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Increasing Accessibility of Electronic Theses and Dissertations (ETDs)
Through Chapter-level Classification

Palakh Mignonne Jude

(ABSTRACT)

Great progress has been made to leverage the improvements made in natural language pro-

cessing and machine learning to better mine data from journals, conference proceedings, and

other digital library documents. However, these advances do not extend well to book-length

documents such as electronic theses and dissertations (ETDs). ETDs contain extensive re-

search data; stakeholders – including researchers, librarians, students, and educators – can

benefit from increased access to this corpus. Challenges arise while working with this cor-

pus owing to the varied nature of disciplines covered as well as the use of domain-specific

language. Prior systems are not tuned to this corpus. This research aims to increase the

accessibility of ETDs by the automatic classification of chapters of an ETD using machine

learning and deep learning techniques. This work utilizes an ETD-centric target classifica-

tion system. It demonstrates the use of custom trained word and document embeddings

to generate better vector representations of this corpus. It also describes a methodology

to leverage extractive summaries of chapters of an ETD to aid in the classification process.

Our findings indicate that custom embeddings and the use of summarization techniques can

increase the performance of the classifiers. The chapter-level labels generated by this re-

search help to identify the level of interdisciplinarity in the corpus. The automatic classifiers

can also be further used in a search engine interface that would help users to find the most

appropriate chapters.



Increasing Accessibility of Electronic Theses and Dissertations (ETDs)
Through Chapter-level Classification

Palakh Mignonne Jude

(GENERAL AUDIENCE ABSTRACT)

Electronic Theses and Dissertations (ETDs) are submitted by students at the end of their

academic study. These works contain research information pertinent to a given field. In-

creasing the accessibility of such documents will be beneficial to many stakeholders including

students, researchers, librarians, and educators. In recent years, a great deal of research has

been conducted to better extract information from textual documents with the use of ma-

chine learning and natural language processing. However, these advances have not been

applied to increase the accessibility of ETDs. This research aims to perform the automatic

classification of chapters extracted from ETDs. That will reduce the human effort required

to label the key parts of these book-length documents. Additionally, when considered by

search engines, such categorization can aid users to more easily find the chapters that are

most relevant to their research.
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Chapter 1

Introduction

1.1 Background

A great deal of progress has been made to leverage the advances made in natural language

processing and machine learning to better extract and mine data from journals, conference

proceedings, and other digital library documents. However, these techniques do not extend

well to book-length documents. This research aims to identify methods that are catered to

such documents, demonstrated with Electronic Theses and Dissertations (ETDs).

Theses and Dissertations contain a vast body of research information. Students graduating

from universities have been increasingly required to submit Electronic Theses and Disser-

tations (ETDs). These works contain a detailed description of the research conducted by

students during the course of their academic study. This collection covers a range of STEM

as well as non-STEM disciplines. Additionally, the corpus contains highly domain specific

vocabulary. All of these factors indicate the wealth of knowledge present in this corpus and

hint at the benefits of increasing its accessibility.

By solely using author-supplied keywords, it is difficult to appropriately categorize an ETD.

As explained by McCutcheon [36], ETD authors do not always assign adequate keywords to

identify the categories to which an ETD may belong. Existing systems such as the ProQuest

Subject Categories [53] or the Library of Congress Subject Headings [45]) contain terms

1



2 Chapter 1. Introduction

that are related to ETDs which could aid in their categorization. However, the manual

cataloging of ETDs is expensive. Thus, we aim to build an automatic classification system

that leverages the advancements made in the field of machine learning.

When ETDs are interdisciplinary in nature, the chapters contained within an ETD could

have varying degrees of interdisciplinarity that differ from that of the full-text. Knowledge

of these varied categories with which an ETD can be related is advantageous to researchers.

We intend to perform multi-label classification at the chapter-level with a view to identi-

fying all possible subject categories to which an ETD may belong. This research could be

further extended to build a search interface on top of the ETD corpus, which would enable

researchers to find similar works, at the chapter-level, that are most relevant to their study.

For the purpose of this study, we utilize the ProQuest subject category system as our target

classification system.

1.2 Problem Statement

At a very high-level, we have the following problem statement: Given a chapter of an ETD,

along with metadata information about the ETD and the ProQuest subject category system,

we are to build a classifier that can find a set of appropriate subject categories to be associated

with the chapter.

For this research, our given corpus is a set of Electronic Theses and Dissertations. We

leverage the metadata information provided by the authors and corpus managers along with

the text of the ETD to identify the most appropriate set of subject categories (from the

list of categories as described as part of the ProQuest subject category system) that can be

associated with a given chapter of an ETD.
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1.3 Motivation

As part of the larger goal of increasing the accessibility of book-length documents such as

ETDs, multiple services such as classification, citation parsing, and summarization are useful

to different stakeholders like researchers, librarians, and educators. The classification would

aid in grouping similar ETDs together and better understanding the interdisciplinary nature

of the collection.

Chapters often contain similar ideas clubbed together, which can aid a researcher in iden-

tifying similar research topics. The degree of interdisciplinarity of a chapter can vary from

that of the full-text of the ETD. Having knowledge about this is useful in helping researchers

to find prior research that is most similar to their current research efforts. As the size of

this corpus of ETDs increases in size, it becomes increasingly more challenging to manu-

ally catalog ETDs. Thus, an automatic classification system capable of assigning labels to

ETDs, both at the full-text as well as the chapter-level, will ease the process of cataloging

this collection.

1.4 Hypotheses

Training a classifier to automatically categorize chapters of ETDs would require us to first

segment the full-text of the ETD into chapters, extract the text from the PDF, transform

the text into an appropriate vector representation, and then train a machine learning or deep

learning model. The quality of the classifier can be measured using its F-1 score.

Considering the above context, the hypotheses of this work are:

• Using custom trained fastText word embeddings and Doc2Vec document embeddings
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will result in better F-1 scores than methods using pre-trained embeddings trained

using Common Crawl or Wikipedia datasets.

• Using extractive summaries of chapters when training the classifiers will increase the

F-1 score of the classifiers as compared to the classifiers trained just using the full-text

chapter data.

• Using deep learning methods such as LSTM can help increase the F-1 score as com-

pared to machine learning models such as Support Vector Machine (SVM), Logistic

Regression (LR), and Random Forest (RF).

• Some of the subject categories assigned to chapters of an ETD will differ from the ones

assigned to the full-text of the entire ETD.

1.5 Research Questions

The research questions that this thesis will attempt to answer are:

RQ1: Can the use of custom word and document embeddings improve the F-1 score of the

classifiers as compared to pre-trained embeddings trained using Common Crawl or Wikipedia

datasets?

RQ2: Can the use of extractive summaries generated from the chapters improve the F-1

score of the classifiers?

RQ3: Can deep learning techniques like Long Short Term Memory (LSTM) be used to

better classify chapters of ETDs?

RQ4: Do some of the subject categories predicted for chapters of the ETD differ from the

ETD full-text subject categories?
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1.6 Research Contributions

This work makes the following contributions:

• This work provides custom trained word embeddings and document embeddings that

have been trained on a large corpus of ETDs.

• It describes tools and techniques that can be used to segment ETDs into chapters and

to extract their textual content.

• It describes an approach for the automatic classification of chapters of ETDs using the

ProQuest subject category system.

• It shows that for some chapters, the set of categories assigned differs from the set of

categories assigned to the full ETD.

• It describes a methodology to study the impact of summarization on the performance

of chapter-level classifiers.

• For each of the above contributions, it demonstrates an improvement relative to base-

line schemes.

1.7 Outline of the Thesis

• Chapter 1, above, outlines the problem statement, motivation, hypotheses, research

questions, and research contributions.

• Chapter 2 discusses relevant background information required to better understand

this work. Chapter 3 extends that with a review of relevant literature in the areas of

segmentation, text extraction, summarization, and text classification.
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• Chapter 4 presents a detailed description of the different sets of ETDs utilized for

various tasks performed in this research.

• Chapter 5 presents the findings from the segmentation of full-text ETDs into chapters

as well as the extraction of the text from the PDFs.

• Chapter 6 presents the findings from the summarization of chapters of ETDs.

• Chapter 7 elaborates on the design of the system. It also describes methods used for

full-text classification employing machine learning.

• Chapter 8 presents the results and discussions of the different experiments conducted

as part of this, on each of two datasets.

• Chapters 9 and 10 present the limitations of the system, possible future work, and

conclusions of the research.



Chapter 2

Background

In this chapter, we discuss relevant background information needed to better understand the

steps performed in our research.

2.1 Embeddings

Words need to be represented in the form of continuous vectors such that the machine

learning models are capable of interpreting the words. Traditional approaches for these

word representations include the bag of words approach [8] and one-hot encoding [9]. Both

these approaches face issues with high dimensionality and the loss of context of words, which

causes a loss in the semantic meaning of the text. Embeddings, on the other hand, are capable

of capturing the context of the text. They are used to represent discrete categorical features

as continuous vectors.

2.1.1 Word Embeddings

Word embeddings are dense, low-dimensional distributed representations of words. In this

section, we discuss three commonly used word embeddings.

7
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Word2Vec

Word2Vec was the first word embedding model. It was proposed in the seminal paper [38]

published in 2013. The model architecture comprises of small neural networks that calculate

the word embeddings based on two approaches. The first is the continuous bag of words or

CBOW wherein the model attempts to predict the most likely word in the given context,

while the second is skip-gram wherein the model uses the target word to predict its context.

Figure 2.1: Neural Network architecture for Word2Vec [35]

Word2Vec, however, does not leverage the additional global statistical information given by

the frequent co-occurrence of words; it merely uses it as more training examples. It also

suffers from issues related to out-of-vocabulary (OOV) words.
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GloVe

GloVe [50] word embeddings were created in 2014 and attempted to improve over the ex-

isting Word2Vec embeddings. It was built on two main methods, namely, global matrix

factorization and local context window. Global matrix factorization uses linear algebra to

reduce the large term frequency matrices that represent the presence or absence of words in

a document [55]. The local context window comprises of continuous bag of words (CBOW)

and skip-gram.

Figure 2.2: Conceptual model for GloVe [58]

When building the GloVe model, instead of simply predicting neighboring words (in the

CBOW case) or the focus word (in the skip-gram case), the word embeddings are optimized

such that the dot product of the vector generated for two words is equal to the logarithmic

value of the number of times the words co-occur. Thus, these embeddings can be viewed as

a summary of the entire corpus that can reflect the co-occurrences between words [10].

Similar to Word2Vec, GloVe embeddings also suffer from an inability to generalize well to

out-of-vocabulary (OOV) words.
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fastText

The scheme for fastText word embeddings [24] [7] attempts to overcome the OOV issue that

plagues both GloVe and Word2Vec. To achieve this, it makes use of sub-word information.

Here, the model considers words as well as characters. The embeddings generated are similar

to Word2Vec; however, they are not directly calculated. They consist of a combination of

lower-level embeddings.

Figure 2.3: fastText skip gram model topography [64]
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Due to this, the amount of training data required by this model is less than that of the

original Word2Vec model, since more information can be extracted from each part of the

text data. In addition to this, it is able to overcome the OOV word issue provided that the

new words introduced contain the same set of characters as the original corpus on which the

model was trained.

2.1.2 Document Embeddings using Doc2Vec

Documents do not have the same logical structure as words, so it is not possible to di-

rectly utilize word embeddings on long document data. Traditional approaches like the

bag-of-words do not maintain the order of words in a sentence and lose important semantic

information. Thus, the authors of [26] propose an algorithm that is capable of generating

fixed-length representations from variable length documents. Commonly known as Doc2Vec,

this model draws inspiration from the Word2Vec model.

Figure 2.4: PV-DM and PV-DBOW variants of Doc2Vec [26]

As indicated by Figure 2.4, there are two variants of Doc2Vec – Distributed Memory version

of Paragraph Vector (PV-DM), and Distributed Bag of Words version of Paragraph Vector

(PV-DBOW). In both cases, the model includes an additional feature vector ‘Paragraph ID’

that is unique to each document. New document vectors can be ‘inferred’ by using this

trained model.
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In the case of the PV-DM model, the word vectors W represent the concept of a word whereas

document vectors D intend to represent the concept of the document [60]. The PV-DBOW

model is similar to the skip-gram model of Word2Vec [26]. This model is trained faster as it

is not required to store the word vectors. The authors experimentally found that the PV-DM

model performed consistently better than the PV-DBOW model. For example, they found

that the PV-DM model was able to achieve an error rate of only 7.63% on the IMDB dataset.

2.2 Multi-label Classification

The chapter-level classification that we perform in this work is multi-label in nature since each

chapter could be associated with multiple labels. In the case of classifying textual documents,

a single document could belong to many categories at once. Multi-label classification of a

sample can be formulated as the prediction of properties that are not mutually exclusive.

The classification problem that we attempt to solve as part of this research extends beyond

multi-class classification wherein a single document can only belong to a single class-label

since an ETD can belong to multiple ProQuest subject categories simultaneously. Most of

the traditional machine learning and deep learning algorithms have been built for single-label

(both single-class as well as multi-class) classification problems. Thus, some of the techniques

used to solve multi-label classification problems involve converting this multi-label problem

into multiple single-label problems and then utilizing the existing single-label algorithms.

Some of these techniques have been mentioned in this section.
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2.2.1 One vs. Rest

An intuitive technique that can be applied to solve a multi-label classification problem is to

divide it into multiple independent binary classification problems (one classification problem

for each of the individual categories). In this strategy, multiple independent binary classifiers

are built, and when an unseen test instance is to be classified, several labels that have

the highest confidence can be picked as the class labels. This approach does not consider

underlying correlations between the class labels. Additionally, the implementation provided

by scikit-learn [13] does not specify the method used to break ties in case of multiple labels

that have the highest confidence value.

2.2.2 Binary Relevance

The Binary Relevance approach is one of the techniques that is used to convert a multi-label

classification problem into multiple single-label classification problems. In this approach, an

ensemble of single-label binary classifiers is trained where each classifier represents a single

class. Each classifier predicts the membership or non-membership of a class, and the union

of all these classes is taken as the multi-label output. This technique, however, does not

consider possible correlations that may exist among the labels [42].

2.2.3 Classifier Chains

The Classifier Chains approach builds a chain of binary classifiers (one for each of the class

labels) C0, C1,...,Cn. A classifier Ci will utilize the predictions of all prior classifiers Cj

(where j<i). This method is capable of taking into account possible correlations among the

class labels. The total number of classifiers that need to be built for this technique is equal
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to the total number of classes that are present [42].

2.2.4 Label Powerset

The Label Powerset approach aims to take into consideration possible correlations between

class labels. It considers each member of the power set of labels in the training set as a

single label. However, this approach has high computational complexity and can cause a

deterioration in performance when the number of classes increases [42].

2.2.5 Adaptive Algorithm

This technique involves adapting single-label classification algorithms to multiple labels by

making changes to the cost/decision functions. For example, in case of the K-nearest neigh-

bor (KNN) algorithm, a multi-label lazy learning approach (ML-KNN) that is derived from

the traditional single-label algorithm can be utilized [42].

2.3 Machine Learning Classifiers

This section describes commonly used Machine Learning Algorithms. Here, we consider three

common machine learning algorithms that are used in text classification, namely Logistic

Regression, Support Vector Machines, and Random Forest.

2.3.1 Logistic Regression

Logistic Regression is a statistical classification algorithm that is typically used when the

class label is categorical. This algorithm uses a sigmoid function to convert the model’s



2.4. Deep Learning Architectures 15

prediction into a value between 0 and 1 [14]. It is most often used in binary classification

problems but can be extended to other forms of classification as well.

2.3.2 Support Vector Machine

Support Vector Machine is a large-margin classifier that aims to create a hyperplane such

that it distinctly classifies each of the data points. Support Vector Machine classifiers are

very effective in high dimensional spaces. Since it utilizes a subset of the training data points

in the decision function, it is known to be memory efficient.

2.3.3 Random Forest

Random Forest is an ensemble machine learning algorithm that fits a number of weak-

learner decision tree classifiers. It can be described as a meta-estimator that fits multiple

decision tree classifiers on different smaller sub-sets of the dataset. It controls over-fitting

by averaging. This also helps to improve the predictive accuracy of the classifier.

2.4 Deep Learning Architectures

Here we discuss two commonly used deep learning architectures for text classification, namely

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).

Traditional Recurrent Neural Networks (RNNs) [57] face issues with longer sequence length

documents. For longer sequences, there is an issue faced by the RNN to carry informa-

tion from an earlier time step to a later one. Additionally, during backpropagation, RNNs

suffer from the problem of vanishing gradients. Figure 2.5 illustrates the architecture of a
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Figure 2.5: Illustration of a traditional RNN [46]

traditional RNN cell.

Figure 2.6: Illustration of an LSTM [46]

LSTMs [21] and GRUs [12] were introduced in an attempt to overcome these limitations of

traditional RNNs. Figures 2.6 and 2.7 illustrate the architecture of LSTM and GRU cells,

respectively. Each of these utilized different ‘gates’ that enable them to better determine

important parts of the input sequence.

The LSTM consists of a cell state and three gates, namely the input gate, forget gate, and

output gate. The cell state acts as the ‘memory’ of the network. The gates enable the

network to learn relevant information that is to be kept or forgotten during training. [41]
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Figure 2.7: Illustration of a GRU [41]

The GRU, on the other hand, does not have a cell state and it uses the hidden state in order

to transform information. There are only two gates: the reset gate and the update gate.

Since GRUs have fewer operations, they generally train faster than LSTMs.
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Review of Literature

In this chapter, we discuss the tools, relevant algorithms used by the tools, and related

research in the fields of classification of long documents and digital libraries.

3.1 Chapter Segmentation

To perform chapter-level classification, we needed to segment a long PDF document into

chapters. In order to perform this task, we evaluated a number of tools. Some of these

tools helped with the segmentation task whereas some tools were developed to extract text

from PDFs. Here, we first talk about the tools that can be used to extract data from the

PDF documents (either in the form of text files, DOCX files, or hierarchical formats such

as HTML/XML formats). We then talk about the tools that can be utilized in order to

segment the PDF document into sections.

3.1.1 Text Extraction from PDFs

In this section, we list various tools such as PDFMiner [59], PyPDF2 [51], PyMuPDF [29],

pdftotext [48], ABBYY Cloud OCR SDK [1], textract [32], and Tika-Python [33] that can

be used to extract text from PDFs. Some of these tools are Python bindings over software

written in other languages whereas some are written in Python. While the tools enlisted

18
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here can be used to get the text content from PDFs, they do not maintain the structure of

the document and hence are not suitable to be used for segmentation into chapters.

PDFMiner

PDFMiner is a Python-based tool that can be used to extract text from PDFs. It allows

the user to extract the location of text on a page, font, or line information. It also enables

the user to convert a PDF file into other file formats such as text (which is the default

option), HTML, XML, or Tagged PDF. It includes two command-line tools ‘pdf2txt.py’ and

‘dumppdf.py’. ‘pdf2txt.py’ can be used to extract the text contents from a PDF file and save

it into a pre-defined output format. ‘dumppdf.py’ enables a user to dump the contents of a

PDF file into a pseudo-XML format and is generally used for debugging purposes.

PyPDF2

PyPDF2 is a Pure-Python library that was built as a PDF toolkit. It has the ability to

extract information from a document (such as the title, author, etc.), split the PDF page by

page, merge documents page by page, crop pages, merge multiple pages into a single page,

as well as encrypt and decrypt PDF files. Since this is a Pure-Python library, it can be

run on any Python platform and does not require any external dependencies. It allows for

PDF manipulation to be done in memory as it can work on StringIO objects instead of file

streams.

PyMuPDF

PyMuPDF is a Python binding for MuPDF. It has the ability to access content from files with

multiple extensions such as ‘.pdf’, ‘.xps’, ‘.oxps’, ‘.cbz’, ‘.fb2’, or ‘.epub’. It is capable of de-
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crypting a PDF document, accessing metadata information including the meta-information,

links, and bookmarks. It can also render the pages of a PDF into raster formats such as

PNG or vector format such as SVG. PyMuPDF can also convert the PDF into other formats

such as XHTML, XML, JSON, and text.

Pdftotext

Pdftotext is an open-source utility that can be used to convert PDF files to plain text files

by extracting text data from the PDF encapsulated file. It also has the ability to extract

a single page by utilizing its page number. It can read text data from password protected

PDFs.

ABBYY Cloud OCR SDK

ABBYY Cloud OCR SDK is a web-based OCR service that can be used to extract text from

PDFs and perform PDF conversion tasks. It can perform text recognition of printed text

for over 200 languages as well as convert documents to searchable PDF, PDF/A, Microsoft

Word, Excel, and PowerPoint. By leveraging ABBYY’s Advanced Document Recognition

Technology (ADRT), we can recreate the structure and layout of the original document and

convert the PDF version of the document back into its original form (in case of documents

created using Microsoft Office).

Textract

Textract provides a single interface that can be used to extract content from various different

file types without any irrelevant markup. This tool can be used in two ways – a command-

line interface or the textract Python package. Some of the file types supported for text



3.1. Chapter Segmentation 21

extraction include CSV, DOC, DOCX, HTML, JSON, and PDF.

Tika-Python

Tika-Python is the Python binding to Apache Tika REST services. Apache Tika is a content

analysis toolkit written in Java developed by the Apache Software Foundation. It can be used

to detect and extract both metadata and text from multiple file types including PPT, XLS,

and PDF. Tika is very useful for content analysis and translation; it also can be leveraged for

search engine indexing. It has the ability to get text from images by using Tesseract (which

is an OCR software package). The Tika-Python tool enables developers to easily utilize all

of the functionalities offered by Apache Tika and integrate it with Python applications.

3.1.2 Segmenting PDFs into Sections

The tools enlisted in this section – Grobid and ITCore (Intelligent Textbooks Core) – enable

us to segment a PDF into smaller sections.

Grobid

Grobid means GeneRation Of BIbliographic Data. It is a machine learning library that can

be used to extract, parse, and re-structure PDFs into XML/TEI documents [30]. It works

well with scientific publications. It can be used to extract metadata information such as title,

abstract, authors, affiliations, keywords, references, etc. It also has the ability to perform

full-text extraction from PDF articles and segment the document (by using different tags in

the XML generated to demarcate the various segments).

Grobid can be used via a RESTful API, Java API, or Docker container. It also includes
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batch processing which can be leveraged when a large number of documents need to be

processed.

ITCore (Intelligent Textbooks Core)

ITCore [5] is a Java based tool that can be used to process book-length PDFs and produce

a TEI model of a text book with structural information of the PDF including sections and

sub-sections. It also provides an option to generate PDF files of the segments identified. It

utilizes a rule-based algorithm that leverages the Table of Contents of books to identify the

sections and sub-sections of the full-text PDF.

3.2 Summarization

Text Summarization is a very useful Natural Language Processing technique that enables us

to convert a large document text into a few sentences without losing the important content

of the text. Summarization can be of two types, extractive and abstractive. With extarctive

summarization, the algorithm attempts to identify the most informative sentences from the

entire text to form the summary. With abstractive summarization, the algorithm attempts

to generate concise phrases or sentences that are semantically similar to the original text.

This type of summarization is well suited for tasks that require these summaries to be viewed

by humans, as it works in a manner that is similar to the method used by humans to generate

summaries. Thus, it attempts to paraphrase the original text [66].

For the purpose of this research, we intend to use summarization to shorten the full-text of

chapters and feed the generated summaries into the machine learning model. Thus, for our

purposes, extractive summarization techniques are well suited for the task at hand.
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3.2.1 Extractive Summarization

Extractive summaries are generated by identifying words, phrases, sentences, and/or pas-

sages from the original full-text to generate the summary. Four common extractive summa-

rization techniques are discussed in this section.

TextRank

TextRank [37] is an unsupervised weighted-graph based algorithm that was built on top of

the PageRank algorithm [47]. The TextRank algorithm first pre-processes the input text by

removing all stop words, and then stemming the remaining words. It next generates a graph

with sentences as the vertices. It then connects each sentence to every other sentence by an

edge that represents the similarity of each pair of sentences. It runs the PageRank algorithm

on this graph. The sentences with the highest PageRank score are then added as part of the

final output summary.

LexRank

Similar to TextRank, is another graph based approach called LexRank [16]. In this approach,

the algorithm uses an IDF-modified cosine score as the similarity measure determining the

weight of the edge between the sentences. It also includes a post-processing step which

ensures that the top sentences selected for the final summary are not too similar to one

another.



24 Chapter 3. Review of Literature

Luhn’s Algorithm Based Summarizer

This algorithm [31] attempts to rank sentences by taking into account the significance of

words that frequently occur in a document. It also takes into account the distance between

these significant words due to the other non-significant ones.

Latent Semantic Analysis (LSA) Based Summarizer

Latent Semantic Analysis (LSA) [72] is a Natural Language Processing technique that at-

tempts to project data into a lower dimensional space. It analyses the relationship of docu-

ments and the terms within the documents. The spatial decomposition can be interpreted as

singular vectors that are capable of capturing and representing word combination patterns

within the text corpus. The importance of a specific pattern in such a document is indicated

by the magnitude of the singular vector. This summarization technique leverages the LSA

technique while generating the summaries [65].

3.3 Classifiers

The chapter-level classification that we perform in this work is multi-label in nature since

each chapter could be associated with multiple labels. In addition to this, as part of this

research, we aim to compare the performance of machine learning classifiers and deep learning

classifiers.

Prior work has been done to classify ETDs into the Library of Congress Classification (LCC)

system [63] [62] [17] [56]. Ideas explored in the aforementioned works were used to formulate

some aspects of this thesis.
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3.3.1 Machine Learning Classifiers

In this section, we discuss prior work that has been performed with machine learning clas-

sifiers related to scientific documents.

ACM Digital Library Classifiers

As reported in his 2017 doctoral dissertation, Yinlin Chen [11] built multiple classifiers

using the 2012 ACM Computing Classification System as the target classification system.

He trained his classifiers on the ACM Digital Library metadata dataset. These are described

in detail in the following sections.

Figure 3.1: Eleven CCS top level branches used to build the ACM Digital Library Classi-
fiers [11]

2012 ACM Computing Classification System

The 2012 ACM Computing Classification System (CCS) is a standard classification system

in the computing field. It is represented as a six-level poly-hierarchical structure. The
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topmost level consists of 13 branches; each of these branches has at most six children. Out

of the 13 branches present in the original system, Chen selected the 11 shown in Figure 3.1.

The other two branches, General and reference and Social and professional topics, contained

cross-cutting computing concepts and were therefore excluded from Chen’s use of the system.

Figure 3.2: An example of how CCS terms are displayed in a published work [2]

Authors submitting to ACM are asked to use any relevant first- and second-level nodes of

the classification scheme, then identify the lowest branches of the tree that apply to their

particular paper. Authors must then give a weighted score for each of the CCS terms they

have chosen. A score of 500 indicates high relevance, 300 medium relevance, and 100 low

relevance. These weights affect the order in which the terms are listed in the published work.

Figure 3.2 shows an example of how the CCS section looks in an ACM published paper.

ACM Digital Library metadata dataset

Chen used an ACM Digital Library metadata dataset as training data. The dataset contains

1,761,956 journal and conference proceeding metadata records in XML format. Each of these

metadata records contains a title, abstract, CCS, general term, author, and reference of the

article. They do not include the full text of the article.

Methodology

A subset dataset for each ACM node was prepared for model training. Data cleaning was per-

formed on the entire dataset. Under-sampling was used to deal with the imbalanced dataset.

The bag-of-words model was used to represent the ACM dataset, and term frequency-inverse
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document frequency (TF-IDF) was used as the weighting approach. Chi-square statistics

were used for feature selection.

Multiple classifiers including Ridge regression [22], Perceptron [71], k-nearest neighbors

(KNN) [18], Random Forest [28], SVM [19, 23], multinomial Naive Bayes [25], and BernoulliNB [34]

were trained since these classifiers can handle sparse matrices.

Table 3.1: Top classifiers for the ACM dataset [11]

Based on the experiments conducted, it was found that Linear Support Vector Classification

and Linear SVM with SGD training outperformed the other classification algorithms listed

above. Table 3.1 gives an overview of which of these two classifiers worked better for the

top-level ACM CCS branches.

CiteSeerX

CiteSeerX [75] is an online public digital library and search engine used for scientific and

academic papers. It consists primarily of papers in the fields of computer and information

science.

Classification using WoS Subject Categories
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In [74], Wu et al. utilize a Web of Science (WoS) dataset which contains abstracts and

titles of nearly 25 million papers. Web of Science has a Subject Category (SC) scheme con-

sisting of 252 subject categories which cover a range of disciplines including science, social

sciences, arts, and humanities. In this effort, the authors focus on classifying into Physics

(PHYS), Chemistry (CHEM), Biology (BIO), Materials Science (MATSC), Computer Sci-

ence (CMPSC), and Others. Four machine learning classifiers were trained, namely Support

Vector Machine (SVM), Logistic Regression (LR), Multinomial Naive Bayes (MNB), and

Random Forest (RF). The authors compared the performance of these ML models against

a Multilayer Perceptron (MLP) with 3 hidden layers. The first layer had 1,024 neurons; the

second and third layers had 512 neurons. Each layer used ReLU as the activation function.

The input layer consisted of 5,000 neurons and the output layer consisted of 6 neurons (with

softmax activation); each of these output neurons corresponded to the subject categories

selected. Their results are summarized in Table 3.2.
Table 3.2: Multilayer Perceptron performance compared to other ML classifiers [74].

The authors considered using GloVe word embeddings [50] to represent the data. However,

they found that the best F1-score obtained using GloVe was less than 0.80. The explana-

tion offered by the authors was that only 37% of the vocabulary overlapped with the WoS

abstracts. Therefore, the authors employed the Word2Vec [39] Skip-Gram model with soft-

max, along with TF-IDF [61] features. Without the TF-IDF features, the F1-score obtained

was lower, potentially due to the equal importance given to each word by the Word2Vec

embeddings.
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3.3.2 Deep Learning Classifiers

This section describes prior work that has been done with long document classification and

deep learning.

Hierarchical Transformers for Long Document Classification

The authors [49] extend the fine-tuning process of Bidirectional Encoder Representations

from Transformers (BERT) [15] to address its applicability to longer input texts. The au-

thors segment the original input text into smaller chunks of data and feed these inputs to a

base model. Each of the outputs obtained are then passed on through a single recurrent/-

transformer layer. This is then followed by a softmax activation layer. The final classification

output is obtained after all the input segments have been consumed by the model.

The authors propose two techniques: Recurrence over BERT (RoBERT) and Transformer

over BERT (ToBERT). The authors refer to these models as ‘Hierarchical Transformers’ as

they introduce a hierarchy of representation.

Figure 3.3: Hierarchical Transform BERT model [49]
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Figure 3.3 illustrates the model proposed. Here, ‘H’ represents the segment representation

obtained from the last block of the transformer. ‘P’ denotes the posterior probabilities of

the segment.

Figure 3.4: Results for the Hierarchical Transform BERT model [49]

The authors evaluated the performance on three datasets, namely CSAT, 20 newsgroups,

and Fisher. Each of these datasets contained an average of 787, 266, and 1788 words per

document, respectively. Table 3.4 represents the results obtained for this model as compared

to other baseline models.

Rethinking Complex Neural Network Architectures for Document Classification

The authors [4] examine the need for larger more complex neural networks in the case of

long document classification. They found that a simple BiLSTM architecture that was

trained with the correct hyperparameters could yield comparable F1 and accuracy scores.

Additionally, this model did not make use of attention mechanisms.
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Figure 3.5: Model architecture of proposed model LSTMreg: (a) input word embeddings,
(b) BiLSTM, (c, d) concatenated forward hf

1:n and backward hb
1:n hidden features, (e)

max-pooling overtime, (f) document feature vector, (g) softmax or sigmoid output [4]

The design of the model architecture, LSTMreg, is represented in Figure 3.5, which was

meant to be minimalistic. The authors evaluated their model using the Reuters, AAPD,

IMDB, and Yelp 2014 datasets. These datasets had an average of 144.3, 167.3, 393.8, and

148.8 words per document, respectively. Figure 3.6 illustrates the results obtained for the

LSTMreg model compared to other models.

Figure 3.6: Comparison of LSTMreg results with other models [4]
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DocBERT: BERT for Document Classification

The BERT language model is a large model that contains hundreds of millions of parameters,

making it have a heavy computational expense. The authors [3] attempt to address this

computational expense that is incurred while inferring from the BERT model. Here, they

perform knowledge distillation [20] from the BERTlarge model to smaller bidirectional LSTMs.

In this work, the authors mention how the syntactic structure of the input text is not as

important for document classification as compared to tasks such as paraphrasing or language

inference, which are known to be more typical BERT tasks. The authors were able to reduce

the number of parameters and train a BiLSTM with 30x fewer parameters.

Figure 3.7: Comparison of KD-LSTMreg results with other models [3]

Following along the work done in [15], the authors introduce a fully-connected layer over

the state corresponding to the ‘CLS’ token. In the fine-tuning process, they add additional

softmax classifier parameters. The knowledge is distilled into the smaller LSTMreg presented

in [4]. For the objective function of the distillation, the authors minimize the Kullback-Leibler

(KL) divergence. The final objective is given by the equation:
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L = Lclassification + λ.Ldistill (3.1)

The authors evaluated their model using the Reuters, AAPD, IMDB, and Yelp 2014 datasets.

These datasets had an average of 144.3, 167.3, 393.8, and 148.8 words per document, respec-

tively. The KD-LSTMreg model was able to achieve high scores that were close to that of

BERTbase. Figure 3.7 illustrates the results obtained for the KD-LSTMreg model compared

to other models.

Figure 3.8: Overall architecture of BiLSTM model [70]

Long-length Legal Document Classification

The authors [70] focus on the classification of lengthy legal documents. They divide these

documents into segments and then combine the embeddings for each of the segments together

with a BiLSTM that is used to form a single embedding for the entire document. The authors
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investigated automatic audio segmentation [67] to observe the techniques used to segment

audio signals and then apply the same in the context of legal document classification.

Figure 3.9: Document embedding process through BiLSTM framework [70]

The length of the documents considered in other prior work is relatively lower as compared

to the legal documents the authors use as part of this study. They define a ‘document’ as

one that contains a minimum of 5,000 words.

Figure 3.8 illustrates the proposed BiLSTM architecture. The authors split the original legal

document into multiple chunks and then use Doc2Vec [26] to embed each of these chunks.

The chunks are then aggregated into a single vector using a BiLSTM. Figure 3.9 represents

this document embedding process. The authors consider different classifiers in an attempt

to assess the impact caused by the segmentation of the document. The first type of models

use a simple linear classifier. The final classification of the document is done using the

different features that each chunk contains. A softmax layer is used to obtain the multi-class

probabilities. The second type make use of a Support Vector Machine (SVM) classifier.
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The authors evaluate their model on a set of documents obtained from EDGAR, which is

an online public U.S. Securities and Exchange Commission (SEC) database. The documents

can be grouped based on their filing types. The authors found that splitting the documents

into chunks yielded higher test accuracy as compared to using the whole document.

Tables 3.10 and 3.11 indicate that splitting the document into chunks resulted in improved

performance compared to models where the whole document was provided as the input.

Figure 3.10: Performance of models using simple linear classifier [70]. Wc indicates average
words per chunk.

Figure 3.11: Performance of models using simple SVM classifier [70]. Wc indicates average
words per chunk.
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3.3.3 Evaluation

The evaluation metrics commonly used to gauge the performance of multi-class and binary

class classification problems are: accuracy, precision, recall, and F1-score. In Equations 3.2,

3.3, 3.4, and 3.5 TP = true positive, TN= true negative, FP = false positive, and FN =

false negative.

Accuracy

Accuracy identifies the fraction of predictions that the model predicted correctly. It calcu-

lates the value of the number of correct predictions against the total number of predictions.

Unfortunately, in case of class-imbalanced datasets, accuracy is not the best metric for eval-

uation. Other more suitable metrics for such datasets are described in the following sections.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Precision

The precision score attempts to identify the proportion of the positive identifications that

are actually correct. As can be inferred from 3.3, a classifier that has no false positives will

yield a precision score of 1.0.

Precision =
(TP )

(TP + FP )
(3.3)
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Recall

In contrast to the precision score, recall attempts to identify the proportion of the actually

positive that were identified correctly. As can be inferred from 3.4, a classifier that has no

false negatives will yield a recall score of 1.0.

Recall =
(TP )

(TP + FN)
(3.4)

F1-score

F1-score is the harmonic mean or weighted average of precision and recall. A high value of

this score indicates a high value of both precision and recall, as the contribution of both to

the F1 score is equal.

F1− score =
(2× precision× recall)

(precision+ recall)
(3.5)

Exact Match

Exact match or subset accuracy is a very strict metric. It measures the percentage of the

set of predicted labels that exactly match the set of labels in the ground truth. [42]

ExactMatchRatio =
1

n

n∑
i=1

I(Yi = Zi) (3.6)
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Hamming Loss

Hamming loss computes the fraction of incorrectly predicted labels to the total number of

labels. As this is a loss function, the desired value is zero. [73]

1

|N | · |L|

|N |∑
i=1

|L|∑
j=1

xor(yi,j, zi,j) (3.7)

Jaccard Index

The Jaccard index is also referred to as the Intersection over Union. It computes the fraction

of the number of labels that were predicted correctly over the union of predicted and true

labels. [73]

|T ∩ P |
|T ∪ P |

, (3.8)

where T and P are the true labels and predicted labels respectively.



Chapter 4

Data

In this chapter, we discuss the different datasets that have been used for the creation of the

embeddings, for training and testing the baseline machine learning models created as part

of the CS6604: Digital Libraries [6] course, and for training and testing the deep learning

models.

The full-text of ETDs from three universities – Pennsylvania State University, University of

Illinois at Urbana-Champaign, and Virginia Tech – have been used to train the word and

document embeddings.

A small subset of the PQDT ETDs coming from Virginia Tech were used to form the baseline

models generated as part of the CS6604: Digital Libraries [6] course. A larger dataset of the

PQDT ETDs coming from multiple universities was used to train and test the deep learning

models. Both full-text as well as chapter segments were extracted from this dataset.

4.1 Data Description

In this section, we describe the different datasets. There are three parts, namely: ‘Data for

baseline models’, ‘Data for embeddings’, and ‘Data for deep learning models’.

39
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4.1.1 Data for Baseline Models

The dataset discussed in this section was utilized for the CS6604: Digital Libraries [6] course

project.

PQDT Data: Virginia Tech

Our experiments require a large corpus of ETDs and the accompanying metadata, which

include ProQuest subject categories for each ETD. To obtain the data, we first identified the

number of Virginia Tech ETDs belonging to each of the 432 ProQuest Subject Categories as

of Fall 2019. After obtaining these counts, we selected the top (by count) 30 categories that

contained the largest number of ETDs. As indicated in Figure 4.1, when these 432 subject

categories are grouped by the secondary headings, “Engineering” has the highest number of

ETDs (2,937) while “Language And Literature” has the lowest number of ETDs (20).

Figure 4.1: Distribution of ETDs present in each of the 21 secondary headings [6]
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The ProQuest system allows authors to add multiple secondary subject categories, but au-

thors are required to add at least one primary subject category. Figure 4.2 illustrates the

distribution of ETDs with multiple subject categories across the top 10 subject categories,

which were chosen as they were assigned to the maximum number of ETDs across the entire

time range of documents present in the ProQuest digital library.

Figure 4.2: Distribution of ETDs with multiple subject categories [6]

As seen in Figure 4.2, a majority of ETDs contain 1–2 secondary categories in addition to

the primary category. A small set of them contain 3–4 secondary categories. Certain subject

categories such as “Environmental Science,” “Forestry,” and “Public Administration” contain

ETDs with 5 secondary categories. The “Adult Education” subject category contains ETDs



42 Chapter 4. Data

with 6 or 7 secondary categories.

{
"Advisor": ["Stubblefield, Harold W."],
"Author": ["Redstrom-Plourd, Martha A."],
"Classification": [

"0516: Adult education",
"0651: Continuing education",
"0454: Management",
"0337: American history"

],
"Identifier / keyword": [

"Social sciences",
"Education",
"Adult learning",
"Career management",
"Job search counseling",
"Outplacement industry"

],
"Title": "A history of the outplacement industry, 1960--1997: From job search

counseling to career management. A new curriculum of adult learning"↪→

}

Figure 4.3: JSON representation of partial metadata from a sample ETD [6]

4.1.2 Data for Embeddings

These three datasets were used to retrain the fastText [7][24] and Doc2Vec [26] embeddings.

Thus, we chose datasets from three different universities to ensure a better spread of the

disciplines associated with the collection in an attempt to maximize the number of unique

words using which the embedding models could be trained. Here, we discuss the various

departments present at each of these universities and the number of ETDs that belong to

each of the departments.



4.1. Data Description 43

Table 4.1: Number of ETDs in each department under the Virginia Tech thesis collection

Department Number of ETDs
Architecture 1540
Mechanical Engineering 1512
Electrical and Computer Engineering 1148
Civil Engineering 858
Electrical Engineering 722
Computer Science 479
Industrial and Systems Engineering 429
Psychology 394
Aerospace and Ocean Engineering 325
Forestry 320
Environmental Engineering 318
Chemistry 286
Engineering Mechanics 271
Political Science 266
Chemical Engineering 253
Fisheries and Wildlife Sciences 250
Biology 237
Systems Engineering 236
Food Science and Technology 203
History 190
Civil and Environmental Engineering 190
Crop and Soil Environmental Sciences 186
Sociology 182
Veterinary Medical Sciences 180
Entomology 178

Virginia Tech ETD Collection

This collection consists of 17890 theses and 13071 dissertations as of Fall 2018. There

are 326 departments present among the theses and 333 departments present among the

dissertations. Table 4.1 represents the count of the number of ETDs present in the top 25

departments. Similarly, Table 4.2 represents the counts for the dissertations. As indicated

by these tables, the most common departments in the thesis collection are ‘Architecture’,

‘Mechanical Engineering’, and ‘Electrical and Computer Engineering’. On the other hand,
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Table 4.2: Number of ETDs in each department under the Virginia Tech dissertation collec-
tion

Department Number of ETDs
Electrical and Computer Engineering 711
Educational Leadership and Policy Studies 611
Chemistry 577
Mechanical Engineering 499
Civil Engineering 403
Psychology 398
Educational Administration 369
Teaching and Learning 363
Industrial and Systems Engineering 326
Computer Science 299
Engineering Mechanics 271
Electrical Engineering 249
Mathematics 246
Curriculum and Instruction 238
Aerospace and Ocean Engineering 234
Statistics 233
Chemical Engineering 224
Engineering Science and Mechanics 215
Physics 206
Human Development 186
Vocational and Technical Education 175
Economics 173
Biology 172
Public Administration and Public Affairs 168
Entomology 148

the most common departments in the dissertation collection are ‘Electrical and Computer

Engineering’, ‘Educational Leadership and Policy Studies’, and ‘Chemistry’.

Tables 4.3 and 4.4, represent the top 10 most frequent keywords in the thesis and disserta-

tion collections, respectively. The most frequent keyword among the theses is ‘architecture’

followed by ‘simulation’ and ‘FPGA’. Each of these keywords could very well belong to the

3 most common departments. Similarly, for the dissertation collection, the most common

keywords are ‘optimization’, ‘education’, and ‘leadership’ which again could very well belong
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Table 4.3: 10 most commonly occurring keywords in the Virginia Tech thesis collection

Keyword Number of ETDs
architecture 221
simulation 93
FPGA 80
Virginia 80
optimization 75
GIS 68
modeling 52
light 48
water quality 45
design 44

Table 4.4: 10 most commonly occurring keywords in the Virginia Tech dissertation collection

Keyword Number of ETDs
optimization 79
education 71
leadership 67
modeling 60
simulation 30
technology 28
gender 25
self-efficacy 24
development 24
collaboration 23

to the 3 most common departments.

Pennsylvania State University ETD Collection

This collection consists of a total of 9634 ETDs that were obtained from Pennsylvania State

University as of Spring 2020. In this section, we discuss the most common programs or

departments associated with the ETDs present in this collection. As indicated by Table 4.5,

there are a wide range of departments present in this collection ranging from ‘Mechanical
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Table 4.5: Number of ETDs in each program under the Pennsylvania State University ETD
Collection

Program Number of ETDs
Mechanical Engineering 481
Electrical Engineering 449
Computer Science and Engineering 341
Industrial Engineering 321
Chemistry 317
Aerospace Engineering 297
Materials Science and Engineering 294
Psychology 244
Geosciences 194
Energy and Mineral Engineering 187
Civil Engineering 185
Curriculum and Instruction 177
Information Sciences and Technology 174
Physics 164
Engineering Science and Mechanics 156
Human Development and Family Studies 152
Chemical Engineering 148
Nuclear Engineering 136
Statistics 136
Mathematics 133
Economics 133
Biochemistry, Microbiology, and Molecular Biology 132
Architectural Engineering 129
Kinesiology 126
Adult Education 119
Meteorology 117
Business Administration 117
Sociology 108
Geography 103
Bioengineering 102

Engineering’, ‘Electrical Engineering’, and ‘Computer Science & Engineering’ to ‘Psychology’

and ‘Kinesiology’.
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University of Illinois at Urbana-Champaign ETD Collection

This collection consists of a total of 7557 ETDs that were obtained from the University

of Illinois at Urbana-Champaign as of Spring 2020. In this section, we discuss the most

common departments as well as subjects (as entered by the authors) associated with the

ETDs present in this collection.

As indicated by Table 4.6, there are a wide range of departments present in this collection

ranging from ‘Electrical & Computer Eng’, ‘Computer science’, and ‘Mechanical Sci & En-

gineering’ to ‘Music’, and ‘Linguistics’. There are a total of 167 departments present in this

collection.

Table 4.7 represents the top 10 most frequent keywords in this collection. The most frequent

keyword is ‘Machine Learning’ followed by ‘Optimization’ and ‘Graphene’.

4.1.3 Data for Deep Learning Models

In this section, we discuss the larger PQDT dataset that contains ETDs from different

universities collected in Spring 2020. We consider data from 28 different subject categories.

This collection contains a total of 9,302 unique ETDs.

ETD Counts and Subject Categories

While our original collection has subject categories that contained more than 500 ETDs, we

truncated the maximum number of ETDs in any subject category to 500. This was done

to ensure that there isn’t a very large imbalance in the number of ETDs in each subject

category. Tables 4.8 and 4.9 display the counts associated with each subject category.
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Table 4.6: Number of ETDs in each department under the University of Illinois at Urbana-
Champaign ETD collection

Department Number of ETDs
Electrical & Computer Eng 848
Computer Science 604
Mechanical Sci & Engineering 460
Civil & Environmental Eng 385
Chemistry 278
Physics 240
Psychology 223
Aerospace Engineering 214
Educ Policy, Orgzn & Leadrshp 196
Animal Sciences 189
Crop Sciences 177
Mathematics 169
Materials Science & Engineerng 149
Kinesiology & Community Health 143
Natural Res & Env Sci 121
Nuclear, Plasma, & Rad Engr 115
Agr & Consumer Economics 102
Chemical & Biomolecular Engr 98
Educational Psychology 96
Music 94
Curriculum and Instruction 91
Bioengineering 90
Engineering Administration 89
Food Science & Human Nutrition 89
School of Molecular & Cell Bio 88
Industrial & Enterprise Sys Eng 87
Linguistics 74
Atmospheric Sciences 72
English 71
School of Integrative Biology 68

Largest Universities with Most ETDs

Our collection contains ETDs from 486 universities including 36 ETDs from 11 Historically

Black Colleges and Universities (HBCUs). Table 4.10 gives the number of ETDs in our
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Table 4.7: 10 most commonly occurring keywords in the University of Illinois at Urbana-
Champaign ETD collection

Keyword Number of ETDs
Machine Learning 92
Optimization 47
Graphene 42
Aging 32
soybean 31
optimization 30
Education 29
Race 28
Security 28
Gender 25

collection that belong to the largest 10 (by count) universities. Table 4.11 gives the univer-

sities and the number of ETDs that belong to those universities for all the HBCUs in our

collection. 36 is a fairly small number given the size of our corpus, so we wish to include

more HBCUs in our corpus in the future.

Range of Year of Publication of ETDs

As part of this research, we have mainly focused on born digital ETDs as we needed to

extract the full-text and chapter segments from the ETDs. Given that working with older

scanned ETDs is still a research problem, we focus on the more recent ETDs. Table 4.12

gives the number of ETDs that were published across different years in our collection.

Largest Universities Contributing ETDs for Subject Categories

Tables 4.13 and 4.14 indicate the number of ETDs contributed by the largest 3 Universities.

As displayed in the table, ‘California State University, Long Beach’ contributes the largest

number of ETDs to most subject categories.
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Table 4.8: Number of ETDs in each
subject category under the PQDT ETD
collection (alphabetic order)

Subject Category Number
of ETDs

Adult education 500
Aerospace engineering 386
Biomedical engineering 485
Chemical engineering 325
Civil engineering 496
Computer Engineering 380
Computer science 500
Ecology 500
Educational leadership 500
Educational psychology 500
Electrical engineering 500
Elementary education 499
Environmental science 494
Forestry 121
Higher education 500
Industrial engineering 196
Marketing 271
Materials science 482
Mathematics 222
Mechanical engineering 500
Molecular biology 500
Occupational psychology 500
Organic chemistry 255
Public administration 428
Secondary education 500
Special education 500
Statistics 392
Teacher education 500

Table 4.9: Number of ETDs in each
subject category under the PQDT ETD
collection (ordered by count)

Subject Category Number
of ETDs

Computer science 500
Electrical engineering 500
Ecology 500
Adult education 500
Secondary education 500
Mechanical engineering 500
Molecular biology 500
Educational psychology 500
Higher education 500
Educational leadership 500
Special education 500
Teacher education 500
Occupational psychology 500
Elementary education 499
Civil engineering 496
Environmental science 494
Biomedical engineering 485
Materials science 482
Public administration 428
Statistics 392
Aerospace engineering 386
Computer Engineering 380
Chemical engineering 325
Marketing 271
Organic chemistry 255
Mathematics 222
Industrial engineering 196
Forestry 121
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Table 4.10: Number of ETDs in the largest 10 universities (based on number of ETDs
present)

University Number of ETDs
California State University, Long Beach 864
The George Washington University 389
Southern Illinois University at Edwardsville 275
Capella University 216
University of Louisiana at Lafayette 193
Pepperdine University 180
University of Maryland, College Park 171
Lindenwood University 158
Walden University 154
University of Phoenix 148

Table 4.11: Number of ETDs from Historically Black Colleges and Universities (HBCUs)

University Number of ETDs
Tennessee State University 9
North Carolina Agricultural and Technical State University 8
Howard University 4
Bowie State University 3
Delaware State University 3
Southern University and Agricultural and Mechanical College 3
Hampton University 2
Bethune-Cookman University 1
Florida Agricultural and Mechanical University 1
Morgan State University 1
Savannah State University 1

Co-occurrence of Subject Categories

In this section, we examine the co-occurrence of the different subject categories. Figures 4.4

and 4.5 represent the co-occurrence matrix between the 28 subject categories. Figure 4.6

represents a heat map of the occurrence matrix.

As indicated by these figures, it can be seen that the maximum co-occurrence between any

two subject categories is between ‘Computer Engineering’ and ‘Computer science’ with a
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Table 4.12: Number of ETDs associated with different years of publication

Year of publication Number of ETDs
2018 1170
2015 1042
2017 1042
2016 956
2014 919
2019 824
2012 771
2013 769
2011 659
2010 462
2009 392
2008 189
2007 55
2020 22
2006 15
2005 6
2004 5
2001 3
2000 1

total of 175 such ETDs. This was to be expected given that there is often some amount

of overlap between these two subject categories. The second most frequent co-occurrence

is between ‘Educational psychology’ and ‘Higher education’ with 136 ETDs, followed by

‘Aerospace engineering’ and ‘Mechanical engineering’ with a 124 ETDs, followed by ‘Educa-

tional leadership’ and ‘Secondary education’ with 122 ETDs.

An interesting co-occurrence is seen between ‘Public administration’ and ‘Adult education’

with 4 such ETDs. Similarly, another interesting co-occurrence is visible between ‘Marketing’

and ‘Industrial Engineering’ with an ETD titled ‘What contributes to a technical purchasing

decision maker’s reliance on brand name for design decisions involving I&T products’.
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Table 4.13: Part 1: Number of ETDs contributed by the largest 3 universities under each
subject category

Subject Cate-
gory Univ 1 Univ 2 Univ 3

Adult education Capella University
(51)

California State Univer-
sity, Long Beach (38)

Pepperdine University
(33)

Aerospace engi-
neering

California State Uni-
versity, Long Beach
(64)

University of Colorado at
Boulder (28)

University of Mary-
land, College Park
(27)

Biomedical engi-
neering

The University of
Iowa (22)

California State Univer-
sity, Long Beach (21)

State University of
New York at Buffalo
(17)

Chemical engi-
neering

California State Uni-
versity, Long Beach
(26)

University of Louisiana
at Lafayette (15) Yale University (11)

Civil engineering
University of
Louisiana at Lafayette
(35)

California State Univer-
sity, Long Beach (34)

University of Colorado
at Boulder (28)

Computer Engi-
neering

California State Uni-
versity, Long Beach
(46)

University of Louisiana
at Lafayette (23)

Carnegie Mellon Uni-
versity (14)

Computer sci-
ence

California State Uni-
versity, Long Beach
(59)

The George Washington
University (25)

University of
Louisiana at Lafayette
(15)

Ecology
California State Uni-
versity, Long Beach
(45)

University of California,
Davis (28)

University of
Louisiana at Lafayette
(22)

Educational
leadership

The George Washing-
ton University (33)

Pepperdine University
(30)

California State Uni-
versity, Long Beach
(24)

Educational
psychology

California State Uni-
versity, Long Beach
(43)

Walden University (26) Pepperdine University
(23)

Common Departments in Largest Universities

Here we present the 3 most common departments for each of our largest 10 universities

as indicated in Table 4.10. Table 4.16 presents the most common 3 departments. It is
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Table 4.14: Part 2: Number of ETDs contributed by the largest 3 universities under each
subject category

Subject Cate-
gory Univ 1 Univ 2 Univ 3

Electrical engi-
neering

California State Uni-
versity, Long Beach
(153)

Southern Illinois
University at Ed-
wardsville (29)

Carnegie Mellon Uni-
versity (13)

Elementary edu-
cation

California State Uni-
versity, Long Beach
(44)

Lindenwood Univer-
sity (43)

Pepperdine University
(21)

Environmental
science

Southern Illinois
University at Ed-
wardsville (31)

University of Mary-
land, College Park
(24)

University of Califor-
nia, Davis (19)

Forestry Mississippi State Uni-
versity (20)

State University of
New York College
of Environmental
Science and Forestry
(11)

University of Montana
(6)

Higher educa-
tion

California State Uni-
versity, Long Beach
(55)

The George Washing-
ton University (27)

Lindenwood Univer-
sity (23)

Industrial engi-
neering

Southern Illinois
University at Ed-
wardsville (20)

Mississippi State Uni-
versity (19)

The George Washing-
ton University (13)

Marketing Capella University
(17)

University of Phoenix
(15)

California State Uni-
versity, Long Beach
(15)

Materials sci-
ence

California State Uni-
versity, Long Beach
(32)

University of Califor-
nia, Santa Barbara
(20)

Universitaet Bayreuth
(Germany) (17)

interesting to note that out of the largest 10 universities, 5 universities have an ‘Education’

related department as their most common department. It is also interesting to note that all

the ETDs in our corpus that belong to ‘Lindenwood University’ belong to the ‘Education’

department.
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Table 4.15: Part 3: Number of ETDs contributed by the largest 3 universities under each
subject category

Subject Cate-
gory Univ 1 Univ 2 Univ 3

Mathematics
California State Uni-
versity, Long Beach
(15)

University of Califor-
nia, Berkeley (12)

University of
Louisiana at Lafayette
(12)

Mechanical engi-
neering

California State Uni-
versity, Long Beach
(49)

Southern Illinois
University at Ed-
wardsville (40)

University of
Louisiana at Lafayette
(21)

Molecular biol-
ogy

California State Uni-
versity, Long Beach
(38)

University of
Arkansas for Medical
Sciences (27)

New York University
(17)

Occupational
psychology

Capella University
(62)

California State Uni-
versity, Long Beach
(55)

Pepperdine University
(35)

Organic chem-
istry

Southern Illinois
University at Ed-
wardsville (31)

California State Uni-
versity, Long Beach
(24)

Yale University (11)

Public adminis-
tration

The George Washing-
ton University (64)

Walden University
(36)

University of Phoenix
(35)

Secondary edu-
cation

California State Uni-
versity, Long Beach
(52)

Lindenwood Univer-
sity (42)

Pepperdine University
(29)

Special educa-
tion

California State Uni-
versity, Long Beach
(46)

The George Washing-
ton University (43)

Lindenwood Univer-
sity (25)

Statistics
California State Uni-
versity, Long Beach
(62)

The George Washing-
ton University (29)

University of Califor-
nia, Berkeley (15)

Teacher educa-
tion

Pepperdine University
(27)

The George Washing-
ton University (21)

California State Uni-
versity, Long Beach
(21)

Most Frequent Keywords in Subject Categories

In this section, we present the top 3 most frequent keywords for each subject category.

Tables 4.17 and 4.18 display these keywords. It is interesting to note that in case of subject
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Figure 4.4: Part 1: Co-occurrence of the 28 subject categories

Figure 4.5: Part 2: Co-occurrence of the 28 subject categories

categories such as ‘Adult education’, ‘Higher education’, ‘Marketing’, ‘Mathematics’, and

‘Special education’ the subject category itself is the most common keyword. The keyword

‘Machine learning’ is the most frequent keyword in case of multiple subject categories such as

‘Computer Engineering’, ‘Computer science’, ‘Electrical engineering’, and ‘Statistics’. Since

each of these subject categories does in fact make use of or contribute to the understanding of

‘Machine learning’, this is in keeping with our understanding of the subject categories. While

‘Electrical engineering’ might appear to be a surprise in this case, this can be attributed to

the fact that a large number of the ETDs belonging to the ‘Electrical engineering’ subject

category have their department as ‘Electrical and Computer engineering’ as indicated in

Table 4.19.
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Figure 4.6: Co-occurrence heat map of the 28 subject categories (without zero values)

Most Common Departments Associated with Subject Categories

In this section, we present the top 3 most common departments that are associated with

each subject category. Tables 4.19 and 4.20 display these departments. It is interesting to

note that subject categories such as ‘Adult education’, ‘Educational leadership’, ‘Educational

psychology’, ‘Elementary education’, ‘Higher education’, ‘Secondary education’, ‘Special ed-

ucation’, and ‘Teacher education’ all have ‘Education’ as the most common department.

This indicates that merely using the department as a feature to the machine learning mod-
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Table 4.16: Top 3 most frequent departments present in our largest 10 universities. Count
of ETDs associated with each department is in brackets.

University Dept. 1 Dept. 2 Dept. 3

California State University,
Long Beach

Electrical Engi-
neering (148)

Educational
Leadership (68)

Mechanical and
Aerospace Engi-
neering (58)

The George Washington
University

Special Educa-
tion (33)

Education and
Human Devel-
opment (28)

Public Policy
and Public
Administration
(27)

Southern Illinois University
at Edwardsville

Mechanical and
Industrial Engi-
neering (51)

Chemistry (33) Psychology (32)

Capella University School of Educa-
tion (64) Education (28)

Harold Abel
School of Social
and Behavioral
Sciences (27)

University of Louisiana at
Lafayette

Civil Engineer-
ing (34) Biology (26) Computer Engi-

neering (19)

Pepperdine University Education (154)
Organizational
Development
(15)

Psychology (11)

University of Maryland,
College Park

Aerospace Engi-
neering (27)

Civil Engineer-
ing (20)

Marine-
Estuarine-
Environmental
Sciences (14)

Lindenwood University Education (158) - -

Walden University Education (63)
Public Policy
and Administra-
tion (31)

Psychology (28)

University of Phoenix Advanced Stud-
ies (18)

Organizational
Leadership (7)

School of Ad-
vanced Studies
(6)

els wouldn’t be sufficient as it would not be able to offer the granularity that is offered

by the subject categories. It is also interesting that ‘Ecology’ is the third most common

department for the ‘Ecology’ subject category while ‘Biological Sciences’ is the most com-

mon department with 74 ETDs. Subject categories such as ‘Occupational psychology’ and
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Table 4.17: Part 1: Most frequent keywords in each subject category. Frequency of the
keywords is represented in brackets.

Subject Category Keyword 1 Keyword 2 Keyword 3
Adult education Adult education (30) Adult learning (29) Andragogy (20)

Aerospace engineering Computational fluid
dynamics (11) Optimization (7) Aerodynamics

(7)
Biomedical engineer-
ing

Tissue engineering
(18) Biomechanics (10) Drug delivery

(9)

Chemical engineering Carbon dioxide (7) Density functional
theory (7)

Energy storage
(7)

Civil engineering Concrete (12) Water quality (10) Optimization
(9)

Computer Engineer-
ing Machine learning (17) Security (12) Computer vision

(10)

Computer science Machine learning (42) Deep learning (18) Computer vision
(18)

Ecology Climate change (28) California (19) Restoration (19)
Educational leader-
ship Leadership (49) Professional develop-

ment (24)
Higher educa-
tion (20)

Educational psychol-
ogy Self-efficacy (23) Education (16) Stress (15)

Electrical engineering Machine learning (13) Image processing (12) Optimization
(10)

Elementary education Elementary (24) Professional develop-
ment (24)

Elementary edu-
cation (23)

Environmental science Climate change (21) Water quality (20) Sustainability
(13)

Forestry Forest management
(8) Restoration (6) Forestry (5)

‘Organic chemistry’ cut across a variety of departments such as ‘Psychology’, ‘Education’,

‘Social and Behavioral Sciences’ and ‘Chemistry’, ‘Chemistry and Bio-chemistry’, and ‘Civil

Engineering’ respectively.
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Table 4.18: Part 2: Most frequent keywords in each subject category. Frequency of the
keywords is represented in brackets.

Subject Category Keyword 1 Keyword 2 Keyword 3
Higher education Higher education (68) Retention (20) Persistence (19)

Industrial engineering Human factors (6) Simulation (6) Optimization
(5)

Marketing Marketing (36) Advertising (20) Social media
(17)

Materials science Thin films (10) Graphene (10) Silicon (8)

Mathematics Mathematics (7) Combinatorics (4) Functional anal-
ysis (4)

Mechanical engineer-
ing Heat transfer (13) Optimization (11)

Computational
fluid dynamics
(8)

Molecular biology Breast cancer (13) Cancer (11) Epigenetics (11)
Occupational psychol-
ogy Leadership (50) Job satisfaction (45) Burnout (31)

Organic chemistry Synthesis (12) Catalysis (8) Asymmetric
catalysis (7)

Public administration Leadership (39) Emergency manage-
ment (17)

Collaboration
(16)

Secondary education High school (41) Education (19) Secondary edu-
cation (18)

Special education Special education
(103) Autism (49) Inclusion (40)

Statistics Machine learning (22) Statistics (11) Bayesian (8)

Teacher education Professional develop-
ment (87)

Teacher education
(40)

Teacher prepa-
ration (29)

Number of Keywords per Subject Categories

Tables 4.21 and 4.22 display the number of keywords present in each subject category. Each

ETD can be associated with on or more keywords. Thus, the number of keywords is much

larger than the number of ETDs present in each subject category. The most number of varied

keywords exist for the ‘Civil engineering’, ‘Mechanical engineering’, and ‘Environmental

science’ subject categories.



4.1. Data Description 61

Table 4.19: Part 1: Most common departments associated with each subject category. Count
of ETDs associated with each department is in brackets.

Subject Category Dept. 1 Dept. 2 Dept. 3

Adult education Education (115) School of Education
(43)

Educational Leader-
ship (21)

Aerospace engineering Aerospace Engineer-
ing (93)

Mechanical and
Aerospace Engineer-
ing (74)

Mechanical Engineer-
ing (23)

Biomedical engineer-
ing

Biomedical Engineer-
ing (119) Bioengineering (43) Electrical Engineering

(33)

Chemical engineering Chemical Engineering
(113)

Chemical and Biologi-
cal Engineering (20)

Mechanical Engineer-
ing (13)

Civil engineering Civil Engineering
(199)

Civil and Environ-
mental Engineering
(101)

Civil & Environmen-
tal Engineering (18)

Computer Engineer-
ing

Electrical and Com-
puter Engineering
(76)

Computer Engineer-
ing (50)

Electrical Engineering
(37)

Computer science Computer Science
(122)

Electrical Engineering
(33)

Computer Engineer-
ing and Computer
Science (28)

Ecology Biological Sciences
(74) Biology (59) Ecology (20)

Educational leader-
ship Education (148) Educational Leader-

ship (102)
School of Education
(21)

Educational psychol-
ogy Education (108) Psychology (42) Educational Leader-

ship (25)

Electrical engineering Electrical Engineering
(238)

Electrical and Com-
puter Engineering
(92)

Electrical & Com-
puter Engineering
(17)

Elementary education Education (188) Educational Leader-
ship (31)

School of Education
(30)

Environmental science Environmental Sci-
ence (39)

Environmental Sci-
ences (35)

Environmental Stud-
ies (28)

Forestry Forestry (18) Forest Products (5) Geography (5)

ETDs Belonging to STEM and non-STEM Subject Categories

In this section, we examine our dataset to identify ETDs that cut across both STEM as

well as non-STEM subject categories. We first categorize our subject categories as STEM or
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Table 4.20: Part 2: Most common departments associated with each subject category. Count
of ETDs associated with each department is in brackets.

Subject Category Dept. 1 Dept. 2 Dept. 3

Higher education Education (106) Educational Leader-
ship (56)

School of Education
(18)

Industrial engineering Industrial Engineering
(30)

Industrial and Sys-
tems Engineering (25)

Mechanical and In-
dustrial Engineering
(19)

Marketing Marketing (19) Business Administra-
tion (18) Communication (11)

Materials science Materials Science and
Engineering (46)

Mechanical Engineer-
ing (37) Physics (31)

Mathematics Mathematics (100) Mathematics and
Statistics (20) Sciences (11)

Mechanical engineer-
ing

Mechanical Engineer-
ing (184)

Mechanical and
Aerospace Engineer-
ing (80)

Mechanical and In-
dustrial Engineering
(33)

Molecular biology Biological Sciences
(54) Biology (44)

Biochemistry and
Molecular Biology
(25)

Occupational psychol-
ogy Psychology (88) Education (32)

Harold Abel School of
Social and Behavioral
Sciences (15)

Organic chemistry Chemistry (142) Chemistry and Bio-
chemistry (15) Civil Engineering (3)

Public administration Public Policy and Ad-
ministration (36)

Public Policy and
Public Administra-
tion (27)

Public Administration
(18)

Secondary education Education (165) Educational Leader-
ship (44)

School of Education
(29)

Special education Education (107) Special Education
(105)

Educational Leader-
ship (34)

Statistics Statistics (61) Mathematics and
Statistics (45) Biostatistics (11)

Teacher education Education (150) Educational Leader-
ship (39)

School of Education
(24)

non-STEM. We use the list of STEM fields indicated in [43] and [44]. Table 4.23 displays the

categorization of the subject categories. Our dataset contains 17 STEM and 11 non-STEM
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Table 4.21: Number of keywords associ-
ated with each subject category (alpha-
betic order)

Subject Category Number of
keywords

Adult education 1789
Aerospace engineering 1495
Biomedical engineering 1947
Chemical engineering 1342
Civil engineering 2046
Computer Engineering 1459
Computer science 1950
Ecology 2004
Educational leadership 1749
Educational psychology 1879
Electrical engineering 1868
Elementary education 1603
Environmental science 2002
Forestry 518
Higher education 1799
Industrial engineering 798
Marketing 1190
Materials science 1943
Mathematics 839
Mechanical engineering 2011
Molecular biology 1924
Occupational psychology 1739
Organic chemistry 962
Public administration 1812
Secondary education 1759
Special education 1464
Statistics 1522
Teacher education 1617

Table 4.22: Number of keywords asso-
ciated with each subject category (or-
dered by count)

Subject Category Number of
keywords

Civil engineering 2046
Mechanical engineering 2011
Ecology 2004
Environmental science 2002
Computer science 1950
Biomedical engineering 1947
Materials science 1943
Molecular biology 1924
Educational psychology 1879
Electrical engineering 1868
Public administration 1812
Higher education 1799
Adult education 1789
Secondary education 1759
Educational leadership 1749
Occupational psychology 1739
Teacher education 1617
Elementary education 1603
Statistics 1522
Aerospace engineering 1495
Special education 1464
Computer Engineering 1459
Chemical engineering 1342
Marketing 1190
Organic chemistry 962
Mathematics 839
Industrial engineering 798
Forestry 518
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categories.

Table 4.23: Categorization of subject categories into STEM and non-STEM

STEM non-STEM
Aerospace engineering Adult education
Biomedical engineering Educational leadership
Chemical engineering Educational psychology
Civil engineering Elementary education
Computer Engineering Higher education
Computer science Marketing
Ecology Occupational psychology
Electrical engineering Public administration
Environmental science Secondary education
Forestry Special education
Industrial engineering Teacher education
Materials science
Mathematics
Mechanical engineering
Molecular biology
Organic chemistry
Statistics

Figure 4.7 represents the number of ETDs that belong to STEM, non-STEM, or STEM

+ non-STEM subject categories. As can be seen from this pie chart, a majority of the

ETDs, i.e., 57% of the total number of ETDs, belong to STEM-related subject categories.

Only a very small percentage, 1% of all ETDs, belong to both STEM + non-STEM subject

categories.

Tables 4.25 and 4.26 display the number of ETDs that exist for the different STEM and

non-STEM category combinations. Our collection contains 66 ETDs that cut across these

disciplines. The combination of ‘Marketing’ & ‘Computer Science’, and ‘Public adminis-

tration’ & ‘Environmental science’ contain the maximum (4) ETDs each. The titles of the

ETDs in the ‘Marketing’ and ‘Computer science’ pair include ‘Go niche or go home: Influence

maximization in the presence of strong opponent’, ‘Computational Models for Scheduling in



4.1. Data Description 65

Figure 4.7: Number of STEM, non-STEM, and STEM + non-STEM ETDs

Online Advertising’, ‘A study of soft skills for IT workers in recruitment advertising’, and

‘Product reputation manipulation: The characteristics and impact of shill reviews’. Simi-

larly, the titles of the ETDs in the ‘Public administration’ and ‘Environmental science’ pair

include ‘Government-to-private sector energy programs: Identification of common elements

leading to successful implementation’, ‘Nonprofit organizations and the environmental pol-

icy outcomes: A systematic inquiry into the role of different types of nonprofits to influence

the processes and outcomes of environmental policy’, ‘Investigating the relationship between

the policy implementation process and the utilization of information technology in a consti-

tutional republic: The case of I-269 NEPA process’, and ‘Evaluation at EPA: Determinants

of the U.S. Environmental Protection Agency’s Capacity to Supply Program Evaluation’. It

is interesting to note that ‘Statistics’ and ‘Computer science’ are the most common STEM

subject categories that appear in this list. Similarly, ‘Higher education’ and ‘Marketing’ are

the most common non-STEM categories in this list.
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STEM and Non-STEM Subject Categories in Each University

In this section, we examine the number of ETDs that belong to STEM and non-STEM

subject categories in each of the largest 10 universities.

Table 4.24: Number of STEM and non-STEM ETDs associated belonging to the largest 10
universities

University STEM ETDs non-STEM
ETDs

STEM +
non-STEM

ETDs
California State University,
Long Beach 541 314 9

Capella University 7 208 1
Lindenwood University 0 158 0
Pepperdine University 5 175 0
Southern Illinois University
at Edwardsville 212 63 0

The George Washington
University 159 227 3

University of Louisiana at
Lafayette 161 31 1

University of Maryland,
College Park 143 28 0

University of Phoenix 11 137 0
Walden University 7 146 1
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Table 4.25: Part 1: Number of ETDs that contain subject categories from STEM and non-
STEM

Category 1 (STEM) Category 2 (non-STEM) Category 3
Number
of
ETDs

Computer science Marketing - 4
Environmental science Public administration - 4
Statistics Educational psychology - 3
Statistics Higher education - 3
Statistics Marketing - 3
Computer science Occupational psychology - 3
Computer science Secondary education - 3
Industrial engineering Occupational psychology - 3
Aerospace engineering Occupational psychology - 3
Computer science Elementary education - 2
Computer science Educational psychology - 2
Civil engineering Higher education - 2
Mathematics Educational leadership Elementary education 2
Ecology Secondary education - 2
Environmental science Higher education - 2
Statistics Higher education Industrial engineering 1
Statistics Marketing Computer science 1
Statistics Elementary education - 1
Statistics Public administration - 1
Statistics Adult education - 1
Statistics Secondary education - 1

Number of Words in Title for Each Subject Category

Figure 4.8: Average number of words present in the title of ETDs for each subject category
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Table 4.26: Part 2: Number of ETDs that contain subject categories from STEM and non-
STEM

Category 1 (STEM) Category 2 (non-STEM) Category 3
Number
of
ETDs

Computer science Teacher education - 1
Computer science Higher education - 1
Electrical engineering Higher education - 1
Mathematics Higher education - 1
Mathematics Educational psychology Secondary education 1
Mathematics Teacher education - 1
Mathematics Adult education - 1
Mathematics Educational leadership - 1
Mathematics Special education - 1
Forestry Public administration - 1
Ecology Higher education - 1
Ecology Adult education - 1
Ecology Elementary education Educational psychology 1
Industrial engineering Higher education - 1
Industrial engineering Marketing - 1
Aerospace engineering Marketing - 1
Environmental science Teacher education - 1
Environmental science Special education - 1
Forestry Marketing - 1

In this section, we present the average number of words that are present in the title of ETDs

for a particular subject category. Figure 4.8 illustrates this count. The maximum average

number of words in the title are present in ‘Ecology’, ‘Elementary education’, ‘Environmental

science’, ‘Forestry’, ‘Higher education’, ‘Secondary education’, and ‘Special education’, each

with a count of 14 words.
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Number of Words in Abstract for Each Subject Category

Figure 4.9: Average number of words present in the abstract of ETDs for each subject
category

In this section, we present the average number of words that are present in the abstract of

ETDs for a particular subject category. Figure 4.9 illustrates this count. The maximum

average number of words in the abstract are present in ‘Chemical engineering’ with 358

words, followed by ‘Materials science’ with 334 words, followed by ‘Ecology’ and ‘Biomedical

engineering’ with 324 words.

Number of Words in Full Text for Each Subject Category

Figure 4.10: Average number of words present in the full-text of ETDs for each subject
category
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In this section, we present the average number of words that are present in the full-text of

an ETD for a particular subject category. Figure 4.10 illustrates this count. The maximum

average number of words in the full-text are present in ‘Public administration’ with 45885

words, followed by ‘Teacher education’ with 42139 words, followed by ‘Adult education’ with

41457 words and ‘Educational leadership’ with 40223 words.

4.1.4 Number of Chapters in Each Subject Category

Figure 4.11: Average number of chapters in each subject category

In this section, we present the average number of chapters that exist for a particular subject

category. Figure 4.11 illustrates this count. The maximum average number of chapters are

present in ‘Organic chemistry’ followed by ‘Civil engineering’ and ‘Educational leadership’.

The number of chapters identified are heavily dependent on the correctness of the ITCore

segmentation tool.
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4.1.5 Number of Words in Each Chapter for Each Subject Cate-

gory

Figure 4.12: Average number of words present in chapters of ETDs for each subject category

In this section, we present the average number of words that are present in the chapters of

an ETD for a particular subject category. Figure 4.12 illustrates this count. The maximum

average number of words in the full-text are present in ‘Teacher education’ with 3689 words,

followed by ‘Educational psychology’ with 2976 words, followed by ‘Mathematics’ with 2970

words, and ‘Public administration’ with 2920 words.
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Chapter Segmentation

In this chapter, we first perform a comparison of the various tools described in the Review

of Literature chapter and then describe in depth the techniques that were most suited for

this task. In order to get our chapters, we first needed to divide the full-text into chapter

segments and then extract the text information from these segments. It is fairly challenging

to perform this segmentation into chapters, since PDFs do not store documents so that the

hierarchical organization of text is easy to determine.

5.1 Comparison of Text Extraction Tools from PDFs

By way of example, we considered an ETD titled ‘The Social Security Retirement Decision:

Maximizing Expected Discounted Worth’ [68]. While a number of ETDs across different

subject categories were randomly sampled and the results of the tool were manually inspected

to determine the best tool for our purposes, we use this ETD to represent the performance

of the various text extraction tools. Figure 5.1 is a snippet of the ‘Introduction’ chapter of

this sample ETD. We compare each of the tools using this PDF and attempt to identify the

tool that is best suited for our purposes.

72
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Figure 5.1: Snippet from the ‘Introduction’ chapter of a sample ETD [68]
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Figure 5.2: Snippet of the HTML generated page of the ‘Introduction’ chapter of a sample
ETD using PDFMiner
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5.1.1 PDFMiner

As mentioned in Section 3.1.1, PDFMiner has the ability to convert PDFs into different

file formats including HTML and XML. We utilized the ‘pdf2txt.py’ command line tool to

convert our sample PDF into HTML structure.

Figure 5.2 illustrates a sample of the HTML generated version of the PDF. Each of the

lines generated on this page is written using various HTML tags. The text content has been

enclosed within ‘span’ tags and contains different style attributes in order to achieve the

layout that has been indicated in Figure 5.3. As illustrated by this image, the markup is

fairly difficult for a human to read since each line is surrounded by HTML tags.

Figure 5.3: HTML markup of the ‘Introduction’ chapter of a sample ETD using PDFMiner

We had initially considered utilizing the PDFMiner tool to segment the PDF into chapters

as it has the ability to generate HTML structure of a page. We had planned to utilize the

BeautifulSoup library in order to parse the markup and collect all of the text tags. However,

on further analysis, we identified that the HTML generated by PDFMiner did not maintain

a hierarchical structure and could not be utilized to obtain chapters from the full-text. A
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possible work-around would have been to collect the various style attributes used in the

HTML and then identify the most frequently used style parameters to obtain the text body,

and use the larger font sizes specified as part of the style attributes to identify larger titles.

This could have potentially been used in order to identify the hierarchy of the document.

However, since this approach could lead to multiple incorrect cases, we continued to search

for better means to segment the PDF into chapters and have hence grouped PDFMiner

under the bracket of tools used to extract text from PDFs.

5.1.2 PyPDF2

As described in Section 3.1.1, PyPDF2 can extract information from PDFs, page by page.

We utilized the PdfFileReader class to load the PDF file object and then used the ‘getPage()’

method to select a specific page from the PDF. We ran a loop over the total number of pages

present in the PDF in order to get each of the pages. The ‘extractText()’ method was used

in order to extract text from the sample PDF shown in Figure 5.1.

Figure 5.4 shows the result obtained after using the ‘extractText()’ method to obtain the

textual data from the ‘Introduction’ chapter. As indicated by the figure, the results obtained

are fairly poor and many of the words have been merged together. This led us to conclude

that this tool was not suitable to extract text from the ETD.

5.1.3 PyMuPDF

PyMuPDF 3.1.1 has the ability to extract text content from PDFs as well as to get meta-

information such as Table of Contents using the ‘getToC()’ method.

Figure 5.5 shows the results obtained using the ‘getText()’ on a specific page of the sample
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Figure 5.4: Snippet of the ‘Introduction’ chapter of a sample ETD using PyPDF2

PDF. Our initial thought was to leverage the Table of Contents information and then attempt

to identify the different chapters by using the data provided by the ToC. A possible strategy

to achieve this would have been to use PyMuPDF to obtain the ToC along with PDFMiner

(the HTML format of the document) to select chapter headings from the ToC and then use

that information to identify the exact style attributes used for headings in a specific ETD.

However, when we performed further analysis, we found that there was a relatively low

number of PDFs that contained ToC information. Thus, we attempted to find better tools

to perform the segmentation into chapters.
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Figure 5.5: Snippet of the ‘Introduction’ chapter of a sample ETD using PyMuPDF

5.1.4 Pdftotext

Pdftotext 3.1.1 has the ability to extract text data page by page.

It stores the data from all the pages in a list. We can specify the index of a specific page in

order to get the text data from that page.

5.1.5 ABBYY Cloud OCR SDK

ABBYY Cloud OCR SDK as mentioned in Section 3.1.1, is a paid web based OCR service.

To utilize this tool, we performed the following steps.

1. Register on the ABBYY Cloud OCR SDK website
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Figure 5.6: Snippet of the ‘Introduction’ chapter of a sample ETD using pdftotext

Here, we utilized the ‘Free Trial’ option given by the website. This account permitted

us to process a total of ‘1660 pages’.

2. Create an application

This provided an Application ID and Application Password that was used in further

steps.

3. Clone and compile GitHub repository

In this step, we cloned the GitHub repository https://github.com/abbyy/cloudsdk-

demo-dotnet and then compiled the source code.

4. Use CLI to convert to DOCX

We follow the guidelines given in https://www.ocrsdk.com/documentation/quick-start-

guide/python-ocr-sdk/.

(a) Customize the URL for HTML requests

To perform this step, we modify the file ‘AbbyyOnlineSdk.py’. Here, we modify
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the ServerUrl according to the location center. In our case this becomes the

following.

ServerUrl = "http://cloud-westus.ocrsdk.com/"

(b) Set Environmental Variables

In this step, we set and export two environmental variables: ABBYY_APPID to

our Application ID, and ABBYY_PWD to the Application Password.

(c) Convert PDF file to DOCX To perform this step, we run the following command

python process.py -docx | -txt

/Users/palakhjude/Desktop/1501927.pdf

/Users/palakhjude/Desktop/1501927.docx

Our initial plan was to use this tool to identify structural information from the PDF and

thereby segment it into chapters. To perform this, we considered converting the PDF into

DOCX format and then get the internal XML structure of the DOCX file to identify the

hierarchy of the PDF file. Figure 5.7 illustrates the DOCX page generated for the ‘Intro-

duction’ chapter. However, on further investigation, we noticed that this XML is not always

well formed and therefore continued to look for other segmentation tools.

This tool also enables extraction of the text from a PDF in .txt format. Figure 5.8 illustrates

the .txt page generated for the ‘Introduction’ chapter. While the text extracted is good,

this tool is paid and the trial version allows a limited number of pages. Thus, we decided

against using this for text extraction.
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Figure 5.7: Snippet of the DOCX generated for the ‘Introduction’ chapter of a sample ETD
using ABBYY Cloud OCR SDK
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Figure 5.8: Snippet of the .txt generated for the ‘Introduction’ chapter of a sample ETD
using ABBYY Cloud OCR SDK

5.1.6 Textract

As mentioned in Section 3.1.1, this tool offers a command line interface as well as the ability

to extract text using the Python package. For our evaluation of this tool, we utilize the

Python package.
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Figure 5.9: Snippet of the ‘Introduction’ chapter of a sample ETD using textract
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Figure 5.9 illustrates the result obtained after extracting text from the sample PDF. This tool

has a very similar aim as compared to Apache Tika. The tool doesn’t provide hierarchical

information about the document layout.

We used the process method from the textract Python package. The method accepts a

number of parameters including a mandatory parameter giving the path of the PDF file. It

also accepts optional parameters such as ‘method’ which enables a user to specify a particular

method to be used to parse the PDF. It contains other optional parameters such as ‘encoding’

and ‘extension’ which allow users to specify the output encoding and the file’s extension if

the filename does not explicitly state the name of the extension. It also allows users to

specify the ‘language’ for other language PDFs and internally uses Tesseract OCR to extract

the text.

5.1.7 Tika-Python

As mentioned in Section 3.1.1, Tika-Python provides the ability to extract text from PDFs

utilizing the parser interface.

Since this Python library is a Python binding to the Apache Tika REST services which are

in Java, it requires Java 7+ to be installed on a user’s system. This is required since the

Tika-Python library needs to run the Tika REST server in the background.

This parser interface also has the ability to output the content in the form of XHTML.

However, it did not maintain hierarchical information of the document, thus we did not

consider this tool for the purpose of segmenting the PDF into chapters.



5.1. Comparison of Text Extraction Tools from PDFs 85

Figure 5.10: Snippet of the ‘Introduction’ chapter of a sample ETD using Tika-Python
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Figure 5.10 illustrates the result obtained after extracting text from the sample PDF. After

testing the Tika-Python library on multiple PDFs, we found that it gave consistently good

results. Thus, we make use of this library for the purpose of extracting text from the ETDs.

5.2 Comparison of Segmentation Tools

For the purpose of this research, it was necessary for us to identify a tool that would enable

us to segment our full-text ETD document into chapters. Considering the varied styles that

authors employ while drafting ETDs, this task is non-trivial. Older heuristic based methods

attempted to identify the boundaries of chapters by utilizing font information such as font

style and font size. However, these methods do not work in all cases.

In this section, we evaluate the performance of two such tools. The first is Grobid, which

is a machine learning library, while the second is ITCore (Intelligent Textbooks Core) that

has been developed in Java.

5.2.1 Grobid

As mentioned in Section 3.1.2, Grobid is a machine learning library that extracts and parses

PDFs into XML/TEI documents. The output XML generated should maintain the hierarchy

of the document.

As part of the project for the course CS6604: Digital Libraries [6], we extracted and parsed

data from 7033/13071 dissertations and 11674/17891 theses from the Virginia Tech collec-

tion.

As part of a post-processing step, we identified the boundaries of the chapters from the

XML/TEI documents that were generated by Grobid. Figure 5.11 indicates the number of
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Figure 5.11: Number of chapters identified for the Computer Science edpartment using
Grobid

chapters identified for the Computer Science department from the Virginia Tech collection.

The x-axis indicates the number of chapters and the y-axis indicates the number of docu-

ments. As seen, the number of chapters extracted range from 1 to 313. A similar range of

chapters were extracted across all the various departments that exist in the Virginia Tech

ETD corpus. This indicated to us that Grobid was not the best tool for this task as it

segmented the documents into much smaller chunks than chapters.

5.2.2 ITCore (Intelligent Textbooks Core)

ITCore (Intelligent Textbooks Core) [5] is a Java based tool that uses information from the

Table of Contents to segment the full-text PDF into small segments which are also stored

as PDFs.

The authors of the repository provide a web interface https://intextbooks.science.uu.nl/ that

can be used to quickly test the working of this tool. However, this web interface only returns

the tei.xml file and does not give us the segmented PDF files. The link to send the resultant

tei.xml file is emailed to the address provided by the user.

We cloned the code base from the GitHub repository https://github.com/intextbooks/ITCore.

In order to run this code base locally, we had to ensure that we had Java and MySQL set
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Figure 5.12: Table of Contents of the sample ETD titled ‘Learning And Inference Algorithms
for Dynamical System Models Of Dextrous Motion’ [69]

up on our system. We ran the intextbooks_db.sql SQL file to generate the database and

table schema as per the requirements of the project. The code base is a Maven Project. We

ensured that all the dependencies were downloaded appropriately on our local system. It

was also necessary for us to add the ‘stanford-corenlp-3.9.2-models.jar’ file to our classpath

in addition to the other dependencies present in the pom.xml file.

The default implementation leverages the information present in the Table of Contents using

a rule-based approach with the aim of identifying potential segments from the PDF. This

approach was developed with the intention of segmenting chunks from books. The output

of this tool is a number PDFs of each of the segments that have been identified. We tested

this tool on the sample ETD utilized to compare the extraction techniques in Section 5.1,

however, the tool was unable to process this PDF. Thus, we selected another ETD titled

‘Learning And Inference Algorithms for Dynamical System Models Of Dextrous Motion’ [69]
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<body>
<div type="contents">

<list>
<item>1 introduction<ref target="seg_1">1</ref>
</item>
<list>

<item>1.1 problems of interest<ref target="seg_3">1</ref>
</item>
<list>

<item>1.1.1 robotic minimally invasive surgery (rmis)<ref
target="seg_5">1</ref>↪→

</item>
<item>1.1.2 temporal textures in video<ref

target="seg_7">3</ref>↪→

</item>
</list>
<item>1.2 problems we are trying to solve<ref

target="seg_9">4</ref>↪→

</item>
<item>1.3 organization<ref target="seg_11">5</ref>
</item>
<item>1.4 contributions of this dissertation<ref

target="seg_13">12</ref>↪→

</item>
</list>

</list>
</body>

Listing 1: Snippet of the TEI XML file as generated by ITCore for Chapter 1

to evaluate the performance of this tool.

Figure 5.12 illustrates the first two pages of the Table of Contents of our sample PDF. As

is visible in this image, there are three chapters on these pages: ‘Introduction’, ‘Hidden

Markov Models’, and ‘Factor Analyzed Hidden Markov Models’. Each of these chapters

contains sections and sub-sections that have been indicated by indentations in the Table of

Contents.
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As indicated by Listing 1 and Figure 5.12, the tool accurately identified the hierarchy of

the chapter and its sections. However, as per the default implementation, it considered

each of the identified elements present in the TEI/XML file to be a new segment. Thus, it

generated multiple PDFs (some with overlapping content in cases where the new section did

not appear on a new page), one for each of the segments present in the TEI/XML file. This

tool identified segments that are more granular than chapter-level segments.

Considering that for the purpose of our research we are required to segment the ETD at the

chapter level, we inspected the code in an attempt to identify a way to change this level of

granularity. We found that the method performCleanPDFsplitHelper was responsible for

determining the level of the segment. Thus, we modified the code to ensure that it proceeds

further to generate the segmented PDFs only if this level is less than or equal to 1. While

this did not modify the resultant TEI/XML file, it ensured that the segmented PDF files

generated were restricted to only those segments that appeared at the topmost level of the

hierarchy. We hypothesize that most well formatted table of contents pages would ensure

that only the chapter names appear at the topmost level.

Since we were dealing with thousands of ETDs, we decided to create a shell script that

would loop over a given directory and generate segmented chapter PDFs for each for the

ETDs present in that directory; see Listing 2.

Figure 5.13: Number of chapters identified for the Computer Science subject category using
IT Core
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#!/bin/bash

BASE_DIR="/Users/palakhjude/Desktop/PQDT_Full_Text_Data/${1}"

BASE_OUT_DIR="/Users/palakhjude/Desktop/PQDT_Segments/${1}"

dirlist=(`find "$BASE_DIR" -type f -name "*.pdf"`)

for FILENAME in "${dirlist[@]}"
do

echo "$FILENAME"
java -Dfile.encoding=UTF-8 -classpath $FILENAME $BASE_OUT_DIR

sleep 5s
done

Listing 2: Shell script to iterate over all folders in a directory and run the ITCore tool

We ran this script for all of the files in our PQDT data collection. Since this tool uses a

rule-based approach to identify chapters and is heavily dependent on the table of contents,

a large number of our ETD files were skipped. Some of the documents were skipped due to

a lack of page numbers, some due to a missing/inappropriate Table of Contents page, and

some due to a Table of Contents page that did not contain the correct title as prescribed by

the list of titles that could be present such as ‘Contents’, ‘Index’, ‘Table of Contents’, etc.

However, given that segmentation is a complex research problem in its own right, for the

purpose of this research, we utilize the ones that were extracted as part of this tool.
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(a) Chapter 1: First and Last Page

(b) Chapter 2: First and Last Page

(c) Chapter 3: First and Last Page

Figure 5.14: First and last pages of the chapter segmented PDFs of the sample ETD titled
‘Learning And Inference Algorithms for Dynamical System Models Of Dextrous Motion’ [69]
using the ITCore tool
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Figure 5.13 illustrates the number of chapters extracted for the ‘Computer Science’ subject

category from the PQDT dataset. The x-axis indicates the number of chapters while the

y-axis indicates the number of documents. As can be seen, the number of chapters extracted

range from 1 to 123. However, if we look closely, the bulk of the number of chapters extracted

is between 6-10 chapters. This is a reasonable number and thus, we decided to utilize this

tool for our chapter segmentation.

Figure 5.14 illustrates the first and last pages of the first three chapters as identified and

segmented by this tool. As is seen here, the performance of the tool is good when the Table

of Contents is well formatted as is the case with this sample ETD. A randomly selected

manual inspection of multiple PDFs indicated that the quality of the other extractions was

also fairly good.
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Summarization

As part of some of our initial experiments, we utilized the full-text data from the Electronic

Theses and Dissertations to train our models. However, some of the documents are very

long. This could lead to a loss of important information when we generate lower dimensional

Doc2Vec data. Thus, we wanted to evaluate the performance of the classification model

given a summarized version of the full-text data.

To generate these summaries, we summarize each of the chapters that were segmented from

the ETD and then concatenate these summaries. We do not summarize the full-text as

a whole since each chapter may contain varied information and we wanted to get the key

aspects from each of the chapters to ensure that all of the key concepts from the ETD as a

whole were represented.

To generate these summaries we use the summarization implementations provided by gensim

[54] and sumy [40]. As discussed in Section 3.2.1, we generate extractive summaries using

TextRank using the implementation from gensim. Similarly, other types of extractive sum-

maries – from LexRank, Latent Semantic Analysis, and Luhn’s Algorithm – were generated

using the sumy library.

In this chapter, we present the results obtained for each of these techniques. We consider

a sample ETD titled ‘Beech Bark Disease: The Relationship between Scale and Neonectria

Lesion Densities in an Aftermath Forest’ [27].

94
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Figure 6.1: Chapter 1: Page 1 of the sample ETD [27]
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Figure 6.2: Chapter 1: Page 2 of the sample ETD [27]
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For each of the methods mentioned in this section, we generate summaries separately and

store to disk each of the summaries across all of the various techniques. The concatenation

of the summaries is performed as part of a later step in the pipeline.

6.1 TextRank

In this section, we present the summaries generated for the sample ETD by changing different

parameters such as the word count and ratio of text to be kept while generating the summary.

We also present the results obtained from the top set of keywords used by the TextRank

algorithm.

6.1.1 Summaries

We use the summarization methods from gensim's summarizer package. The parameters

that this method accepts include:

1. text: This parameter accepts the text to be summarized.

2. ratio: This parameter accepts a number between 0 and 1. It represents the proportion

of the text sentences from the original text that should be retained for the summary.

The default value is 0.2. We experiment with this default value and with a value of

0.5.

3. split: This parameter accepts a Boolean value. If True, it returns a list of sentences,

otherwise, joined strings are returned.

4. word_count: This parameter represents the number of words to be present in the

output summary. If this parameter is provided along with the ratio value, the ratio
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value will be ignored.

Figure 6.3 displays the summary generated using the default parameter values of the sum-

marizer. The default parameters include a ratio of 0.2, split value of False, and no word

count provided.

Figure 6.3: Summary of the sample ETD generated using TextRank with ratio=0.2

For this set of summaries, we set the word count to 100, split value to False, and have no

ratio value. Figure 6.4 displays the summary generated using these parameters.

Figure 6.4: 100 word count summary of the sample ETD generated using TextRank
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6.1.2 Keywords

Figure 6.5: Keywords of the sample ETD generated using TextRank

We use the keywords method from gensim's summarizer package. The parameters that this

method accept include:

1. text: This parameter accepts the text for which keywords are to be generated.

Figure 6.5 represents the keywords generated using this method.

6.2 LexRank

We use the LexRankSummarizer from the sumy.summarizers.lex_rank module along with

the PlaintextParser from the sumy.parsers.plaintext module and the English Tokenizer

from the sumy.nlp.tokenizers module.
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The LexRankSummarizer accepts the document text to be summarized as well as the number

of sentences to be generated by the summarizer. For the purpose of these summaries, we set

the number of sentences to 10.

Figure 6.6 represents the summary generated using this method.

Figure 6.6: Summary of the sample ETD generated using LexRank

6.3 Luhn’s Algorithm

We use the LuhnSummarizer from the sumy.summarizers.luhn module along with the

PlaintextParser from the sumy.parsers.plaintext module and the English Tokenizer from

the sumy.nlp.tokenizers module.

The LuhnSummarizer accepts the document text to be summarized as well as the number

of sentences to be generated by the summarizer. For the purpose of these summaries, we set

the number of sentences to 10.

Figure 6.7 represents the summary generated using this method.
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Figure 6.7: Summary of the sample ETD generated using Luhn’s Algorithm

6.4 Latent Semantic Analysis (LSA)

We use the LsaSummarizer from the sumy.summarizers.lsa module along with the Plain-

textParser from the sumy.parsers.plaintext module and the English Tokenizer from the

sumy.nlp.tokenizers module.

We extract two forms of summaries using this technique, one with stopwords and one without.

The LsaSummarizer accepts the document text to be summarized as well as the number of

sentences to be generated by the summarizer. For the purpose of these summaries, we set

the number of sentences to 10. This default setup does not make use of stopwords.

Figure 6.8 represents the summary generated using this method.
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Figure 6.8: Summary of the sample ETD generated using LSA

For the alternative approach that uses stopwords, we use the Stemmer from the sumy.nlp.stemmers

module along with the get_stop_words method from the sumy.utils module.

Figure 6.9 represents the summary generated using this method.

Figure 6.9: Summary of the sample ETD generated using LSA with stopwords
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Classification

In this chapter, we first discuss an overview of the system pipeline. This is followed by a

discussion of the various embedding models that were generated for the classification tasks

performed on the PQDT dataset. Next, we describe the different methods used to work with

the multi-labeled nature of our classification task. We then discuss the Machine Learning

baselines that were created as part of the CS6604: Digital Libraries [6] class project. The

dataset used for this study comprised of ETDs only from Virginia Tech. We then discuss

the Machine Learning and Deep Learning models that were trained using the PQDT dataset

that is comprised of ETDs from various universities. We also generate summaries of the

chapters of ETDs with the intention of combining the summaries and using the result as

input to our models. These summaries were also embedded using the techniques discussed

in Section 7.2. We conclude by describing the various evaluation metrics that will be used

for different tasks.

7.1 System Design Overview

In this section, we describe the pipeline used to train and test our classifiers using the PQDT

dataset. All of the relevant steps have been discussed in Section 7.4.

We divide the pipeline into two main processes:

103



104 Chapter 7. Classification

1. PDF extraction and embedding process

2. Classification models training and testing process

7.1.1 PDF Extraction and Embedding Process

The first process of our pipeline involves segmenting the ETD into chapters, extracting data

from the full-text and chapter ETDs, and embedding this data.

Figure 7.1: System overview: Extraction and embedding process

Figure 7.1 is a diagrammatic representation of this process. As indicated by this figure, given

an ETD in PDF format, we obtain chapters from the ETD using the ITCore tool. We then

extract the text from both the full-text ETD as well as the chapters using Tika-Python.

Details about these methods have been discussed in depth in Chapter 5.

Once this text data is obtained, we embed this data using Doc2Vec, and the resultant
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embeddings of both the chapters as well as the full-text are stored to disk. This data

is retrieved in a later step while training or testing the classification model. We further

describe our embedding process in Section 7.2.

7.1.2 Classification Models Training and Testing Process

This section describes the flow of our classification training and testing process.

Figure 7.2: System overview: Classification workflow

Figure 7.2 gives a detailed representation of the sub-steps involved in this process. Given

the entire PQDT Dataset, we first extract the full-text and chapter data from the PDF of
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all of the ETDs and embed them as described in Section 7.1.1. We then split this data into

train and test sets such that there is an 80-20% split in each subject category.

Our pipeline consists of two main experimental setups. The first setup uses the full-text

data alone to train the classifiers. This is performed in two variants, one with 50% subset of

randomly sampled ETDs (per subject category) and the other consisting of all the ETDs in

our corpus. The second setup uses a smaller subset of the dataset. This subset only consists

of ETDs for which chapters were successfully extracted with the ITCore tool.

Table 7.1: Counts of ETDs in train-test splits for the different experimental setups

Experimental Setup Total ETDs Train set Test set

Setup 1: Full-text (All data) 9298 6964 2334

Setup 1: Full-text (Half data) 6458 4124 2334

Setup 2: Chapter subset data 4034 3009 1025

Table 7.1 lists the number of ETDs present in the train/test splits for each of the different

setups. Since we randomly sample ETDs per subject category while generating the training

dataset for Setup 1: Full-text (Half data), the number of unique ETDs picked up as

per our sampling causes the number of ETDs present in our halved dataset (4124) to be

greater than half the total number of unique ETDs in the full dataset (3482). We keep the

same test set throughout for Setup 1.

In the second setup, we generate summaries for each of the extracted chapters of the ETD

and then combine them together. These combined summaries are then embedded and saved

to disk. The saved embedded summaries are used to train the different classifiers.

In both of the setups, we test our classifier performance against the full-text ETD labels to

determine the best models. We then use these best performing models to generate subject
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category labels for chapters of ETDs that are present in the test set for each of the individual

experimental setups.

7.2 Embeddings

In this section, we discuss the word and document embedding models we train as part of

this research. Due to the nature of our ETD corpus which contains a vast amount of domain

specific terms, we wanted to compare the performance of our classifiers with both pre-

trained word/document embedding models and corpus specific re-trained word/document

embedding models.

As discussed in Section 2.1.1, the fastText word embeddings [24] [7] have the best per-

formance among the three word embeddings described. Thus, we utilize the fastText word

embeddings to create vector representations of our keywords, title, and other metadata fields.

As indicated in Section 2.1.2, the word embedding models are not ideal for documents of

longer length such as ETDs, since the order of words is not taken into consideration causing

loss of semantic information. Thus, for longer fields such as full-text and abstract of the

ETDs, we use Doc2Vec [26] embeddings.

For training these embeddings, we use the Penn State University dataset, the University

of Illinois at Urbana-Champaign dataset, and the Virginia Tech ETD dataset. The pre-

processing needed for fastText, as well as Doc2Vec, differs; we illustrate the approaches used

for both.

With an intent to compare the performance of our classifiers with different data parts, we

divide the PQDT dataset into three different segments. The data from each of these subsets is

embedded using either the pre-trained or re-trained fastText or Doc2Vec embeddings before
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being utilized by the classifiers. These subsets of the PQDT dataset include:

1. All of the full-text data from the PQDT dataset

2. Randomly sampled 50% of the training dataset that was formed for the previous subset

of full-text data from the PQDT dataset

3. A subset of the original dataset that has chapter segments that were identified by the

ITCore tool as described in 5.2.2. Additionally, we perform experiments using the

chapter summaries combined together for the chapters in this subset.

7.2.1 Data Pre-processing

Here, we discuss the data pre-processing required before the fastText and Doc2Vec models

are trained on our corpus.

FastText

The full-text extracted using Tika-Python contained extra characters that are not needed

while training the fastText word embeddings. Thus, we use regular expressions in order

to strip the text of these unwanted characters. The characters that are removed include

non-alphabet and non-newline characters. In addition to this, we convert all of the text to

lower case. The output of this step is saved to disk and utilized to train the fastText model.

Doc2Vec

Here we utilize gensim's ‘simple_preprocess’ method from the utils package. It tokenizes

each given sentence, converts it to lower case, and returns a list of strings as the final result.
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The output of this step is saved to disk and utilized to train the Doc2Vec model.

7.2.2 Embedding Parameters

In order to help us determine the most suitable set of parameters for our classification task,

we train multiple sets of fastText and Doc2Vec embeddings by varying the parameters. We

divide the data into three groups:

1. Virginia Tech ETDs

2. ETDs from Penn State and University of Illinois at Urbana-Champaign

3. ETDs from Penn State, Virginia Tech, and University of Illinois at Urbana-Champaign

FastText

Table 7.2: Set of parameter variations for fastText

Parameter Name List of values
Epochs 25, 50, 100

Word N Grams 3, 5
Dimensions 100, 200

Each set of parameters in Table 7.2 is used on each dataset permutation mentioned earlier

for a total of 3 x 12 models.

Doc2Vec

Each set of parameters in Table 7.3 is used on each dataset permutation mentioned earlier

for a total of 3 x 12 models.
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Table 7.3: Set of parameter variations for Doc2Vec

Parameter Name List of values
Epochs 25, 50, 100
DM 0, 1

Dimension 100, 200

7.3 Multi-Label Classification

In the case of text classification, a single document can belong to multiple categories at

once. In the Virginia Tech ETD collection as well as the PQDT dataset, a single thesis/dis-

sertation can possibly belong to multiple ProQuest subject categories at once. For example,

a dissertation can be classified under ‘Statistics’ as well as ‘Computer Science’. Thus, the

classification problem that we attempt to solve as part of this research extends beyond multi-

class classification wherein a single document can only belong to a single class-label. Most

of the traditional Machine Learning algorithms have been built for single-label classification

problems. Thus, some of the techniques used to solve the multi-label classification problem

involve converting this multi-label problem into multiple single-label problems and then uti-

lizing the existing single-label algorithms. For this research, we use the BinaryRelevance and

LabelPowerset approaches for the Virginia Tech dataset, and the LabelPowerset approach

for the PQDT dataset. Details about each of these techniques is described in Section 2.2.

7.4 Virginia Tech Dataset

In this section, we discuss the methodology used to train different Machine Learning classi-

fiers as part of the course project for CS6604: Digital Libraries [6]. The methods used here

form the basis for further experiments performed.
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Metadata and MongoDB

We represent an individual ETD exported from the Virginia Tech repository as a folder

consisting of several content and metadata files.

The example ETD represented by Figure 7.3 contains two descriptive metadata files:

dublin_core.xml and metadata_thesis.xml. The first is described with Qualified Dublin

Core (QDC) metadata terms, while the second supplements the first with thesis-specific

terms not available in the QDC element set. In this example, the number 83391 comes from

the handle, or persistent ID, of the item in the repository1. The contents file describes the

remaining non-metadata files. It is described in Section 7.4 with multiple examples.

83391

contents

handle

Koehn_TE_D_2016.pdf

Koehn_TE_D_2016.pdf.jpg

Koehn_TE_D_2016.pdf.txt

metadata_thesis.xml

dublin_core.xml

Figure 7.3: Folder contents of the dissertation with handle number 83391

To process the metadata efficiently, we combined the two metadata files and then stored the

result in a MongoDB database within a metadata collection. We further supplement the

metadata with two additional elements, searchTitle and searchAuthorStr, which contain

normalized versions of the title and author strings, for easier searching. These fields were

created by removing all punctuation from the original title and contributor-author fields
1The persistent handle for this item is http://hdl.handle.net/10919/83391

http://hdl.handle.net/10919/83391
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and then converting the entire string to lower case. Figure 7.4 is an example of a snippet of

the metadata entry for a thesis.

{
"contributor-author": "Aatique, Muhammad ",
"title-none": "Evaluation of TDOA Techniques for Position Location in CDMA

Systems ",↪→

"searchAuthorStr": "aatique muhammad ",
"searchTitle": "evaluation of tdoa techniques for position location in cdma

systems "↪→

}

Figure 7.4: Entry in MongoDB with search fields for a sample ETD

Cross Referencing ETDs in VTechWorks and PQTD

We made use of three methods for connecting an ETD in VTechWorks with its counterpart

in the PQTD.

1. Utilizing searchTitle

Either a full string or partial string match (by matching either the initial 60 characters

or the trailing 60 characters) was performed to identify the handle number of the record

from MongoDB. The handle number was then used to copy the full-text PDF as well

as additional metadata files from VTechWorks.

2. Utilizing searchAuthorStr

A full string match was performed to identify the handle number of the document for

the given ProQuestID. The method ensured that there was only a single result for

the given ProQuestID author match—since some authors may have published both a

master’s thesis and a doctoral dissertation. These cases were resolved separately.

A potential improvement to better identify documents by the author’s name would be
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to make use of author name disambiguation and then store the results of the same as

separate fields in MongoDB.

3. Manually identifying the handle number to copy full-text

A small subset of the ProQuest metadata files contained titles that were inconsistent

with those in the Virginia Tech ETD collection. In one example, we found an ETD

in the ProQuest collection with the title Case Study of Academic Achievement Teams

in Stellar County. It had no match in the VTechWorks Collection. So we manually

searched VTechWorks for documents using that title as our search string. We found

the correct document in VTechWorks because the ProQuest title was the same as the

title on the cover sheet of the document. But as it turned out, the item metadata in

VTechWorks listed the title as District Leadership Practices that Enhance and Sustain

Student Achievement at the Elementary School Level Through the Use of the Academic

Achievement Team, which is completely different. Such cases failed to be retrieved

by the aforementioned methods. In order to deal with this case, once this title was

matched, the handle number was used to copy all the ETD data from the Virginia

Tech ETD collection into the ProQuest folders.

Prepare PDF Files for Full-text Extraction

We use Grobid to extract full text from PDF documents. Some of the Virginia Tech ETDs

have more than one PDF file associated with the ETD. This could be either because they

have supporting documents, Institutional Review Board (IRB) protocols, separated chapters,

and/or separated front-matter or back-matter. We identified three cases: single-PDF items,

single-PDF items with supporting documents, and multiple-PDF items. Each is described

below.
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Single PDF items

The easiest case to process is an ETD with only one PDF. An example is shown in Figure 7.5.

These items contain only a single PDF file that can be easily identified. For each of these

PDF files, we use Grobid to extract full text.

Figure 7.5: Contents file of an ETD folder with a single PDF

Single PDF items with supporting documents

As shown from Figure 7.6, some items contain more than a single PDF file. The additional

PDF files are typically supporting documents that do not contribute to the full-text of the

ETD.

73236

Wagstaff_JF_D_2015.pdf

Wagstaff_JF_D_2015_support_3.pdf

Figure 7.6: PDF files of the dissertation with handle number 73236 with support PDF

Figure 7.7: Contents file of an ETD folder with a single PDF along with supporting docu-
ments

As illustrated by Figure 7.7, the contents file identifies the main PDF with the bundle:ORIGINAL

primary:true tag. For each of these PDF files, we use Grobid to extract full text as we did

with the single-PDF items.
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Figure 7.8: Special Case: Contents file of an ETD folder with a single PDF along with
supporting documents

Figure 7.8 shows a special subset of this category wherein the contents file does not directly

indicate the full-text PDF document. In this example, there are two PDFs annotated with

the bundle: ORIGINAL tag. These additional files could be IRB documents, the author’s

CV, permission files, or fair use documents. To identify the correct document for this case,

the contents file was manually processed and the additional documents were removed.

Multiple PDF items

Some items contain multiple PDF files wherein each file represents a chapter of the ETD, or

a group of chapters is coupled together. Most of these files contribute to the full-text of the

ETD. Figure 7.9 is an example of one such ETD that contains separated chapters. For this

research, the appendices have not been included for any of the ETDs (if present separately).

26928

01Chapters1--2--3.pdf

02Chapter4.pdf

03Chapter5.pdf

04Appendices.pdf

Figure 7.9: PDF files of the dissertation with handle number 26928 with multiple PDFs

To collect these PDFs together for full-text extraction, the contents file was manually

viewed and the individual PDFs were verified to ensure that only relevant PDFs were being

collected for processing. These files were then renamed to have the handle number added as
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Figure 7.10: Contents file of an ETD folder with multiple PDFs

a prefix to the document name before we extract the full text.

7.4.1 Data Pre-Processing

To prepare the data for our classification models, we need to perform certain pre-processing

steps to ensure that there are no stop words, the correct features have been selected, etc.

Formatting Classification Labels

The metadata contained classification subjects from the PQTD system that were not re-

stricted to the top 30 categories selected by us. Due to this, we needed to modify the

ProQuest subject categories assigned to each of the metadata records to ensure that only

categories from the top 30 categories are used.

Splitting Data

We split the data into an approximate 80–20 distribution per category. It was necessary to

ensure that there is equal representation from each subject category. Thus, the split was
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performed within each category and the training and test files were then added together. In

addition to this, due to the multi-labeled nature of the subject categories, it was necessary to

perform a check to ensure that the file does not get included in both the train and test sets.

For example, an ETD may appear under Statistics, and as part of the random selection for

the training set. At the same time, if this record also exists under Computer Science, it may

be selected randomly to be part of the test set. Such situations must be avoided. In order to

achieve this, we grouped all the ETDs that had multiple labels (and existed under different

subject categories) and ensured that only this subset would be picked for the training set.

The test set was selected from the remaining data set. While the test set data contains

ETDs with a single-label, the model was trained using multiple labels and is therefore able

to predict multiple labels for ETDs.

Storing Consolidated Metadata in MongoDB

The previous metadata collection that was created contained only the VTechWorks meta-

data. To perform analysis on all our metadata, we created a new metadata_consolidated

collection. This consolidated collection contains all of the fields from both ProQuest meta-

data as well as VTechWorks metadata. The ProQuest metadata fields have been prefixed

by “PQ” whereas the VTechWorks metadata fields have been prefixed by “VT.” Certain

fields such as title and degree exist in the metadata of both ProQuest and VTechWorks.

Figure 7.11 is an example of a snippet of the metadata entry for a dissertation from the

metadata_consolidated collection.
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{
"PQ_Classification" : "['0463: Statistics', '0478: Forestry', '0799: Remote

sensing']"↪→

"PQ_Title" : "Fourier Series Applications in Multitemporal Remote Sensing
Analysis using Landsat Data",↪→

"VT_Title" : "Fourier Series Applications in Multitemporal Remote Sensing
Analysis using Landsat Data",↪→

"VT_degree_level" : "doctoral",
"PQ_Degree" : "Ph.D."

}

Figure 7.11: Entry in the metadata_consolidated MongoDB collection for a sample ETD

Data Cleaning

To ensure that the data fed to the classification models is clean, we performed certain data

cleaning steps:

1. Ensure that all of the date fields are represented in the same ISO format

yyyy-MM-dd'T'HH:mm:ss.SSS'Z.

2. Remove all stop words using the set of English stop words that are part of the NLTK

[52] package as well as remove all punctuation.

3. Perform lemmatization using the WordNetLemmatizer from NLTK. The lemmatization

was performed on selected features of the ETD such as title and abstract. Features

such as author, department, degree name were not lemmatized. These features were

manually selected.

4. Convert all the text to lower case.
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Dealing with Missing Values

After splitting the data and counting the number of missing values, it was found that

the “PQ_Advisor” field and the “VT_contributor_committeechair” had a large number

of missing values. After performing a comparison, it was found that only 1 ETD had

no value for each of these fields. Thus, we created a “Derived_Advisor” field that cap-

tures the non-null values from either of these fields. If both exist, the value from the

“VT_contributor_committeechair” field was selected.

For other fields, the number of missing values was not very large. For these fields, we used

“U” to fill in the null value.

Feature Selection

We performed manual feature selection to decide which attributes are to be retained in

order to train the model. The final features that were used to train the model are listed in

Table 7.4.

Table 7.4: Set of features used to train the model

PQ Metadata VT Metadata
PQ_Author VT_Subjects
PQ_Degree VT_Title
PQ_Identifier_keyword VT_Type
PQ_Number_of_pages VT_contributor_author
PQ_Publication_year VT_contributor_department
PQ_Title VT_degree_level

VT_degree_name
Derived_Advisor* VT_description_abstract

Formatting class labels for the classification task

To utilize the given multi-label ProQuest subject categories along with any of the multi-label
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Table 7.5: Example ETD with multiple subject categories

Title Primary subject category
A history of the outplacement
industry, 1960–1997: From job
search counseling to career man-
agement. A new curriculum of
adult learning

Adult education (0516)

Secondary subject categories
Continuing education (0516)

Management (0454)
American history (0337)

approaches mentioned above, it was necessary to ensure that the data was formatted in a

manner that could be understood by the classifiers. For this purpose, we transformed a given

“PQ_Classification” field. As part of this process, we generated 30 class label columns for

each of the ETD records which represented the top 30 subject categories. Figure 7.12 shows

5 transformed records with the class labels represented as “1” if present and “0” if absent.

Similarly, Figure 7.13 shows five transformed records wherein instead of simply indicating

the presence or absence of a class label, we assign a probability score to each of the class

labels present for a given ETD. As indicated in Table 7.5, this could further be extended to

give a higher score to the “Primary subject category” and a lower equally divided score to

the remaining “Secondary subject categories.”

Figure 7.12: Sample 5 ETD records with transformed class labels
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Figure 7.13: Sample 5 ETD records with transformed class labels (with probability scores)

Machine Learning Algorithms

In text classification, some of the common algorithms used include Logistic Regression,

Support Vector Machine, and Random Forest. For this dataset, we perform experiments

using these three algorithms.

Logistic Regression

Due to some issues with the parameters when training for LabelPowerset, we have only

considered Logistic Regression in the case of the BinaryRelevance approach. However, there

were some convergence issues when using this approach with GridSearch. Thus, we have

used default values as indicated in Table 7.6.

Table 7.6: Default parameter values utilized for Logistic Regression

Parameter Name Value
Penalty L2
C 1.0
Solver liblinear
Maximum Iterations 100

Support Vector Machine

The parameters selected by GridSearch for the LabelPowerset approach have been indicated

in Table 7.7. The parameters for which values have not been mentioned in the table have
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default values assigned.

Table 7.7: Parameter values selected for Support Vector Machine

Parameter Name Value
Kernel Linear
C 5
Gamma Auto
Class_Weight Balanced

Random Forest

The parameters selected by GridSearch for the LabelPowerset approach have been indicated

in Table 7.8. The parameters for which values have not been mentioned in the table have

default values assigned.

Table 7.8: Parameter values selected for Random Forest

Parameter Name Value
n_estimators 10
Criterion Gini
Random State 10

7.5 PQDT Dataset

In this section, we discuss the methods and system design for the Machine Learning and

Deep Learning models trained on the PQDT Dataset. This dataset contains the full-text

PDF along with metadata information. The additional auxiliary step of cross referencing

the ETDs in VTechWorks and PQDT is not performed. Similarly, full-text extraction is

performed using Tika-Python as described in Section 5.1.7.

Due to the relatively poor performance of the probability scores variant of our experiments

with the Virginia Tech dataset, we decided to focus on the presence-absence variant of the
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experiments for this dataset. An example, for 5 ETDs with transformed labels, appeared in

the previous section in Figure 7.12.

7.5.1 Data Pre-processing

In this section, we describe the various data pre-processing steps that are performed on the

PQDT dataset.

Similar to the steps performed for the Virginia Tech dataset, as discussed in Section 7.4.1,

we perform the Formatting Classification Labels and Splitting Data steps for this

dataset as well. However, here we only consider 28 out of the original 30 subject categories

due to a limited number of ETDs being present in the two categories that are dropped.

These categories are: ‘Mechanics’, and ‘Management’. A list of the 28 subject categories

along with the number of ETDs associated with each of them has been illustrated in Table

4.9.

Data Cleaning

The steps performed to clean the PQDT dataset include the following.

1. Remove all stop words using the set of English stop words that are part of the NLTK

package, as well as remove all punctuation.

2. Perform lemmatization using the WordNetLemmatizer from NLTK. The lemmatization

is performed only on non-NER fields.

3. Convert all the text to lower case.
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Feature Selection

We perform manual feature selection to identify the ones to be included to train the models.

The final set of features is shown in Table 7.9.

Table 7.9: Set of features used to train the model

Advisor Commitee
Department Keywords
School Abstract
Author Degree_obtained
Full Text Number of Pages
Title Year

For the models built using the combined summarized chapter data, we do not use the ‘Full

Text’ as a feature, but instead, use one of the different summary variants. The list of these

summary features appears in Table 7.10

Table 7.10: Set of combined chapter summary features used to train the model

gensim's TextRank Generated Summary with ratio of 0.2
gensim's TextRank Generated Summary with 100 words
sumy's LexRank Generated Summary
sumy's Generated Summary using Luhn’s Algorithm
sumy's Generated Summary using LSA
sumy's Generated Summary using LSA with stopwords

Dealing with Missing Values

None of the ETDs present in this corpus has missing values for the abstract and full-text

fields. For the metadata fields that were included as indicated in Table 7.9, the number of

missing values is not very large. For these fields, we use ‘U’ to fill in the null value.
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Machine Learning Algorithms

For this dataset, we perform experiments using Support Vector Machine and Random Forest.

Support Vector Machine

Based on the parameters selected by GridSearch for the LabelPowerset approach on the

Virginia Tech dataset, we use the parameters mentioned in Table 7.11. The parameters for

which values are not mentioned in the table have default values assigned.

Table 7.11: Parameter values selected for Support Vector Machine

Parameter Name Value
Kernel Linear
C 5
Gamma Auto
Class_Weight Balanced

Random Forest

Based on the parameters selected by GridSearch for the LabelPowerset approach on the

Virginia Tech dataset, we use the parameters mentioned in Table 7.12. The parameters for

which values are not mentioned in the table have default values assigned.

Table 7.12: Parameter values selected for Random Forest

Parameter Name Value
n_estimators 10
Criterion Gini
Random State 10

Deep Learning Algorithms

As discussed in Sections 3.3.2 and 3.3.2, the authors of [4] and [70] indicate the benefits of

simpler deep learning architectures over more complex ones in the domain of long document
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classification.

Thus, for this dataset, we perform experiments using different deep learning architectures

including Gated Recurrent Units (GRU), Bidirectional Gated Recurrent Units (BiGRU),

Long Short-Term Memory (LSTM), and Bidirectional Long Short-Term Memory (BiLSTM).

Based on our experiments with different hyperparameters, that were performed using 5-fold

cross validation, we found that our models perform well when trained for 100 epochs, with

a state size of 1024, dropout of 0.2, and batch size of 512. The optimizer that gave the best

performance was the ‘Adam’ optimizer.

7.6 Evaluation Metrics

Since we are performing multi-label classification, the evaluation metrics of accuracy, pre-

cision, recall, and F1-score mentioned in Section 3.3.3 need to be tweaked such that we

can average over the classes. For this purpose, the commonly used averaging strategies

are micro-averaging and macro-averaging [42]. In the case of micro-averaging, we calculate

metrics globally by counting the total number of true positives, false negatives, and false

positives. Alternatively, in the case of macro-averaging, we calculate metrics for each label

and find their unweighted mean. Scikit-learn [13] also has a provision for weighted-averaging

wherein we calculate the metrics for each of the labels present and find their average val-

ues based on their support (i.e., the number of instances for each label that are present).

This helps to overcome the drawback of macro-averaging which is unable to deal with label

imbalance.

Similarly, to compute the Hamming loss, Jaccard index, and exact match score, we use the

‘MultiLabelBinarizer’ from scikit-learn to convert our predicted labels into the correct
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format that is expected by these metrics. We use the implementation of the metrics provided

by scikit-learn.
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Results and Discussion

In this chapter, we discuss the results obtained for the different experiments that were

performed. We first present the results obtained on the Virginia Tech dataset, followed by

the PQDT dataset. We also provide analysis of the results obtained.

8.1 Virginia Tech Dataset

The results presented in this section were completed as part of the project for the CS6604:

Digital Libraries [6] course.

The various experiments conducted have been listed as part of Figure 8.1. In addition to

the LabelPowerset experimental setup that was performed with the presence-absence labels,

another set of experiments was conducted by making use of probability scores for each of the

subject categories labels. Each of the classes that were associated with a given ETD were

assigned an equal probability score.

The training time has been calculated using the time.process_time() function provided

by Python. This function returns a float value of the time taken in seconds. The other

evaluation metrics have been discussed in Section 7.6.

128
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Experiments

BinaryRelevance

Without abstract information

Bag of Words / TF-IDF / TF-IDF + bi-grams

SVM, LR, RF

With abstract information

Bag of Words / TF-IDF

SVM, LR, RF

LabelPowerset

Without abstract information

Bag of Words / TF-IDF / TF-IDF + bi-grams

SVM, RF

With abstract information

Bag of Words / TF-IDF

SVM, RF

Figure 8.1: Various experimental setups

8.1.1 BinaryRelevance

Here we present the results obtained by using the BinaryRelevance approach. We did not

perform experiments with the BinaryRelevance approach and probability scores class labels.

All results presented in this section are with the presence-absence class labels.

Analysis

As indicated by Figure 8.2, the first, third, and last records include additional labels as com-
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Table 8.1: Performance of various experimental setups using BinaryRelevance (without ab-
stract)

Experiment setup Accuracy Precision Recall F1-score Training Time
TF-IDF(bi) + SVM 63.3 77.6 80.5 77.7 1718.4
TF-IDF(bi) + RF 24 47.9 91 57.7 29.3
TF-IDF(bi) + LR 54.6 71.8 87.6 75.6 19.1
TF-IDF + SVM 63.9 77.4 82.4 78.5 448.5
TF-IDF + RF 20.2 32.6 83.6 44.6 13.1
TF-IDF + LR 50.7 68.2 86.6 73.0 7.99
BOW + SVM 55.4 69.4 79.9 72.6 355.2
BOW + RF 17.5 30.3 86.8 43 13.1
BOW + LR 40.1 52.8 82.0 62.3 11.9

Table 8.2: Performance of various experimental setups using BinaryRelevance (with abstract
information)

Experiment setup Accuracy Precision Recall F1-score Training Time
TF-IDF + SVM 64.63 79.30 83.0 79.5 818.2
TF-IDF + RF 11.8 23 94.2 35 18.5
TF-IDF + LR 50.5 67.5 86.9 73.1 17.3
BOW + SVM 36.9 54.3 65.8 57.9 634.96
BOW + RF 12.8 21.8 93.5 33.8 17.4
BOW + LR 31.2 44.3 68.3 52.4 24.7
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Figure 8.2: Analysis of 5 differently classified ETDs using the BinaryRelevance approach

pared to the one assigned to the record as per the ground truth. After examining the fields

associated with the first record, we find terms such as “education” and “academic achieve-

ment,” which could explain the category of “Educational_psychology” that is assigned to

this record. Similarly, for the third record, the department associated with this field is “Hos-

pitality and Tourism Management,” and there are keywords such as “hotel management”

that are present in the metadata of this record which could explain the label “Management”

that was assigned to this record.

In the case of the experiments that utilized the abstract information, we find that in both

the records indicated by Figure 8.3, the class labels predicted by the model are the same as

the department name. This indicates a high correlation between the department name and

the predicted class labels.

8.1.2 LabelPowerset

Here we present the results obtained by using the LabelPowerset approach.
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Figure 8.3: Analysis of 5 differently classified ETDs using the BinaryRelevance approach
(with abstract)

Using Presence-absence Class Labels

Tables 8.3 and 8.4 represent the results obtained using presence-absence class labels. The

parameters used to train these models were selected using the Grid Search method. When we

attempted to perform a Grid Search to identify the best parameters to train the experimental

setup comprising of TF-IDF with bi-grams and abstract information, it took a very large

amount of time to train. Thus, the results for this experiment are not included in this report.

Analysis

In this section, we focus on the best classifier (based on F1-score) in each subset of experi-

mental setups and analyze the performance of these classifiers.

Figure 8.4 represents the expected and predicted labels for the Random Forest classifier +

BOW approach trained using LabelPowerset (without probability scores).
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Table 8.3: Performance of various experimental setups using LabelPowerset (without ab-
stract)

Experiment setup Accuracy Precision Recall F1-score Training Time
TF-IDF(bi) + SVM 60.3 74.4 64 66.3 256.5
TF-IDF(bi) + RF 64.0 79.1 67.7 69.6 4.8
TF-IDF + SVM 61.3 75.6 65 67.6 97.9
TF-IDF + RF 57.2 73.5 60 63.5 0.8
BOW + SVM 58.9 73.9 62.5 64.4 85.5
BOW + RF 63.7 80.4 67.9 70.7 8.8

Table 8.4: Performance of various experimental setups using LabelPowerset (with abstract)

Experiment setup Accuracy Precision Recall F1-score Training Time
TF-IDF + SVM 61.9 76.4 65.4 68.1 169.2
TF-IDF + RF 60.1 78 64.1 66.2 15.1
BOW + SVM 44.8 64.0 49.4 51.3 162.7
BOW + RF 65.2 79.6 68.3 70.4 8.2
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Figure 8.4: Analysis of 5 incorrectly classified ETDs using the LabelPowerset approach

If we analyze records 1, 3, and 5, it appears as though the “VT_contributor_department”

plays an important role in determining the labels that have been predicted for these records.

If we were to observe record number 4, the expected label is meant to be “Computer_science.”

However, if we were to look at the “VT_contributor_department,” the predicted label “Me-

chanical_engineering” is not entirely incorrect as this research would in fact have some rela-

tion to Mechanical Engineering. Similarly, if we were to observe some of the “VT_Subjects”

or “PQ_Identifier_keyword,” we see terms such as “sparse signal reconstruction” which

could justify the predicted label of “Electrical_engineering.”
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Based on the results obtained, it could be said that the classifiers built as part of this

study help to add to discovery and aid in the identification of other categories that could be

assigned for these ETDs which gives us more information than the original ProQuest subject

categories.

Figure 8.5: Analysis of 5 incorrectly classified ETDs using the LabelPowerset approach (with
abstract information)

As indicated by Table 8.5, the first record has been correctly classified as “Statistics,” which

was previously incorrectly classified by the RF classifier built using BOW but without ab-

stract information. In case of the second record, the ground truth label is “Civil_engineering,”

whereas the model predicted the class to be “Ecology.” However, on examining the features

of this record, “Ecology” appears to be a valid label as well.

Using Probability Scores Class Labels

Tables 8.5 and 8.6 represent the results obtained using the probabilistic class labels. Details

about this formatting have been discussed in Section 7.4.1. The parameters used to train

these models were selected based on the best parameters chosen for the presence-absence
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class labels. This was done since the Grid Search method from scikit-learn [13] was giving

an error due to the probability values associated with the multi-label classes of the training

set. Further analysis can be performed on the same to find a way to perform a Grid Search

in this case as well, which may lead to an improvement in the performance of the models.

The predictions generated by these models provided a probability score for each of the 30

subject categories.

Table 8.5: Performance of various experimental setups using LabelPowerset (without ab-
stract) with probability scores class labels

Experiment setup Precision Recall F1-score Training Time
TF-IDF(bi) + SVM 85.4 28.8 39.9 1030.8
TF-IDF(bi) + RF 87.2 30.3 43.1 4
TF-IDF + SVM 85.2 28.7 39.9 397.1
TF-IDF + RF 85.5 29.6 42.5 2.3
BOW + SVM 8813 29.6 41.7 352.6
BOW + RF 89 30.8 44.3 2.3

Table 8.6: Performance of various experimental setups using LabelPowerset (with abstract)
with probability scores class labels

Experiment setup Precision Recall F1-score Training Time
TF-IDF + SVM 84.7 28.7 39.9 676.2
TF-IDF + RF 77.2 26.7 38.2 3.95
BOW + SVM 81.3 26.7 38.3 679.6
BOW + RF 78.8 26.8 38.6 2.9

Formulation of class labels

As indicated by Figures 8.6 and 8.7, the labels predicted by the classifiers in this set of

experimental setups is a probability score. However, since we have 30 potential labels, due

to the values generated by the classifier, with varied probabilities, it is difficult to determine
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a fixed threshold value to pick the labels for the input. Thus, for the purpose of this study,

we have chosen the top 3 subject categories as the labels to be generated for a given input

record.

Figure 8.6: Probability values predicted by the classifier (BOW + RF)

Figure 8.7: Probability values predicted by the classifier (TF-IDF with bi-grams + SVM)

Figure 8.8 represents the resultant set of values for the probability scores given in Figure 8.6

for the BOW + RF classifier. The probability values have been replaced by presence (1) or

absence (0) values since the evaluation metrics within scikit-learn are not currently equipped

to work with multi-label continuous output values. However, since the model probability

scores are still generated, we can still associate a probabilistic score for each of the top 3

labels.

Figure 8.8: Predicted labels after picking the top 3 subject categories (BOW + RF)

Figure 8.9 illustrates the corresponding top 3 subject category names for the categories with

presence (‘1’) values represented in Figure 8.8.

Analysis

In this section, we focus on the best classifier (based on F1-score) in each subset of experi-
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Figure 8.9: Expected and Predicted labels after picking the top 3 subject categories (BOW
+ RF)

mental setups and analyze the performance of these classifiers.

Figure 8.10 represents the expected and predicted labels for the Random Forest classifier +

BOW approach trained using LabelPowerset (with probability scores).

If we were to examine record 1 in Figure 8.10, we can justify the additional labels of

“Higher_education” and “Educational_psychology” by examining some of the keywords.

Words such as “education” and “pedagogical” present among the words in record 1, indicate

education and thus, these new labels can be possible new categories that could be assigned

to this ETD.

Similarly, in the case of record 2, the keywords microbial, nutrient, etc. indicate “Molec-

ular_biology” which is one of the additional labels. Keywords such as soil, earth sciences,

etc. could very well justify the presence of the label “Ecology.”

As was inferred from the results discussed in Section 8.1.2, the “VT_contributor_department”

plays an influential role in the labels obtained, and each of the records represented in Fig-

ure 8.10 testify to this inference.
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Figure 8.10: Analysis of 5 incorrectly classified ETDs (with probability scores)

8.2 PQDT Dataset

In this section, we present the results obtained for the models built using the PQDT dataset.

First, we discuss the results obtained for the Machine Learning models followed by a dis-

cussion of the results for the deep learning models. We use the LabelPowerset approach to

convert the multi-labels into multi-class as the training time needed for this was less than

that of the BinaryRelevance approach. Additionally, the probability models reported in the

previous section had lower F1-scores as compared to the presence-absence labels, thus, for

this dataset, we focused on the use of presence-absence labels.



140 Chapter 8. Results and Discussion

Experiments

Machine Learning Classifiers

Pre-trained embeddings

Full-text (half data), Full-text (all data)

Custom embeddings

Full-text (half data), Full-text (all data)

Chapter subset data (full-text), Chapter subset data (summaries)

SVM, RF + LabelPowerset

Deep Learning Classifiers

Pre-trained embeddings

Full-text (half data), Full-text (all data)

Custom embeddings

Full-text (half data), Full-text (all data)

Chapter subset data (full-text), Chapter subset data (summaries)

LSTM + LabelPowerset

Figure 8.11: Various experimental setups

First, we present the performance of the pre-trained word and document embeddings for

each category of our models. As indicated in Tables 7.2 and 7.3 we trained different word

embedding and document embedding models in an attempt to better understand the effect

of these embeddings on the performance of the classifiers. Thus, we train different models to

identify the best possible custom embeddings for that given model and data subset and also

contrast the performance of the classifiers against that of the pre-trained word embeddings

trained using Wikipedia. After the best models in each category have been identified, we

present the chapter-level labels generated by the best models.
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The following subsections discuss each of the three different subsets of the data as indicated

by Table 7.1. Figure 8.11 gives an overview of the different experimental setups that were

performed on this dataset.

8.2.1 Machine Learning Models

For the purpose of this study, the Machine Learning algorithms that we focus on are Support

Vector Machine (SVM) and Random Forest (RF) algorithms.

Pretrained Embeddings

In this section, we present the results obtained for the SVM and RF models when we use

the pre-trained fastText and Doc2Vec embeddings that were trained on the Wikipedia and

Common Crawl datasets.

Table 8.7: Performance of SVM and RF built using pre-trained embeddings

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 35.7 51.5 37.8 42.8 Full-text (half data)
SVM 46.7 68.9 52.8 58.9 Full-text (half data)
RF 40.4 53.8 41.7 46.2 Full-text (All data)
SVM 51.4 70.1 55.9 61.6 Full-text (All data)

Custom Embeddings

We trained a total of 12 (all combinations of fastText) x 12 (all combinations of Doc2Vec)

as indicated by Tables 7.2 and 7.3 under each data subset as well as for both the algorithms.
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In the following sections, we present the best performing models in each subset. We present

the Accuracy, Precision, Recall, and F1-scores for each model. The values of these scores are

in the form of percentages.

For each of the tables in the following section, the specifics of the embedding models have

been indicated in the ‘Notes’ column where E stands for number of epochs, D stands for

number of dimensions, N stands for word n-grams, and dm stands for ‘distributed memory’,

where a value of 1 implies PV-DM, whereas 0 means distributed bag of words (PV-DBOW).

Full-text (Half data)

To begin with, we experimented with half the training set and trained multiple models with

different combinations of the fastText and Doc2Vec embeddings.

Table 8.8 represents the scores obtained on this dataset for the RF and SVM models with

different embeddings. From the table, we see that the SVM model consistently outperforms

the RF model in each case. This is contrary to the base results we had as indicated in

Tables 8.3 and 8.4 where the RF models outperformed the SVM models. Further details

about the top 10 best performing models in each case have been added to Appendix Tables

B.1, B.2, B.3, B.4, B.5, and B.5

Our best performing model across the cases is an SVM embedding using the PSU + Illinois

dataset. The fastText parameters are 50 epochs, 5 N word n-grams, and 200 dimensions.

Similarly, the Doc2Vec parameters are 0 DM (which indicates PV-DBOW), 200 dimensions,

and 25 epochs. This model achieves an F1-score of 65.5.

Full-text (All data)

In an attempt to get a better sense of the effect of the number of samples in the training set,

we experimented with all of the data in the training set and trained multiple models with

different combinations of the fastText and Doc2Vec embeddings.
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Table 8.8: Performance of best RF and SVM models on the Full-text (Half data)

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 38.4 56.7 41 46.6 PSU-Illinois embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec:
1 dm, 100 D, 100 E)

SVM 53.3 75.1 59.2 65.5 PSU-Illinois embeddings (fast-
Text: 50 E, 5 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 37.8 57 41 46.7 VT embeddings (fastText: 25 E,
3 N, 100 D | Doc2Vec: 1 dm, 100
D, 50 E)

SVM 52.4 74.9 58.5 64.9 VT embeddings (fastText: 25 E,
3 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 39.2 56.4 41.5 47 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 200 D |
Doc2Vec: 0 dm, 100 D, 25 E)

SVM 52.7 75.1 58.8 65.1 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

Table 8.9 represents the scores obtained on this dataset for the RF and SVM models with

different embeddings. In keeping with the results obtained on the ‘Full-text (half data)’ data

subset, the SVM models outperform the RF models. We also see an improvement in the

F1-score values for both the RF and SVM models. Further details about the top 10 best

performing models in each case have been added to Appendix Tables B.7, B.8, B.11, B.12,

B.9, and B.10.

For this data subset, our best performing model across the cases, once again, is an SVM

embedding using the PSU + Illinois dataset. The fastText parameters are 50 epochs, 3 N

word n-grams, and 200 dimensions. Similarly, the Doc2Vec parameters are 0 DM (which
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Table 8.9: Performance of best RF and SVM models on the Full-text (All data)

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 43.1 59.6 46.3 51.3 PSU-Illinois embeddings (fast-
Text: 50 E, 3 N, 100 D | Doc2Vec:
0 dm, 100 D, 25 E)

SVM 58.4 77.2 63.1 68.9 PSU-Illinois embeddings (fast-
Text: 50 E, 3 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 42.9 59.5 45.7 50.8 VT embeddings (fastText: 100 E,
3 N, 200 D | Doc2Vec: 0 dm, 100
D, 100 E)

SVM 57.9 77 62.6 68.5 VT embeddings (fastText: 25 E,
5 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 43.7 59.2 45.2 50.4 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 100 D |
Doc2Vec: 0 dm, 100 D, 50 E)

SVM 57.5 76.9 62.4 68.3 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

indicates PV-DBOW), 200 dimensions, and 25 epochs. This model achieves an F1-score of

68.9.

These results indicate that the 200 dimension representation of the data appears to be better

than the 100 dimension representation for the SVM models.

Chapter subset data

Since we wanted to gauge the impact of chapter summaries combined together to form the

full-text for training on the performance of our classification model, we first train our Machine

Learning models using the full-text data from this data subset and train models using the



8.2. PQDT Dataset 145

combined summary data. We then compare the performance of these two methodologies.

Again, all the experiments performed for this data subset were with all possible combinations

of embedding models to ensure that we get the best possible F1-score.

Using full-text data

For this set of experiments, we use the full-text data of the ETDs present in this subset.

Table 8.10 represents the scores obtained on this dataset for the RF and SVM models with

different embeddings.

Table 8.10: Performance of best RF and SVM models on the chapter subset data (full-text
data)

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 46.3 57.7 46.5 50.8 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 100 D | Doc2Vec:
1 dm, 100 D, 50 E)

SVM 63.2 74.3 64.9 68.9 PSU-Illinois embeddings (fast-
Text: 25 E, 5 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 46.5 58 46.7 50.8 VT embeddings (fastText: 100 E,
5 N, 100 D | Doc2Vec: 0 dm, 100
D, 100 E)

SVM 62.5 74.7 64.1 68.5 VT embeddings (fastText: 25 E,
5 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 46.6 56.7 46.6 50.4 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 100 D |
Doc2Vec: 0 dm, 100 D, 50 E)

SVM 63.5 76 65 69.5 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 50 E)

Further details about the top 10 best performing models in each case have been added to
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Appendix Tables B.13, B.14, B.17, B.18, B.15, and B.16.

For this data subset as well, the SVM models outperform the RF models. Our best perform-

ing model across each case is an SVM embedding using the PSU + Illinois + VT dataset

which is unlike our previous result where the best embedding dataset was the PSU + Illinois

dataset. The fastText parameters are 50 epochs, 3 N word n-grams, and 200 dimensions.

Similarly, the Doc2Vec parameters are 0 DM (which indicates PV-DBOW), 200 dimensions,

and 50 epochs. This model achieves an F1-score of 69.5 which is better than all the F1-scores

previously recorded.

These results further corroborate that the 200 dimension representation of the data appears

to be better than the 100 dimension representation for our SVM models.

Using summary data

Based on the results obtained on the chapter subset dataset (full-text data), we selected

the fastText and Doc2Vec parameters of the top 5 best performing models in each case and

trained different Machine Learning models using the summarization techniques illustrated

in Table 7.10. Here, we present the results obtained for each of these models.

Table 8.11 represents the scores obtained on this dataset for the RF and SVM models using

gensim's TextRank Generated Summary with ratio of 0.2.

Appendix Tables B.19, B.20, B.23, B.24, B.21, and B.22 represent the scores of the top 5

models obtained on the chapter subset dataset for the RF and SVM models with different

embeddings trained on the combined summaries of the chapters of the ETDs present in this

subset using gensim's TextRank Generated Summary with ratio of 0.2.

Table 8.12 represents the scores obtained on this dataset for the RF and SVM models using

gensim's TextRank Generated Summary with 100 words.
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Table 8.11: Performance of best RF and SVM models on the chapter subset data (summary
data) using gensim's TextRank Generated Summary with ratio of 0.2

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 46.6 56.6 46.452 50.295 PSU-Illinois embeddings (fast-
Text: 50 E, 3 N, 200 D | Doc2Vec:
1 dm, 100 D, 100 E)

SVM 62 74.8 64.0 68.6 PSU-Illinois embeddings (fast-
Text: 25 E, 5 N, 200 D | Doc2Vec:
0 dm, 100 D, 25 E)

RF 45.4 55.6 44.9 49 VT embeddings (fastText: 25 E,
5 N, 200 D | Doc2Vec: 1 dm, 100
D, 25 E)

SVM 63.2 75 64.7 69 VT embeddings (fastText: 100 E,
5 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 45 56.4 45.3 49.4 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 100 D, 25 E)

SVM 62.6 74.8 64.2 68.6 PSU-Illinois + VT embeddings
(fastText: 25 E, 5 N, 200 D |
Doc2Vec: 0 dm, 200 D, 50 E)

Appendix Tables B.25, B.26, B.29, B.30, B.27, and B.28 represent the scores obtained on the

chapter subset dataset for the RF and SVM models with different embeddings trained on

the combined summaries of the chapters of the ETDs present in this subset using gensim's

TextRank Generated Summary with 100 words.

Table 8.13 represents the scores obtained on this dataset for the RF and SVM models using

sumy's LexRank Generated Summary.

Appendix Tables B.31, B.32, B.35, B.36, B.33, and B.34 represent the scores obtained on

the chapter subset dataset for the RF and SVM models with different embeddings trained
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Table 8.12: Performance of best RF and SVM models on the chapter subset data (summary
data) using gensim's TextRank Generated Summary with 100 words

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 45.8 57.3 45.6 49.7 PSU-Illinois embeddings (fast-
Text: 100 E, 3 N, 100 D |
Doc2Vec: 0 dm, 100 D, 50 E)

SVM 63.5 73.6 64.3 68.3 PSU-Illinois embeddings (fast-
Text: 100 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

RF 44.1 55.8 44.4 48.5 VT embeddings (fastText: 50 E,
5 N, 100 D | Doc2Vec: 0 dm, 100
D, 100 E)

SVM 63.4 74.5 64.8 69 VT embeddings (fastText: 50 E,
5 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 43.4 55 44 48.1 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 200 D |
Doc2Vec: 0 dm, 100 D, 100 E)

SVM 62.0 73.2 63.4 67.6 PSU-Illinois + VT embeddings
(fastText: 50 E, 5 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

on the combined summaries of the chapters of the ETDs present in this subset using sumy's

LexRank Generated Summary.

Table 8.14 represents the scores obtained on this dataset for the RF and SVM models using

sumy's Generated Summary using Luhn’s Algorithm.

Appendix Tables B.37, B.38, B.41, B.42, B.39, and B.40 represent the scores obtained on

the chapter subset dataset for the RF and SVM models with different embeddings trained

on the combined summaries of the chapters of the ETDs present in this subset using sumy's

Generated Summary using Luhn’s Algorithm.
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Table 8.13: Performance of best RF and SVM models on the chapter subset data (summary
data) using sumy's LexRank Generated Summary

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 45.5 56.4 45.5 49.3 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 200 D | Doc2Vec:
1 dm, 100 D, 50 E)

SVM 62 73.7 63.5 67.8 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 43.6 56.2 43.6 48.3 VT embeddings (fastText: 50 E,
5 N, 100 D | Doc2Vec: 0 dm, 100
D, 100 E)

SVM 62.6 74.3 63.9 68.1 VT embeddings (fastText: 100 E,
5 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 45.7 56.4 44.4 48.7 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 100 D |
Doc2Vec: 0 dm, 100 D, 50 E)

SVM 62.5 73.9 63.6 67.7 PSU-Illinois + VT embeddings
(fastText: 25 E, 5 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

Table 8.15 represents the scores obtained on this dataset for the RF and SVM models using

sumy's Generated Summary using LSA.

Appendix Tables B.43, B.44, B.47, B.48, B.45, and B.46 represent the scores obtained on

the chapter subset dataset for the RF and SVM models with different embeddings trained

on the combined summaries of the chapters of the ETDs present in this subset using sumy's

Generated Summary using LSA.

Table 8.16 represents the scores obtained on this dataset for the RF and SVM models using

sumy's Generated Summary using LSA with stopwords.
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Table 8.14: Performance of best RF and SVM models on the chapter subset data (summary
data) using sumy's Generated Summary using Luhn’s Algorithm

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 44.9 55.2 44.6 48.5 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 100 D | Doc2Vec:
1 dm, 100 D, 50 E)

SVM 62.8 73 60 67.8 PSU-Illinois embeddings (fast-
Text: 100 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

RF 45.2 57.3 45.3 50 VT embeddings (fastText: 25 E,
5 N, 100 D | Doc2Vec: 1 dm, 100
D, 50 E)

SVM 64.4 76 65.7 70.1 VT embeddings (fastText: 25 E,
3 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 45 55.6 45 49.1 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 100 D, 25 E)

SVM 63 74.3 64.4 68.5 PSU-Illinois + VT embeddings
(fastText: 50 E, 5 N, 200 D |
Doc2Vec: 0 dm, 200 D, 25 E)

Appendix Tables B.49, B.50, B.53, B.54, B.51, and B.52 represent the scores obtained on

the chapter subset dataset for the RF and SVM models with different embeddings trained

on the combined summaries of the chapters of the ETDs present in this subset using sumy's

Generated Summary using LSA with stopwords.

From the results presented in this section, we see that the SVM models continue to outper-

form the RF models. Similarly, we see that most of the extractive summarization algorithms

result in F-1 scores similar to those with the full-text data. However, two of the summariza-

tion techniques, sumy's Generated Summary using LSA and sumy's Generated Summary
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Table 8.15: Performance of best RF and SVM models on the chapter subset data (summary
data) using sumy's Generated Summary using LSA

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 44.5 55.2 44.3 48.3 PSU-Illinois embeddings (fast-
Text: 100 E, 3 N, 100 D |
Doc2Vec: 1 dm, 100 D, 50 E)

SVM 62.3 74 64.6 68.6 PSU-Illinois embeddings (fast-
Text: 25 E, 5 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 43.3 55 44.2 48.4 VT embeddings (fastText: 25 E,
5 N, 200 D | Doc2Vec: 1 dm, 100
D, 25 E)

SVM 63.9 75.7 65.8 70 VT embeddings (fastText: 25 E,
3 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 40 55.9 44.3 48.7 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 100 D, 25 E)

SVM 60 74.7 65.1 69.1 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 50 E)

using Luhn’s Algorithm, yield F1-scores of 70 and 70.1, respectively for the SVM models.

The fastText parameters of the best model are 25 epochs, 3 N word n-grams, and 200 di-

mensions. Similarly, the Doc2Vec parameters are 0 DM (which indicates PV-DBOW), 200

dimensions, and 25 epochs.

On the other hand, the best F-1 score among all of the RF models trained using the summary

data, yielded a score of 50.3 which was less than the best F-1 score of 50.8 obtained using

the full-text data.
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Table 8.16: Performance of best RF and SVM models on the chapter subset data (summary
data) using sumy's Generated Summary using LSA with stopwords

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 45.2 55.3 44.5 48.6 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 200 D | Doc2Vec:
1 dm, 100 D, 50 E)

SVM 61.9 73.0 63.4 67.5 PSU-Illinois embeddings (fast-
Text: 25 E, 3 N, 200 D | Doc2Vec:
0 dm, 200 D, 25 E)

RF 40 55.4 44.4 48.4 VT embeddings (fastText: 25 E,
5 N, 100 D | Doc2Vec: 1 dm, 100
D, 50 E)

SVM 62.9 73.4 63.9 68 VT embeddings (fastText: 100 E,
3 N, 200 D | Doc2Vec: 0 dm, 200
D, 25 E)

RF 44.9 56 44.9 49 PSU-Illinois + VT embeddings
(fastText: 25 E, 3 N, 100 D |
Doc2Vec: 0 dm, 100 D, 50 E)

SVM 61.6 73.4 63.5 67.6 PSU-Illinois + VT embeddings
(fastText: 50 E, 3 N, 200 D |
Doc2Vec: 0 dm, 200 D, 50 E)

Analysis

Table 8.17 gives the best scoring ML models and their performance scores.

It is interesting to note, that for the RF models, the best Doc2Vec model comprised of 100D

vectors, contrary to our observation in case of SVM models that performed best with 200D

vector representations.

The best model for our ‘Full-text’ dataset is an SVM with an F-1 score of 68.9 using the PSU-

Illinois custom trained embeddings. For our ‘Chapter subset dataset’ it is an SVM trained
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Table 8.17: Performance of various Machine Learning experimental setups

ML
Algo-
rithm

Accuracy Precision Recall F1-score Notes

RF 43 59.6 46.3 51.3 Full-text (All data) + PSU-
Illinois embeddings

SVM 58.4 77.2 63.1 68.9 Full-text (All data) + PSU-
Illinois embeddings

RF 46.5 58 46.7 50.8 Chapter subset data (full-text
data) + VT embeddings

SVM 64.4 76 65.7 70.1 Chapter subset data (summary
data using Luhn’s Algorithm) +
VT embeddings

on the combined chapter summaries generated using Luhn’s Algorithm with an F-1 score of

70.1 using the custom trained VT embeddings. In both cases, these values are greater than

those obtained for the pre-trained models. This answers RQ1; our custom embeddings give

better F-1 scores in case of the Machine Learning models. Similarly, as an answer to RQ2,

we see that the extractive summaries generated using Luhn’s Algorithm resulted in models

that had a greater F-1 score when compared to those trained using the full-text.

Chapter-level Labels

To answer RQ4, we will present an Exact Match score, Hamming loss, and Jaccard index

values that will give us the value of the overlap of the multi-labels. This will let us know if

there are new labels added by our models’ predictions of the chapter labels.

We present the chapter labels generated for the best SVM model described in Table 8.17.

We select the model trained on the chapter subset data with summaries generated using

sumy's Luhn’s Algorithm and embeddings trained on the VT dataset.
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We perform transfer learning from the full-text to the chapter-level. Here, we compare the

predicted model results at the chapter level against the ground truth labels present at the

full-text level.

Table 8.18: Performance of best Machine Learning algorithms at the chapter-level

F1-score Hamming
loss

Jaccard
index

Exact
match
score

Notes

64.7 0.027 52.3 54.2 Full-text (All data) + PSU-
Illinois embeddings

65.5 0.026 50.9 61.5 Chapter subset data (summary
data using Luhn’s Algorithm) +
VT embeddings

Figure 8.12: Chapter-level labels for the ETD titled ‘Quasi-one-dimensional models for glassy
dynamics’

Table 8.18 presents the evaluation of the two best SVM models. As can be seen from this

table, the loss of labels between the full-text and the chapters tends towards zero which

indicates that most of the predicted labels contain the ground truth labels as well. Similarly,

the strict exact match values are 54.2 and 61.5, respectively. This indicates that over 50% of

the labels exactly match in both cases. This does, however, indicate to us that with respect
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to RQ4, there does exist a difference between the labels predicted at the chapter-level when

compared to the labels associated with the ETD as a whole.

Figure 8.12 depicts the chapter-level labels generated for an ETD entitled ‘Quasi-one-dimensional

models for glassy dynamics’. While the full-text label is ‘Statistics’, we see that the labels

generated for Chapter 2 and 4 include ‘Statistics, Computer science’ whereas the label for

Chapter 3 has been predicted to be ‘Statistics, Mathematics’. These labels were predicted

using the SVM model trained on the Full-text (All data).

Figure 8.13: Performance of SVM trained on Chapter subset data (summary data using
Luhn’s Algorithm) per subject category at the chapter-level

Figure 8.13 represents the performance of our best performing SVM model trained using the

Chapter subset data with summaries generated using Luhn’s Algorithm. As can be seen from

this figure, the categories with the lowest F-1 score include ‘Industrial Engineering’ with a
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score of 32, followed by ‘Chemical Engineering’ with an F-1 score of 40. On further inspec-

tion, we found that ‘Industrial Engineering’ was alternatively being classified as ‘Aerospace

Engineering’ and ‘Chemical Engineering’ was alternatively being classified as ‘Biomedical

Engineering’ and ‘Molecular Biology’. We suspect that this was due to similar words that

were used in case of each of these subject categories which indicates that these disciplines

may co-occur together more frequently.

Figure 8.14: Part 1: Interdisciplinarity of chapters of ETDs represented by co-occurrence of
subject categories based on predictions made by the SVM model trained using the Chapter
subset data (summary data using Luhn’s Algorithm)

Figure 8.15: Part 2: Interdisciplinarity of chapters of ETDs represented by co-occurrence of
subject categories based on predictions made by the SVM model trained using the Chapter
subset data (summary data using Luhn’s Algorithm)

Figures 8.14 and 8.15 indicate the number of times subject categories were commonly pre-

dicted to co-occur together. There were a total of 15047 chapters as part of this test set.

These results have been presented for our best performing SVM model trained using the

Chapter subset data with summaries generated using Luhn’s Algorithm.

Figure 8.16 represents the number of STEM and non-STEM subject categories that were
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Figure 8.16: STEM and non-STEM categories predicted for chapters of ETDs by the SVM
model trained using the Chapter subset data (summary data using Luhn’s Algorithm)

assigned to each of the individual subject categories. The values on the X-axis represent

the ground truth subject categories for each of the chapters of the ETDs considered. As

can be seen from this figure, categories such as ‘Educational leadership’, and ‘Educational

psychology’ which are non-STEM categories contain chapters that also predominantly belong

to non-STEM categories.

8.2.2 Deep Learning Models

For the purpose of this study, the Machine Learning algorithms that we focus on are LSTM,

GRU, BiLSTM, and BiGRU. For the first part of this study, we only consider the performance

of the LSTM models. Then, we fine tune the LSTM models and compare the performance

against the other models.
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Pretrained Embeddings

Table 8.19: Performance of LSTM built using pre-trained embeddings on the Full-text (half
data)

Model parameters Accuracy Precision Recall F1-score
500 E, 64 b, validation_split=0.2 28.9 62.8 37.2 45.3
500 E, 64 b 31.3 61.4 35.3 40.5
500 E, 128 b, validation_split=0.2 33.8 62.9 39.1 46.8
500 E, 128 b 41.3 56.3 44.6 48.8
1000 E, 128 b 37.2 59.9 43.2 49.4
2500 E, 128 b 36.4 58.9 43.1 48.8
5000 E, 128 b 22.5 60.5 24 31.8

In this section, we present the results obtained for the LSTM models when we use the pre-

trained fastText and Doc2Vec embeddings that were trained on the Wikipedia and Common

Crawl datasets. We train and test these embeddings on the Full-text (half data) data subset

with different hyperparameter values. In the tables of this section, ‘E’ represents number of

epochs while ‘b’ represents the batch size. All of these models had a state size of 512 and

a dropout of 0.2. Table 8.19 presents the performance of the LSTM built using pre-trained

embeddings. Since the performance of the models without a validation split was better than

the one with a validation split, we performed more analysis on the former setup. According

to the table, after 1000 Epochs, the model performance starts to dwindle. This could be due

to overfitting.

According to Figure 8.17, the accuracy and loss values do not have any substantial gain after

1000 epochs. Since the training time for 1000 epochs was large, we limited the number of

epochs while identifying the best possible custom embeddings to 15 epochs. Additionally,

we change the metric used to evaluate the performance while fitting the model to Precision,

Recall, and F-1 scores since there exists an imbalance in our dataset. Table 8.20 presents
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(a) Accuracy across epochs

(b) Loss value across epochs
Figure 8.17: Visual representation of accuracy and loss values across epochs

the scores of the LSTMs trained with these hyperparameters and will be used to compare

the performance of our models using custom embeddings.

Table 8.20: Performance of LSTM built using pre-trained embeddings

Model parameters Accuracy Precision Recall F1-score Notes
15 E, 512 b 10.4 65.8 10.4 17 Full-text (half data)
15 E, 512 b 36.3 70.5 37.3 44.9 Full-text (all data)



160 Chapter 8. Results and Discussion

Custom Embeddings

Based on the performance of the SVM and RF models trained, we picked the fastText

and Doc2Vec parameters of the top 5 models in each subset and trained our deep learning

models with those parameters. This section is divided in a similar manner as the section

discussing the Machine Learning models. For the first portion of these results, we only make

comparisons between the LSTM models. As mentioned earlier, in an attempt to identify the

best embeddings using LSTMs, we ran our models for a limited number of epochs. After

selecting our best performing models, we tuned the hyperparameters and then compared the

tuned LSTM with the performance of our ML models.

Full-text (Half data)

Table 8.21 represents the scores obtained on this dataset for the LSTM trained using with

different embeddings. Further details about the top 10 best performing models in each case

have been added to Appendix Tables B.55, B.57, and B.56.

Each of these models were trained with a state size of 1024, a dropout of 0.2, batch size of

512, and 15 epochs.

Table 8.21: Performance of best LSTM models on the Full-text (Half data)

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 5 N, 100 D | Doc2Vec: 1 dm, 100 D,
100 E)

30.5 80.4 33.1 41.6

VT embeddings (fastText: 25 E, 3 N,
200 D | Doc2Vec: 1 dm, 200 D, 50 E)

38.4 77.1 40.3 48.8

PSU-Illinois + VT embeddings (fast-
Text: 25 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

34.8 67.7 37.0 44.1

Our best performing model is an LSTM using embeddings built from the VT dataset. The
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fastText parameters are 25 epochs, 3 N word n-grams, and 200 dimensions. Similarly, the

Doc2Vec parameters are 1 DM (which indicates PV-DM), 200 dimensions, and 50 epochs.

This model achieves an F1-score of 48.8. It is interesting to note that these parameter values

differ from those of the best model in case of the Machine Learning counterpart of this

experimental setup.

Full-text (All data)

Table 8.22 represents the scores obtained on this dataset for the LSTM trained with different

embeddings. Further details about the top 10 best performing models in each case have been

added to Appendix Tables B.58, B.59, and B.60.

Similar to the hyperparameter values in the previous case, each of these models was trained

with a state size of 1024, a dropout of 0.2, batch size of 512, and 15 epochs.

Table 8.22: Performance of best LSTM models on the Full-text (All data)

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 25
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
25 E)

52.1 76.8 54.2 60.7

VT embeddings (fastText: 100 E, 5 N,
100 D | Doc2Vec: 1 dm, 100 D, 100 E)

50.3 72.3 52.8 58.6

PSU-Illinois + VT embeddings (fast-
Text: 25 E, 3 N, 100 D | Doc2Vec: 1
dm, 100 D, 50 E)

48.1 74.4 50.5 56.7

Our best performing model is an LSTM using embeddings built from the PSU + Illinois

dataset. The fastText parameters are 25 epochs, 3 N word n-grams, and 200 dimensions.

Similarly, the Doc2Vec parameters are 1 DM (which indicates PV-DM), 100 dimensions, and

25 epochs. This model achieves an F1-score of 60.7 which is a considerable improvement over

the 48.8 F1-score obtained with half the training data. This indicates that our model has

scope to improve with more data and that it hasn’t suffered from overfitting. It is interesting
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to note that the fastText parameter values are the same as the Full-text (half-data) case but

the Doc2Vec values differ.

Chapter subset data

Similar to the experiments described in 8.2.1, we present the results obtained for the deep

learning models. Each of these models were trained with a state size of 1024, a dropout of

0.2, batch size of 512, and 25 epochs.

Using full-text data

For this set of experiments, we use the full-text data of the ETDs present in this subset.

Table 8.23 represents the scores obtained on this dataset for the LSTM models with different

embeddings.

Further details about the top 10 best LSTM models have been added to Appendix Tables

B.61, B.62, and B.63.

Table 8.23: Performance of best LSTM models on the chapter subset data (full-text data)

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
100 E)

60 74.1 60 64.4

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

61.1 73.1 61.1 64.8

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

56.4 71.9 56.9 61.6

Our best performing model is an LSTM using embeddings built from the VT dataset. It has

a marginally better F1-score when compared to the model built using the PSU + Illinois

dataset. The fastText parameters are 25 epochs, 3 N word n-grams, and 100 dimensions.

Similarly, the Doc2Vec parameters are 1 DM (which indicates PV-DM), 100 dimensions, and
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100 epochs. This model achieves an F1-score of 64.8.

Using summary data

Once again, based on the results obtained on the chapter subset dataset (full-text data), we

selected the fastText and Doc2Vec parameters of the top 5 best performing models in each

case and trained LSTM models using summarization techniques illustrated in Table 7.10.

Here we present the results obtained for each of these models.

Table 8.24 represents the scores obtained on this dataset for the LSTMmodels using gensim's

TextRank Generated Summary with ratio of 0.2.

Table 8.24: Performance of best LSTM models on the chapter subset data (summary data)
using gensim's TextRank Generated Summary with ratio of 0.2

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 25
E, 5 N, 200 D | Doc2Vec: 1 dm, 100 D,
50 E)

58.9 72.6 59 63.3

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

61.5 72.0 61.6 64.8

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

57.8 70.1 57.8 61.4

Further details about the top 5 best performing LSTM models has been added to Appendix

Tables B.64, B.65, and B.66.

Table 8.25 represents the scores obtained on this dataset for the LSTMmodels using gensim's

TextRank Generated Summary with 100 words.

Further details about the top 5 best performing LSTM models has been added to Appendix

Tables B.67, B.68, and B.69.

Table 8.26 represents the scores obtained on this dataset for the LSTM models using sumy's
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Table 8.25: Performance of best LSTM models on the chapter subset data (summary data)
using gensim's TextRank Generated Summary with 100 words

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 25
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
50 E)

57.1 74.1 57.1 61.8

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

57.4 70.8 57.4 61.3

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 200 D | Doc2Vec: 0
dm, 200 D, 50 E)

51.3 77.3 51.3 57.9

LexRank Generated Summary.

Table 8.26: Performance of best LSTM models on the chapter subset data (summary data)
using sumy's LexRank Generated Summary

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
100 E)

53.7 73.8 53.4 58.3

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

54 72.8 54.2 59

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

55.7 68.4 55.7 59.3

Further details about the top 5 best performing LSTM models have been added to Appendix

Tables B.70, B.71, and B.72.

Table 8.27 represents the scores obtained on this dataset for the LSTM models using sumy's

Generated Summary using Luhn’s Algorithm.

Further details about the top 5 best performing LSTM models have been added to Appendix

Tables B.73, B.74, and B.75.
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Table 8.27: Performance of best LSTM models on the chapter subset data (summary data)
using sumy's Generated Summary using Luhn’s Algorithm

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
100 E)

53.7 77 53.7 59.5

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

58.7 74.3 58.8 63.8

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

55.8 72.1 55.8 60.1

Table 8.28 represents the scores obtained on this dataset for the LSTM models using sumy's

Generated Summary using LSA.

Table 8.28: Performance of best LSTM models on the chapter subset data (summary data)
using sumy's Generated Summary using LSA

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
100 E)

55.803 74.5 55.8 61

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

55.6 73.3 56.3 61.1

PSU-Illinois + VT embeddings (fast-
Text: 25 E, 5 N, 200 D | Doc2Vec: 0
dm, 200 D, 25 E)

51.8 74.2 51.8 57.8

Further details about the top 5 best performing LSTM models have been added to Appendix

Tables B.76, B.77, and B.78.

Table 8.29 represents the scores obtained on this dataset for the LSTM models using sumy's

Generated Summary using LSA with stopwords.

Further details about the top 5 best performing LSTM models have been added to Appendix
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Table 8.29: Performance of best LSTM models on the chapter subset data (summary data)
using sumy's Generated Summary using LSA with stopwords

Model details Accuracy Precision Recall F1-score
PSU-Illinois embeddings (fastText: 50
E, 3 N, 200 D | Doc2Vec: 1 dm, 100 D,
100 E)

56.5 73.5 56.6 61.1

VT embeddings (fastText: 25 E, 3 N,
100 D | Doc2Vec: 1 dm, 200 D, 50 E)

57.6 71.9 57.9 61.8

PSU-Illinois + VT embeddings (fast-
Text: 50 E, 5 N, 100 D | Doc2Vec: 1
dm, 100 D, 100 E)

55.2 72.5 55.2 60.4

Tables B.79, B.80, and B.81.

Analysis

Table 8.30 gives the performance of the best LSTM models.

Table 8.30: Performance of various deep learning experimental setups

Notes Accuracy Precision Recall F1-score
Full-text (All data) + PSU-Illinois em-
beddings

52.1 76.8 54.2 60.7

Chapter subset data (full-text) + VT
embeddings

60 74.1 60 64.8

Chapter subset data (summary data
using gensim's TextRank Generated
Summary with ratio of 0.2) + VT em-
beddings

61.5 72 61.6 64.8

The best model for our ‘Full-text’ dataset had an F-1 score of 60.7 using the PSU-Illinois

custom trained embeddings in 15 epochs. For our ‘Chapter subset dataset’, the model

trained using the full-text data obtains a score of 64.8 which marginally outperforms the

model trained using summaries generated by gensim's TextRank Algorithm with ratio of
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0.2. In both these models, the embedding used was trained on the VT dataset with fastText

parameters of 25 epochs, 3 word n-grams, and 100 dimensions, and Doc2Vec parameters of

1 DM (which indicates PV-DM), 200 dimensions, and 50 epochs.

Here again, these values are greater than those obtained for the pre-trained models. This

answers RQ1; our custom embeddings give better F-1 scores in case of the Machine Learning

models.

With respect to RQ2, we see that the score obtained for the chapter subset data (full-text

data) is only marginally more than the extractive summaries generated using TextRank.

Considering that these models were trained for only 25 epochs, we further train these models

and perform hyperparameter tuning to better understand which of them obtains a higher

F1-score.

We train the chapter subset data (full-text data) and chapter subset data (summary data

using gensim's TextRank Generated Summary with ratio of 0.2) models by varying the

number of epochs in an attempt to better understand the performance of these two models.

As indicated by Table 8.31, we find that the LSTM trained on the Full-text (All data) for

100 epochs performs better than all of the other models. This model achieves an F1-score of

67.2. We find that the value of the F1-score of this model reduces as we increase the number

of epochs. Figure 8.18 visually represents the F1-score and loss value across 500 epochs.

Based on this, we decided to select the 100 epochs model as our best model.

With respect to RQ3, we find that our deep learning models do not achieve an F1-score that

is higher than our best SVM model. The best SVM model on the Full-text (All data) had

an F1-score of 68.9. Since this difference is not extremely large, we believe that our deep

learning models will be able to perform better with a larger training dataset.

Table 8.31 also indicates that contrary to our findings with the Machine Learning models,
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Table 8.31: Performance of various deep learning experimental setups across different number
of epochs

Number
of Epochs

Accuracy Precision Recall F1-score Notes

10 32.1 75.6 32.1 40.1 Chapter subset data (full-
text)

10 34.3 85.1 34.3 40.5 Chapter subset data (sum-
mary data using gensim's
TextRank Generated Sum-
mary with ratio of 0.2)

100 58.2 75.4 62.3 67.2 Full-text (All data)
100 59.5 71.4 61.8 65.6 Chapter subset data (full-

text)
100 58.3 70.9 60.4 64.8 Chapter subset data (sum-

mary data using gensim's
TextRank Generated Sum-
mary with ratio of 0.2)

200 56.2 75.1 61 66.6 Full-text (All data)
200 58 73.3 60.9 66 Chapter subset data (full-

text)
200 57 71.2 59.8 64.6 Chapter subset data (sum-

mary data using gensim's
TextRank Generated Sum-
mary with ratio of 0.2)

500 52.7 72.8 57.3 63.6 Full-text (All data)
500 57 69.5 59.2 63.5 Chapter subset data (full-

text)
500 57 70.1 58.9 63.7 Chapter subset data (sum-

mary data using gensim's
TextRank Generated Sum-
mary with ratio of 0.2)



8.2. PQDT Dataset 169

(a) F1-score across epochs

(b) Loss value across epochs
Figure 8.18: Visual representation of F1-score and loss values across epochs for the best
performing LSTM on the Full-text (All data)

our deep learning models trained using summary data does not perform as well as the chapter

subset data (full-text) model. However, this difference is marginal. With respect to RQ2,

we conclude that in case of Machine Learning models, our hypothesis holds true, whereas in

case of the deep learning models, it does not.

In an attempt to further improve the performance of our models, we train a GRU, Bidi-

rectional LSTM, and Bidirectional GRU for 100 epochs on the Full-text (All data) since

our best F1-score was achieved on this data subset. As indicated by Table 8.32, our LSTM

model performs the best.
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Table 8.32: Performance of various deep learning architectures

Model details Accuracy Precision Recall F1-score
LSTM 58.2 75.4 62.3 67.2
GRU 56.7 73.7 60.9 66
BiLSTM 56 74 60.7 66.1
BiGRU 56.4 75.9 61.1 66.9

Chapter-level Labels

Once again, considering RQ4, we will present an Exact Match score, Hamming loss, and

Jaccard index that will give us a measure of the overlap of the multi-labels. This will let us

know if there are new labels added by our models’ predictions of the chapter labels.

We perform transfer learning from the full-text to the chapter-level. Here we compare the

predicted model results at the chapter level against the ground truth labels present at the

full-text level.

Table 8.33: Performance of best deep learning algorithms at the chapter-level

F1-score Hamming
loss

Jaccard
index

Exact
match
score

Notes

62.3 0.0286 49.1 55.4 Full-text (All data) + PSU-
Illinois embeddings

60 0.0299 44.8 55.7 Chapter subset data (full-text) +
VT embeddings

Table 8.33 presents the results obtained for the same. In both cases, our best models are

LSTMs. According to this table, the loss of labels between the full-text and the chapters

tends towards zero which indicates that most of the predicted labels contain the ground

truth labels as well. Similarly, the strict exact match values are 55.4 and 55.7, respectively.

This indicates that over 50% of the labels exactly match in both cases. This does, however,
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indicate to us that, with respect to RQ4, there does exist a difference between the labels

predicted at the chapter-level when compared to the labels associated with the ETD as a

whole.

Figure 8.19: Performance of LSTM trained on Full-text (All data) at the chapter-level

Figure 8.19 represents the performance of our best performing LSTM model trained using

Full-text (All data). As can be seen from this figure, the categories with the lowest F-1

score include ‘Higher education’ with a score of 34, followed by ‘Secondary education’ with

an F-1 score of 37, followed by ‘Forestry’ with an F-1 score of 38. On further inspection,

we found that ‘Higher education’ was alternatively being classified as ‘Adult education’ and

‘Secondary education’, and ‘Secondary education’ was alternatively being classified as ‘Ele-

mentary education’ and ‘Adult education’. We think this could be attributed to the similar

vocabulary used in these subject categories as well as overlapping departments and author-
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provided keywords. ‘Forestry’ was alternatively being classified as ‘Environmental science’

and ‘Ecology’. Once again, on inspection of a few of these alternatively classified chapters, we

find that this could be attributed to overlapping vocabulary between these subject categories

which indicates that these disciplines may co-occur together more frequently.

Figure 8.20: Part 1: Interdisciplinarity of chapters of ETDs represented by co-occurrence of
subject categories based on predictions made by the LSTM model trained on Full-text (All
data)

Figure 8.21: Part 2: Interdisciplinarity of chapters of ETDs represented by co-occurrence of
subject categories based on predictions made by the LSTM model trained on Full-text (All
data)

Figures 8.21 and 8.21 indicate the number of times subject categories were commonly pre-

dicted to co-occur together. There were a total of 32607 chapters as part of this test set.

These results have been presented for our best performing LSTM model trained using Full-

text (All data).

Figure 8.22 represents the number of STEM and non-STEM subject categories that were

assigned to each of the individual subject categories. The values on the X-axis represent the
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Figure 8.22: STEM and non-STEM categories predicted for chapters of ETDs by the LSTM
model trained using Full-text (All data)

ground truth subject categories for each of the chapters of the ETDs considered. As can be

seen from this figure, categories such as ‘Civil engineering’, and ‘Chemical engineering’ which

are STEM categories contain chapters that also predominantly belong to STEM categories.
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Future Work

This research was performed on a fairly large corpus. However, we find that our deep learning

models were not able to perform as well as we expected. Thus, we believe that using the

methods developed as part of this research, we should train classifiers on a larger dataset.

This would enable the deep learning models to learn better and would in turn improve the

performance of the models.

Since we do not have expert annotations at the chapter-level, we believe that obtaining

such annotations would enhance the performance of the models and would help us to better

evaluate the multi-disciplinary labels generated by our automatic classification methods.

As described in Section 6.1.2, gensim provides us with top keywords extracted using the

TextRank algorithm. We believe that the use of these keywords combined might give better

performance with our sequential deep learning models.

Additionally, while the current dataset includes a mix of ETDs from different universities,

it would be interesting to evaluate the classifiers built using this corpus on other datasets

such as a dataset that is comprised of data from Historically Black Colleges and Universities

(HBCUs) and Hispanic-Serving Institutions (HSIs).
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Conclusions

This research aims to generate chapter-level labels for chapters from Electronic Theses and

Dissertations (ETDs). We trained over 2,000 different classifiers with varied embeddings

and summarization techniques. Our study focuses on developing a methodology that is best

suited to train classifiers at the full-text level and generate chapter-level labels through trans-

fer learning. We find that our hypothesis that posits custom word and document embeddings

trained on ETDs would outperform the pre-trained embeddings trained on the Wikipedia

and Common Crawl datasets was confirmed. We also find that our hypothesis on the use of

extractive summaries to improve the performance of our classifiers was partitially confirmed

by the use of the summaries generated using Luhn’s Algorithm on our machine learning

classifiers. This, however, was not the case with our deep learning classifiers. Additionally,

the F1-scores achieved by our machine learning models were greater than our deep learning

models which was contrary to our hypothesis. We believe that the performance of the deep

learning classifiers could be improved by increasing the size of the dataset used to train our

models. The small size of the dataset is a limitation of this study. We were able to success-

fully generate labels at the chapter-level and found that these labels do differ from those of

the full-text. This indicates the merits of this research and its ability to help researchers

identify the inter-disciplinary nature at the chapter-level of an ETD. However, the study was

not compared against expert annotations at the chapter-level which would have provided a

more robust analysis of the performance of our classifiers.
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Appendix A

Data Description

In this appendix, we provide auxiliary information for Chapter 4, ‘Data’.
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Figure A.1: Part 1: Co-occurrence of the 28 subject categories
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Figure A.2: Part 2: Co-occurrence of the 28 subject categories



Appendix B

Classifier Performance

In this appendix, we present additional results of our machine learning and deep learning

classifiers.

B.1 Machine Learning Classifiers

Tables B.1, B.2, B.3, B.4, B.5, B.6 represent the scores obtained for the RF and SVM models

with different embeddings on the Full-text (half data) set.
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Table B.1: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 38.431 56.676 41.047 46.629
25 3 200 0 200 100 38.174 56.271 41.316 46.575
50 3 200 1 100 25 37.874 56.523 40.985 46.57
50 3 200 1 100 50 38.517 55.628 41.242 46.439
25 3 100 1 100 25 38.303 55.479 40.979 46.381
100 3 100 1 200 25 38.903 56.311 40.687 46.323
50 3 200 0 100 50 38.003 55.747 40.813 46.309
50 5 200 1 100 100 37.446 56.204 40.787 46.309
25 3 200 0 100 100 38.903 55.264 40.925 46.235
100 5 100 1 100 50 37.96 55.717 40.765 46.187

Table B.2: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 200 0 200 25 53.256 75.098 59.172 65.508
50 3 200 0 100 25 52.569 75.436 58.511 65.143
50 3 200 0 200 25 52.699 75.064 58.714 65.131
100 3 200 0 200 25 52.998 74.548 58.815 65.053
25 5 200 0 200 25 52.656 74.812 58.718 65.049
100 5 200 0 200 25 52.742 74.593 58.849 65.047
25 3 200 0 200 25 52.312 74.888 58.435 64.856
25 3 200 0 100 25 52.27 74.917 58.144 64.763
50 5 200 0 100 25 52.356 74.687 58.141 64.652
50 5 100 0 200 25 51.842 74.599 58.109 64.586
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Table B.3: Performance of top 10 RF models with embeddings trained using the VT dataset
on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 100 50 37.789 56.97 40.961 46.711
25 5 100 0 100 100 38.603 55.801 41.315 46.704
25 3 100 0 100 50 37.403 56.145 40.935 46.475
50 3 200 1 100 100 38.56 55.713 40.948 46.422
25 3 200 1 200 50 38.131 56.023 41.02 46.367
25 3 100 1 100 25 38.431 56.03 40.752 46.178
100 5 100 0 100 25 37.146 55.445 40.642 45.963
25 3 200 0 100 50 38.389 55.349 40.339 45.946
50 3 100 1 200 50 37.532 56.469 40.197 45.895
25 5 200 1 100 25 38.089 55.364 40.582 45.884

Table B.4: Performance of top 10 SVM models with embeddings trained using the VT
dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 52.356 74.935 58.547 64.938
25 5 200 0 200 25 52.141 74.717 58.382 64.734
50 3 200 0 200 25 52.141 74.689 58.169 64.515
50 5 200 0 200 25 52.099 74.416 57.999 64.419
100 5 200 0 200 25 51.67 74.622 58.016 64.380
100 3 200 0 200 25 51.798 74.202 58.018 64.220
50 5 200 0 200 50 51.327 74.006 57.484 63.847
50 3 200 0 100 25 50.985 74.126 57.312 63.817
50 3 100 0 200 25 50.556 73.932 57.232 63.746
25 3 100 0 200 25 51.028 73.515 57.374 63.715
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Table B.5: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois + VT dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 100 25 39.202 56.446 41.46 47.004
100 3 100 1 100 100 39.545 56.543 41.394 46.831
100 3 100 1 100 50 38.174 56.875 41.066 46.623
50 3 100 1 100 100 38.56 56.235 40.996 46.559
25 5 100 1 100 100 38.389 56.088 41.061 46.531
25 3 100 1 100 100 39.160 56.316 41.214 46.526
50 5 200 1 100 25 38.346 56.18 41.003 46.469
50 3 100 0 100 50 38.217 56.233 40.794 46.346
25 5 200 1 100 25 38.389 56.032 40.969 46.333
100 3 100 0 100 100 37.917 56.155 40.741 46.306

Table B.6: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois + VT dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 200 25 52.656 75.083 58.815 65.146
25 3 200 0 200 25 52.27 75.122 58.692 65.069
25 5 200 0 200 25 52.312 74.746 58.513 64.809
50 5 200 0 200 25 52.27 74.754 58.499 64.769
25 3 200 0 100 25 51.498 74.538 57.962 64.503
50 5 200 0 100 25 51.498 74.668 57.896 64.444
50 3 200 0 100 25 51.242 74.698 57.721 64.342
25 5 200 0 100 25 51.156 74.818 57.643 64.318
25 3 100 0 200 25 51.113 74.560 57.847 64.277
25 5 100 0 200 25 51.156 74.454 57.806 64.270
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Tables B.7, B.8, B.9, B.10, B.11, B.12 represent the scores obtained for the RF and SVM

models with different embeddings on the Full-text (All data).

Table B.7: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 100 0 100 25 43.059 59.641 46.261 51.342
25 3 100 0 100 50 43.401 58.741 45.451 50.653
25 5 100 0 100 100 43.573 58.878 45.745 50.639
25 3 200 1 100 25 43.916 58.311 45.757 50.442
50 3 100 0 100 100 43.916 59.12 45.333 50.434
100 5 100 0 100 25 43.958 58.414 45.479 50.334
50 5 100 0 100 100 43.701 58.614 45.324 50.245
25 5 100 1 100 50 43.873 58.8 45.143 50.205
100 3 100 1 100 100 43.016 58.625 45.114 50.165
50 5 100 1 100 25 43.744 58.353 45.273 50.134
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Table B.8: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 200 25 58.397 77.17 63.083 68.899
100 3 200 0 200 25 58.526 77.045 63.161 68.869
50 5 200 0 200 25 58.568 77.078 63.068 68.862
25 5 200 0 200 25 57.669 77.077 62.788 68.612
25 3 100 0 200 25 56.983 77.32 62.311 68.489
25 3 200 0 200 25 57.669 76.98 62.547 68.439
100 5 200 0 200 25 57.882 76.511 62.552 68.277
50 3 100 0 200 25 56.983 76.402 61.966 67.975
100 5 200 0 200 50 57.196 75.928 61.919 67.69
50 3 200 0 200 50 57.111 76.160 61.745 67.636

Table B.9: Performance of top 10 RF models with embeddings trained using the VT dataset
on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 200 0 100 100 42.93 59.514 45.663 50.766
100 5 100 1 100 100 43.830 58.723 45.516 50.570
50 3 100 1 100 100 42.716 59.446 45.224 50.444
25 3 200 1 100 25 43.486 58.098 45.463 50.346
25 3 100 0 100 25 43.401 57.998 45.182 50.075
25 3 100 0 100 100 43.958 58.013 45.109 50.047
25 5 100 1 100 50 43.144 58.811 44.822 49.975
100 3 200 0 100 25 42.502 59.074 44.567 49.873
100 3 200 1 200 50 43.101 57.811 44.952 49.793
25 3 200 1 100 100 43.187 57.533 44.832 49.716
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Table B.10: Performance of top 10 SVM models with embeddings trained using the VT
dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 57.926 76.983 62.612 68.530
50 3 200 0 200 25 57.669 77.098 62.443 68.43
100 5 200 0 200 25 57.926 76.259 62.0 68.118
25 3 200 0 200 25 57.669 76.742 62.197 68.091
50 5 200 0 200 25 57.711 76.451 62.292 68.088
100 3 200 0 200 25 57.196 75.738 61.848 67.549
50 5 100 0 200 25 56.682 76.178 61.509 67.473
100 5 200 0 100 25 55.998 76.214 61.288 67.339
25 5 100 0 200 25 56.383 76.153 61.28 67.277
50 5 200 0 100 25 56.340 76.032 61.259 67.273

Table B.11: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois + VT dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 100 0 100 50 43.701 59.174 45.238 50.416
25 3 100 1 100 50 42.844 58.885 44.989 50.163
25 3 100 1 100 25 43.358 58.118 44.868 49.775
25 5 100 0 100 25 42.802 57.875 44.735 49.693
50 5 100 0 100 50 43.830 57.923 44.884 49.683
100 3 100 1 100 25 43.358 58.203 44.595 49.666
25 5 200 1 100 25 43.358 58.365 44.775 49.644
50 3 100 0 100 25 42.759 58.113 44.647 49.62
25 3 200 0 100 25 43.187 57.870 44.811 49.61
25 3 100 0 100 50 42.502 58.016 44.725 49.589
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Table B.12: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois + VT dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 57.455 76.885 62.358 68.325
50 5 200 0 200 25 57.196 76.434 62.108 67.932
50 3 200 0 200 25 56.769 76.127 61.638 67.481
50 3 200 0 100 25 56.255 75.802 61.206 67.261
25 5 200 0 200 25 56.855 75.62 61.453 67.222
25 5 200 0 100 25 55.998 75.654 61.004 67.123
100 5 100 0 200 25 55.869 75.818 60.989 67.006
50 5 200 0 200 50 56.426 75.192 61.21 66.998
25 5 100 0 200 25 55.698 75.619 60.885 66.923
50 3 200 0 200 50 56.255 75.131 61.065 66.862
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Tables B.13, B.14, B.17, B.18, B.15, B.16 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings on the chapter subset data

(full-text data).

Table B.13: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 100 50 46.341 57.654 46.544 50.785
25 5 200 1 100 50 46.146 57.555 46.198 50.583
25 3 200 1 100 50 45.951 58.181 46.166 50.564
100 3 100 0 100 50 46.731 57.172 46.248 50.488
50 3 200 1 100 100 47.317 57.182 46.122 50.449
25 3 200 1 200 100 46.536 57.525 46.115 50.425
50 5 100 0 100 25 46.341 57.282 45.888 50.341
50 3 100 1 200 100 45.658 58.082 45.619 50.293
50 3 100 1 100 50 44.585 56.556 46.089 50.144
50 3 200 0 100 50 45.268 57.721 45.476 49.979
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Table B.14: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 63.219 74.263 64.904 68.864
25 5 200 0 100 25 63.024 74.405 64.720 68.762
100 3 200 0 200 25 63.121 74.278 64.513 68.609
25 3 200 0 200 25 62.341 74.306 64.347 68.564
50 3 200 0 200 50 62.048 75.015 63.976 68.557
50 5 200 0 200 25 62.634 74.158 64.347 68.494
100 5 200 0 200 25 62.829 74.043 64.420 68.491
25 5 100 0 100 25 62.243 74.245 64.102 68.318
100 5 200 0 100 25 62.634 74.071 64.071 68.314
100 5 100 0 200 25 62.048 74.386 63.744 68.25

Table B.15: Performance of top 10 RF models with embeddings trained using the VT dataset
on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 5 100 0 100 100 46.536 58.013 46.705 50.809
25 5 100 1 100 50 45.658 57.67 46.248 50.482
25 5 200 1 100 25 45.073 57.413 45.655 50.109
50 5 100 0 100 100 45.365 56.083 46.026 49.952
25 3 100 1 200 50 46.341 57.425 45.245 49.907
100 3 200 0 200 25 45.073 57.178 45.446 49.844
100 5 200 0 200 25 45.853 56.95 45.379 49.573
25 3 100 0 200 100 45.268 56.954 44.939 49.538
100 5 100 0 100 25 44.682 56.757 45.07 49.451
25 3 100 1 100 25 44.975 57.111 44.881 49.442
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Table B.16: Performance of top 10 SVM models with embeddings trained using the VT
dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 62.536 74.705 64.115 68.51
25 3 200 0 200 25 62.731 74.256 64.023 68.34
100 3 200 0 200 25 62.439 73.978 64.168 68.301
100 5 200 0 200 25 62.731 73.787 64.12 68.198
50 5 200 0 200 25 62.536 73.947 63.907 68.152
25 5 200 0 200 50 62.341 73.76 63.971 68.022
50 3 200 0 200 25 62.048 73.8 63.759 68.014
25 3 200 0 200 50 62.146 74.087 63.798 68.009
100 5 200 0 100 25 62.536 73.966 63.566 67.946
100 3 200 0 200 50 62.048 73.76 63.745 67.869

Table B.17: Performance of top 10 RF models with embeddings trained using the PSU +
Illinois + VT dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 0 100 50 46.634 56.744 46.599 50.419
50 3 200 0 100 25 45.951 56.916 46.23 50.375
50 5 100 1 100 100 45.268 57.303 46.089 50.222
50 5 200 0 200 50 46.048 56.760 45.702 49.992
25 3 200 0 100 100 46.341 56.247 46.058 49.946
25 3 100 1 100 50 45.268 57.312 45.304 49.899
50 5 200 0 100 25 45.56 57.574 45.484 49.875
100 3 100 1 100 100 46.341 56.703 45.771 49.822
25 5 200 0 200 25 45.658 56.811 45.373 49.81
50 3 100 1 100 100 46.439 57.132 45.53 49.762



B.1. Machine Learning Classifiers 201

Table B.18: Performance of top 10 SVM models with embeddings trained using the PSU +
Illinois + VT dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 200 50 63.512 75.999 65.042 69.512
50 5 200 0 200 25 63.317 75.717 64.521 69.08
50 5 200 0 200 50 63.121 75.095 64.554 68.875
25 5 200 0 200 50 63.024 74.952 64.524 68.806
25 5 200 0 200 25 63.219 75.416 64.261 68.797
25 3 200 0 200 50 63.121 75.063 64.469 68.764
25 3 200 0 200 25 63.512 75.093 64.285 68.707
25 5 100 0 200 50 62.536 74.765 64.2 68.61
50 3 200 0 200 25 62.829 75.104 64.163 68.604
25 3 100 0 200 50 62.048 74.995 63.958 68.518
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Tables B.19, B.20, B.23, B.24, B.21, B.22 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

gensim's TextRank Generated Summary with ratio of 0.2.

Table B.19: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 46.634 56.631 46.452 50.295
25 3 100 1 100 50 44.096 56.513 44.389 48.731
25 3 200 1 100 50 44.585 55.37 43.46 47.667
100 3 100 0 100 50 43.804 54.569 43.292 47.516
25 5 200 1 100 50 42.925 54.849 42.961 47.291

Table B.20: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 100 25 61.951 74.783 64.026 68.577
50 3 200 0 200 50 62.243 74.505 64.115 68.565
25 5 200 0 200 25 61.756 74.127 63.744 68.133
100 3 200 0 200 25 62.048 74.036 63.837 68.074
25 3 200 0 200 25 61.756 73.77 63.62 67.9
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Table B.21: Performance of top 5 RF models with embeddings trained using the VT dataset
using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 1 100 25 45.365 55.553 44.908 49.0
50 5 100 0 100 100 43.414 56.032 44.174 48.509
25 3 100 1 200 50 44.39 54.734 43.453 47.545
100 5 100 0 100 100 43.024 53.088 42.903 46.650
25 5 100 1 100 50 43.024 53.282 42.227 46.364

Table B.22: Performance of top 5 SVM models with embeddings trained using the VT
dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 5 200 0 200 25 63.219 75.029 64.69 68.952
100 3 200 0 200 25 62.536 74.388 63.907 68.194
25 5 200 0 200 25 61.951 73.904 63.395 67.757
50 5 200 0 200 25 61.951 73.789 63.341 67.662
25 3 200 0 200 25 61.756 73.667 63.148 67.506
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Table B.23: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 100 25 44.975 56.431 45.327 49.431
25 3 100 0 100 50 44.292 56.088 44.016 48.52
50 5 200 0 200 50 42.829 55.354 43.775 48.329
50 5 100 1 100 100 40.0 54.101 44.052 47.937
25 3 200 0 100 100 43.902 53.937 42.962 47.003

Table B.24: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 50 62.634 74.756 64.236 68.596
50 5 200 0 200 25 62.146 74.9 63.79 68.344
50 5 200 0 200 50 62.048 74.639 63.869 68.315
50 3 200 0 200 50 62.341 74.446 63.995 68.309
25 5 200 0 200 25 61.853 74.477 63.528 68.053
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Tables B.25, B.26, B.29, B.30, B.27, B.28 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

gensim's TextRank Generated Summary with 100 words.

Table B.25: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 100 0 100 50 45.756 57.342 45.612 49.669
25 3 100 1 100 50 45.268 55.69 44.271 48.646
50 3 200 1 100 100 44.78 55.123 43.888 48.108
25 3 200 1 100 50 43.707 53.909 42.473 46.664
25 5 200 1 100 50 42.634 53.166 42.376 46.438

Table B.26: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 200 0 200 25 63.512 73.622 64.335 68.319
25 5 200 0 200 25 62.243 72.746 63.471 67.477
25 3 200 0 200 25 62.341 72.765 63.370 67.396
25 5 200 0 100 25 60.39 72.883 62.214 66.732
50 3 200 0 200 50 61.17 71.447 62.661 66.463
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Table B.27: Performance of top 5 RF models with embeddings trained using the VT dataset
using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 0 100 100 44.096 55.823 44.416 48.486
25 5 200 1 100 25 43.804 53.890 43.297 47.372
100 5 100 0 100 100 43.024 55.041 43.068 47.333
25 3 100 1 200 50 42.925 54.195 43.194 47.226
25 5 100 1 100 50 43.219 54.052 43.107 47.019

Table B.28: Performance of top 5 SVM models with embeddings trained using the VT
dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 200 0 200 25 63.414 74.529 64.771 68.964
100 3 200 0 200 25 63.609 74.003 64.869 68.827
25 5 200 0 200 25 63.317 74.41 64.579 68.796
25 3 200 0 200 25 64.195 74.167 64.574 68.67
100 5 200 0 200 25 63.707 73.823 64.608 68.544
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Table B.29: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 100 100 43.414 54.973 43.971 48.101
50 5 200 0 200 50 44.096 54.308 43.830 47.965
25 3 100 0 100 50 43.512 54.825 43.349 47.624
50 3 200 0 100 25 40.0 52.809 43.025 46.546
50 5 100 1 100 100 41.853 52.271 41.893 45.751

Table B.30: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 200 0 200 25 62.048 73.246 63.402 67.565
25 5 200 0 200 25 61.756 72.933 63.099 67.286
50 5 200 0 200 50 61.56 72.122 62.876 66.794
50 3 200 0 200 50 61.463 72.04 62.649 66.595
25 5 200 0 200 50 61.463 71.621 62.586 66.405
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Tables B.31, B.32, B.35, B.36, B.33, B.34 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

sumy's LexRank Generated Summary.

Table B.31: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 1 100 50 45.463 56.411 45.538 49.347
25 3 100 1 100 50 44.096 54.43 43.159 47.398
100 3 100 0 100 50 43.804 54.933 42.95 47.311
25 5 200 1 100 50 43.219 54.149 42.644 46.922
50 3 200 1 100 100 42.439 52.977 42.798 46.682

Table B.32: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 61.951 73.714 63.512 67.785
25 5 200 0 200 25 61.56 73.351 63.395 67.646
100 3 200 0 200 25 62.243 73.345 63.293 67.534
25 5 200 0 100 25 59.707 71.526 61.872 65.973
50 3 200 0 200 50 59.609 70.875 61.702 65.593
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Table B.33: Performance of top 5 RF models with embeddings trained using the VT dataset
using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 0 100 100 43.608 56.169 43.618 48.303
25 5 200 1 100 25 43.219 54.535 43.368 47.609
25 5 100 1 100 50 42.634 54.336 42.974 47.296
25 3 100 1 200 50 42.341 53.725 42.403 46.741
100 5 100 0 100 100 43.120 52.653 42.225 46.184

Table B.34: Performance of top 5 SVM models with embeddings trained using the VT
dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 5 200 0 200 25 62.634 74.283 63.876 68.119
100 3 200 0 200 25 62.439 73.897 63.729 68.002
50 5 200 0 200 25 62.048 73.772 63.527 67.743
25 5 200 0 200 25 62.048 73.407 63.55 67.669
25 3 200 0 200 25 61.756 73.714 63.193 67.616
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Table B.35: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 0 100 50 45.658 56.422 44.416 48.675
50 5 100 1 100 100 44.292 54.642 44.035 47.876
50 3 200 0 100 25 44.487 52.928 43.943 47.504
50 5 200 0 200 50 42.439 52.837 41.797 45.882
25 3 200 0 100 100 42.341 52.427 41.337 45.446

Table B.36: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 62.536 73.889 63.597 67.729
50 3 200 0 200 50 62.048 73.443 63.324 67.459
50 5 200 0 200 25 61.756 73.708 62.905 67.207
25 5 200 0 200 50 60.878 72.606 62.200 66.486
50 5 200 0 200 50 60.975 72.359 62.148 66.346
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Tables B.37, B.38, B.41, B.42, B.39, B.40 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

sumy's Generated Summary using Luhn’s Algorithm.

Table B.37: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 100 50 44.878 55.162 44.638 48.482
50 3 200 1 100 100 44.682 53.601 44.601 48.071
25 3 200 1 100 50 45.073 54.693 43.846 48.028
100 3 100 0 100 50 44.195 55.400 43.765 47.994
25 5 200 1 100 50 43.317 53.077 43.046 46.836

Table B.38: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 200 0 200 25 62.829 73.005 60.0 67.845
25 5 200 0 200 25 62.439 72.133 63.368 67.133
50 3 200 0 200 50 60.975 72.397 62.778 66.804
25 3 200 0 200 25 61.56 71.6 62.683 66.539
25 5 200 0 100 25 60.585 71.769 61.925 66.035
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Table B.39: Performance of top 5 RF models with embeddings trained using the VT dataset
using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 100 1 100 50 45.17 57.328 45.298 49.984
25 5 200 1 100 25 46.048 57.107 45.768 49.868
25 3 100 1 200 50 44.195 55.403 44.307 48.673
100 5 100 0 100 100 42.829 51.928 42.079 45.940
50 5 100 0 100 100 42.536 53.458 41.404 45.795

Table B.40: Performance of top 5 SVM models with embeddings trained using the VT
dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 64.39 75.952 65.694 70.052
100 5 200 0 200 25 64.78 75.215 65.595 69.64
25 5 200 0 200 25 63.609 75.182 65.401 69.553
50 5 200 0 200 25 64.195 75.163 65.198 69.433
100 3 200 0 200 25 63.902 75.075 65.086 69.291
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Table B.41: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 100 25 44.975 55.596 44.991 49.145
50 5 100 1 100 100 44.096 54.7 43.407 47.598
25 3 200 0 100 100 43.317 54.067 42.568 46.967
50 5 200 0 200 50 40.0 53.339 42.845 46.963
25 3 100 0 100 50 41.853 52.949 42.16 46.04

Table B.42: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 200 0 200 25 63.024 74.329 64.432 68.518
25 5 200 0 200 25 62.731 74.017 64.199 68.328
25 5 200 0 200 50 63.024 73.306 64.031 67.876
50 3 200 0 200 50 62.439 73.489 63.944 67.864
50 5 200 0 200 50 62.146 73.107 63.636 67.545
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Tables B.43, B.44, B.47, B.48, B.45, B.46 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

sumy's Generated Summary using LSA.

Table B.43: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 100 0 100 50 44.487 55.249 44.333 48.294
25 3 200 1 100 50 44.682 54.775 44.379 48.217
25 3 100 1 100 50 42.634 54.705 43.11 47.457
50 3 200 1 100 100 42.439 54.789 43.032 47.205
25 5 200 1 100 50 42.341 53.827 42.436 46.465

Table B.44: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 62.341 73.964 64.563 68.561
100 3 200 0 200 25 62.926 73.178 64.347 68.094
25 3 200 0 200 25 61.853 73.367 63.903 67.847
50 3 200 0 200 50 60.195 72.170 62.532 66.605
25 5 200 0 100 25 60.487 72.396 61.895 66.269
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Table B.45: Performance of top 5 RF models with embeddings trained using the VT dataset
using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 1 100 25 43.317 54.983 44.201 48.405
25 5 100 1 100 50 44.195 54.458 43.438 47.532
100 5 100 0 100 100 42.731 52.658 42.553 46.583
25 3 100 1 200 50 43.219 53.017 42.455 46.461
50 5 100 0 100 100 42.341 53.413 41.922 46.245

Table B.46: Performance of top 5 SVM models with embeddings trained using the VT
dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 63.902 75.735 65.751 70.008
50 5 200 0 200 25 64.195 75.175 65.83 69.817
100 3 200 0 200 25 60.0 75.164 65.378 69.482
100 5 200 0 200 25 63.804 74.936 65.292 69.338
25 5 200 0 200 25 62.341 74.705 64.474 68.818
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Table B.47: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 100 25 40.0 55.850 44.327 48.684
25 3 200 0 100 100 44.682 55.193 44.315 48.409
50 5 200 0 200 50 44.292 54.581 43.903 47.910
25 3 100 0 100 50 45.17 53.044 43.858 47.413
50 5 100 1 100 100 42.341 53.961 42.693 46.883

Table B.48: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 200 50 60.0 74.732 65.051 69.065
25 5 200 0 200 50 63.707 74.499 64.995 68.974
50 5 200 0 200 25 63.804 74.526 64.969 68.94
50 5 200 0 200 50 63.121 74.198 64.675 68.62
25 5 200 0 200 25 62.634 74.047 64.095 68.234
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Tables B.49, B.50, B.53, B.54, B.51, B.52 represent the scores obtained on the chapter subset

dataset for the RF and SVM models with different embeddings. For this set of experiments,

we use the combined summaries of the chapters of the ETDs present in this subset using

sumy's Generated Summary using LSA with stopwords.

Table B.49: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 1 100 50 45.17 55.254 44.471 48.618
50 3 200 1 100 100 44.292 55.277 44.59 48.545
25 3 100 1 100 50 43.317 54.562 43.113 47.479
25 5 200 1 100 50 43.024 53.276 42.372 46.553
100 3 100 0 100 50 41.658 51.49 40.786 44.71

Table B.50: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 0 200 25 61.853 73.036 63.379 67.524
25 5 200 0 200 25 61.951 72.277 63.321 67.179
25 5 200 0 100 25 60.682 72.586 62.308 66.663
50 3 200 0 200 50 60.39 72.03 61.953 66.215
100 3 200 0 200 25 60.682 71.31 62.024 65.932
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Table B.51: Performance of top 5 RF models with embeddings trained using the VT dataset
using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 100 1 100 50 40.0 55.440 44.352 48.372
50 5 100 0 100 100 44.195 54.932 44.032 48.001
25 5 200 1 100 25 44.096 53.871 43.524 47.426
100 5 100 0 100 100 41.951 52.763 42.044 45.971
25 3 100 1 200 50 43.414 51.913 41.427 45.189

Table B.52: Performance of top 5 SVM models with embeddings trained using the VT
dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 3 200 0 200 25 62.926 73.402 63.934 67.978
100 5 200 0 200 25 62.731 73.334 63.91 67.894
50 5 200 0 200 25 61.951 73.267 63.341 67.551
25 3 200 0 200 25 62.243 73.093 63.464 67.545
25 5 200 0 200 25 61.56 72.566 62.982 67.054
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Table B.53: Performance of top 5 RF models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 0 100 50 44.878 55.989 44.903 48.962
50 3 200 0 100 25 44.78 54.166 43.801 47.641
50 5 100 1 100 100 43.608 54.315 43.234 47.345
50 5 200 0 200 50 43.120 53.418 42.751 46.872
25 3 200 0 100 100 43.414 53.675 42.620 46.64

Table B.54: Performance of top 5 SVM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 0 200 50 61.56 73.409 63.464 67.642
50 5 200 0 200 25 61.56 72.811 63.23 67.332
25 5 200 0 200 25 61.463 72.89 63.076 67.318
25 5 200 0 200 50 60.975 73.070 62.83 67.140
50 5 200 0 200 50 61.17 73.232 62.82 67.133
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B.2 Deep Learning Classifiers

Tables B.55, B.56, and B.57 represent the scores obtained on the Full-text (Half data) for the

LSTM models with different embeddings. Each of these models was trained with a statesize

of 1024, a dropout of 0.2, batch size of 512, and 15 epochs.

Table B.55: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 30.548 80.399 33.068 41.609
50 3 200 1 100 50 27.977 78.742 29.815 38.601
50 3 200 1 100 25 27.892 86.816 28.811 36.563
25 3 100 1 100 25 27.162 83.088 27.592 35.276
50 3 200 0 100 25 15.895 93.93 15.895 26.244
25 3 200 0 200 100 17.009 84.714 17.009 25.028
50 3 200 0 200 25 13.753 79.375 14.261 22.837
100 3 200 0 200 25 10.711 88.34 12.489 18.616
25 5 200 0 200 25 8.483 99.089 8.483 15.619
50 5 200 0 200 25 8.654 97.78 8.654 15.511
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Table B.56: Performance of top 10 LSTM models with embeddings trained using the VT
dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 1 200 50 38.431 77.117 40.296 48.759
50 3 200 1 100 100 36.332 80.334 38.126 46.495
25 3 100 1 100 50 32.903 73.382 36.336 45.822
100 5 200 0 200 25 14.91 79.304 14.946 23.73
50 3 200 0 200 25 15.338 83.845 15.338 22.958
50 5 200 0 200 25 13.496 87.758 13.496 21.373
25 5 200 0 200 25 12.982 90.002 13.174 21.198
25 5 100 0 100 100 11.568 87.31 11.568 19.052
25 3 200 0 200 25 10.453 79.55 11.916 16.603
25 3 100 0 100 50 8.74 70.704 8.74 14.89

Table B.57: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois + VT dataset on the Full-text (Half data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 100 1 100 100 34.79 67.698 37.03 44.111
50 3 100 1 100 100 29.604 77.983 32.537 40.764
100 3 100 1 100 100 30.334 72.959 32.251 39.201
100 3 100 1 100 50 25.491 73.894 28.328 36.964
25 3 200 0 200 25 15.038 73.806 16.281 24.659
25 3 200 0 100 25 13.11 85.078 14.124 22.404
50 3 200 0 200 25 13.024 90.58 13.024 21.359
50 5 200 0 200 25 12.982 79.651 12.975 20.241
25 5 200 0 200 25 11.525 89.13 11.525 18.573
25 3 200 0 100 25 6.598 86.105 6.598 12.125
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Tables B.58, B.59, and B.60 represent the scores obtained on the Full-text (All data) for the

LSTM models with different embeddings. Each of these models was trained with a statesize

of 1024, a dropout of 0.2, batch size of 512, and 15 epochs.

Table B.58: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 1 100 25 52.056 76.842 54.196 60.699
25 3 100 0 200 25 41.516 78.09 43.043 51.405
25 5 200 0 200 25 40.959 78.005 42.03 49.809
50 3 200 0 200 25 39.717 75.088 41.543 49.306
50 5 200 0 200 25 38.474 82.326 39.693 47.978
50 3 100 0 100 100 37.36 70.606 38.174 45.661
100 3 200 0 200 25 32.733 72.461 32.867 42.015
25 3 100 0 100 50 31.747 77.128 32.269 41.409
50 3 100 0 100 25 28.534 79.58 29.921 39.050
25 5 100 0 100 100 28.191 72.690 28.406 35.175
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Table B.59: Performance of top 10 LSTM models with embeddings trained using the VT
dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

100 5 100 1 100 100 50.257 72.348 52.758 58.583
25 3 200 1 100 25 49.614 72.539 51.166 57.450
50 3 100 1 100 100 48.886 73.509 50.117 56.772
25 5 200 0 200 25 43.701 77.389 44.743 52.26
25 3 200 0 200 25 41.302 79.015 42.809 50.751
50 5 200 0 200 25 40.488 77.827 41.829 49.927
100 5 200 0 200 25 39.160 74.422 40.636 48.906
100 3 200 0 100 100 36.418 82.599 37.129 45.42
25 3 100 0 100 25 36.975 74.972 37.324 44.734
50 3 200 0 200 25 35.132 75.626 36.556 42.532

Table B.60: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois + VT dataset on the Full-text (All data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 100 50 48.071 74.37 50.516 56.664
25 3 100 1 100 25 47.043 76.09 48.805 55.940
50 5 200 0 200 25 38.217 80.191 39.900 47.967
50 3 100 0 100 50 37.574 81.529 38.711 47.471
25 3 200 0 200 25 37.146 74.827 38.477 45.614
50 5 100 0 100 50 37.746 74.173 37.879 45.062
25 5 200 0 200 25 37.103 77.065 37.973 44.929
50 3 200 0 200 25 36.803 76.292 37.137 44.291
50 3 200 0 100 25 29.220 87.602 29.220 39.827
25 5 100 0 100 25 24.507 77.269 24.507 33.072
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Tables B.61, B.62, and B.63 represent the scores obtained on the chapter subset data (full-

text data) for the LSTM models with different embeddings.

Table B.61: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois + VT dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 60.0 74.14 60.0 64.407
25 5 200 1 100 50 57.56 77.753 57.56 63.556
25 3 200 1 100 50 57.17 76.049 57.17 62.541
25 3 100 1 100 50 54.340 75.457 54.340 59.646
25 5 200 0 100 25 38.829 82.308 38.829 46.907
100 3 200 0 200 25 34.731 83.557 34.731 43.203
25 3 200 0 200 25 35.219 89.057 35.219 43.081
100 3 100 0 100 50 28.975 86.006 28.975 37.515
25 5 200 0 200 25 28.877 93.544 28.877 37.367



B.2. Deep Learning Classifiers 225

Table B.62: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois + VT dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 61.073 73.088 61.111 64.821
25 5 200 1 100 25 58.243 74.559 58.243 62.995
25 5 100 1 100 50 55.120 74.046 55.544 61.159
25 5 200 0 200 25 50.439 78.903 50.439 56.964
25 3 200 0 200 25 50.439 79.178 50.439 56.632
100 3 200 0 200 25 47.121 78.349 47.121 54.384
100 5 200 0 200 25 46.243 75.691 46.243 52.477
50 5 200 0 200 25 42.731 78.393 42.731 51.053
100 5 100 0 100 100 38.634 80.886 38.634 48.344
50 5 100 0 100 100 34.634 81.119 34.634 42.63

Table B.63: Performance of top 10 LSTM models with embeddings trained using the PSU
+ Illinois + VT dataset on the Chapter subset data (full-text data)

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 56.389 71.868 56.852 61.607
50 3 200 0 200 50 48.487 77.884 48.487 55.091
50 5 200 0 200 25 45.853 85.835 45.853 54.738
25 5 200 0 200 25 46.146 83.202 46.146 54.386
25 3 200 0 100 100 47.024 75.511 47.024 53.542
50 3 200 0 100 25 43.317 79.581 43.317 51.766
50 5 200 0 200 50 47.317 74.19 47.317 51.336
25 3 100 0 100 50 42.634 80.342 42.634 50.926
25 5 200 0 200 50 43.024 83.384 43.024 50.881
50 5 200 0 200 50 40.097 80.654 40.097 47.504
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Tables B.64, B.65, and B.66 represent the scores obtained on the chapter subset dataset

for the LSTM models with different embeddings. For this set of experiments, we use the

combined summaries of the chapters of the ETDs present in this subset using gensim's

TextRank Generated Summary with ratio of 0.2.

Table B.64: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 1 100 50 58.926 72.63 59.006 63.273
50 3 200 1 100 100 56.096 74.694 56.183 61.149
25 3 100 1 100 50 52.486 73.303 52.626 58.628
25 3 200 1 100 50 52.681 74.988 52.681 58.291
25 5 200 0 200 25 43.902 85.814 43.902 52.995

Table B.65: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 61.463 72.043 61.612 64.755
25 5 200 1 100 25 59.317 71.197 59.592 62.975
25 5 100 1 100 50 58.243 72.179 58.373 62.461
50 5 200 0 200 25 52.681 77.281 52.681 58.424
100 5 200 0 200 25 49.852 79.403 49.852 56.518
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Table B.66: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with ratio of 0.2

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 57.755 70.126 57.755 61.382
50 5 200 0 200 50 50.634 79.339 50.634 57.943
25 5 200 0 200 50 52.195 74.713 52.195 57.748
50 5 200 0 200 50 48.878 82.119 48.878 56.248
25 5 200 0 200 25 47.317 83.585 47.317 56.211
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Tables B.67, B.68, and B.69 represent the scores obtained on the chapter subset dataset

for the LSTM models with different embeddings. For this set of experiments, we use the

combined summaries of the chapters of the ETDs present in this subset using gensim's

TextRank Generated Summary with 100 words.

Table B.67: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 200 1 100 50 57.072 74.060 57.072 61.815
50 3 200 1 100 100 51.512 75.067 51.512 57.865
25 5 200 1 100 50 49.073 72.334 49.073 54.473
25 3 100 1 100 50 47.219 72.649 47.219 53.703
100 3 200 0 200 25 43.317 76.267 43.317 50.67

Table B.68: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 57.365 70.769 57.365 61.312
25 5 200 1 100 25 51.609 75.468 51.609 58.109
25 5 100 1 100 50 51.317 75.985 51.317 57.708
50 5 200 0 200 25 47.024 79.562 47.024 54.168
25 3 200 0 200 25 45.073 81.57 45.073 52.534
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Table B.69: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using gensim's TextRank Generated Summary with 100 words

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 200 0 200 50 51.317 77.275 51.317 57.942
50 5 100 1 100 100 51.121 71.857 51.121 56.426
50 5 200 0 200 25 50.634 73.887 50.634 56.049
25 5 200 0 200 50 46.341 75.823 46.341 53.181
25 5 200 0 200 25 45.073 78.68 45.073 52.795
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Tables B.70, B.71, and B.72 represent the scores obtained on the chapter subset dataset for

the LSTM models with different embeddings. For this set of experiments, we use the com-

bined summaries of the chapters of the ETDs present in this subset using sumy's LexRank

Generated Summary.

Table B.70: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 53.657 73.756 53.429 58.278
25 3 200 1 100 50 51.219 73.66 51.219 57.523
25 5 200 1 100 50 47.804 78.959 47.804 54.301
25 3 100 1 100 50 44.195 81.276 44.195 51.516
100 3 200 0 200 25 42.341 82.725 42.341 51.141

Table B.71: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 54.047 72.848 54.227 58.994
25 5 200 1 100 25 52.975 70.586 52.975 57.469
25 5 100 1 100 50 48.195 76.500 48.195 55.157
100 3 200 0 200 25 47.804 73.993 47.804 54.716
25 3 200 0 200 25 46.536 82.256 46.536 54.273
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Table B.72: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's LexRank Generated Summary

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 55.706 68.354 55.706 59.343
50 5 200 0 200 50 47.414 80.098 47.414 54.922
50 5 200 0 200 25 44.78 84.37 44.78 53.569
25 5 200 0 200 25 44.39 80.707 44.39 53.059
25 5 200 0 200 50 46.536 79.63 46.536 52.886
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Tables B.73, B.74, and B.75 represent the scores obtained on the chapter subset dataset for

the LSTM models with different embeddings. For this set of experiments, we use the com-

bined summaries of the chapters of the ETDs present in this subset using sumy's Generated

Summary using Luhn’s Algorithm.

Table B.73: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 53.657 76.957 53.657 59.465
25 5 200 1 100 50 53.364 74.914 53.364 58.218
25 3 100 1 100 50 51.121 75.787 51.121 58.001
25 3 200 1 100 50 48.975 82.529 48.975 57.255
100 3 200 0 200 25 40.0 80.22 40.0 52.217

Table B.74: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 58.731 74.297 58.754 63.79
25 5 100 1 100 50 52.195 76.416 52.190 58.469
100 3 200 0 200 25 47.024 83.152 47.024 56.167
25 5 200 1 100 25 48.681 77.357 48.681 54.801
25 3 200 0 200 25 45.463 77.759 45.463 52.955
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Table B.75: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using Luhn’s Algorithm

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 55.803 72.104 55.793 60.057
50 5 200 0 200 25 49.463 79.995 49.463 56.882
50 3 200 0 200 50 48.78 75.500 48.78 54.996
25 5 200 0 200 25 46.536 82.201 46.536 54.183
25 3 200 0 100 100 44.096 82.551 44.096 53.400
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Tables B.76, B.77, and B.78 represent the scores obtained on the chapter subset dataset for

the LSTM models with different embeddings. For this set of experiments, we use the com-

bined summaries of the chapters of the ETDs present in this subset using sumy's Generated

Summary using LSA.

Table B.76: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 55.803 74.469 55.847 61.023
25 3 200 1 100 50 53.657 76.089 53.703 59.427
25 5 200 1 100 50 51.803 71.637 51.803 57.46
25 3 100 1 100 50 49.658 75.357 49.658 55.583
25 3 200 0 200 25 43.902 76.492 43.902 50.554

Table B.77: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 56.291 73.272 56.335 61.146
25 5 100 1 100 50 53.657 72.570 53.605 58.913
25 5 200 1 100 25 52.486 74.776 52.486 58.635
25 3 200 0 200 25 48.975 81.101 48.975 55.452
100 5 200 0 200 25 46.926 82.758 46.926 54.413
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Table B.78: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 5 200 0 200 25 51.803 74.175 51.803 57.838
50 3 200 0 200 50 50.341 80.231 50.341 56.842
50 5 100 1 100 100 50.731 72.414 50.731 56.447
50 5 200 0 200 50 48.195 78.393 48.195 55.300
50 5 200 0 200 50 46.146 80.059 46.146 53.352
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Tables B.79, B.80, and B.81 represent the scores obtained on the chapter subset dataset for

the LSTM models with different embeddings. For this set of experiments, we use the com-

bined summaries of the chapters of the ETDs present in this subset using sumy's Generated

Summary using LSA with stopwords.

Table B.79: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 3 200 1 100 100 56.486 73.496 56.572 61.109
25 3 200 1 100 50 52.585 75.182 52.585 58.58
25 5 200 1 100 50 51.219 77.393 51.456 57.617
25 3 100 1 100 50 50.731 74.79 50.778 56.782
100 3 200 0 200 25 38.439 83.341 38.439 45.53

Table B.80: Performance of top 5 LSTM models with embeddings trained using the VT
dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

25 3 100 1 200 50 57.56 71.942 57.889 61.82
25 5 200 1 100 25 53.073 74.833 53.073 59.473
50 5 200 0 200 25 51.512 79.837 51.512 59.345
25 5 100 1 100 50 54.146 72.448 54.146 59.084
100 5 200 0 200 25 48.487 79.843 48.487 56.011
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Table B.81: Performance of top 5 LSTM models with embeddings trained using the PSU +
Illinois + VT dataset using sumy's Generated Summary using LSA with stopwords

fastText Doc2Vec Accuracy Precision Recall F1-
score

Epochs Word
N
Grams

Dim DM Dim Epochs

50 5 100 1 100 100 55.218 72.502 55.218 60.488
50 5 200 0 200 25 49.17 77.669 49.17 56.610
50 5 200 0 200 50 47.804 77.445 47.804 55.396
25 5 200 0 200 50 48.292 79.42 48.292 55.198
25 3 200 0 100 100 47.512 77.503 47.512 55.101
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