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Abstract 

 This dissertation focuses on downlink multi-antenna transmission with packet scheduling 
in a wireless packet data network. The topic is viewed as a critical system design problem for 
future high-speed packet networks requiring extremely high spectral efficiency. Our aim is to 
illustrate the interaction between transmission schemes at the physical layer and scheduling 
algorithms at the medium access control (MAC) layer from a sum-capacity perspective. Various 
roles of multiple antennas are studied under channel-aware scheduling, including diversity, 
beamforming and spatial multiplexing. At a system performance level, our work shows that 
downlink throughput can be optimized by joint precoding across multiple transmit antennas and 
exploiting small-scale fading of distributed multiple input and multiple output (MIMO) channels. 
 There are three major results in this dissertation. First, it is shown that over a MIMO 
Gaussian broadcast channel, and under channel-aware scheduling, open-loop transmit antenna 
diversity actually reduces the achievable sum rate. This reveals a negative interaction between 
open-loop antenna diversity and the closed-loop multiuser diversity through scheduling. Second, 
a suboptimal dirty paper coding (DPC) approach benefits greatly from multiuser diversity by an 
efficient packet scheduling algorithm. Performance analysis of a suboptimal greedy scheduling 
algorithm indicates that, compared with the receiver-centric V-BLAST method, it can achieve a 
much larger scheduling gain over a distributed MIMO channel. Further, pre-interference 
cancellation allows for transmissions free of error propagation. A practical solution, termed 
Tomlinson-Harashima precoding (THP), is studied under this suboptimal scheduling algorithm. 
Similar to V-BLAST, a reordering is applied to minimize the average error rate, which introduces 
only a negligible sum-rate loss in the scenarios investigated. Third, for an orthogonal frequency 
division multiplexing (OFDM) system using MIMO precoding, it is shown that a DPC-based 
approach is readily applicable and can be easily generalized to reduce the peak-to-average power 
ratio (PAR) up to 5 dB without affecting the receiver design. Simulations show that in an 
interference-limited multi-cell scenario, greater performance improvement can be achieved by 
interference avoidance through adaptive packet scheduling, rather than by interference diversity 
or averaging alone. These findings suggest that, coordinated with channel-aware scheduling, 
adaptive multiplexing in both spatial and frequency domains provides an attractive downlink 
solution from a total capacity point of view. 
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Chapter 1. Introduction  1 

Chapter 1 
Introduction 

 Wireless communication dates back to 1897 when Guglielmo Marconi successfully 

demonstrated wireless telegraphy. In the following century, various wireless systems have 

flourished, and often disappeared later. As we look back today, the past decade has witnessed 

the success of the second-generation (2G) digital wireless cellular standards, the dramatic 

progress in VLSI technology, which has enabled the small-area and low-power 

implementation of advanced signal processing algorithms and coding techniques, and a 

research shift from voice to data networks. This dissertation is motivated by the recent 

advancements in wireless, which is still being driven by the ever increasing demand for 

high-speed tetherless connections to realize “anytime and anywhere” communications. 

1.1 Motivation and Scope 

 Information theory started with Shannon’s paper “A Mathematical Theory of 

Communication” published in 1948 [1], which also founded the modern theory of 

communication. Before 1995, the mainstream of wireless communication research focused 

on improving radio link reliability and capacity motivated by Shannon’s work. The field 

changed around 1995, when the seminal papers by Foschini [2] and Teletar [3] independently 

showed that in a rich-scattering environment, the capacity of a point-to-point wireless link 

can be greatly increased by employing multi-element antenna arrays at both ends of the link. 

The underlying wireless link with multiple inputs and multiple outputs (MIMO), possibly 



Chapter 1. Introduction  2 

correlated, is therefore named a MIMO channel. Generally, multiple antennas can play 

multiple roles, such as diversity, beamforming, spatial multiplexing, or interference 

cancellation. This dissertation focuses on the role of multiple antennas in a multiuser 

downlink channel, where multiple antennas at geographically isolated users constitute one 

end of a MIMO link in a distributed sense.  

 Practical communication systems are often multiuser in nature. For example, the 

mobile wireless system is inherently a multiuser system because signals of mobile users 

share a common air interface. Compared with single-user communication, multiuser 

communication is substantially more complicated. This complexity results mainly because 

real systems are often constrained by limited physical resources such as power and 

bandwidth, and economical designs are needed to allow multiple users to share scarce 

resources efficiently. The major purpose of this dissertation is to study such system designs 

so that the total throughput is maximized under certain quality-of-service (QoS) constraints. 

This throughput-oriented design is also motivated by 3G/4G wireless systems that target 

delay-tolerant, high-speed data transmission, in particular Internet access.  

 In future wireless systems, packet data services based on TCP/IP are expected to be a 

dominant application at data rates that are orders-of-magnitude higher than are supportable 

today. In the context of high-speed packet transmission, the design philosophy of 2G 

wireless systems is seriously challenged by new design requirements in terms of both 

multiple asymmetric links and various QoS provisions. While the traditional design 

philosophy seeks to isolate functionality of the network into distinct layers, recent 

development of wireless communications has led to a broader network perspective, and 

pointed towards cross-layer design. A second goal of this dissertation is therefore to explore 

the methodology of cross-layer design. To this end, a joint-design approach is taken across 

the multi-antenna transmission schemes at the physical layer and the channel-aware 
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scheduling algorithms at medium access control (MAC) layer. 

 While the main objective of this dissertation is to explore the performance benefits of 

various data transmission strategies over MIMO broadcast channels, which have been 

identified as the bottleneck of future wireless communication systems with Internet access, 

our focus is on the interaction between multi-antenna transmission and multiuser scheduling. 

Motivated by recent progress in information theory and the success of 2G wireless digital 

standards, we take an information-theoretic perspective in the context of cellular systems 

throughout this dissertation. We consider the case of a distributed MIMO channel in which 

users do not cooperate at reception. In such a case, we try to achieve a system-wide benefit 

by explicitly leveraging so called “dirty paper coding” [4-5] for interference cancellation at 

transmitter and the intelligent packet scheduling for multiuser diversity. From a cross-layer 

point of view, we concentrate on the coordination between the physical-layer data 

transmission and the MAC-layer packet scheduling, and evaluate the throughput benefit 

from the information sharing across these two layers. Our major interest is on the 

management of fading and interference in a multiuser data network and its ramification 

across multiple layers, rather than the network-layer issues of routing, dissemination of 

control information, and so forth, which are of primary concern in most ad hoc networks. 

Although only the interaction between the physical layer and MAC layer is considered, we 

believe the lessons learned will shed light on future wireless communication design and 

provide insight into joint optimization.  

1.2 Overview of Cellular Systems 

 This section presents a brief overview of cellular systems. Throughout our work, we 

present our analysis in the context of a cellular architecture for the sake of example. However, 
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it should be noted that both the radio transmission and the packet scheduling techniques 

discussed in this dissertation are not necessarily confined to a cellular network. Rather, the 

entire work would be applicable to any network with centralized control of specific 

geographic areas, e.g., wireless local area network (WLAN). 

1.2.1 Cellular Architecture 

 A cellular network consists of a large number of wireless subscribers (mobile users), 

and a number of fixed base stations arranged to provide coverage to the subscribers. The area 

covered by a base station is called a cell, which is often represented by a hexagonal region 

with the base station at the cell center. Theoretically, a hexagonal lattice of cells will lead to 

the maximum covered area given a fixed number of base stations (or investment). An 

idealized hexagonal cell coverage is illustrated in Figure 1.1 with one tier of cells around the 

center cell.  

MTSO PSTN 

Mobile User 

Base Station 

Figure 1.1. An idealized hexagonal cell layout with centered base stations. 

 In reality, however, the base station placements are somewhat irregular, depending on 

the locations where base stations can be established. Correspondingly, the actual mobile 

users connected to a base station are chosen by good communication paths rather than 

geographic distance. In Figure 1.1, the mobile telephone switching office (MTSO, also called 

a mobile switching center MSC) connects base stations in a given area by high speed wire 
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connections or microwave links. The MTSO is then connected to the public switched 

telephone network (PSTN) to establish the wireless-to-wired network connection. In a 

cellular network, the MTSO plays a major role in coordinating which base station will handle 

a call to or from a mobile user and when to handoff a mobile user from one base station to 

another. From a system perspective, we see that a cellular network is not an independent 

network, but rather an appendage to the wired network. 

 We differentiate two types of channels in a cellular network. The wireless link from a 

base station to a mobile user is interchangeably called the downlink or forward channel, and 

the wireless link from a mobile user to a base station is called the uplink or reverse channel. 

In a cellular network, there are usually many users connected to a single base station, and 

thus, for the forward channels, the base station must multiplex together the signals to the 

various connected users and broadcast one waveform from which each user can extract its 

own signal. The combined channel from the one base station to the multiple users is called a 

broadcast channel. For the reverse channels, each user connected to a given base station 

transmits his own waveform, and the base station receives the sum of the waveforms from 

the various users plus noise. The base station must then separate the signals from each user 

and forward these signals to the MTSO. The combined channel from each user to the base 

station is called a multiaccess channel. 

1.2.2 Wireless Challenges 

 There are several aspects of wireless communication that make the problem 

challenging and interesting. These aspects are by and large not as significant in wireline 

communication. The first is the phenomenon of fading: the time-variation of the signal 

strength due to both the small-scale effect of multipath propagation, as well as the larger 

scale effects such as shadowing by obstacles and path loss via distance attenuation. Among 



Chapter 1. Introduction  6 

the three factors contributing to signal fading, path loss is the factor which varies the slowest. 

This factor normally takes time on the order of minutes or hours for noticeable change 

depending on the mobility of the user. Empirically, the path loss is often modeled as an 

exponential loss with distance, with the attenuation rate specified by a path loss exponent 

that can be obtained by measurement. The shadowing attenuation varies at a rate faster than 

the path loss, and the duration of a shadow fade can last for several seconds or minutes. Also 

the attenuation due to shadowing is exponential in the width of the barrier that must be 

passed through. In reality, the shadowing attenuation is often modeled by a log-normal 

random variable with a variance depending on the scattering structures [6].  

 The small-scale fading factor due to multipath propagation occurs on a time scale of 

milliseconds (depending on the speed of mobility), which can significantly affect the 

performance of the modulation and coding techniques over the link. This fast fluctuation of 

the signal envelope is due to the constructive and destructive combination of multiple 

reflected radio wave paths. In a dense multipath environment with sufficient scatterers (rich 

scattering), the multipath attenuation can be effectively modeled by a complex Gaussian 

random variable at baseband. This attenuation is known as Rayleigh fading. If there is also a 

non-negligible line-of-sight signal component, the so-called Rician fading model with a 

deterministic non-zero mean is more appropriate. In the evaluation of wireless link 

performance, the signal fading rate relative to the data rate is an important parameter. A 

relevant concept is the coherence time [6] which is a measure of the time duration over which 

the channel gain stays almost constant, or highly correlated with a correlation coefficient 

above 0.5. A fading process is called a fast fading channel if the signal symbol duration is 

greater than the fading coherence time. Otherwise it is called a slow fading channel. The 

transmitted symbol duration is also used as a reference to measure the frequency selectivity 

of channel fading. The channel fading is frequency selective if the delay spread of the 
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channel power delay profile (PDP) [6] is greater than one-symbol duration; otherwise, it is 

flat. Therefore, channel fading can affect both the temporal statistics of the signal, and the 

signal frequency response with its frequency selectivity. 

 Second, since the wireless medium is shared among multiple users, there is 

significant interference between them. Therefore unlike wired networks, wireless 

communication is interference-limited rather than noise-limited. In a cellular network, the 

interference can be between the uplinks or downlinks, or between users in different cells. In 

the multiaccess channel based on CDMA with frequency reuse factor of 1, the out-of-cell 

interference can be usually modeled as additive white Gaussian noise (AWGN) from the 

central limit theorem. However, the assumption may not be valid in a broadcast channel 

where the out-of-cell interference is only from a few close base stations [7]. Furthermore, the 

interference pattern in wireless communication is also contingent on the mode of duplex, for 

example, frequency division duplex (FDD) or time division duplex (TDD). Finally, 

interference is also influenced by whether the network is operated synchronously or 

asynchronously.  

 In addition to fading and interference, mobility is an issue in wireless communication. 

High mobility makes channel estimation and prediction hard to implement. Mobility can also 

make resource allocation difficult, increasing the handoff overhead.  

 Finally, in wireless communications, the signal processing at the mobile user set is 

constrained by the limited battery energy and cost. Low complexity often dominates the 

mobile transceiver design. 

1.3 Contributions 

 The main contributions of this work are: 
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• A study of the interaction between antenna diversity and scheduling in wireless 

packet data networks; 

• High-speed transmission schemes for downlink packet data using spatial 

multiplexing and scheduling; 

• Performance evaluation of a joint design using multiple antennas and multiuser 

scheduling in a MIMO broadcast channel; 

• A new algorithm for joint scheduling and reordering in a suboptimal dirty paper 

coded system and performance evaluation via simulation; 

• An original algorithm for peak to average power ratio reduction in a 

MIMO-OFDM system using nonlinear precoding; 

• A system-level performance study of a multi-cell MIMO-OFDM system using 

multiple transmit antennas and intelligent scheduling. 

 Paper submissions and publications: 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Peak to average power ratio 

reduction with power constraint for MIMO-OFDM wireless system using 

nonlinear precoding,” accepted for presentation at IEEE Globecom 2004, 

Dallas, TX, Nov/Dec 2004. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Multi-antenna downlink data 

transmission with precoding and scheduling,” to be submitted to IEEE Trans. 

Vehicular Tech., July 2004. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Adaptive spatial multiplexing 

using nonlinear precoding in multiuser MIMO OFDM systems,” in preparation. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Antenna diversity in multiuser data 

networks,” IEEE Trans. on Commun., vol. 52, pp. 490-497, Mar 2004.  

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “High-speed downlink packet 



Chapter 1. Introduction  9 

transmission with spatial multiplexing and scheduling,” in Proc. IEEE Wireless 

Commun. and Networking Conf., WCNC 2004, Atlanta, GA, USA, Mar 2004. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Greedy scheduling performance for 

a dirty paper coded system,” submitted to IEEE Trans. on Commun., Sept 2003. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “Spatial T-H precoding for packet 

data systems with scheduling,” in Proc. IEEE VTC2003-Fall, Orlando, Florida, 

USA, Oct. 2003. 

• J. Jiang, R. M. Buehrer, and W. H. Tranter, “A network view of radio links,” in 

Propagator, Spring/Summer, 2003. 

• K. K. Bae, J. Jiang, and W. H. Tranter, “Downlink WCDMA performance 

analysis with diversity techniques combined with beamforming,” in Proc. 

IEEE Wireless Commun. and Networking Conf., WCNC 2003, vol. 1, pp. 

202-206, Mar 2003. 

• J. Jiang, K. K. Bae, and W. H. Tranter, “Downlink WCDMA bit error rate 

performance in indoor system applications,” in Proc. IEEE 56th Vehicular 

Technology Conf., VTC2002-Fall, vol. 2, pp. 825–828, Vancouver, Canada, 

Sept. 2002. 

• K. K. Bae, J. Jiang, and W. H. Tranter, et al., “WCDMA STTD Performance 

with Transmitter Location Optimization in Indoor Systems using Ray Tracing 

Technique,” in Proc. IEEE Radio and Wireless Conf., RAWCON2002, pp. 

123-127, Sept. 2002. 

 Joint work with VT Computer Science Department: 

• J. He, A. Verstak, L. T. Watson, C. A. Stinson, N. Ramakrishnan, C. A. Shaffer, 

T. S. Rappaport, C. R. Anderson, K. Bae, J. Jiang, W. H. Tranter, “Globally 

optimal transmitter placement for indoor wireless communication systems”, to 
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appear in IEEE Trans. on Wireless Commun., 2004. 

• A. Verstak, N. Ramakrishnan, L. T. Watson, J. He, C. A. Shaffer, K. Bae, J. 

Jiang, W. H. Tranter, and T. S. Rappaport, “BSML: A binding schema markup 

language for data interchange in PSEs”, Scientific Programming, 10(4), Dec 

2002.  

• J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang, K. 

Bae, and W. H. Tranter, “Dynamic data structures for a direct search 

algorithm”, Computational Optimization and Applications, 23(1), pages 5-25, 

Oct 2002. 

• A. Verstak, J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, T. S. 

Rappaport, C. R. Anderson, K. Bae, J. Jiang, and W. H. Tranter, “S4W: 

Globally optimized design of wireless communication systems”, in Proc. of 

the Next Generation Software Workshop, 16th Intl. Parallel and Distributed 

Processing Symposium (IPDPS'02), Fort Lauderdale, FL, April 2002.  

• J. He, A. Verstak, L. T. Watson, T. S. Rappaport, C. R. Anderson, N. 

Ramakrishnan, C. A. Shaffer, W. H. Tranter, K. Bae, J. Jiang, “Global 

optimization of transmitter placement in wireless communication systems”, in 

Proceedings of the High Performance Computing Symposium, Advanced 

Simulation Technologies Conference, A. Tentner (Ed.), Society for Modeling 

and Simulation International, San Diego, CA, pages 328-333, April 2002. 

1.4 Outline of Dissertation 

 The results of this dissertation are built on multiuser information theory. Chapter 2 

presents an overview of information theory with a specific focus on the capacity region of 
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broadcast channels. Starting with the capacity region of a scalar broadcast channel, it 

includes recent developments on the MIMO broadcast channel. Throughout this work, it is 

assumed that the channel state information (CSI), partially or fully, is available at both the 

transmitter and receivers. The concepts of capacity outer bounds and sum capacity are 

introduced. Chapter 2 also describes some signal processing and coding schemes which 

achieve or approach the channel capacity region or sum capacity from an 

information-theoretic point of view. Chapter 2 is thus entirely background material. 

 Chapter 3 begins the original work presented in this dissertation and studies the 

interaction between antenna diversity and multiuser diversity from a sum-capacity point of 

view. When multiple antennas are used for pure diversity purposes, a sum-capacity analysis 

shows that the orthogonal-design based space-time codes [8] actually reduces the average 

sum capacity in the presence of channel-aware scheduling. This result is contrary to that 

commonly observed over a single wireless link, where open-loop transmit diversity always 

improves link performance in fading. The implication of the proportional fair (PF) 

scheduling [9] on receive antenna diversity is also investigated. 

 Chapter 4 focuses on a suboptimal dirty paper coding technique termed “zero-forcing 

dirty paper coding” (ZF-DPC) [10]. The chapter begins with review of the theory of ZF-DPC. 

The maximum sum rate of ZF-DPC is presented and its sum-rate optimality at both high and 

low SNRs is shown. Also revealed is its duality to V-BLAST [11], [12] strategy. Chapter 4 

then proposes original suboptimal scheduling algorithms for ZF-DPC based transmission 

and presents performance results. To demonstrate the performance advantage of ZF-DPC in 

a distributed-MIMO broadcast channel with transmitter knowledge of CSI, ZF-DPC is 

compared with that of V-BLAST under suboptimal scheduling. Finally, it is shown that 

analogous to V-BLAST, an optimal reordering can be imposed on top of scheduling to 

minimize the average error rate, while the associated sum-rate loss is negligible. 
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 Chapter 5 starts with a practical precoding scheme named Tomlinson-Harashima 

precoding (THP) [13], [14]. Essentially a generalized decision-feedback equalizer (GDFE), 

THP has roots in digital subscriber loop (DSL) systems. The achievable rate of THP is 

analyzed and its connection with ZF-DPC is established in the chapter. Under the proposed 

suboptimal scheduling, Chapter 5 provides the original performance analysis of THP for 

symmetric users in both i.i.d. and correlated Raleigh flat fading channels. THP simulations 

corroborate substantial average error-rate improvement with reordering. 

 In Chapter 6, the concept of ZF-DPC is extended to an OFDM system on a per-tone 

basis. A generalized THP technique, termed complex sphere precoding, is introduced to 

reduce the peak-to-average power ratio (PAR) of the MIMO-precoded OFDM signals. An 

efficient implementation of a modified complex Fincke-Pohst algorithm is illustrated and its 

application for PAR reduction is introduced. Simulations show that a significant PAR 

reduction can be achieved by a sequential search over reduced and reordered individual tones. 

Multiuser scheduling across multiple tones also indicates substantial scheduling gain 

through multiuser diversity. 

 Chapter 7 compares two design philosophies based on interference avoidance and 

interference averaging, respectively, in a multi-cell MIMO-OFDM system using the 

previous nonlinear precoding. In particular, we demonstrate that the total system throughput 

gain is dominated by multiuser scheduling over all tones, and that the scheduling-based 

interference avoidance outperforms the orthogonal frequency-hopping based interference 

averaging. This is particular advantageous for packet transmission where effective power 

control is problematic due to the rapid arrival and departure of interfering packets. This 

performance advantage is still apparent even under the proportional fairness constraint, 

which is used as a tradeoff of total throughput for user delay and resource fairness.  

 Chapter 8 summarizes the main points of the dissertation. 
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Chapter 2 
Review of Broadcast Channel Capacity 

 This chapter gives an overview of Gaussian broadcast channel capacity. The goal is 

to characterize the capacity region and to provide insights on optimal transmission strategies 

over MIMO broadcast channels. We start with known results and proceed to the recent 

developments in the area. 

2.1 Capacity Region and Sum Capacity 

 A broadcast channel with K users is defined by an input alphabet , K output 

alphabets , , and a conditional probability distribution 

X

Yk 1,...,=k K

K

  1 2( , ,..., | )KP y y y x

where and , . The capacity regionC of this broadcast channel is the 

closure of the set of K-tuple rate (R

∈Xx ∈Yk ky 1,...,=k

1,R2,…,RK), at which reliable communications can be 

made simultaneously. The sum capacity is the maximum sum rate
1=∑K

kk
R over the capacity 

region. An important feature of broadcast channel is that broadcast channels that have the 

same marginal distributions ( |k kP y x)∈Y , for 1,...,=k K , have the same capacity regionC  

[15]. Therefore, we can consider any joint distribution with the right conditional marginals 

for a broadcast channel with capacity region . In the remainder of this section, we review 

some fundamental results on the capacity characterization for broadcast channel. 

C
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2.1.1 Degraded Broadcast Channel 

 A broadcast channel is physically degraded if its transition probability can be 

factored as 

  (2.1) 1 (1) (2) (1) ( ) ( 1)( ,..., | ) ( | ) ( | ) ( | )K KP y y x P y x P y y P y yπ π π π π −= " K

for some permutation ( )π ⋅ on the user set {1,…,K}. Or equivalently, a broadcast channel is 

physically degraded if the input and outputs  

 (1) (2) ( )... KX Y Y Yπ π π→ → → →  

form a Markov chain. A broadcast channel can also be stochastically degraded if its 

conditional marginal distributions are the same as those of a physically degraded broadcast 

channel. From the broadcast channel property above, we know that the capacity region of a 

stochastically degraded broadcast channel is the same as that of the corresponding physically 

degraded broadcast channel. Hence, from the capacity region point of view, we will not 

differentiate these two classes of degraded broadcast channels, and call both degraded from 

the capacity perspective. 

 The capacity region of a degraded broadcast channel is known to be the convex hull 

of the closure of rate tuple (R1,R2,…,RK) satisfying [16] 

 1 10 ( ; | ... ),  1,...,k k k k k KR I U Y U U U k K+ +≤ ≤ = , (2.2) 

where 1 1( ,..., , , ,..., )K KP u u x y y factors as 

 1 1
2

( ,..., , ) ( | ) ( | )
K

K k
k

P u u x P y x P y y 1k−
=
∏  

with representing the message for receiver , andkU k ( ; )I X Y denoting the mutual information 

between andY . The corresponding coding theorem [16] and the converse [17] were first 

proved in early 70’s, which gave only an information-theoretical expression for the capacity 

X
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region. No information on the optimal input distribution was given for a general degraded 

broadcast channel, nor the practical code construction. However, for a degraded broadcast 

channel, it is obvious from (2.1) that maximizing the sum rate is the same as sending to the 

best user, since all the other received signals , k>1, are just degraded versions of . ( )kYπ (1)Yπ

 However, for a special degraded broadcast channel, scalar Gaussian broadcast 

channel, Bergmans first showed that Gaussian inputs are optimal [18]. A scalar Gaussian 

broadcast channel has 

 k kY X Z= + , 1,...,k K=  (2.3) 

where the complex input random variable is subject to a power constraint 2E | |X P⎡ ⎤ ≤⎣ ⎦ , and 

Zk is independent and identically distributed (i.i.d.) circular symmetric complex Gaussian 

noise with variance Nk, which is denoted as (0, )k kZ N∼ CN . Figure 2.1 illustrates an 

equivalent model [15] for a degraded scalar Gaussian broadcast channel of two users. 

1Z

1Y
X

2Z�

2Y 

Figure 2.1 A degraded scalar Gaussian broadcast channel for K=2. 

 For this channel model, we have 

 1 1Y X Z= +  

and 

 2 2 1Y X Z Y Z2= + = + �  

for 1 1(0, )Z N∼ CN and 2 2(0, )1Z N N−� ∼ CN . We see that one output can be expressed as a 

degraded version of the other output. The model can be easily generalized for K users. 
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Consider the capacity region for a scalar Gaussian broadcast channel with K users and 

choose  

 
1

K
kk

X U
=

= ∑  

where are independent, circular symmetric complex Gaussian random variables 

distributed as with a total power constraint

kU

(0, )kU ∼ CN kQ
1

K
kk

Q P
=

≤∑ , then the achievable 

rate region can be defined by [19] 

 1
2 21 1

0 log ( ) log ( ),  1,...,k k
k k i k ii i

R N Q N Q k−

= =
≤ ≤ + − + = K∑ ∑  (2.4) 

It was shown by Bergmans [18] that capacity is achieved by optimizing over all , 

, with , and Gaussian input distributions are optimal in this case. 

kQ

1,...,k = K
1

K
kk

Q P
=

≤∑

2.1.2 Vector Broadcast Channel 

 A vector broadcast channel has vectors as inputs and outputs. For a vector Gaussian 

broadcast channel, we have the output 1km
k

×∈Y ^ at receiver k as 

 k k k= +Y H X Z  

for . The channel input 1,...,k = K 1n×∈X ^ has the covariance matrix and a power 

constraint , where 

XQ

tr( )XQ ≤ P tr( )⋅  is the trace operator. The channel matrix of user k is 

represented by , and the noise vectorkm n
k

×∈H ^ 1km
k

×∈Z ^ at user k is i.i.d. and circular 

symmetric complex Gaussian. The vector Gaussian broadcast channel is of practical 

importance to the multi-antenna downlink transmission in wireless systems, which is the 

focus of this dissertation. But unfortunately, the capacity region of a general vector Gaussian 

broadcast still remains unknown, and moreover, a vector Gaussian broadcast channel is not 

degraded in general.  
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 Despite these difficulties, recent progress in the characterization of broadcast channel 

capacity has shown that a coding technique named dirty paper coding [4] achieves the sum 

capacity of a MIMO broadcast channel [20]-[22]. Further, if Gaussian inputs are optimal, it 

has been proved that dirty paper coding actually achieves the capacity region of a vector 

broadcast channel [23], [24]. In the following, the achievable rate region of dirty paper 

coding (dirty paper region in [20]) is described for a general MIMO broadcast channel. 

Before that, we first introduce some known capacity bounds for the broadcast channel in 

general, and the vector broadcast channel in specific.  

2.2 Capacity Bounds of the Broadcast Channel 

 We start with a general bound given by Cover [15] and Bergmans [16], which shows 

that the capacity region of a broadcast channel satisfies, for all k,  1( ,..., | )KP y y x

 max ( ; )
X

k P kR I X Y≤  (2.5) 

where the maximization is over all input distributions with power constraint . This result 

was extended for degraded broadcast channels by Wyner [16, Ack.] as  

XP

 max ( ; )
X

K
ii k P kR I X Y

=
≤∑ , (2.6) 

which is essentially an upper bound on the achievable sum rate. The upper bound in (2.6) 

was soon superseded by Gallager’s capacity characterization in [17]. 

 A capacity outer bound for a general broadcast channel, named Korner-Marton outer 

bound, was given in [25] as follows. The capacity region of two user broadcast channel 

is outer bounded by 1 2( , | )P y y x

 1 ( ; )1R I X Y≤  (2.7a) 
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and 

 2 ( ; )2R I U Y≤ , (2.7b) 

also 

 1 2 1 2( ; | ) ( ; )R R I X Y U I U Y+ ≤ +  (2.7c) 

for some where( , )P u x 1 2 1 2( , , , ) ( , ) ( , | ).P u x y y P u x P y y x=  The bounds in (2.7) can be 

supplemented with bounds obtained by swapping and . The Korner-Marton outer bound 

has been the best known outer bound so far. However, due to its high complexity of 

evaluation, simpler bounds were derived based on it and other important features of the 

broadcast channel, among which are Sato bound [26] and DSM bound [23], [24]. 

1Y 2Y

 The Sato bound provides an upper bound on the achievable sum rate by exploiting 

the fact that broadcast channels that have the same marginal distributions have the same 

capacity region, and by letting the receivers co-operate to obtain a point-to-point channel. 

Basically, it states that the capacity region of a broadcast channel is bounded 

by 

C 1( ,..., | )KP y y x

 
... |1

1 21
min max ( ; .. )

XY Y XK

K
kk P P KR I X YY Y

= ∈
≤∑

� �

� � �
P

 (2.8) 

in terms of the achievable sum rate, whereP is the set of channels having the 

same marginals as , i.e.,

1( ... | )kP y y x� �

1( ,..., | )KP y y x || ( |P y ) ( | )
kk Y XY X x P y x=� for all k, x and y. As noted 

above, the Sato bound is looser than the Korner-Marton bound. However, as shown by Sato 

[26] in a scalar Gaussian broadcast channel, this bound is tight for the sum rate. What may be 

more surprising is that recently, the Sato upper bound has been shown to be quite tight for 

some non-degraded Gaussian broadcast channel by Caire and Shamai [10], and the discovery 

that Sato upper bound is indeed tight in a general MIMO Gaussian broadcast channel 

[20]-[22]. The significance of this discovery leads to a renewed interest in a coding technique 
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termed dirty paper coding, which has been shown to achieve the sum capacity of a MIMO 

Gaussian broadcast channel and provides a theoretical foundation for this dissertation. 

 Another simplified general capacity bound obtained from the Korner-Marton bound 

is the so-called DSM outer bound, standing for degraded, same marginal outer bound. Unlike 

the Sato bound, which allows for the cooperation among all receivers, the DSM bound 

tightens the Sato bound by providing receiver ( )kπ with outputs of receivers ( 1) ( ),...,kY Yπ + Kπ

K( 1),..., ( )kπ π+ , and bounds the capacity region by 

 
1

... |1

... |( , )
K

Y Y XK

D Y Y X
P

P
π

π
∈

⎧ ⎫⎪ ⎪⊆ ⎨ ⎬
⎪ ⎪⎩ ⎭� �

� �∩ ∩
P

C R  (2.9) 

where
1... |( , )

KD Y Y XPπ � �R is the capacity region of the degraded broadcast channel created by 

giving receiver ( )kπ the outputs of receivers ( 1),..., ( )k Kπ π+ , and is the set of channels 

having the same marginals as , i.e.,  for 

all k, x and y. In [23] and [24], it was shown that the optimization of the DSM outer bound 

over all with the same marginals leads to the achievable rate region of dirty 

paper coding, which we describe next for a MIMO Gaussian broadcast channel. 

P

1( ... | )kP y y x� � 1( ,..., | )KP y y x || ( | ) ( | )
kk Y XY XP y x P y x=�

1( ... | )kP y y x� �

2.3 Achievable Rate Region of Dirty Paper Coding 

 Recent development on the achievable rate region of a MIMO broadcast channel has 

basically been based on dirty paper coding. Here we present some relevant results. 

2.3.1 Dirty Paper Coding and Its Generalization 

 Dirty paper coding (DPC) is a coding method of Gel’fand and Pinsker [27] using 
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non-causally known interference cancellation. The name dirty paper coding is attributed to 

Costa [4], who showed that for a scalar discrete-time point-to-point memoryless channel, 

 i i i iy x s n= + + 1,...,i T, = , (2.10) 

where xi and yi are the transmitted and the received signals respectively, the interfering signal 

si is known to the transmitter but not to the receiver, and ni is the unknown noise. If both si 

and ni are i.i.d. Gaussian, and if the entire non-causal realization1 of si is known to the 

transmitter prior to transmission, the channel capacity of (2.10) is the same as that of the 

AWGN channel yi=xi+ni, i.e., as if the interference si were not present. In addition, the 

optimal transmit signal xi is statistically independent of si. This tells us that knowing the 

interference non-causally at the transmitter is as powerful as knowing it at both the 

transmitter and the receiver. Costa’s result was generalized to a vector point-to-point 

memoryless channel in [28]. 

 The achievability of Costa’s result relies on the fact that both the noise and the 

interference are i.i.d. Gaussian. This result was generalized in [29] and was shown that the 

same rate can be achieved for arbitrary noise distribution provided that the interference is 

i.i.d. Gaussian, or for arbitrary interference distribution provided that the noise is Gaussian 

(possibly colored). In [30], [31], it was further generalized to that the same result holds for 

arbitrary interference, provided that the transmitter and the receiver share a common random 

dither signal.  

2.3.2 Dirty Paper Region of MIMO Broadcast Channel 

 This section shows the DPC achievable rate region for a MIMO broadcast channel. 

Consider a general memoryless MIMO broadcast channel of K users, with nt transmit 

                                                 
1 The entire non-causal realization here means the entire coded signal block to be transmitted. 



Chapter 2. Review of Broadcast Channel Capacity   21 

antennas at the base station and mk receive antennas at user k, k=1,…,K. Assume an i.i.d. 

block-wise flat fading model and over a coherence interval of T symbols, the received signals 

at K users are  

 , (2.11) 
1 1 1

1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

K

k
k

K K K

t t t
t t

t t t=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑
Y H W

Y X H
Y H W

� # # # � t t t+X W

where ,( ) tn T
k t ×∈X ^ ( ) km T

k t ×∈Y ^ and ( ) km T
k t ×∈W ^ are transmitted signal, received signal, 

and noise matrix of user k at slot t, respectively, and the additive noise  is assumed 

zero-mean, circular symmetric complex Gaussian with , for 

, where  is a column vector of size 

( )k tW

vec( ( )) (0, )
kk Tt ⊗W I∼ CN mI

K1,...,k = vec( ( ))k tW 1km T ×  by stacking the columns 

of under each other, and( )k tW ⊗A B denotes the Kronecker product (or direct product) of 

matrices and . The broadcast channel capacity does not depend on the covariance (or 

correlation if zero mean) among the noise matrices , and it depends only on the 

marginal covariance matrices of ,

A B

( )k tW

( )k tW 1,...,k K= . We assume that the transmitted signal is 

subject to a total average transmit power P, i.e., 2

1
tr E( ( ) ( )) E ( )

K
H

k k F
k

t t t P
=

⎡ ⎤ ⎡ ⎤= ≤⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ X X X T , 

with ( )
F

tX being the Frobenius norm of the matrix and the expectation( )tX E( )⋅ is over 

channel variations. With the unit noise sample variance, P is also the total average transmit 

SNR. For notational brevity, we omit the slot index t due to the i.i.d. block-fading assumption. 

Let denote the user-k channel matrix from transmit to receive antennas, 

which is assumed known to the transmitter and user-k receiver. Throughout this section, we 

assume this knowledge of CSI at the transmitter and that the receivers know only their own 

CSI, since this is a standard assumption of DPC.  

k tm n
k

×∈H ^ tn km
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 Without loss of generality, we consider the natural ordering of users , and 

the k-th user’s received signal can be written as  

1,...,k K=

 ,    1,...,k k k k j k j k
j k j k

k
< >

= + + + = K∑ ∑Y H X H X H X W . (2.12) 

If we apply the dirty-paper encoding at the transmitter by generating the auxiliary input 

matrix 1[ ,..., ]H H H
K=U U U with km T

k
×∈U ^ , and the precoding matrix 1[ ,..., ]K=B B B with 

, and encode each data stream ast kn m
k

×∈B ^ k k k=X B U so that (2.12) can be rewritten as  

 , , , ,    1,...,k k k k k j j k j j k
j k j k

k
< >

= + + + = K∑ ∑Y G U G U G U W , (2.13) 

where has block entries ,=G HB ,
i jm m

i j i j
×= ∈G H B ^ , 1,...,i j K= . The components of  

are generated by successive DPC with Gaussian codebooks and satisfy E[ , where 

, and the precoding matrix is constrained by

U

]=H
mUU I

1

K

k
k

m m
=
∑� B tr[E( )] PH ≤BB , so that the average 

input power is constrained to . Now the encoder considers the inference in (2.13) caused by 

users as known non-causally and the k-th decoder only sees the interference from users 

, and treats them as additional noise. The SINR seen by the user k is then 

P

j k<

j k>

 
, ,

, ,

1 tr( )
,    1,...,11 tr( )

H
k k k k

k
k

H
k j k j

j k j

mSINR k K

m>

=
+∑

G G

G G
= . (2.14) 

Therefore, through DPC and minimum Euclidean distance decoding, the joint reliable 

communication of data streams is possible at rates  

 dpc
2log (1 ),    1,...,k kR SINR k K= + = . (2.15) 

The achievable rate region through DPC is then the convex closure as [10]  



Chapter 2. Review of Broadcast Channel Capacity   23 

 { }( ) 2 ( )
: tr[E( )]

co 0 log (1 ),   1,...,
H

k k
P

R SINR k Kπ π
π ≤

≤ ≤ + =
B BB
∪ ∪ , (2.16) 

where “co” denotes convex closure andπ runs over all permutations of K users. This is the 

dirty-paper region characterized in [20]-[22]. Further, it was pointed out in [28] that time 

sharing may be necessary to achieve the convex hull in (2.16). 

2.4 Summary 

 This chapter provides a review on the capacity of broadcast channel. The goal is to 

shed light on the optimal transmission schemes in a MIMO broadcast channel from a 

capacity point of view. Starting with a degraded broadcast channel, we introduced the 

capacity region of a scalar Gaussian broadcast channel and some known capacity bounds for 

broadcast channels. For the MIMO Gaussian broadcast channel, we gave the achievable rate 

region of dirty paper coding. We emphasize that the dirty paper region is not a new 

achievability result for the broadcast channel. Rather, it is a subset of Marton’s region. Most 

recently, it has been shown that the dirty paper region is the actual capacity region of the 

broadcast channel [94], which has finally solved a long-standing open problem in multiuser 

information theory. To our interest, the fact that the dirty paper region of a MIMO broadcast 

channel is equal to the capacity region of a dual MIMO multiaccess channel2 with an equal 

average sum-power constraint, as well as the earlier discovery that DPC achieves the sum 

capacity of a general MIMO Gaussian broadcast channel, make it readily applicable to 

multiple antenna broadcast channels. 

                                                 
2 Here a dual MIMO multiaccess channel is defined as that in [20], with the average sum-power constraint equal 

to that of the broadcast channel, and the channel matrix the Hermitian of the broadcast channel matrix. 
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Chapter 3 
Interaction of Antenna and Multiuser Diversity 

 This chapter provides an interaction study of the antenna diversity and multiuser 

diversity. We consider the use of multiple antennas at the transmitter and/or receivers to 

provide open-loop diversity, rather than spatial multiplexing. When user channel quality 

information is available to the transmitter, our results reveal a negative interaction between 

these two forms of spatial diversity in terms of total throughput. 

3.1 Asymptotic Average Sum Rate 

 We first derive the asymptotically achievable sum rate in the limit of a large number 

of users, with multiple-antenna diversity in i.i.d. flat Rayleigh and Rician fading. 

3.1.1 Multiuser Channel Model 

 We use a simple downlink model of a cellular packet data system, in which the base 

station transmitter sends packets to K mobile terminals. There are nT transmit antennas at the 

base station and nR receive antennas at each mobile user for antenna diversity. We assume 

that the transmission time is divided into consecutive and equal time slots, with the duration 

of each slot being less than the fading coherence time and much less than the possible delay 

constraint of data services, but sufficiently long so that the information-theoretic assumption 

of infinitely long code block length is meaningful. At each slot t, the packet scheduler at the 

base station decides to send a packet to user k* with the largest effective SNR γk(t) at the 
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receive antenna combiner output 

  (3.1) *
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t

with 

 
2( )

,
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( ) ( )
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k
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t
n
γγ α

= =

= ∑∑ i j t

tγ

 (3.2) 

where γs is the expected SNR at each receive antenna branch for each user, and is assumed a 

constant independent of the number of transmit antennas. In (3.2), represent the 

ergodic channel fading processes from transmit antenna i to receive antenna j of user k over 

slot t. Unless specified otherwise, we assume a block-fading channel model with the fading 

coefficients being fixed over slot t, and varying independently from slot to slot over 

time. All terms are i.i.d. between each pair of transmit and receive antennas, which 

assumes that antenna elements are spaced sufficiently with respect to the angle spread. This 

model presupposes that the the channel fading process can be assumed flat in frequency. It 

also assumes that the average total transit power is fixed and equally split over n

( )
, ( )k

i j tα

( )
, ( )k

i j tα

( )
, ( )k

i j tα

T transmit 

antennas. For simplification, we assume that perfect and instantaneous user channel SNR 

feedback exists between each transmitter-receiver pair. Also for antenna diversity, we 

assume that the effective user SNRs, after coherent combing, conform to (3.2). However, 

from the orthogonal design for the space-time codes [8], no “full-rate” complex orthogonal 

design exists for greater than two, for which only fractional rates are achievable (see [8]). Tn

 At slot t, we define the maximum SNR among the K users as 

 . (3.3) 
1, ,

( ) max ( )kk K
tγ

= "
�

Under the assumption of symmetric user channels with i.i.d. SNRs over each slot, and 

according to the order statistics for i.i.d. continuous random variables [32], the cumulative 
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distribution function (cdf) of γ at any slot is  

 ( )( ) ( ) KY Fγ γ=  (3.4) 

and the probability density function (pdf) of γ is 

 
1( ) ( ) ,    0

( )
0,   otherwise 

KK f F
y

γ γ γ
γ

−⎧ ⋅ ⋅ >
= ⎨
⎩

 (3.5) 

where ( )f i and are the pdf and cdf of the i.i.d. user SNRs γ( )F i k, respectively. In (3.4) and 

(3.5), the slot index is dropped due to the time independence of the statistics. We define the 

average sum rate of the channel with the nTnR-fold antenna diversity and K-fold multiuser 

diversity as 

 2
0

log (1 ) ( )
T R

K
n nC y dγ γ γ

∞

+ ⋅∫�  (3.6) 

in bits/sec/Hz. This is the expected achievable sum rate, given the effective user SNRs in 

(3.2). Under the assumptions of the perfect and instantaneous transmitter knowledge of user 

channel quality information (CQI) in (3.2), so that greedy scheduling and rate adaptation can 

be performed at the transmitter, the average sum rate in (3.6) is bounded away from zero. 

Throughput this paper, we use the average sum rate metric to evaluate the spatial diversity of 

the system. We first derive the asymptotic multiuser diversity in the limit of a large number 

of users, i.e., as K→∞, in the remainder of this section. 

 To calculate the limiting distribution of theγ in (3.3) as K→∞, we use [33, Lemma 2], 

which we restate below as Lemma 3.1. 

 Lemma 3.1: Let 1, , Kz z" be i.i.d. random variables with a common cdf and pdf ( )F i

( )f i satisfying is less than 1 for all finite z and is twice differentiable for all z, and is 

such that  

( )F i
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 1 ( )lim 0
( )z

F z c
f z→∞

⎡ ⎤−
= >⎢ ⎥

⎣ ⎦
 (3.7) 

for some constant c. Then  

 ( )1
max k Kk K

z l
≤ ≤

−  

converges in distribution to a limiting random variable with cdf  

 . /exp( )x ce−−

As K→∞, where lK is given by F(lK)=1-1/K.  

 Lemma 3.1 states that the maximum of K such i.i.d. random variables grows like lK as 

K→∞. 

3.1.2 Symmetric Rayleigh Fading 

 With the i.i.d. Rayleigh fading channels, γk in (3.2) is a chi-square random variable 

with 2nTnR degrees of freedom. Define 1T Rn n n −� , the pdf and cdf of γk are [34], 

respectively 
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We can easily see that 

 1
1 ( )lim 0

( )k

k s

k T

F c
f nγ

γ γ
γ→∞

−
= = > . (3.10) 

Solving for lK from Lemma 3.1, we have 
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Therefore, with i.i.d. Rayleigh fading and for a large number of users, the maximum 

equivalent SNR γ grows like lK in (3.11), which is a function of the number of transmit 

antennas nT and the number of users K for the fixed average total transmit power, and is 

independent of the number of receive antennas nR. The asymptotic sum rate as K→∞ can 

therefore be approximated by 

 2 2lim log (1 ) log (1 ln )
T R

K s
n n KK

T

C l
n

Kγ
→∞

= + ≈ + . (3.12) 

Figure 3.1 shows the numerical evaluation of the average sum rate for the cases 

of n

T R

K
n nC

T, nR=1, 2 and 4. We see the surprising result that with multiple users (K>1), the average 

sum rate with transmit diversity is lower than that without transmit diversity for all cases of 

nR=1, 2 and 4, although the opposite is true for the single user cases. This result is contrary to 

what is commonly observed over a single wireless link, where transmit diversity always 

improves link performance in fading. An intuitive explanation for the difference is that for 

fixed average transmit power, transmit diversity reduces the variation in the received signal 

power which is exploited by the greedy scheduler for multiuser diversity. The same is true for 

receive diversity, but the array gain from coherent receive combining more than compensates 

for the loss of multiuser diversity. Therefore, care should be exercised in employing 

open-loop antenna diversity, which may improve single-link performance, but can also 

degrade system-level performance in the presence of greedy scheduling. We note from 

Figure 3.1 that in order for the nT=nR=1 case to outperform the cases of nT=nR=2 and nT=nR=4, 

the minimum numbers of users required are about 28=256 and 212=4096, respectively. 

Consistent with (3.12), for large K, there is an approximate 1 bits/sec/Hz capacity increase  
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Figure 3.1. Average sum rate under i.i.d. flat Rayleigh fading with 0 dBsγ = . 

for every 3-dB increase in γs or a half of nT. Finally, it is worth noting that although the 

asymptotic sum rate in (3.12) is independent of the number of receive antennas, this 

asymptote is approached at a very slow rate in the number of users, even more so for large nT. 

 

asymptote is approached at a very slow rate in the number of users, even more so for large nT. 

3.1.3 Symmetric Rician Fading 3.1.3 Symmetric Rician Fading 

 For the i.i.d. Rician fading channels, γk in (3.2) is a noncentral chi-square random 

variable with 2nTnR degrees of freedom. Defining

 For the i.i.d. Rician fading channels, γ

1T Rn n n

k in (3.2) is a noncentral chi-square random 

variable with 2nTnR degrees of freedom. Defining 1T Rn n n −� , , and 

, where K

( )2 1/ 2(1 )rKσ +�

2 /(1 )r T R rs K n n K+� r is the Rice factor for all users, the pdf and cdf of γk are [34], 

respectively 
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and 
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where ( )nI i is the nth-order modified Bessel function of the first kind. The tails of the cdf and 

pdf of γk can be approximated respectively by 
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These approximations are in the sense that the ratio of the left- and right-hand sides 

approaches 1 as γk→∞.  Hence 
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By solving F(lK)=1-1/K, we have 
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According to Lemma 3.1, for i.i.d. Rician fading, the maximum equivalent SNR γ grows like 

lK in (6.19) as K→∞. For the fixed average total transmit power, lK depends on the number of 

users, the Rice factor, and both the number of transmit and the number of receive antennas. 

This differs from that of i.i.d. Rayleigh fading in (3.11), where lK is independent of the 

number of receive antennas. In fact, (3.16) can be viewed as a generalization of (3.11) for 
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Kr>0 and n>1. Equations (3.11) and (3.16) reduce to those in [33] for nT=nR=1 and γs=0 dB. 

Similarly, we can have the asymptotic sum rate approximated by 
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This is plotted in Figure 3.2 for K=240 and nT, nR=1, 2 and 4. We can see that the 

approximate asymptotic sum rate goes up as we increase nR or decrease nT with the other 

term remaining fixed. It also decreases as the Rice factor Kr increases at sufficiently large Kr. 

This is due to the reduced potential channel diversity gain with increased Kr. As the channel 

approaches an additive white Gaussian noise (AWGN) channel about the mean SNR γsnR 

with Kr→∞, (3.17) can be further approximated by 

  (3.18) 2,
lim log (1 )

T R
r

K
n n s RK K

C γ
→∞ →∞

≈ +

which is independent of nT. This trend is shown in Figure 3.2 with Kr extended to 30 dB. For 

the intermediate values of Kr, both the values of nT and nR affect the average sum rate as 

shown in the figure. 

We conclude this section by pointing out that in an i.i.d. flat Rayleigh fading 

environment with more than one user, the orthogonal transmit antenna diversity gain is 

negative, in that the average sum rate is less than that without transmit diversity in the 

presence of greedy scheduling. In the limit of K→∞, the maximum effective SNR γ is 

inversely proportional to the number of transmit antennas and independent of the number of 

receive antennas. In the corresponding Rician fading environment, both the number of 

transmit and the number of receive antennas impact the asymptotic sum rate as K→∞, with 

negative gain from transmit diversity and positive gain from receive antennas. However, as 

the Rice factor becomes sufficiently large and the channel approaches an AWGN channel, 

only the positive power gain from the coherent receive antenna combining remains. 
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Figure 3.2. Approximate asymptotic sum rate for K=240 users under i.i.d. flat Rician fading with γs=0 dB. 

3.2 Antenna Diversity and Multiuser Diversity 

 We numerically evaluate the average sum-rate improvement from the antenna and the 

multiuser diversity separately for a finite number of users. For simplicity, we restrict 

ourselves to symmetric flat Rayleigh fading channels. We define the antenna improvement as 

the percentage increase of the average sum rate relative to the single antenna case of nT=nR=1 

in a system of K users 

 We numerically evaluate the average sum-rate improvement from the antenna and the 

multiuser diversity separately for a finite number of users. For simplicity, we restrict 

ourselves to symmetric flat Rayleigh fading channels. We define the antenna improvement as 

the percentage increase of the average sum rate relative to the single antenna case of nT=nR=1 

in a system of K users 

11

11

T R

K K
n n

a K

C C
I

C
−

�  (3.19)   

and the multiuser diversity improvement as the percentage increase of the average sum rate 

relative to the single user case 
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 Figures 3.3(a) and (b) illustrate the antenna improvement Ia versus the number of 

users K at user average SNR of γs=0 dB, and Ia versus γs with K=1, 64 and 240 users, 

respectively, both for the cases of nT, nR=1, 2 and/or 4. The zero level reference is for 

nT=nR=1. In Figure 3.3(a), the nT=2 and 4 cases have less antenna improvement than the 

corresponding nT=1 case when there are more than one user, and the antenna improvement 

decreases as K increases, and becomes saturated at sufficiently large K. This trend is more 

pronounced for the cases with transmit diversity only. In Figure 3.3(b), we note that in all 

cases, the improvement of the receive antennas of nT=1 and nR=4 decreases with γs and 

remains positive, and the improvement of the transmit antennas of nT=4 and nR=1 increases 

with sγ consistently at a lower percentage level. 

 Figures 3.4(a) and (b) depict the multiuser diversity improvement Iu versus K at γs=0 

dB, and Iu versus γs with K=64 and 240 users, respectively, also both for the cases of nT, nR=1 

or 2 and/or 4. The plots show that Iu monotonically increases with K, but monotonically 

decreases with γs, both at percentage levels much higher than those in Figure 3 for a 

sufficient number of users. In all cases, the improvement of multiuser diversity is positive. 

Comparing Figure 3.3 with Figure 3.4, we see that in most cases the average sum-rate 

improvement is dominated by the multiuser diversity in a network for a finite number of 

users, e.g., K>64 for nT, nR=1 or 4. 

 In evaluating the improvement of antenna and multiuser diversity in terms of the 

relative increase of the average sum rate, we have assumed the instantaneous and perfect 

feedback of a continuum of SNR values to the base station. We have also assumed that over 

each slot, the sum rate can be achieved physically at those continuous SNR values by some 

powerful coding and modulation techniques. We now evaluate the effect of finite channel 
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Figure 3.3. Antenna improvement in i.i.d. flat Rayleigh fading. 

SNR quantization on the antenna and multiuser diversity improvement. We still retain the 

other assumptions given above, except that the equivalent channel SNRs γk are now 

quantized into one of Q+1 values, ranked in an ascending order from zero as follows, 

 { }, 0 1 1ˆ ˆ ˆ0, , , , ,    1, ,Q k Q kγ γ γ γ −∈ … K= … . (3.21) 
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Figure 3.4. Multiuser diversity improvement in i.i.d. flat Rayleigh fading. 

The quantization is to the lower value over each successive interval of SNR in (3.21), with 0 

and 1ˆQγ − being the lower and upper limit, respectively. The probability mass function (pmf) of 

the discrete random variable ,Q kγ can be calculated as 
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where [n m]δ − is the Kronecker delta function defined by 
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The cdf of ,Q kγ is, therefore, the stair function 
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  (3.23) 
0 ,

1 i , 1

, 1

ˆ ˆ( ),               0
ˆ ˆ ˆ( ),    ,  0, , 2

ˆ1,                    

Q k

i Q k i

Q k Q

F
F i

γ γ γ
γ γ γ γ

γ γ
+ +

−

⎧ ≤ <
⎪= ≤ < =⎨
⎪ ≥⎩

…

where is the unit step function defined by 0(u x x−

 0
0

0

0,    
( )

1,    
x x

u x x
x x
<⎧

− ⎨ ≥⎩
� . 

 According to the order statistics for i.i.d. discrete random variables [32], the cdf and 

pmf of the maximum quantized SNR Qγ , 

 ,1, ,
maxQ Qk K kγ γ
= "

�  

are, respectively, 
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 ( )( ) ( )
K

Q Q QY Pγ γ=  (3.24) 

and 

 ( )0 0ˆ ˆ( ) (0) [ ] ( ) (0) [ ]Q Q Q Q Q Q Qy Y Y Yγ δ γ γ δ γ γ= ⋅ + − ⋅ −  

 ( )
1

1
1

ˆ ˆ( ) ( ) [ ]
Q

Q i Q i Q i
i

Y Y ˆγ γ δ γ γ
−

−
=

+ − ⋅ −∑  

 ( )
2

0 1
0

ˆ ˆ ˆ( ) [ ] ( ) ( ) [ ]
Q

K K K
Q i i Q

i
F F F îγ δ γ γ γ δ γ γ

−

+
=

= ⋅ + − ⋅ −∑  

 ( )1ˆ1 ( ) [K
Q QF γ δ γ γ 1ˆ ]Q− −+ − ⋅ − . (3.25) 

The average sum rate with Q nonzero-SNR quantization levels can be calculated from 

 
1

2
0

ˆ ˆlog (1 ) ( )
T R

Q
K
n n i Q i

i
D yγ γ

−

=

+ ⋅∑�  

 ( ) (
2

2 1 2 1
0

ˆ ˆ ˆ ˆ ˆlog (1 ) ( ) ( ) log (1 ) 1 ( )
Q

)1
K K K

i i i Q Q
i

F F Fγ γ γ γ γ
−

+ −
=

= + ⋅ − + + ⋅ −∑ − . (3.26) 

Figure 3.5 illustrates with
T R

K
n nD 8Q = uniform SNR quantization levels (in decibels), using 

0ˆ 11.5 dBγ = − and 1ˆ 9.5 dBQγ − =  for the i.i.d. flat Rayleigh fading channels with 0 dBsγ =  

for the cases of . For, 1,  2 and 4T Rn n = 8Q = , in (3.26) is above 78% of the value 

of in (6.6). For the cases of

T R

K
n nD

T R

K
n nC 32Q = and 16 (not shown in Figure 3.5), is above 94% 

and 89%, respectively, of for 

T R

K
n nD

T R

K
n nC , 1 or T Rn n 2= , and above 85% and 85% respectively 

of for . Comparing Figure 3.5 with Figure 3.1, we note that at fixed 

quantization limits, the average sum rate with SNR quantization is reduced more by receive 

diversity. The reason is given below. 

T R

K
n nC , 1 or T Rn n = 4
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Figure 3.5. Average sum rate in i.i.d. flat Rayleigh fading at 0 dBsγ = . îγ  is uniformly spaced over 
[ 11.5 9.5]−  dB with Q 8= . 

 In the process of user SNR quantization, kγ greater than 1ˆQγ − will be quantized to 1ˆQγ −  

according to (3.21), so the maximum SNR increase above 1Qγ − contributes no sum-rate 

increase. We define the relative probability ofγ greater than 1ˆQγ − as the SNR clipping rate 

 
{ }
{ }

1 1

0 0

ˆPr ˆ ˆ1 ( ) 1 ( )
ˆ ˆPr 1 ( ) 1 ( )

1

0ˆ

K
Q Q

clip K

Y F
R

Y F
γ γ γ γ
γ γ γ γ

− −> − −
= =

> − −
� Q−  (3.27) 

with , and0 1clipR< < lim 1clipK
R

→∞
= . In a large network employing the diversity techniques, 

for power-efficiency purposes, we want the SNR clipping rate to be as small as possible, 

given the SNR quantization. The clipping rate clipR is plotted in the Figure 3.6 with the same 

limiting SNRs above, at 0 dBsγ = for the cases of ,T Rn n 1= , 2 and 4.  
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Figure 3.6. Clipping rate in i.i.d. flat Rayleigh fading for 0ˆ 11.5 dBγ = −  and 1ˆ 9.5 dBQγ − =  at 0 dBsγ = . 

 As shown in Figure 3.6, the SNR clipping rate can be nontrivial, even at 0sγ = dB, for 

a modest number of users. For the case of 1Tn = and 2Rn = , and the number of users 512K = , 

there is about a 50% probability that the maximum received SNR will exceed the -dB 

upper limit at

9.5

0 dBsγ = . For 1Tn = and 4Rn = , the same clipping rate occurs at K less than 32. 

As the maximum user effective SNR increases, the SNR clipping rate increases. This 

suggests an adaptive SNR quantization scheme which accounts for the expectation of the 

spatial diversity improvement. It should be noted that the clipping rate of and1Tn = 4Rn =  

at 0 dBsγ = is the same as that of 2Tn = and 2Rn = at 3 dBsγ = . This is due to the same 

cdf ( )kF γ in (3.9) for two cases, which leads to the same clipping rate clipR in (3.27). 
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3.3 Receive Antenna Diversity under Proportional Fair Scheduling 

 We now quantitatively evaluate the improvement from receive antenna diversity 

under the more practical proportional fair scheduling. Our focus is on the throughput 

improvement of two-fold receive diversity over that without antenna diversity in a multiuser 

scenario. 

3.3.1 Proportional Fair Scheduling 

The concept of proportional fairness was introduced by Kelly for the issues of charging, 

rate control and routing in a communication network carrying elastic traffic [9]. It is based on 

a tractable mathematical model from which the max-min fairness [35] emerges as a limiting 

special case, and the proportional fairness characterizes a system optimum in the user rate 

allocations. According to [9], a vector of rates x is proportionally fair if it is feasible, and if 

for any other feasible vector , the aggregate of proportional changes is zero or negative:  *x

 
*

0r r

r r

x x
x∈

−
≤∑

R

. (3.28) 

Kelly has proved that a system optimum is achieved when users’ choices of charges and 

network choice of allocated rates are in equilibrium [9]. Based on this, a proportional fair (PF) 

scheduling algorithm was proposed in [36] for the downlink scheduling in IS-856 (also 

known as 1xEV-DO or HDR), which is a packet-switched cellular data system. The 

performance limitations and improvement of PF scheduling algorithm were shown in [33]. 

 The PF scheduler maintains resource fairness by providing a fair sharing of 

transmission time proportional to the past throughputs of users over a fixed window length. 

On the time-slotted forward link transmission, at each time slot t, user k feeds back to the 

base station a requested data rate ( )kR t , which is supportable by its current channel quality. 
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At the assumption of an instantaneous and error-free rate feedback, the scheduler assigns the 

time slot t to the user , which has the largest ratio  *k

 ( )
( )

k

k

R t
T t

 

among all active users for which the base station has data to send. The rate is the kth 

user’s average throughput in a past window of length , and is updated slot-wise according 

to 

( )kT t

cW

 
*1 1

*1

(1 ) ( ) ( ),  
( 1)

(1 ) ( ),                 
c c

c

k kW W
k

kW

T t R t k k
T t

T t k k

⎧ − + =⎪+ = ⎨
− ≠⎪⎩

, (3.29) 

where is the time scale of interest and is constrained by the maximum delay tolerance. In 

IS-856, is about 1.67 seconds, which is usually much greater than small-scale fading 

coherence time of most users. The pseudocode for the algorithm is given in Table 3.1.  

cW

cW

This PF scheduler does provide the proportional fairness as defined in (3.28) for the 

user average throughputs as , and it was shown in [33] that the PF scheduler 

maximizes  

kT cW →∞

 
1 1

ln ln
KK

k
k k

T
= =

⎛ ⎞
= ⎜

⎝ ⎠
∑ kT ⎟∏  (3.30) 

almost surely among the class of all schedulers when  for joint ergodic processes cW →∞

{ ( ),  1,..., }kR t k K= , with K being the total number of active users. Equation (3.30) indicates 

that the PF scheduler maximizes the product of user long-term average throughputs, rather 

than the sum throughput. Therefore, when users are charged equally in terms of price per unit 
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Table 3.1. Proportional fair scheduling algorithm pseudocode. 

// Defin
DRCi(t)
Ri(t): m
Rc: curr
Wc: tim
 
// Sched
1. Initia
2. decid  
3. Send
4. rando
 
// Upda
Ri(t+1) 
where R

 

share, a PF scheduler bri

Equation (3.30) is upper

 ln
K

k=

⎛
⎜
⎝
∏

where equality holds for

reduces to  

 

Therefore, serves as aT

 The PF schedule

resource to user with rel

peak. In this sense, the
itions 
: current requested rate from user i at slot t, i=1, …, K. 
oving-average data rate of user i at slot t , i=1, …, K. 
ent transmission rate of user i, i=1,…, K. 
e constant of user moving-average data rate 

uling at each new packet transmission 
lize Ri(0)=1, i=1,…, K. 
e the highest DRCm(t)/Rm(t)=max{DRCi(t)/Ri(t), i=1,…, K.}
 data to user m 
mly break the ties if any 

te average user data rate at each slot 
= (1-1/Wc)Ri(t) + Rc/Wc i=1,…, K, 

c= DRCi(t) if user i is receiving data, Rc= 0 otherwise 
ngs the maximum revenue to the network operator according to [9]. 

 bounded by  

1 11

1ln ln ln
KK K

k k k
k k

T T K T
K = =

⎞ ⎛ ⎞ ⎛ ⎞≤ = −⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎠
∑ ∑ K K ,  (3.31) 

 symmetric user channels withT Tk = , 1,..., .k K= In this case, (3.30) 

. (3.32) 
1
ln ln

K

k
k

T K T
=

=∑

n upper bound on the limit of the long-term average user data rate.  

r in (3.29) exploits the multiuser diversity by assigning the radio 

atively better channel conditions, i.e., when the SINR at or near its 

 PF scheduling can be thought as an approximation of greedy 
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scheduling with the resource fairness constraint. Its performance is affected by both the user 

fading statistics and the number of active users, and the optimum multiuser diversity can be 

obtained when each user has the same i.i.d. small-scale fading over time. In real systems, 

neither the average SINR per user nor their fading statistics can be expected to be the same. 

This is particularly important to systems without forward link power control as in 1xEV-DO, 

in which the full transmit power is assigned to each scheduled user for the best possible total 

throughput. Therefore, users with higher SINR and greater fading variations get higher 

throughput than those with the opposite condition. However, as indicated in [37], regardless 

of the user average SINR, the PF algorithm provides equal opportunity of transmission to 

users with the i.i.d. fading statistics, and only slightly better chances of transmission to those 

with smaller channel variations over the long term. Therefore, it is in this radio resource 

sharing sense that fairness is maintained, rather than in performance.  

3.3.2 Impact of PF Scheduling on Receive Antenna Diversity 

 This section presents the numerical throughput improvement with two receive 

antennas over a single receive antenna in a multiuser scenario, and we focus on the IS-856 

system downlink applications. As before, we assume that the channel fading is symmetric. 

However, instead of the i.i.d. block-fading model, we assume that the fading processes are 

ergodic with continuous fading variations across slots, and have low-to-medium Doppler 

rates corresponding to pedestrian-to-low-vehicular speed.  

 Figures 3.7(a) and (b) plot the average total throughput for the 1.5 Hz-Doppler Rician 

fading with a Rice factor 10rK = and the Hz-Doppler Rayleigh fading channels, 

respectively, by using the mapping table in [38] for the SNR-to-data-rate mapping without 

hybrid automatic repeat request (H-ARQ) on the physical layer. The adaptive data rate is 

achieved on a single -MHz physical channel. The mapping is shown in Table 3.2. For  

55.6

1.25
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over 8000 slots with 16.7 ms per slot and Wc=100 slots. 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

K

A
ve

ra
ge

 T
ot

al
 T

hr
ou

gh
pu

t i
n 

M
bp

s

γ
s
=9dB

γ
s
=6dB

γ
s
=3dB

γ
s
=0dB

γ
s
=−3dB

γ
s
=−6dB

γ
s
=−9dB

(b) In i.i.d. 55.6Hz-Doppler flat Rayleigh fading 
over 2000 slots with 8.3 ms per slot and Wc=200 slots. 

Figure 3.7. Average total throughput using PF scheduling with sγ from 9 dB to –9 dB in a step size of 3 dB from 
top to bottom. Solid lines: 1Tn = and 2Rn = ; dash-dotted lines: 1Tn = and . 1Rn =

simplicity purposes, we replace variable-length packet scheduling with fixed-length packet 

scheduling over each slot. As we can see from these figures, the higher fading rate and the 

larger fading dynamics are beneficial from the total throughput point of view, but they are  
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Table 3.2. SNR-to-Data Rate Mapping without H-ARQ. 

Data Rate Index 
(4 bits) 

Data Rate 
(Kbps) 

( )k tγ  Threshold 

(dB) 
0 0 C/I < -11.5 
1 38.4 -11.5 ≤ C/I < -9.0 
2 76.8 -9.0 ≤ C/I < -6.5 
3 153.6 -6.5 ≤ C/I < -3.0 
4 307.2 -3.0 ≤ C/I < -0.5 
5 614.4 -0.5 ≤ C/I < 2.0 
6 921.6 2.0 ≤ C/I < 4.0 
7 1228.8 4.0 ≤ C/I < 7.0 
8 1843.2 7.0 ≤ C/I < 9.5 
9 2457.6 ≥ 9.5 

 

subject to higher receive SNR clipping, which is especially pronounced at high average SNR 

regions. Compared with Figure 3.1, the spectral efficiency is more modest in Figure 3.7. In 

addition to the SNR quantization, the lower spectral efficiency also comes as a price for 

fairness over the window length of about s. In Figure 3.7(a) for the slow fading case 

with a strong line-of-sight component, the spectral efficiency suffers more due to limited 

multiuser diversity over . Plots in Figures 3.7(a) and (b) also show that a doubling of 

throughput with 100% user average SNR increase cannot always be expected since both the 

user fading statistics and the number of users vary in a multiuser network. Generally, the 

higher improvement can be expected under the conditions of the lower user average SNR

cW 1.67

cW

sγ , 

the smaller fading variation, or the smaller number of active users. The first condition is due 

to the low SNR approximation of the achievable rate by 

( )2 2log (1 ) log ln(1 ) logC eρ ρ= + = ⋅ + ≈ 2 eρ  

in bits/sec/Hz for SNR 1ρ � . Therefore, in the vicinity of very low SNR, a 3-dB increase in 
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SNR does double the total throughput. The last two conditions are related to limited 

multiuser diversity via PF scheduling with finite window length. In those cases, the receive 

antenna diversity improvement can become more pronounced given that the potential 

channel diversity is not fully exploited via multiuser diversity. 

3.4 Summary 

 In a large data network of multiple users, multiuser diversity can greatly increase 

system throughput. We have shown that under greedy packet scheduling, open-loop 

transmit antenna diversity over each point-to-point wireless link can have an adverse effect 

on the total system throughput. The asymptotic sum-rate analysis also shows that receive 

antenna diversity can be a waste of resources in the limit of a large number of users for the 

i.i.d. Rayleigh fading channels. However, in the application environments where the 

potential multiuser diversity gain is constrained by fairness concerns, benign fading 

channels with insufficient scattering, strong light-of-sight signal components, or a slow 

fading rate, the implementation of receive antenna diversity may be justified. With CQI at 

the transmitter, closed-loop antenna diversity can also be exploited. An example is 

selection transmit diversity which selects the best among independent transmit antennas 

for each user using CQI feedback. In our channel model, this is equivalent to greedy 

scheduling with a single transmit antenna and times the number of users. Therefore, 

unlike open-loop transmit diversity, selection transmit diversity can improve system 

throughput with greedy scheduling, although the gains may still be small. 

Tn

Tn

 In addition to diversity, multiple transmit antennas can provide spatial multiplexing 

and improve system throughput with scheduling. One goal of this dissertation is evaluating 
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downlink throughput improvement by using multiple transmit antennas effectively and 

efficiently. The following chapters are devoted to the study of multi-antenna downlink 

transmission using spatial multiplexing under multiuser scheduling, specifically, we 

provide solutions built on suboptimal dirty paper coding techniques. 
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Chapter 4 
Suboptimal Dirty Paper Coding and Scheduling 

 In the previous chapter, we demonstrated that open-loop antenna diversity techniques 

degraded the impact of channel-aware scheduling. In this chapter, we investigate the 

interaction of spatial multiplexing and channel-aware scheduling. Specifically we examine a 

transmitter-centric technique termed dirty paper coding (DPC), which permits low 

complexity receivers while attaining spatial multiplexing through precoding. We will show 

that channel-aware scheduling leads to substantial capacity gains when paired with DPC. 

Additionally we show that intelligent reordering allows for significant performance 

improvement, with minimal rate reduction. 

4.1 Review of Zero-Forcing Dirty Paper Coding (ZF-DPC) 

 Dirty paper coding provides a new coding technique for the broadcast channel, which 

is superior to the single-user design that ignores the multiuser interference. For a vector 

Gaussian broadcast channel with single-antenna users, Caire and Shamai [10] proposed a 

suboptimal DPC scheme which forces to zero the interference from users . This 

suboptimal scheme was named zero-forcing DPC (ZF-DPC). They also provided a 

closed-form solution for the sum capacity of two users, which is hard to generalize to more 

than two users or more than one antenna per user. However, for more than two users, the 

ZF-DPC was proved to be asymptotically sum-rate optimal at both low and high SNR under 

certain mild conditions. It is worth noting that this same technique was independently 

j k>
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applied to a multiuser DSL channel by Ginis and Cioffi [39]. In this section, we describe the 

ZF-DPC scheme. 

4.1.1 Maximum Sum Rate 

 For the vector broadcast channel model in (2.11) with 1km = , , a more 

intuitive precoding matrix B can be chosen based on a QR-type decomposition [40]. Let 

1,...,k = K

( ) s tn n×∈H ^S be the channel matrix between nt transmit antennas and a user subset of 

cardinality , and let 

S

rank( )sn = H ( ) H=H GBS be the unique LQ decomposition of , 

such that

( )H S

,[ ] s sn n
i jg ×= ∈G ^ is lower triangular having positive diagonal elements, and 

has orthonormal columns with1[ ,... ] t s

s

n n
n

×= ∈B b b ^
s

H
n=B B I . Following the notation used 

in the section 2.3.2, over each coherence interval of T symbols the transmitter encodes the 

user data streams  withtn T
k

×∈X ^ k k k=X b u using Gaussian inputs . Hence we 

have the received precoded signal as  

1 T
k

×∈u ^

 , , ,    1,...,k k k k k j j k
j k

g g k
<

= + + = sn∑y u u w , (4.1) 

where no information is sent to users sk n> . The interference from users to user k is 

forced to zero since for , and the interference from users is non-causally 

known to the transmitter and can be pre-subtracted prior to transmission. From Costa’s result 

assuming unit noise variance, the SINR of user k is thus  

j k>

, 0k jg = j k> j k<

 , (4.2) zfdpc 2
,k kSINR g= k

R

and the achievable sum rate is then 

 zfdpc zfdpc
sum 2

1
[log ( )]

sn

k
k

R SINξ +
=

= ⋅∑ , (4.3) 
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whereξ is the waterfilling solution to  

 zfdpc

1
E ( 1/ )

sn

k
k

SINR Pξ +
=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ ,  (4.4) 

with the expectation over the ergodic channel variations. The maximum sum rate with 

ZF-DPC is therefore 

 ,  (4.5) zfdpc-max zfdpc
sum summaxR R=

S

with the maximization over all the ordered user subsets of cardinality nS s. The total 

number of such ordered subsets is upper bounded by P sn
K , the number of ns permutations out 

of K. 

 For comparison, we present the achievable sum rate of transmit zero-forcing linear 

beamforming (ZF-LBF) for the channel model above. The transmit ZF-LBF consists of 

inverting the channel matrix at the transmitter in order to create orthogonal channels between 

the transmitter and the receivers without cooperation between receivers. Let be a user 

subset of cardinality not greater than

S

sn , i.e., | | sn≤S , so that the corresponding channel 

matrix  has full row rank, i.e.,( )H S ( )rank ( ) =| |H S S �

)H

. Let the pseudoinverse of be 

denoted by 

( )H S

( 1
( ) ( ) ( ) ( )H −+H H H H�S S S S [41]. With ZF-LBF, the transmitted signal is 

pre-multiplied by so that the channel in (2.11) is converted into a set of parallel 

channels  

( )+=X H US

 ,    1,... | |k k k k= + =y u w S , (4.6) 

where no information is sent to users k ∉S . The received SINR at user k is then  

 
( )

zflbf
1

,

1

( ) ( )
k

H

k k

SINR
−

=
⎡ ⎤
⎢ ⎥⎣ ⎦

H HS S
, (4.7) 

The achievable sum rate for a given user subsetS is thus  
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| |

zflbf zflbf
sum 2

1
[log ( )]k

k
R SINξ R +

=

= ⋅∑
S

, (4.8) 

where ξ  is the waterfilling solution to  

 
| |

zflbf

1
E ( 1/ )k

k
SINR Pξ +

=

⎡ ⎤
− =⎢

⎣ ⎦
∑
S

⎥

R

. (4.9) 

The maximum sum rate of ZF-LBF is therefore  

 , (4.10) zflbf-max zflbf
sum summaxR =

S

where the maximization is over all the unordered user subsets of cardinality | |S sn≤S . The 

total number of such unordered subsets is upper bounded by
1
Csn i

Ki=∑ . It has been shown in 

[10] that for any channel matrix , . H zfdpc-max zflbf-max
sum sumR R≥

 For user subsets of unit cardinality only, the ZF-LBF reduces to the maximal ratio 

combining beamforming (MRC-BF). The maximum rate of MRC-BF among all the K users 

is simply  

 2mrcbf-max
max 2 maxlog (1 )R P= + h , (4.11) 

where is the channel to the user with the largest Euclidean norm. This is achieved by 

only transmitting to the user in the best channel condition in the sense of conventional 

transmit beamforming, and is exactly the sum-rate optimal transmission scheme for the 

degraded Gaussian broadcast channel with

maxh

1tn = . However, as we will see later, this scheme 

is generally not optimal for .  1tn >

 If we allow the receivers to cooperate, the channel in (2.11) is then equivalent to a 

single-link MIMO channel. In this case, the maximum achievable rate is  

 coop coop
2

1
[log ( )]

sn

k
k

R SINξ R +
=

= ⋅∑ , (4.12) 
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with being the nonzero squared singular values of andcoop
kSINR H ξ being the waterfilling 

solution to  

 coop

1

E ( 1/ )
sn

k
k

SINR Pξ +
=

⎡ ⎤
− =⎢

⎣ ⎦
∑ ⎥ . (4.13) 

The sum rate coopR is obviously an upper bound to both and under the same 

condition for any channel H, according to Sato upper bound [26]. Since for any unitary 

matrix Q, QH has the same singular values of H, the cooperative achievable rate

zfdpc-max
sumR zflbf-max

sumR

coopR is 

independent of user ordering.  

 We have seen that the sum rate of ZF-DPC depends on the ordered user subset of 

cardinality ns, whereas the sum rate with ZF-LBF is related to the unordered user subset of 

cardinality not greater than ns. It has been shown in [10] that for ZF-DPC, the maximum sum 

rate is achieved by an ordered set of nzfdpc-max
sumR s users for every . This implies spatial 

multiplexing is always achieved for sufficiently large P. Moreover, ZF-DPC becomes 

independent of the user ordering for asymptotically large SNR if has full row rank, i.e., if 

n

0P ≥

H

s=min(nt,K). For ZF-LBF with a fixed power constraint P, the maximum sum rate 

may be achieved by a user subset of cardinality strictly less than nzflbf-max
sumR s. However, there 

still exists a finite value depending on , such that for all , is achieved by a 

subset of cardinality n

0P H 0P P> zflbf-max
sumR

s. This result implies that, when channel conditions permit, the spatial 

multiplexing in a multi-antenna broadcast channel can be provided with both ZF-DPC and 

ZF-LBF, whereas for the same multiplexing gain, the power requirement for ZF-LBF will be 

higher than for ZF-DPC in general. 

4.1.2 Asymptotic Sum-Rate Optimality 

 The asymptotic optimality of  was established in [10] at both low and high zfdpc-max
sumR
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SNR. The conclusions are summarized in Theorem 4.1 and 4.2 below.  

 Theorem 4.1 (Theorem 3 in [10]): For any channel matrix H with full row rank,  

 coop zfdpc-max
sumlim( ) 0

P
R R

→∞
− = , (4.14) 

and for any channel matrix H,  

 
zfdpc-max
sum
zflbf-max0
sum

lim 1
P

R
R→

= . (4.15) 

Theorem 4.1 states that for the condition of a full channel row rank, the maximum sum rate of 

ZF-DPC asymptotically approaches the sum capacity of the cooperative receivers, or the 

capacity of a single-link MIMO channel, at high SNR. At low SNR, ZF-DPC asymptotically 

achieves the maximum sum rate of ZF-LBF for any channel. 

 Theorem 4.2 (Theorem 4 in [10]): If has full row-rank, then  H

 zfdpc-max
sum sumlim( ) 0

P
C R

→∞
− = , (4.16) 

and  

 sum
zfdpc-max0
sum

lim 1
P

C
R→

= . (4.17) 

Theorem 4.2 establishes the asymptotic sum-rate optimality of ZF-DPC at both low and high 

SNR, under the condition of a full channel row rank. 

 Figures 4.1(a) and (b) depict the average sum rates ,zfdpc
sumR zflbf

sumR , andmarcbf-max
maxR coopR for 

nt=K=4 in i.i.d. flat Raleigh fading channels. The sum rates are averaged over 30,000 

independent channel realizations (coherence intervals). The user subset selection and 

ordering are not taken into account in the plot. For comparison purposes, the capacity of a 

point-to-point AWGN channel with the same total average power constraint is plotted as a 

baseline. Also shown in Figure 4.1 is the average sum capacity of the standard degraded 

Gaussian broadcast channel with nt=1, in which the sum capacity is achieved by transmitting  
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Figure 4.1. Average sum rate in i.i.d. flat Rayleigh fading for . 4tn K= =

to the best user only in each coherence interval [42]. We have assumed that CSI is known to 

both the transmitter and the respective receivers in all the cases above. Under the assumption 

that CSI is only known to the receivers (CSIR), and in the condition of a symmetric ergodic 

channel, where the channel matrix H has i.i.d. rows, the marginal user channel statistics are 

the same, and the vector Gaussian broadcast channel of single-antenna users for any nt>1 is 
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stochastically degraded [19]. Hence the capacity region can be obtained by time-sharing. The 

optimal sum rate in this case is the same as that obtained in [3] with transmit diversity,  

 2
sum 2

0

log 1 ,    1,...,k
t

PC
N n

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
h k K . (4.18) 

This is also plotted in Figure 4.1. While Figure 4.1(a) shows the performance at high SNR, 

Figure 4.1(b) focuses on low SNR region. The following observations can be made from 

these plots at K=nt: 

• Even without considering user ordering, at high SNR ZF-DPC asymptotically 

achieves the point-to-point link capacity with cooperative receivers (COOP); 

while at low SNR, ZF-DPC approaches the average sum rate of MRC-BF. The 

value of receiver cooperation becomes apparent at vanishingly small SNR. 

• When transmitting to the same K=nt users in a fixed order at low SNR, MRC-BF 

obtains greater average sum rate than ZF-DPC and ZF-LBF. This means at low 

SNR, the power gain from only transmitting to the best user brings the most 

benefit to the average sum rate. 

• When transmitting to the same K=nt users in a fixed order at high SNR, the 

spatial multiplexing gain of ZF-DPC and ZF-LBF is asymptotically equal to that 

of COOP, that is, nt bps/Hz increase per 3dB SNR increase, whereas the 

MRC-BF achieves only 1 bps/Hz increase per 3dB SNR increase, the same as 

for the point-to-point AWGN channel and the two degraded broadcast channels.  

• With CSI at the transmitter and K>1, the average sum rate is above that of the 

point-to-point AWGN channel, whereas with CSIR only, the average sum rate of 

the degraded Gaussian broadcast channel with nt is below that of AWGN due to 

fading. The advantage of CSI at transmitter is dramatic at both high SNR and 

low SNR.  
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 We have been using a long-term power constraint for the capacity evaluation, that is 

we require that the total average transmit power is constrained to P. For an ergodic channel 

fading process, this is to require  

 
1

E ( 1/ )
sn

k
k

SNR Pξ +
=

⎡ ⎤
− =⎢

⎣ ⎦
∑ ⎥ . (4.19) 

We can also use a strict short-term power constraint over each coherence interval, 

 
1
( 1/ )

sn

k
k

SNR Pξ +
=

− =∑ , (4.20) 

which also meets the long-term power constraint. Our interest is to show the impact of 

multiuser scheduling and ordering on the achievable sum rate of ZF-DPC. We evaluate the 

maximum sum rates , , , andzfdpc-max
sumR zflbf-max

sumR mrcbf-max
maxR coopR with this short-term power 

constraint below in Figures 4.2(a) and (b), using 4tn = for different number of users in i.i.d. 

flat Rayleigh fading. As before, the capacity of a point-to-point AWGN channel is shown as 

a baseline. 

 Figure 4.2 indicates that under a power constraint over each block, the ZF-DPC 

achieves the largest maximum average sum rate over the entire SNR region among ZF-DPC, 

ZF-LBF and MRC-BF. Comparing the K=4 case with that in Figure 4.1 without user ordering 

and under a long-term power constraint, we see that the optimal user ordering brings 

negligible sum rate gain to ZF-DPC at moderate to high SNR. This result confirms the 

statement made earlier for the asymptotic user-ordering independence of ZF-DPC 

performance at high SNR. However, the maximum achievable sum rate of ZF-LBF is 

increased through the optimal user subset at moderate to low SNR, which is no less than that 

of MRC-BF over the entire SNR region. We see in Figure 4.2 that when K>nt, a significant 

power gain from multiuser scheduling leads to a parallel up shift of the capacity curves at 

high SNR, and a parallel up shift of relative capacity curves at vanishingly small SNR, which 
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Figure 4.2. Average maximum sum rate in i.i.d. flat Rayleigh fading for 4tn =  and 1, 4, 16. K =

converges to the transmit beamforming to the best user. As K continues to increase, the 

maximum sum rate of ZF-LBF approaches that of ZF-DPC. At K=1, the sum rates of 

ZF-DPC, ZF-LBF and MRC-BF are the same. 

 Therefore, similar to the sum capacity over a scalar multiacess [43] or broadcast 

channel [42], in a large data network with K>nt, we can expect a multiuser diversity gain in 
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average sum rate from dynamically scheduling resources among the users as a function of 

their channel states, but unlike a scalar multiuser channel, the multiple antennas at the base 

station can provide parallel independent data transmissions at the expense of more channel 

state knowledge. We will show later that that this sum-rate greedy scheduler, which always 

grants the radio resource to the best user subset, can be closely approximated with an 

efficient suboptimal scheduler, which allows for both an equal transmit power allocation and 

an adaptive number users to be scheduled. Further, on top of this suboptimal scheduling, a 

minimum-error reordering can be applied, similar to the optimal ordering in the V-BLAST 

algorithm [11]. In the following, we first show the dual relationship between ZF-DPC and 

V-BLAST, and its performance advantages over V-BLAST. 

4.1.3 ZF-DPC versus V-BLAST 

 Theoretically, both ZF-DPC and V-BLAST achieve a lower bound on the MIMO link 

capacity through successive interference cancellation (SIC) and nulling. For ZF-DPC, this 

refers to a composite MIMO link with nt co-located transmit and ns distributed receive 

antennas, with the joint processing performed at transmitter assuming CSI is available. For 

the MIMO broadcast channel model in (2.11), the spatial multiplexing supportable by 

ZF-DPC is of order . In the case of V-BLAST, the joint processing is 

performed at each receiver, and the sum rate is upper bounded by individual MIMO links. 

For comparison, we focus on the zero-forcing V-BLAST scheme [11]. For the channel model 

in (2.11), the achievable rate using V-BLAST with ,

min( , )s tn n≤ m

Kk tm n≥ 1,...,k = , and joint processing 

at receiver k is [2] 

 (vblast 2
2 ,

1
log 1 ( ) /

tn

k T i
i

)i tR P q k n
=

= +∑  (4.21) 

assuming i.i.d. Gaussian noise of unit variance, where are the real diagonal entries of , ( )i iq k
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the upper triangular matrix from the QR decomposition of the kth user channel matrix. Due 

to the lack of CSI at the transmitter, V-BLAST uses equal transmit power allocation across 

transmit antennas. Therefore, the maximum achievable sum rate is 

 , (4.22) vblast-max vblast
sum 1

max kk K
R

≤ ≤
= R

Kwhere the maximization is over K users each with ,k tm n≥ 1,...,k = , receive antennas, and 

consequently, the maximum order of spatial multiplexing supportable is nt with transmission 

to a single user each time. If we also use equal power allocation in (4.3), a direct statistical 

comparison with (4.21) indicates that ZF-DPC and V-BLAST actually achieve the same 

average sum rate in the absence of scheduling, and can be thought as dual techniques with 

transmitter- and receiver-centric processing, respectively. However in reality, V-BLAST 

suffers from the problem of error propagation and ZF-DPC requires full CSI at the 

transmitter. The transmitter-centric processing of ZF-DPC greatly reduces receiver 

complexity and power consumption. Also, the maximization of the sum rate for ZF-DPC is 

over (nP tn
m t permutations out of m) receive antenna subsets for , rather than only K 

users with V-BLAST. This last point suggests a potentially much larger scheduling gain for 

ZF-DPC than for V-BLAST since for . This is true even for a relatively small 

number of m and n

tm n≥

P tn
m K� tm n�

t. However, to obtain this scheduling gain, an efficient implementation of 

scheduling is needed for ZF-DPC. 

4.2 Suboptimal Scheduling for ZF-DPC 

 For the maximization in (4.5), a suboptimal greedy scheduling algorithm was 
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proposed in [44], which was shown to obtain a nearly optimal average maximum sum rate1 

using optimal power allocation. Optimal waterfilling power allocation puts a high demand 

on the linear range of transmit power amplifiers, which is extremely costly from a practical 

point of view if not impossible, especially due to the need for multiple transmit RF chains. 

From a theoretical point of view, the waterfilling operation also makes it difficult to analyze 

the scheduling performance. Therefore, we present a suboptimal greedy scheduler which 

allocates equal power to all selected users. Asymptotically, we show that when K is 

sufficiently large, the maximum sum rate with equal power allocation approaches that with 

optimal power allocation. Our algorithm further streamlines the greedy scheduler in [44] by 

making use of the descending ordering of channel gains for selected users, and more 

importantly, it allows for the derivation of a tight upper bound on the average maximum sum 

rate with scheduling. 

4.2.1 Suboptimal Greedy Scheduling with Equal Power Allocation 

 For the MIMO broadcast channel model (2.11) with a total average transmit power 

constraint and , , define the maximum sum rate of ZF-DPC with equal 

user power as  

TP 1km = 1,...,k = K

P g  zfdpc-max 2
sum 2 ,max log (1 / | |)T k k

k

R
∈

= +∑� �

�� �
S S

S , (4.23) 

where  with . The maximization in (4.23) is performed over 

all ordered user subsets of cardinality not greater than . Let be the 

orthogonal projection onto the orthogonal complement of the subspace spanned by the rows 

{1,..., }K⊂�S 1 | | min( , )tn K≤ ≤�S

�S min( , )tn K ( )XP

                                                 
1 The average maximum sum rate is averaged over the channel variations with i.i.d. block-wise fading. For 

 ergodic channel fading processes, the term ergodic maximum sum rate can be used interchangeably here. 
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of matrix , letX x be the Euclidean norm of vector , and let { } be the set  

excluding setB . An efficient suboptimal greedy scheduling algorithm for the maximization 

in (4.23) is given in Table 4.1, where both the users and their number are scheduled 

adaptively with the objective being the maximization of sum rate. We define . 

x \{ }A B A

( )( ) 1∅H �P

Table 4.1. Suboptimal greedy scheduler  
with equal user power allocation. 

Step 1: Initialization 
* = ∅S , * 1T =  

Step 2:  
For 1n =  to  min( , )tn K

2* *( ( )) ,  {1,..., } \k k k Kγ = ∈h HP S S  

arg max kk
l γ=  

1
*

1

(1 / ) (1 / )
n

T l T m
m

T P n Pγ γ
−

=

= + +∏ n  

if  *T T>

*T T= , *
n lγ γ= ,  * * { }l= ∪S S

else 
go to Step 3 

End 

Step 3: Deliver zfdpc-max *
sum 2logR T=
�

. 

 

 We have the following result for the suboptimal greedy scheduling algorithm in Table 

4.1: 

 Lemma 4.1: The incremental user selection in Table 4.1 leads to a final subset of a 

cardinality and the channel gains of the selected users are chosen in a 

non-increasing order with

*S

*1 | | min( , )tn K≤ ≤S

*
* * *
1 2 | |

...γ γ≥ ≥ ≥
S

γ . For a proof of this lemma see Appendix A. 
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 Remark 4.1: At Step 2 in Table 4.1, we can use
1

*

1

(1 ) (1 )
n

l l m m
m

T P P* *γ γ
−

=

= + +∏ for the 

optimal power allocation via waterfilling, which obtains the same result as that in [44]. 

However, the scheduler in Table 4.1 terminates the for-loop whenever adding the best 

remaining user does not increase the sum rate by using an if-else switch. This if-else switch is 

based on the result of non-increasing ordering of *
kγ , , in Lemma 4.1. We note 

that this suboptimal scheduler adaptively adjusts the number of admitted users and can be 

thought of as an approximation to the scheduler with optimal power allocation using 

adaptive equal power allocation. The implementation in Table 4.1 is more computationally 

efficient than that in [44], not only because we avoid the waterfilling computation at each 

step, but also because of the possible early termination of the selection loop. This reduces the 

necessary computations, especially at low SNR when the maximum sum rate is often 

achievable with a user subset of cardinality strictly less than . 

*1,...,| |k = S

min( , )tn K

Remark 4.2: We can also maximize spatial multiplexing by setting  

and using the suboptimal scheduling in Table 4.2. In this case, the for-loop is carried to the 

loop end, and the maximum sum rate is no greater than that in Table 4.1. Again, the channel 

gains of selected users are in a non-increasing order

*| | min( ,tn K=S )

*
* * *
1 2 | |

...γ γ≥ ≥ ≥
S

γ (see Appendix A). It is 

worth noting that this spatial-multiplexing maximization, even though it decreases the 

maximum achievable sum rate, increases the fairness in slot allocation since a maximum 

number of users are admitted over each block. This will be further justified by the numerical 

results in the following. We note that the decrease in the maximum sum rate is negligible at 

high SNR or K sufficiently large. In the next section, we will show that this simplification 

also allows us to derive a tight upper bound on the average maximum sum rate with 

scheduling. 
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Table 4.2. Suboptimal greedy scheduler  
with equal power allocation  

and maximum spatial multiplexing. 

Step 1: Initialization 
* = ∅S , * 1T =  

Step 2:  
For 1n =  to mi  n( , )tn K

2* *( ( )) ,  {1,..., } \k k k Kγ = ∈h HP S S  

arg max kk
l γ=  

*
n lγ γ=  

( )* * *1 / min( ,T n tT T P n Kγ= ⋅ + )  

* * { }l= ∪S S  

End 

Step 3: Deliver . zfdpc-max *
sum 2logR T=
�

 

 Consider the i.i.d. flat Rayleigh fading channel matrix tK n×∈H ^ with i.i.d. circular 

symmetric complex Gaussian elements of zero mean and unit variance. We have the 

following result. 

 Theorem 4.3: For a finite and a positive total transmit power constraint , 

 with optimal scheduling over the i.i.d. flat Rayleigh fading 

channels defined above. For a proof of this theorem see Appendix B. 

tn 0TP >

( zfdpc-max zfdpc-max
sum sumlim 0

K
R R

→∞
− � ) =

 Theorem 4.3 also holds when the spatial multiplexing is maximized in (4.23), i.e., 

, since under optimal power allocation with , the maximum sum rate 

is achievable with as stated before. Further, it is known that 

| | min( , )tn K=�S 0TP >

| | min( , )tn K=S
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( zfdpc-max zfdpc-max
sum sumlim 0

TP
R R

→∞
− � ) =  with the total transmit power being equally divided among the 

 best users, andmin( , )tn K ( )zfdpc-max zfdpc-max
sum sum0

lim 0
TP

R R
→

− =� with the total transmit power 

devoted to a single best user for  [10].  0TP >

 With perfect CSI at both the transmitter and receiver and under a long-term average 

transmit power constraint, the average sum rate of  in (4.3) over the i.i.d. block-fading 

channels is the same as that achievable over the ergodic fading channels, over which the 

random fading processes vary independently during each transmission block so that the 

channels are information stable [45]. As a result, a corollary of Theorem 4.3 is given below. 

zfdpc
sumR

 Corollary 4.1: For a finite  and a positive total transmit power constraint , 

 under optimal scheduling over ergodic and 

independent flat Rayleigh fading channels which are information stable, where the 

operator denotes the expectation over the channel matrix . 

tn 0TP >

( ) ( )( zfdpc-max zfdpc-max
sum sumlim E E 0

K
R R

→∞
−H H

� ) =

E ( )⋅H H

Figure 4.3 shows the average maximum sum rate under suboptimal scheduling using 

equal user power allocation for both adaptive user selection and maximum spatial 

multiplexing. The user channel matrix was assumed to be i.i.d. circular symmetric 

complex Gaussian elements of unit variance. For comparison, the average maximum sum 

rate under suboptimal scheduling with the optimal transmit power allocation is also plotted. 

As we can see, the average maximum sum rate with equal power allocation is very close to 

that of optimal power allocation. In fact, the two curves are almost indistinguishable. For the 

average maximum sum rate with maximum spatial multiplexing and equal power allocation, 

the deficiency is very small at both high SNR and low SNR, and decreases with increasing K. 

H
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Figure 4.3. Average maximum sum rate under the suboptimal scheduling with optimal and equal user 
power allocation in i.i.d. flat Rayleigh block-wise fading. 

4.2.2 An Upper Bound on the Average Maximum Sum Rate 

 We now derive an upper bound on the average maximum sum rate under the 

suboptimal greedy scheduling. To make the analysis tractable, we assume that the channel 

matrix has i.i.d. circular symmetric complex Gaussian elements of unit variance, and we 

use the suboptimal scheduling in Table 4.2 with the maximum spatial multiplexing of 

 independent user streams. From Remark 4.2 in Section 4.2.1, we know that 

when we fix maximum spatial multiplexing | | , the channel gains of the 

selected users follow a descending order

H

min( , )tn K

* min( , )tn K=S

*
* * *
1 2 | |

...γ γ> > >
S

γ

H

with probability 1 for the channel 

matrix  assumed. The following result is based on this observation. 

l 

matrix  assumed. The following result is based on this observation. H

 Lemma 4.2: For the user channel matrix H with i.i.d. circular symmetric complex 

Gaussian elements of zero mean and unit variance, under the suboptimal scheduling in Table 

 Lemma 4.2: For the user channel matrix H with i.i.d. circular symmetric complex 

Gaussian elements of zero mean and unit variance, under the suboptimal scheduling in Table 
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4.2 with maximum spatial multiplexing of , the selected user channel gains *| | min( ,tn K=S )

*
kγ , , are upper bounded by , where 

, , and

2,..., min( , )tk n= K k

1 max( / ,1) 1 max( / ,1) 1 max( / ,1)
min( max , max ,..., max )

t t t
t t t

n n ni K n i K n i K n
U χ χ χ−≤ ≤ ≤ ≤ ≤ ≤
� 2k ≥

2
2( 1)1 1

min( , max )
tk ni K k

U U χ − +≤ ≤ − +
�

2 2 2
2 2( 1) 2( 2)k− +

2

1
max ni N

χ
≤ ≤

 

denotes the maximum of N i.i.d. chi-square random variables distributed as 2
nχ . The first 

selected user channel gain *
1γ is distributed as 2

1 1
max

tni K
U 2χ≤ ≤
� exactly. For a proof of this lemma 

see Appendix C. 

 We note that the upper bound in Lemma 4.2 is independent of the transmit power 

constraint . In the next section, we will show that the bound is quite tight over the entire 

region of SNR, even for a relatively small number of users. Since only the upper bounding 

of

TP

*
kγ , , is considered in Lemma 4.2, which introduces correlation 

among

2,..., min( , )tk n= K

*
kγ , , this upper bound is appropriately tight for calculating the 

average maximum sum rate, rather than the outage sum rate, which is more dependent on 

lower bounding, especially at low outage rate. Therefore, we have the following result. 

1,..., min( , )tk n= K

 Theorem 4.4: For ergodic and independent flat Rayleigh fading channels tK n×∈H ^  

each with unit average power gain, under the suboptimal scheduling in Table 4.1 with 

maximum spatial multiplexing of , the average maximum sum rate is upper 

bounded by  

*| | min( ,tn K=S )

 , (4.26) 
min( , )

20
1

log (1 / min( , )) ( )
tn K

T k t k k k
k

P u n K f u du
∞

=

+∑ ∫

where ( )k kf u are the pdfs of as defined in Lemma 4.2. The proof follows directly from 

Corollary 4.1 and Lemma 4.2. 

kU
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 The pdfs of , , can be calculated using the results from order 

statistics. The pdf and cdf for the maximum of N i.i.d. random variables

kU 1,..., min( , )tk n= K

iX , , are 

[32], respectively, 

1,...,i N=

 1
( ) ( ) ( )N
Nf Nf x F x −= , (4.27a) 

and 

  (4.27b) ( ) ( ) ( )N
NF x F x=

where ( )f x and are the pdf and cdf of( )F x iX , respectively. The pdf for the minimum of N 

independent and non-identically distributed (i.n.d.) random variables iX , , is [32] 1,...,i = N

j (1)
1 1

( ) ( ) (1 ( ))
NN

i
i j

j i

f x f x F
= =

≠

= −∑ ∏ x  (4.28) 

where ( )if x and ( )iF x are the pdfs and cdfs of iX , 1,...,i N= , respectively. 

Figure 4.4 shows two upper bounds on the maximum average sum rate under the 

suboptimal scheduling with the maximum spatial multiplexing. The upper bound 1 only uses 

the upper bounds on2
2( 1)1 1

max
tn ki K k

χ − +≤ ≤ − +

*
kγ , 1,..., min( , )tk n K= , and the upper bound 2 is from 

(4.26). The difference between the two theoretical upper bounds indicates the dependence of 

the average maximum sum rate on the correlation among *
kγ , 1,..., min( , )tk n K= . We note 

that the theoretical bound given in Theorem 4.4 is very close to the simulated result over the 

entire region of SNR, even for a relatively small number of users. 

4.2.3 Suboptimal PF Scheduling with Equal Power Allocation 

The greedy scheduler ignores the fairness of time-slot allocation to users, thus a 

proportional fair (PF) scheduler, which was introduced in Section 3.3, can be used to achieve 
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Figure 4.4. Upper bounds on the average maximum sum rate under the suboptimal scheduler in Table 4.2 in i.i.d. 
flat Rayleigh block-wise fading. 

a balanced tradeoff between multiuser diversity and fair allocation of time slots [33]. For 

V-BLAST transmission, the same PF scheduler in single-antenna system can be used for 

single-user transmission over each slot. In the general case of ZF-DPC with 
1

K
kk

m m
=

=∑ , 

the PF scheduler must be extended for multiuser transmissions, which assigns the slot t to the 

antenna subset satisfying  PFS

 PF
( )arg  max
( )

i
k

i k

R t
T t∈

= ∑
S S

S  (4.29) 

among all receive antenna subsets of| | tn≤S , where ( )i
kR t is the achievable rate of antenna i 

of user k at slot t, andT t is the throughput of user k averaged over a past window of length 

 in slots and is updated slot-wise as 

( )k

cW



Chapter 4. Suboptimal Dirty Paper Coding and Scheduling  69 

 
( ) PFuser 

(1 1/ ) ( ) 1/ ( ),     and user 
( 1)

(1 1/ ) ( ),                                    otherwise

i
c k c ki k

k
c k

W T t W R t i i k
T t

W T t
∈

⎧ − + ∈ ∈⎪+ = ⎨
−⎪⎩

∑ S
.  

 Suboptimal PF schedulers can be used, similar to the suboptimal greedy schedulers 

in Tables 4.1 and 4.2. It is worth noting that unlike greedy scheduling, PF scheduling for 

ZF-DPC does depend on the number of receive antennas at each user, since the measure of 

resource fairness is associated with users, rather than with receive antennas. 

Figures 4.5(a) and (b) depict the average maximum sum-rate difference between the 

suboptimal greedy and PF scheduling, using 4tn = and 1km = , 1,...,k K= . In Figure 4.5, the 

time scale of interest is set to 100 slots, and the slot width in 1.5-Hz flat Rician fading is 

set to 16.7ms. Comparing Figures 4.5(a) and (b), we can see that the average maximum 

sum-rate decrease is more pronounced in a slow fading environment. However, unlike with a 

single transmit antenna, with maximum spatial multiplexing via multiple transmit antennas, 

the degradation is constrained to below 1 bps/Hz for a wide range of average SNR and a 

moderate number of users. Therefore, the spatial multiplexing with ZF-DPC partially 

provides the benefits of dumb antennas [33], which create relatively faster artificial fading to 

boost the scheduling gain in an environment with either slow fading or limited fading 

variations. In i.i.d. flat Rayleigh fading, the degradation grows linearly with the number of 

users, while in a slow flat Rician fading with strong line-of-sight component, the degradation 

rate is much slower with the number of users. We also note that for suboptimal scheduling 

with maximum spatial multiplexing, the degradation in the average maximum sum rate is the 

smallest for a wide range of average SNR, especially in the low SNR region. This indicates 

that the scheduler with maximum spatial multiplexing provides more fairness in time-slot 

allocation than the other two schedulers, and is less sensitive to the fairness constraint. 

cW

 For a fair comparison between ZF-DPC and V-BLAST, Figure 4.6(a) shows the 1%- 
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(b) 1.5Hz-Doppler flat Rician fading with a Rice factor of 10. 

Figure 4.5. Average maximum sum rate difference between suboptimal greedy and PF scheduling. 

outage maximum sum rate with the scheduler in Table 4.2 in both i.i.d. flat Rayleigh and 

1.5Hz-Doppler ergodic flat Rician fading (with a Rice factor of 10) using V-BLAST and 

ZF-DPC. For V-BLAST, we use 4t kn m= = for 1,...,k K= , and 8K = . For ZF-DPC, we use 

. We see that with greedy scheduling, about 2dB additional scheduling gain is  32m =
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Figure 4.6. 1%-outage maximum sum rate in i.i.d. flat Rayleigh fading and flat Rician fading. 

possible for ZF-DPC in the scenario simulated. Also for ZF-DPC, the 1%-outage maximum 

sum rate is higher in Rayleigh fading, while for V-BLAST with 8K = , it is slightly higher in 

Rician fading. However, as K increases and/or SNR decreases, the low-outage maximum 

sum rate gets higher in Rayleigh fading (not shown in the figure). This is due to the impact of 
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the line-of-sight signal in Rician fading for a small number of users. Figure 4.6 (b) illustrates 

the 1%-outage maximum sum rate under the suboptimal PF scheduling for 4t kn m= = , 

, and  for both ZF-DPC and V-BLAST. Again, we assume slots, 

and for the ergodic Rician fading, we use a slot width of 16.7 ms. Comparing Figures 4.6 (a) 

and (b), we see that under PF scheduling, there is about 3 to 4 dB scheduling gain 

improvement with ZF-DPC over V-BLAST, which is greater than that under greedy 

scheduling. Moreover, the degradation in Rician fading gets more pronounced, especially for 

V-BLAST, as compared to greedy scheduling. 

1,...,k K= 8K = 100cW =

4.3 Regularized ZF-DPC and Dual Suboptimal Scheduling 

 In this section, we define a suboptimal dirty paper coding strategy based on the mean 

square error (MSE) criterion, and name it the regularized zero-forcing dirty paper coding 

(RZF-DPC). Again, we consider an equal transmit power allocation to scheduled users, for 

both its simplicity and a relaxed linearity demand on transmit power amplifiers. In the 

following, we first show that provided a feed-forward of effective channel gains , ,k kg

1,..., sk = n , in (4,2) to the scheduled users, or equivalently a knowledge of the average 

transmit SNR at the scheduled users, RZF-DPC provides a more robust precoding solution 

than ZF-DPC when the user channel matrix is ill-conditioned [46]. 

 Consider the channel model in (2.11) with 1km = , 1,...,k K= , a general form of 

ZF-DPC using equal power allocation can be expressed as 

 , (4.30) 1( ( ) ( ) )
sn

−= ⋅ ⋅ ⋅ + +Y D H F L I X WS

where s sn n×∈D \ is a real diagonal matrix whose diagonal entries are sent to the respective 
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scheduled users. The transmission matrix t sn n×∈F ^ is used to null out the interference from 

users to user , and the strictly lower triangular matrixj k> k s sn n×∈L ^ cancels the 

non-causally known interference from users j k< to user . Given the channel realization, 

the MSE between the received and the transmitter signals is, therefore,  

k

 , (4.31) 2 2 -1( , , ) E[|| - || ]=E[|| ( ) ( ) + - || ]
sF ne = +D F L Y X DH F L I X DW XS 2

F

A

2

where is the square of Frobenius norm of matrix . Rewriting 

(4.31) for unit-variance noise samples: 

2|| || tr( ) tr( )H H
F =A AA A� A

  2 -1( , , ) E[||( ( ) ( ) ) || ]
s sn n Fe = + − +D F L DH F L I I X DWS

 1 2 2(|| ( ) ( ) || || || / )
s ss n n F FTE E−= + − +DH F L I I DS s . (4.32) 

Using equal transmit power allocation, the average transmit symbol energy /s T sE P n= . To 

minimize MSE, we can first minimize in (4.32) over the set of real diagonal 

matrices

2 ( , , )e D F L

s sn n×∈D \ , and this leads to 

 
1

1 1 1[ ( ) ( ) ] ( ) ( ) [ ( ) ( ) ]
s s s

H H s
n n n

T

n
P

−

− − −
sn

⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦
D H F L I H F L I H F L I IS S S  

 
1

1 1[ ( ) ( ) ] ( ) ( ) [ ( ) ( ) ]
s s s

1
s

H Hs
n n n

T

n
P

−

− −⎡ ⎤
= + + + +⎢ ⎥
⎣ ⎦

H F L I H F L I I H F L IS S S n
− , (4.33) 

which approximates a regularized pseudoinverse of , subject to the real 

diagonal matrix constraint. Next, we minimize  with respect to the matrices  

and . We note from (4.32) that given , the MSE is minimized with 

1( ) ( )
sn

−+H F L IS

2 ( , , )e D F L F

L D

 1( ) ( )
s sn

−
n+ =DH F L I IS . (4.34) 

 For the general form of ZF-DPC in (4.30), the minimum MSE (MMSE) can be 

obtained through a sophisticated tradeoff between the requirements in (4.33) and (4.34). 



Chapter 4. Suboptimal Dirty Paper Coding and Scheduling  74 

However, for simplicity, we consider the Cholesky factorization , 

where

zf zf( ) ( )H HH H R R�S S

zf
s sn n×∈R ^ is an upper triangular matrix with positive real diagonal entries, and let 

, , and 1
zf zf

H −=F H R 1
zf zfdiag ( )−=D R zf zf zf s

H
n= −L D R I , with  being the 

inverse of the diagonal matrix formed by the diagonal entries of matrix A, then from (4.34), 

we have the ZF-DPC solution with an MSE of  

-1diag ( )A

 , (4.35) 2 2
zf zf zf zf zf ,

1
( , , ) || || (1/ )

sn

F
k

e T T
=

= = ∑D F L D 2
k kg

where  are the diagonal entries of and are as given in Section 4.1.1. ,1/ k kg zfD ,k kg

Now consider the Cholesky factorization , which 

regularizes the ZF-DPC solution by a diagonal matrix 

rzf rzf( ) ( ) /
s

H H
s n Tn P+H H I R R�S S

/
ss nn I TP . This regularization gives a 

much more reliable result than ZF-DPC when the matrix ( ) ( )HH HS S is ill-conditioned [46] 

and the estimation of the channel is noisy, analogous to the MMSE-VBLAST 

implementation [48]. Similar to ZF-DPC, the RZF-DPC solution is obtained by setting 

, , and 1
rzf rzf

H −=F H R 1
rzf rzfdiag ( )−=D R rzf rzf rzf s

H
n= −L D R I . The MSE of RZF-DPC can 

be calculated from (4.32) directly. Comparing the MSEs for ZF-DPC and RZF-DPC, we note 

that the MSE of ZF-DPC is independent of the average transmit symbol energy Es in the 

absence of scheduling and ordering of users, while the MSE of RZF-DPC is related to Es. 

Figure 4.7 illustrates an example of the weighted MSE (by1/ ) for ZF-DPC and RZF-DPC 

at P

T

T/N0=15 dB and nt=4 for K=4 users, without scheduling and ordering. The “regulation” 

effect of RZF-DPC can be easily seen from the plot in terms of reduced peak MSEs over the 

200 i.i.d. flat Rayleigh fading blocks.  

 For the RZF-DPC, suboptimal scheduling can be performed in the dual multiaccess 

channel, which is described in the following. From [20-22], we know that subject to the same 
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Figure 4.7. Weighted mean square errors of ZF-DPC and RZF-DPC without scheduling and ordering. 

total transmit power, the same maximum sum rate is achievable in a broadcast channel and 

its dual multiaccess channel. Further, in a multiaccess channel with multiple receive 

antennas, it has been shown in [49] that MMSE successive interference cancellation (SIC) 

achieves the sum capacity. Therefore, we can build our suboptimal downlink scheduler by 

scheduling in the dual multiaccess channel. For the broadcast channel model in (2.11) with 

, , the dual multiaccess channel is defined as [20] 1km = 1,...,k = K

+ W� � , (4.36) 1 2 1 2
1

[ ][ ]
K

H H H H H H H H H
k k K K

k=
= + = +∑Y h x W h h h x x x W H X� � �� � � �" " �

with the composite channel matrix HH the Hermitian of the dual broadcast channel in 

(2.11), and is subject to the same total average transmit power constraint P

H

T. In (4.36), 

matrices , and1 T
k

×∈x� ^ tn T×∈Y� ^ tn T×∈W� ^ are the k-th user’s transmit signal, received 

signal and complex white Gaussian noise of zero mean and unit variance, respectively, over 
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each fading block ofT symbols, and 1tnH
k

×∈h ^ is the channel vector of user k, which has 

zero-mean entries of unit variance. For simplicity, we assume each user is subject to the same 

transmit power constraint, i.e., the power is equally divided among the scheduled users. In 

this case, the signal to noise and interference ratio (SINR) at the kth user is [49] 

TP

 ( ) ( )
1

1
/ /

s

t

n
H H

k T s k n T s j j k
j k

P n P n
−

= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑h I h h h   γ

 
1

1
( / )

s

t

n
H H

k s T n j j k
j k

n P
−

= +

⎛ ⎞
= ⋅ +⎜

⎝ ⎠
∑h I h h ⎟ h  (4.37) 

where sn is the number of scheduled users, which satisfies s tn n≤ . The SINR in (4.37) 

assumes a decoding order of 1, 2,..., sn . To this end, we can schedule the users in the order 

using (4.37), such that the maximum sum rate in the dual multiaccess channel is 

maximized with the equal user power constraint and the fixed total power. At step 1, we 

select the  user which has the maximum  

,..., 2,1sn

-thsn

 H
T k kP h h , 

which is the single-user SINR with a power constraint , and at step n, TP 2,..., sn n= , the 

user is chosen for a maximum  ( 1)sn n− + -th

 , 
1

11

1 ( / )
s s

t

s

n n
H H

k T n j j k
j kk n n

n P
−

= += − +

⎛ ⎞⎛ ⎞
⎜ ⎟+ ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ h I h h h

which is equivalent to maximizing the sum rate with total power constraint equally shared 

by the scheduled users. It should be noted at this point that the equal user power constraint in 

a multiaccess channel does not necessarily mean equal user power allocation in the dual 

broadcast channel. However, we use both in the dual channels to simplify the scheduling and 

TP
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transmission of RZF-DPC, and it turns out that the performance degradation in term of sum 

rate is small, especially with reasonably high average transmit SNR. Table 4.3 gives the 

suboptimal greedy scheduling algorithm for RZF-DPC using the dual multiaccess channel 

with equal user power constraint.  

Table 4.3. Suboptimal greedy scheduler for RZF-DPC 
with equal user power constraints in dual multiaccess channel. 

Step 1: Initialization 
* = ∅S , * 1T =  

Step 2:  
For  to 1 min( , )tn n= K

+

K
min( , ) 1s tn n K n= −  

For  to ( 1min( , )tm n= )n +  

( )* * * *

1min( , )
* *

*
( 1)

/ ,
t

t

n K
H H

s T n mm m j j
j m

n P mβ
−

= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑h I h h h S ∈

1,..., } \

 

End 

( ) * *

1min( , )
*

1
/ ,  {

t

t

n K
H H

k k s T n kj j
j n

n P k Kβ
−

= +

⎛ ⎞
= + ∈⎜ ⎟

⎝ ⎠
∑h I h h h S  

*
*

min( , )
*

{1,..., }\ 1

arg max (1 ) (1 )
tn K

k ik K i n

n β β
∈ = +

= + ∏
S

+  

*

min( , )

(1 )
tn K

i
i n

T β
=

= +∏  

if  *T T>

*T T= ,  * * { }l= ∪S S

else 
1s sn n= −  

go to Step 3 
End 

Step 3: Deliver sn  and mmsesic *
sum 2logR T=
�

. 

 

 The matrix inverse in (4.37) can be calculated using the Sherman-Morrison- 
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Woodbury formula [46], such that at each step  

* * * * * *

1 1min( , ) min( , )

( 1) ( 1)
1 2

( / ) ( / )
t t

t t

n K n K
H H

s T n s T nj j j j n n
j n j n

n P n P H

− −

+ +
= + = +

⎛ ⎞ ⎛
⋅ + = ⋅ + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑I h h I h h h h

⎞
⎟
⎠

 

is updated according to 

 ( )
1 11 1

11

H
H

H

− −− −
−+ = −

+
A vv AA vv A

v A v
,  for 1 1H − ≠ −v A v , 

where and *

min( , )

2
( / )

t

t

n K
H

s T n j j
j n

n P
= +

= ⋅ + ∑A I h *h *( 1)
H

n+
=v h . 

4.4 Scheduling and Reordering 

 The duality between ZF-DPC and V-BLAST allows us to apply the ordering 

criterion of V-BLAST to minimize the total error rate given the selected users from 

ZF-DPC scheduling. We indicate that this reordering is generally not optimal in terms of 

sum rate. However, the loss in sum rate is small as we will show. 

 For the channel model in (2.11) with 1km = , 1,...,k K= , let be the lower 

triangular matrix from the Cholesky factorization of matrix X , and all the other notations are 

as defined before. Table 4.4 gives an efficient suboptimal greedy scheduling algorithm using 

equal power allocation and a minimum-error reordering for ZF-DPC, where the scheduling 

step is the same as that in Table 4.1. After scheduling, a separate reordering is used to 

minimize the total average error rate. For the RZF-DPC, the scheduling in Table 4.3 is used, 

then for the reordering, the pseudoinverse matrixG in Step 2 is replaced with  

ch( )X

 *

1*

o o o | |

| |H H

TP

−
⎛ ⎞

= +⎜
⎝ ⎠

G H H H I�
S

S
⎟ , (4.38) 
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Table 4.4. Suboptimal greedy scheduler for ZF-DPC 
with minimum-error reordering. 

Step 1: Scheduling 
Initialize * = ∅S and * 1T = ; 
For 1n =  to  min( , )tn K

*{1,..., }\
arg max k

k K
l γ

∈
=

S
, where 

( ) 2* *ch ( { }) ( { })H
k nn

k kγ ⎡ ⎤= ⎣ ⎦H H∪ ∪S S ; 

1
*

1

(1 / ) (1 / )
n

T l T m
m

T P n Pγ γ
−

=

= + +∏ n ; 

if  *T T>

*T T= ; *
n lγ γ= ; ; * * { }l= ∪S S

else 
go to Step 2; 

End 
Step 2: Reordering 

Initialize ,*
o ( )=H H S *

o 1T = and = ∅J ; 

For 1n =  to  *| |S

+
o=G H ; 

*

2

2{1,...,| |}\
arg min [ ] j

j
l

∈
= G

S J
; 

( )2* * *
o o 2

1 /(| | [ ] )T lT T P= ⋅ + ⋅ GS ; 

{ }l= ∪J J ; 
Set the lth row of to zero; oH

End 
Step 3: Reverse the element order of and 

reorder the elements of according to ; 
J

*S J

Step 4: Deliver reordered and*S max *
sum 2 ologR T=
�

. 

 

where is the identity matrix of size .  | *|I S | * |S
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 We note that the suboptimal greedy schedulers in Tables 4.1 and 4.3 both adaptively 

adjust the number of admitted users while using equal power allocation. However, for the 

scheduling with reordering, after the best user subset is chosen, users are reordered according 

to an ordering criterion similar to that for V-BLAST to minimize the error rate. Similarly, the 

reordering criterion can be based on either zero-forcing or MMSE interference nulling. 

Nevertheless, unlike V-BLAST where the best stream (the one with the highest 

post-detection SNR) is decoded first, the precoder encodes the best stream last. Therefore, 

the minimum-error ordering for one is opposite the other given that their channel realizations 

are dual to each other [20], [22]. Furthermore, the suboptimal PF scheduling can be used in 

Table 4.4 for resource fairness considerations. In either case with , the total number of 

subset evaluations in scheduling and reordering is upper bounded by 

tK n≥

 
scheduling reordering

[ ( 1) ... ( 1)] [ ( 1) ... 1] ( 1)t t t tK K K n n n K+ − + + − + + + − + + = + ⋅������	�����
 ����	���
 n , (4.31) 

which is still linear in the number of users for a finite number of transmit antennas. It is worth 

noting that the minimum-error reordering usually results in a sum-rate loss as compared to 

the ordering dictated by the suboptimal scheduler. However, as corroborated by the 

simulation in the following, the sum-rate loss is insignificant. 

 We define the sum-rate loss here as the sum-rate loss from that of Sato upper bound 

[26], which is achieved with perfect dirty paper coding in the MIMO broadcast channel. 

Figure 4.8(a) depicts the average sum rate for both Sato upper bound and ZF-DPC using 

equal transmit power and scheduling in Table 4.1 over 10,000 channel realizations for 4tn = . 

The Sato upper bound is computed using the iteration waterfilling algorithm proposed in [50]. 

The average sum-rate loss ( ) vs. the total transmit SNR (R∆ 0/TP N PT= ) is plotted in Figure 

4.8(b) for both scheduling only and scheduling with reordering. The total transmit SNR,  
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Figure 4.8. Average sum rate and sum-rate Loss. 

rather than the ratio of bit energy to noise power spectral density ( 0/bE N ), is used here due 

to the infeasibility for an explicit expression of 0/bE N when using an adaptive number of 

users in this case [51]. We note that for adaptive user scheduling with equal power allocation 
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and no reordering, the average sum-rate loss is very small. When the reordering is imposed, 

the loss is larger but still less than 0.4bps/Hz over a wide range of SNR. Similar results have 

been reported previously that the suboptimal scheduling using optimal power allocation 

suffers insignificant sum-rate loss from the Sato upper bound [44]. Therefore, Figures 4.8(a) 

and (b) expand previous results by indicating that the sum-rate loss from the Sato bound by 

using equal power allocation, an adaptive number of users, and minimum-error-rate 

reordering is also insignificant. 

4.5 Summary 

 Following Costa’s work in dirty paper coding, this chapter showed performance of 

some suboptimal DPC techniques for MIMO systems using various suboptimal scheduling 

algorithms. We first reviewed a suboptimal DPC strategy, named ZF-DPC, which has been 

shown to achieve asymptotic sum-rate optimality at both high and low SNR through 

semi-analytic simulation. The significance of pre-interference cancellation for the spatial 

multiplexing gain at high SNR and the array gain (via coherent MRC combining) at low SNR, 

and that of channel-aware scheduling for the multiuser diversity were highlighted from a 

network point of view. The performance of a suboptimal greedy scheduling algorithm for 

ZF-DPC was provided, and its performance advantage over the V-BLAST scheme was 

shown in a symmetric fading environment. A regularized ZF-DPC was proposed using the 

duality with the MMSE SIC in the dual uplink channel, which also admits a simplified 

suboptimal scheduling in the dual channel space. Finally, a reordering on top of the 

suboptimal scheduling was shown to keep minimal the average error rate, which only incurs 

an insignificant sum-rate loss from the Sato upper bound. 
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Chapter 5 
Tomlinson-Harashima Precoding and Scheduling 

 This chapter introduces Tomlinson-Harashima precoding (THP) in the context of the 

multi-antenna Gaussian broadcast channel. We start with a spatial THP implementation 

proposed previously, and present original performance analysis of THP in a broadcast 

channel in flat Rayleigh fading. Further, the performance results of THP with scheduling are 

presented. The aim is to validate the suboptimal scheduling and reordering algorithms in 

Chapter 4 with a practical precoding solution. 

5.1 Spatial Tomlinson-Harashima (T-H) Precoder 

 The problem with ZF-DPC described in last chapter is that a possibly very high 

transmit power is needed to null out the un-cancelled user interference, particularly when the 

channel matrix is ill-conditioned. For this reason, a universal coding scheme [30] was 

proposed to use a modulo-lattice precoding at the transmitter. This precoding technique built 

on inflated lattices brings us closer to a real system implementation. In fact, a suboptimal 

one-dimensional implementation of modulo-lattice precoding named Tomlinson-Harashima 

precoding (THP) was proposed in [54-56] for intersymbol interference (ISI) cancellation 

about thirty years ago, and it was adopted for DSL systems around twenty years later. 

Recently, THP was applied to multiuser interference cancellation in the context of DSL [39]. 

The application is directly connected to ZF-DPC by using a similar QR-type decomposition, 

and is based on the realization that multiuser interference cancellation is similar to ISI 
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cancellation. In flat fading channels, the application of THP to a MISO (multiple input and 

single output) broadcast channel was shown in [53] as a direct extension of the V-BLAST 

algorithm. The implementation of THP shifts the joint processing to the transmitter and adds 

the following benefits to the system. First, it can provide high spectrally efficient 

transmission free of error propagation, which is inherent with a decision feedback equalizer 

(DFE) structure. Secondly, unlike DFE, THP can be combined nicely with coded modulation 

and the shaping techniques used in DSL applications over a low-dimensional lattice. Finally, 

the transmitter-centric processing greatly reduces the receiver complexity and power 

consumption, which is in particular attractive for downlink transmission.  

5.1.1 Spatial Implementation 

 Figure 5.1 shows a spatial zero-forcing T-H precoding (ZF-THP) system equivalent 

to the model in [53]. The model actually forms a distributed MIMO system with an nt- 

element antenna array at the transmitter, and K receive antennas distributed across K users 

with each user having a single-element antenna. At each time slot, the base station sends 

independent and synchronized data packets to ns users simultaneously, with s tn n≤  

constrained by the nt degrees of freedom at transmitter. Let be the( )H S s tn n× channel 

matrix between the transmit antenna array and the selected sn receive antennas defined by 

set , with its entries being i.i.d. fading coefficients of unit variance. The Hermitian 

matrix

S

( ) ( )H= ⋅A H HS S is almost surely positive definite, and has a unique Cholesky 

factorization as H= ⋅A L L , where the s sn n× lower triangular matrix has real positive 

diagonal entries. The superscript 

L

H denotes conjugate transposition. The transmit 

matrix

tn n× s

)1( ( ) H−= ⋅F L H S has orthonormal columns. The matrix is further decomposed into L
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Figure 5.1. The block diagram of a downlink system with spatial zero-forcing T-H precoding (ZF-THP). 

(
sn= ⋅ +L G B I ) , where G is a diagonal matrix with the main diagonal entries of , ig L

1,..., si = n , the matrix B  is lower triangular with zero main diagonal  

entries, and
snI is the identity matrix of size sn . At the selected receiver inputs, the spatially 

and temporally white complex Gaussian noises of zero mean and unit variance, 

, are added to the signals as shown in Figure 5.1. ,  1,...,in i n=� s

s

 The zero-forcing T-H precoder in Figure 5.1 uses a symmetric vector modulo 

operator[ for data streams, with the modulus vector being set equal to 

the positive Voronoi boundary values [54] of input signal constellations of unit average 

symbol energy, possibly adaptive over each slot. For simplicity, we ignore the modulo loss 

[54] and assume that over each slot, the total transmit power is equally split over the 

scheduled users with . At the scheduled receivers, the moduli

]⋅ M 1[ ,..., ]
s

T
nM M=M

TP

/ ,  1,...,i T sP P n i n= = iM , 

1,..., si = n , of the symmetric modulo operators are weighted by / ,  1,...,T s iP n g i n⋅ = s , 

which are assumed perfectly known from the transmitter. Each receiver simply performs a 

maximum-likelihood detection at its modulo output. In the following analysis, we first set 

s tn n=  for maximum spatial multiplexing gain with ZF-THP. For channel matrix having 

i.i.d. circular symmetric complex Gaussian entries of zero mean and unit variance, Bartlett 

H
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snn�
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decomposition [55] indicates that the elements  are central chi-square random variables 

with , degrees of freedom. 

2
ig

2( 1),  1,...,tn i i n− + = t

t

5.1.2 Achievable Rate 

 It can be shown that through the ZF-THP above, the downlink channels are 

decoupled into nt independently faded channels with SNRs , 

respectively, and the decoupled signals at receive modulo operator outputs are 

2 / ,  1,...,i T i tP g n i nρ = =

 
/

/
T t i i

i T t i i i P n g M
r P n g a n

⋅
⎡ ⎤= ⋅ +⎣ ⎦� � [ /( / )] ,  1,...,

ii i T t i Ma n P n g i n= + =� t , (5.1) 

Following the analysis in [56], it is not hard to derive the achievable rates for the user 

channels in (5.1) as 

 zfthp
2( / ) 2 log (2 )i T t iR P n M= − ( )[ /( / )] ,  1,...,

ii T t i Mh n P n g i n=� t , (5.2) 

in bps/Hz, where  is the differential entropy function [19]. For uniformly distributed 

signals over a square Voronoi region 

( )h ⋅

( , ] ( , ]i i i iM M M M− × −  of a unit second-order moment, 

we have 3 / 2,  1,...,i tM i= = n . Therefore when ignoring modulo loss and using equal 

transmit power allocation, the achievable rates of ZF-THP become 

 ( )zfthp
2 3/ 2

( / ) log 6 [ /( / )] ,  1,..., ,i T t i T t i tR P n h n P n g i n= − =�  (5.3) 

where /( / ),  1,...,i T t in P n g i =� tn , are i.i.d. zero-mean and circular symmetric complex 

Gaussian noise with variance ( )2/t T in P g , the reciprocal of the SNRs at the receive modulo 

inputs. It can be easily shown that at high SNR, (5.3) incurs a rate loss of 0.509 bits per 

complex symbol from that of an AWGN channel, whereas at low SNR, the loss is larger. 

Previous results on DPC indicate that with the knowledge of input SNR, THP can do better at 

low SNR with a noise cooling factor ( / ) /(1 / )T t T tP n P nα = +  [4], [5]. In Figure 5.1, this 
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corresponds to replacing the matrix  with matrixB ( )( / ) /(1 / )T s T sP n P n= +B B� ⋅ , and 

multiplying each receive modulo input with (PT/ns)/(1+PT/ns). Correspondingly, the 

achievable data rates with noise cooling are 

 zfthp
2( / ) log 6i T tR P n = −� ( )3/ 2

2 [ /( / ) (1 ) ] ,  1,...,i T t i ih n P n g x iα α⋅ + − ⋅ =� � tn

tn

, (5.4) 

in bps/Hz, where /(1 ),  1,...,i i i iα ρ ρ= + =� , the variable  is a zero-mean real Gaussian 

random variable of variance 0.5, and 

n

x  is a real random variable uniformly distributed over 

the interval ( 3 / 2, 3 / 2]− . Numerical integration can be used to evaluate the differential 

entropies of modulo random variables in (5.3) and (5.4). Figure 5.2 plots the average user 

achievable rates in (5.3) and (5.4). As we can see in the figure, at high SNR, THP has an SNR 

loss of about 1.53 dB, and noise cooling increases the rate at low SNR. 
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Figure 5.2. User achievable rate of THP. 

 With CSI at the transmitter and noise cooling, the achievable sum rate of THP is  
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 zfthp zfthp
sum

1
( / )

tn

i T t
i

R R P
=

= ∑� � n ( )2 3/ 2
1

log 6 2 [ /( / ) (1 ) ] ,
tn

i T t i i
i

h n P n g xα α
=

⎡ ⎤= − ⋅ + − ⋅⎣ ⎦∑ � � (5.5) 

for equal power allocation across users. For a network with a large number of users so that 

K>nt, the maximum sum rate can be achieved through multiuser selection as  

  (5.6) zfthp-max zfthp
sum summax  R =�

S
R�

over all ordered user subsets with cardinality|S | tn≤S to obtain multiuser diversity gain. For 

comparison, we also give the maximum achievable sum rates of zero-forcing DPC (ZF-DPC) 

and zero-forcing transmit linear beamforming (ZF-LBF) as used in Chapter 4. For ZF-DPC 

with optimal transmit power allocation, 

 zfdpc-max zfdpc
sum 2

1
max  log ( )

tn

i
i

R ξ ρ
+

=

⎡ ⎤= ⋅⎣ ⎦∑
S

, (5.7) 

where , are the channel gains of scheduled users, andzfdpc 2 ,  1,...,i ig i nρ = = t ξ is the 

waterfilling solution to 

 zfdpc

1
1/

tn

i T
i

Pξ ρ
+

=

⎡ ⎤− =⎣ ⎦∑ , 

over each slot, and the operator [ ]x +  is defined as [ ] max( ,0)x x+ = . The maximization in 

(5.7) is over all ordered user subsets with cardinality |S | tn=S . For ZF-LBF with equal 

power allocation, 

 , (5.8) 
| |

zflbf-max zflbf
sum 2

1
max  log (1 )i

i
R ρ

=

= +∑
S

S

where , are the received SNRs of scheduled 

users, and the maximization is over all unordered user subsets with cardinality

( ) ( ) 1zflbf

,
/ / ( ) ( ) ,  1,...,H

i T s
i i

P n i nρ
−⎡ ⎤= ⎢ ⎥⎣ ⎦

H HS S s=

S | | tn≤S . For 

, the total number of unordered subsets is tK n≥
1

C
sn

i
K

i=
∑ , with  being the number of n Cn

m
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combinations out of m. When the channel matrix has i.i.d. circular symmetric complex 

Gaussian entries of zero mean and unit variance, the SNRs

H

zflbf
iρ are weighted central 

chi-square random variables with 2( | | 1)tn − +S degrees of freedom [57]. 

5.2 Multiuser Diversity with Spatial THP 

 We study the impact of channel-aware scheduling on the performance of THP 

without reordering. We first consider the i.i.d. symmetric user channels, and then evaluate 

the system performance in correlated channels. 

5.2.1 Independent User Chanenls 

 We assume that user subset selection is performed by a packet scheduler at the 

transmitter. We call the scheduler which maximizes the sum rate a greedy scheduler whose 

objective is defined as in (5.6), (5.7) or (5.8) for different transmission schemes. The 

greedy scheduler ignores fairness of time-slot allocation to users, thus a proportional fair 

(PF) scheduler was considered for a balanced tradeoff between multiuser diversity and fair 

allocation of time slots [15]. The PF scheduler can be extended for multiuser transmission, 

which assigns the slot  to the user subset satisfying t *S

 *

1

( )arg  max
( )

sn
i

i i

R t
T t=

= ∑
S

S  (5.9) 

among all active users (users requesting for services simultaneously), where ( )iR t  is the 

achievable rate of user  over slot , and  is its average throughput in a past window of 

length  and is updated slot-wise as 

i t ( )iT t

cT
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 . 
*(1 1/ ) ( ) ( ) / ,  

( 1)
(1 1/ ) ( ),           otherwise

c i i c
i

c i

T T t R t T i
T t

T T t
⎧ − +

+ = ⎨
−⎩

S∈

 As stated in Chapter 4, for ZF-THP and ZF-DPC with , a direct 

maximization of the sum rate requires a search over 

tK n≥

P tn
K  total number of subsets for 

scheduling, i.e., the number of nt permutations out of K. This is a large number even for 

moderate values of nt and K. Fortunately, we know from [46] that the computation of gi 

only depends on users ,  j j i≤ , henceforth we can use the suboptimal scheduler as proposed 

in Table 4.2 with maximum spatial multiplexing. At step k, k=1,…,nt, we select the user 

subject to *k

 
*

* *
*

( 1)
*

{1 ,..,( 1) } 1

arg  max ( ) ( )
c

k

i i k k
k k i

k R tµ µ
−

∈ −
=

R t
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ , (5.10) 

where  denotes the complement of set , and { }cA A iµ  are 1 and 1  for the greedy 

and the PF scheduler, respectively. This reduces the total number of subsets over which we 

must search to 

/ ( )iT t

 . (5.11) 
1

1
1

0
C (2 1)

tn

K i t t
i

N n K n
−

−
=

= = − +∑ / 2

For K>>nt, N1 is O(K). This is analogous to the Viterbi algorithm, since the suboptimal 

scheduler approximates the global optimum through a local optimization. This principle of 

optimality was also noted in the V-BLAST algorithm [5], which was proved equivalent to a 

generalized decision feedback equalizer [58]. Figure 5.3 plots the average maximum sum 

rate in bps/Hz for ZF-DPC with optimal power allocation, using both optimal (5.7) and 

suboptimal (5.10) schedulers, for nt=4 and K=16 in i.i.d. flat Rayleigh fading of 5.6 Hz 

Doppler over 2000 time slots of 16.7 ms each. For the PF scheduler, we set Tc=1.67 s. For 

comparison, Figure 5.3 also shows the average total throughput (same as the average sum 
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rate here) with a round-robin (RR) scheduler which assigns time slots to every subset of nt 

users (for a total of C subsets) alternately. It can be seen that the suboptimal scheduler for 

ZF-THP approximates the optimum very closely over a fairly large input SNR range.  

tn
K

 

Figure 5.3. Average maximum sum rate of ZF-DPC for nt=4 and K=16 under different packet scheduling. 
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Figures 5.4 and 5.5 depict the average maximum total throughputs of ZF-DPC,

ZF-THP, and ZF-LBF vs. 0/TP N  for 4tn = and 4 and 16K = , where 0N is the complex noise 

sample variance normaliz . Sy g chann  are assumed for the 

users under scheduling. Two flat fading scenarios are considered: one is Rayleigh with 5.6 

Hz Doppler as used in Figure 5.3; the other is Rician with 1.5 Hz Doppler and a 10 dB Rice 

factor. The time slot width for both cases is set to 16.7 ms. The ZF-DPC with optimal power 

allocation is used as an upper bound to both ZF-THP and ZF-LBF with equal power 

allocations. Throughput with RR scheduling provide baselines for comparisons in these  

ed to 1 mmetric i.i.d. flat fadin els
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Figure 5.4. Average maximum sum rate for 4tn =  in flat Rayleigh fading. 
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figures. Both ZF-DPC and ZF-THP use the suboptimal scheduler in (5.10), whereas ZF-LBF 

uses the extensive scheduler in (5.8). The optimal noise cooling is employed for ZF-THP. 

The simulation runs for 2000 slots for Rayleigh channels and 8000 slots for Rician channels. 

For the PF scheduler, we set Tc=100 slots (about 1.67s). 

 As can be seen from these plots, on the average, more than 16 bps/Hz spectral 

efficiency is achievable with both ZF-LBF and ZF-THP under PF scheduling at 

0/ 15TP N = dB and 16K = . Further, for 16K = , the average total throughputs benefit from 

the multiuser diversity through the channel-aware scheduling (greedy and PF schedulers) as 

compared to the non-channel- aware scheduling (RR scheduler). We note that the multiuser 

diversity gain is more pronounced in channels with large fading variations in comparing 

parts (b) in Figures 5.4 and 5.5, and at high SNR, the ZF-LBF enjoys about 1 bps/Hz higher 

average spectral efficiency at 16K = . In all cases, the rate deficiency of ZF-THP, even with 

optimal noise cooling, is apparent at low SNR due to the shaping loss. However, at moderate 

to high SNR, ZF-THP is a competitive alternative to ZF-LBF, especially since the latter 

normally requires a large transmit peak-to-rms ratio and an extensive user subset search. The 

advantage of ZF-THP over ZF-LBF becomes more apparent with K=nt at high SNR. Finally, 

it should be mentioned that in addition to providing spatial multiplexing, multiple transmit 

antennas also help to boost the multiuser diversity gain even in a slow fading environment 

with limited channel variations as shown in Figure 5.5 for ZF-THP and Figure 4.5(b) for 

ZF-DPC. This is in contrast to the dumb antennas proposed in [33] without full CSI at the 

transmitter. 

5.2.2 Correlated User Channels 

 While an i.i.d. channel assumption is commonly used in analysis for insight, in 

reality measurem it and receive coents indicate the presence of transm rrelation when multi- 
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Figure 5.5. Average maximum sum rate for 4nt = in flat Rician fading. 
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element antennas are used. This is particularly true in a cellular system, where the base 

station is usually elevated and unobstructed by local scatterers. We assume that each mobile 

user also uses a multielement antenna in a flat Rayleigh fading environment, and use the 

channel model  

 H
r t=H R HR� , (5.12) 

where H� is an s tn n× circular symmetric complex Gaussian matrix with 

vec( ) (0, )
t sn n⊗H I I� ∼ CN . The covariance matrix at the transmit antenna array is defined as 

( )H T
t t tR R�R , and the covariance matrix at the selected ns antennas as H

r r rR R�R , both 

with unit diagonal components. It should be noted here that the i.i.d. channel analysis is 

applicable to a multi-element receiver if the scheduling is over independent antenna elements 

rather than users, and the scheduling algorithm also works over correlated antennas. The 

channel model in (5.12) has been used extensively in [59] and [60] for antenna correlation 

under the assumption that the components of channel matrix H are jointly Gaussian.  

•  Achievable Rate at High SNR 

 Applying a QR-type decomposition on the correlated channel (similar to the 

analysis of the i.i.d. channel), we have the determinant of 

H
H=A HH   

 2

1

det( )
sn

k
k

g
=

=∏A , (5.13) 

where unlike in i.i.d. channels, the channel gains , are no longer independent 

chi-square random variables. Instead, we have from (5.12) that  

 tR , (5.14) 

where are independent chi-square random variables with n k− +  degrees of 

2 ,  1,...,k sg k n=  

2 2

1 1

det( ) det( ) det( ) det( ) det( )
s sn n

H
k r t r k

k k

g g
= =

= ⋅ ⋅ = ⋅ ⋅∏ ∏HH� � �R R R

2
kg� 2( 1)t
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freedom, 1,..., sk n= , and with the cdf and pdf specified in (5.15) and (5.16), respectively,  

 
0

( ) 1 ,  1,...,
!

tn k i
x

k s
i

F x e k n
i

−
−

=

= − =∑ , (5.15) 

and  

x

 ( ) ,  1,...,
( )!t

tn k
x

k s
xf x e k n
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Therefore, the decoupled fading gains are scaled by the determinants of the channel 

covariance m envalues of these covariance matrices determine the total spatial 

multiplex deno

rank of  and , respectively. From (5.2), at high SNR, the total achievable rate of 

n k−

in and the diversity gain over each antenna branch. Let r  and te the 

t r

ZF-THP can be approximated by  
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eπ

where min( , )s t rr r r� . If we assume equal power allocation with s/ ,  1,...,k sP P r k r= = , and 

2M -QAM signaling to all transmit antenna chains, we have  

 zfthp 2
sum 2 2 2 2

6log ( ) log ( ) log (
s t

1 1 1

) log ( )
rr r r

s k i
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λ λ
π
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where is the -th positive eigenvalue of  F

he product of 

i t
i=

( )iλ
+ R i R . or any nonnegative definite matrix, such 

as tR and rR , its determinant is no greater than t its main diagonal elements. 

Therefore, we have 
tr

λ +
2

1
log ( ) 0≤∑ R  and 

rr

λ +
2

1

log ( ) 0j r
j=

≤∑ R .  

 Compared with the i.i.d. channel case, (5.18) indicates that at high SNR, the sum rate 

suffers a loss from the product decrease of positive eigenvalues of the channel covariance 
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matrices. tem with the number of active users K>nFor a sys  

covariance matrix determines the total maximum spatial multiplexing gain, whereas the 

rank of each receive covariance matrix sets its maximum spatial multiplexing gain. The 

able rates of users are affected by the distribution of these eigenvalues, which depends 

on factors such as local scattering and antenna array geometry. It is worth noting here that 

while the average achievable sum rate is reduced, the individual achievable user data rates do 

probably always true since the correlation is most likely at transmitter only), the channel 

correlation at least increases one user’s achievable rate over each coherence interval in the 

high SNR region, since sn
k kk k

gλ
= =

=∏ ∏  for a nonsingular covariance matrix. 

•  A or Rate 

In Appendix D ar

dist

t, the rank of the transmit

tR

achiev

not necessarily decrease over each coherence interval. In fact, since the maximum 

eigenvalue of any Hermitian matrix is no less than the maximum diagonal element, when 

there exists only transmit or receive antenna correlation (practically speaking, this is 

sn 2
1 1

verage Symbol Err

 , it is proved that when there is only transmit correlation, the m ginal 

ributions of channel gains 2
kg in (5.13) have ( 1)tn k− − , 1,..., sk n= , degrees of freedom. 

Therefore, in terms of total average error performance, channel correlation introduces no 

diversity loss, but only an average power loss, or less coding gain, without multiuser 

ling.  th

ivers, since this is m

temporarily ignore the impact of scheduling and reordering. As an example, we consider a 

atrix given by,  
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schedu In the following, we focus on e transmit correlation for single-antenna 

rece ore typical in a cellular scenario with distributed users. We 

transmit covariance m
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which is generated using the GWSSUS model [61], with Gaussian angle-of-departure (AOD) 

distribution over a linear 4-element transmit antenna array. We assume a carrier frequency of 

2GHz, and an array element spacing of 5 times the wavelength, which is about 0.75m. The 

mean AOD is assumed 0.5654 in radians (about 32 degrees), and the rms angle spread is 

0.0349 radians, which is about 2 degrees. The covariance matrix (5.19) has all real positive 

eigenvalues [1.98,1.44,0.50,0.09]T
tλ = . Figure 5.6 plots the distributions of the equivalent 

orthogonal channel power gains 2 ,  1,...,k sg k n= , with the transmit covariance specified in 

(5.19). The statistics were collected over more than 10,000 channel realizations at a total 

average transmit SNR of 6 dB.  
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Figure 5.6. CDF of channel power gains at 0/ 6TP N = dB. From left to right are for

The channel gain distributions in i.i.d. flat Rayleigh fading are also plotted for comparison. 

Figure 5.6 reveals that there is an average power loss over each branch.  

 Figure 5.7 shows the simulated SER with transmit correlation over 10,000 channel 
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realizations. Again for comparison, Figure 5.7 also plots the average SER in i.i.d. channels  

and that for an AWGN channel. The scheduling only is used in these simulations. Each 

transmit antenna is allocated the same average transmit power PT/nt as before. As can be seen 

from the SER curves, the total average SER suffers no diversity loss, but only an average 

power loss. For the transmit correlation in (5.19), this loss decreases from about 5 dB with 4 

users to about 3 dB with 32 users.  

T

dBW (or PT/N0=16 dB for unit noise variance) for 16-QAM signals for each user. When ns=1, 

the t els can statistics [32] as 
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Figure 5.7. SER of 16-QAM transmission for nt=ns=4 with transmit correlation in (5.19). 

 Figure 5.8 plots the total average SER vs. the number of users in both i.i.d. flat 

Rayleigh fading and correlated fading of (5.19). The total transmit power is fixed at P =16 

heoretical SER with correlated chann be calculated from order 
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Figure 5.8. SER for 16-QAM at nt=4 and ns=1,2,3,4. Solid curves: i.i.d. flat Rayleigh fading; Dash-dotted 
curves: flat Rayleigh fading with transmit correlation in (5.19). 

where ( )sP ⋅ is the uncoded SER of each user in the AWGN channel with the same modulation, 

and sγ is the average transmit symbol energy to noise power ratio . The function0/sE N ( )cf γ  

is the pdf of the channel gain and is defined as (see Appendix D) 
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−∏� for the distinct eigenvalues iλ of a non-singular transmit 

cova ari nce matrix, and ( )cF γ is the corresponding cdf. It can be seen from Figure 5.8 that as 

ns decreases, the negative impact of transmit correlation on the total average SER decreases. 

When ns=1, we note that there is actually SER improvement with transmit correlation at a 

sufficiently large number of users. This can be explained by the fact that as the multiuser 

diversity produces a diminishing return at an increasing number of users, the positive effect 
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of antenna correlation on transmit beamforming becomes apparent. However, this positive 

effect of transmit correlation on the transmit beamforming diminishes at high SNR as shown 

Figure 5.9. Theoretical SER for 16-QAM at

in Figure 5.9. 

 In the above, we have assumed a fixed channel covariance variance. It should be 

noted that while the CSI is estimated over each coherence interval, the covariance matrix can 

be updated over a relatively longer interval. This is because channel covariance statistics 

generally depend on large-scale scatterers and the distance between the transmitter and 

receiver, and vary at a larger time-scale than small-scale channel fading. We also note that 

the channel model (5.12) conveniently decouples the transmit and receive antenna 
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distribution of rR , the user can feed back the channel estimates corresponding to the best 

channels estimated at its receive antennas. In doing this, the receiver uses an eigenvalue 

threshold based on the number of active users. If the receive covariance matrices has one 

dominant eigenvalue, the receiver only needs to send the best channel estimate to the 

transmitter. 

5.3 Scheduling and Reordering for THP 

 We now evaluate the performance of THP with the suboptimal adaptive scheduling 

and reordering proposed in Section 4.4. In the following, we shift our focus from the average 

sum-rate loss to the average error-rate improvement. Figures 5.10(a) and (b) present the 

simulation results on the average error rate in i.i.d. flat Rayleigh fading over 10,000 channel 

realizations. The number of transmit antennas is set to nt

used at each user. Both ZF-THP and RZF-THP are simulated using 16QAM signals for each 

user. For the average block error rate (BLER), each space-time block has 4 100× symbols.  

 We note from these plots that the multiuser diversity manifests itself in increasing 

error-rate slopes as K increases. In Figure 5.10(a), with scheduling only, the regularized 

interference nulling improves SER by about 8dB, 3dB, and 2dB, respectively, for K=4, 8, 

and 16, at an average uncoded SER of 10-3, as compared with the zero-forcing interference 

nulling. For the scheduled users, reordering algorithms can improve the error rate over 

scheduling only by about 10dB, 4dB, and 2dB for K=4, 8, and 16, respectively, at the same 

SER. However, with reordering imposed, the improvement from regularization (RZF vs. ZF) 

is barely noticeable for the case of K=4 and increases with SNR. As K is fixed, reordering 

only improves the average SER by about 4dB, 1dB, and 0dB in each case above, with almost 

=4 and a single receive antenna is 

no tiuse ersit d.  improvement in the case of large mul r div y gain over the SNR range simulate
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Figure 5.10. Average error rate of THP. Solid curves: scheduling and reordering; dashe : scheduling d curves
only. 

Therefore, to a large extent, a large multiuser diversity gain can compensate for the poor 

error-rate performance of zero-forcing interference nulling, even at relatively low SNR as 

shown in Figure 5.10. Similar observations can be made from the BLER plot. Simulations 

show that similar results also hold for larger nt. 
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5.4 Summary 

 This chapter presents a practical precoding scheme built on the spatial 

Tomlinson-Harashima precoding. This is a one-dimensional suboptimal implementation of 

modulo-lattice precoding, provided that perfect user SNR is known at each scheduled 

receiver. Unlike the ZF-LBF solution, ZF-THP has a restricted average transmit power. A 

shaping loss of 1.53 dB has been identified as the only SNR loss of THP from an AWGN 

channel at high SNR. In the low SNR region, however, the receiver modulo operation incurs 

a much larger shaping loss, which is tied to the causal interference cancellation of THP based 

on a one-dimensional lattice. To recover the shaping loss, non-causal side information must 

be used to perform the modulo operation on a high-dimensional lattice, which may lead to 

high latency and complexity. Nonetheless, it turns out that in a large multiuser data network, 

a gain from multiuser diversity can be obtained by leveraging the user subset selection. With 

a greedy scheduler to maximize the instantaneous total throughput, the error performance 

analysis at high SNR substantiates a dramatic multiuser diversity gain, even for a modest 

number of users in an i.i.d. flat fading environment. Performance in correlated fading 

indicates that there is a power loss associated with the reduction in the product of the positive 

eigenvalues of the channel covariance matrices at both the transmitter and the receivers. 

Simulations of suboptimal scheduling with reordering reveal significant average error-rate 

improvement over a wide range of SNR. 
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Chapter 6 
Precoding and Scheduling for OFDM Systems 

 The T-H precoding and scheduling in the previous chapter can be easily extended to 

an OFDM system in frequency-selective fading. For the resulting THP-OFDM system, a 

more significant problem is the high peak-to-average power ratio (PAR), due to the 

multiplexing in both spatial and frequency domains. It turns out that this high PAR can be 

mitigated by a generalization of T-H precoding on a per-tone basis, which retains the same 

rate and error performance of THP. In this chapter, we propose such a nonlinear precoder 

with both low transmit PAR and low average transmit power for a distributed MIMO-OFDM 

system. System performance under suboptimal scheduling is also presented. 

6.1  MIMO Precoding for OFDM Systems 

 In a rich-scattering environment, multiple transmit and receive antennas can be used 

to form MIMO channels to increase the link capacity by a factor equal to the minimum 

number of transmit and receive antennas [2], [3]. In Chapter 2, we have seen the same 

conclusion holds for the sum capacity in a multi-antenna broadcast channel with distributed 

receive antennas. However, for wideband transmission in time delay spread environments, 

space-time processing must be used to mitigate inter-symbol interference (ISI). The 

complexity of the space-time processing increases with the bandwidth, which limits the 

supportable data rate of single-carrier solutions. In this case, the use of orthogonal frequency 

division multiplexing (OFDM) [62] with sufficiently long symbol periods solves this 
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problem. In addition, OFDM inherently provides frequency diversity over sub-channels (or 

tones), which offers an opportunity for both interference averaging and interference 

avoidance in the frequency domain.  

 In this chapter, we consider an OFDM system using MIMO precoding and 

scheduling. With transmitter knowledge of the channel states, bit and power loading can also 

be performed across OFDM tones, in addition to channel-aware scheduling over each tone, 

to optimize system throughput or performance. However, our focus here is to combine THP 

with OFDM in a broadcast channel and to use adaptive scheduling over individual tones, 

rather than power and bit loading across tones. More importantly, we solve a pronounced 

engineering problem with THP-OFDM (i.e., PAR problem) by using generalized T-H 

precoding. In the following, we first give a brief review of MIMO-OFDM systems and the 

associated channel statistics. 

6.1.1 Review of MIMO-OFDM systems 

A baseband and discrete-time MIMO-OFDM system model is shown in Figure 6.1. 

The figure depicts a single point-to-point MIMO link using nt transmit antennas and nr 

receive antennas using nc tones. 

 In Figure 6.1, the user signals pass through IFFT, parallel-to-serial (P/S) conversion, 

and cyclic prefix insertion (+CP) at the transmitter side, and the corresponding inverse 

processing at the receiver. The operations of CP insertion and removal make the effective 

channel responses into circulant matrices as indicated in Figure 6.1, which can be diagonized 

by normalized (unitary) IFFT and FFT matrices [63]. Therefore, at tone p, an equivalent 

signal model can be established as [60], [63] 

ˆ p p p pw
0

( ) exp{ 2 / }
L

l c= +x H x
l

t j lp nπ
=

⎛ ⎞= −⎜
⎝ ⎠
∑H 1,..., cp np p+⎟x w , =  (6.1) 
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Figure 6.1. A MIMO-OFDM system block diagram. 
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variation. The AWGN samples wp, p=1,…,nc, are assumed circularly symmetric complex 

Gaussian with zero mean and unit variance, and are statistically independent with respect to 

space, time, and frequency. The model (6.1) presupposes no inter-carrier interference. 

 The signal model in (6.1) confirms that MIMO-OFDM can provide multiplexing in 

both frequency and spatial domains, by generating parallel space-frequency pipes Hp, 

p=1,…,nc. Assuming ideal carrier synchronization, timing, and perfect symbol-rate sampling, 
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and what remain to be separated are the spatially multiplexed streams in the spatial domain 
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various roles of antennas. For example, [68-74] studied point-to-point MIMO-OFDM 

systems, and [75-80] investigated multiuser MIMO-OFDM networks. Two good tutorials on 

MIMO-OFDM systems are [77]-[78]. 

 The focus of this chapter is to extend the preceding T-H precoding results from 

Chapter 5 to an OFDM system on a per-tone basis. A practical advantage of OFDM is its 

ability to rapidly measure interference or path loss parameters in parallel on all candidate 

channels [79], which makes channel-aware scheduling and channel-dependent precoding 

more affordable. As we will see below, in a MISO broadcast channel, a generalized T-H 

precoder with scheduling remains an attractive suboptimal solution in terms of the 

achievable sum rate over all tones. 

6.1.2 Generalized T-H Precoding 

 We now extend the THP discussed in Chapter 5 to a MISO-OFDM broadcast channel 

in frequency-selective fading. Figure 6.2(a) depicts an OFDM downlink system using 

MIMO precoding. The model in Figure 6.2(a) is similar to the multiuser precoding system in 

[39] except that it is for a downlink OFDM wireless system using generalized nonlinear 

precoding. The transmitter has an nt-element antenna array and the K receivers have a 

single-element antenna each. At each OFDM space-time block, the base station sends 

independent and synchronized data packets to np users simultaneously over tone p, p=1,…,nc, 

with nc being the total number of tones, and np≤nt being constrained by the nt degrees of 

freedom at transmitter on each tone. At the receiver inputs, the spatially and temporally white 

complex Gaussian noise samples ,kn� 1,...,k K= , of zero mean and unit variance are added to 

the user signals. 

The corresponding precoder and decoders over tone p are illustrated in Figure 6.2(b). 

The precoding sequence is a modulo vector sequence with ( ) ( )
1[ ,..., ]

p

p p
p d dd � T

n
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1n  

(a) System block diagram. 

(b) Nonlinear precoder and decoder over tone p. 

Figure 6.2 OFDM downlink transmission using multiuser precoding. 
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entries. Similar to a single-carrier system, the matrix is decomposed into , 

where is a diagonal matrix with the main diagonal entries of , , and the 

matrix is lower triangular with unit main diagonal entries. The

pL p p= ⋅L G B p

n

p

pG ( )p
ig pL 1,..., pi =

pB tn n× transmission matrix 

1( )H
p p p

−= ⋅F L H  has orthonormal columns. Hence over each tone, the precoder in Figure 

6.2 (b) is a zero-forcing nonlinear precoder since the zero-forcing criterion is used to null out 

the interference to user i from users j , for j i>  and , 1,..., pi j n= . Similarly, the regularized 

zero-forcing precoder as proposed in Chapter 5 can be used. It is worth noting that although 

the precoder has a linear form, it is nonlinear due to the nonlinear determination of the 

precoding sequence. At the decoder, a symmetric modulo operator ( ) ( ) ( ) ( )p p p
i i iP g M

f ⋅ is used for 

the data stream to user i over tone p , 1,..., pi n= and 1,..., cp n= , where the modulo function is 

defined as [39] 

 ( ) 2 ( ) /(2 )yf x x y x y y− +⎢ ⎥⎣ ⎦�  (6.2) 

for each real component of each signal. The modulus is set to the positive symmetric 

Voronoi boundary value of input signal and is weighed by the transmitter and 

channel gains, which are assumed known from the transmitter perfectly over each fading 

block. The user data are assumed to have unit average symbol energy and possibly 

modulated adaptively over each OFDM block. For simplicity, we also assume that over 

each OFDM space-time block, the total transmit power is equally split across tones and 

users such that , i n

( )p
iM ( )p

ia

( )p
ia

TP

( ) /( )p
i T p cP P n n= 1,..., p= and 1,..., cp n= . Each receiver simply performs a 

maximum-likelihood detection at its modulo output. 

 Assuming that the cyclic prefix (CP) of the OFDM system is sufficiently long so that 

it is no less than the maximum possible delay spread of the user channel matrices, and that 

the IFFT blocks of all users are perfectly synchronized, then similar to (5.1), we have the 

received signal at the modulo output for user i at tone p as  
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 ( )( ) ( )
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p p p
T p c i i iP n n g M
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 ( )( )
( ) ( ) ( )/( /( ) )p

i

p p p
i i T p c iM

f a w P n n g= + , 1,..., , 1,...,pi n p nc= = ,  (6.3) 

where are the equivalent complex Gaussian white noise samples of zero 

mean and unit variance for tone p at each user. Therefore, the receive modulo operation 

makes the precoding sequence transparent to the receivers. The precoder reduces to THP 

when the precoding sequence is chosen to force into the Voronoi region of the input 

signal constellation, hence it is a generalization of THP and retains the same achievable sum 

rate and error rate of THP. We first point out the high PAR problem of THP in the following. 

( ) ( )
1[ ,..., ]

p

p
p w w=w p

n

p
if

c F 1,..., p= n

pd

pd pc

 A prominent feature of THP is that when the input signals are independent symbols 

with equal probability, the components of tend to be uniformly distributed over the 

Voronoi regions of the signal space and are independent of each other. For a complex 

matrix as described above, this can be interpreted as the components of being mutually 

independent and each statistically approximates a continuous uniform random variable over 

the Voronoi region. Therefore, the transmission filter outputs at tone p, 

pa

pc

B pc

 , (6.4) ( ) ( ) 1 ( ) ( )
1

1
[ ,..., ] ( )

p

t i

n
p p p

p n p p p p p p
i

x x c−

=

= ⋅ − = ⋅ =∑x F B a d F c�

have component distributions that approximate the convolutions of uniform random 

variables , i n ,( )[ ]p
i p ji 1,..., tj = , where , and . 

Over each OFDM block, the PAR of THP at tone p is then 

( ) ( )
1[ ,..., ]

p

p p
p nc cc � T ( ) ( )

1[ ,..., ]
p

p p
p nF f f�

 
2
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p c c
≤ ≤

= =

⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑cc
F F , 
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2

2( ) ( )

1 1 1

max max [ ] / | [ ] | / 3
p p

t p

n n
p p

i p ji i p jij n i i

c M
≤ ≤

= =

⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑c
F F  (6.5) 
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where denotes the expectation over . Using the Cauchy-Schwarz inequality, we have  
p

E [ ]⋅c pc

 ( )
2

2( ) ( )
THP 1 1 1

PAR ( ) max | [ ] | / | [ ] | / 3
p p

t

n n
p p

i p ji i p jij n i i

p M M
≤ ≤

= =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪≤ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑F F  (6.6) 

for the peak-power maximizing . Assuming all the streams over 

tone use the same modulation with square constellation, we have , 

( ) ( )[ ] / | [ ]p p H
i i p ji pc M= F F |ji

p ( ) ( )p p
iM M= 1,..., pi n= , 

and 

  
2

2
THP 1 1 1

PAR ( ) max 3 | [ ] | / | [ ] |
p p

t

n n

p ji p jij n i i

p
≤ ≤

= =

⎡ ⎤
= ⋅ ⎢ ⎥

⎣ ⎦
∑ ∑F F

 
1

1 1 1

max 3 1 | [ ] | | [ ] |
p p

t

n n

p jm p jnj n m n m

−

≤ ≤
= = +

⎡ ⎤
= ⋅ + ⋅⎢ ⎥

⎣ ⎦
∑ ∑ F F , 1,..., cp n= . (6.7) 

Equation (6.7) indicates that over each tone, the PAR of THP increases with the number of 

streams and can have a quite high PAR even for moderate . When , the PAR 

reduces to that of , which is 3 for continuous and uniformly distributed components 

over the square Voronoi region . For an OFDM system, 

the transmit PAR is further increased with IFFT processing in a way similar to the 

transmission matrix processing above and increases with . In the long run, the system PAR 

is contingent on the statistics of transmission matrices at all tones. We note in passing that for 

square signals with equal symbol probabilities, the PAR is  

pn pn 1pn =

pc

( )p
ic ( ) ( ) ( ) ( )[ , ) [ ,p p p p

i i i iM M M M− × − )

cn

2 -QAMM

 2 -QAM
PAR 3( 1) /( 1)

M
M M= − + , 

which is strictly less than 3 for 1M >  and approaches 3 as M increases. 

6.2 Complex Sphere Precoding for OFDM Systems 

 The main technical advantages of THP in [39] and [53] are its simplicity and the low 

average transmit power increase (modulo loss [54]) due to precoding. The high PAR problem 
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with THP, however, motivates us to search for better precoding techniques with lower PAR, 

but which still retain the low modulo loss. In other words, we wish to decrease the PAR 

without increase the average power. Observing that these criteria can be met by choosing the 

precoding sequence dp in Figure 6.2(b) appropriately, we perform a comprehensive and 

efficient lattice search for dp over each tone using a modified complex version of the 

Fincke-Pohst algorithm [80], [81]. We name the resulting precoder a complex sphere 

precoder (CSP) since the search is within a lattice sphere subject to a total transmit power 

constraint. We start this section with a description of Fincke-Pohst algorithm over a single 

tone, followed by its application to PAR reduction for an OFDM system using MIMO 

precoding. 

6.2.1 Complex Fincke-Pohst Algorithm 

 The Fincke-Pohst algorithm was used as a sphere decoder to compute 

maximum-likelihood symbol estimates of space-time signals in a multi-antenna system [82], 

where it was shown that the sphere decoder has a comparable complexity to V-BLAST 

processing at high SNR. In [81], a fast complex version of Fincke-Pohst algorithm was 

proposed to decode M-PSK and M-QAM signals, and this was used for lattice encoding to 

reduce the transmit power in a multiuser MIMO system using channel inversion [83]. We 

extend the results in [81] and [83] to the nonlinear precoding in Figure 6.2(b) and evaluate 

both the PAR and the average transmit power of the system. 

 Suppose the transmit power constraint over the p-th tone is , we have ( )pP

  1( ) ( ) ( )H H H
p p p p p p p p P− −= − − ≤x x a d B B a d p

P

 (6.8) 

with the total transmit power subject to ( )
1

cn p
Tp

P
=

≤∑ . The objective is to search for the 

optimum using some criterion over an npd� p-dimensional complex lattice subject to the power 

constraint (6.8) at tone p. Figure 6.3 depicts a modulo lattice using 16-QAM signals for each 

component of , which differs from a conventional lattice decoder in that it contains a 

potentially much larger number of lattice points (check points only shown in 3 squares)  

pd�
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Figure 6.3. Lattice for 16-QAM over tone . p

under the constraint in (6.8), rather than confined to a fixed constellation. A direct exhaustive 

search over this lattice has to examine a number of complex candidate points, 

which increases exponentially with . Within the complex lattice boundary of fixed , 

an exhaustive search still has to evaluate a number of points exponential in , which can be 

very computationally intensive even for a small value of n . The Fincke-Pohst algorithm, 

however, avoids the direct search by rewriting (6.8) as  

-dimensionalpn

( )pP ( )pP

pn

p

 
2

1
( ) ( ) 1 ( ) ( ) ( )

1 1
[ ] ( )

pn i
p p p p

i i p ij j j
i j

a d a d P
−

−

= =

− + − ≤∑ ∑ B p , (6.9) 

where we have used lower triangular matrix 1
p
−B with unit diagonal elements 

, . Equation (6.9) makes possible a successive calculation 

of from to for each candidate point , and obtains a complexity polynomial 

in provided that the lengths of the columns of stay bounded [80].  

akes possible a successive calculation 

of from to for each candidate point , and obtains a complexity polynomial 

in provided that the lengths of the columns of stay bounded [80].  

1[ ] [ ] 1p ii p ii
− = =B B 1,..., pi n=

 For the square-QAM based lattice in Figure 6.3, we note that the complex lattice 

( )p
id 1i = pn pd

pn pB

 For the square-QAM based lattice in Figure 6.3, we note that the complex lattice 

( )p
id 1i = pn pd

pn pB



Chapter 6. MIMO Precoding and Scheduling for OFDM Systems   115 

points can be identified with concentric circles, with four points on each circle indexed with 

a unique pair of radius and phase offset. The four points on each circle are uniformly spaced 

with an angular spacing of / 2π . Therefore, we can perform the Fincke-Pohst lattice search 

on these concentric circles each with a fixed phase offset. For example, the four points 

labeled A, B, C, and D in Figure 6.3 are identified with a (scaled) radius of8 5 and a phase 

offset of 1tan (1/ 2)− . The phases for the four points are therefore 1tan (1/ 2) / 2m π− ⋅ , m=0, 

1, 2, 3. Using the complex version Fincke-Pohst algorithm for i= ) 

 ( ) ( ) 2 ( )
1 1| |p p pa d P− ≤ . 

+

1, we have from (6.9

Let = , with( ) ( )
1

p pPΓ , ( ) ( )
1| |p p

ar a= , ( ) ( )
1( )p p

a aθ =( , ( ) ( )
1| |p p

dr d= , ( ) ( )
1( )p p

d dθ =( 0 ( ) 2π≤ ⋅ <( , 

define )/(2 )p p p p
a d i a dr r r rη + −Γ� , we can solve for the and (( ) p  magnitude values of 

( )
1

pd as 

 

 ( )2 ( )2 ( ) ( )

( ) ( )0 p p
d ir r≤ ≤ Γ + a , (6.10) 

and the phases of by following [81] ( )
1

pd

( ) 1 ( )cos (rθπ − ( ) 1 ( )
( ) ( ) ( )) cos ( )( ) ( )

2 / 2 2 / 2

p p p p
p p pa d a d

d d d
rr rθ η θ η θπθ θ θ

π π

−⎡ ⎤ ⎢ ⎥+ −
+ ≤ ≤ +

− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦

++ +  

  (6.11) 

+

for 1 1η− ≤ ≤ at radius ( )p
dr , where ( )( )p

drθ+ is the phase offset at 

radi 1cos ( )us ( )p
dr and 0 π− ≤ ( )p and ( ) 0p

dr ≥ . For the phase 

bounds in (6.11), when

≤ ⋅ . In (6.10), we used P a≥( )
1

p

1η < − , all four points on ( )p
dr hen 1are solutions for ( )

1
pd ; w η > , there 

is no solution for ( )
1

pd at roceed to i=2,…,n( )p
dr . P

 d ir d ,  

 

p d at each step update  

( ) ( )p p=

, an

| |

 ,  ( ) ( )( )p p
d idθ =(

1
( ) ( ) 1 ( ) ( )

1
[ ] (

i
p p p p

a i p ij j j
j

r a a d
−

−

=

= + −∑ B ) ,  
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1
[ ] ( )

i
p p p p p p

i i i i p i j i j
j

a d a d
−

−
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=

Γ = Γ − − + −∑ B , 2,..., pi n= , 

we can solve for the magnitude and phase values of for( )p
id 2 pi n≤ ≤ using (6.10) and (6.11). 

A comprehensive search over the concentric circles satisfying (6.10) at each step provides all 

ed Lattice Search with THP Initialization 

 In the complex Fincke-Pohst algorithm above, we can apply an upper bound on the 

 each tone. This may become 

dp in (6.8).  

6.2.2 Bound

lattice boundary to ensure the search over a confined lattice at

necessary when the lattice boundary of (6.10) is too large. Recall that ( )p
id is an even integer 

multiple of ( )p
iM , we simply use an upper bound on the boundary in (6.10), which is rounded 

to the nearest even integer not greater than the value in (6.10). Therefore, the maximum 

normalized search radius can be upper bounded by  

 ( ){ }( ) ( ) ( ) ( )
max ub( ) min 2 / 2 , ,  1,...,p p p p

i a pL i r L i n⎢ ⎥Γ +

where is an input upper bound on at each step . The specification of can also 

be used as a threshold by a multi-tone scheduler to avoid transmission

ulti-ton

 ex . 

For 

=⎢ ⎥⎣ ⎦
� ,  (6.12) 

( )
ub
pL ( )

max ( )pL i i ( )
ub
pL

 over some tones 

having extremely large ( )
max ( )pL i . The m e scheduling is beyond the scope of this section. 

In the next section, it will be shown that an ( )
ub
pL as large as 100 is sufficient in most cases. 

 The additional constraint on the lattice boundary with an input ( )
ub
pL may exclude the 

THP solution thpd ford . In this case, we can plicitly include thpd by initializingd with thdp p p p
p

p

THP, we have the following equation 

 ( )1 thp 1 thp( ) ( )
p p p p p p pf − −⋅ −  (6.13) = ⋅ −M B a d B a d
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where ( ) ( )
1[ ,..., ]

p

p p T
p nM MM � are the corresponding modulus values from the components 
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 [ ] ( )
i

p i i p ij j p jd a a d
−

−= + −∑ B  

pM
j

f a d
−

−

=

o e thp 0d = , and a successive f pa . Using ( )
p p pf =M a a and thp( ) (

p ppf f+ =M Mx d x , ,1

solutio mponents of thpd through a forward substitution as  

1

p p
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 the remaining p

1
thp ( ) 1 ( ) thp

, ,

 a( )

1
( ) 1 ( ) thp

,
1

[ ] ( )p
i

i
p p

i p ij j j
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− + −⎢ ⎥
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∑ B , 2,..., pi n= . (6.14) 

The complex Fincke-Pohst algorithm with input lattice bounding and THP initialization is 

mmarized in Appendix E at tone

e

 We now apply the modified complex Fincke-Pohst algorithm above to the OFDM 

dp, p=1,…,nc, for both a 

 PA

su p . 

6.2.3 Complex Sphere Precod r (CSP) for OFDM System 

system with precoding. In particular, we are interested in finding the 

low R and a low total average transmit power. For an OFDM system using a complex 

sphere precoder (CSP) over each tone, an optimum solution would require a search over a 

1
-cn

pp
n

=∑ dimensional complex lattice subject to a total transmit power constraint PT, which 

is obviously not practical for a reasonable nc value of tens or hundreds of tones. Therefore, 

m a suboptimal search over each tone and find the best pd� among all the searches. 

We consider a search successively over each tone using one of the following four criteria 

 

we perfor

{ }ˆarg min tr( ) , 1,..., ;H
p q cq n q p= = ≠

d
d Y Y d�
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 (6.15a) 
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≤ ≤
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1
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H
p ij qi n

j n

q n qc≤ ≤
≤ ≤

⎧ ⎫⎪ ⎪= = ≠⎨ ⎬
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d
d Y Y Y d� p  (6.15c)  
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for , where

 (6.15d) 

1,..., cp n= ( )1 u 1[ ,..., ] [ ,..., ]
t

TT H T
n = ⋅Y y y F x x�

cn is an c

IFFT outputs over transmit antennas, with the symbols at the antenna given as 

 ( )[
pc nn

p p p
pa d −= −∑ ∑y f F B , 1,..., tm n

tn n× matrix consisting 

tn cn -thm

( ) ( ) ( ) 1

1 1
m u i i p mi

p i= =

] = , (6.16) 

The matrix is the normalized (unitary) Fourier matrix with its elements defined as 

 

c cn n× uF

{ }u
1[ ] exp 2 ( 1)( 1) /kn c

cn
j k n nπ− − −F � , , 1,..., ck n n= , (6.17) 

and in a column partition. The precoding sequencesd are set to 

 q
q

q p⎧

( )(1)
u u u[ ,..., ]cnHF f f� ˆ

q

thp ,  1,...,q cq p n

,   1,..., 1ˆ = −⎪= ⎨
d

d
�

. (6.18) 

 The minimized metrics in (6.15a) to (6.15d) correspond to (a) the total transmit 

power (min AP), (b) the maximum peak power (min-

transmit power and maximum peak power (min-max AP*PP), and (d) the maximum PAR 

o

= +⎪⎩d

max PP), (c) the product of total 

over each OFDM space-time block (min-max PAR), respectively. The minimization of these 

metrics is performed over each tone sequentially using the algorithm in Appendix E, given 

the precoding sequences over all the other tones. The precoding sequences are initialized 

with the THP solution for each tone. It should be pointed out that each of the sequential 

searches in (6.15a) to (6.15d) uses a natural order of tones form tone 1 to tone cn , and no 

effort was made to search in a specific order. In fact, for a multiuser OFDM system with 

unequal search boundaries at different tones, we can reorder the tones according t   

 ( )ub

1
1 1

1( )
1 1

1 | Re([ ] ) | | Im([ ] ) |

min 1,| Re([ ] ) |,| Im([ ] ) |

p

i

p ij p ijn
jpd

−
− −

=

− −

⎧ ⎫⎡ ⎤

1
1 1

i p ij p ijj i
=

≤ ≤ −

+ +

⎪ ⎪
⎪ ⎪⎩ ⎭

⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬
∑

∑
B B

B B
, 1,..., cp n= , (6.19) 
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and perform the sequential search over tones in an ascending order of (6.19). The in 

(6.19) is an upper bound on

( )
ub

pd

( )
1

pn p
ii

d
=∑ with being normalized by

confined to Voronoi regions at tone

( )p
id ( )p

iM such that ( )pc are i

p . A sequential search in such an order gives the system 

an overall high potential for PAR reduction over tones with large search boundaries. The 

earch ordering wi next

 We reiterate that for the fixed total transmit power, the efficiency of the CSP is 

6.2.4 Average Transmit Power and PAR Comparison 

SP for MIMO precoding in both a 

single-carrier and an OFDM system. Specifically, we show the PAR and the total average 

f a system using the criteria 

performance effect of this s ll be studied in the  section through 

simulation. Finally, we note that the above metrics also hold for single-carrier transmission, 

for which the output matrix Y can be replaced with x , the precoder output over a single 

carrier. In [83], the total transmit power was minimized based on (6.15a) for a single-carrier 

transmission using a multiuser channel inversion, which can be further simplified as shown 

in [80], [84]. 

closely tied to the lattice search boundary value ( )
max ( )pL i over each tone. For a fixed search 

boundary, it has been reported in [81] that the complex Fincke-Pohst algorithm has a 

com lexity roughly cubic inp pn for an pn value less than 10, a dramatic improvement from an 

exhaustive search which is exponential in pn over t Therefore, with a moderate number 

of transmit antennas in an OFDM system, the suboptimal sequential search of CSP over all 

tones in (6.15) has a complex y roug  on the order of 3( )c tO n n . 

 This section demonstrates the performance of C

one p. 

it hly

transmit power of each system using CSP. The performance o

(6.15a)-(6.15d) are contrasted with each other and with the THP system proposed in [39] and 

[53]. Due to the symmetry of systems, we consider the PAR metrics averaged over the 
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multiple transmit antennas and the total transmit power in the following. 

 Figures 6.4 and 6.5 depict the CSP performance for a single carrier in flat fading. The 

channel coefficients over fading blocks are assumed i.i.d. complex circular symmetric 

Gaussian with unit variance.  
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Figure 6.4. Cumulative PAR averaged over 4 transmit antennas for 16-QAM signals. 

 Figure 6.4 shows the average cumulative PAR of CSP and THP for 16-QAM signals

from 4 transmit antennas to 4 fixed users over 10,000 blocks, with 100 symbols over each 

 

block. We note that even over a single carrier in flat fading, THP has an average PAR close to 

9dB. By minimizing transmit power (criterion (6.15a)), the average PAR is still over 8dB. 

When accounting for the peak power constraint in the lattice search, average PAR reduction 

of about 2dB, 1dB, and 4dB are obtained for the criteria (6.15b)-(6.15d), respectively. The 

average transmit power of THP and CSPs using (6.15a)-(6.15d) are, respectively, 6.2dBW, 

6.0dBW, 6.5dBW, 6.2dBW, and 10.0dBW for the inputa of 0dBW. A normalized input upper 
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rovides a good compromise bet

time in this case. We note that a minimized maximum-peak-power based on criterion (6.15b) 

erage PAR of less than 6dB, while it still has an average transm

for 4-QAM and 64-QAM signals. In Figure 6.4, the total transmit power constraint PT in (6.8)
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is specified as the squared radius of an nt-dimensional complex sphere circumscribing about 

the Voronoi region (nt-dimensional complex cube for square QAM signals) of inputs. This is 

the minimum power constraint in the form of (6.8) to preserve the input signals. For 

4-dimensional complex 16-QAM inputs of unit average symbol energy (i.e., 1-Watt average 

power), the minimum PT is 12.8 Watts (11.07dBW).  

Figures 6.5(a) and (b) show the impact of increasing the power constraint PT on PAR 

and average transmit power, respectively, for 4-dimensional complex 16-QAM inputs of unit 

symbol energy. It can be seen that as PT increases, the PAR of (6.15b) increases, but the PAR 

of (6.15d) decreases, both change by 1 dB. However, the 1-dB PAR reduction using (6.15d) 

is accompanied by an approximate 8dB boost in the average transmit power, while the other 

cases have no noticeable change in the average transmit power. The performance using the 

criterion (6.15a) is insensitive to the change in PT, while that using (6.15c) is in-between 

(6.15a) and (6.15b). Based on these observations, in the following we use the minimum 

transmit power constraint PT over each tone for the overall best performance. 

 Figure 6.6 depicts the average cumulative PARs for a MIMO-OFDM system using 

THP and CSP over each tone as illustrated in Figure 6.2. For simplicity, we assume an equal 

transmit power constraint and a maximum number of users over each tone, i.e., ( ) /p
T cP P n=  

and n n=  for 1,...,p n= , where 4n = , 128n = , and 11.07P = dBW. The power delay p t c t c T

profile (PDP) of each user is assumed to have 8 resolvable and uniformly symbol-spaced 

obtained by using the suboptimal sequential single-tone search in Section 6.2.3. In Figure 6.6, 

a reordered sequential tone-search is used in an ascending order of ( )
ub

pd . Both THP and CSP 

using (6.15a) lead to a PAR of close to 12 dB, and CSPs using (6.15b)-(6.14d) lead to a PAR 

paths of exponentially decreasing power  lower than

tap for a unit total pow ompared with Figure 6.4, a much larger PAR reduction has been 

, with each tap being 3.1dB  the previous 

er. C
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Figure 6.6. Average cumulative PAR of CSP in an OFDM system. 

less than 6.5 dB over 10,000 OFDM space-time blocks, more than a 5dB PAR reduction. We 

note that with the suboptimal search, the PARs for (6.15b)-(6.15d) approach each other due 

to a search over a subspace only. The total average transmit power for THP and CSPs using 

(6.15a)-(6.15d) are W. , respectively, 6.2dBW, 6.0dBW, 6.9dBW, 6.7dBW, and 7.2dB

Therefore, compared with a comprehensive search in a single-carrier system, the average 

transmit powers of (6.15b) and (6.15c) are increased slightly, exceeding the minimum power 

by about 0.9dB and 0.7dB, respectively, and the power boost of (6.15d) is mitigated to about 

1.2dB above that of minimum-power case (6.15a). The total average transmit power of THP 

is the same in both systems, about 0.2dB above the minimum power using CSP. Over each 

tone, a lattice bound ( )
ub
pL of 100 is used, and we see that this is sufficient for significant 

performance improvement while still keeping the simulation time reasonable.  

  The CSP with reduced-tone search has also been simulated using the criteria in 
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(6.15a)-(6.15d), where only a fraction of tones with the largest ( )
ub

pd are searched in an 

ascending order of ( )d The corresponding PAR and total average power are shown in 

Figures 6.7(a) and (b) as a function of the number of tones searched for the same

ub
p . 

 scenario as 

ama

oded OFDM 

system on a per-tone basis. For simplicity, we consider the system performance in terms of 

ell setting, where suboptimal 

precoding and scheduling are implemented at the base station. Following the precoding 

Figure 6.6. We note that as the number of searched tones increases, there is no apparent 

change in PAR with minimized transmit power criterion (6.15a), but the PARs of other 

criteria decrease dr tically. Meanwhile, the total average transmit power of (6.15a) 

decreases slightly (about 0.2dB), while those of (6.15b)-(6.15d) increase respectively by 

approximately 0.4 dB, 0.6 dB, and 1.0 dB, as the number of searched tones increases from 1 

to 128. From Figure 6.7(a), we see that for the system under consideration, a sequential CSP 

using (6.15b) over 32 tones with the largest ( )
ub

pd keeps the average PAR below 7dB and an 

average transmit power only about 0.7dB above the minimum power using full-tone 

sequential search. The same experiment has been performed using a natural ordering of tones 

(without reordering), and the result is shown in Figure 6.7(c). We note that compared with 

reordered tones, over 1 dB PAR improvement can be achieved for the cases (6.15b) to (6.15d) 

with reduced tone search, and there is no improvement in the case of (6.15a). No noticeable 

change was observed in the total average transmit power in all cases. Similar performance 

improvement has been observed for user channels of 8 equal-gain multipaths. 

6.3 Suboptimal Scheduling Performance 

We extend the suboptimal scheduling algorithms in Chapter 4 to a prec

achievable sum rate and average error rate in a single c
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Figure 6.7. PAR and average transmit power vs. the number of tones searched. 
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(a) PAR with tone reordering. 

(c) PAR without tone reordering. 
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discussion, the performance is the same for both the simple THP and the more sophisticated 

CSP in an OFDM system. 

6.3.1 Achievable Sum Rate 

 We first present the average achievable sum rate of the system. The OFDM system

under study has the same system parameters as those in the previous section, where an equal 

transmit power constraint is applied to each data tone. According to the 802.11/Hiperlan2

standards, we presuppose that each OFDM block is composed of 64 tones, among which 47 

are for the user data. For simplicity, symmetric user fading channels are assumed, where each 

user channel has 8-path exponential PDP, same as that in the previous section. What differs 

from the previous section lies in the OFDM frame structure. In this section, we assume each 

OFDM frame consists of 47 OFDM blocks1, where each block has 47 tones devoted to user 

data. The central 17 tones are reserved for control and channel estimation over each OFDM 

block. The channel frequency responses over each OFDM frame are assumed static, 

therefore the previous block-wise static fading is extended here to the frame-wise channel 

fading in the frequency domain. As before, the total number of transmit antennas is set to 4 

and each user has a single receive antenna. Figure 6.8 depicts a time-frequency frame of 5 

data tones and 5 blocks used at each transmit antenna.  

 Figure 6.9 illustrates the total average achievable sum rate verses the average per-

tone transmit SNR, PT/N0 , using the suboptimal scheduler algorithm in Table 4.1 and the 

suboptimal scheduling and reordering algorithm in Table 4.3 over each data tone. 

The simulation is over 1000 OFDM frames, or 47,000 OFDM blocks with Ndat=47 

data symbols over each block. For comparison, the average sum rate of the suboptimal 

 

 

 

                                                 
1 The frame structure assumed here is consistent with Chapter 7 for the reason given in Chapter 7. 
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Figure 6.8. OFDM frame structure in the time-frequency domain. 

Figure 6.9. Average sum rate of ZF-DPC in the OFDM system. 

scheduling and reordering under the proportional fair criterion is also plotted. For PF 
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chievable rate of user k on tone p at OFDM block t. The window length is set to 100 

OFDM blocks in M system using 

ZF-DPC, the average sum rate suffers negligible loss from both the minimum-error 

 

 

ng channel, we conclude that 

under the proportional fairness criterion, ZF-DPC using suboptimal scheduling and 

reordering still achieves a significant amount  rate improvement and benefits greatly 

from the multiuser diversity. As revealed in Figure 6.9, with nt=4, a scheduling gain of 

approximately 3 to 4dB can be obtained for 16 users over 4 users at an average sum rate of 

15bps/Hz in all cases simulated, and it reaches about 5dB for 64 users. This scheduling gain 

grows with the ave high SNR values, 

cWa

the simulation. We note from Figure 6.9 that in the OFD

reordering (provided in Chapter 4) and PF scheduling when the number of active users is less 

than the number of data tones. This result holds even though the sum-rate loss due to PF

scheduling increases slightly with the number of users. Nevertheless, as the number of active 

users exceeds the number of data tones, e.g., K=64 for Ndat=47, a noticeable sum-rate loss

(about 1dB in average transmit power at high SNR) can be observed under PF scheduling. 

Comparing Figure 6.9 with Figures 5.4(a) and (b) in a flat fadi

of sum

rage transmit power constraint, and saturates at very 

which confirms our conclusion in Chapter 4 that, at high SNR, the throughput is constrained 

by the maximum degrees of freedom, the number of transmit antennas in this case. 
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6.3.2 Average Error Rate 

 The average SER and BLER of the THP-OFDM system are shown in Figures 6.10(a) 

and (b). The plots are very close to a single-carrier system in flat fading as shown in Figure 

here. Also plotted in the figures are the error 

rates of the ZF-THP using the suboptimal PF scheduler with the minimum-error reordering. 

As can be seen, in all cases, the suboptimal PF scheduler with reordering obtains about the 

er

reover, 

simulation results showed that with the proportional resource fairness, the degradation of 

5.10 except that a different block length is used 

same error-rate slopes as the corresponding suboptimal greedy scheduler with reordering. 

For ZF-THP, a direct comparison of PF and greedy schedulers with reord ing indicates 

about a 0.7dB SNR loss at K=16, and less than 1.5dB SNR loss for K=64, which can be 

interpreted as coding-gain losses. No apparent error-rate difference is observed at K=4. Just 

as with the average sum rate, the impact of multiuser diversity on error rates rapidly saturates 

as the number of users increases. But unlike the sum rate, the minimum-error reordering is 

more beneficial when the number of users is small. The same error rates can be obtained by 

using the complex sphere precoder to reduce the PAR of an OFDM system. 

6.4 Summary 

 This chapter presented a complex sphere precoding algorithm as a generalization of 

T-H precoding. The CSP achieves the same throughput and error performance as THP while 

obtaining low values for average transmit power and transmit PAR. Performance simulations 

of CSP indicate that more than 3dB PAR reduction is possible by using a reordered and 

sequential search over half of the data tones. A direct extension of the previous suboptimal 

scheduling and reordering algorithm is readily available to the OFDM system on a 

per-tonebasis, and similar performance can be obtained as in flat fading channels. Mo
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Figure 6.10. Total average error rate of THP-OFDM. Solid curves: scheduling and reordering; dashed curves: 
scheduling only. 

system performance in terms of total throughout and average error rate is insignificant, a 

result ascribed to the multiplexing in both spatial and frequency domains. 

(b) Average BLER. 
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Chapter 7 
Comparison of Two Design Philosophies for 

Multicell OFDM Systems 

 In a multicell environment where the downlink system performance is limited by 

interference, the design of MAC protocols is essential for an efficient mulituser transmission. 

This chapter investigates the MAC-layer impacts on the system-level performance of an 

OFDM system in a multicell setting, which employs the nonlinear precoding for spatial 

multiplexing as described in the preceding chapters. We compare and contrast the impact of 

interference avoidance by channel-aware scheduling and that of interference averaging from 

orthogonal frequency hopping through simulation. 

7.1 Frequency-Hopped OFDM System (FH-OFDM) 

 We first describe a frequency-hopped OFDM (FH-OFDM) cellular system based on 

time division multiple access (TDMA). A TDMA-based FH-OFDM also provide the 

multiple access basis for both the IEEE802.11a [85] local area network (LAN) standard and 

the IEEE 802.16a [86] metropolitan area network (MAN) standard. For the cellular 

architecture under consideration, a set of orthogonal frequency hopping patterns are adopted 

at different base stations to provide an effect of interference averaging. These mutually 

orthogonal tone hopping patterns at interfering transmitters in fact provide a topology- 

transparent TDMA scheduling design, as proposed originally for multihop packet radio 

networks with unicast traffic in [87] and later were extended for broadcast traffic in [88]. 
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 The same frame structure as in Figure 6.8 is assumed for the OFDM system in this 

chapter. In a multicell system, the basic idea is that we hop the tones at neighboring 

transmitters such that each transmitter sees co-channel interference from each neighboring 

transmitter exactly once over an OFDM frame and the interference is widely spread over 

tones, an effect called interference diversity [7]. To ensure the minimum time-and-tone 

overlap among neighboring transmitters, we use the mutually orthogonal latin squares 

(MOLS) [89] as the periodic hopping patterns for the transmitters, which repeat every 

OFDM frame of Ndat OFDM blocks. The construction of MOLSs based on Galois Field 

theory can be found in [90]. However, it turns out that when Ndat is prime, there is a simple 

construction of a family of Ndat-1 mutually orthogonal latin squares, with the entries (virtual 

channel indices) of the m-th square, dat1,..., 1m N= − , are specified as [91]  

  (7.1) , dat[ ] ( ) mod ,  , 0,..., 1m
i jR m i j N i j N= ⋅ + = −dat

where is the entry of the matrix,[ ]m
i jR ( , )-thi j mR , and ( ) modx y denotes x modulo y. Figure 

7.1 illustrates a set of 4 mutually orthogonal latin squares using the modulo-based 

construction (7.1), each with 5 tones and 5 OFDM blocks for an OFDM frame.  

Figure 7.1. Mutually orthogonal latin squares of 5 tones and 5 OFDM blocks. 

 For each latin square, the rows corresponds to physical tones and the columns 

represent OFDM blocks (or OFDM symbols). The entries represent “virtual channels” that 

use the corresponding tones at a particular OFDM symbol time. Assuming perfect tone 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2

3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0
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separation, there is no in-cell co-channel interference. We note that within a latin-square 

hopping pattern, each virtual channel hops over different physical tones at different OFDM 

symbols and spans all the tones over each OFDM block, and consequently exploits 

frequency diversity of wideband system. These latin squares are mutually orthogonal in the 

sense that, for each pair of latin squares, all their ordered pair entries (i, j) are different for a 

total of N2 such entries, with N being the size of each latin square [89]. The interference 

diversity through such orthogonal hopping patterns at interfering transmitters therefore 

ensures that no single strong interference from a virtual channel dominates the performance 

degradation and the full interference diversity is harnessed (similar to the interference 

averaging used in CDMA).  

 For a MIMO-OFDM system with the nonlinear precoding as discussed in Chapter 6, 

the maximum number of simultaneous transmissions at each base station is , with 

being the number of transmit antennas. Suppose we associate a distinct set of users, say m 

users, to each virtual channel, then each transmitter can support up to  users 

simultaneously. For maximum interference averaging, the total number of active users, K, 

must meet , so that each virtual channel is allocated a distinct set of users. In the 

following simulations, we assume that the number of pre-allocated users per virtual channel, 

m, satisfies , and the total number of users

dattn N⋅

tn

datmin( , )tm n N⋅

datK m N≥ ⋅

tm n= datK m N= ⋅ . Specifically, we assign the i-th 

virtual channel, , to the ndat0,..., 1i N= − t users indexed by 

 ( ) ( )( ) mod mod modt ti n K k K i n k K⋅ + = ⋅ + , 0,..., 1tk n= − , 

which amounts to a round-robin multiuser allocation with a number of nt users to each virtual 

channel. With the orthogonal frequency hopping based on MOLS, an additional advantage of 

the precoded OFDM system is that, over each tone, only the channels of the pre-allocated nt 
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users need to be estimated, rather than all the user channels as required in scheduling among 

all the available users. For a single-antenna system without user channel knowledge at the 

transmitter, this orthogonal frequency-hopped OFDM system overcomes the devastating 

interference problems with both the purely TDMA-based narrowband system (e.g., GSM) 

and the wideband CDMA system (e.g., cdma2000) of full frequency reuse. The former has 

its spectral efficiency limited by the out-of-cell co-channel interference, while the latter 

suffers from a generally lower SINR after averaging both in-cell and out-of-cell co-channel 

interference. 

7.2 Opportunistic Interference-Nulling in OFDM System 

 The concept of opportunistic interference-nulling was first described in [33] in the 

context of opportunistic beamforming. For a MISO broadcast channel with out-of-cell 

co-channel interference, the authors pointed out that beamforming to the best user alone at 

each time slot not only exploits the significant multiuser diversity gain in a single cell, but 

also opportunistically nulls out the out-of-cell interference in a multicell deployment. In this 

section, we apply the opportunistic interference-nulling to a precoded OFDM system in a 

MISO broadcast channel. However, more appropriately in our context, we view the 

opportunistic interference nulling as a special form of interference avoidance as provided by 

packet scheduling. Correspondingly, we name the OFDM system with opportunistic 

interference-nulling as the OIN-OFDM system. Previous results [92] in a capacity study of 

single-carrier wireless systems indicate that interference averaging techniques can perform 

better than fixed channel assignment technique, whereas interference avoidance techniques 

can outperform interference averaging techniques by a factor of 2-3 in spectrum efficiency. 

Similar performance gain has also been observed in an OFDM system with dynamic packet 
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assignment [79]. Furthermore, it has been shown that even without power control, 

interference avoidance can outperform interference averaging with power control in a 

CDMA system [92]. This result is particular advantageous for packet transmission when 

effective power control is problematic due to the rapid arrival and departure of interfering 

packets.  

 Now consider the wideband OFDM system of Chapter 6 in an interference-limited 

environment, the multiuser diversity of a large network is exploited through the 

channel-aware scheduling at the transmitter over each data tone. As for the FH-OFDM 

system in the previous section, the scheduling and reordering algorithms for the OIN-OFDM 

system use the received SINR of users over each data tone. The difference lies in that, for the 

OIN-OFDM system, the scheduling is performed over all the active users on each data tone, 

rather than only among the pre-assigned users as in an FH-OFDM system. Therefore, the 

OIN-OFDM system assumes that all the user channel responses at all Ndat tones are available 

to the transmitter over each OFDM frame, which are often more costly than only knowing 

channels of the pre-assigned users at each virtual channel in an FH-OFDM system, particular 

for a number of active users. With a fully channel-aware scheduler, this channel knowledge 

requirement also may lead to a very low per-tone SNR when Ndat is large for a fixed total 

transmitter power, hence poor channel estimation performance over each data tone. To ease 

the channel estimation, we can restrict the number of tones over each OFDM block for each 

user receiver, therefore ensuring a minimum per-tone transmit power allocated. In a 

multiuser network, the unused tones for one receiver can be dynamically used by others, 

therefore need not go wasted. Together with multiuser scheduling, this dynamic tone 

allocation at the transmitter can also improve the robustness of system in adverse 

communication environment. 
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7.3 Multicell Simulation Results 

 We simulate the total average sum rate of a spatially precoded OFDM system with 

interfering base stations surrounding the interested base station over 1000 OFDM frames. 

We limit computations by using 6 interfering base stations, gathering sum-rate and error-rate 

statistics only for the center cell. The use of a small number of interfering transmitters in the 

downlink channel can be justified by the observation that, for the downlink transmission, 

performance is typically dominated by a few close high-power base stations in a wideband 

system with full frequency reuse [93]. This “law of small numbers” actually makes the 

downlink a performance bottleneck in a CDMA system [7], rather than the uplink as was 

initially widely believed.  

 In addition, we assume a high-speed data system with a far denser deployment of 

base stations in our simulations. Under this assumption, it is unreasonable to stipulate that 

the base stations be located high above the ground with minimal local scattering. In an urban 

environment, chances are that there is substantial local scattering around a base station and 

the gain of sectorization is minimal. Thus, users in a sector see interference from the same 

base station intended for another sector due to local scattering. For this reason, we 

presuppose omni-directional antennas at each base station. As a matter of fact, the gain of 

sectorization can be automatically realized using adaptive scheduling in this case as an 

extension of opportunistic beamforming [33]. Another reason for not using sectorization is 

that, in a system with full frequency reuse across both cells and sectors, sectorization tends to 

reduce the dynamic range of user SINR. Consequently, sectorization creates a negative 

interaction with channel-aware scheduling, similar to the interaction presented in Chapter 3 

between diversity and scheduling. 

 Both the suboptimal scheduling and the minimum-error reordering are performed 
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over each tone using the received SINR for each user, instead of the SNR as in a single cell. 

However, for FH-OFDM, the scheduling over each virtual channel is confined to the 

pre-assigned users to that virtual channel, while all the active users are considered by the 

scheduler for OIN-OFDM on each data tone. To simulate an interference-limited system, the 

user average power losses from all the interfering base stations are assumed uniformly 

distributed on [20, 40] dB, so that the average out-of-cell co-channel interference from each 

interfering transmit antenna is 20-40 dB below the average transmit signals of the base 

station of interest. Since we are only interested in the co-channel interference impact on the 

system performance at relatively high SNR in an interference-limited environment, we 

consider the composite large-scale channel fading (path loss and shadowing) by only 

specifying a single long-term average power attenuation, while including frame-wise 

small-scale fading in the frequency domain. The co-channel interference is generated at each 

interfering base station using scheduling and reordering. 

 A worst interference scenario is simulated by assuming full-power and continuous 

transmissions of all the interfering base stations. As in Chapter 6, we use 47 data tones 

(Ndat=47) among the total 64 tones available. It is assumed that each base station transmitter 

has 4 transmit antennas (nt=4) while each user receiver has a single receive antenna. Figure 

7.2 depicts the average sum rate vs. the average transmit SNR per tone (denoted as PT/N0 

here), for both the OFDM systems with out-of-cell co-channel interference. These are the 

achievable sum rates assuming Gaussian signals and interference in AWGN. For comparison, 

the average sum rates with a single transmit antenna (nt=1) are also plotted. We use m=nt and 

for maximum interference averaging with FH-OFDM, and the same number of 

users for multiuser diversity with OIN-OFDM. Both the suboptimal greedy scheduler and 

the PF scheduler are simulated, with the minimum-error reordering performed for n

datK m N= ⋅

t>1. As 

shown in Figure 7.2, as the average transmit SNR at each base station increases, the total 
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Figure 7.2. Average sum rates of OIN-OFDM and FH-OFDM using ZF-DPC. 

average sum rates of both systems are constrained by the unknown out-of-cell interference. 

However, the total achievable throughput is dominated by the multiuser scheduling gain, 

rather than by interference averaging. The throughput advantage of OIN-OFDM remains 

even with a proportional fairness constraint. At high SNR when the performance becomes 

seriously interference-limited, average sum rate gains of 2.3 bps/Hz and 6.7 bps/Hz can be 

obtained by OIN-OFDM with PF scheduler over the FH-OFDM for nt=1 and nt=4, 

respectively. Furthermore, the larger the number of transmit antennas, the greater the 

throughput benefit from interference avoidance.  

 The corresponding SER and BLER using ZF-THP are plotted in Figures 7.3(a) and 

(b). The error floors at high SNR indicate the interference-limited performance of the 

systems. Similar to the sum rates in Figure 7.2, the error rates benefit more from multiuser 

scheduling than from multitone hopping. However, unlike the sum rates in Figure 7.2, the 

OIN-OFDM system with nt=1 and K=47 has the best error-rate performance, and the OIN- 
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Figure 7.3. Average error rates of OIN-OFDM and FH-OFDM using ZF-THP. Solid curves: nt=4, K=188; 
dashed curves: nt=1, K=47. 

OFDM with nt=4 and K=188 next. This is due to the absence of spatial multiplexing, 

therefore the signal is free of in-cell co-channel interference over each data tone in the former 

case. This error-rate difference is maitained with a suboptimal PF scheduler. We note that the 

error-rate performance is very sensitive to the out-of-cell interference, even though this 
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problem can be partly relieved with adaptive scheduling. For the FH-OFDM system, slightly 

lower average error rate is obtained with nt=4 and K=188 than with nt=1 and K=47, as the 

former provides better interference averaging with a larger number of users over virtual 

channel.  

 We have only considered the cases for tm n= and datK m N= ⋅ . When , the 

round-robin multiuser allocation still works for the FH-OFDM system, but with reduced 

interference averaging since multiple virtual channels may share the same user subsets. 

Therefore, the performance degradation tends to be dominated by a few virtual channels of 

some close interfering base stations, similar to the problem with a narrowband TDMA 

system. With a reduced number of users over each data tone, the OIN-OFDM suffers from a 

loss in multiuser diversity. However, owing to the rapid saturation of muliuser scheduling 

gain, a moderate number of users per tone often is sufficient to reap the scheduling benefit. 

datK m N< ⋅

 The above comparison also suggests that, in a multi-antenna broadcast channel, we 

can combine the interference averaging and interference avoidance. This can be achieved by 

pre-allocating a number m>nt users to each virtual channel in an FH-OFDM system and 

performing adaptive scheduling and reordering among the pre-allocated users over all virtual 

channels. As stated above, the system in this case has a reduced interference averaging effect. 

However, considering the rapid convergence of the multiuser scheduling gain, we can 

appropriately choose the m value and allow the system to enjoy both interference averaging 

and interference avoidance. Moreover, without full user scheduling over each tone, the 

system only needs to estimate the channel frequency responses of pre-assigned users on each 

virtual channel. Figure 7.4(a) shows the average sum rates for the FH-OFDM systems using 

adaptive multiuser scheduler and reordering over each virtual channel for nt=4, m=8, K=188 

and nt=1, m=4, and K=47. The performance results without the multiuser scheduler are also 

shown for comparison. It can be seen from these plots that significant multiuser scheduling  
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Figure 7.4. Rate and error performance of FH-OFDM systems with and without adaptive scheduler. Solid 
curves: nt=4, K=188; dashed curves: nt=1, K=47. 

gain can be obtained by using m>nt users over each virtual channel. At nt=4 and K=188, 

using m=8 users over each virtual channel can bring more than 5bps/Hz average sum rate 

improvement over pure FH-OFDM with m=4. The sum-rate improvements are apparent 

under both greedy and PF scheduling, and become more pronounced at nt=4. The sum rate 
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can be further increased with larger m, but the price is that more channel estimation is needed, 

and poor interference diversity can lead to performance degradation dominated by a few 

strong interferers, especially under resource fairness constraints. The associated symbol 

error rates in Figure 7.4(b) also indicate a significant multiuser diversity gain from the 

adaptive scheduling, but the error-rate improvement over pure FH-OFDM is greater with 

nt=1 and K=47 than with nt=4 and K=188. 

7.4 Summary 

 This chapter compared two design philosophies for wideband OFDM systems using 

spatial precoding. Simulations showed that the system performance is dominated by 

interference avoidance through adaptive multiuser scheduling, rather than by interference 

averaging from orthogonal multitone hopping. While the technique of interference averaging 

has proved to be very successful for CDMA-based 3G systems, its limitations are revealed 

by its incapability to flexibly avoid strong interference in a multiuser packet data network, 

which tends to dominate the system performance with parallel transmissions. Significantly 

greater capacity improvement was demonstrated even under suboptimal adaptive scheduling 

and with resource fairness constraints. To ease channel estimation and to leverage 

interference diversity, a tradeoff design was delineated which combined both frequency 

hopping and adaptive schedulin. Simulations indicated that this tradeoff effectively 

improved performance by granting the system some freedom to avoid multisuer interference. 

It should be mentioned that, while we only compared system performance using simple 

simulation models, such comparisons serve chiefly to motivate more detailed engineering 

investigation of what is actually required to achieve higher capacity. 
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Chapter 8 
Conclusion 

 The spectrally efficient data transmission on lossy wireless links is beginning to take 

off as wireless communication evolves from a circuit-switched to a packet-based 

infrastructure. In this context, MIMO channels serve as short and fat pipes over the space 

dimension, and a joint design of space-time transmission and scheduling schemes is of great 

importance for future high-speed packet data services.  

 This dissertation illustrates the role of multiple antennas in a broadcast channel with 

multiuser scheduling. First, it is shown that, from a diversity perspective, the use of transmit 

antenna diversity based on orthogonal design actually reduces the total throughput in the 

presence of channel-aware scheduling. This negative interaction between open-loop antenna 

diversity and closed-loop mulituser diversity motivates us to study other roles of multiple 

antennas. Second, from a sum-capacity point of view, it is shown that the parallel 

transmission through a suboptimal dirty paper coding approach can realize a significant 

portion of the achievable throughput. An efficient channel-aware scheduling algorithm is 

designed to further increase the throughput through multiuser diversity, while keeping the 

average error rate to a minimum. Furthermore, the DPC-based pre-interference cancellation 

is shown to allow for a large scheduling gain and to avoid error propagation, with the latter 

being a serious problem for BLAST transmission. At medium to high SNR, a practical 

solution using Tomlinson-Harashima precoding and PF scheduling substantiates very high 

spectral efficiency and significant multiuser diversity gain.  

 Both the precoding and scheduling algorithms can be easily extended to a wideband 
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OFDM system in frequency-selective fading. Moreover, the concept of T-H precoding is 

generalized by using a modified complex version of the Fincke-Pohst algorithm. This 

generalization brings about 5dB reduction in transmit peak-to-average power ratio and 

generally a low average transmit power. Finally, in an interference-limited multi-cell 

environment, system performance benefits significantly more from interference avoidance 

than from pure interference averaging. For a MIMO-OFDM system with a large number of 

sub-carriers, the problem of channel estimation can be eased with a combination of both 

interference averaging and interference avoidance. 

 Overall, the key issue in a multiuser MIMO system is to provide an optimal radio 

resource sharing of various degrees of freedom, in time, frequency, or space domain, among 

multiple users. In this dissertation, for both the spatial multiplexing gain (through 

interference cancellation) at high SNR and the array gain (via coherent maximal-ratio 

combining) at low SNR, and that the scheduling gain from multiuser diversity, we stress the 

importance of channel knowledge at the transmitter for the achievement of these gains. In 

comparison with the traditional transmission schemes only with receiver-side channel 

knowledge, the performance gain presented in this dissertation warrants the additional 

implementation complexity for channel knowledge at the transmitter. Considering that 

communication systems typically evolve along a path from analog designs with minimal 

cooperation between transmitter and receiver, to designs involving sophisticated digital 

techniques and feedback controls, we anticipate that a system-wide information sharing 

among different layers and the efficient feed-forward and feedback between transmitter and 

receiver would be the future direction to take. 

 



Appendix A   145 

Appendix A: Proof of Lemma 4.1 

 Consider the scheduling algorithm in Table 4.1, we have the channel power gain of 

the first selected user as the maximum squared Euclidean norm of user channel vectors, i.e., 

 2*
1 21

maxγ
≤ ≤

= kk K
h  (A.1) 

According to the Gram-Schmidt algorithm [46], the best remaining user at loop , 

, has a channel power gain of  

n
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where is the identity matrix of size , and
tnI tn *

1×∈ tn
i
q , * *∈i S , are the orthonormal vectors 

in the subspace spanned by the selected user channel vectors, and are obtained from 

Gram-Schmidt orthogonalization. Since we have 
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q is Hermitian and idempotent, hence is an orthogonal 

projection matrix. From the properties of projection matrices, if and are projection 

matrices and is also a projection matrix, then

P Q

−P ≥Px Qx for all [47]. Therefore, we 

have  
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 1γ −= n , 2 min( , )≤ ≤ tn n K . (A.3) 

 For the user channel matrix of full row rank, the strict inequality holds with 

probability 1. According to the scheduling algorithm given in Table 4.1, over each loop, the 

admission of the best remaining user depends on whether it contributes to an increase of sum 

rate. If not, the loop is terminated and the user is not selected. Therefore, we have the number 

of the final selected users as

*( )H S

* in( ,tn KS1 m , and)≤ ≤ *
* * *
1 2 | |

...γ γ γ≥ ≥ ≥
S

. 
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Appendix B: Proof of Theorem 4.3 

 Given a channel matrix with i.i.d. circular symmetric complex Gaussian elements 

of zero mean and unit variance, we have the user channel gains in (4.2), 

, being statistically independent and distributed as

H
2
,k kg

1,..., min( , )tk n= K 1)
2 2
, 2( tk k n kg χ − +∼  

[Lemma2, 10], where 2
nχ denotes the central chi-square distribution with degrees of 

freedom. Using the asymptotic result on the selected user SNR from (3.11), as , the 

channel gains of the selected user k under optimal scheduling can be approximated by  

n

K →∞
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denotes the maximum of N i.i.d. chi-square random 

variables distributed as 2
nχ . The asymptotic independence of selected user channel gains as 

can be established by dividing the users intoK →∞ / tK n⎡ ⎤⎢ ⎥ independent disjoint sets and 

using the fact that lim / limtK K
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= = ∞⎡ ⎤⎢ ⎥ for a finite , where the notation denotes the 

ceiling function. Therefore, we have  
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where (B.2) is due to the concavity of log function of SNR, and (B.3) follows from (4.23). 

The subset maximizes the sum rate in (4.5). Since0S
max max
sum sum≥ �R R , we have 
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Appendix C: Proof of Lemma 4.2 

 A first upper bound of 2
2( 1)1 1

max
tn ki K k

χ − +≤ ≤ − +
on *

kγ can be easily established by 

considering , rather than K, independent 

users under scheduling. Using Lemma 2 in [10] (also in the proof of Theorem 4.3) and 

ignoring the correlation between

( 1) ... ( 1) (2 1) / 2t t tK K K n n K n+ − + + − + = − +

*
kγ , the suboptimal scheduler in Table 4.2 upper bounds 

each *
kγ with ,2
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1,..., min( , )tk n K= . According to the classical Gram-Schmidt 

algorithm [46], the selected user channel gains *
kγ only depend on *

jγ , , i.e., the previous 

selected user channels. Therefore, the suboptimal scheduler has a maximum of 

 sets of independent with , where for the non-integer , 
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with probability 1, we have a second upper bound on *
kγ , , asU defined in Lemma 4.2. 

Therefore, a tighter upper bound on
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*
kγ , , using the scheduling in Table 4.2 is2k ≥ k kUγ < , 

where is defined as . It can be easily seen from the 

scheduling algorithm that the first user selected has a channel gain

kU 2
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exactly. 
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Appendix D: A Quadratic Form of Complex Normal 
Variates 

 Consider the complex matrix×n n =� H
tH HR

)

, where the entries of n matrix are 

independent complex circular symmetric Gaussian random variables with zero mean and 

unit variance, i.e.,

×n H

v (0,ec( ) ⊗∼ nH CN nI I , and (� )H T
t t tR RR is an positive definite 

Hermitian matrix with unit diagonal entries. Let the Hermitian matrixS is defined as  
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with the n Hermitian matrix . Therefore, ×n Ψ � H
t tR R Ψ t is also positive definite, and the 

vector has a covariance matrix ofvec( )S ⊗t InR
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. We note that for a general non-idempotent 

covariance matrix , does not have a Wishart distribution. Let the eigenvalue 
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where the notation indicates that the joint distribution of is identical to the joint 

distribution of

∼ S

Λ H
tH H . Let the unique QR decomposition of � HH be , where the 

unitary matrix has a column partitioning
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for orthonormal vectors . The final equation in (D.6) indicates that is the sum of 

projections of  over the complex orthonormal vectors{ . Therefore, 

have the degrees of freedom 
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