±35.09 -12.51±11.14 -71.49±36.81 

Lys 382 -11.55±15.98 -11.44±6.90 -22.99±17.41 

Leu 383 -5.34±7.83 -27.39±6.98 -32.73±10.49 

Met 384 -0.23±1.52 -6.42±4.72 -6.65±4.96 

Phe 385 -4.45±7.13 -37.06±9.13 -41.51±11.58 

Lys 386 -7.40±10.35 -10.78±7.95 -18.19±13.05 
 
 

Table S4.7. Energy contributions for the interaction between the p53 CTD and the CBP bromodomain (PDB:1JSP). 

Values are in kJ mol-1. 

 Electrostatic van der Waals Sum 

Ser 367 -20.75±20.13 -10.40±7.34 -31.15±21.43 

His 368 -72.96±23.12 -10.23±12.71 -83.19±26.38 

Leu 369 -5.80±9.80 -13.87±6.97 -19.67±12.02 

Lys 370 -9.65±13.95 -11.88±6.23 -21.54±15.27 

Ser 371 -30.40±33.74 -4.80±7.61 -35.20±34.58 

Lys 372 -8.85±16.22 -12.44±7.89 -21.29±18.04 

Lys 373 -37.89±32.07 -23.95±18.23 -61.85±36.89 

Gly 374 -7.77±8.50 -10.55±7.91 -18.32±11.61 

Gln 375 -16.09±16.83 -15.67±9.29 -31.76±19.23 

Ser 376 -3.22±8.73 -8.19±5.43 -11.41±10.28 

Thr 377 -0.13±1.85 -3.11±3.47 -3.24±3.93 

Ser 378 -8.82±16.53 -3.13±6.27 -11.95±17.67 

Arg 379 -12.61±15.67 -9.23±7.80 -21.84±17.50 

His 380 -50.79±30.06 -2.52±16.68 -53.32±34.38 

Lys 381 -0.04±1.02 -5.35±5.31 -5.39±5.41 

AcLys 382 -12.44±15.22 -32.12±23.78 -44.57±28.23 

Leu 383 -1.26±1.57 -31.32±10.54 -32.57±10.66 

Met 384 -16.39±10.90 -18.67±5.96 -35.06±12.42 

Phe 385 -22.34±11.56 -40.41±13.87 -62.76±18.06 

Lys 386 -8.06±12.78 -18.39±6.94 -26.46±14.54 
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Table S4.8. Energy contributions for the interaction between the p53 CTD and Set9 (PDB:1XQH). Values are in kJ 

mol-1. 

 Electrostatic van der Waals Sum 

Leu 369 -25.20±12.95 -25.83±12.71 -51.03±18.15 

Lys 370 -69.35±25.97 -36.23±11.15 -105.58±28.26 

Ser 371 -31.21±38.94 -14.70±11.70 -45.91±40.66 

MeLys 372 -80.42±21.17 -44.42±14.03 -124.85±25.40 

Lys 373 -32.52±24.56 -23.10±11.21 -55.62±27.00 

Gly 374 -20.65±12.60 -18.12±6.51 -38.77±14.18 
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Abstract 

 

The protein B2 from the Nodamura virus is a potent suppressor of RNA silencing, a function 

that allows the virus to proliferate in host cells. In order to study how the protein functions, it is 

convenient to design mutant proteins that have attenuated or knocked-out ability to bind its 

target, double-stranded (ds)RNA. Here, we describe computational techniques, including 

conventional and steered molecular dynamics simulations, that help us to understand how the B2 

protein binds dsRNA, and that provide a highly specific predictive insight, resulting in an 

approach that can decrease time and monetary costs for designing mutants that have desired 
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effects, and a better understanding of a potent anti-viral defense pathway that has important 

applications in drug design. 

 

 

Introduction 

 

RNA interference (RNAi) refers to an RNA-guided gene regulatory process found in most 

eukaryotic organisms ranging from plants to mammals. In general, intracellular double-stranded 

RNA (dsRNA) is cleaved into small interfering RNAs (siRNAs) by the RNase III endonuclease, 

Dicer (1). These siRNAs are loaded into the RNA silencing complex (RISC), made primarily of 

Argonaute-2 (AGO2), which facilitates sequence-specific silencing of homologous transcripts (2, 

3). In plants and invertebrates, this process is an important part of the antiviral response (4). 

In response to RNAi, some viruses express suppressors of RNA silencing (SRSs) upon 

infecting plant and invertebrate hosts (5). SRSs are proteins that block the RNAi pathway by 

binding to the inherent protein machinery, to long dsRNA, or to siRNAs (5, 6). The most well-

characterized SRS identified in an animal virus thus far is the B2 protein of flock house virus 

(FHV) (6). Another B2 protein of similar function, yet has less than 30% identity, is also present 

in the distantly related Nodamura virus (NoV) (5). FHV and NoV are members of Nodaviridae, a 

family of positive-sense RNA viruses with bipartite genomes. During replication of RNA1, a 

subgenomic RNA3 is transcribed containing the open reading frame (ORF) for B2, which 

overlaps with the viral replicase, protein A. The B2 protein is required for FHV and NoV 

replication in cells that depend on RNAi as an antiviral reponse and when components of the 

RNAi pathway are depleted or knocked down viral RNA accumulation increases (7-10). B2 

suppresses the RNAi pathway by binding to both siRNA duplexes and long dsRNAs (11-15). 

Thus, B2 acts by preventing the protein components of the RNAi pathway access to siRNAs and 

dsRNAs associated with FHV and NoV infection (6, 12-15).  

To better understand how B2 functions, the crystal structure of FHV B2 was solved both 

bound and unbound to dsRNA (12, 13). The crystal structure of FHV B2 complexed with 

dsRNA revealed key binding residues that were involved in interacting with dsRNA. Mutational 

analysis has been conducted on FHV B2 binding residues C44 and R54. FHV B2 C44S and 

C44A mutants revealed a 100-fold reduce binding affinity to dsRNA (12). Mutational analysis of 
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FHV B2 R54Q revealed a 20-fold reduction in FHV viral RNA accumulation compared to wild-

type virus, as well as the inability of the FHV B2 R54Q to bind long dsRNA and block dicer 

cleavage (15). Unlike previous experiments that used untranslatable B2 mutants, a direct 

connection was made between RNA accumulation and the ability of B2 to bind dsRNA. The 

crystal structure of NoV B2 has also recently been solved and its structure has been 

superimposed onto FHV B2 revealing potential equivalent binding residues (11). NoV B2 may 

prove to be of greater importance when compared to FHV B2, as NoV naturally infects 

mammalian and insect hosts (9, 16, 17). 

In order to confirm or refute the importance of the NoV B2 predicted binding residues, as 

well as identify additional residues that may be important to dsRNA binding, we employed a 

series of molecular dynamics (MD) techniques (18). Using the wealth of available structural 

data, we constructed a model of WT NoV B2 in complex with dsRNA, as well as models of 

several NoV B2 mutants in complex with dsRNA. Previously, Xia et al. (19) used steered MD 

techniques to simulate the unbinding of the SRS p19 from dsRNA, and in doing so they were 

able to distinguish weakly-binding mutants from the more tightly-binding wild type protein. We 

used a variant of their technique to perform a similar analysis, and we were ultimately able to 

create a rank-order of binding affinity for the NoV B2 WT and mutants that we later confirmed 

experimentally. In addition, we expanded on the project by measuring specific electrostatic and 

van der Waals interactions between individual NoV B2 residues and the dsRNA, thus identifying 

the specific residues that contributed most to the binding interaction and creating unique energy 

of binding profiles for the WT and mutant proteins. These data were applied to the formulation 

of NoV RNA1 mutants that were tested for self-directed replication in culture cells. Herein, we 

demonstrate a molecular model for predicting the effects of point mutations in proteins that 

correlates with in vivo experimental results. 
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Materials and Methods 

 

Computational 

 

Structure and Topology. Crystal structures were obtained from the Protein Data Bank (20) 

including FHV B2 in complex with dsRNA (PDB ID: 2AZ0) (12), and unbound NoV B2 (PDB 

ID: 3G80) (11). The backbone atoms of the conserved residues were used to align the NoV B2 

protein to FHV B2. The resulting NoV B2 coordinates were combined with the original 

coordinates of the dsRNA (18 nucleic acids in each chain) from 2AZ0 to make a complete 

starting structure for our simulations. In addition to the wild type (WT) NoV B2 simulation, 

parallel systems containing NoV B2 mutants were also simulated; each point mutation was 

prepared manually. The GROMACS 4.0.7 (21) suite of programs was used for all simulations in 

conjunction with the ffamber03 all-atom force field (22). Each protein-dsRNA complex was 

solvated with the TIP3P water model (23) and sufficient ions were added to neutralize the charge 

of the system and simulate in vivo conditions. Each system was minimized using a steepest 

descent integrator until the maximum force on any atom was less than 1000 kJ mol-1.  

Traditional MD Simulations. During all simulations, explicit electrostatic interactions were 

restricted to 0.8 nm and VDW interactions to 1.4 nm, and the particle mesh Ewald (PME) 

method (24, 25) was used to approximate long-range interactions. In addition, the linear 

constraint solver (26) was used to constrain all bond lengths, allowing for a 2 fs timestep. 

Following minimization, 200 ps of constant volume-temperature (NVT) MD simulations were 

performed at 301 K using the Berendsen thermostat (27) and with weak position restraints on the 

protein and dsRNA backbone atoms. The systems were further equilibrated under constant 

pressure-temperature (NPT) conditions for 200 ps at 1 bar of pressure and the same temperature. 

During NPT simulations, the Nosé-Hoover thermostat (28, 29) and Parrinello-Rahman barostat 

(30, 31) were employed. After lifting the position restraints on the protein backbone atoms, 60 ns 

of production MD was performed on all NoV B2 mutant systems, and 120 ns of production MD 

was performed on the NoV B2 WT system. 

Steered MD Simulations. Constant-velocity steered MD runs were performed on the WT and 

each mutant system in quintuplicate. Full velocity and coordinate snapshots taken at 200 ps 

intervals at the end of the production MD served as the starting points for steered MD 
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simulations. Position restraints were maintained on the dsRNA backbone atoms. An imaginary 

point was tethered to the center-of-mass of all protein atoms via a spring with a spring constant 

of 1000 kJ mol-1 nm-2; that point then traveled directly away from the dsRNA at a constant rate of 

0.01 nm ps-1. All simulations were performed on Virginia Tech’s SystemX supercomputer 

(www.arc.vt.eu). Using 24 processors, we were able to collect one nanosecond of data in 

approximately 5.5 hours of simulation. 

 

Experimental 

 

Cells and Viruses. Baby hamster kidney (BHK- 21) and fruit fly (S2) cells were obtained 

from ATCC. BHK-21 cells were maintained in DMEM supplemented with penicillin, 

streptomycin, L-glutamine, and 10% fetal bovine serum at 37°C; S2 cells were maintained in 

Drosophila media supplemented with penicillin, streptomycin, L-glutamine, and 10% fetal 

bovine serum at 28°C. The pNoV RNA1 plasmid and mutants were synthesized with a T7 

promoter placed at the start of the 5’UTR.  

Transfections. NoV RNA1 was in vitro transcribed and cleaned using the MEGAclearTM kit 

(Ambion). One µg of RNA was electroporated in 400 µL of BHK-21 (460 V, 725 Ω, 75 µF) or 

S2 (715 V, 1575 Ω, 50 µF) cells at a concentration of 1x107 cells mL-1 using a BTX ECM 630. 

Electroporated cells were divided between 3 wells of a 6 well plate. Cells were harvested and 

RNA was extracted using TRI Reagent® at 1, 2, and 3 days post-transfection.  

Northern Blots. RNA was analyzed by Northern blot using standard procedures. Probes were 

generated with the MegaprimeTM DNA Labeling System (Amersham) from a fragment spanning 

the NotI and PflmI sites of pNoV RNA1. Detection was achieved using a Storm 840 

phosphorimager (GE Healthcare). Images were analyzed with ImageQuant software (GE 

Healthcare).  
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Results 

 

Energy Profiles for NoV B2–dsRNA Interaction 

 

We constructed a model of NoV B2 in complex with dsRNA by superimposing the crystal 

structure of the NoV B2 protein from 3G80 over the coordinates of the FHV B2 protein from 

2AZ0. The FHV B2 atoms were deleted, leaving the NoV B2 atoms in complex with dsRNA. 

We simulated WT NoV B2 in complex with dsRNA for 120 ns. The starting configuration of the 

complex is given in Figure 5.1A. Excluding the first 20 ns of production MD, we measured the 

average energy of interaction between each NoV B2 residue and the dsRNA, broken down into 

individual electrostatic and VDW components. Because NoV B2 is a homodimer, the calculated 

energies were averaged between equivalent residues on opposite chains. Residues that are N-

terminal to D36 or C-terminal to A71 were distant enough from the dsRNA during the 

simulations that only negligible interactions occurred. The results are plotted in Figure 5.2. 

The energy profile of WT NoV B2 binding to dsRNA revealed important structural 

information for studying the interaction between the two biomolecules and for designing 

attenuated or knockout mutants. Peaks in the energy profile appeared every 3-4 residues, a 

characteristic that is reflective of the helical conformation of NoV B2 (Figure 5.2). Two residues 

near the middle of the binding interface, R56 and R59 (Figure 5.1B), exhibited the greatest 

average potential energy of interaction, -62 ± 20 and -99 ± 26 kJ mol-1 respectively, indicating 

that the greatest contribution to dsRNA binding is occurring in this part of the protein. However, 

in their study, Körber et al. only identified R59 as an important binding residue, not R56 (11). In 

addition to R56, we also identified E48, P68, and R69 as residues important to binding dsRNA, 

although Körber et al. did not. Further, Körber et al. identified A45 as a residue important to 

binding dsRNA, for which we found no evidence. Many other residues predicted by Körber et al. 

and predicted by our model were in agreement. These data attest to the limitations of static 

crystal structures when predicting biophysical properties of a dynamic interaction. In designing 

an attenuated mutant rather than a knockout mutant it is logical then to begin by modifying those 

residues that impart a smaller contribution to the total potential of interaction, yet still predicted 

to be an important binding residue, such as F49. 
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Figure 5.1. Model of NoV B2 WT protein in complex with dsRNA. (A) Protein homodimer is shown as a cartoon, 

chain A is colored light gray and chain B is colored dark gray. dsRNA is shown as a transparent surface rendering. 

(B) Alternate view of important residues. R56 and R59 on each chain lay in dsRNA major groove. F49 residues are 

adjacent to dsRNA backbone. 
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Figure 5.2. Energy profile for NoV B2 WT broken down by individual residue. Electrostatic contributions to 

dsRNA binding are shown as black bars, VDW contributions are shown as white bars. Highlighted residues are 

residues that were predicted to be important by Körber et al. (11). 

 

We constructed four models of mutant NoV B2 systems: F49C, F49S, F49Y, and an R56L / 

R59L double mutant. The number of possible NoV B2 mutations was limited by the presence of 

an overlapping reading frame containing protein A and B1. The mutants that we created only 

altered the amino acid sequence of the B2 protein – not that of protein A or B1 (Figure 5.3). 

Each mutant system was simulated for 60 ns, and the last 40 ns of production MD were used to 

calculate potential energies of interaction as described above. 

The simulations of the mutant proteins demonstrated that the addition of single point 

mutations can cause global changes in how the protein and dsRNA interact. In Figure 5.4, we 

plot the difference in potential energy of interaction between the NoV B2 mutants and the WT; 

positive values indicate a loss in potential energy of interaction, and negative values indicate a 

gain of potential energy of interaction. For instance, the mutated residue F49C exhibited a small 

gain in electrostatic interactions and a small loss of VDW interactions with the dsRNA substrate, 

which is to be expected when mutating from a non-polar to a polar residue. More interestingly, 

we observed much larger gains and losses among other residues of NoV B2. In the F49C mutant, 

R69 lost nearly 20 kJ mol-1 potential of interaction, R56 bound more tightly in some regards, and 
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D42 also lost about 8 kJ mol-1 potential of interaction. These results are reflected in the two other 

F49 mutants. There are changes in the way many residues interacted with the substrate, not just 

the mutated residue itself. The residues D42, R56, R59 and R69 exhibited the most notable 

changes. Whether the resulting mutant protein is attenuated or not is yet uncertain, but it is clear 

that the F49 point mutations changed how the two biomolecules interacted by reducing the 

magnitude of interaction in some areas while increasing the magnitude of interactions in other 

areas. 

 

 
Figure 5.3. NoV F49 mutants change B2 sequence without affecting the protein A/B1 amino acid sequence. (A) 

NoV RNA1 is shown with the subgenomic promoter depicted by a black arrow. During replication, RNA3 is made 

and codes for B1 (a protein of unknown function) and B2. Genes in reading frame 1 are white boxes and the gene in 

reading frame 2 is in a gray box. (B) F49 point mutations made in the NoV RNA1 sequence (nt 2881-2896 are 

shown). Mutated nucleotides are in lower case and the residues that were changed are in bold. 
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Figure 5.4. Energy difference profiles for NoV B2 mutants. Positive values indicate a loss in energy of binding, or a 

weaker interaction; negative values indicate a gain in energy of binding, or a stronger interaction. Highlighted 

residues are residues that were predicted to be important by Körber et al. (11). Residues marked with asterisks were 

mutated in this study. 

 

The NoV B2 R56L / R59L double mutant behaved much differently from the F49 mutants. 

There was a substantial loss of potential of interaction between the two mutated residues, of a 

combined value of 130 kJ mol-1. Residue N38 experienced a comparatively small gain in 

potential of interaction, 11 kJ mol-1. These results taken together suggest that, in practice, the 
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ability of these particular F49 mutants to bind dsRNA may be attenuated, and the R56L / R59L 

double mutant may be knocked out. Whether this holds true is yet to be seen, but we may say 

with confidence that the nature of the interaction has changed. The high specificity of these types 

of interaction leads us to believe that any sort of change in binding energy profiles as we see here 

could lead to a change in in vivo binding affinity. 

 

Steered MD Simulations of NoV B2–dsRNA Complex 

 

At the conclusion of the traditional MD simulations, we took five full-coordinate, full-

velocity snapshots of each system in 200 ps intervals (as described in the Materials and Methods) 

to be used as the starting configurations for the steered MD simulations. In each steered MD 

simulation, the force on the spring during pulling was plotted by time, and the resulting profiles 

are plotted in Figure 5.5. 

 In the case of the WT NoV B2 protein, we observed very little disparity in the pulling 

resistance from the dsRNA among the replicates. The mutant proteins behaved very similarly to 

the WT protein during the first 100 – 150 ps of the pulled simulations, as the tension on the 

spring grew. During the last 100 – 150 ps of the pulled simulations the force curves typically re-

converged with the WT protein curves as it required the same amount of force to pull each 

protein through bulk solvent. During the middle of the simulations, however, especially between 

150 – 300 ps, we observed a change in the slope of the force curves when compared to the WT. 

In most cases, the force curve of mutant NoV B2 proteins decreased in slope more quickly and 

peaked at a lower overall force value. This indicates that movement of the center of mass of 

protein atoms in the direction away from the dsRNA occurred sooner for the mutant proteins 

than it did for the WT protein, thus relieving the tension on the spring more quickly. 

Physiologically, this is comparable to a weaker affinity of the mutant proteins to binding dsRNA. 

Among the different mutant simulations, we found that the weaker binding affinity was in part 

caused by a weaker interaction between the mutant protein and dsRNA, and in some cases, by a 

destabilization of the 4-helix bundle of the protein structure. 
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Figure 5.5. Force profiles for steered MD simulations. Each set of black lines are the force profiles for pulling NoV 

B2 WT protein away from dsRNA. The colored lines are the force profiles for the same pulling procedure of the 

mutant proteins noted on the plots. The inserts are magnified views of the peak force region. 

 

The peak amount of force required to cause the dissociation of NoV B2 (WT or mutants) 

from dsRNA is reflective of the degree of attenuation. The average peak force required to pull 

the WT protein from dsRNA is 68881 ± 177 kJ mol-1 nm-1 (or nano-Newtons) (Figure 5.6A). The 

F49Y and F49C mutants required slightly less peak force (respectively) to pull from the dsRNA, 

although not significantly less. The F49S mutant required a significantly larger decrease in peak 

force to pull from the dsRNA when compared to the WT protein according to a Student’s t-test 

(p < 0.05). Finally, the R56L / R59L double mutant experienced the greatest decrease in peak 

force, also a significant decrease by the same test (p < 0.05). In analyzing these results, we are 

able to predict a rank order of binding strength as follows: WT > F49Y > F49C > F49S > R56L / 
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R59L. We also analyzed the time at which the peak occurred for the WT and each mutant 

(Figure 5.6B). By that convention we created a rank order of binding strength as: WT > F49C > 

F49Y > F49S > R56L / R59L; a juxtaposition of the F49Y and F49C residues when compared to 

the previous rank order. It is important to note that using that measure, no mutants were found to 

be significantly different. 

 

 
Figure 5.6. (A) Average peak force on spring from pulling simulations. The mutants F49S and R56L / R59L 

experience a significant decrease in binding affinity. (B) Average time required to reach peak force during pulling 

simulations. 
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Self-Directed NoV RNA1 F49 Mutants in Cells 

 

Previous work with a FHV B2 mutant demonstrated that a reduction in viral RNA 

accumulation coincided with a loss of the mutant’s ability to bind long dsRNA (15). In order to 

validate our predictions, we assessed the ability of NoV RNA1 F49 mutants to self-replicate in 

cells where functional B2 protein is required for replication (7, 9). To ensure that these mutations 

were not affecting replication directly, we also transfected NoV RNA1 F49 mutants into cells 

that did not require B2 to replicate (17). In BHK-21 cells, all of the NoV RNA1 F49 mutants 

were able to replicate to levels equivalent to wild-type NoV RNA1 (Figure 5.7A). The ΔB2 

mutant was able to replicate at every time point but to lower levels when compared to wild type 

NoV RNA1, which has also been shown previously in mammalian cells. 

Drosphila S2 cells were electroporated with WT, ΔB2 (non-translatable mutant), or F49 

mutant in vitro-transcribed NoV RNA1. Total RNA was analyzed for RNA1 and RNA3 

replication at 1, 2, and 3 days post-transfection. The residue to which F49 was mutated altered 

the ability of RNA1 self-direct replication in S2 cells (Figure 5.7B). The F49Y mutant showed 

no significant difference between wild type RNA1 and RNA3 replication. The F49S mutant was 

not able to replicate in S2 cells and exhibited identical replication as the NoV RNA1 mutant that 

did not translate B2 (∆B2). The F49C mutant was an intermediate between F49Y and F49S. It 

was able to replicate, but by three days post-transfection, a significant difference was observed 

when compared to WT RNA1 accumulation (Student’s t-test, p < 0.05). Thus we saw a similar 

ranked order in viral RNA accumulation by three days post infection (dpi): WT = F49Y > F49C 

> F49S. 
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Figure 5.7.  NoV F49 B2 mutants affect replication in S2 cells. (A) Detection of RNA1 (R1) and RNA3 (R3) in 

BHK-21 (top) and S2 (bottom) cells. RNA was extracted at days 1, 2, and 3 post transfection as indicated above the 

lane. rRNA (rR) indicates equivalent loading of total RNA in each lane. (B) Average relative RNA levels of three 

biological replicates determined using a phosphorimager. All samples were normalized to the RNA1 band of the 

wild-type day1 sample. 

 

Discussion  

 

In the previous MD study another SRS, p19, the authors predicted that the mutant protein 

would lose some of its capacity to bind siRNA and that the tertiary structure would be affected, 

observations that were confirmed by experiment (19). In our study, we used similar non-

equilibrium MD techniques to predict how certain mutations would affect the affinity of NoV B2 

to binding dsRNA. However, we expanded the model one step further through careful 

observations of individual amino acid contributions to the potential of interaction, thus creating 

an energy profile of protein-dsRNA interaction that has broad applicability in designing 
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attenuated proteins in silico. We found that our computational model of NoV B2 mostly 

supported the predictions of Körber et al., who first identified putatively important binding 

residues through aligning the crystal structure of NoV B2 with that of FHV B2, which, in turn, 

had been crystallized in complex with dsRNA. Further, our model identified additional residues 

that contributed significantly to dsRNA binding, especially residue R56; residues that were not 

identified through examination of the crystal structure alone (Figure 5.2). Part of the reason for 

this deficit of information is likely due to the fact that NoV B2 has not been crystallized in 

complex with dsRNA, and it is difficult to make conjectures of dynamic interactions through 

analysis of static structures alone. 

We used the energy profile data to try to design a mutant NoV B2 protein that would not 

have the same capacity for binding dsRNA as does the WT. Knockout mutants have been 

demonstrated previously with FHV B2, in which the R54 residue was mutated, causing long 

dsRNA binding to be eliminated (15). From this data we presumed that, in our attempt to design 

an attenuated mutant, it would be fruitless to mutate residues that had large binding contributions 

in the energy profile, such as R56 (the predicted equivalent of FHV B2 R54). We chose instead 

to mutate the NoV B2 F49 residue for several reasons: (i) when mutated, the equivalent residue 

in FHV B2 resulted in reduced binding affinity to dsRNA, (ii) our model showed that the binding 

contribution was small, yet significant, and (iii) we were able to mutate the residue to three 

distinct amino acids without affecting the overlapping reading frame (Figure 5.3). We used 

constant velocity steered MD to analyze the effects of three F49 mutations, as well as a R56 / 

R59 double mutation, on dsRNA binding. Using the peak force during the steered MD 

simulations, we identified a trend in binding strength for the different mutants and created a rank 

order as follows: WT > F49Y > F49C > F49S > R56L/R59L. We also note that the peak force 

required is a better rubric than the time required to reach the peak force. 

The trend obtained from the steered MD simulations gave us a testable model for studies in a 

physiologically relevant situation. The RNA accumulation in cells with a function siRNA 

pathway reflected the rank order that we predicted from our computational data.  

This supports our assumption that the F49C and F49S mutants had lower viral RNA 

accumulation due to the reduced affinity of mutant protein binding to dsRNA, allowing the 

RNAi pathway to target the dsRNA replicative intermediates produced during viral replication. 

This was further supported by our BHK-21 experiments. Previous studies showed that at 48 hrs 
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post-transfection there was no major difference between NoV RNA accumulation for WT B2 

and ΔB2 in BHK-21 cells (16). Our results suggested that when RNA accumulation is examined 

on a time period of 3 days, B2 is involved in replication in BHK-21 cells. The disparity between 

these findings could be the difference in method of transfection: we directly transfected RNA 

into cells whereas previous study used DNA constructs and a T7 expressing cell line. Regardless 

of this discrepancy, our results suggest that replication in BHK-21 cells is not affected by the 

F49 mutants, revealing that these mutants are not affecting replication of the virus itself, but 

instead the reduced RNA accumulation in S2 cells must be cause by the targeting of the virus by 

the RNAi pathway. 

The results from the simulations demonstrate that the affinity for NoV B2 to binding dsRNA 

is integral to the suppression of the RNAi pathway. The small differences observed from the 

steered MD simulations were paralleled by differences in accumulations of RNA. For example, 

the F49C mutant did not show significant difference to WT in the steered MD, but did have a 

significant difference in RNA accumulation. Conversely, we were able to see a significant 

difference between the F49S mutant and WT in the steered MD simulations as well as in RNA 

accumulation at every time point in S2 cells. Taken together, these data illustrate the utility of 

modeling in predicting the effects of specific mutations on attenuated binding capacity.  

As researchers try to utilize the mammalian RNAi pathway as a way to naturally defend 

against viruses, we need to fully understand the different components that are involved and how 

they function. Using suppressors from pathogens that naturally infect mammalian hosts, like 

NoV B2, can help in our elucidation and eventually our exploitation of these mechanisms to help 

fight disease and understand other cellular pathways. 

Mutagenesis techniques are commonly used to aid in the determination of protein function. 

For example, the appropriate mutations at predicted binding or active sites of a protein can reveal 

important information about protein-substrate interactions. Traditionally, many different mutant 

forms based on crystallographic or phylogenic data are synthesized and characterized to 

determine how each specific mutation affects the protein function (whether the function has been 

knocked out, attenuated, or unaffected). This approach, however, often results in creating 

mutations that have no effect on protein function. The ability to predict how a specific mutation 

or combination of mutations will affect a protein-substrate interaction would save valuable time 

and resources, notably in the design of attenuated RNA-binding viral proteins. 
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Abstract 

 

The protein Ara h 2 is an antigenic peanut protein that causes a response in people with 

peanut allergies. Different orthologs of Ara h 2 among the species of peanut that fall under the 

Arachis genus cause different levels of allergic response. The disordered loop that falls between 

helices α2 and α3 likely contains the epitopes that cause this varying level of response. Here, we 

use molecular dynamics simulations to study Ara h 2 proteins from eight different species under 

the genus Arachis. Our aim is to correlate some behavior or dynamic property of that specific 

loop with antigenicity, thus enabling crop producers to grow safer peanuts and improving the 

overall understanding of Arachis phylogeny. 
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Introduction 

 

The genus Arachis describes a group of 69 recognized species of flowering plants that 

includes the common peanut (1). Arachis is native to South America where it is an economically 

important crop. Peanut allergies, however, make the consumption of most of the species 

dangerous or even fatal due to a specific peanut allergen known as Ara h 2 (2). Although the 69 

species have previously been well documented, not much is understood about the phylogenetic 

relationship between Ara h 2 proteins in different species of Arachis. It seems that Ara h 2 can 

cause varying levels of allergic response based on the species of origin. The major difference 

between Ara h 2 proteins of different species falls within one disordered loop between helices α2 

and α3. A better understanding of this protein allergen, and an improved overall phylogenic 

knowledge of the genus Arachis, will aid crop breeders in their attempt to grow a safer, more 

economically viable peanut. 

In this study we used molecular dynamics (MD) simulations to study the behaviors of nine 

Ara h 2 proteins from eight different species (two different starting models of the protein from 

the same species were studied). The proteins we studied were from the species A. batizocoi, A. 

dardani, A. duranensis, A. glabrata, A. hypogaea, A. ipaensis, A. macedoi, and A. triseminata. 

 

 

Methods 

 

Initially, nine protein structures were obtained for molecular dynamics (MD) simulation. 

Herein, different Ara h 2 orthologs will be referred to by the first three or four letters of the 

species from which they originate. When a protein name is paired with a number, i.e. ‘bat2’, the 

‘2’ is in reference to a specific model number for that protein. The models are bat2, dar, dur 

(more extended loop), dur2 (more collapsed loop), glab, hypo, ipa, mace, and tris2 (original 

names of files are listed in Table 6.1). Briefly, each protein consists of five α-helices (denoted 

α1, α2…) joined by loops of variable size. The N- and C-termini, as well as a large loop 

connecting α2 and α3, are all disordered regions of the protein. A multiple sequence alignment 

(ClustalW 2.0.12) was performed, and the results are shown in Figure 6.1. Helix locations (as 
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calculated by PyMOL) are highlighted in red. It is apparent that the major variation in sequence 

falls in the large loop connecting α2 and α3.  

 
                                                                                              α1         α2 
   bat2      MSKLTILVALALFLLAAHASARHQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDEDS 59 
   glab      MSKLTILVALALFLLAAHASARHQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDEDS 59 
   dar       MSKLTILVALALFLLAAHASARQQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDEDS 59 
   dur       MAKLTILVALALFLLAAHASARQQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDEDS 59 
   ipa       MAKLTILVALALFLLAAHASARQQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDEDS 59 
   tris2     MAKLTILVALALLLLAAHASARQQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDQSP 59 
   mace      MSKLTILVALALFLLAAHASARQQWELQGDRR-CQSQLERANLRPCEQHLMQKIQRDQDQ 59 
   hypo      ------------------GPMRRERGRQGDSSSCERQVDRVNLKPCEQHIMQRIMGEQEQ 42 
                               .. *::   ***   *: *::*.**:*****:**:*  ::.  
                     α3   
   bat2      YGRDPYSPSQDPYKQDPYTPS------------PYDERRAGSSQHQERCCNELNEFENNQ 107 
   glab      YGRDPYSPSQDPYKQDPYTPS------------PYDERRAGSSQHQERCCNELNEFENNQ 107 
   dar       YEQDPYGPS-------PYGPS------------P---RRAGSSQHQQRCCNELNEFENDQ 97 
   dur       YERDPYSPSQD-----PYSPS------------PYDRRGAGSSQHQERCCNELNEFENNQ 102 
   ipa       YGRDPYSPSQD-----PYSPSQDPDRRDPYSPSPYDRRGAGSSQHQERCCNELNEFENNQ 114 
   tris2     YSQDPYRQEPY-----EYESH--------------DRRRAGSSQHQERCCNELNEFENNQ 100 
   mace      YEQDPYRQDP-------YDSY--------------DRRHTGSSQHQERCCNELNEFENNQ 98 
   hypo      YDS-------------------------------YDIRSTRSSDQQQRCCDELNEMENTQ 71 
             *                                    * : **::*:***:****:** * 
             α4                α5 
   bat2      RCMCEALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGLRAPQRCDLDVESGGRDRY 165 
   glab      RCMCEALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGLRAPQRCDLDVESGGRDRY 165 
   dar       RCMCEALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCDLRAPQRCDLDVESGGRDRY 155 
   dur       RCMCEALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGLRAPQRCDLDVESGGRDRY 160 
   ipa       RCMCEALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGLRAPQRCDLEVESGGRDRY 172 
   tris2     RCMCQALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGFRAPQRCDLEIESGGRDRY 158 
   mace      RCMCQALQQIMENQSDRLQGRQQEQQFKRELRNLPQQCGLRAPQRCDLDIESGGRDRY 156 
   hypo      GCMCEALQQIMENQCDRLQDRQMVQQFKRELMSLPQQCNFRAPQRCDLDV-SGGRCS- 127 
              ***:*********.****.**  ******* .*****.:********:: ****    

 
Figure 6.1. Sequence alignment of different Ara h 2 proteins used in this study. Red residues are part of an α-helix. 

 

All simulations were performed using GROMACS version 4.0.5 (3) in conjunction with the 

GROMOS 43a1 force field (4). First, each structure was solvated using the simple point charge 

(SPC) water model in an octahedral box with at least 1.5 nm of space between all protein atoms 

and the edge of the box. Enough chloride and sodium ions were added to neutralize the total 

charge of the system, as well as bring the total ionic concentration of the system to 0.1 M. Table 

6.1 contains information on specific systems. Each of the nine systems (bat2, dar, dur, dur2, 

glab, hypo, ipa, mace, and tris2) was energy minimized using a steepest descents integrator until 

the maximum force on any atom was less than 1.0 kJ mol-1 nm-1, or until subsequent steps 

produced less than 1.0 kJ mol-1 change in energy. 

A 25 ps simulation with a 1 fs timestep was performed on each system with position 

restraints on all of the protein backbone atoms in order to best equilibrate the water atoms around 

the sidechains. The linear constraint solver (LINCS) algorithm (5) was used to constrain all bond 
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lengths. The particle-mesh Ewald (PME) method (6, 7) was used to approximate long-range 

electrostatics for the system, with a fourth-order spline interpolation and a 0.12 nm Fourier grid 

spacing. The Berendsen thermostat (8) was applied to the system with a temperature coupling 

time constant (τT) of 0.1 ps at a temperature of 200 K. 

After the initial equilibration, each single simulation diverged into three replicate 

simulations. (In the discussion, the different replicate simulations will be referred to as bat2-1, 

bat2-2, bat2-3, etc.). The Berendsen thermostat was adjusted to generate new random velocities 

for each system that approximated a temperature of 310 K. This simulation was carried out for 

50 ps with a 2 fs timestep. Another 50 ps simulation was performed after switching to the Nose-

Hoover thermostat (9, 10), which generates a more correct distribution of velocities. 

Once each system was sufficiently equilibrated around the target temperature, the Parrinello-

Rahman barostat (11, 12) was implemented with an isotropic reference pressure of 1 bar and a 

pressure coupling time constant (τP) of 1.0 ps. This simulation was carried out for another 50 ps 

with a 2 fs timestep. 

Finally, the position restraints on the protein backbone atoms were lifted and each system 

was simulated for 60 ns, for a total simulation time of 1.44  µs. All analyses were performed 

using GROMACS tools. Clusters were formed by combining the trajectories of replicate 

simulations into a single trajectory, followed by clustering with the GROMOS algorithm with a 

0.12 nm cut-off. Data was visualized using Grace, and structure images were generated using 

PyMOL (13). 
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Table 6.1: System-specific simulation conditions. 

 bat2 glab dar 
Original Filename bat2_104-108.pdb glab_127-129.pdb dar_final.pdb 
# Residues 165 165 155 
# Protein Atoms 1,750 1,750 1,630 
# Water Residues 24,630 24,642 24,674 
# Na+ Atoms 48 48 48 
# Cl- Atoms 46 46 46 
# Total Atoms 75,734 75,770 75,815 
 dur dur2 mace 
Original Filename dur_122-124.pdb A_duranensis.B99990005

.pdb 
mace_final.pdb 

# Residues 160 160 156 
# Protein Atoms 1,688 1,688 1,685 
# Water Residues 33,070 24,659 24,674 
# Na+ Atoms 64 48 47 
# Cl- Atoms 62 46 46 
# Total Atoms 101,024 75,759 75,800 

 ipa tris2 hypo 
Original Filename ipa134-136.pdb tris2_54-67_67-80.pdb 1W2Q.pdb 
# Residues 172 158 127 
# Protein Atoms 1,812 1,702 1,324 
# Water Residues 24,610 24,676 24,861 
# Na+ Atoms 48 46 49 
# Cl- Atoms 46 47 46 
# Total Atoms 75,736 75,823 76,002 

 

 

Results and Discussion 

 

Part I: RMSD Analysis 

  

In order to verify sufficient sampling of each simulation, we measured the backbone root 

mean square deviation (RMSD) of each protein over the course of 60 ns. The results are shown 

in Figure 6.2. At first glance, all three replicates of bat2, glab, dar, tris2, and hypo equilibrate 

fairly quickly (within the first 5-10 ns), to about 1 nm of backbone deviation, a reasonable value 

for proteins this size. These systems remained this way for the duration of the simulations. 
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Four sets of proteins, however, required further investigation: mace, ipa, dur, and dur2. The 

replicate mace-1 seems to equilibrate fairly quickly to a value that is similar to the proteins 

mentioned in the previous paragraph. Mace-2 and mace-3, however each spike between 10 and 

20 ns to a slightly higher value of about 1.25 nm. This amount of RMSD is still within a 

reasonable range, especially considering that there are large unstructured regions in the protein. 

After these replicates spike, they do level off, which is encouraging. The replicates ipa-1, ipa-2, 

and ipa-3 behave very similar to mace. They equilibrate to somewhere between 1 and 1.25 nm, 

which are still reasonable values for proteins this size. 

The three replicates of dur and dur2 seem to be experiencing the most backbone deviation. 

At first, dur-1 seems to level off between 1 and 1.25 nm, but then undergoes some 

conformational shift that causes a spike in RMSD at 25 ns. It appears that the shift in structure 

has moved the protein into a fairly stable conformation. Dur-2 has a lower RMSD overall, but 

the value fluctuates greatly, indicating that the protein cannot find a stable conformation (quite 

the opposite of what happens in dur-1). The final replicate, dur-3, does equilibrate at 

approximately 1.8 nm backbone deviation, a value that is approaching unreasonably high, 

indicating that the structure has changed significantly from the starting structure. The dur2 

replicates, despite the starting conformation being slightly more collapsed than dur, also exhibit 

high RMSD values. The replicate dur2-1 takes nearly a significantly long time (30 ns) to reach a 

very high 1.7 nm equilibrium, dur2-2 actually looks okay, despite the RMSD value being on the 

high-end of acceptable, and dur2-3 also happened to equilibrate a little high, at 1.5 nm. If we 

only consider the three dur replicates, the RMSD data would indicate that the dur starting 

structure was not very stable, or not a biologically relevant conformation to begin with. 

However, because two different dur starting structures (dur and dur2) both display unusual 

RMSD values, we might conclude that the increased fluctuation we observe is indeed 

biologically relevant. Further analyses will need to be performed to confirm this. 

In summation, all 27 replicates are likely equilibrated enough for analysis, with the possible 

exception of the dur or dur2 replicates. However, there is no indication that further simulation of 

the dur or dur2 replicates will lead to better equilibration. 
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Figure 6.2. RMSD values measuring backbone deviation. All three replicates of each protein simulation are overlaid 

as different colored lines. 
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Part II: Radius of Gyration (Rg) 

 

The radius of gyration (Rg) is measured as: 
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Where ri is the position of atom i with respect to the center of mass of the protein, and mi is 

the mass of atom i. In short, it is a measure of how folded or unfolded a protein is. A protein with 

a very low Rg is more folded, as in a spherical, globular protein, and a protein with a very high Rg 

is more unfolded, as in an unfolded, disordered protein. In the case of our eight proteins, their 

starting conformations reflect some ‘unfolded’ characteristics, especially in the disordered 

regions (the N-terminus, the C-terminus, and the loop between α2 and α3). We expect that as we 

perform MD simulation, the protein should become slightly more globular in the disordered 

regions in order to preclude water from hydrophobic residues. What we would see then, is a 

trend toward decrease in Rg that should level off over the course of the simulation. This, 

conveniently, can also be used as a measure of how well each replicate has equilibrated, much 

like the RMSD values from the Part I of the results. 

In Figure 6.3, plots of Rg over the course of 60 ns are shown for each of the 27 replicates. It 

appears that the proteins dar, tris2, and hypo each reach a more globular, folded state quickly in 

the simulations that have a fairly low Rg value. Dur2 also reaches a folded state with low Rg 

values, although in two of the replicates (dur2-1 and dur2-2), it takes about 20 ns to reach that 

point. Bat2, glab, and ipa also reach a globular state quickly (with the exception of bat2-1), at 

just a slightly higher Rg. This could be due to the fact that the size of the disordered loop between 

α2 and α3 is much larger in these three proteins. 

Two of the same proteins that display equilibration issues in Part 1 (dur and mace) appear to 

have some folding problems. Mace-2 and mace-3 reach a globular state with reasonable Rg 

values within the first 20 ns, about 10 to 15 ns longer than it took for bat2, dar, glab, and tris2 to 

reach the same state. The other replicate, mace-1, seems to trend toward more folded, but then 

reverses and becomes more unfolded around the 30 ns mark. Referring back to Figure 6.2, mace-



 161 

1 seemed to have the best RMSD of all of the replicates, so this is quite counter-intuitive and 

difficult to explain. A closer look at the trajectory reveals that the N-terminal disordered region 

in the mace-1 replicate undergoes a small transition at around the 30 ns mark, which could affect 

the Rg. 

The dur replicates dur-1 and dur-3 each reach a low Rg value by about 30 ns. The Rg of dur-

2, however, remains high and fluctuates considerably throughout the simulation. This indicates 

(in concert from the RMSD results of Figure 6.2), that this particular replicate is not folded well, 

and likely the dur starting structure was not very good. However, the fact that two of the dur 

replicates (dur-1 and dur-3) reach the same Rg value as all three of the dur2 replicates (between 

1.5 and 1.6 nm), suggests that the starting structure may actually not entirely influence the 

ensuing dynamics simulation. Previously, we had believed that we may be observing stronger 

fluctuations in the dur protein because the loop between α2 and α3 started in an extended 

position. Now, it seems as though the extended structure (dur) and the collapsed structure (dur2) 

can reach the same conformation during production dynamics anyway, implying that the large 

fluctuations are not an artifact of the starting structure, but rather they could be of biological 

importance. 

Whatever the case, it seems that, as was the conclusion from the RMSD data, all 27 

replicates are probably ready for analysis. Further simulation could lead to the convergence of 

some of the different replicates, including dur-2, but it is impossible to predict how long that 

transition would take, or whether it would happen at all.  
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Figure 6.3. Radius of gyration, or ‘foldedness’ of protein backbone. All three replicates of each protein simulation 

are overlaid as different colored lines. 
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Part III: RMSF Analysis 

 

Next, once we determined that we have sufficient sampling for at least most of the replicates, 

we examined root mean square fluctuation (RMSF) in the protein side chains. Briefly, RMSF is a 

measure of how much a protein side chain oscillates or fluctuates over the course of a simulation. 

This is similar to the ‘β-factor’ or ‘temperature factor’ reported in PDB files as a result of x-ray 

crystallography. Regions with very high fluctuation often are regions of importance to the 

protein, for example it may be a site that a substrate binds, or a site of interaction between two 

proteins or protein and DNA. 

The initial folding process of the large loop structures in each of the proteins influenced the 

total RMSF in an artificial way. It is more reasonable to measure RMSF in the protein only after 

it is equilibrated, i.e., the last 20 ns of simulation. Figure 6.4 illustrates this concept. It shows the 

RMSF of bat2-1 during the entire 60 ns simulation, during the last 40 ns of simulation, and 

during the last 20 ns of simulation. It is plain to see that the total RMSF was, on average, much 

higher across virtually every residue if the first 40 ns of simulation are considered. When the 

RMSF was only measured over the last 20 ns, the values tended to be lower in most areas, but 

stay peaked in some, presumably important areas (residues 66-75, for example). 

 

 
Figure 6.4. RMSF analysis of bat2-1 across all 60 ns of simulation (black line), during the last 40 ns of simulation 

(red line), and during the last 20 ns of simulation (green line). 
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The RMSF measurements tended to change slightly among the different replicate simulations 

of a single protein. Figure 6.5 contains RMSF data for all 27 replicate simulations. At first 

glance, some of the RMSF peaks do not seem to line up in the different replicate simulations. 

However, it is easy to identify stretches that exhibit higher fluctuation across all replicate 

simulations, or adjacent sections of fluctuation in different replicate simulations.  

A simple analysis at Figure 6.5 is actually very informative. In general, there are four areas 

across all eight proteins that tend to be high in fluctuation. Three of these areas are the N-

terminus, the C-terminus, and the large loop between α2 and α3, which is expected because 

these are all disordered regions. Another peak consistently shows up among all six proteins in the 

range of residues 115-130 (depending on the length of the protein). This peak is centered about 

the short loop connecting α4 and α5, which indicates that this may be another functional area of 

the protein that is worth further investigation. Figure 6.6 contains a structure of bat2 with the 

regions of fluctuation highlighted from Figure 6.5. 

Referring to the dur panel in Figure 6.5, it is plain to see that the second replicate, dur-2 

exhibits a very high degree of fluctuation (as high as 0.8 nm). This is in direct correspondence 

with the RMSD and Rg data shown earlier for that replicate. What is interesting, though, is that 

the largest peaks are still in functionally relevant areas – the N-terminus, the loop between α2 

and α3, and the loop between α4 and α5. This could suggest that the increased fluctuation may 

not be an artifact of the simulation or of the starting structure, but in fact a functionally relevant 

fluctuation. 



 165 

 
Figure 6.5. RMSF values measuring sidechain fluctuation for the last 20 ns of simulation. All three replicates of 

each protein simulation are overlaid as different colored lines. 
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Figure 6.6. Initial conformation of bat2 protein. Peaks from Figure 6.5 are highlighted. 

 

 

Part IV: Clustering Analysis 

 

 Clustering can give us an idea of what structural conformations appear more frequently than 

others. For this analysis, the replicate trajectories were concatenated and clustered as described 

in the Methods section. In all, 3,001 frames were considered for each protein. Some pertinent 

data on the resulting clusters is listed in Table 6.2. Figure 6.7 shows the ‘most average’ 

structures from the top 4 clusters of bat2. In other words, the structures shown in Figure 6.7 are 

what we hypothesize to be the most likely conformation bat2 adopts in vivo. 

The clustering results from bat2 and the eight other proteins clearly show that a collapse of 

the N-terminal unstructured region is favored for all proteins; in addition, the N-terminal region 

seems to sporadically form some secondary structural elements. Another notable observation 

when looking through the clustering results is that the 5 α-helices in each of the original starting 

structures do not necessarily stay intact, especially α3. This raises an interesting question about 

the secondary structure behavior of the protein during simulation. Regions that tend to freely 

change secondary structure content can often infer protein function. It is difficult to observe 
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changes in protein structure by looking at a finite number of cluster members, so the secondary 

structural elements will be explored further in the next section. 

 
Table 6.2. Cluster results. 

 bat2 glab dar 
# Clusters found 544 518 438 
# Clusters with ≥ 20 members 31 28 42 
# Members in largest cluster 238 232 138 
Time step (ps) 176,460 160,860 26,700 
 dur dur2 mace 
# Clusters found 1,353 797 645 
# Clusters with ≥ 20 members 17 23 27 
# Members in largest cluster 127 268 211 
Time step (ps) 163,380 43,620 173,580 

 ipa tris2 hypo 
# Clusters found 555 404 455 
# Clusters with ≥ 20 members 32 33 30 
# Members in largest cluster 305 232 322 
Time step (ps) 144,120 97,800 40620 
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Figure 6.7. Top members of each of the 4 largest bat2 clusters. Proteins are colored as rainbows, starting with blue 

at the N-terminus, and ending with red at the C-terminus. Notice the variability in length of α3, and the appearance 

of extra helices in the N-terminal disordered region. 
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Part V: DSSP Analysis 

 

 The “define secondary structure of proteins” (DSSP) algorithm was implemented to monitor 

the secondary structure content of each replicate system over the 60 ns of simulation. This 

algorithm plots the secondary structure content (i.e. α-helix, β-strand, random coil) of each 

individual residue as a function of time. The results are compiled in Figure 6.8 – Figure 6.16. 

The locations of the original 5 helices are summarized in Table 6.3. 

To summarize the results from the DSSP analysis, we see two main recurring themes. First, 

α3 seems to be the least stable helix, undergoing complete destabilization in many of the 

replicates. The second major theme is the formation of secondary structure elements in the N-

terminal region, especially short β-strands and short helices. This behavior is not observed as 

frequently in the disordered C-terminus or in the disordered loop between α2 and α3.  

 
Table 6.3. Helix locations in starting structures (as determined by PyMOL). 

 bat2 glab dar 
α1 33-40 33-40 33-40 
α2 43-53 43-53 43-53 
α3 90-103 89-103 79-94 
α4 110-127 110-127 98-117 
α5 129-145 131-145 119-135 

 dur dur2 mace 
α1 33-40 33-40 33-40 
α2 43-53 43-54 43-54 
α3 84-98 84-99 81-95 
α4 105-122 103-122 99-118 
α5 124-140 124-140 120-136 

 ipa tris2 hypo 
α1 33-39 33-40 15-21 
α2 43-53 43-53 25-38 
α3 96-110 82-97 52-67 
α4 117-134 101-120 73-85 
α5 138-152 122-138 94-110 
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Figure 6.8. Secondary structure content of bat2 as a function of time for each replicate. 

 

 

 
Figure 6.9. Secondary structure content of dar as a function of time for each replicate. 
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Figure 6.10. Secondary structure content of dur as a function of time for each replicate. 

 

 

 
Figure 6.11. Secondary structure content of dur2 as a function of time for each replicate. 
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Figure 6.12. Secondary structure content of glab as a function of time for each replicate. 

 

 

 
Figure 6.13. Secondary structure content of ipa as a function of time for each replicate. 
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Figure 6.14. Secondary structure content of mace as a function of time for each replicate. 

 

 

 
Figure 6.15. Secondary structure content of tris2 as a function of time for each replicate. 
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Figure 6.16. Secondary structure content of hypo as a function of time for each replicate. 

 

 

Part VI: Solvent-Accessible Surface Area 

 

As another measure to see how unfolded or how folded the loop is between α2 and α3, we 

can measure the solvent accessible surface area (SASA). Simply put, a ball 0.14 nm in diameter 

(about the size of one water molecule) is rolled over the entire protein, generating what is known 

as a Connolly surface. This surface represents what parts of the protein are exposed to the 

solvent. We then choose a specific group, like the loop between α2 and α3 for example, and 

measure the surface area of the Connolly surface of those residues. The SASA measured over the 

last 20 ns of simulation are shown in Figure 6.17. 

It is easy to see that α2-α3 loop in the ipa protein simulations is exposed to the most amount 

of solvent, and that the same loop in the dar protein simulations is exposed to the least amount of 

solvent. However, this information can be deceiving because not all of the loops are the same 

length. In order to normalize this data for a more direct comparison, we divided the absolute 

SASA value by the number of residues in the loop for each specific protein, resulting in a 

normalized (n)SASA. The location of the loop and the number of residues in each loop are 

recorded in Table 6.4, and the (n)SASA is reported in Figure 6.18. 
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Figure 6.17. The SASA of the disordered loop between α2 and α3 for the last 20 ns of each replicate simulation. 

 
Table 6.4. Loop location and length for each protein. 

 Loop Residues # of Residues 
bat2 54-89 36 
glab 54-88 35 
dar 54-78 25 
ipa 54-95 42 
dur 54-83 30 

dur2 54-83 30 
mace 55-80 26 
tris2 54-81 28 
hypo 39-51 13 
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Figure 6.18. The (n)SASA of the disordered loop between α2 and α3 for the last 20 ns of each replicate simulation. 

 

 

From Figure 6.18, it appears as if the α2-α3 loop in hypo has emerged as the most solvent 

exposed (per residue), or the most unfolded, followed closely by tris2, dur, mace, and dar. From 

the other end, ipa looks to be the most folded, or have the least amount of contact with water per 

residue. At this point, it is not readily apparent what the significance of this observation is. It is 

important to note that this data might be biased in the following way: If the α2-α3 loop in a 

given protein contains smaller residues, the data may be skewed low. And if the loop is rich in 

bulky residues, the data may be skewed too high. However, this type of information could prove 

to be important in characterizing this loop. 

 

 

Conclusions 

 

In this project we simulated nine Ara h 2 protein orthologs from eight different species 

within the Arachis genus. From the RMSD and radius of gyration data, we deduced that the 60 

ns of simulation that was performed in triplicate for each protein was a sufficient amount. One of 
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the dur replicates (dur-2), however, is the only replicate that did not seem to converge. Without 

knowing how long it would take for that protein to converge, or whether it would converge at all, 

could make it quite time-consuming to attempt any further simulation. Consequently, we 

proceeded with the analysis of the data that we collected in 60 ns. 

In all of the systems, the N-terminal and C-terminal domains, and the loop between α2 and 

α3 all fluctuated significantly. This is normal for disordered regions, and may indicate 

(especially for the loop between α2 and α3) that there may be an important function at those 

locations. The short loop between α4 and α5 also tended to fluctuate at a higher frequency, 

indicating this may be an important functional structure in the protein. 

Clustering results show tendency for collapse in all disordered regions, as well as 

destabilization of some helices (especially α3). Further, there seems to be spontaneous secondary 

structure formation in the N-terminal region. DSSP results are in agreement with clustering and 

RMSD data. Some helices tend to destabilize (especially α3), and there seems to be a high 

propensity for β-strand formation in the N-terminal disordered region. Finally, the solvent-

accessible surface area, especially when normalized to the number of residues in the loop 

between α2 and α3, could be a good indicator of the antigenicity of the protein. 

The most obvious limitation of this project is the lack of supporting experimental data. 

Before the dynamics of the loop make any sense, we need to be able to measure the antigenicity 

of each protein ortholog experimentally. Unfortunately, at the time of this writing, the assays 

have yet to be completed. However, when they are completed, this Chapter will provide an 

excellent theoretical supplement to the wet lab observables. 
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Abstract 

 

Molecular dynamics simulations are being applied to increasingly complex systems, 

including those involving small endogenous compounds and drug molecules. In order to obtain 

meaningful and accurate data from these simulations, high-quality topologies for small 

molecules must be generated in a manner that is consistent with the derivation of the force field 

applied to the system. Often, force fields are designed for use with macromolecules such as 

proteins, making their transferability to other species challenging. Investigators are increasingly 
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attracted to automated topology generation programs, although the quality of the resulting 

topologies remains unknown.  Here we assess the applicability of the popular PRODRG server 

that generates small molecule topologies for use with the GROMOS family of force fields. We 

find that PRODRG does not reproduce topologies for even the most well-characterized species in 

the force field due to inconsistent charges and charge groups. We assessed the effects of 

PRODRG-derived charges on several systems: pure liquids, amino acids at a hydrophobic-

hydrophilic interface, and an enzyme-cofactor complex. We found that partial atomic charges 

generated by PRODRG are largely incompatible with GROMOS force fields, and the behavior of 

these systems deviates substantially from that of simulations using GROMOS parameters. We 

conclude by proposing several points as “best practices” for parameterization of small molecules 

under the GROMOS force fields. 

 

 

Introduction 

 

Preparation of small molecule topologies for use in molecular dynamics (MD) simulations is 

of critical importance in studies of drug-enzyme and drug-receptor interactions, partitioning of 

drugs into and across membranes, among others. The principal challenge in including small 

molecules in these simulations is the effort necessary to produce a topology that is consistent 

with the underlying theory of the force field, which is often based on common macromolecules 

such as proteins. Thus, less common functional groups present in drug molecules and synthetic 

compounds are difficult to parameterize. Different force fields frequently used for biomolecular 

simulation, such as AMBER (1-4), CHARMM (3-7), OPLS (8, 9), and GROMOS (10-14), have 

different functional forms and underlying assumptions, requiring different parameterization 

procedures and validation protocols. While parameterization of small molecules for AMBER and 

CHARMM force fields has been aided by the development of the general AMBER force field 

(GAFF) (15) and the CHARMM general force field (16), topology generation for OPLS and 

GROMOS remains more challenging. Procedures involving quantum mechanical calculations 

and geometry optimization are thoroughly described for the OPLS-AA parameter set (8, 9), but 

such detailed information is not publicly available for the GROMOS96 parameter sets. Thus, 

investigators seeking to use the GROMOS96 force fields must rely on empirical parameter 
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assignment and subsequent validation through the time-consuming process of thermodynamic 

integration (14), a challenge that has long been recognized within the simulation field (17). 

The GROMOS96 force fields offer an advantage over the AMBER, CHARMM, and OPLS 

parameter sets in that they are based on the united-atom approach to parameterization. That is, 

nonpolar hydrogens are not explicitly represented, decreasing the number of atoms in the system 

appreciably and speeding up simulations. These force fields are attractive for long-time 

simulations and large sets of simulations that may be utilized in silico to analyze the dynamics of 

small molecules and potential drugs. 

Automated topology generation is possible through a number of tools, including the very 

popular PRODRG server (18, 19). Topologies produced by this program have been used widely 

in studies of protein-peptide (20), protein-ligand (21, 22), protein-lipid (23), and small molecule-

lipid interactions (24, 25), drug partitioning into lipid membranes (26), and simulations of small 

molecules that inhibit amyloid aggregation (27). Careful inspection of the topologies produced 

by PRODRG reveals that the charges and charge groups assigned to the functional groups of 

small molecules are often inconsistent with the same groups present in the GROMOS96 43A1 

parameter library. The effects of these inconsistencies are unknown, providing the motivation for 

the present study. Several methods for generating GROMOS-compatible charges for refining 

PRODRG topologies have been proposed in the literature (28-31), but thus far, to the best of our 

knowledge, no standard has been set for the accuracy and applicability of any of these methods. 

Here, we evaluate the quality of small-molecule topologies generated by the automated 

server PRODRG (18, 19), using small molecules whose functional groups are described by the 

GROMOS96 43A1 parameter set (11). We explore a variety of systems, including pure liquids, 

amino acids at a hydrophobic-hydrophilic interface, and a cofactor bound to an enzyme. By 

demonstrating the implications of the inherent deficiencies in automated parameter generation 

and by making recommendations for proper parameter development, we hope to elaborate on the 

best practices in small molecule topology generation under the GROMOS force fields. 
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Methods 

 

To assess the quality of small-molecule topologies in a range of scenarios, several systems 

were constructed: (i) condensed-phase and gas-phase systems of hexane, ethanol, and p-cresol, 

(ii) several amino acids (alanine, asparagine, aspartate, isoleucine, lysine, and serine) at the 

interface of water and cyclohexane, and (iii) the protein UDP-galactopyranose mutase (UGM) 

with bound flavin adenine dinucleotide (FAD). All systems were prepared and simulations 

conducted using facilities present in the GROMACS package, version 4.0.7 (32). One set of 

small molecule topologies was generated using the PRODRG 2.5 server (18, 19), which is 

designed to produce topologies consistent with the GROMOS96 43A1 parameter set. The other 

topologies were generated using known GROMOS96 43A1 (11) functional group charges and 

charge groups, as implemented in the GROMACS distribution. Bonded parameters and atom 

types for each molecule were kept the same between the different topologies, such that the 

comparisons involved only charges and charge groups assigned by PRODRG relative to those 

implemented in the GROMOS96 43A1 parameter set. Unless otherwise noted, all simulations 

employed a twin-range cutoff scheme for short-range nonbonded interactions, with the real-space 

contribution to Coulombic terms truncated at 0.8 nm and short-range van der Waals interactions 

truncated at 1.4 nm. All bond lengths were constrained using the LINCS method (33), allowing a 

2-fs time step. The neighbor list was updated every 5 simulation steps (10 fs). Long-range 

electrostatic interactions were calculated with the smooth particle mesh Ewald (PME) method 

(34, 35). Equilibration simulations utilized the Berendsen weak coupling method (36) to control 

temperature and/or pressure, while production simulations utilized the Nosé-Hoover thermostat 

(37, 38) and Parrinello-Rahman barostat (39, 40) to generate a rigorous NPT ensemble. 

  

Condensed-Phase and Gas-Phase Systems 

 

To measure various thermodynamic and physical properties of pure liquid systems as a 

function of the molecular topology, systems containing hexane, ethanol, and p-cresol were 

constructed by replicating a single molecule of each compound in three dimensions to create a 

cubic grid of 512 molecules. For gas-phase systems, molecules were separated by 50 nm and 

kept in place with weak position restraints, in accordance with GROMOS parameterization 
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methodology, and plain cutoffs were used to calculate electrostatic interactions (14). Steepest 

descent minimization was performed on gas-phase and condensed-phase systems alike, followed 

by 100 ps of isochoric-isothermal (NVT) equilibration at 298 K. Further equilibration under an 

isothermal-isobaric (NPT) ensemble was performed for 300 ps at the same temperature and 1 bar 

of pressure. Finally, each system was simulated for another 20 ns production run under the same 

conditions. Charges and charge groups for these molecules are illustrated in Figure 7.1. 

 

 
Figure 7.1. Comparison of GROMOS96 43A1 and PRODRG charges and charge groups for hexane (top), ethanol 

(middle), and p-cresol (bottom). Charges are given in units of e and charge groups are indicated by gray boxes. 

 

Interfacial Amino Acid Systems 

 

Amino acids represent some of the most common components of biomolecular force fields 

and thus should serve as reliable test systems. By using amino acids, we can assess the quality of 

PRODRG topologies against groups that have been rigorously defined. Six amino acids (alanine, 

asparagine, aspartate, isoleucine, lysine, and serine) were chosen to represent the twenty 

common amino acids. The chosen molecules encompass hydrophobic (Ala and Ile), polar 
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uncharged (Asn and Ser), and charged (Asp and Lys) species. Each amino acid was modeled as a 

dipeptide, with N- and C-terminal groups capped with acetyl and N-methyl groups, respectively, 

to give uncharged termini. Since the goal of the GROMOS96 parameter sets is to accurately 

describe partitioning of amino acids between polar (water) and hydrophobic (cyclohexane) 

media (14), we sought to produce a biphasic system that would model partitioning behavior of 

the different amino acids.  

A 5-nm cubic box of cyclohexane was generated, containing a total of 466 molecules. 

Standard bond, angle, and dihedral parameters from the GROMOS96 43A1 library were 

assigned in the cyclohexane topology. All atoms were represented as united-atom CH2 with zero 

charge. Following steepest descent minimization, the cyclohexane box was equilibrated first 

under an isochoric-isothermal (NVT) ensemble for 100 ps (298 K), and then under an 

isothermal-isobaric (NPT) ensemble for 500 ps (298 K, 1 bar), at which point the box vectors 

and density had stabilized. The system was simulated for an additional 10 ns to generate the 

cyclohexane layer used in building the interfacial systems. 

Each amino acid was placed at the center of a rectangular box such that both the plane of the 

amino acid backbone and the Cα-Cβ bond were coincident with the x-y plane of the unit cell 

(Figure 7.2). The equilibrated cyclohexane box was placed in the lower half of the simulation 

cell, while the remainder of the volume was filled with SPC water (41). A single Cl– counterion 

was added to the aqueous phase of the lysine system to compensate for the net charge of the 

amino acid. In the case of aspartate, a single Na+ ion was added. No ions were added to systems 

containing uncharged amino acids. Each system was energy-minimized and equilibrated in the 

same manner as the cyclohexane box discussed above, with position restraints applied to amino 

acid heavy atoms during equilibration. Three replicates of each system were generated from 

different random initial velocities. The data collection period lasted for 20 ns. Charges and 

charge groups used for the simulations of amino acids are given in Figures 7.3 and 7.4. 
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Figure 7.2. Initial position of lysine in the cyclohexane-water interfacial system. The amino acid backbone is 

perpendicular to the page and the sidechain is extending to the right in the image. Lysine is shown with its atoms 

colored by element and rendered as van der Waals spheres. The co-solvents are rendered as transparent surfaces, 

with water in blue and cyclohexane in gray. The image was rendered with PyMOL (56). 
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Figure 7.3. Comparison of GROMOS96 43A1 and PRODRG charges and charge groups for alanine (top), 

asparagine (middle), and aspartate (bottom). Charges are given in units of e and charge groups are indicated by gray 

boxes. 
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Figure 7.4. Comparison of GROMOS96 43A1 and PRODRG charges and charge groups for isoleucine (top), lysine 

(middle), and serine (bottom). Charges are given in units of e and charge groups are indicated by gray boxes. 

 

UDP-Galactopyranose Mutase 

 

To examine the stability of a cofactor bound to a protein, the structure of UDP-

galactopyranose mutase (UGM) bound non-covalently with flavin adenine dinucleotide (FAD) 

was utilized. The starting structure for these simulations was taken from the crystal structure of 

the K. pneumoniae enzyme-cofactor complex determined by Beis et al (PDB: 2BI7) (42), which 

contains an oxidized FAD cofactor. Parameters for the protein were assigned from the 
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GROMOS96 43A1 parameter set, and FAD parameters were either taken from this same force 

field or generated by PRODRG (Figure 7.5). The protein-cofactor complex was centered in a 

rhombic dodecahedral unit cell that was subsequently filled with SPC water (41) and sufficient 

counter ions to balance the charge and bring the final ionic concentration to a near-physiological 

100 mM. Equilibration procedures similar to the previous systems were implemented. Steepest 

descent minimization was performed, followed by 100 ps of isochoric-isothermal (NVT) 

equilibration. Next, 500 ps of equilibration under an isothermal-isobaric (NPT) ensemble were 

performed, followed by 40-ns production simulations. Position restraints were applied to the 

backbone of the protein during equilibration, and released for the production run. Different 

random initial velocities were used to generate independent trajectories. 

 

 
Figure 7.5. Comparison of GROMOS96 43A1 and PRODRG charges and charge groups for FAD. Charges are 

given in units of e and charge groups are indicated by gray boxes. 
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Results and Discussion 

 

The goals of our approach include the assessment of several physical and thermodynamic 

parameters in the liquid- and gas-phase systems, behavior of amino acids in the presence of 

hydrophobic and polar media, and the interactions of an enzyme-bound molecule with its partner 

protein. These scenarios represent some of the most common uses of small molecule topologies 

in the literature, and provide us with versatile systems in which to test the quality of these 

topologies. We provide an analysis of the various intermolecular interactions that give rise to the 

observed behavior, focusing primarily on electrostatic and van der Waals interactions, hydrogen 

bonding, and relative orientation of the different molecules. While these quantities are largely 

interdependent, a comprehensive analysis of these terms is appropriate as they relate directly to 

quantities that are often evaluated in MD simulations. 

For all comparisons between the results of using PRODRG and GROMOS96 43A1 

topologies, the behavior observed in the GROMOS96 43A1 simulations is considered the 

benchmark for all comparisons. Parameters for novel species must be derived in a manner 

consistent with the existing, validated force field, which is taken as the standard for accuracy, 

and thus we evaluate the results of using PRODRG parameters in this context. 

 

Condensed-Phase and Gas-Phase Systems 

 

The parameterization of the GROMOS96 force field parameter sets relies on accurate 

reproduction of condensed-phase behavior and thermodynamic data. In the most recent edition of 

the force field (53A6) (14), the criteria used to assess the accuracy of the derived parameters 

included density and the heat of vaporization,  ΔHvap. These quantities can be calculated from 

MD simulations of hexane, ethanol, and p-cresol. 

Table 7.1 summarizes the results of density and ΔHvap calculations. The equation used to 

calculate ΔHvap was: 

 

! 

"Hvap = Egas # Eliquid + RT  
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In this equation, the quantities in angle brackets denote the time average of the total energy 

of the gaseous and liquid systems. R is the gas constant, and T is the absolute temperature in 

Kelvin. 

 
Table 7.1. Density and ΔHvap for small molecules (54, 55). 

Density [g mL-1] ΔHvap [kJ mol-1] 
System 

43A1 PRODRG Expt. 43A1 PRODRG Expt. 

Ethanol 0.766 ± 0.008 0.972 ± 0.007 0.789a 20.3 ± 0.2 9.4 ± 0.4 42.3d 

Hexane 0.681 ± 0.005 0.679 ± 0.005 0.661b 17.2 ± 0.3 17.2 ± 0.3 31.6e 

p-Cresol 1.097 ± 0.004 1.045 ± 0.005 1.019c 48.7 ± 0.5 35 ± 2 73.1f 
aRef 54, pp 3-206; bpp 3-308; cpp 3-134; dpp 6-111; epp 6-117; fRef 55. 

 

We found relatively good agreement between the GROMOS96 43A1 topologies and 

experimental data with respect to density (Table 7.1). Densities were slightly overestimated for 

hexane and p-cresol (by 3.0% and 7.7%, respectively), and slightly underestimated for ethanol 

(by 3.0%). For PRODRG-produced topologies, the densities of hexane and p-cresol were in close 

agreement with both the GROMOS96 43A1 results and experimental data (overestimated by 

2.7% for hexane and 2.6% for p-cresol), but that of ethanol was significantly overestimated (by 

23.2%). 

With respect to ΔHvap values, neither GROMOS96 43A1 nor PRODRG parameters closely 

reproduced experimental data, with all simulation results producing values that were well below 

the experimentally-determined ΔHvap. The values of ΔHvap generated by GROMOS96 43A1 

topologies, however, generally were in somewhat closer agreement with experimental values 

than were values generated using PRODRG parameters (Table 7.1).  

To explain these results, we examined the structures of the liquids themselves in terms of 

both hydrogen bonding and radial distribution functions (RDF), which describe the density of 

chosen particles as a function of distance, a calculation that can be applied to individual atoms or 

to whole molecules. In an RDF plot, closely interacting groups are separated by shorter 

distances, such that the resulting density peak is higher, indicating a greater probability of 

interaction at a given distance. 

The decreased value of ΔHvap for ethanol and p-cresol resulting from PRODRG parameters 

can be attributed mainly to a significant decrease in hydrogen bonding capacity. For ethanol, the 
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use of GROMOS96 43A1 parameters resulted in 0.93 ± 0.01 hydrogen bonds per molecule 

(averaged over time). For p-cresol, this value was 0.94 ± 0.01. Use of PRODRG parameters gave 

substantially lower hydrogen bonding for these two species, 0.12 ± 0.02 hydrogen bonds per 

ethanol molecule and only 0.05 ± 0.01 per p-cresol molecule. The RDF of these two species 

(Figure 7.6) provides insight into the reason for this observed behavior. 

 

 
Figure 7.6. RDF for different atom pairs in (A) ethanol and (B) p-cresol. In (B), the intramolecular O-CH3 peak 

referred to in the text appears as a single, solid line since it is present in both curves and is thus overlapping. 
 

PRODRG parameters caused ethanol molecules to align head-to-tail, that is, with the 

hydroxyl group associating most prominently with the methyl group of a nearby molecule, at a 

distance of approximately 0.3 nm (Figure 7.6A). Interactions between hydroxyl groups occurred 

at a much greater distance, nearly 0.5 nm, exceeding the optimal distance for hydrogen bonding.  

The combination of a relatively large charge (+0.071 e) on the terminal methyl group and the 

comparatively small charge on the hydroxyl hydrogen (+0.037 e) leads to this behavior. The 

association of the hydroxyl oxygen atoms with the terminal methyl groups disrupted hydrogen 

bonding, decreased ΔHvap, and increased the density relative to the results obtained using 

GROMOS96 43A1 parameters. Proper hydrogen bonding was observed using GROMOS96 

43A1 parameters for ethanol, with hydroxyl-hydroxyl interactions occurring at approximately 

0.3 nm, indicating strong hydrogen bonding and comparing closely with the RDF of previous 

simulations using different parameters (43).  

In the case of p-cresol, we also observed a reduction in hydrogen bonding when PRODRG 

parameters were applied, as well as an increase in hydroxyl-hydroxyl distance relative to the 
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results obtained using GROMOS96 43A1 parameters (Figure 7.6B). Under PRODRG 

parameters, there was no distinct hydroxyl-hydroxyl RDF peak, but there was a probable 

interaction between the hydroxyl group and the p-methyl group occurring at approximately 0.35 

nm, indicating head-to-tail orientation similar to the case of ethanol. Use of GROMOS96 43A1 

parameters showed this behavior as well, but at a much larger distance, approximately 0.7 nm, 

while hydrogen bonding was clearly occurring due to hydroxyl-hydroxyl interactions at 

approximately 0.25 nm. A peak at approximately 0.55 nm occurred in the RDF produced by both 

PRODRG and GROMOS96 43A1 parameters; this peak is the intramolecular distance between 

the hydroxyl group and the p-methyl group. 

RDF plots for hexane (data not shown) indicate that there was no distinguishable difference 

in the liquid structure due to the application of GROMOS96 43A1 or PRODRG parameters. The 

average end-to-end distance of hexane was 0.607 ± 0.001 nm in both cases, with a radius of 

gyration of 0.216 ± 0.003 nm. Thus, the presence of small partial charges on hexane assigned by 

PRODRG did not significantly influence the configurations of hexane or the structure of the bulk 

liquid. 

 

Interfacial Amino Acid Systems 

 

To assess the quality of PRODRG-generated amino acid topologies relative to those present 

in the GROMOS96 43A1 force field library, several parameters were analyzed: the position and 

orientation of the amino acids in the biphasic cyclohexane-water system, the nonbonded energies 

(Coulombic and Lennard-Jones) between the amino acids and the two solvents, and the ability of 

relevant functional groups in the amino acids to hydrogen bond with water. The balance of these 

terms will dictate the behavior of the amino acids in these systems and thus is an important 

measure of the quality of the small molecule topologies. 

Configurations and Trajectory Observations. The position of amino acids parameterized 

under the GROMOS96 43A1 force field was largely consistent over time, with all amino acids 

remaining at the cyclohexane-water interface. The only exception was one simulation of 

isoleucine, in which the molecule diffused into the cyclohexane layer to localize at the 

cyclohexane-water interface that is formed at the periodic boundary of the system in the z-

dimension (Figure 7.7). The orientation of the sidechains varied depending on the chemical 
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nature of the amino acid. Hydrophobic amino acids (alanine and isoleucine) were oriented such 

that their side chains were either coincident with the interface or buried in the cyclohexane layer. 

Polar uncharged amino acids (asparagine and serine) were positioned with their sidechains 

coincident with the interface or directed towards the aqueous solvent. Charged amino acids 

(aspartate and lysine) consistently oriented their sidechains towards the aqueous solvent. 

The behavior of the amino acids whose parameters were assigned by the PRODRG server 

was less consistent (Figure 7.8). In all three simulations of alanine, the amino acid diffused freely 

into the water layer. Simulations of isoleucine parameterized by PRODRG performed 

comparably to the simulations under the GROMOS96 43A1 parameters, with isoleucine 

remaining at the cyclohexane-water interface and its sidechain buried in the cyclohexane layer. 

The position of asparagine across three simulations was inconsistent; in two cases, asparagine 

remained largely interfacial, occasionally diffusing as much as 3 nm into the aqueous phase 

before returning to the interface. In the third simulation of asparagine, the amino acid diffused to 

the top of the unit cell to associate with the cyclohexane-water interface at the periodic boundary. 

In the simulations of serine, two systems remained interfacial with their polar sidechains buried 

in the cyclohexane layer. In the third serine simulation, the amino acid diffused to the top of the 

unit cell to ultimately bury its sidechain into the periodic cyclohexane layer. In simulations of 

both lysine and aspartate, the amino acids diffused freely into the aqueous phase; their positions 

were variable over time. 
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Figure 7.7. Overlays of amino acid positions generated by GROMOS96 43A1 parameters, taken from the final 

snapshot (20 ns) of each simulation after fitting for global x-y translation. Amino acids are shown as sticks and 

colored separately by replicate. Water and cyclohexane are rendered as in Figure 7.2. The images were generated 

with PyMOL (56).  
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Figure 7.8. Overlays of amino acid positions generated by PRODRG parameters, taken from the final snapshot (20 

ns) of each simulation after fitting for global x-y translation. Amino acids are shown as sticks and colored separately 

by replicate. Water and cyclohexane are rendered as in Figure 7.2. The images were generated with PyMOL (56). 
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Energetics of Interactions with Co-Solvents. The interactions of the amino acids with the two 

co-solvents of the interfacial systems were strongly influenced by the nature of the electrostatic 

and van der Waals interactions between the small molecules and the aqueous and hydrophobic 

environments. The balance between these terms dictated the partitioning behavior of the amino 

acids. Since the cyclohexane topology included no charges on the constituent atoms, the only 

electrostatic interactions in these systems (aside from water-water interactions) occurred between 

the amino acid and water. In all cases, the charges assigned in PRODRG-generated topologies 

led to significantly lower-energy (more favorable) electrostatic interactions with water than the 

results obtained using GROMOS96 43A1 parameters (Figure 7.9A). 

As a consequence of the greater interaction with the aqueous phase in the PRODRG-

parameterized systems, atoms were drawn closer together by stronger electrostatic interactions. 

As a result, van der Waals interactions with the aqueous phase became more repulsive for all 

amino acids except for lysine, which experienced a greater net Lennard-Jones attraction (Figure 

7.9B). RDF analysis (Figure 7.10) indicates that more water molecules interacted with the 

sidechain methylene groups when PRODRG charges were applied. These groups are normally 

uncharged in the GROMOS96 43A1 parameter set, leading to weaker solvent interactions. The 

oxygen atom in water interacted with each of the sidechain methylene groups when small partial 

charges (assigned by PRODRG) were present such that favorable van der Waals interactions 

were established, a behavior that was promoted by favorable dipole interactions from the partial 

charges present. 
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Figure 7.9. (A) Electrostatic and (B) Lennard-Jones interaction energies between the amino acids (listed on the x-

axis) and water. Asterisks (*) indicate a significant difference based on a two-tailed Student’s t-test (p < 0.05). Error 

bars represent standard deviations of the three simulations of each system. 
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Figure 7.10. RDF for SPC oxygen (Ow) atoms with respect to lysine sidechain atoms using (A) GROMOS96 43A1 

and (B) PRODRG parameters. In both panels, the curves for Cd and Ce atoms are overlapping. 

 

For all the other amino acids considered here, the use of PRODRG parameters caused water 

molecules to be distributed around the solute molecules at either a closer distance or at the same 

distance but with higher probability than with GROMOS96 43A1 parameters, based on RDF 

analysis (data not shown). The attraction of water molecules to these species derived largely 

from the over-polarization of the backbone and/or sidechains of each amino acid in the 

PRODRG topologies. The result was a net repulsion due to an increased density of water around 

these amino acids, particularly at distances between atomic pairs above the energy minimum on 

the Lennard-Jones curve.  
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Hydrogen Bonding. All amino acids parameterized under GROMOS96 43A1 formed 

essentially the same number of backbone hydrogen bonds with water (approximately 2), 

averaged over all simulations and all snapshots in each simulation (Figure 7.11A). The 

consistency across simulations is likely due to the fact that the backbone amide groups had 

identical parameters, in accordance with the transferability of functional groups within the 

GROMOS parameter sets. That is, in the GROMOS force fields, the same functional groups 

have the same charges, even if they occur in different species, since charges are derived from 

model species that represent a small portion of an existing compound, typically an amino acid 

sidechain (14). For all the amino acids examined here, the PRODRG-produced topologies led to 

a significant increase in the number of backbone-water hydrogen bonds relative to the results 

obtained with GROMOS96 43A1 parameters, nearly 6 in the case of aspartate. This effect can be 

attributed to the greater separation of charges in the backbone amide groups (Figures 7.3 and 

7.4). These charges vary somewhat in their magnitude depending on the amino acid, but in all 

cases the resulting dipoles are greater than those present in the GROMOS96 43A1 topologies. 

Sidechain hydrogen bonds are another important consideration when examining these 

systems. Illustrated in Figure 7.11B are hydrogen bonds between sidechain groups (where 

applicable) and water. In the cases of asparagine and aspartate, significantly more hydrogen 

bonds formed between sidechain groups (amide and carboxylate, respectively) in the case of 

PRODRG-generated topologies. The principal reason for this increase is the greater magnitude 

of charge separation on the amide carbonyl in asparagine and carboxylate in aspartate. The 

stronger dipoles in these groups led to more hydrogen bonding with nearby water. The opposite 

effect is observed in the case of lysine and serine systems, wherein hydrogen bonds were 

significantly decreased relative to the system simulated with GROMOS96 43A1 parameters. In 

the case of lysine, the charges on the ε-amino group hydrogens assigned by PRODRG are -0.002 

e, opposite in sign and significantly reduced in magnitude compared to the charges that are 

assigned under GROMOS96 43A1 (+0.248 e). The partial negative charges assigned by 

PRODRG likely inhibit the ability of this ε-amino group to effectively serve as a hydrogen bond 

donor. As described above, in the simulations of serine, the PRODRG-derived charges caused 

the amino acid to bury its sidechain in the cyclohexane layer, rather than in water. The dipole on 

the sidechain hydroxyl group is reduced compared to the GROMOS96 43A1 topology, and thus 

hydrogen bonding to water was less of a driving force in the interactions in these systems. 
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Figure 7.11. (A) Backbone and (B) sidechain hydrogen bonds to water. Asterisks (*) indicate a significant 

difference based on a two-tailed Student’s t-test (p < 0.05). Error bars represent standard deviations of the three 

simulations of each system. 

 

The results from the interfacial amino acid simulations call into question the use of unrefined 

PRODRG topologies for small molecules. PRODRG was unable to replicate the partial charges 
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of the GROMOS96 43A1 parameter set for the atoms of any of the amino acids, which are the 

most well-characterized species in most biomolecular force fields. Very little information is 

publicly available regarding the method by which PRODRG assigns charges to the input 

molecules, aside from a brief statement in the original paper stating that charges are referenced 

from a database of common functional groups (18). In fact, it seems that, in the case of 

uncharged molecules, PRODRG assigns charges that are a hybrid of polar and nonpolar groups. 

That is, polar groups (Asn and Ser sidechains, for example) are insufficiently polar, while 

normally uncharged groups (Ala and Ile sidechains, methylene groups in Lys) are assigned small 

partial charges, rendering them more hydrophilic. Some other polar groups, such as backbone 

amides in all the amino acids, have much larger dipoles assigned by PRODRG than would be 

expected under the GROMOS96 43A1 parameter set. In the case of charged groups, such as the 

carboxylate group of the Asp sidechain and the amino group of the Lys sidechain, the dipole on 

the carboxylate group is too large, while that of the amino group is too small.  

 

UDP-Galactopyranose Mutase 

 

The PRODRG server was designed to produce ligand topologies for use in modeling protein-

ligand structures (18, 19). Thus, it is important to assess its applicability to this purpose. To 

design a test system for which ligand parameters are already present in the GROMOS96 43A1 

force field library, we chose to model the UGM enzyme in complex with its FAD cofactor. 

Modeling other small molecules in protein binding sites would be an interesting exercise, but the 

lack of a clear method for generating their topologies has limited the focus of this study.  

Over the course of triplicate 40-ns trajectories under both GROMOS96 43A1 parameters and 

those generated by PRODRG, the FAD molecule remained bound to the protein (which, in all 

cases, was assigned parameters under the GROMOS96 43A1 force field), with its position 

largely consistent over time. That is, there was no global translation of the cofactor out of its 

binding site, or rotation therein. However, we did observe a number of important differences 

with respect to the configuration of FAD and its interactions with the UGM enzyme. Structural 

overlays, taken from the final snapshot of each trajectory, are shown in Figure 7.12. While the 

position of the isoalloxazine ring was largely consistent across the simulations under both 
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GROMOS96 43A1 and PRODRG, the location of the adenine ring was more variable in the 

simulations utilizing PRODRG parameters.  

 

 
Figure 7.12. Alignment of FAD structures, with the reference position (the configuration of FAD following 

equilibration) for each simulation shown in gray. The final snapshot of each 40-ns simulation is shown and is 

colored by simulation. Overlays were produced by fitting the structure of the protein to remove global translation 

and rotation and extracting the resulting FAD coordinates. The images were generated with PyMOL (56). 

 

The configurations generated in these simulations would seem to indicate that the PRODRG 

parameters assigned to FAD are sufficiently accurate for simulation. However, a conclusion 

regarding accuracy cannot be made based on structures alone. The nature of the interactions 

between FAD and UGM is an important criterion for assessing the accuracy of these parameters, 

and is also critically important in simulations of small molecules docked to receptors. MD 

simulations can be used to assess the stability of docking results and can be used to calculate the 

energetics of the resulting interactions over time. 

We found that the parameters assigned to FAD by PRODRG led the cofactor to participate in 

significantly fewer hydrogen bonds to UGM. In the original crystal structure, eight hydrogen 

bonds between FAD and UGM were detected, using a cutoff angle of 30° and a cutoff radius of 

3.5 Å. Under GROMOS96 43A1, 10.3 ± 0.4 hydrogen bonds were formed (averaged over time 
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and over three replicate simulations). Using PRODRG parameters resulted in the formation of 

just 5.0 ± 0.9 hydrogen bonds. Several of these missing hydrogen bonds can likely be attributed 

to the assignment of zero charge to the atoms of the C6-amino group of the adenine ring (Figure 

7.5). The absence of hydrogen bonding between this moiety and UGM also explains the 

variability of the position of the adenine ring across the three simulations. 

MD simulations are also commonly used to predict binding energies between small 

molecules and their target proteins (44). By measuring non-bonded interaction energies between 

FAD and UGM, the nature of the interactions between the protein and its cofactor can be 

assessed. When GROMOS96 43A1 charges were assigned to FAD, the average total interaction 

energy between UGM and FAD was -866 ± 52 kJ mol-1. When PRODRG-derived charges were 

assigned to FAD, the average interaction energy was -588 ± 30 kJ mol-1.  While the Lennard-

Jones energies were similar in both simulation sets, the Coulombic energies differed drastically. 

With GROMOS96 43A1 charges, the magnitude of the intermolecular Coulombic interactions 

was, on average, -427 ± 36 kJ mol-1, but with PRODRG charges, the same term was -158 ± 22 kJ 

mol-1. Thus, despite the apparent similarity in the positions of FAD within the UGM enzyme, the 

energetics of this interaction were remarkably different, particularly with respect to the 

Coulombic interactions. 

It is apparent that the inconsistent charge and charge group assignments generated by 

PRODRG had an adverse effect on the dynamics and behavior of the FAD cofactor in its binding 

site. However, it is even more of a concern that the PRODRG-assigned FAD charges might 

influence the dynamics of the protein itself. A measure of the root mean square fluctuation 

(RMSF) in UGM indicated that helix α9 and the loop following it (residues 215-224) 

significantly increased in fluctuation (p < 0.05) in one simulation in which the FAD molecule 

was assigned PRODRG charges (Figure 7.13). The average RMSF over the last 20 ns of 

simulation using GROMOS96 43A1 parameters for FAD was 0.18 ± 0.04 nm, while that of the 

simulation using PRODRG parameters was 0.26 ± 0.08. This loop is important in binding the 

adenine moiety of the FAD, and we attribute the increased fluctuation to a lack of hydrogen 

bonding between UGM and FAD in this region. The two other trajectories using PRODRG 

charges for FAD resulted in reasonable configurations for the cofactor, similar to those obtained 

by assigning charges from GROMOS96 43A1. Nonetheless, we have demonstrated that the 

energetics of these interactions deviate substantially from the expected results using 
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GROMOS96 43A1. The implication that PRODRG topology charges extend beyond the small 

molecule for which they were originally intended raises concerns about the validity of any 

simulations that have used unrefined PRODRG topologies. 

 

 
Figure 7.13. RMSF of the UGM backbone. Only the charges on the FAD molecule differ between the two models. 

The protein (cartoon) is colored according to the backbone RMSF, using a color gradient from blue to red, with blue 

regions indicating less fluctuation and red regions indicating more fluctuation. The FAD cofactor is shown as sticks 

and colored by element. Structures are taken from representative snapshots of each simulation set (GROMOS96 

43A1 and PRODRG FAD parameters). The images were generated with PyMOL (56). The RMSF of residues 

referred to in the main text is indicated in the shaded box on the RMSF plot. 
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Strategies for Charge Assignment in GROMOS Topologies 

 

The empirical charge assignment applied in the GROMOS96 force field parameter sets 

presents one of the principal challenges in deriving small molecule topologies. There is no 

complete description in the literature regarding the proper derivation of charges for molecules 

within the GROMOS96 parameter sets, aside from empirical fitting. It is for this reason that 

automated methods of charge calculation and assignment are so attractive. Having concluded 

that the charges assigned by PRODRG did not reproduce the expected behavior for even the 

most well-defined molecules and common functional groups, we offer strategies for initial 

charge assignment that are relatively fast and easily applied to GROMOS topologies. For 

application to small molecules in MD simulations, these initial charges should be evaluated and 

refined as necessary to reproduce proper condensed-phase behavior using the methodology 

described by the authors of the GROMOS96 parameter sets and perhaps the strategies employed 

here. The charge-derivation strategies we discuss here should be considered a starting point, not 

an ending point, for this process. 

Quantum mechanical calculations are not explicitly stated as a source of GROMOS96 

charges, although they present one method for deriving these parameters. We utilized the 

Antechamber program within AmberTools (version 1.0) (45) to calculate charges for all-atom 

versions of several of the small molecules studied here by applying several different semi-

empirical charge calculation methods. The results of these calculations are summarized in Table 

7.2. Overall, the charge calculation method that best reproduced the GROMOS96 43A1 partial 

charges is AM1-BCC (46, 47). Charges on O and H atoms of hydroxyl groups were in good 

agreement with expected force field values for ethanol, p-cresol, and serine. For primary alcohol 

functional groups in these molecules, if the AM1-BCC partial charges of the C and H atoms in 

the CH2 group are combined, the resulting charge was similar to the force field value of +0.150 

e, +0.1677 e in the case of ethanol and +0.1919 e in the case of serine. 

Aromatic C and H atoms had charges of comparable magnitude as well, a result that was also 

produced by Mulliken charges (48). The Mulliken charges for amide groups were in closest 

agreement with the expected values in the GROMOS96 43A1 parameter set. The AM1-BCC 

method tended to over-polarize amide functional groups, but in all cases the direction of the 

dipole was correct. That is, none of the N atoms were assigned partial positive charges, as was 
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the case in all of the PRODRG amino acid topologies. All of the methods utilized here also had a 

tendency to place small partial charges on nonpolar groups, an inconsistency with the 

GROMOS96 43A1 force field shared by PRODRG. The Gasteiger method (49) produced 

charges that were in poorest agreement with expected GROMOS96 43A1 parameters. 

Antechamber is freely available within the AmberTools distribution, but it is limited to semi-

empirical calculations. Spartan ‘04 (Wavefunction, Inc., Irvine, CA) is a commercially-available 

quantum mechanical program that can perform some higher level of theory calculations, and we 

sought to determine what level of theory would be necessary to best reproduce GROMOS96 

43A1 charges. We employed three methods: the semi-empirical AM1 method (50), the ab initio 

Hartree-Fock (HF) method (51) with the 6-31G** basis set, and a common ab initio density 

functional theory (DFT) hybrid method (B3LYP) (52), also with the 6-31G** basis set. Charges 

were derived using the CHELP algorithm (53) within Spartan, which is a type of electrostatic 

charge (ESP) method suitable for describing intermolecular interactions. 

The charges calculated by the Spartan methods (Table 7.3) were, in general, all in good 

agreement with those charges found in the GROMOS96 43A1 force field. In the case of ethanol, 

the AM1 calculations yielded a near-neutral charge on the CH3 group (-0.003 e), whereas the HF 

and DFT derived charges were somewhat more negative (-0.075 e and -0.057 e, respectively). 

The net charge in the CH2 group calculated by the AM1 method (+0.240 e) was again closest to 

the GROMOS96 43A1 parameters (+0.150 e), and the HF- and DFT-derived charges were 

slightly greater (+0.341 e and +0.263 e, respectively). The magnitudes of the charges on the 

oxygen and hydrogen of the hydroxyl groups of all Spartan methods were in close agreement 

with the GROMOS96 43A1 charges, with the closest approximation coming from the DFT 

calculations. The important result is that the dipoles derived by these methods were greater in the 

hydroxyl group than in the methyl group, likely resulting in a correct hydrogen bonding 

behavior, which was not observed in the case of PRODRG-derived charges. 

In the case of p-cresol, the p-methyl group was assigned a net negative charge by all 

methods, which was offset by the net positive charge on the carbon in the 4-position. The four 

equivalent carbons (at the 2-, 3-, 5-, and 6- positions) were all slightly over-polarized with the 

closest approximation to the GROMOS96 43A1 parameters coming from the AM1 calculations. 

The dipole on the hydroxyl group, however, was similar to the magnitude of this same group in 

the GROMOS96 43A1 parameter set in all cases, with the closest approximation derived by the 
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DFT method. It appears that the magnitude of the dipole on the hydroxyl group compared to that 

of the p-methyl group was large enough such that a reasonable pattern of hydrogen bonding 

behavior would result. 

In the case of serine, many of the same patterns are observed. The net charges on the N- and 

C-terminal methyl groups were in close agreement with the accepted GROMOS96 43A1 

charges, whereas both the N- and C-terminal amide atoms were calculated to have the correct 

sign, but with a slight over-polarization by all methods. The largest disparity among these 

methods was the charge calculated for the α-carbon. The AM1 method predicted a small 

negative charge (-0.074 e), while the HF and DFT methods both calculated large net positive 

charges (+0.570 e and +0.534 e, respectively). The dipole on the hydroxyl group, however, was 

in close agreement with GROMOS96 43A1 parameters when calculated by all methods, with the 

closest being the AM1 method. 

It is imperative to note that simple calculation of charges by any of the methods here would 

be insufficient for parameterizing new functional groups that are compatible with the 

GROMOS96 force fields. Topologies still must be validated using thermodynamic integration 

and an assessment of other condensed-phase criteria (14). We do believe, however, that the 

application of any of the aforementioned methods, especially the semi-empirical AM1 methods 

discussed here, provides a reasonable starting point for deriving charges for novel functional 

groups, taking much of the guesswork out of the empirical derivation strategy. Assignment of 

known functional group charges to small molecules is appropriate in the case of GROMOS96 

parameter sets, as they have been designed to contain transferable functional groups that have the 

same parameters (with respect to partial charges), regardless of the remainder of the molecule. 
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Table 7.2. Charges calculated by Antechamber semi-empirical methods. 

Partial Charges (e) Molecule Group Atom AM1-BCC Mulliken Gasteiger GROMOS96 
C –0.0971 –0.2150 –0.041839 
H1 +0.0380 +0.0773 +0.025375 
H2 +0.0481 +0.0874 +0.025375 

CH3 

H3 +0.0482 +0.0875 +0.025375 

 

 Sum +0.0372 +0.0372 +0.034286 0.000 
C +0.1312 –0.0192 +0.040211 
H1 +0.0183 +0.0576 +0.056075 

CH2 

H2 +0.0182 +0.0575 +0.056075 
 

 Sum +0.1677 +0.0959 +0.152361 +0.150 
O –0.6024 –0.3296 –0.396675 –0.548 

Ethanol 

OH 
H +0.3976 +0.1996 +0.210027 +0.398 
C –0.0487 –0.1739 –0.039771 
H1 +0.0399 +0.0792 +0.027965 
H2 +0.0437 +0.0830 +0.027965 

CH3 

H3 +0.0437 +0.0830 +0.027965 

 

 Sum +0.0786 +0.0713 +0.044214 0.000 
C C –0.1123 –0.1050 –0.050945 0.000 
CH* C –0.1381 –0.1381 –0.044274 –0.100 
 H +0.1371 +0.1371 +0.063842 +0.100 

C +0.1187 +0.0736 +0.071255 +0.150 
O –0.4987 –0.2526 –0.360943 –0.548 

p-Cresol 

COH 

H +0.4179 +0.2169 +0.218239 +0.398 
C –0.1766 –0.2445 +0.012705 
H1 +0.0829 +0.1222 +0.032806 
H2 +0.0783 +0.1176 +0.032806 

Acetyl CH3 

H3 +0.0674 +0.1067 +0.032806 

 

 Sum +0.0520 +0.1029 +0.111123 0.000 
C +0.6657 +0.3096 +0.209208 +0.380 
O –0.6022 –0.3631 –0.278059 –0.380 
N –0.5854 –0.3945 –0.301933 –0.280 

N-terminal 
amide 

H +0.3153 +0.2288 +0.150258 +0.280 
C +0.0447 +0.0180 +0.122426 CaH 
H +0.1033 +0.1426 +0.062991  

 Sum +0.1480 +0.1606 +0.185417 0.000 
C +0.1238 –0.0266 +0.070315 
H1 +0.0283 +0.0676 +0.058897 

CbH2 

H2 +0.0398 +0.0791 +0.058897 
 

 Sum +0.1919 +0.1201 +0.188109 +0.150 
O –0.5855 –0.3127 –0.393908 –0.548 OH 
H +0.4101 +0.2091 +0.210159 +0.398 
C +0.6454 +0.2893 +0.234251 +0.380 
O –0.6069 –0.3678 –0.275489 –0.380 
N –0.5679 –0.3770 –0.316830 –0.280 

C-terminal 
amide 

H +0.3207 +0.2342 +0.149048 +0.280 
C +0.0873 –0.0680 –0.000395 
H1 +0.0491 +0.0884 +0.043014 
H2 +0.0269 +0.0662 +0.043014 

Serine 

C-terminal N-
CH3 

H3 +0.0357 +0.0750 +0.043014 

 

  Sum +0.1990 +0.1616 +0.128647 0.000 
*Averaged over all equivalent groups in the ring. 
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Table 7.3. Charges calculated by methods available in Spartan ‘04. 

Partial Charges (e) 
Molecule Group Atom Semi-empirical 

AM1 
Hartree-Fock 

6-31G** 
DFT (B3LYP) 

6-31G** 
GROMOS96 

C –0.437 –0.502 –0.504 
H1 +0.154 +0.158 +0.162 
H2 +0.154 +0.156 +0.161 

CH3 

H3 +0.126 +0.113 +0.124 

 

 Sum –0.003 –0.075 –0.057 0.000 
C +0.135 +0.344 +0.219 
H1 +0.052 –0.001 +0.022 

CH2 

H2 +0.053 –0.002 +0.022 
 

 Sum +0.240 +0.341 +0.263 +0.150 
O –0.518 –0.668 –0.572 –0.548 

Ethanol 

OH 
H +0.318 +0.402 +0.367 +0.398 
C –0.547 –0.758 –0.778 
H1 +0.163 +0.205 +0.208 
H2 +0.166 +0.211 +0.217 

CH3 

H3 +0.167 +0.213 +0.217 

0.000 

 Sum –0.051 –0.129 –0.136 0.000 
C C +0.075 +0.307 +0.304 0.000 
CH* C –0.211 –0.324 –0.277 –0.100 
 H +0.144 +0.211 +0.178 +0.100 

C +0.417 +0.479 +0.386 +0.150 
O –0.524 –0.648 –0.566 –0.548 

p-Cresol 

COH 

H +0.354 +0.442 +0.412 +0.398 
C –0.547 –0.623 –0.600 
H1 +0.181 +0.205 +0.173 
H2 +0.162 +0.165 +0.199 

Acetyl CH3 

H3 +0.163 +0.178 +0.150 

 

 Sum –0.041 –0.075 –0.078 0.000 
C +0.716 +0.875 +0.718 +0.380 
O –0.556 –0.660 –0.562 –0.380 
N –0.554 –0.852 –0.723 –0.280 

N-terminal 
amide 

H +0.291 +0.364 +0.331 +0.280 
C –0.065 +0.542 +0.500 CaH 
H +0.139 +0.028 +0.034  

 Sum +0.074 +0.570 +0.534 0.000 
C +0.042 –0.092 –0.161 
H1 +0.078 +0.094 +0.102 

CbH2 

H2 +0.088 +0.097 +0.100 
 

 Sum +0.208 +0.099 +0.041 +0.150 
O –0.537 –0.689 –0.607 –0.548 OH 
H +0.349 +0.453 +0.422 +0.398 
C +0.637 +0.598 +0.438 +0.380 
O –0.553 –0.646 –0.544 –0.380 
N –0.443 –0.490 –0.360 –0.280 

C-terminal 
amide 

H +0.299 +0.353 +0.320 +0.280 
C –0.323 –0.410 –0.447 
H1 +0.157 +0.171 +0.194 
H2 +0.130 +0.194 +0.151 

Serine 

C-terminal N-
CH3 

H3 +0.146 +0.146 +0.173 

 

  Sum +0.110 +0.101 +0.071 0.000 
 * Averaged over all equivalent groups in the ring. 
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Conclusions 

 

We have demonstrated the effects of incorrect small molecule topologies in a variety of 

simulated systems. We conclude that the automated PRODRG 2.5 server is a valuable tool for 

the preparation of small molecule topologies for molecular simulation. It is fast, versatile, and 

easy to use. Bonded parameters and atom types assigned by PRODRG are correctly assigned in 

all cases. Unfortunately, the resulting topologies often suffer from deficiencies in the charges and 

charge groups that are assigned. These parameters often deviate substantially from the functional 

groups defined in the GROMOS96 43A1 parameter set, with the same functional groups in 

different molecules having different charges, leading to incorrect behavior in a variety of well-

characterized systems. In general, we find that hydrophobic groups parameterized by PRODRG 

are inappropriately assigned partial charges, making them overly hydrophilic. As a consequence, 

the amino acid alanine inappropriately diffused into the aqueous solvent of our biphasic water-

cyclohexane systems and the aliphatic portion of the lysine sidechain experienced overly-

attractive van der Waals interactions with water. Dipoles in polar uncharged and charged species 

were somewhat unpredictable, as in the case of asparagine and aspartate, the sidechain dipole 

was too large, resulting in increased hydrogen bonding, while for lysine and serine, the dipole of 

the relevant polar group was too small, decreasing the hydrogen bonding capacity of these 

molecules. Application of small partial charges to hydrophobic moieties of p-cresol and ethanol 

led to substantially reduced hydrogen bonding capacity and altered liquid structural properties. 

Perhaps the most troubling result of all comes from the simulations of the UGM-FAD 

complex. The PRODRG topology for FAD appeared to give rise to reasonable configurations for 

FAD, despite some increased flexibility in the adenine moiety. However, the nature and strength 

of the interactions between FAD and UGM were significantly different between the 

GROMOS96 43A1-generated FAD topology and the topology from the PRODRG server. 

Hydrogen bonds were significantly reduced, due in large part to a completely uncharged amine 

group, and the value of nonbonded interaction energies was drastically different. Further, the 

negative effects of the PRODRG charges and charge groups assignments extended to the 

dynamics of UGM itself, conferring greater flexibility to nearby residues relative to what should 

be expected with GROMOS96 43A1 parameters applied to FAD. Thus, the applicability of 

unrefined PRODRG topologies to high-throughput screening methods is questionable, at best. 
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The validity of any program that purports to produce small molecule topologies deserves 

some scrutiny, and the resulting topologies should always be rigorously validated before using 

these parameters in any simulation study. We caution all investigators to properly calculate 

partial charges for the molecules in their simulations, first by analogy to similar chemical entities 

already in the force field library, then by semi-empirical quantum mechanical calculations for 

any group not present in the force field library, and to always validate their small molecule 

topologies in accordance with the prescribed force field methodology. Topologies generated by 

PRODRG are increasingly used in diverse applications in the literature, but the results obtained 

may not be consistent with the parent force field, GROMOS96 43A1. That is, the results 

obtained may suffer from many of the limitations and inaccuracies we have reported here. This 

fact raises significant concerns about the widespread use of this automated tool in the absence of 

any further topology modification or validation. The original intent for the PRODRG server was 

to be used in conjunction with crystal structure refinement and energy minimization, and 

extrapolation to more complicated systems may not be appropriate in the absence of substantial 

topology refinement. 

The group concept employed in the GROMOS force fields allows for versatile transferability 

of chemical moieties between molecules; that is, parameters of known functional groups can be 

applied to different molecules, independent of other structural differences between these species. 

Thus, it is reasonable to construct a topology for an arbitrary small molecule under the 

GROMOS force fields in a way that is consistent with the original force field derivation, with 

minimal effort, by piecing together existing building blocks. For functional groups that are not 

yet defined, fast charge calculation methods like AM1-BCC, for which extensive geometry 

optimization is not required, should suffice as a starting point for further topology refinement, 

but we emphasize that partial charges for any new chemical functional groups should be 

iteratively refined as necessary, and rigorously validated before use in production simulations. 
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Table S7.1. Amino acid charges calculated by Antechamber semi-empirical methods (full). 

Partial Charges (e) Molecule Group Atom AM1-BCC Mulliken Gasteiger GROMOS96 
C –0.1760 –0.2439 +0.012703 
H1 +0.0782 +0.1175 +0.032805 
H2 +0.0657 +0.1050 +0.032805 

Acetyl CH3 

H3 +0.0797 +0.1190 +0.032805 

0.000 

C +0.6647 +0.3086 +0.209132 +0.380 
O –0.6045 –0.3654 –0.278060 –0.380 
N –0.5889 –0.3980 –0.304237 –0.280 

N-terminal 
amide 

H +0.3170 +0.2305 +0.150160 +0.280 
C +0.0409 +0.0142 +0.096349 CαH 
H +0.0891 +0.1284 +0.060201 0.000 

C –0.1083 –0.2262 –0.037773 
H1 +0.0631 +0.1024 +0.025456 
H2 +0.0547 +0.0940 +0.025456 

CβH3 

H3 +0.0406 +0.0799 +0.025456 

0.000 

C +0.6266 +0.2705 +0.231571 +0.380 
O –0.6072 –0.3681 –0.275604 –0.380 
N –0.5638 –0.3729 –0.316918 –0.280 

C-terminal 
amide 

H +0.3124 +0.2259 +0.149047 +0.280 
C +0.0823 –0.0730 –0.000397 
H1 +0.0407 +0.0800 +0.043014 
H2 +0.0363 +0.0756 +0.043014 

Alanine 

C-terminal N-
CH3 

H3 +0.0568 +0.0961 +0.043014 

0.000 

C –0.1735 –0.2414 +0.012704 
H1 +0.0752 +0.1145 +0.032805 
H2 +0.0623 +0.1016 +0.032805 

Acetyl CH3 

H3 +0.0614 +0.1007 +0.032805 

0.000 

C +0.6557 +0.2996 +0.209155 +0.380 
O –0.6149 –0.3758 –0.278060 –0.380 
N –0.5534 –0.3625 –0.303433 –0.280 

N-terminal 
amide 

H +0.3234 +0.2369 +0.150190 +0.280 
C –0.0286 –0.0553 +0.107680 CαH 
H +0.0998 +0.1391 +0.061037 0.000 

C +0.0614 +0.0328 +0.051398 
H1 +0.0590 +0.0983 +0.038395 

CβH2 

H2 +0.0754 +0.1147 +0.038395 
0.000 

C +0.5935 +0.2374 +0.211443 +0.380 
O –0.6521 –0.4130 –0.277893 –0.380 
N –0.6593 –0.4193 –0.329083 –0.830 
H1 +0.3313 +0.2268 +0.145484 +0.415 

Sidechain 
amide 

H2 +0.3264 +0.2399 +0.145484 +0.415 
C +0.6302 +0.2741 +0.232385 +0.380 
O –0.6330 –0.3939 –0.275574 –0.380 
N –0.5693 –0.3784 –0.316895 –0.280 

C-terminal 
amide 

H +0.3390 +0.2525 +0.149047 +0.280 
C +0.0868 –0.0685 –0.000396 
H1 +0.0381 +0.0774 +0.043014 
H2 +0.0229 +0.0622 +0.043014 

Asparagine 

C-terminal N-
CH3 

H3 +0.0603 +0.0996 +0.043014 

0.000 
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C –0.1932 –0.2619 +0.012704 
H1 +0.0502 +0.0898 +0.032805 
H2 +0.1394 +0.1789 +0.032805 

Acetyl CH3 

H3 +0.0499 +0.0888 +0.032805 

0.000 

C +0.6678 +0.3120 +0.209153 +0.380 
O –0.6685 –0.4291 –0.278060 –0.380 
N –0.5656 –0.3748 –0.303570 –0.280 

N-terminal 
amide 

H +0.3217 +0.2351 +0.150187 +0.280 
C +0.0653 +0.0390 +0.104340 CαH 
H +0.0906 +0.1297 +0.060901 0.000 

C –0.2249 –0.2537 +0.014249 
H1 +0.0513 +0.0905 +0.035313 

CβH2 

H2 +0.0475 +0.0866 +0.035313 
0.000 

C +0.9029 +0.3223 +0.043753 +0.270 
O1 –0.8321 –0.5667 –0.550083 –0.635 

Sidechain 
carboxylate 

O2 –0.8471 –0.5818 –0.550083 –0.635 
C +0.6527 +0.2963 +0.232248 +0.380 
O –0.6593 –0.4202 –0.275577 –0.380 
N –0.5642 –0.3734 –0.316897 –0.280 

C-terminal 
amide 

H +0.2999 +0.2136 +0.149047 +0.280 
C +0.0547 –0.0997 –0.000396 
H1 +0.0240 +0.0635 +0.043014 
H2 +0.0197 +0.0592 +0.043014 

Aspartate 

C-terminal N-
CH3 

H3 +0.1173 +0.1559 +0.043014 

0.000 

C –0.1730 –0.2409 +0.012704 
H1 +0.0778 +0.1171 +0.032805 
H2 +0.0619 +0.1012 +0.032805 

Acetyl CH3 

H3 +0.0647 +0.1040 +0.032805 

0.000 

C +0.6622 +0.3061 +0.209151 +0.380 
O –0.6148 –0.3757 –0.278060 –0.380 
N –0.5600 –0.3691 –0.303683 –0.280 

N-terminal 
amide 

H +0.3265 +0.2400 +0.150185 +0.280 
C +0.0411 +0.0144 +0.101681 CαH 
H +0.0979 +0.1372 +0.060787 0.000 

C –0.0669 –0.1062 –0.017161 CβH 
H +0.0494 +0.0887 +0.032411 0.000 

C –0.0973 –0.2116 –0.060239 
H1 +0.0434 +0.0827 +0.023402 
H2 +0.0353 +0.0746 +0.023402 

CγH3 

H3 +0.0449 +0.0842 +0.023402 

0.000 

C –0.0743 –0.1529 –0.051301 
H1 +0.0452 +0.0854 +0.026729 

CγH2 

H2 +0.0416 +0.0809 +0.026729 
0.000 

C –0.1046 –0.2225 –0.065045 
H1 +0.0527 +0.0920 +0.023047 
H2 +0.0360 +0.0753 +0.023047 

CδH3 

H3 +0.0291 +0.0684 +0.023047 

0.000 

C +0.6375 +0.2814 +0.232134 +0.380 
O –0.6166 –0.3775 –0.275579 –0.380 
N –0.5736 –0.3827 –0.316889 –0.280 

C-terminal 
amide 

H +0.3141 +0.2276 +0.149047 +0.280 
C +0.0873 –0.0680 –0.000396 
H1 +0.0454 +0.0847 +0.043014 
H2 +0.0394 +0.0787 +0.043014 

Isoleucine 

C-terminal N-
CH3 

H3 +0.0439 +0.0832 +0.043014 

0.000 
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C –0.1762 –0.2399 +0.012705 
H1 +0.0948 +0.1341 +0.032808 
H2 +0.0647 +0.1040 +0.032808 

Acetyl CH3 

H3 +0.0597 +0.0990 +0.032808 

0.000 

C +0.6577 +0.3016 +0.209136 +0.380 
O –0.5695 –0.3304 –0.278068 –0.380 
N –0.6005 –0.4096 –0.303951 –0.280 

N-terminal 
amide 

H +0.3257 +0.2392 +0.150176 +0.280 
C +0.0523 +0.0256 +0.099156 CαH 
H +0.0843 +0.1236 +0.060503 0.000 

C –0.0858 –0.1644 –0.025604 
H1 +0.0693 +0.1086 +0.029088 

CβH2 

H2 +0.0622 +0.1015 +0.029088 
0.000 

C –0.0682 –0.1468 –0.046073 
H1 +0.0710 +0.1103 +0.026951 

CγH2 

H2 +0.0542 +0.0935 +0.026951 
0.000 

C –0.1081 –0.1867 –0.013759 
H1 +0.0646 +0.1039 +0.032059 

CδH2 

H2 +0.0877 +0.1270 +0.032059 
0.000 

C +0.1022 –0.1346 –0.038079 
H1 +0.1066 +0.1459 +0.081283 

CεH2 

H2 +0.1205 +0.1598 +0.081283 
+0.127 

N –0.8393 –0.0667 +0.231559 +0.129 
H1 +0.4575 +0.2527 +0.196024 +0.248 
H2 +0.4604 +0.2556 +0.196024 +0.248 

Sidechain 
amine 

H3 +0.4646 +0.2598 +0.196024 +0.248 
C +0.6356 +0.2795 +0.231852 +0.380 
O –0.6717 –0.4326 –0.275598 –0.380 
N –0.5425 –0.3516 –0.316909 –0.280 

C-terminal 
amide 

H +0.3300 +0.2435 +0.149049 +0.280 
C +0.0735 –0.0818 –0.000399 
H1 +0.0634 +0.1027 +0.043016 
H2 +0.0554 +0.0947 +0.043016 

Lysine 

C-terminal N-
CH3 

H3 +0.0395 +0.0788 +0.043016 

0.000 

 
 
 
 
 
 
 
 
 



 217 

Table S7.2. Charges calculated by methods available in Spartan ’04 (full). 

Partial Charges (e) 
Molecule Group Atom Semi-empirical 

AM1 
Hartree-Fock 

6-31G** 
DFT (B3LYP) 

6-31G** 
GROMOS96 

C –0.538 –0.786 –0.757 
H1 +0.156 0.208 0.200 
H2 +0.159 0.222 0.212 

Acetyl CH3 

H3 +0.170 0.230 0.221 

0.000 

C +0.721 +0.973 +0.816 +0.380 
O –0.559 –0.672 –0.575 –0.380 
N –0.569 –0.897 –0.775 –0.280 

N-terminal 
amide 

H +0.301 +0.399 +0.364 +0.280 
C –0.062 +0.360 +0.334 CaH 
H +0.139 +0.053 +0.052 0.000 

C –0.373 –0.578 –0.570 
H1 +0.121 +0.158 +0.178 
H2 +0.133 +0.149 +0.158 

CbH3 

H3 +0.138 +0.184 +0.146 

0.000 

C +0.605 +0.597 +0.437 +0.380 
O –0.529 –0.607 –0.507 –0.380 
N –0.451 –0.478 –0.345 –0.280 

C-terminal 
amide 

H +0.290 +0.332 +0.296 +0.280 
C –0.269 –0.365 –0.415 
H1 +0.142 +0.181 +0.186 
H2 +0.142 +0.176 +0.181 

Alanine 

C-terminal N-
CH3 

H3 +0.133 +0.160 +0.165 

0.000 

C –0.579 –0.841 –0.804 
H1 +0.157 +0.212 +0.200 
H2 +0.162 +0.220 +0.207 

Acetyl CH3 

H3 +0.178 +0.240 +0.228 

0.000 

C +0.708 +0.882 +0.732 +0.380 
O –0.567 –0.635 –0.543 –0.380 
N –0.477 –0.572 –0.449 –0.280 

N-terminal 
amide 

H +0.310 +0.367 +0.333 +0.280 
C –0.252 –0.259 –0.301 CaH 
H +0.210 +0.211 +0.200 0.000 

C –0.433 –0.493 –0.458 
H1 +0.169 +0.227 +0.209 

CbH2 

H2 +0.209 +0.171 +0.159 
0.000 

C +0.670 +0.889 +0.726 +0.380 
O –0.563 –0.641 –0.541 –0.380 
N –0.662 –1.013 –0.872 –0.830 
H1 +0.327 +0.428 +0.411 +0.415 

Sidechain 
amide 

H2 +0.298 +0.450 +0.392 +0.415 
C +0.696 +0.736 +0.600 +0.380 
O –0.558 –0.590 –0.500 –0.380 
N –0.449 –0.483 –0.354 –0.280 

C-terminal 
amide 

H +0.304 +0.352 +0.318 +0.280 
C –0.243 –0.323 –0.383 
H1 +0.121 +0.161 +0.174 
H2 +0.131 +0.139 +0.149 

Asparagine 

C-terminal N-
CH3 

H3 +0.134 +0.165 +0.167 

0.000 
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C –0.521 –0.817 –0.779 
H1 +0.170 +0.200 +0.187 
H2 +0.138 +0.225 +0.211 

Acetyl CH3 

H3 +0.147 +0.213 +0.199 

0.000 

C +0.695 +0.976 +0.810 +0.380 
O –0.602 –0.705 –0.614 –0.380 
N –0.557 –0.974 –0.817 –0.280 

N-terminal 
amide 

H +0.318 +0.419 +0.374 +0.280 
C +0.164 +0.736 +0.629 CaH 
H +0.126 +0.039 +0.047 0.000 

C –0.585 –0.607 –0.571 
H1 +0.168 +0.142 +0.132 

CbH2 

H2 +0.157 +0.146 +0.135 
0.000 

C +0.723 +0.847 +0.667 +0.270 
O1 –0.744 –0.787 –0.686 –0.635 

Sidechain 
carboxylate 

O2 –0.775 –0.840 –0.731 –0.635 
C +0.577 +0.473 +0.348 +0.380 
O –0.597 –0.659 –0.567 –0.380 
N –0.423 –0.483 –0.357 –0.280 

C-terminal 
amide 

H +0.291 +0.348 +0.310 +0.280 
C –0.319 –0.347 –0.379 
H1 +0.136 +0.149 +0.146 
H2 +0.102 +0.099 +0.105 

Aspartate 

C-terminal N-
CH3 

H3 +0.212 +0.207 +0.200 

0.000 

C –0.581 –0.886 –0.844 
H1 +0.163 +0.226 +0.214 
H2 +0.183 +0.250 +0.206 

Acetyl CH3 

H3 +0.155 +0.218 +0.238 

0.000 

C +0.697 +0.969 +0.812 +0.380 
O –0.561 –0.657 –0.561 –0.380 
N –0.505 –0.709 –0.578 –0.280 

N-terminal 
amide 

H +0.307 +0.400 +0.366 +0.280 
C –0.082 –0.112 –0.159 CaH 
H +0.130 +0.122 +0.114 0.000 

C –0.002 +0.355 +0.335 CbH 
H +0.088 +0.001 +0.005 0.000 

C –0.499 –0.851 –0.798 
H1 +0.145 +0.206 +0.196 
H2 +0.146 +0.220 +0.209 

CγH3 

H3 +0.164 +0.208 +0.195 

0.000 

C –0.148 +0.017 0.000 
H1 +0.094 +0.029 +0.062 

CγH2 

H2 +0.104 +0.059 +0.032 
0.000 

C –0.483 –0.636 –0.613 
H1 +0.171 +0.154 +0.180 
H2 +0.136 +0.190 +0.152 

CδH3 

H3 +0.141 +0.154 +0.157 

0.000 

C +0.627 +0.740 +0.587 +0.380 
O –0.545 –0.610 –0.512 –0.380 
N –0.476 –0.588 –0.447 –0.280 

C-terminal 
amide 

H +0.288 +0.354 +0.324 +0.280 
C –0.257 –0.306 –0.372 
H1 +0.134 +0.162 +0.174 
H2 +0.129 +0.150 +0.160 

Isoleucine 

C-terminal N-
CH3 

H3 +0.139 +0.164 +0.170 

0.000 
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C –0.599 –0.681 –0.667 
H1 +0.154 +0.221 +0.218 
H2 +0.183 +0.211 +0.207 

Acetyl CH3 

H3 +0.191 +0.165 +0.153 

 

C +0.703 +0.840 +0.691 +0.380 
O –0.522 –0.626 –0.527 –0.380 
N –0.563 –0.803 –0.684 –0.280 

N-terminal 
amide 

H +0.316 +0.404 +0.371 +0.280 
C –0.056 +0.294 +0.255 CaH 
H +0.112 +0.041 +0.042 0.000 

C –0.198 –0.252 –0.236 
H1 +0.128 +0.116 +0.128 

CbH2 

H2 +0.129 +0.133 +0.110 
0.000 

C –0.303 –0.322 –0.308 
H1 +0.162 +0.124 +0.125 

CγH2 

H2 +0.135 +0.123 +0.122 
0.000 

C –0.179 –0.118 –0.121 
H1 +0.124 +0.088 +0.092 

CδH2 

H2 +0.113 +0.104 +0.102 
0.000 

C –0.186 +0.173 +0.097 
H1 +0.156 +0.083 +0.096 

CεH2 

H2 +0.152 +0.098 +0.108 
+0.127 

N –0.018 –0.701 –0.588 +0.129 
H1 +0.264 +0.422 +0.395 +0.248 
H2 +0.270 +0.413 +0.387 +0.248 

Sidechain 
amine 

H3 +0.264 +0.414 +0.387 +0.248 
C +0.631 +0.623 +0.470 +0.380 
O –0.551 –0.566 –0.475 –0.380 
N –0.484 –0.588 –0.452 –0.280 

C-terminal 
amide 

H +0.305 +0.367 +0.338 +0.280 
C –0.241 –0.281 –0.335 
H1 +0.144 +0.167 +0.172 
H2 +0.139 +0.169 +0.177 

Lysine 

C-terminal N-
CH3 

H3 +0.127 +0.144 +0.152 

0.000 
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Abstract 

 

GridMAT-MD is a new program developed to aid in the analysis of lipid bilayers from 

molecular dynamics simulations. It reads a GROMACS coordinate file and generates two types 

of data: a two-dimensional contour plot depicting membrane thickness, and a polygon-based 

tessellation of the individual lipid headgroups. GridMAT-MD can also account for proteins or 

small molecules within the headgroups of the lipids, closely approximating their occupied lateral 

area. The program requires no installation, is fast, and is freely available. 
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Introduction 

 

Molecular dynamics (MD) simulations of membranes and membrane proteins have proven 

useful to investigate structure-function relationships, and they provide researchers a unique 

perspective at the atomic level, one that cannot be easily seen experimentally (1-5). Converting 

three-dimensional coordinate files, however, to useful figures for analysis and publication can be 

challenging, so concise methods of visualization are needed. GridMAT-MD is a free, open 

source program that has been developed to conduct the analysis of two important lipid bilayer 

parameters: thickness and area per lipid headgroup. 

Three-dimensional coordinate files of membranes and membrane proteins can be rendered 

such that they produce detailed figures, but comparison among multiple images is time-

consuming and difficult. A two-dimensional rendering of a three-dimensional structure also has 

its pitfalls. For example, trends in the thickness of the bilayer can be hard to distinguish, 

especially near the core of the bilayer where the view is obstructed by other lipid atoms. The area 

per lipid head group is simple enough to calculate for a pure-lipid model system. It is the lateral 

surface area of the lipid bilayer divided by the number of lipids in a given leaflet. However, this 

value can be difficult to obtain when there is a protein present. The lateral area of ideal proteins 

such as helices or barrels can be estimated, but irregularly shaped proteins are a challenge. 

GridMAT-MD was designed to facilitate analysis of lipid bilayer thickness and area per lipid 

headgroup. On characterizing bilayer thickness, the program generates the data for a top-down 

perspective of the lipid bilayer, which can be colored according to the thickness of the bilayer 

using an external viewer program, much like a contour map. From this view, it is easier to 

examine fluctuations in bilayer dimensions across the unit cell. GridMAT-MD also has the 

ability to not only calculate the area per lipid headgroup when proteins are present, but it will 

also report the specific lateral area for each lipid from a polygon-based tessellation, and the 

lateral area for the protein. 

GridMAT-MD is designed to readily interface with coordinate files generated as part of the 

output of an MD simulation conducted with GROMACS (6). Current GROMACS analysis tools 

for lipid bilayers include those that analyze deuterium order parameters, center of mass 

distances, and densities, all of which are commonly used in the literature when analyzing the 

results of membrane simulations. The limitation in reporting center of mass distances, averaged 



 228 

over time, is that the calculation is often applied to a large group of atoms, such as phosphorus, 

limiting the level of detail that can be obtained through this analysis.  

A method for analyzing bilayer thickness exists and has been successfully applied to large, 

coarse-grain membrane protein systems (7). The method relies on a fitting algorithm and 

coordinate extraction and processing from external software, working well for the large system 

in that study. However, its applicability to smaller systems is limited (X. Periole and T. Huber, 

personal communication). Thus, we sought to design a generally-applicable tool to analyze 

bilayer thickness. 

Some investigators have rightly noted that it is difficult to calculate the explicit lateral area of 

irregularly shaped proteins in a membrane (8, 9). An essential tool that is still missing in bilayer 

analysis is one that can efficiently calculate the area per lipid headgroup, even in the presence of 

an embedded protein. To our knowledge, no such tool is freely and generally available. Existing 

methods for conducting such calculations have been reported on various online forums (e.g., 

http://www.ks.uiuc.edu/Research/vmd/mailing_list/), but often require extensive scripting 

knowledge and commercial software.  

GridMAT-MD is a superior tool for membrane analysis because (i) it is free to use and 

modify under the terms of the GNU public license (10), (ii) no installation is required, provided 

the Perl interpreter (11) is installed, (iii) it calculates an explicit area for proteins, making no 

assumptions of “ideal proteins,” and (iv) it is very fast to run and easy to operate. 

 

 

Description 

 

Only two files are needed as input for this program; a GROMACS-format coordinate file that 

contains a lipid bilayer that is oriented normal to the z-axis, and a parameter file that contains 

user-specified information about the coordinate file, desired output, and other parameters, an 

example of which is distributed with the program. A User’s Guide is also distributed with the 

program that provides clear definitions of all of the options in the parameter file, as well as 

detailed descriptions on how to run specific analyses. In this section, the logic of the program 

and the type of data it generates will be discussed.  
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Processing the Coordinate File 

 

A flowchart of the GridMAT-MD algorithm is shown in Figure 8.1. Initially, GridMAT-MD 

parses through the GROMACS coordinate file in order to separate all of its components. The 

lipid and solvent atoms are stored in separate arrays for later processing. The ions are deleted, 

and anything remaining is treated as a “protein” atom, which can more broadly be interpreted as 

a protein, small molecule, or other macromolecule. The first two lines in the GROMACS 

coordinate file (the title and the number of atoms) are discarded, but the last line (box vectors) is 

stored for later use. 

 

 
Figure 8.1. Flowchart of the GridMAT-MD logic structure. 

 

Not all of the lipid atoms are needed to determine the thickness of the membrane, so most 

can be deleted. Those that the user selects are preserved, and can range from one atom per lipid 
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(such as phosphorus), to several (such as the glycerol backbone). In the case of a user choosing 

multiple atoms, the geometric center of mass is determined and the original coordinates are 

discarded. Ultimately, the program stores one point in space per lipid (a “reference point”), 

representative of the lipid to which it belongs. After that, the reference points are further divided 

into an upper and a lower leaflet. 

The next step generates a 3x3 periodic array in the x- and y-directions of the reference points. 

The goal of this step is to have a central image for analysis that is immediately surrounded by 

eight identical images, since periodic boundary conditions are routinely applied in almost all MD 

simulations. The unit-cell translation distances for generating such an array can come from one 

of two sources, the upper and lower x- and y-limits of the box of solvent, or the last line of the 

GROMACS coordinate file – the box vectors. Since post-processing of coordinates may be 

necessary to account for effects such as periodicity, centering, and structural fitting, among 

others, sometimes the box vectors printed to the coordinate file may not reflect the actual 

dimensions of the system. Thus, we implemented a feature that allows the user to choose how the 

system size should be determined – from the printed box vectors, or from the dimensions of the 

solvent, which are often representative of a rectangular unit cell. 

Once a periodic array of nine images is built, the next step is to determine which protein 

atoms are contained within the lateral area of the lipid headgroups (Figure 8.2). For each protein 

atom, the program first finds all lipid reference points within a user-defined radius of that protein 

atom on the x-y plane. If at least one of those reference points has a greater z-coordinate value 

and one has a lower z-coordinate value than the protein atom, that protein atom is said to fall 

within the lipid headgroups. This process is repeated for each protein atom, and the total array of 

those protein atoms that fall within the lipid headgroups is also translated into a 3x3 periodic 

array in the x- and y-directions. 

 

Calculating Thickness 

 

The most important concept in calculating the thickness of the bilayer is the Z-value. Each 

reference point in the top and the bottom leaflet is assigned a Z-value that represents the 

thickness (in nanometers) of the bilayer at that point. In order to determine the Z-value, the 

program considers one reference point at a time, starting in the top leaflet. It will search for the 



 231 

nearest neighbor of that reference point in the opposite leaflet, in just the x- and y-directions. 

Then it will take the difference of the z-coordinates between the two reference points, and that 

value becomes the Z-value. A Z-value is calculated for every reference point in the top leaflet, 

then this process is repeated for every point in the bottom leaflet. The user defines an arbitrary Z-

value for the protein atoms. The goal here is not to try to represent the thickness of the bilayer 

with the protein atoms, but just to set them apart. So if most of the bilayer will have thickness 

values ranging from 3 to 4 nm, the Z-value of the protein might be set to 10. This way, protein 

atoms stand out in contrast against the lipid reference points. 

Once the Z-values have been calculated, a grid is aligned to each leaflet in the center image 

of the periodic array. The resolution and shape of the grid are also user-defined. Each grid point 

in the top grid then searches for the nearest reference atom in the top leaflet, in just the x- and y-

directions. Once found, that grid point is assigned the Z-value from that reference atom. This 

process is repeated for the bottom grid in the bottom leaflet. The periodicity of the bilayer allows 

reference atoms on one side of the system to be “seen” by grid points on the opposite side of the 

system, as would be the case in a molecular dynamics simulation using true periodic boundary 

conditions. The results of this process are two similar matrices of data: the thickness of the 

bilayer from the top leaflet down, and the thickness of the bilayer from the bottom leaflet up. 

Each matrix can be visualized using an external viewer by assigning a color to each grid point 

depending on the magnitude of the Z-value, easily distinguishing thin and thick parts of the lipid 

bilayer (Figure 8.3). Visually, the top and bottom matrices typically look very similar with some 

minor differences, so the program averages the data in order to give the best representation. For 

typical thickness calculations, we have generated ideal images using grids with points spaced 

every 3-4 Angstroms. This corresponds to a grid of about 20x20 points for a bilayer system with 

50-60 lipids per leaflet. 
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Figure 8.2. Diagram illustrating GridMAT-MD decision structure in choosing protein atoms. Atoms represented 

using USCF Chimera (23). (a.) A top-down view of the top leaflet. The phosphorus atoms are the reference points 

and are shown as orange spheres. A protein atom is depicted as a blue sphere. Within a given radius, 8 reference 

points are considered. (insert) A side view of the top leaflet reference atoms. The protein atom falls within the upper 

and lower z-coordinates of the reference atoms, so its coordinates are saved. (b.) A top-down view of the top leaflet, 

with a different atom represented as a purple sphere. In this case, 9 reference points fall within the search radius. 

(insert) From the side view, one can see that the protein atom does not fall within the lipid headgroups. Its 

coordinates are discarded. 
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Figure 8.3. Schematic diagram of the extraction of thickness from a lipid bilayer. (a.) A rendering of a 128-lipid 

POPC (24) bilayer created with USCF Chimera (23). (b.) The phosphorus atoms are chosen as reference points and 

each searches for its nearest neighbor in the opposite leaflet. The distance of separation becomes the Z-value of that 

reference point. (c.) Once all Z-values are assigned, a grid is overlaid to the top leaflet. For clarity, the grid assigned 

to the bottom leaflet is not shown. (d.) Every vertex in the grid is assigned the Z-value of the nearest reference point, 

and is colored based on the magnitude of the value. 

 

As described, GridMAT-MD will provide an image of bilayer thickness for a single 

coordinate file, however one snapshot from a long MD does not provide an accurate 

representation of the fluctuations of the lipid bilayer over time. A better approach is to take a 

snapshot every few timesteps, and average the results. The raw data format printed by GridMAT-

MD makes further manipulation with scripts or spreadsheet software very straightforward. 

 

Calculating Area Per Lipid Headgroup 

 

In developing GridMAT-MD, we observed that as the resolution of the grid is increased to 

about 200x200 grid points, the membrane system could be divided into polygons. Further, the 
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number of polygons and lipid molecules always occurred in a one-to-one ratio. Upon generating 

the polygons, calculating not only the area per lipid headgroup, but also the lateral area of a 

specific lipid, becomes a simple task. All of the grid points within a certain polygon are assigned 

the same Z-value, and correspond to the same reference point. Subsequently, the number of grid 

points within a given polygon, divided by the total number of grid points, is equivalent to the 

area of a specific lipid headgroup as a fraction of the total lateral area of the bilayer system. 

Further, this reasoning extends to the protein atoms that are assigned an arbitrary Z-value by the 

user. The protein atoms compete for grid points with the lipid reference points, so a simple count 

of the points with the user-defined arbitrary Z-value will yield the lateral surface area that the 

protein occupies in the lipid bilayer. We believe that this is a much more accurate way to 

estimate the lateral area of a membrane protein, rather than making assumptions or estimations 

for “ideal proteins,” based on ideal geometry. 

In calculating bilayer thickness, it is useful to average the matrix data from the top and 

bottom leaflets as previously mentioned. However, in calculating area per lipid headgroup, it 

may only be meaningful to look at one leaflet at a time, especially in the case of an 

asymmetrically-oriented or surface-adsorbed peptide, protein, or other molecule. GridMAT-MD 

was designed in such a way that the data for the top and the bottom leaflets can be printed 

separately. The data output from area per lipid calculations is a generic text file containing the 

area of each individual lipid, printed with the lipid residue number to which it corresponds. Then 

it is quite easy for the user to look at trends in area for a specific lipid (or set of lipids, for 

example, that are within a certain distance from a protein) over the span of a trajectory.  

 

 

Validation Simulations 

 

Methods  

 

To test the ability of GridMAT-MD to reproduce previous reports of bilayer thickness, we 

replicated the work of Kandasamy and Larson by reconstructing one of their systems, the 

KALP15 peptide in a di-palmitoyl-phosphatidyl-choline (DPPC) membrane. This system 
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(identified as L1615-16 in their work) served the original authors as part of an examination of 

hydrophobic mismatch (12).  

The KALP15 peptide was built within the xLeap module of AmberTools, version 1.0 (13), 

imposing the backbone geometry of an ideal a-helix (f = -60º, y = -40º) on the constituent 

residues. The N- and C-termini were capped with acetyl and amide groups, respectively, to give 

uncharged termini.  

The peptide-bilayer system was prepared based on the procedure originally described by 

Kandasamy and Larson, with some small differences. The previous work employed the 

methodology proposed by Faraldo-Gómez et al. (14) for inserting the peptide into the membrane. 

We chose to use a more recent “InflateGRO” methodology proposed by Kandt et al. (15), as it 

does not rely on multiple programs or modifications to the GROMACS source code. By using 

the InflateGRO method, 4 lipids were deleted from the bilayer (2 from each leaflet), leaving 124 

DPPC molecules packed around the KALP15 peptide.  

Parameters from the Gromos96 53a6 parameter set were applied to the peptide, water, and 

ions in the system. Lipids were described by parameters derived by Berger et al. (16). The 

equilibration procedures used were the same as those described in the original work. Briefly, an 

equilibration phase of 5 ns duration was conducted under an NPT ensemble, using the Berendsen 

weak coupling method for both temperature and pressure (17). The temperature of the peptide, 

membrane, and solvent and ions were maintained at 323 K separately using a coupling constant 

of 0.1 ps. The pressure was regulated semi-isotropically at 1 bar in all directions, using a 

coupling constant of 1.0 ps. Position restraints were applied to the peptide backbone during the 

equilibration phase. After equilibration, restraints were removed from the peptide and the 

production phase began. The treatment of nonbonded calculations was identical to that of the 

original work, cutting off short-range Coulombic and van der Waals interactions at 1.2 nm, and 

calculating long-range electrostatics with the Particle Mesh Ewald (PME) method (18, 19). 

Production simulations were allowed to proceed for 50 ns. All simulations were conducted with 

the GROMACS package, version 3.3.3, using 16 CPUs of Virginia Tech’s SystemX 

supercomputer (20). 
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Results 

 

With respect to the bilayer thickness in the vicinity of the KALP15 peptide, our results are in 

good agreement with those previously reported (12). The hydrophobic region of the peptide is 

shorter than the transmembrane dimension of the bilayer, a situation called negative hydrophobic 

mismatch. As a result, the authors of the original work reported a total depression of bilayer 

dimensions of ~15 Å from data collected over the last 25 ns of 50-ns simulation. Over this same 

period, we note a depression of ~13 Å in the vicinity of the KALP15 peptide. Figure 8.4 

illustrates the capabilities of GridMAT-MD to display these data concisely. Snapshots are shown 

from configurations at the start and end of the trajectory, as well as the average over the last 25 

ns of the trajectory. The peptide is shown in each panel for reference regarding its location and 

conformation. The average peptide structure over the last 25 ns, based on RMSD clustering 

analysis, is shown in the final panel. For comparison, a traditional rendering of the system (in its 

final configuration, at 50 ns) is shown in Figure 8.5. 

 

 
Figure 8.4. Snapshots from the KALP15-DPPC trajectory. The legend shows the bilayer thickness values mapped to 

a rainbow color gradient, in units of nm. Data were visualized and images rendered using the Xmatrix viewer 

(version 2.8.0), distributed as part of the Matpack C++ Numerics and Graphics Library (25). The peptide was 

rendered using UCSF Chimera (23). 
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Figure 8.5. The KALP15-DPPC system, at 50 ns, in a traditional rendering. The peptide is shown as a ribbon, 

phosphorus atoms as spheres, and lipid chains and water shown as lines. The image was rendered using UCSF 

Chimera (23). 

 

GridMAT-MD produces bilayer thickness data very quickly. Each frame analyzed to produce 

the data in Figure 8.4 was processed in less than 5 seconds on a MacBook laptop (2.4 GHz Intel 

Core 2 Duo, 2 GB RAM). 

GridMAT-MD also provides a concise representation of the lipid molecules in the system. 

Each lipid is assigned to a polygon, as discussed above. Figure 8.6 shows a representation of this 

output, also from the final configuration of the KALP15-DPPC system. Over the last 25 ns of the 

50-ns trajectory, the average area per lipid headgroup for the top and bottom leaflets of the 

DPPC bilayer was 62.2 ± 1.3 Å2 and 61.8 ± 0.6 Å2, respectively. Our own simulations of pure 

DPPC bilayers under the same conditions give an average area per lipid headgroup of 63.0 ± 0.9 

Å2 (data not shown), in agreement with previous simulation (16, 21) and experimental results 

(22). Area per lipid calculations for the KALP15-DPPC system were also completed quickly by 

GridMAT-MD, with each frame processed in, on average, 2.5 minutes using the same hardware 

described above. 
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Figure 8.6. Representation of area per lipid headgroup in the top leaflet, from the final configuration of the system. 

Each polygon represents an individual lipid, determined using the headgroup phosphorus as a reference point. The 

dark shaded region corresponds to the lateral area of the KALP15 peptide that extends into the lipid headgroup 

region. Image rendered using the Xmatrix viewer (version 2.8.0), distributed as part of the Matpack C++ Numerics 

and Graphics Library (25). 

 

 

Summary 

 

 In summary, GridMAT-MD is capable of fast calculations of membrane thickness and 

area per lipid headgroup with no installation necessary, making it accessible to any of the major 

operating systems that provide a Perl interpreter. The resulting contour plots are a convenient 

way to represent the thickness of a lipid bilayer, and the area per lipid calculations are the most 

convenient and most rigorous that we believe to be publicly available. GridMAT-MD is 

available for download at http://www.bevanlab.biochem.vt.edu/GridMAT-MD. 
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Chapter 9 
 
Conclusions 
 
 
 

Many different and wide-ranging combinations of biomolecular systems that have had broad 

applications in the study of oxidative processes and human disease have been presented in this 

dissertation. In Chapter 2, we used molecular dynamics (MD) simulations to identify dual modes 

of regulation between the enzyme monoamine oxidase B (MAO B) and the bilayer. We also 

identified residues and specific interactions in the active site that are important for inhibitor 

binding. This information would be invaluable to a knowledge-based drug design project seeking 

to construct a more powerful MAO B inhibitor. In Chapter 3, we used quantum mechanics (QM) 

to better understand the active site mechanism of the same enzyme. It seems that the barrier to 

ring opening of several N-cyclopropyl derivatives is not as low as was previously thought, 

perhaps refuting the prior assumption that the mechanism of oxidation proceeds by a single 

electron transfer pathway. It now seems that, at least for tertiary amines, MAO B may favor a 

direct hydrogen atom abstraction pathway. In Chapter 4 we examined the peculiar folding 

behavior of the unstructured p53 C-terminal domain, and we concluded that the secondary 

structure that it does adopt may be influenced by the size of the hydrophobic pocket in its chosen 

binding partner. In Chapter 5, we used MD simulations and non-equilibrium steered MD 

simulations to analyze the relationship between the protein B2 and double-stranded RNA. We 

identified a specific residue that, upon mutation, causes an attenuated binding capacity. On a 

larger scale, the methods described in the chapter could be very useful to other researchers who 

are trying to predict degree of binding attenuation or knockout for other protein-nucleic acid 

systems. In Chapter 6 we studied the dynamics of an antigenic loop in peanut proteins that varies 

in size with phylogeny. 
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The final two projects in this document steered away from pure MM or QM studies towards 

method development and validation. In Chapter 7, we found that the PRODRG server, which is 

widely used to obtain parameters for non-standard small molecules for use in MD simulation, 

may not be as accurate as it advertises. While bonded parameters and atom types are very 

accurate, we found that individual atomic charges and charge group assignments require further 

refinement. We suggested methods based in QM-theory to calculate better starting parameters, 

and MD simulations with free energy calculations to validate and refine those parameters. 

Finally, in Chapter 8 we described the development and application of a program used to 

measure the thickness and area per lipid of a bilayer system, with or without a protein embedded. 

Because so many drug targets are membrane-bound enzymes, it is important that the tools exist 

to help validate those simulations; GridMAT-MD is such a tool. 

In the past 35 years, it seems computational methods have become an integral part of 

research in the life sciences, especially in the fields of biochemistry and drug design. 

Computational techniques such as MM and QM, as demonstrated by the chapters within this 

document, are broad in both the approach of the experiments and the scope of the application. As 

our computational tools continue to increase in power and in speed, and as structural information 

and the tools of simulation become more widely available, we are sure to see greater 

technological advances and growth in the popularity of applications of molecular modeling. 

 

 
Figure 9.1. Number of citations containing the keyword “molecular dynamics” arranged by year. Data obtained 

from SciFinder.



 244 

 

 
Appendix A 
 
Important .mdp Files 
 
 
 

When performing molecular dynamics simulations, there are many more parameters and 

settings that go into the simulations than are typically described in resulting publications. In the 

case of the GROMACS software package, these are listed in what is called the .mdp file. 

Recorded in this Appendix A are some example .mdp files from the production runs of some of 

our simulations. They are as follows: 

 

1.) Chapter 2 – MAO B in a bilayer production run 

2.) Chapter 2 – MAO B in a bilayer steered simulation 

3.) Chapter 4 – p53 in complex with a protein binding partner production run 

4.) Chapter 5 – B2 protein in complex with dsRNA production run 

5.) Chapter 5 – B2 protein in complex with dsRNA steered simulation 

6.) Chapter 6 – Peanut protein production run 

7.) Chapter 7 – Small molecule in condensed phase production run 

8.) Chapter 7 – Small molecule in gaseous phase production run 

9.) Chapter 7 – UGM and FAD complex production run 
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1.) Chapter 2 – MAO B in a bilayer production run 
 
; 7.3.3 Run Control 
integrator   = md     
tinit   = 10000     
dt   = 0.002     
nsteps   = 5000000    
comm_mode  = Linear    
nstcomm   = 1      
comm_grps  = Protein_FAD_1PB POPC_POPE SOL_NA+_CL-  
 
; 7.3.8 Output Control 
nstxout   = 5000000    
nstvout   = 5000000    
nstfout   = 5000000    
nstlog   = 1000     
nstenergy  = 1000     
nstxtcout  = 5000     
xtc_precision  = 1000     
xtc_grps  = Protein_FAD_1PB POPC_POPE  
energygrps  = System    
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12   
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover     
tc_grps   = Protein_FAD_1PB POPC_POPE SOL_NA+_CL-  
tau_t   = 0.1         0.1       0.1   
ref_t   = 310         310       310   
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = semiisotropic   
tau_p   = 1.0    
compressibility = 4.5e-5 4.5e-5   
ref_p   = 1.0   1.0   
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
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2.) Chapter 2 – MAO B in a bilayer steered simulation 
 
; 7.3.3 Run Control 
integrator   = md      
tinit   = 0      
dt   = 0.002      
nsteps   = 250000     
comm_mode  = Linear     
nstcomm   = 1      
comm_grps  = Protein_FAD_1PB POPC_POPE SOL_NA+_CL-  
 
; 7.3.8 Output Control 
nstxout   = 250000  
nstvout   = 250000  
nstfout   = 250000  
nstlog   = 500   
nstenergy  = 500   
nstxtcout  = 250   
xtc_precision  = 1000   
xtc_grps  = System  
energygrps  = System  
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12   
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover     
tc_grps   = Protein_FAD_1PB POPC_POPE SOL_NA+_CL-  
tau_t   = 0.1         0.1       0.1   
ref_t   = 310         310       310   
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = semiisotropic   
tau_p   = 1.0    
compressibility = 4.5e-5 4.5e-5   
ref_p   = 1.0   1.0   
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
 
; 7.3.21 COM pulling 
pull   = umbrella    
pull_geometry  = direction    
pull_start  = yes     
pull_nstxout  = 10     
pull_nstfout  = 10     
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pull_ngroups  = 1     
pull_group0  = r_519     
pull_group1  = pull_me2    
pull_vec1  = 1.40034 0.1217 2.97393   
pull_rate1  = 0.01     
pull_k1   = 1000     
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3.) Chapter 4 – p53 in complex wit ha protein binding partner production run 
 
; RUN CONTROL PARAMETERS 
integrator               = md 
tinit                    = 0            
dt                       = 0.002        
nsteps                   = 10000000     
comm_mode                = Linear       
nstcomm                  = 1            
 
; OUTPUT CONTROL OPTIONS 
nstxout                  = 10000000        
nstvout                  = 10000000        
nstfout                  = 0               
nstlog                   = 100             
nstenergy                = 100             
nstxtcout                = 2500            
xtc_precision            = 1000            
xtc_grps                 = Protein_NME     
energygrps               = Protein_NME SOL_NA+_CL-  
 
; NEIGHBORSEARCHING PARAMETERS 
nstlist                  = 5   
ns_type                  = grid   
pbc                      = xyz   
rlist                    = 0.8   
 
; OPTIONS FOR ELECTROSTATICS AND VDW 
coulombtype              = PME  
rcoulomb                 = 0.8   
fourierspacing           = 0.12   
pme_order                = 4   
vdw_type                 = cut-off  
rvdw                     = 1.4   
 
; Temperature coupling   
Tcoupl                   = nose-hoover    
tc-grps                  = Protein_NME SOL_NA+_CL-  
tau_t                    = 0.1         0.1    
ref_t                    = 310         310    
 
; Pressure coupling      
Pcoupl                   = parrinello-rahman  
Pcoupltype               = Isotropic   
tau_p                    = 1.0    
compressibility          = 4.5e-5   
ref_p                    = 1.0    
 
; GENERATE VELOCITIES FOR STARTUP RUN 
gen_vel                  = no   
 
; OPTIONS FOR BONDS     
constraints              = all-bonds  
constraint-algorithm     = Lincs  
unconstrained-start      = yes   
lincs-order              = 4   
lincs-iter               = 1   
lincs-warnangle          = 30   
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4.) Chapter 5 – B2 protein in complex with dsRNA production run 
 
; 7.3.2 Preprocessing 
define   = -DPOSRES_RNA   
 
; 7.3.3 Run Control 
integrator   = md     
tinit   = 0     
dt   = 0.002     
nsteps   = 10000000    
comm_mode  = Linear    
nstcomm   = 1     
comm_grps  = Protein RNA SOL_Na+_Cl-  
 
; 7.3.8 Output Control 
nstxout   = 10000000   
nstvout   = 10000000   
nstfout   = 10000000   
nstlog   = 1000    
nstenergy  = 1000    
nstxtcout  = 5000    
xtc_precision  = 1000    
xtc_grps  = Protein RNA   
energygrps  = System   
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12   
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover    
tc_grps   = Protein RNA SOL_Na+_Cl-  
tau_t   = 0.1     0.1 0.1   
ref_t   = 301     301 301   
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = isotropic   
tau_p   = 1.0    
compressibility = 4.5e-5    
ref_p   = 1.0     
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
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5.) Chapter 5 – B2 protein in complex with dsRNA steered simulation 
 
; 7.3.2 Preprocessing 
define   = -DPOSRES_RNA_ALL   
 
; 7.3.3 Run Control 
integrator   = md     
tinit   = 0     
dt   = 0.002     
nsteps   = 250000    
comm_mode  = Linear    
nstcomm   = 1     
comm_grps  = Protein RNA SOL_NA+_CL-  
 
; 7.3.8 Output Control 
nstxout   = 250000  
nstvout   = 250000  
nstfout   = 250000  
nstlog   = 100   
nstenergy  = 100   
nstxtcout  = 250   
xtc_precision  = 1000   
xtc_grps  = System  
energygrps  = System  
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12   
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover    
tc_grps   = Protein RNA SOL_NA+_CL-  
tau_t   = 0.1     0.1 0.1   
ref_t   = 301     301 301   
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman 
pcoupltype  = isotropic   
tau_p   = 1.0    
compressibility = 4.5e-5    
ref_p   = 1.0     
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle  = 30   
 
; 7.3.21 COM pulling 
pull   = umbrella    
pull_geometry  = direction    



 251 

pull_start  = yes     
pull_nstxout  = 10     
pull_nstfout  = 10 
pull_ngroups  = 1     
pull_group0  = RNA 
pull_group1  = Protein    
pull_vec1  = 1 0 0       
pull_rate1  = 0.01     
pull_k1   = 100000    
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6.) Chapter 6 – Peanut protein production run 
 
; RUN CONTROL PARAMETERS 
integrator               = md 
tinit                    = 0            
dt                       = 0.002        
nsteps                   = 10000000     
comm_mode                = Linear       
nstcomm                  = 1            
 
; OUTPUT CONTROL OPTIONS 
nstxout                  = 10000000       
nstvout                  = 10000000       
nstfout                  = 0              
nstlog                   = 100            
nstenergy                = 100            
nstxtcout                = 2500           
xtc_precision            = 1000           
xtc_grps                 = Protein    
energygrps               = Protein SOL_NA+_CL-  
 
; NEIGHBORSEARCHING PARAMETERS 
nstlist                  = 5   
ns_type                  = grid   
pbc                      = xyz   
rlist                    = 0.8   
 
; OPTIONS FOR ELECTROSTATICS AND VDW 
coulombtype              = PME   
rcoulomb                 = 0.8   
fourierspacing           = 0.12   
pme_order                = 4   
vdw_type                 = cut-off  
rvdw                     = 1.4   
 
; Temperature coupling   
Tcoupl                   = nose-hoover   
tc-grps                  = Protein  SOL_NA+_CL-  
tau_t                    = 0.1      0.1   
ref_t                    = 310      310   
 
; Pressure coupling      
Pcoupl                   = parrinello-rahman  
Pcoupltype               = Isotropic   
tau_p                    = 1.0    
compressibility          = 4.5e-5   
ref_p                    = 1.0    
 
; GENERATE VELOCITIES FOR STARTUP RUN 
gen_vel                  = no   
 
; OPTIONS FOR BONDS     
constraints              = all-bonds  
constraint-algorithm     = Lincs  
unconstrained-start      = yes   
lincs-order              = 4   
lincs-iter               = 1   
lincs-warnangle          = 30   
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7.) Chapter 7 – Small molecule in condensed phase production run 
 
; 7.3.3 Run Control 
integrator   = md    
tinit   = 0    
dt   = 0.002    
nsteps   = 10000000   
comm_mode  = Linear   
nstcomm   = 1    
comm_grps  = System   
 
; 7.3.8 Output Control 
nstxout   = 10000000   
nstvout   = 10000000   
nstfout   = 10000000   
nstlog   = 100    
nstenergy  = 100    
nstxtcout  = 500    
xtc_precision  = 1000    
xtc_grps  = System   
energygrps  = System   
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12   
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover   
tc_grps   = System   
tau_t   = 0.1          
ref_t   = 298             
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = isotropic   
tau_p   = 1.0    
compressibility = 4.5e-5    
ref_p   = 1.0     
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
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8.) Chapter 7 – Small molecule in gaseous phase production run 
 
; 7.3.3 Run Control 
integrator   = md    
tinit   = 0    
dt   = 0.002    
nsteps   = 10000000   
comm_mode  = Linear   
nstcomm   = 1    
comm_grps  = System   
 
; 7.3.8 Output Control 
nstxout   = 10000000  
nstvout   = 10000000  
nstfout   = 10000000  
nstlog   = 100    
nstenergy  = 100    
nstxtcout  = 500    
xtc_precision  = 1000    
xtc_grps  = System   
energygrps  = System   
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = cut-off  
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover   
tc_grps   = System   
tau_t   = 0.1          
ref_t   = 298             
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = isotropic   
tau_p   = 1.0    
compressibility = 4.5e-5    
ref_p   = 1.0     
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
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9.) Chapter 7 – UGM and FAD complex production run 
 
; 7.3.3 Run Control 
integrator   = md     
tinit   = 0     
dt   = 0.002     
nsteps   = 10000000    
comm_mode  = Linear    
nstcomm   = 1     
comm_grps  = Protein_FAD SOL_NA+_CL- 
 
; 7.3.8 Output Control 
nstxout   = 10000000   
nstvout   = 10000000   
nstfout   = 10000000   
nstlog   = 500    
nstenergy  = 500    
nstxtcout  = 1000    
xtc_precision  = 1000    
xtc_grps  = Protein_FAD   
energygrps  = System  
 
; 7.3.9 Neighbor Searching 
nstlist   = 5   
ns_type   = grid   
pbc   = xyz   
rlist   = 0.8   
 
; 7.3.10 Electrostatics 
coulombtype  = PME   
rcoulomb  = 0.8   
 
; 7.3.11 VdW 
vdwtype   = cut-off  
rvdw   = 1.4   
DispCorr  = EnerPres  
 
; 7.3.13 Ewald 
fourierspacing  = 0.12  
pme_order  = 4   
ewald_rtol  = 1e-5   
 
; 7.3.14 Temperature Coupling 
tcoupl   = nose-hoover    
tc_grps   = Protein_FAD SOL_NA+_CL-  
tau_t   = 0.1         0.1     
ref_t   = 310         310   
 
; 7.3.15 Pressure Coupling 
pcoupl   = parrinello-rahman  
pcoupltype  = isotropic   
tau_p   = 1.0    
compressibility = 4.5e-5    
ref_p   = 1.0     
 
; 7.3.17 Velocity Generation 
gen_vel   = no   
 
; 7.3.18 Bonds 
constraints  = all-bonds  
constraint_algorithm = LINCS   
unconstrained_start = no   
lincs_order  = 4   
lincs_iter  = 1   
lincs_warnangle = 30   
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Appendix B 
 
Perl Scripts 
 
 
 

In performing these projects, the Perl programming language quickly emerged as an 

invaluable tool for processing GROMACS output files and performing analyses for which there 

was no other means available. Listed in this Appendix B are several of the more useful programs 

that we developed for simple analyses. Within the header of each program are specific 

instructions on the purpose of the program and how to use it. They are as follows: 

 

1.) apl_calculator.pl – Calculates area per lipid of a bilayer system without protein 

2.) average_multi.pl – Averages the second column of multiple two-column files. For 

example, will average RMSD plots from different replicates. 

3.) bilayer_fixsol.pl – Removes water molecules that are inserted within the 

hydrophobic tails of the bilayer when solvating. 

4.) ellipse.pl – Calculates the surface area of an active site channel opening. 

5.) gen_fasta.pl – Reads a PDB file and outputs a FASTA sequence. 

6.) greatest.pl – Finds the greatest y-value in a two-column plot. Useful for determining 

peak force during steered simulations. 

7.) pull_analysis.pl – Reads a pullf and pullx file from the same SMD run, then will map 

displacement of pull group (normalized to center of mass of the initial position) against 

force. 

8.) transformer.pl – Creates a mixed POPC-POPE bilayer from a pure POPC bilayer. 
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//apl-calculator.pl// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# This program measures area per lipid headgroup over a trajectory. You must first 
# run g_energy to get plots of the box vector in X and Y directions. Also, delete  
# the header information from the xvg files. You must also know the number of total 
# lipids (the program divides it by 2). This does not work in the presence of a protein. 
# 
 
unless (@ARGV){ 
 die "Usage: ./$0 <boxX.xvg> <boxY.xvg> <tot # of lipids>\n"; 
} 
 
my $filenameX = $ARGV[0]; 
my $filenameY = $ARGV[1]; 
my $num_lipids = $ARGV[2]/2; 
 
open (INPUTX, $filenameX) or die "It seems \"$filenameX\" does not exist!\n"; 
my @x_vector = (<INPUTX>); 
close (INPUTX); 
 
open (INPUTY, $filenameY) or die "It seems \"$filenameY\" does not exist!\n"; 
my @y_vector = (<INPUTY>); 
close (INPUTY); 
 
my @time; 
my @x_value; 
my @y_value; 
 
foreach (@x_vector){ 
 my ($time, $value) = split(" ", $_); 
 push (@time, $time); 
 push (@x_value, $value); 
} 
 
foreach (@y_vector){ 
 my ($time, $value) = split(" ", $_); 
 push (@y_value, $value); 
} 
 
my @final; 
my $number = scalar(@time); 
 
for (my $i=0; $i<$number; $i++){ 
 
 my $area = $x_value[$i]*$y_value[$i]; 
 my $apl = $area/$num_lipids*100; 
 push (@final, $time[$i]."\t".$apl."\n"); 
} 
 
open (OUTFILE, ">", "apl.xvg"); 
print OUTFILE @final; 
close (OUTFILE); 
 
exit(); 
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//average_multi.pl// 
 
#!/usr/bin/perl -w 
use strict; 
 
# 
# Opens multiple .dat or .xvg files and averages the results of the equivalent lines 
# in each. An equivalent line is defined as one in which the first (x) value is the  
# same. The first two columns are used, any additional entries are ignored. Input is 
# expected to be some generic text (data) file, the number of inputs is determined 
# from the size of @ARGV 
# 
# Data files are assumed to be text only, with Grace-style headers (# and @) 
# 
 
unless(@ARGV) { 
 die "Usage: ./$0 <input1.xvg> <input2.xvg> ...\n"; 
 exit; 
} 
 
# determine number of inputs 
my $n = scalar(@ARGV); 
 
my @big_array; 
 
# open a series of filehandles to place each text file into an array 
for (my $i=0; $i<$n; $i++) { 
 open(IN, "<$ARGV[$i]") or die "Cannot open $ARGV[$i]: $!\n"; 
 my @array = <IN>; 
 close(IN); 
 
 # concatenate all inputs into one big array 
 foreach $_ (@array) { 
  unless ($_ =~ /^[#@]/) { 
   push(@big_array, $_); 
  } 
 } 
} 
 
# splice out duplicate x-values 
my @x_values; 
 
foreach $_ (@big_array) { 
 my @line = split(" ", $_); 
 push(@x_values, $line[0]); 
} 
 
for (my $j=0; $j<scalar(@x_values); $j++) { 
 for (my $k=$j+1; $k<scalar(@x_values); $k++) { 
  if ($x_values[$k] == $x_values[$j]) { 
   splice(@x_values, $k, 1); 
  } 
 } 
} 
 
# remove duplicate entry at the end 
pop(@x_values); 
 
# Now that there's a list of x-values, loop thru @big_array again, collecting 
# the y-values that correspond to those x-values 
 
foreach $_ (@x_values) { 
 
 my @y_values; 
 
 for (my $m=0; $m<scalar(@big_array); $m++) { 
  my @line = split(" ", $big_array[$m]); 
  if ($line[0] == $_) { 
   push(@y_values, $line[1]); 
  } 
 } 
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 my $sum = 0; 
 
 foreach $_ (@y_values) { 
  $sum += $_; 
 } 
 
 # determine an average 
 my $average = $sum / (scalar(@y_values)); 
 
 # determine the standard deviation:  
 # 1. for each value, subtract the average and square this difference 
 # 2. sum these differences, divide by number of values 
 # 3. take square root 
 
 my $sd_sum = 0; 
 
 foreach my $value (@y_values) { 
  $sd_sum += ($value - $average)**2; 
 } 
 
 my $sd_dividend = $sd_sum / (scalar(@y_values)); 
 
 my $std_dev = sqrt($sd_dividend); 
 
 # open output file 
 open(OUT, ">>output.dat") or die "Cannot open output: $!\n"; 
 printf OUT "%d %8.3f %8.3f\n", $_, $average, $std_dev; 
 close(OUT); 
} 
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//bilayer_fixsol.pl// 
 
#!/usr/bin/perl 
use strict; 
my $start_time = time(); 
 
# 
# This program attempts to delete some of those waters that find themselves in the middle  
# of a bilayer after solvating. The input is just the newly solvated bilayer coordinate  
# file and a reference atom from each lipid. It will find the highest and the lowest  
# lipid reference atom positions, then narrow the margin by a cut-off on each side  
# (7.5 Ang). Then it will delete all SOL molecules that fall in between those boundaries  
# and write to output.gro. 
# 
 
unless (@ARGV){ 
 die "Usage: ./$0 <gro filename> <reference atomname>\n"; 
} 
 
open (INPUT, $ARGV[0]) or die "Could not find $ARGV[0]!\n"; 
my @system = <INPUT>; 
close (INPUT); 
 
my $title = shift @system; 
shift @system; 
my $box_vectors = pop @system; 
 
my @system_fixed; 
my @reference; 
 
foreach (@system){ 
    my $newline = pack("A6 A5 A7 A29", unpack("A5 A4 A6 A29", $_)); 
    push(@system_fixed, $newline."\n"); 
} 
 
foreach (@system_fixed){ 
 my ($resnum, $resname, $atomname, $atomnum, $xcoor, $ycoor, $zcoor) = split(' ', $_); 
 if ($atomname eq $ARGV[1]){ 
  push @reference, $zcoor; 
 } 
} 
 
my $upper = -100; 
my $lower = 100; 
 
foreach (@reference){ 
    if ($_ >= $upper){ 
 $upper = $_; 
    }  
 
    if ($_ <= $lower){ 
 $lower = $_; 
    } 
} 
 
$upper -= 0.75; 
$lower += 0.75; 
my @waters; 
 
foreach (@system_fixed){ 
 my ($resnum, $resname, $atomname, $atomnum, $xcoor, $ycoor, $zcoor) = split(' ', $_); 
 if ($resname eq "SOL"){ 
  if ($zcoor <= $upper && $zcoor >= $lower){ 
   push @waters, $resnum; 
  } 
 } 
} 
 
my %hash = map { $_, 1 } @waters; 
my @unique_waters = keys %hash; 
my @system_final; 
my @system_final_final; 
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foreach (@system_fixed){ 
  
 my $flag = 0; 
 my ($resnum, $resname, $atomname, $atomnum, $xcoor, $ycoor, $zcoor) = split(' ', $_); 
 
 foreach my $water (@unique_waters){ 
  if ($resnum eq $water){ 
   $flag += 1; 
  } 
 } 
 
 if ($flag == 0){ 
  push @system_final, $_; 
 } 
} 
 
foreach (@system_final){ 
    my $newline = pack("A5 A4 A6 A29", unpack("A6 A5 A7 A29", $_)); 
    push(@system_final_final, $newline."\n"); 
} 
 
unshift @system_final_final, scalar(@system_final_final)."\n"; 
unshift @system_final_final, $title; 
push @system_final_final, $box_vectors; 
 
 
open (OUTPUT, ">", "12345abcde.gro"); 
print OUTPUT @system_final_final; 
close (OUTPUT); 
 
system ("genconf -f 12345abcde.gro -o output.gro -renumber &>/dev/null"); 
system ("rm 12345abcde.gro"); 
 
my $end_time = time(); 
my $time = $end_time - $start_time; 
print "Time taken = $time seconds\n"; 
exit(); 
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//ellipse.pl// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# This program is for measuring the surface area of the opening of an active site cavity,  
# for example. Suppose you identify four residues that form the "mouth" of the active  
# site. Use g_dist to measure the average COM distance between opposing residues. So, for  
# example, if you have four residues in a square called A, B, C, and D, measure the  
# distance between A and C and the distance between B and D (where those are diagonal  
# from one another). Feed both of those output files to this program as described below,  
# and it will treat those as opposing points in an ellipse and approximate the area. 
# Remove the header lines from the .xvg files before proceeding 
# 
 
unless (@ARGV){ 
 die "Usage: ./$0 <dist1.xvg> <dist2.xvg>\n"; 
} 
 
my $filename1 = $ARGV[0]; 
my $filename2 = $ARGV[1]; 
 
open (INPUT1, $filename1) or die "It seems \"$filename1\" does not exist!\n"; 
my @dist1 = (<INPUT1>); 
close (INPUT1); 
 
open (INPUT2, $filename2) or die "It seems \"$filename2\" does not exist!\n"; 
my @dist2 = (<INPUT2>); 
close (INPUT2); 
 
my @time; 
my @value1; 
my @value2; 
 
foreach (@dist1){ 
 my ($time, $value) = split(" ", $_); 
 push (@time, $time); 
 push (@value1, $value); 
} 
 
foreach (@dist2){ 
 my ($time, $value) = split(" ", $_); 
 push (@value2, $value); 
} 
 
my @final; 
my $number = scalar(@time); 
 
for (my $i=0; $i<$number; $i++){ 
 
 my $area = ($value1[$i]/2)*($value2[$i]/2)*(3.14159); 
 push (@final, $time[$i]."\t".$area."\n"); 
} 
 
open (OUTFILE, ">", "ellipse.xvg"); 
print OUTFILE @final; 
close (OUTFILE); 
 
exit(); 
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//gen_fasta.pl// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# This program generates a FASTA-friendly sequence from an input pdb file 
# 
 
unless (@ARGV){ 
 die "Usage: perl $0 <pdb file>\n"; 
} 
 
my $filename = $ARGV[0]; 
open (INPUT, $filename) or die "It seems \"$filename\" does not exist!\n"; 
my @pdb_file = (<INPUT>); 
close (INPUT); 
 
my @pdb_grep = grep /^ATOM/, @pdb_file; 
my @pdb_small; 
my @residues; 
 
foreach (@pdb_grep){ 
 my @line = split(//, $_); 
 my $r_num = join("", splice(@line, 22, 4)); 
 my $r_name = join("", splice(@line, 17, 3)); 
 my $new_line = ("$r_num $r_name"); 
 push(@pdb_small, $new_line."\n"); 
} 
 
my %temp_hash = map { $_, 1} @pdb_small; 
my @pdb_final = keys(%temp_hash); 
@pdb_final = sort(@pdb_final); 
 
foreach (@pdb_final){ 
 my @line = split(//, $_); 
 my $r_name = join("", splice(@line, 5, 3)); 
 push(@residues, $r_name); 
} 
 
foreach (@residues){ 
 $_ =~ s/ALA/A/; 
 $_ =~ s/ARG/R/; 
 $_ =~ s/ASN/N/; 
 $_ =~ s/ASP/D/; 
 $_ =~ s/CYS/C/; 
 $_ =~ s/GLU/E/; 
 $_ =~ s/GLN/Q/; 
 $_ =~ s/GLY/G/; 
 $_ =~ s/HIS/H/; 
 $_ =~ s/ILE/I/; 
 $_ =~ s/LEU/L/; 
 $_ =~ s/LYS/K/; 
 $_ =~ s/MET/M/; 
 $_ =~ s/PHE/F/; 
 $_ =~ s/PRO/P/; 
 $_ =~ s/SER/S/; 
 $_ =~ s/THR/T/; 
 $_ =~ s/TRP/W/; 
 $_ =~ s/TYR/Y/; 
 $_ =~ s/VAL/V/; 
} 
 
my $sequence = join('', @residues); 
my $fasta_file = ">".$filename."\n".$sequence."\n"; 
 
exit(); 
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//greatest.pl// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# This program takes an XVG file with two columns, and finds the greatest value in the  
# second column. This is very good for finding the maximum force of pulling on force  
# curves, for example. 
# 
 
unless (@ARGV){ 
 die "Usage: perl $0 <xvg filename>\n"; 
} 
 
my $filename = $ARGV[0]; 
open (INPUT, $filename) or die "It seems \"$filename\" does not exist!\n"; 
my @file = (<INPUT>); 
close (INPUT); 
 
my @file_grep = grep !/^#|^@/, @file; 
 
my $max = 0; 
foreach (@file_grep){ 
 my ($time, $force) = split(' ', $_); 
 if ($force > $max){ 
  $max = $force; 
 } 
} 
 
print "The maximum value in the second column is: $max\n"; 
 
exit(); 
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//pull_analysis.txt// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# The input to this program is a pullf and a pullx file from the same run. The program  
# will figure out total displacement of the pull group, then normalize it to the center  
# of mass of the initial position. Then it will pair up the distance column with the  
# forces in the force file, creating one final xvg file. The integral of this file should  
# be PMF. 
# 
 
unless (@ARGV){ 
 die "Usage: ./$0 <pullf.xvg> <pullx.xvg>\n"; 
} 
 
open (INPUT1, $ARGV[0]); 
my @pullf = grep !/^(#|@)/, <INPUT1>; 
close (INPUT1); 
 
open (INPUT2, $ARGV[1]); 
my @pullx = grep !/^(#|@)/, <INPUT2>; 
close (INPUT2); 
 
my @pullx_vector; 
push @pullx_vector, "0"; 
 
my $first_line = shift @pullx; 
my ($time1, $x01, $y01, $z01, $dx1, $dy1, $dz1) = split (' ', $first_line); 
my $normalized_value = ($dx1**2 + $dy1**2 + $dz1**2)**0.5; 
 
foreach (@pullx){ 
 
 my ($time, $x0, $y0, $z0, $dx, $dy, $dz) = split (' ', $_); 
 my $vector = ($dx**2 + $dy**2 + $dz**2)**0.5 - $normalized_value; 
 push @pullx_vector, $vector; 
 
} 
 
my @final; 
 
for (my $i=0; $i<scalar(@pullf); $i++){ 
 
 my ($time, $force) = split(' ', $pullf[$i]); 
 push @final, $pullx_vector[$i]."\t".$force."\n"; 
 
} 
 
open (OUTPUT, ">", "output.xvg"); 
print OUTPUT @final; 
close OUTPUT; 
 
exit(); 
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//transformer.pl// 
 
#!/usr/bin/perl 
use strict; 
 
# 
# The input for this program is a .gro file containing a POPC lipid bilayer. You specify  
# a number of lipids (fewer than the total number of lipids), and the program will choose  
# that many lipids at random and transform them to POPE lipids. Useful for making a mixed  
# bilayer from a pure POPC bilayer. 
# 
 
if (scalar(@ARGV) != 3){ 
 print "Useage: \'perl $0 <filename.gro> <\# POPE to make> <out_filename.gro>\'\n"; 
 exit(); 
} 
 
my $filename = $ARGV[0]; 
my $num_to_change = $ARGV[1]; 
my $out_filename = $ARGV[2]; 
 
open (INPUT, "$filename") or die "It seems ".$filename." does not exist!\n"; 
my @bilayer = (<INPUT>); 
close (INPUT); 
 
my $title = shift @bilayer; 
my $num_of_atoms = shift @bilayer; 
my $box_vectors = pop @bilayer; 
 
my @num_of_residues = grep /P8/, @bilayer; 
print "There are ".scalar(@num_of_residues)." POPC residues\n"; 
 
my @integers = (1..scalar(@num_of_residues)); 
my @changers; 
 
for (my $i=0; $i<$num_to_change; $i++){ 
 my $pos = int(rand(scalar(@integers))); 
 my $changer = splice(@integers, $pos, 1); 
 push @changers, $changer; 
} 
 
my @sorted = sort(@changers); 
print "You are trying to change ".scalar(@sorted)." residues from POPC to POPE\n"; 
 
my @bilayer_unpacked; 
my @bilayer_changed; 
 
foreach (@bilayer){ 
 my $newline = pack("A6 A5 A7 A29", unpack("A5 A4 A6 A29", $_)); 
 push @bilayer_unpacked, $newline; 
} 
 
foreach my $old (@bilayer_unpacked){ 
 my $new_line; 
 my $flag; 
 my ($resid, $resname, $atomname, $atomid, $bx, $by, $bz) = split(' ', $old); 
 
 foreach my $new (@changers){ 
  if ($resid eq $new){ 
   if ($atomname eq "C1"){ 
    $new_line = ($resid." POPE H1 ".$atomid." ".$bx." ".$by." 
".$bz."\n"); 
    $flag = 1; 
   } elsif ($atomname eq "C2"){ 
    $new_line = ($resid." POPE H2 ".$atomid." ".$bx." ".$by." 
".$bz."\n"); 
    $flag = 1; 
   } elsif ($atomname eq "C3"){ 
    $new_line = ($resid." POPE H3 ".$atomid." ".$bx." ".$by." 
".$bz."\n"); 
    $flag = 1; 
   } else { 
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    $new_line = ($resid." POPE ".$atomname." ".$atomid." ".$bx." 
".$by." ".$bz."\n"); 
    $flag = 1; 
   } 
  } 
 } 
 
 if ($flag == 1){ 
  # do nothing 
 } else { 
  $new_line = ($resid." ".$resname." ".$atomname." ".$atomid." ".$bx." ".$by." 
".$bz."\n"); 
 } 
 
 $flag = 0; 
 push @bilayer_changed, $new_line; 
} 
 
my @bilayer_final; 
my $final_line; 
 
foreach (@bilayer_changed){ 
 $final_line = pack("A5 A5 A5 A5 A8 A8 A8", split(' ', $_)); 
 push @bilayer_final, $final_line."\n"; 
} 
 
push @bilayer_final, $box_vectors; 
unshift @bilayer_final, $num_of_atoms; 
unshift @bilayer_final, $title; 
 
open (OUTPUT, ">", "123456abcdef.gro"); 
print OUTPUT @bilayer_final; 
close (OUTPUT); 
 
system("editconf -f 123456abcdef.gro -o ".$out_filename." &>/dev/null"); 
system("rm 123456abcdef.gro"); 
 
exit(); 
 


