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Data Analysis of an Unsteady Cavitating Flow on a Venturi-type
Profile

Navid Nemati Kourabbasloo

(ABSTRACT)

The instability modes and non-linear behavior of a cavitating flow have been studied based on the experimental data obtained

from planar Particle Image Velocimetry (PIV). Three data-driven techniques, Proper Orthogonal Decomposition (POD), Dy-

namic Mode Decomposition (DMD), and Clustered-based Reduced Order Modeling (CROM), are applied to the snapshots of

the fluctuating component of velocity to investigate instability modes of the cavitating flow. DMD and POD analysis yield

multiple modes are corresponding to slow-varying drift flow, cloud-shedding, and Kelvin-Helmholtz (KH) instability for a fixed

inlet flow condition. The high coherence measure obtained from the instabilities suggests a transfer of energy from the largest

scales, fluctuating mean flow, to the smaller scales such as cloud cavitation and Kelvin-Helmholtz (KH) instability. It is

demonstrated that the POD decorrelation of length scales yields inherently quasi-periodic time dynamics, e.g., incommensurate

frequencies. Moreover, the eigenvalue obtained from DMD revealed multiple harmonic with different decay rates associated

with the cloud cavitation. The above-mentioned intermittent transition between distinct cloud shedding regimes is investi-

gated via Clustered-based Reduced Order Modeling (CROM). Four aperiodic shedding regimes are identified. 68% of the time,

triplets of vortices are formed, while 28% of the time, a pair of vortices are formed in the near wake of the throat. Dominant

mechanisms governing the momentum transport and the turbulence kinetic energy production, destruction, and redistribution

in distinct regions of the flow field have been identified using Gaussian Mixture Models (GMMs). The preceding data-driven

techniques and in-depth analysis of the results facilitated modeling of the cavitation inception and break-up. Accordingly, a

phase transition field model is developed using the ultra-fast Time-Resolved Particle Image Velocimetry (TR-PIV) and vapor

void fraction spatial and temporal data. The data acquisition is implemented in a Venturi-type test section. The approximate

Reynolds number based upon the throat height is 10, 000, and the approximate cavitation number is 1.95. The non-equilibrium

cavitation model assumes that the phase production and destruction are correlated to the static pressure field, pressure spatial

derivatives, void fraction, and divergence of the velocity field. Finally, the dependence of the model on the empirical constants

has been investigated.



Data Analysis of an Unsteady Cavitating Flow on a Venturi-type
Profile

Navid Nemati Kourabbasloo

(GENERAL AUDIENCE ABSTRACT)

A cavitation bubble occurs where the pressure field is below the saturation pressure of the

liquid. Accumulation of the cavitation bubble forms a cavitating flow. This phenomenon

is observed in pumps, propulsion systems, internal combustion engines, and rocket engines.

Identifying the mechanisms leading to cavitation-induced damages is imperative in the design

of the devices. In this regard, investigation of the cavitation bubble inception, deformation,

collapse, and intermittent regime change is mandatory in learning the primary mechanisms

of the stresses imposed on the device. Experiments and high-fidelity numerical and analyti-

cal methods can be employed to shed light on flow physics. The current study adopted joint

experimental methods, data analysis techniques, and computational approaches to scrutinize

the unsteady cavitating flow underlying physics as it occurs past the throat of a Venturi-

type profile. Different mechanisms of instabilities are identified by applying the data-driven

techniques to the raw images of the cavitating flow. The path of the transitions between

physically different instabilities mechanisms is examined. The local dominant balance be-

tween stress terms in the conservation of momentum equation is identified, and the stress

terms roles in cavitating flow instabilities and advective acceleration are determined. A new

cavitation model is developed and validated against the experimental results. The new model

improves the prediction of the void fraction in different regions of the flow field, making it

feasible to simulate different regimes of cavitating flow. Finally, the dominant mechanism

governing the liquid-vapor transition and the transport of the void fraction is described.
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Chapter 1

Introduction

1.1 Introduction to the Physics of Cavitating Flow

Cavitation occurs due to the sudden local pressure drops below the saturation pressure

associated with that liquid. Understanding the dynamics of flow structures with partial

cloud cavitation is imperative in designing mechanical devices, including propellers, rudders,

hydraulic machinery, etc. Cavitation inception and condensation of the cloud cavitation

generate substantial noise and vibrations, thereby decreasing the efficiency of the mechanical

device. An in-depth insight into a two-phase flow paves way toward control of the instabilities

and reduces cavitation erosion.

Distinct types of cavitation has been enumerated in the literature [7, 14, 22, 23]. In the

current dissertation, dynamics of the energy-carrying coherent structures such as attached

sheet cavitation, sheet cavitation, wall-bounded cavitation and cloud cavitation are studied,

look at figure 1.1. Sheet cavitation and attached sheet cavitation occurs past the throat of

the Venturi-type section where local pressure is significantly below the vapor pressure. These

types of cavitation is inevitable due to prescribed geometry and upstream velocity. Local

premature condensation of the cavitation structure at the tip of attached sheet cavitation

may give rise to pressure fluctuations and consequently erode the mechanical device [46].

Condensation of the cloud cavitation in the downstream may also be a source of cavitation
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erosion [27]. At the leading edge of the sheet cavity a re-entrant jet has been observed that

might govern the time and length scales of the cloud shedding. The re-entrant jet and the

cloud vapor structures create highly vortical regions. A relatively high local pressure may

lead vapor structures to condensate. Premature condensation or vapor cloud condensation

sends out strong pressure instabilities that mechanically damages the surface of the test

section [27, 46].
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Figure 1.1: Snapshots captured from the cavitating flow past the throat of the Venturi-type
section at U∞ = 9.53m/s, σ = 1.95, and Re = 1.00 × 105. (a) A snapshot of the attached
sheet cavity past the throat of a Venturi-type test section. The cavitation sheet is limited to
the bottom wall. (b) Large scale vapor cloud shedding on the downstream. (c) Condensation
of the vapor cloud on the downstream due to the pressure recovery.
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1.2 History

The earliest observations of the cavitation flow date back to 1756 by Euler studying the

water flow on a rotating machinery [21]. The first formal explanation of the ’cavitation’ has

been suggested by Froude, describing the void fraction filled with water vapor phase [72].

One of the first observations of the detrimental effect of cavitating flow on the performance

and propeller health occurred back in 1895 [63, 74]. Parsson built the first cavitation tunnel

to investigate the Destructive effects of cavitation phenomenon [74]. Since then, numerous

research work has been published on cavitating flow. The research on cavitating flow falls

into three interconnected areas: theoretical, numerical and experimental [23, 32, 42, 63, 74].

These areas can be further split into researches on bubble dynamics and developed cavitating

flow.

Research on developed cavitating flow dates back to 1868 [32, 63] and 1869 [42]. These

researches were focused on theoretical techniques, including conformal mapping and stream-

line theory. Birkhoff and Zarantello introduced the Hodograph technique [12]. Wu [77]

mentioned that hodograph theory is suitable for bluff bodies and flat plates. In the high-

performance computing era, e.g., around the 1970s, Three-dimensional linear methods be-

came feasible. Linear lifting surface theory was amongst the methods used to estimate the

sheet cavity. Overestimation of the length of sheet cavity and the void fraction has been

mentioned as a disadvantage of this theory. Furthermore, The sheet cavity length variation

cannot be predicted by the linear theory [18, 35].

Panel method introduced the possibilities to assess the effect of interface boundary condi-

tion nonlinearity on the dynamics of the sheet cavity. This method hypothesizes that the

pressure on the cavity interface can be described using constant pressure streamlines. This

method captures the dynamic and kinematic of the cavity interface, and the governing equa-
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tions are solved iteratively [18, 75]. The panel method assumes that the cavity detachment

point is an unknown variable, requiring a closure model to predict the detachment point.

Panel method accuracy on the prediction of the detachment region and closure of the sheet

cavity is questionable. Furthermore, the prediction of the dynamics of the sheet cavity and

the geometry of the cavity seems to be challenging for the panel method. Panel method

has abysmal performance on the prediction of the complex physical phenomenon, including

cloud shedding.

With an increase in the computational power in the 1990s, new approaches were employed to

simulate cavitating flows numerically. One of the popular approaches was the compressible

form of Navier-Stokes equations coupled with the transport equation for the void fraction

and thermodynamic tables and two-phase flow equilibrium curves. The numerical simula-

tions of the cavitating flow fall into three distinct categories: (1) Two-phase flow methods,

(2) Volume of Fluid methods, (3) discrete bubble methods, and (4) Interface tracking meth-

ods [35].

In 1992, Kubota et al. [4] used the Rayleigh-Plesset equation coupled with the RANS equa-

tions for simulations of the cavitating flow. They computed the void fraction using the

radius of the bubble. Since 1992, several researchers proposed cavitation production and

destruction terms [3, 8, 16, 33, 49, 56, 57, 60, 66, 70, 79]. Unsteady cavitating flow past the

Venturi-type test section is composed of various regimes such as attached sheet cavity, pre-

mature condensation, and large-scale cloud shedding. Although numerous cavitation models

are developed in the past, very few studies are focused on the performance of the models in

distinct regimes of flow, e.g., the cavitation inception and break-up. Besides, the dominant

mechanisms and the corresponding physics driving cavitation production (destruction) are
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not addressed systematically. In 1998, Merkle et al. [16], and Kunz et al. in 1999 [60]

introduced their model of cavitation production (destruction). They imposed artificial com-

pressibility on their model. They used a special preconditioning formulation to solve the

momentum transport equations and continuity equations with the RANS turbulence model.

In 2002, Singhal et al. [3] introduced their cavitation model, ”full-cavitation model”. Their

model obtains the rate of phase change, given the bubble dynamics and local flow conditions.

Although this model simulates the steady sheet cavitation accurately, it fails in an unsteady

cavitating regime. In 2003, Saito et al. [79] introduced their cavitation model considering

the thermodynamic effects on the production (destruction) terms. The momentum transport

equations and continuity equations for the cavitating flow with the RANS turbulence model

were solved around a hydrofoil. The turbulent eddy viscosity is based on Baldwin-Lomax

with the Degani-Schiff modification.

Homogeneous flow theory describes the multi-phase flow and the corresponding components

simply. The theory assumes that the flow of two phases is the simultaneous motion of two

phases. Therefore, the homogeneous flow theory assumes that the relative motions between

phases do not exist. The fluid mixture properties, including density and viscosity, are the

averaged properties of both phases. Besides, two phases are assumed to be in mechanical

equilibrium. The assumptions mentioned above are required to derive the governing equa-

tions of the flow of the mixture. Assuming that the two species are well mixed and the

relative velocity between the species is zero, one may show that the conservation of mass of

both species of fluid flow is described as follows:

∂ρm

∂t
+ (∂ρmui)

∂xi

= 0 (1.1)
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Where ρm is the mixture density:

ρm =
∑

k

ρkαk (1.2)

, and ui is the velocity associated with both of the phases. Since the phases are in mechanical

equilibrium, the phases have the same pressure. Besides, the velocity of the flow mixture is

assumed to be the same. Given a negligible body force, the mixture momentum equation

for an unsteady viscous flow reads:

∂(ρmuj)
∂t

+ ∂

∂xi

(ρmujui) = − ∂p

∂xj

+ ∂τij

∂xi

(1.3)

Besides, to determine the density of the mixture, the advection and temporal changes of

one of the phases need to be tracked. Since the mixture is assumed to be homogeneous,

tracking the motion of one of the two phases is sufficient to define the density of the mix

that is replaced into the conservation of the mass. Therefore, in addition to the mass and

momentum conservation, the transport of void fraction is required:

∂α

∂t
+ ∂(αu)

∂x
+ ∂(αv)

∂y
= ṁv (1.4)

Where ṁv represents the mass transformation rate from one phase to the other. It should

be noted that in this case, the temporal changes of mixture density in the conservation of

mass are non-zero.

Evaporation and condensation of the cavity define the liquid-phase transformation. The

preceding transformation requires detailed information about the thermodynamic and me-

chanical states of the phases and the behavior of the interface between them. Kunz et al.

[60] suggested a simplified empirical model. They assumed that the transformation from
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liquid to vapor phase is distinct from vapor to liquid. Their model implies a correlation

between the liquid-vapor transformation with the liquid volume fraction and the value by

which the static pressure is below the thermodynamic saturation pressure.

On the other hand, Kunz et al. [60] developed a relationship in which the transformation

of the vapor to the liquid phase is proportional to the vapor volume fraction and liquid

volume fraction. Similarly, Merkle et al. [16] used the same model for the liquid-phase

transformation. The model suggested in the preceding articles simulates the destruction,

production accurately. However, the empirical parameter needs to be calibrated for different

regimes of cavitating flow. The modeling can be complicated for the fluid flow consisting of

distinct physical mechanisms. For instance, the value of the empirical parameter might need

to be adjusted depending on location in the flow field. The improvement of the accuracy of

the methods mentioned above highly depends on the empirical parameter. The uncertainty

of the model parameters which determine the rate of vaporization and condensation is the

main limitation of the phase transition relations. Besides, the simulations based on the

models mentioned above depict an imperfection in the capturing physics of the cavitating

flow [31]. For instance, since the pressure gradient in the mixture of the two phases is

not predicted accurately, the cavity does not roll-up. The re-entrant jet is not prominently

observed in the closure region of the cavity. Consequently, the intermittent vapor cloud

formation and shedding do not occur in the absence of the cavity roll-up and the re-entrant

jet. The variation of the vapor cloud and the corresponding frequency of shedding depends

on the intermittent re-entrant jet that cannot be predicted.

Schnerr and Sauer [36, 66] developed a dispersed Volume of Fluid (VOF) method for the

evolution of the bubble and its collapse. Their numerical model depends on the bubble

concentration per unit volume, vapor radius, and the time rate of change of vapor radius.

The numerical simulations show that the non-condensable gas effect on the cavitating flow’s
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inception and evolution and aperiodic behavior is imperative. Schnerr and Sauer model

yields significant inaccuracy in the prediction of the unsteady behavior of the cavitating

flow, including vapor cloud shedding and condensation process [78].

Charrière et al. [13] assumed that the advection of void fraction and accumulation of the

void fraction in an element depends on the divergence of the velocity implying the rate of

expansion or contraction of an element. Their model could successfully simulate the aperi-

odic behavior of vapor cloud shedding as it occurs in a Venturi-type test section. Besides,

Charrière et al. [13] model captured the re-entrant jet and the instability in the attached

sheet cavity. It does not require any calibration, thereby yielding a set of equations solved

for the entire problem domain.

1.3 Objectives of the Current Research

The main objective of the current research is to enhance the understanding of the underlying

dynamics of cavitating flow as it occurs in a Venturi-type profile. In this regard, the images

obtained from high-speed photography are examined to identify the modes of instabilities in

a cavitating flow as it occurs in a specific flow condition. The instantaneous velocity vector

field of the liquid and vapor mixture has been obtained using ultra-fast Time-resolved Particle

Image Velocimetry (TR-PIV). The instantaneous velocity vector field is further decomposed

utilizing three prominent data-driven techniques: standard DMD, POD, and CROM empha-

sizing the modes of instabilities and the mode transition path in the cavitating flow. The

vapor cloud shedding influence on the instability of the velocity vector field is studied, which

sheds light on the intermittent and aperiodic transition between different shedding patterns.

The data-driven analysis mentioned above displays the leading mechanisms that promote

specific flow regimes: the imperative effect of attached sheet cavity instability, cavitation
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inception, and condensation on the vapor cloud shedding pattern.

Additionally, POD analysis determines the kinetic energy transfer from the mean flow to

the high-frequency modes. Similarly, the instantaneous energy exchange between different

modes of instabilites is shown. Besides, the non-linear, chaotic and stability behavior of

the POD time coefficients is investigated by looking into the LLEs. The global stability and

short time behavior of the time signal of the POD energetic modes are extracted by observing

the values of LLEs. The asymptotical behavior of the POD time dynamics is distilled to

determine the long-term stability of the POD enegetic modes. Based on the understanding

mentioned above, numerical and data-based models are introduced. The implicit objective

of this research is to develop a generalizable and parsimonious mathematical model that can

be employed for different geometries and flow conditions.

In the current research, the instantaneous pressure distribution in a Venturi-type test section

is estimated using (TR-PIV) data and vapor volume fraction. Correspondingly, a numerical

method using the Navier-Stokes equations has been developed to simulate snapshots of the

pressure field of the cavitating flow. Firstly, a Poisson equation obtained from the conserva-

tive form of compressible momentum equation has been derived. Then, the Poisson equation

is solved numerically for pressure through the Finite Difference Method (FDM).

The current experimental measurements of the cavitating flow imply that vapor and liquid

phases are not in an equilibrium state. This behavior suggests that the thermodynamic

saturation curves do not govern the phase transition. The mathematical presented in this

research requires the incorporation of non-equilibrium thermodynamic effects by definition.

The equilibrium conditions are assumed to be violated in the high void fraction regions,

and a mass production(destruction) term is present in the continuity equation. Eventually,

a mass transition field term governing the destruction or production of the vapor phase is
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developed. It is assumed that the mass transition term is a function of the thermodynamic

properties of the dynamical system, such as pressure, velocity vector field, speed of sound,

and vapor volume fraction.

• Three-dimensionality: Although cavitating flow displays three-dimensional convection,

the suggested models are developed in two-dimensional space.

• Unsteadiness: Cavitating flow depicts highly unsteady behavior owing to the strong

inertial forces, even for a fixed uniform flow rate.

• Unsteadiness at the inlet and outlet of the boundaries: It is assumed that the pressure

is uniformly distributed in the inlet and outlet of the test section, and unsteadiness

has a negligible effect on the boundaries pressure fluctuations.

This dissertation demonstrates that the dynamical system is in a non-equilibrium state due

to the phase transition phenomenon, e.g., destruction of the vapor. The deviation from

equilibrium behavior of the current system begs some questions:

• How mass destruction(production) phenomenon is correlated to the kinetic and ther-

modynamic properties of the system?

• Can we describe physically the inception, break-up, and condensation of the cavitating

flow relying only on the kinetic and thermodynamic properties of the current system?

• Does the condensation show a physically meaningful correlation with the thermody-

namic properties of the system?

• Can we discover a transition field equation based on the kinetic and thermodynamic?

The present research has been implemented in the Propulsion and Multiphase Flow Labo-
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ratory (PMFL) at Virginia Polytechnic Institute and State University.

Although the numerical cavitation models that have been discussed in the previous section

have improved the estimation and simulations of the underlying physics of cavitating flow,

the accuracy of the simulation of the unsteady cavitating flows can still be enhanced using

data-driven techniques. As discussed in the previous sections, the cavitating models cannot

predict some experimental observations: dynamics of the intermittent re-entrant jet, sheet

cavity roll up and separation, quasi-periodic cloud shedding, condensation of the vapor cloud.

Previous models proposed in the literature prescribe one governing equation for the entire

problem domain where multiple physical mechanisms are observed in the experimental data.

Since liquid-vapor phase transition and void transport are involved with distinct spatio-

temporal scales, it is more realistic to suggest a combinatorial model that accommodates all

features of the cavitating flow due to numerous physical mechanisms and flow conditions.

The preceding combinatorial model combines different physical means of the void fraction

transport, creation, and destruction using a blending function utilized to activate only a sub-

set of the terms in the general governing equation depending on the location of the flow and

the magnitude of the system variables or its corresponding derivatives. This method ensures

that the appropriate terms representing the physical mechanism are in effect throughout the

flow field. Besides, the local behavior of the dynamical systems can be described using the

extraction of the dominant terms in the governing equations. Additionally, the dominant

balance analysis of such a system has two key benefits: (1) improvement of our understand-

ing of the physical behavior of the system in different region (2) extraction of the appropriate

model for each flow condition.
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1.4 Dissertation Blueprint

Chapter 2 presents an overview of the previous research on sheet cavitation and the cor-

responding physical aspects as it occurs on a Venturi-type test section. In this chapter,

different techniques employed to study the dynamics of the cavitating flow have been intro-

duced. Moreover, the advantages and disadvantages of each technique are discussed.

In Chapter 3, initially, the experimental test rig, including the hydraulic system and the

test section geometry, are presented. Next, the imaging techniques applied to the cavitating

flow, as it occurs in a Venturi-type test section, are discussed. Next, the post-processing

techniques yielding the synchronous velocity and void fraction fields are presented.

In Chapter 4, the mathematical models for cavitating flow are developed. Initially, the

continuity equation for the mixture is described. The continuity equation is numerically

investigated to assess the thermodynamic state of the system. Then, the existing mathe-

matical models for non-equilibrium cavitating flow are reviewed, and their shortcomings in

predicting the production and destruction of the vapor phase have been investigated. Sec-

ondly, a decomposition scheme is suggested for the velocity vector field, which decorrelates

distinct instabilities in the flow field, including the slow-varying drift flow, KH instabilities,

and vapor-cloud shedding. In the next step, algorithms of DMD, POD, and CROM tech-

niques are presented, and their applications on the cavitating flow are enumerated. Then,

the momentum equations governing the homogeneous mixture of vapor and liquid phases

are presented. A Poisson equation is derived using the compressible form of momentum

equations to calculate the unsteady pressure field. Next, the numerical method used to

obtain the pressure field is presented. The following section focuses on the derivation of

the Favre-averaged Navier-Stokes equations and the technique dedicated to extracting the

dominant balance physics in a generic compressible flow field. Finally, the data-driven phase
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transition modeling method is presented.

Chapter 5 is dedicated to the verification and validation of the mathematical models. Sim-

ulation of the turbulent boundary layer over a flat plate is implemented. The simulation

serves as a benchmark problem to validate the implementation of pressure reconstruction.

Next, the simulation of the pressure field past the throat of the Venturi-type test section

has been implemented. Besides, the instability mechanism that arises as a result of the

pressure gradient distribution is investigated. Last but not least, the uncertainty level in the

computations of the pressure field is shown.

Chapter 6 deals with the results obtained from the data-driven techniques revealing the

instability modes as it occurs in a Venturi-type test section. In the first step, distinct shed-

ding regimes are defined and further linked to the physics of flow that is used to extract

the underlying mode change path in the cavitating flow. Mode shifting and intermittency

phenomena are further investigated for a single fixed inlet flow condition using the CROM

technique. Besides, DMD yields the instability modes of the sheet cavity and cloud shed-

ding. Similarly, POD analysis shows that the velocity vector field is composed of distinct

instabilities: instability due to the slow-varying drift, KH instabilities, and high-frequency

vapor-cloud shedding. Then, it has been shown that the instantaneous velocity vector field

can be reconstructed by combining the instabilities mentioned above.

In chapter 7, the local behavior of the cavitating flow is investigated. Firstly, the terms in the

TKE equation are obtained; then, Understanding the path of the kinetic energy of the mean

flow role and the importance of each term in the TKE equation is defined. In this regard, the

mechanisms of transfer of the kinetic energy of the mean flow to the fluctuating component

of the velocity and internal energy of flow were studied. Besides, the efficient mechanisms

transporting the TKE in the cavitating flow are extracted. In the following sections, the
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flow field domain is clustered using GMM; the dominant terms in the momentum equation

in each cluster are identified.

In chapter 8, the mass transition between vapor and liquid phases is obtained using a data-

driven technique and the void fraction transport equation. Next, the underlying physics of

phase transition is discussed. In this regard, the role of each term in the phase transition

process is highlighted. Finally, the flow field domain is segmented using GMMs, and the

dominant mechanisms causing vapor-liquid phase transition are distilled in each cluster.
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Chapter 2

Dynamics of the Unsteady Sheet

Cavity and Vapor Cloud

2.1 Sheet Cavitation on a Venturi-type Section

This research focuses on the cavitating flow as it occurs past the throat of the Venturi-type

section. Depending on the experiment operating status, one of the several types of cavitation

occurs: sheet-cavitation, attached sheet cavitation, and cloud cavitation.

Since the pressure drops past the throat, the vapor sheet emerges at the bottom surface

of the test section. Correlation of the length scale of the vapor sheet with cavitation and

Reynolds numbers have been investigated in the literature [48]. Besides, cavitation evolution

on a Venturi-type test section has been explained by [48, 59]. They identified four types of

cavitation patterns:

• Type 1: Attached vapor cavitation instability results in periodical separation of the

vapor clouds, and they eventually collapse downstream. Significant oscillation in the

length of the sheet cavity is observed. The type 1 cavitation pattern is illustrated in

figure 2.1.

• Type 2: Clusters of bubbles separate from the leading edge of the sheet cavity.
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• Type 3: An attached sheet cavity is created, and its length oscillates significantly. The

type 3 cavitation pattern is shown in figure

• Type 4: An attached sheet cavity is fully developed, and a small oscillation in its size

is observed. 2.2.

The pattern of the cavitation concerning the changes in cavitation number has been studied

by [48]. With an increase in the cavitation number at a fixed Reynolds number, the cavitation

pattern may change from a highly unstable case, e.g., type 1, to a comparatively less unstable

case, type 2 or 3. Further increases in the cavitation number result in a small attached sheet

cavity with negligible length oscillations. For all Reynolds numbers, small-scale oscillations of

the sheet cavity are observed. Besides, the Reynolds number has an insignificant effect on the

Strouhal number, which means that increasing the Reynolds number does not significantly

affect the cavitating behavior.

Figure 2.1: Sheet cavity evolution, vapor shedding, and cloud collapse in sequential frames
captured from the cavitatig flow past the throat of the Venturi-type section at U∞ = 9m/s,
σ = 0.96, and Re = 4.44 × 104 [48]. The throat width and height are 3.6mm and 10.8mm,
respectively.
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Figure 2.2: The typical sequence for the evolution of the sheet cavity and oscillation of its
length [48]. In this case, no cloud shedding is observed. The flow condition is similar to
cavitation evolution illustrated in figure 2.1 . The throat width and height are 6.7mm and
2.7mm, respectively.

Dular et al. [48] utilized six test sections characterized by different sizes. They found a

unique curve for each Reynolds number, relating the non-dimensional length of the sheet

cavity with the cavitation number. Changing the length of the cavity sheet by varying the

size of the test section found an almost linear dependence of the length of the sheet on the

cavitation number. They also found that for their test sections the Strouhal number at which

the sheet cavity was shed depends on cavitation number and test section sizes.

Since the vapor sheet is formed due to a strong adverse pressure gradient, the streamlines

tend to be close to each other in the vicinity of the liquid-vapor interface. At the closure

region of the sheet cavitation, a liquid jet is formed. The liquid jet may travel upstream

and impinge on the interface of the sheet cavity. On the other hand, part of the jet may

reattach to the wall. Depending on the inertial forces, the re-entrant jet may travel a longer

or shorter distance. The departure mentioned above results in separating the vapor clouds

that occur aperiodically depending on the system parameters, such as Reynolds number and
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cavitation number. The separation of the clouds leaves a highly vortical flow pattern as the

main flow convects it. This circulation is carried downstream as the vapor cloud is traveling.

Since the downstream pressure recovers, the vapor structures start to break up into smaller

structures and it gradually condensates as the vapor travels downstream. Cavitating vortices

are formed as a result of the vapor structure condensation and vortical structures eventually

disappear in the high pressure regions. Meanwhile, the sheet cavity length is recovered and a

new liquid jet is formed at the tip of the sheet. This quasi-periodic phenomenon is governed

by the non-linear inertial terms, and depending on the experimental condition may yield

periodic behavior as well.

2.2 Dynamics of the Vapor Sheet on Venturi-type Sec-

tion

Dular et al. [48] carried out experiments for Venturi-type test sections in unsteady conditions

in the small cavitation tunnel VenturiX of the LML Laboratory (Lille, France). Their focus

was to generate sheet cavities with distinct length scales to investigate their effect on the

cavitating flow and vapor cloud dynamics. In figure 2.1, the process of sheet cavity evolution,

vapor shedding, and cloud collapse are depicted. The shedding is defined as periodic, and

two characteristics frequencies, associated with shedding frequency and the fluctuations of

the sheet cavity, are introduced. Figure 2.3 depicts the maximum length of the attached

cavity. Dular et al. [48] showed that the sheet cavity geometry is correlated to dynamics

of the re-entrant jet, and it further determines the shedding mechanism of the sheet. Due

to the small throat height, the liquid jet’s influence on the sheet cavity is insignificant, and

because of momentum deficit, the jet is convected by the main flow. Corresponding to the

previous research, Callenaere et al. [50] observed that a thin sheet cavity does not oscillate
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in length. Dular et al. [48] linked this behavior of the sheet cavity to its thickness. If the

sheet cavity is thin, at the closure of the vapor sheet, a liquid jet is developed that interacts

with the thin cavity. They suggested that the liquid jet loses its momentum due to the

interaction mentioned above. They concluded that the liquid jet penetrating the main flow

requires more energy.

Figure 2.3: Frame # 8 depicting the maximum length acquired by the attached sheet cavity
[48]. For further information of the section geometry and flow, condition look at figure 2.1

The re-entrant jet flows toward port or starboard sides; consequently, it collides with one of

the walls. At this location, the re-entrant jet ’cuts’ the sheet cavity and changes the cavity

from a smooth vapor sheet into a separated cloud region. The jet leaves the attached cavity

tip with a sharp angle, thereby cutting a big chunk of the sheet cavity. The vapor cloud is

convected by the main flow and goes through condensation in the region with higher pressure

on the downstream of the throat; look at figures 2.5. In the final images of the collapse of the

vapor cloud, downstream vortical structures of vapor are observed that coalesce before the

condensation, look at figures 2.6. In figures 2.7 a single but larger-scale upstream vortical

structure is formed due to re-entrant jet. This structure, presumably created by the collision

of the re-entrant jet with the sidewalls, can be observed in figure 2.4. This observation

shows that the shedding of vapor clouds may lead the dynamical system to a quasi-periodic

phenomenon.
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Figure 2.4: Cavitation in a comparatively wide test section at U∞ = 9m/s, σ = 0.96,
Re = 3.48 × 104 [48]. The throat width and height are 15mm and 2.7mm, respectively.
Depiction of the collision of the re-entrant jet with the side walls due to the re-entrant jet
sharp angle.

Figure 2.5: Representation of the condensation of the cloud cavity on the downstream [48].
For further information on the section geometry and flow condition, look at figure 2.1.

Figure 2.6: Coalescence of the vapor cloud structures in the downstream [48]. The prescribed
flow condition is U∞ = 17m/s, σ = 0.98 and Re = 8.09 × 104. For further information of
the section geometry look at figure 2.6.

Figure 2.7: Single large-scale cloud convection on the downstream [48]. For further informa-
tion of the flow conditions and the section geometry look at figures 2.6 and 2.1, respectively

Dular et al. [48] showed that the throat height and width of the test section determines the

vapor shedding mechanism. To distinguish between cloud cavitation and partial, intermittent
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shedding, Dular suggested that the test section’s small height prevents further progression

of the re-entrant jet, thereby inducing low-frequency oscillations of the sheet cavity. This jet

has a weak side-wise velocity that prevents it from reaching the wall. They used the term

jet’s ’premature stop’ for the case that the direction of the jet exiting the attached cavitation

area is not perpendicular to the flow above the cavity, and its corresponding angle is not

sharp, so the jet may not reach out to the wall.

2.3 The Collapse of the Cloud Cavitation

The attached sheet cavity break-up leads to vapor clouds. The vapor cloud is a highly vortical

region and introduces turbulent fluctuations due to high shear stress. Transportation of the

vapor cloud to the regions with high pressure causes the collapse of the cloud. It has been

observed that the destruction of the clouds results in intense pressure pulses [27]. During

this process, the system’s boundary, e.g., the Venturi bottom wall, experiences an unsteady

loads that might be the main reason for the cavitation erosion and noise production. In

the study of the dynamics of cloud collapse, It is imperative to assume that the flow field is

compressible.

In the literature, the collapse of an isolated bubble has been studied both theoretically and

experimentally. Experimental observations on the destruction of an isolated bubble and

cloud cavitation suggest that the pressure pulses amplitude may reach 100 bar, Fujikawa &

Akamatsu [24]. In an experimental investigation, Reismann et al. [26] studied the breakup

and the collapse of sheet and vortex cavities. In this study, pressure pulses on the surface have

been captured. They explained that the shock dynamics result in damage to the surface and

cause noise in cavitating flow. The collapse of the bubble is employed in medical applications

as well [71]. The shock wave caused by the cloud cavitation was utilized for Lithotripsy. It
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has been observed that unsteady pressure pulses can destroy kidney stones. In a numerical

investigation, Johnson and Colonius [41] studied the breakup of kidney stones exposed to

the shockwave.

Schmidt et al. [67] numerically estimate the inception and transport of shocks and rarefaction

waves corresponding to the collapse of vapor in a cavitating flow. The preceding compressible

flow simulation causes unsteady loads on the boundaries. Coutier-Delgosha et al. [54] showed

that the periodical behavior is dictated by pressure waves caused due to the collapse. They

suggested that the backpropagation of the intense pressure wave delays the growth of the

cavity that in turn reduces the cycle frequency significantly.
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Chapter 3

Experimental Design and

Measurement Techniques

3.1 Experimental Set-up

The experiments are conducted in a Venturi-type test section installed on a closed-loop

hydraulic test rig designed by Coutier-Delgosha et al. [55], figure 3.1. The flow rate is

controlled by a frequency variator connected to a circulating pump. The re-circulation loop

is assigned to maintain a small flow rate preventing the pump from operating in unstable

conditions. The reference pressure at the inlet and outlet of the loop is adjusted by a vacuum

pump connected to the free surface of the tank.

Figure 3.1: (a) Schematic diagram of the test rig. (b) Venturi type test section profile; the
confining bottom (2) and top (3) walls leaving the channel with a convergent wedge at the
entrance and a divergent one toward the outlet. The flow is from left to right
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The Venturi test section is presented in Figure 3.1. The Venturi-type section is formed

through two walls, labeled (1) and bottom wall labeled (3), then part (2) is inserted in a gap

on the bottom wall to confine the flow in the channel. The confining part leaves the Venturi

section with a converging angle of 18° at the inlet and a divergent angle of 8° at the outlet.

The width of the channel is 4mm. At the entrance, a contraction ratio of 1.1 connects the

inlet to the throat. The height at the entrance of the Venturi, hve, is 17mm and the height

at the throat of Venturi, hth, is 15.34mm. The height at the entrance of the test section,

hte, is 31mm. The thickness of each plexiglass side wall is as small as 0.5mm. Two pressure

gauges are installed on the bottom wall of the test section. The pressure sensors work in a

range of 0-3 bar with a full-scale uncertainty of 0.25%. The upstream pressure gauge value

determining the pressure at the inlet is utilized to compute the cavitation number. The

relative cavitation intensity is indicated through cavitation number. The cavitation number

σcav is the ratio of the local static pressure difference from the vapor pressure to the dynamic

pressure:

σcav = po − pv
1
2ρwu2

inlet

(3.1)

Where po is the static pressure at the upstream and pv is the vapor pressure, ρw is the density

of the liquid phase, and uinlet is the inlet time-averaged velocity. The inlet time-averaged

velocity is computed using the flow rate measured by a flow meter with a reading uncertainty

of 2% and installed before the entrance of the Venturi. The Reynolds number presents the

ratio between the inertial forces over viscous forces. The Reynolds number based on the

height of the Venturi section throat may be defined as follows:

Reh = uinlethth

νw

(3.2)
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νw is the kinematic viscosity of water. The primitive uncertainty obtained from the pressure

gauge and the flow meter leads to a derived uncertainty of 3.5% in the cavitation number.

Table 3.1 has listed some of the most important system parameters.

Table 3.1: Some important system parameters

Symbol Description Value

fSt(Hz) frequency of the Strouhal number 138

lSC(mm) length of the attached sheet cavity 23.5

St Strouhal number 0.21

uinlet(m
s

) Inlet velocity 15

tSt(ms) period of the Strouhal number 7.25

3.2 PIV High-speed Photography

The raw images of cavitating flow in the Venturi section were captured from the side view.

In this experiment, two cameras are located on both sides of the test section, figure 3.2. A

FASTCAM SA1.1 camera with a Tokina 100mm lens is used to capture the images of the

seeding particles, the camera on the left-hand side. This camera is equipped with a notch

filter to transmit most wavelengths with little intensity loss while attenuating light within

the laser light sheet wavelength range. In all campaigns, the field of the first camera view

was 1024 × 1024 pixels, with each pixel corresponding to 20 �m. A VEO 710L camera,

installed on the right-hand side, is equipped with a density filter recording the dynamics

of the vapor phase. A density filter has been utilized to alleviate the over-illumination of

the vapor phase on the sensor of the second camera. A laser light sheet with the maximum

thickness of 1.5 mm has been created in the middle of the test-section span by an Nd: YLF
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Laser (Neodymium-doped yttrium lithium fluoride) operating at 2.4 kHz with a wavelength

of 527 nm. Rhodamine B fluorescent dyes were injected into the flow and illuminated by

the laser light sheet. A double pulse laser beam yields a pair of consecutive images of the

illuminated particles. Time duration between two consecutive images, dtbeams, is 10µ. The

PIV set-up is presented in figure 3.2.

Figure 3.2: PIV system apparatus in the front view of the Venturi section showing the Nd:
YLF laser, the laser beam, VEO 710L, and FASTCAM SA1.1 cameras, density and notch
filters, reflecting mirrors, and flow direction. The flow is from left to right. For further
information of the test rig look at figure 3.1.

3.3 PIV Measurements

Velocity vector field was resolved using a high-speed Particle Image Velocimetry (PIV). The

instantaneous velocity field of the liquid phase is evaluated through the cross-correlation

algorithm. Next, outlier vectors are detected and then replaced by a bi-linear interpolation

applied to the high-fidelity neighboring vectors. A cross-correlation algorithm was applied

to each pair of images to determine the instantaneous liquid phase displacements. Compu-

tations were carried out using DaVis 8.3 from LaVision. The number of images that are

acquired is 2500 yielding one second of data. A multi-pass algorithm has been employed

where the first pass is performed with an interrogation window size of 64 × 64 and a 50%
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overlap. The final pass was performed with 16 × 16 window size and overlap of 50%. An

overview of the PIV parameters applied to high-speed photography is presented in Table 3.2.

The uncertainty in liquid phase velocity measurements was estimated. The results indicated

an error of approximately 3% of the reference velocity for the liquid phase.

Table 3.2: Overview of the relevant PIV parameters applied to the raw images obtained from
the high speed photography.

reconstruction method PIV

Interrogation window parameters interrogation area, initial pass (Pixel × Pixel) 64 × 64

number of passes 2

interrogation area, final pass (Pixel × Pixel) 16 × 16

overlap interrogation area 50%

interrogation window-shape Square

Deformation of the interrogation window Asymmetric shift:

Applied on the second frame only

3.4 X-ray Imaging

Zhang et al. [30] conducted the X-ray experiments at the Advanced Photon Source (APS).

A high-energy and spatially coherent X-ray has been employed. Figure 3.3 depicts the X-

ray source aligned with the test section on the left-hand side, and the X-ray detector, a

scintillator, is on the right-hand side. The scintillator converts the X-ray beam into visible

light, recorded by the high-speed CCD camera. The X-ray source sends out two pulses: the

primary pulse has a 500ns duration, and the second pulse has a 10ps duration. The aperture

of the X-ray source is 1.7 × 1.3mm2. The time interval between the primary and secondary

X-ray pulses is 3.68µs. The X-ray source is located at a distance of about 60m from the

test section. The distance between the object and the detector is 50cm to enhance the

phase contrast. Figure 3.3 depicts the synchronization between the X-ray flashes, the fast

shutter, and the camera. The synchronization enhances images used for PIV analysis. The
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acquisition frequency of the camera is 12, 070 fps, and the corresponding spatial resolution

of 704 × 688 pixel2 with a pixel size being 2µm.

Figure 3.3: (a) Schematic diagram of X-ray light source located at the APS composed of
the X-ray light source, X-ray beam, slow and fast shutters, test section, scintillator, and
camera [30]. (b) diagram of the X-ray pulse duration, x-axis, versus shutter opening width,
y-axis. The fast shutter time during, 9µm, accommodates a pair of camera frames used to
implement PIV analysis. The first (second) camera frame detects the primary (secondary)
X-ray pulse that creates the image pair for the PIV analysis.

Silver-coated hollow glass spheres with an average diameter of 10 and 17 µm are used as

the tracers of the liquid phase. Since the cross-section of the X-ray beam is small compared

to the cross-section of the test section, the complete image for the flow field is broken into

individual windows shown in figure 3.4. Successive but not simultaneous acquisitions at

different windows are implemented at each measurement campaign. For each campaign, the

test section was moved parallel to the divergent wall of Venturi and perpendicular to the X-

ray beamline by a mobile platform. At each position, 1, 872 images were recorded. Figure 3.4

shows a raw X-ray image of cavitation flow at the second position. Since the tracer particles

and the vapor structures are both captured clearly, the imaging enables simultaneous study

of the liquid phase and vapor phase.
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Figure 3.4: (a) Schematic of X-ray scanning positions [30]. Position # 1 is located adjacent
to the throat of the Venturi-type section where the cavitation inception is observed. In each
campaign, the test section is moved to the new position to complete the data acquisition.
(b) An X-ray image of the cavitating flow at window # 2 illustrates the silver-coated hollow
glass spheres overlaid with the vapor structures.
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Chapter 4

Mathematical Models and

Data-driven Techniques

4.1 Non-equilibrium Models

In the present research, we have investigated and further assessed non-equilibrium models for

cavitation. Here it is assumed that the density of the liquid and vapor phases are constant.

It is also assumed the temperature remains constant. In this section, we present several

non-equilibrium models.

It is generally assumed that the pressure and temperature of the liquid and vapor phases

are different, taking into account the non-equilibrium condition. In this case scenario, the

system’s status cannot be identified by the thermodynamic saturation curves. Typically, one

may show that the conservation of mass equation is as follows:

∂(αρv)
∂t

+ ∂(αρvu)
∂x

+ ∂(αρvv)
∂y

= ṁv (4.1)

Where ṁv is the mass transfer source term for the vapor phase. Eq. (4.1) defines the mass

transformation in the term of vapor mass change. This equation makes it feasible to consider

the non-equilibrium processes. Kunz et al. [60] modeled mass transfer term using empirical
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mass transfer rates of Merkle et al. [16]. Mass transfer rate of vapor phase ṁv is assumed

to consist of a source and a destruction term. The source (destruction) term is responsible

for the transition of the liquid (vapor) mass to the vapor (liquid) mass. The mass transfer

term can be written as follows:

ṁv = CP rod
ρv(1 − α)
1
2ρlU2

∞t∞
min(0, p− psat) − Cdest

ρv(1 − α)2α

t∞
(4.2)

The transition of the liquid to vapor is assumed to be correlated to the liquid volume fraction,

1 − α, and the difference of the static pressure with the saturation pressure. Cprod is an

empirical constant, U∞ is the mean flow velocity and t∞ = U∞
c

is a mean flow time-scale.

The transition of the vapor phase to the liquid phase is correlated to the volume fraction of

the vapor and liquid phases [60]. Cdest is an empirical constant. Merkle et al. [16] assumed

that liquid density changes are proportional to the dynamic pressure:

|psat − p|= κρ∞U
2
∞

2
(4.3)

Where κ is an arbitrary parameter having a value between 0.2 to 0.5, the assumptions

mentioned above imply that their model considers the compressibility of the flow. Besides,

Merkle et al. [16] took into account the time scale of the flow motion:

t∞ = d

U∞
(4.4)

The corresponding time scale allowed them to evaluate the required time for the transition

from one phase to another.
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A void ratio transport equation is suggested by Saurel et al. [57] and later by Charrière et

al. [13] that can be expressed as follows:

∂α

∂t
+ ∂(αu)

∂x
+ ∂(αv)

∂y
= (K + α)(∂u

∂x
+ ∂v

∂y
) + ṁv

ρI

(4.5)

Another popular method to define the transition of the vapor to the liquid phase is given by

Eq. (4.5) Where K and ρI are defined as follows:

K = ρlc
2
l − ρvc

2
v

ρlc
2
l

1−α
+ ρvc2

v

α

(4.6)

ρI =
ρlc

2
l

1−α
+ ρvc2

v

α

c2
v

α
+ c2

l

1−α

(4.7)

Goncalvès [29] assumed that the mass transition is correlated to the velocity divergence. In

this case scenario, the destruction (source) term is responsible for vapor volume decreases

(increases).

ṁv = ρlρv

ρl − ρv

(1 − c2

c2
wallis

)(∂u
∂x

+ ∂v

∂y
) (4.8)

Where cwallis is the propagation velocity of acoustic waves without mass transfer [76]. This

speed of sound is expressed as a weighted harmonic mean of the speed of the sound of each

phase:

1
ρc2

wallis

= α

ρvc2
v

+ 1 − α

ρvc2
l

(4.9)
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This model takes into account a correlation between sound speed and the thermodynamic

equilibrium.

Rayleigh [58] developed a mathematical model of the cavitation process in an incompressible

flow. This mathematical model assumes that the surface tension and viscosity effects are

negligible in the cavitation process.

The well-known Rayleigh–Plesset equation governing the dynamics of a spherical bubble in

an incompressible flow is expressed as follows:

R
d2R

dt2
+ 3

2
(dR
dt

)2 = psat − p

ρl

− 2σ
ρlR

− 4 µl

ρlR

dR

dt
(4.10)

Inspired by Rayleigh, Schnerr, and Sauer [66] developed a transport-based cavitation model.

Their model takes into account the dynamics of the bubble growth:

Ṙ = dR

dt
=
√

2
3

(p− psat)
ρl

(4.11)

The initial value of bubble radius, R, was set to 3 × 10−5.

Source terms of their model are expressed as follows:

ṁ+ = ρvρl

ρm

α(1 − α) 3
R

√
2
3

(p− psat)
ρl

(4.12)

ṁ− = ρvρl

ρm

α(1 − α) 3
R

√
2
3

(psat − p)
ρl

(4.13)

34



The transport equation of the model requires no empirical constants and depends only on

quantitative values of the physical parameters.

Based on the Rayleigh-Plesset equation, Iben [33] developed a source term as follows:

ṁ+ = Cprodρv
6α
2R

√
2
3
p− psat

ρl

(4.14)

ṁ− = −ρv
6α
2R

√
2
3
psat − p

ρl

(4.15)

In this model, an empirical constant determines the rate of condensation, and other terms

are physical parameters. Iben’s model is primarily used to simulate cavitation in throttles

and nozzles in two-dimensional geometries.

Singhal et al. [3] formulated the cavitation source term as follows:

ṁ+ = Cprod

√
k

σ
ρlρl

√
2
3

(p− psat)
ρl

fv (4.16)

ṁ− = −Cdest

√
k

σ
ρlρv

√
2
3

(psat − p)
ρl

(1 − fv − fg) (4.17)

Source terms of Singhal et al. [3] are assumed to be correlated to the surface tension, (σ

= 0.0717 N
m
), turbulence kinetic energy, and the content of non-condensable gasses in the

liquid (fg ≈ 10). The vapor mass fraction can be obtained as follows:
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α = fv
ρm

ρv

(4.18)

Frobenius [49] developed a model similar to Schnerr and Sauer [66]. The source terms of the

Frobenius model have the following forms:

ṁ+ = Cprod
ρvρl

ρm

α(1 − α) 3
R

√
2
3

(p− psat)
ρl

(4.19)

ṁ− = −Cdest = ρvρl

ρm

α(1 − α) 3
R

√
2
3

(psat − p)
ρl

(4.20)

Frobenius et al. [49] implemented two- and three-dimensional steady and unsteady flow

simulations around a hydrofoil and steady simulations for flow past the centrifugal pump

impeller.

Saito et al. [79] for the first time suggested a model based on the mass surface change. In

this model the mass source unit is not kg
m3s

, instead it is kg
m3s

. To define the interfacial area

concentration in the vapor-liquid mixture, Saito et al. [79] utilized a new variable A:

A = Caα(1 − α) (4.21)

The source terms of Saito et al. are expressed as follows:

ṁ+ = CprodAα(1 − α) p− psat√
2πR1Tsat

(4.22)

36



ṁ− = −CdestAα(1 − α) ρl

ρv

psat − p√
2πR1Tsat

(4.23)

The relationship between all constants is expressed as follows:

C = CpCa = CdCa (4.24)

The value of the empirical model constant C is set to 0.1 1
m
. Saito et al. assessed the fidelity

of their model in prediction of cavitation region in unsteady three-dimensional cavitating

flows over a hemisphere and a cylinder. Furthermore, they employed their model in the

two-dimensional simulations of an unsteady flow past a hydrofoil.

Zwart et al. [56] proposed source terms of the model as follows:

ṁ+ = Cprod
3αρv

R

√
2
3
p− psat

ρl

(4.25)

ṁ− = −Cdest
3ρv(1 − α)αnuc

R

√
2
3
psat − p

ρl

(4.26)

This model has a similar form as of Iben’s model [33]. Nucleation site of volume fraction αnuc

is set to 5 × 10−4. This model has been employed to simulate three-dimensional unsteady

cavitating flows. Zwart et al. [56] used the model to simulate and analyze the cavitating

flow around a hydrofoil. They also presented the results of the simulation of the cavitating

flow past an inducer and a Venturi-type section.

Huang and Wang [8] suggested a new method of mass transition from the liquid phase to
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vapor phase:

ṁ+ = χ(ρm

ρl

)ṁ+
Z + (1 − χ(ρm

ρl

))ṁ+
S (4.27)

ṁ− = −χ(ρm

ρl

)ṁ−
Z + (1 − χ(ρm

ρl

))ṁ−
S (4.28)

In this model the blending function χ(ρm

ρl
) is described as:

χ(ρm

ρl

) = 0.5 +
tanh[

C1( 0.6ρm
ρl

−C2)
0.2(1−2C2)+C2

]
[2tanh(C1)]

(4.29)

The author combined the blending function with the expressions of source terms of Zwart

[56] and Schnerr and Sauer [66]. The values of the model constants C1 and C2 are set to 4

and 0.2. Huang and Wang [8] evaluated the performance of their model for unsteady flows

around a hydrofoil.

Konstantinov et al. [70] proposed an equation to solve the instability problem of the Rayleigh-

Plesset equation. They emphasized that this equation describes the bubble dynamics with

better accuracy and imposes no effect on the computational stability. Taking into account

the effect of the Reynolds number on the radius of the bubble, they derived the following

equation describing the dynamics of the bubble:

dR

dt
= tanh[1.221(

R
√

|psat − p|ρm

4µ
)0.353]

√
2
3

|psat − p|
ρl

(4.30)

Konstantinov et al. [70] combined their new bubble dynamic equation with the source terms
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suggested by Zwart et al. [56] and obtained revised source terms as:

ṁ+ = Cprod
3αρv

R
tanh[1.221(

R
√

|psat − p|ρm

4µ
)0.353]

√
2
3

|psat − p|
ρl

(4.31)

ṁ− = −Cdest
3ρv(1 − α)αnuc

R
tanh[1.221(

R
√

|p− psat|ρm

4µ
)0.353]

√
2
3

|p− psat|
ρl

(4.32)

This section briefly reviewed the various numerical models expressed in the literature to

simulate the response of the single bubble and vapor structures to the pressure field. The

following characteristics, assumptions, and challenges of some of the preceding cavitation

models are explained. The first homogeneous transport model is the Rayleigh-Plesset equa-

tion, which obtains the dynamics of a single bubble. This model considers the effects of the

surface tension and viscosity on the radius of the bubble. One of the Rayleigh-Plesset model

problems is that it cannot describe the dynamics of the vapor structures accurately.

Cavitation models proposed by Merkle et al. [16], Kunz et al. [60], Singhal et al. [3],

Saito [79] address the destruction, production, expansion due to merging, compression, and

phase transition processes. They suggested that the processes mentioned above depend on

the semi-empirical relation between the pressure difference between the static pressure and

the vapor saturation pressure. Fundamentally, these models assume that the vapor-liquid

interface is in equilibrium condition. The results dependence on the semi-empirical constants

is the major problem with these models. Since numerous cavitation regimes are observed

in different regions of the flow field, the calibration of the model in the distinct regions has

remained a challenging objective.

Assuming that the bubble expansion is occurring in a controlled inertia regime, Schnerr and
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Sauer [66] solved the simplified form of Rayleigh–Plesset equation. Negligible acceleration

results in an explicit relationship between the interface radial velocity with the pressure

difference. Schnerr and Sauer [66] model neglects the thermodynamic and mass transfer

effects on the dynamic of the bubble. It also assumes that the acceleration is negligible for

all regimes of cavitating flow.

Charrière et al. [13] assumed that the mass transfer between phases occurs via void ratio

transport. Their assumption neglects the vapor phase density variation as a function of the

pressure field.

4.2 Energy Balance of TKE

The Reynolds decomposition represents the instantaneous variable as a summation of the

fluctuating component and long time-averaged:

ϕi(xj, t) = Φi(xj) + ϕ′i(xj, t) (4.33)

The non-stationarity requires:

ϕi(xj, t) = Φi(xj) = lim
T →∞

∫ t+T

t
ϕi(xj, t)dt (4.34)

Eq. (4.33) is the generalized form of decomposition of the instantaneous variable. The

fluctuating component shown in Eq. (4.33) can be further decomposed into the fluctua-

tions introduced by the slow varying drift flow ϕi
drift(xj, t), fluctuations introduced by the

shear instabilities ϕi
KH(xj, t), reduced-order large-scale coherent structures ϕi

c(xj, t), and
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high-dimensional small-scale turbulent fluctuations. Therefore, in a cavitating flow the fluc-

tuating component may be decomposed into quadruple terms:

ϕ′i(xj, t) = ϕi
drift(xj, t) + ϕi

KH(xj, t) + ϕi
c(xj, t) + ϕi

ic(xj, t) (4.35)

Here, ϕi
drift(xj, t) represents the low-frequency drifts that distribute and transfer the energy of

the mean flow between high-frequency fluctuations arises as a result of the Kelvin-Helmholtz

instability, formation of the coherent structures, and generation of the incoherent turbulent

fluctuations.

To extract the low-frequency modes corresponding to drift in the flow field, a low-pass filter

with a Gaussian distribution is convoluted with the fluctuating component of the velocity:

h(t) = 1√
2πσG

e
−t2

2σ2
G (4.36)

ϕi
drift =

Twz/2∑
τ=−Twz/2

ϕ′i(xj, t)h(t) (4.37)

Where Twz is the filter bandwidth. The cutoff frequency may be defined as follows:

fc = Fs

2πσG

(4.38)

The choice of the filter cutoff frequency for the extraction of the drifting flow depends on

the largest unstable structures, KH instabilites.
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4.2.1 Standard dynamic mode decomposition algorithm

Hussain & Reynolds decomposition for non-stationary turbulence variable:

ϕi(xj, t) = ⟨Φi(xj, t)⟩ + ϕ̂i(xj, t) (4.39)

where ϕi(xj, t), ⟨Φi(xj, t)⟩ and ϕ̂i(xj, t) are the instantaneous, non-stationary and fluctuating

components, respectively.

The non-stationary part of the variable is decomposed as follows:

⟨Φi(xj, t)⟩ = Φ̃i(xj, t) + Φi(xj) (4.40)

Where Φ̃i(xj, t) is the quasi-periodic component of the variable and Φi(xj) is the long time

average component. Here we assume that the continuous turbulence variable can be tempo-

rally discretized into a finite number of snapshots. Let ϕ̂i(xj, t) be a matrix consisting of a

set of columns snapshots of the resolved turbulence variable. Here the sampling process is

uniform, so the total time is discretized equally between k samples.

A dynamical system can be generally expressed as follows:

∂

∂t
{ϕi(xj, t) − Φi(xj)} = ∂ϕ̂i

∂t
= f{ϕ̂i, t;µ(t)} (4.41)

Where vector ϕ̂i(t) ∈ Rn represents the state of the system and can be obtained by reshaping

all variables defining the state of the system into a single column vector; µ ∈ Rn̂ is a set of

non-dimensional system parameters and operator f represents all linear and nonlinear partial
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derivatives of vector ϕ̂i. Generally, Eq. (4.41) can be a set of coupled Partial Differential

Equations (PDEs) governing the flow field in a typical cavitating flow.

In the time-resolved PIV, the system’s state is extracted by resolving the velocity vector

field in a finite number of cells in the space in each time step. Finally, with a consecutive

sampling in time with constant time steps of ∆t, the evolution of the dynamical system’s

state is obtained. DMD assumes that a best fit linear matrix A ∈ Rn×m exists that maps

the state of the dynamical system from time step k + 1 to k.

ϕ̂i
k+1 ≈ Aϕ̂i

k (4.42)

Where n is the rank of the state vector, and m is the number of snapshots. The snapshots

obtained from PIV measurements can be rearranged as follows:

X = [ϕ̂i
1, ..., ϕ̂

i
m−1], Y = [ϕ̂i

2, ..., ϕ̂
i
m] (4.43)

Where the subscripts represent the snapshots time step. Eq. (4.43) implies that each columns

of matrix X needs to be mapped to the identical columns of matrix Y through a linear

multiplication. Clearly, matrix A is non-unique and for different values of k, different values

for A are obtained. Since the state vector accommodates a set of finite descritized vertex in

the space and time, the state vector and consequently matrix A is quite large. Instead of

defining a full-rank matrix A, DMD introduces an algorithm providing a low-rank eigenvalues

and eigenvectors of A matrix that is computationally affordable. Matrix X rank is n × m,

where n>m. X can be written using a Singular Value Decomposition (SVD):
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X ≈ UΣV ∗ (4.44)

where U ∈ Cn×r, Σ ∈ Cr×r V ∈ Cm×r. Where U columns are POD mode shapes.

The matrix A may be obtained through the pseudoinverse of X as follows:

A = X ′V Σ−1U∗ (4.45)

By the projections of A onto the POD mode shapes:

Â = U∗AU = U∗X ′V Σ−1 (4.46)

Where Â ∈ Rr×r. Matrix Â eigenvalues define a high-fidelity time evolution of the dynamical

system, provided that a sufficient number of POD mode shapes are considered:

ÂΩ = Ωλ (4.47)

The eigenvectors, mode shapes, of matrix A are the columns of Φ:

Φ = Y V Σ−1Ω

The mode amplitude time evolution may be obtained as follows:
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Θ = βexpτ (4.48)

Where Θ ∈ Rr×m̂ is the matrix of DMD modes time evolution and β ∈ Rr is the vector of

the initial conditions of mode amplitude.

β = βoΦ+ (4.49)

Where Φ+ is Moore–Penrose inverse of Φ, and βo is the vector of the initial status or the

initial snapshot, first snapshot, of the dynamical system.

The decay rate of the modes can be obtained as follows:

λDMD = loge|λ|
∆t

; (4.50)

The frequency of mode shapes can be obtained as follows:

ω̃ = fN
tan−1(λ)

π
; (4.51)

Where ω̃ is the vector of mode shape frequencies, λ is the vector of eigenvalues, and fN is

the Nyquist frequency.

The description of the coherent structures in the cavitating flow that improve our under-

standing of the underlying physics can be implemented using the DMD. This data-driven

technique can extract the dominant physics governing the transport processes and the insta-

bilities mechanism in the flow field. For this purpose, the data captured from the TR-PIV
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is used. DMD mode shapes and the corresponding eigenvalues describe the stability of the

distinct large-scale energy-carrying physical mechanism. Besides, DMD illustrates the re-

gions of the flow field that the occurrence of each instability is expected: DMD decomposes

complex flow fields caused by the cavitation into subdomains where local instabilities occur.

Finally, the temporal evolution of the coherent structures, the corresponding oscillation fre-

quency of amplitudes, and the monotonic decay rate of each mode can be extracted from

this analysis.

4.3 The Nonlinear Dynamic States

The signal of the POD time coefficient has been acquired by a uniform sampling of the

time-resolved PIV data; therefore, it can be exhibited as a data vector of the form:

ν = {v1, v2, ..., vm} (4.52)

The reconstructed time series is defined as follows:

ν̂k = {vk, vk+t′ , vk+2t′ , ..., vk+(d−1)t′} (4.53)

where k goes from 1 to q = m− (d− 1)t′

The delayed reconstructed geometry of the phase-space can be expressed using matrix Π:

Π = [νk, νk+t′ , νk+2t′ , ..., νk+(d−1)t′ ], k = 1, 2, ..., q = m(d− 1)t′ (4.54)
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q is the total number of reconstructed points in the state-space:

q = m− (d− 1)t′ (4.55)

Where m is the number of samples, and d is the minimum embedding dimensions. The

time series contains meaningful information on the instability of the dynamical system. The

geometry of the attractors of the dynamical system corresponding to a one-dimensional time

signal, for example, time coefficient of POD, can be further investigated using the concept

of reconstruction to a finite-dimensional state-space [1]. The reconstruction process can be

implemented using a time delay lag shifted coordinate [52].

Each column of the Π matrix determines the state of the dynamical system. Likewise, each

column of matrix Π is a point in the state-space of the reconstructed geometry. Using

the delay lag and embedding dimensions of attractors, one obtains a series of vectors of

time coefficients of POD leading to the finite-dimensional state-space reconstruction. The

time delay lags τ for state-space reconstruction can be estimated using Average Mutual

Information (AMI) [5, 9]. AMI is obtained from marginal entropies of the original signal and

the delayed lag signal. The vector data νk and νk+t′ components are used to find the AMI

as follows:

AMI(t′) =
m∑

k=1
p(νk, νk+t′) log2

[
p(νk, νk+t′)
p(νk)p(νk+t′)

]
(4.56)

Where p(νk) determines the probability of occurrence of each component of νk, and p(νk, νk+t′)

is the probability of co-occurrence of components of νk and νk+t′ in each of the vector sets.

AMI can be obtained using different values for t′. Here it is assumed that the location of
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the first minimum of AMI is the best estimate of t′. The minimum embedding dimensions of

the attractors’ reconstruction is evaluated through False Nearest Neighbor (FNN) algorithm

[61]. After generation of the delayed reconstruction matrix Π, the Euclidean distance of a

point let say kth reconstructed vector, given a dimension d, and its nearest neighbor point

is computed as follows:

sk = min
Πk̂

∥Πk − Πk̂∥2 (4.57)

Where sk is the initial Euclidean distance from the kth point to its nearest neighbor con-

cerning the reference point k. Next, the following expression is assessed:

√√√√s(d+ 1) − s(d)
s(d)

> rtres. (4.58)

The threshold rtres. is set to be 20. If Eq. (4.58) is false, neighbors are false neighbors

[47]. For some values d, the number of the false nearest neighbors to the size of the signal

becomes minimum. FNN method implies that the trajectories of the attractors cross, thereby

violating the uniqueness of the solution. When dimensions of the reconstructed state-space

increase, the number of trajectories crossing each other drops asymptotically. Here The

minimum embedding dimension is defined as the dimension d that yields the lowest number

of false nearest neighbors. Once the delayed reconstruction of the phase-space is generated

Eq. (4.54), the nearest neighbor distance is determined by searching for the point that

minimizes the Euclidean distance to the selected reference point. An additional constraint

is also imposed to the nearest neighbors that limit the temporal separation to the values

greater than the mean period:
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|k − k̂|> tmean (4.59)

The mean period has been acquired using the spectral response of the POD time coefficients.

After finding the nearest neighbor point î with respect to the i reference frame, the FTLE

for an arbitrary interval L = (ln − lo + 1) can be defined as follows:

λF T LE = 1
L

ln∑
l=lo

1
l∆t

ln

∥∥∥Πk+l − Πk̂+l

∥∥∥
2

∥Πk − Πk̂∥2
(4.60)

Where λF T LE ∈ Rk , ∆t is the sampling time. Then the Lyapunov exponent is obtained using

a linear regression model of Eq. (4.60). Given the entire time series of the POD coefficients,

Eq. (4.60) can also be used to find the LLE associated with each of the coefficients.

The study of the LLEs is intuitive, where POD coherent structures and their corresponding

time dynamics reveal some non-linear states and chaotic behavior. The results of the LLEs

are imperative in the stability analysis of the POD energetic modes. LLEs close to zero

implies that the corresponding time dynamics are quasi-periodic; positive values of LLEs

show the chaos in the time dynamics and negative values represent a periodic behavior of

the time dynamics. The LLE obtained from a prolonged period represents the asymptotical

behavior of the time dynamics. Using the LLE obtained from an extended period, one

can determine the long-term stability of the POD energetic modes. Accordingly, after an

extended period, zero LLEs imply that the system asymptotical becomes quasi-periodic. A

negative value for LLEs after a long period suggests that the system asymptotically becomes

periodic. On the other hand, if the long period of time the LLEs is positive, the system’s

behavior becomes chaotic.
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4.4 CROM Algorithm

For the analysis of the time-resolved velocity vector field of the liquid phase in the Venturi

profile, the CROM strategy is employed. The CROM strategy splits the state-space geome-

try into a finite number of clusters representing the dynamics; each cluster represents a group

of points or states in the phase-portrait. Next, a transition model is employed to describe

the transition between the states [20]. Here the reduced-order behavior of the instantaneous

velocity, W ∈ Rn×m is studied where index n represents the rank of the state vector, and

m represents the number of snapshots. The input for CROM is the time-resolved snapshots

obtained from PIV measurements of the liquid phase.

The components of the distance matrix Z = [zll̂] ∈ Rm×m is defined as follows:

zll̂ = ∥ωl − ωl̂∥2 , l, l̂ = 1, 2, ..m (4.61)

Where zll̂ is the Euclidean distance between two snapshots or two columns of W matrix,

and ωl is the state of the system at time step l. Among the clustering algorithms, k −

means+ + has received a lot of attention due to its advantages, such as insensitivity to the

initial condition and rapid clustering. The geometry of the phase-portrait obtained from the

snapshots is grouped into a finite number clusters κ = {c1, c2, ...cktot} such that the distance

between the points inside of a cluster is minimized, while the distance between the points

associated with one cluster to points outside of that cluster is maximized. Therefore, a set

of optimal cluster centroid may be obtained as follows:
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κopt = min
κ
ṽ

(
κ

)
(4.62)

Where κopt ∈ Rj is the vector of cluster centroid with component {c1, c2, ...c20}, and ṽ is the

cluster variance defined as follows:

ṽ

(
κ

)
=

ktot∑
k′=1

∑
ωl∈ck′

∥ωl − ck′∥2 (4.63)

The cluster centroid representing the mean mode shape of the points lying in the cluster

may be obtained as follows:

C = 1
nk′

∑
ωl∈ck′

ωl = [ξ′
k], k′ = 1, ...ktot (4.64)

Where C ∈ Rk′×n is the matrix of the mode shapes of the cluster centroids and ξ ∈ Rn is

the vector of the mode shape of each centroid. nk′ is the number of points in cluster k′. One

may summarize the k −means+ + algorithm as follows:

1. Select a sub-sample at random from W . The chosen sub-sample is the first centroid

c1.

2. Computing the Euclidean distance between sample points and the selected centroid at

the previous step, Dnew(ϕ̂i
j).

3. Finding the shortest distance from a data point ϕ̂i
j to the closest center, and repeat

this for all data points.

4. Replacing the shortest distances into Dold(ϕ̂i
j)
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5. Normalize D(ϕ̂i
j) with the mean value of 0 and standard deviation 1.

6. Select the next centroid; pick up randomly one point from the normalized distribution

7. Repeat steps 2-6 until we have chosen a total of k centers.

8. Compute point-to-cluster-centroid distances of all data points to each centroid.

9. Assign each data sample to the cluster with the lowest distance from a centroid.

10. Compute the average of the samples in each cluster to obtain k′ new centroid locations

using Eq. (4.64).

11. Repeat steps 8 through 10 until centroids locations do not change.

∆ =


1 if ωl ∈ ck′

0 otherwise
(4.65)

Where ∆ ∈ Rk×m

nk′ =
m∑

l=1
d̃lk′ (4.66)

qk′ = nk′

m
(4.67)

nj̃k′ =
m−1∑
l=1

d̃lk′ d̃l+1j̃ (4.68)
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The elements of the probability matrix are obtained as follows:

pj̃k′ =
nj̃k′

nk′
(4.69)

, where the rank of the probability matrix is P ∈ Rktot×ktot . The probability vector can be

defined as follows:

ρl = {p1,l, p2,l, ..., pktot,l} (4.70)

pl+1 = Ppl (4.71)

The long term behavior can be studied as follows:

ρ∞ = lim
l→+∞

Plρ0 (4.72)

P∞ = lim
l→+∞

Pl (4.73)

d̂j̃k′ =
∥∥∥cj̃ − ck′

∥∥∥
2
, j̃k′ = 1, ...ktot (4.74)

where D = [d̂j̃k′ ] ∈ Rktot×ktot

CROM technique prescribes the path and probability of intermittent transition between dif-
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ferent flow regimes and shedding patterns. Fundamentally, the CROM technique is used

for modal decomposition of the unsteady flow fields such as cavitating flow. Using the

Phase-averaging technique, CROM extracts the dominant flow patterns representing a big

population of the flow field status. Statistical analysis of cluster probability distributions

reveal the time duration that the flow remains in any of the dominant flow patterns. Be-

sides, this technique detects the clusters resulting in bifurcation occurrence where the cloud

shedding pattern fundamentally changes.

4.5 POD Time Dynamics Mathematical Model

POD technique decorrelates the length scales and yields time coefficients determining the

fluctuations of the energy of each mode. Velocity field reconstruction from the spatial struc-

tures and the time coefficients is expressed as follows:

ui =
NP OD∑
n=1

υi,n(x1, x2)σnνn(t) (4.75)

The time fluctuations may be used to build a system of ODEs that determines the dynamics

of the coherent structures. The dynamical system mathematically can be expressed through

Eq. (4.41). The governing equations of the dynamical system, right-hand side of Eq. (4.41),

may be extracted through a robust data-driven technique. The generic form of the system

of governing equations considering polynomials up to the fifth-order is as follows:

dνi

dt
= 1 + P5(νj), {i, j} = 1, 2, ..., 4 (4.76)
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Once the generic governing equations are considered, one needs to find the coefficient via

regressions methods. The right-hand side of the dynamical system, defining the multi-

variable fifth-order polynomial, consists of rp = 126 terms. Since the time fluctuations of

POD are obtained from the PIV measurements, the time derivative of the data may be

obtained through high-resolution finite-difference differentiation such as:

dνi

dt
= 1

12∆t
(νi(to − 2∆t) − 8νi(to − ∆t) + 8νi(to + ∆t) − νi(to + 2∆t)) +O(∆t4) (4.77)

Then, matrix Ψ ∈ RNtest×r is built from the vectors of the time derivative of POD coefficients,
dνi

dt
. The Koopman observables, polynomials reconstruction of the measured data, are stacked

into a matrix X̃ ∈ RNtest×rp . Following system of linear differential equations may be solved

to obtain the vectors of coefficients of the polynomial, Z̃ = [ζ1, ζ2, ζ3, ζ4] ∈ Rrp×r.

Ψ = X̃ζi (4.78)

Eq. (4.78) is an over-determined system of equations. The coefficients of the polynomial

are obtained by the minimization of the smallest l2 norm. Minimization of smallest l2 norm

yields an overfitted model with high complexity. Besides, such a model lacks interpretablity

and physical meaning because it randomly selects a tuning parameter that maps the input

to output with high accuracy. Regularization can be employed that avoids overfitting the

governing equations of the dynamical system. The least absolute shrinkage and selection

operator (LASSO) [73] minimizes the smallest l2 norm subjected to a l1 regularization:
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arg min
ζi

( 1
2Ntest

Ntest∑
k=1

(ψk
i − χkζi)2 + λreg.

rp∑
krp =1

|ζi|) (4.79)

The data of POD time coefficients are partitioned randomly into 10-fold of roughly equal,

disjoint subsets. One fold, the test set, is reserved for evaluating the model, and the rest of

the folds are used to train the polynomial coefficients. Next, λreg. is varied through a range

of values, and all realizable models with the corresponding closure coefficients are validated

against the test set. Since the evaluation of the derivative through the finite-difference scheme

introduces some level of noise to the data, a sparse polynomial is not feasible. However, the

l1 norm regularization parameter can be adjusted to cancel out some of the high order non-

linear terms contributing to the over-fitting to the test set data. Besides, one may use the

physical insight obtained from the governing equations to estimate the level of non-linearity

of the dynamical system. In this regard, to build a reasonably sparse model representing

the dynamics of the POD mode coefficients, the cross-validation MSE is utilized. Based on

the value of the MSE, the final complexity of the model can be selected, and the physical

interpretability of the model can be further assessed for distinct models. Substitution of

Eq. (4.75) into the conservation of momentum equation yields a POD reduced-order model

[44]. The reduced-ordered form of the momentum equation governing the dynamics of the

fluctuating component of velocity, u′, can be expressed as follows:

dν

dt
= L(ν) + N (ν) (4.80)

Where L represents the linear operators including pressure gradients and diffusive terms, and

N represents the nonlinear convective terms due to inertial forces. The nonlinear inertial

forces redistribute the energy between different large length scales, producing no kinetic
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energy in an incompressible flow. The quadratic non-linearity preserve turbulence kinetic

energy, thus:

νN (ν) = 0 (4.81)

Eq. (4.81) yields a set of constraints to Eq. (4.10) enforcing the conservation of energy

to the system of linear equations. Next, to address the compressibility of the flow, the

regularization parameter may be relaxed to decrease the uncertainty of the model.

[
ν1

ν2

ν3

ν4

]T [
z1,6ν1 z1,7ν1 + z1,10ν2 + z1,11

ν3

2
+ z1,12

ν4

2
z1,8ν1 + z1,11

a2

2
+ z1,13ν3 + z1,14

ν4

2
z1,9ν1 + z1,12

ν2

2
+ z1,14

ν3

2
+ z1,15ν4

z2,6ν1 + z2,7ν2 + z2,8
ν3

2
+ z2,9

ν4

2
z2,10ν2 z2,8

ν1

2
+ z2,11ν2 + z2,13ν3 + z2,14

ν4

2
z2,9

ν1

2
+ z2,12ν2 + z2,14

ν3

2
+ z2,15ν4

z3,6ν1 + z3,7
ν2

2
+ z3,8ν3 + z3,9

ν4

2
z3,7

ν1

2
+ z3,10ν2 + z3,11ν3 + z3,12

ν4

2
z3,13ν3 z3,9

ν1

2
+ ζ3,12

ν2

2
+ z3,14ν3 + z3,15ν4

z4,6ν1 + z4,7
ν2

2
+ z4,8

ν3

2
+ z4,9ν4 z4,7

ν1

2
+ z4,10ν2 + z4,11

ν3

2
+ z4,12ν4 z4,8

ν1

2
+ z4,11

ν2

2
+ z4,13ν3 + z4,14ν4 z4,15ν4

] [
ν1

ν2

ν3

ν4

]
= 0

(4.82)

57



z1,6 = z2,10 = z3,13 = z4,15 = 0 (4.83a)

z1,7 = −z2,6 (4.83b)

z1,8 = −z3,6 (4.83c)

z1,9 = −z4,6 (4.83d)

z2,7 = −z1,10 (4.83e)

z3,8 = −z3,13 (4.83f)

z4,9 = −z1,15 (4.83g)

z2,11 = −z3,10 (4.83h)

z2,13 = −z3,11 (4.83i)

z2,12 = −z4,10 (4.83j)

z2,15 = −z4,12 (4.83k)

z3,14 = −z4,13 (4.83l)

z3,15 = −z4,14 (4.83m)

z2,8 + z3,7 + z1,11 = 0 (4.83n)

z2,9 + z4,7 + z1,12 = 0 (4.83o)

z3,9 + z4,8 + z1,14 = 0 (4.83p)

z2,14 + z3,12 + z4,11 = 0 (4.83q)
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4.6 Pressure Reconstruction Method

Since pressure drop in the Venturi section occurs abruptly, the dynamical system goes

through an isothermal phase change during the accumulation of the gas phase. Besides,

the force due to the surface tension is negligible compared to the inertial forces. Based on

the assumptions mentioned above, the 2D conservation of mass and momentum incompress-

ible form for a mixture of gas and liquid read:

∂ρm

∂t
+ ∂(ρmu)

∂x
+ ∂(ρmv)

∂y
= 0 (4.84a)

∂(ρmu)
∂t

+ ∂(ρmuu+ p)
∂x

+ ∂(ρmuv)
∂y

= ∂τxx

∂x
+ ∂τxy

∂y
(4.84b)

∂(ρmv)
∂t

+ ∂(ρmvu)
∂x

+ ∂(ρmvv + p)
∂y

= ∂τxy

∂x
+ ∂τyy

∂y
(4.84c)

Assuming that the mixture density, ρm, is linearly depending on the density of each phase,

one can express the density relation as follows[11]:

ρm = (1 − α)ρl + αρg (4.85)

α is the gas volume fraction, ρl is the liquid-phase density, and ρg is the density of the gas

phase.
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The stress components τij can be written as:

τxx = 2
3
µm

(
2∂u
∂x

− ∂v

∂y

)
(4.86a)

τyy = 2
3
µm

(
2∂v
∂y

− ∂u

∂x

)
(4.86b)

τxy = µm

(
∂u

∂y
+ ∂v

∂x

)
(4.86c)

The mixture viscosity may be expressed as follow [19]:

µm = (1 − α)(1 + 2.5α)µl + αµg (4.87)

In cavitating flows, local pressure drop under the vapor pressure yields the phase transition

of the fluid. Given the velocity and density snapshots of the dynamical system, the instan-

taneous pressure field can be obtained explicitly by solving the compressible momentum

equation, i.e., Eq. (4.84) pressure. Estimating the instantaneous pressure field, one can

explicitly locate the phase-change regions to verify the experimental density evaluations.

For the compressible momentum equation, pressure and velocity are coupled. After taking

the divergence of the momentum equations, Eq. (4.84), in x and y directions, a Poisson

equation in the following form may be obtained:

∂2p

∂x2 + ∂2p

∂y2 = RHS (4.88)
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The RHS contains the partial derivatives of the inertial forces and molecular diffusive terms:

RHS = − ∂

∂x

[
∂(ρmu)
∂t

+ ∂(ρmuu)
∂x

+ ∂(ρmuv)
∂y

−
(
∂τxx

∂x
+ ∂τxy

∂y

)]
− ∂

∂y

[
∂(ρmv)
∂t

+ ∂(ρmvu)
∂x

+ ∂(ρmvv)
∂y

−
(
∂τxy

∂x
+ ∂τyy

∂y

)]
(4.89)

LHS of Eq. (4.88) is discretized with a diffusive-type central differencing scheme which

is solved by applying an iterative technique with a Successive Over Relaxation (SOR) pa-

rameter, i.e., λ > 1. The optimal value to use for the SOR parameter, λ, is predicted

for boundary conditions. Given the Dirichlet boundary conditions, the optimal value for

the SOR parameter is the smaller root of the following relation [applied numerical analysis

seventh edition]:

[
cos(π

I
) + cos(π

J
)
]2
λ2 − 16λ+ 16 = 0 (4.90)

where I and J are the number of subdivisions corresponding to the rectangular region.

pl+1
i,j =

pl
i+1,j + pl

i−1,j + pl
i,j+1 + pl

i,j−1

4
+RHSl

i,j (4.91)

pl+1
i,j = λpl+1

i,j + (1 − λ)pl
i,j (4.92)

Neumann boundary condition has been imposed on the Venturi test section walls, and con-

stant pressure, Dirichlet boundary condition, acquired from the pressure gauges is set on the
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nodes located adjacent to the inlet and the outlet boundaries:

pi,j = pinlet i, j ∈ inlet (4.93a)

pi,j = poutlet i, j ∈ outlet (4.93b)
∂pi,j

∂xi

= 0 i, j ∈ wall (4.93c)

For example, imposing the Neuman boundary condition, one can express the pressure on the

wall boundary as follows:

pl+1
wall = 2pl

i−1,j + pl
i,j+1 + pl

i,j−1 +RHSl
i,j (4.94)

The following relation has been checked for all instances that meet the convergence criteria

res =
∥∥∥∥∥ p

l+1
i,j − pl

i,j

pl+1
i,j

∥∥∥∥∥
2

< 10−6 (4.95)

4.7 Uncertainty Quantification of Pressure Field

The posterior distribution of the velocity propagates the uncertainty through the source

term. The expected value E and covariance matrix Σ of the source term can be studied to

present the uncertainty of the pressure field. Since the inertial terms in the Navier-Stokes

equations are non-linear, the Monte Carlo method is used to obtain the pressure uncertainty.

Source term contains non-linear terms depending on the velocity and vapor void fraction.
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Derivation of the uncertainty propagation to the source term (RHS) is straightforward in

the Monte Carlo method. To implement Monte Carlo method for uncertainty propagation,

one needs to randomly generate realizations of variables, given the posterior distribution of

the corresponding variables, e.g. Σ(u|uP IV ), E(u|uP IV ) [34, 53]. Here, the realizations of

the variables are generated using the Cholesky decomposition of the covariance matrix. The

Cholesky decomposition can be written as follows:

Σ(u|uP IV ) = LLT (4.96)

Then, the lower-triangular matrix L is multiplied by vectors of uncorrelated random realiza-

tions extracted from Gaussian distribution with standard deviation and expected value of

one and zero, respectively [28]. Next, the source term is computed for each vector realization.

Finally, the source term’s standard deviation and expected value can be evaluated, given

distinct realizations of the source term.

In the present dissertation, the pressure field is constructed using the PIV data. It is assumed

that the velocity field is unknown, and there is no prior estimation of the velocity field in

the PIV measurements locations. The assumptions mentioned above result in the following

equations for the expected value and covariance matrix:

E(u|uP IV ) = uP IV (4.97)

Σ(u|uP IV ) = R (4.98)

In other words, Eqs. (4.97) and (4.98) emphasize the fact that the posterior expected value
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and covariance matrix are equal to the velocity field obtained from PIV and its corresponding

measurement uncertainty, respectively.

The expected value and covariance for the pressure are derived using the inverse of the

Laplace operator, A, and the expected value and covariance of the source term:

E(p) = A−1E(RHS) (4.99)

Σ(p) = A−1Σ(RHS)A−T (4.100)

4.8 Favre-averaged Navier-Stokes Equations

In the following two sections, a framework has been developed to identify the dominant

mechanism that results in local momentum variation. The data-driven technique begins

with the derivation of the general governing equation, which describes the local momentum

change resulting from physical processes such as the gradient of pressure, Reynolds stresses,

and viscous stresses. Here the terms in the conservation of momentum have been obtained

using the data of X-ray imaging, which provides the planar velocity field and local void frac-

tion, accompanied by the numerical simulations of the instantaneous pressure field. Next,

Since in many regimes of cavitating flow, some of the terms have pivotal importance in the

governing equation balance, it is suggested that the complexity of the model can be reduced

in local regions by neglecting some of the physical mechanisms.

Next, it is assumed that each term in the governing equation represents a coordinate system
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and the entire terms reconstruct an equation space. Each point in the equation space repre-

sents the values of terms in space and time shown, let’s say for Favre-averaged momentum

equation by a vector with eight entries. The negligible terms will have zero components in

some regions. Zero entries make it feasible to dismiss some of the terms in the governing

equation. Identifying the regions of the flow field where some of the terms are negligible and

have an insignificant contribution to the balance can be implemented using machine learning

tools. The following section focuses on the tools used to identify the regions where subsets

of the terms describe the behavior of the system.

The dominant balance mechanism of cavitating inception past the throat of the Venturi-type

test section has been studied. Terms obtained from Favre-averaged Navier-Stokes equations

are represented in the form of equation space. Next, the equation space is clustered, and

associated local dominant balance models are presented to conserve the momentum.

The instantaneous velocity may be decomposed into a mass-averaged component and a fluc-

tuating component:

u = ũ+ u′′ (4.101a)

v = ṽ + v′′ (4.101b)

Where mass-averaged for an arbitrary variable ϕ reads:

ϕ̃ = ρϕ

ρ
(4.102)
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Therefore, the Favre-averaging of an arbitrary variable ϕ reads:

ϕ̃(x, y, t) = 1
ρ

1
T

∫ t+T

t
ρ(x, y, τ)ϕ(x, y, τ)dτ (4.103)

The Reynolds-averaging of an arbitrary variable ϕ reads:

ϕ(x, y, t) = 1
T

∫ t+T

t
ϕ(x, y, τ)dτ (4.104)

Where T is long relative to the period of the large-scale turbulent fluctuations, here DMD

eigenvalues are used to define the time scale of the large-scale turbulent fluctuations.

p = P + p′ (4.105a)

ρ = ρ̄+ ρ′ (4.105b)

Favre-averaged momentum equations can be written as follows:

∂(ρ̄ũ)
∂t

+ ∂(ρũũ)
∂x

+ (ρũṽ)
∂y

= −∂P

∂x
+ ∂τ̃xx

∂x
+ ∂τ̃xy

∂y
+ ∂τxx

∂x
+ ∂τxy

∂y
(4.106a)

∂(ρ̄ṽ)
∂t

+ ∂(ρṽũ)
∂x

+ (ρṽṽ)
∂y

= −∂P

∂y
+ ∂τ̃xy

∂x
+ ∂τ̃yy

∂y
+ ∂τxy

∂x
+ ∂τ yy

∂y
(4.106b)

(4.106c)

The terms on the left represent the change in mean momentum of a fluid element owing

to the unsteadiness in the mean momentum and the convection by the mean momentum,

while those on the right-hand side of the equation are the mean pressure gradient, viscosity
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stresses, and Reynolds stresses, respectively

τ̃xx = −ρu′′u′′

ρ
(4.107a)

τ̃xy = −ρu′′v′′

ρ
(4.107b)

τ̃yy = −ρv′′v′′

ρ
(4.107c)

Where velocity fluctuating components can be derived as follows:

u′′ = u− ρu

ρ
(4.108a)

v′′ = v − ρv

ρ
(4.108b)

τxx = 2
3
µ̃
(

2∂ũ
∂x

− ∂ṽ

∂y

)
(4.109a)

τ yy = 2
3
µ̃
(

2∂ṽ
∂y

− ∂ũ

∂x

)
(4.109b)

τxy = µ̃
(
∂ũ

∂x
+ ∂ṽ

∂y

)
(4.109c)

(4.109d)

Where µ̃ is computed as follows:

µ̃ = ρµ

ρ
(4.110)
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4.9 Gaussian Mixture Model

The domain of the Favre-averaged momentum equation is discretized with some interroga-

tion windows representing the space, and time-averaged snapshots, representing the time-

averaged steps. Next, the forces due to unsteadiness, advection, pressure gradient, Reynolds

stress, and viscous stress terms are evaluated in discretized spacetime points. Each of the

terms in the governing equations, e.g., Favre-averaged momentum equations or the Navier-

Stokes equations, represents a coordinate in the state-space of the governing equations. The

snapshots of the terms in the governing equations can be rearranged into a vector. Finally,

the vectors representing each term can be stack in a matrix of forces as follows

Fx = [∂(ρ̄ũ)
∂t

,
∂(ρũũ)
∂x

,
(ρũṽ)
∂y

,
∂P

∂x
,
∂τ̃xx

∂x
,
∂τ̃xy

∂y
,
∂τxx

∂x
,
∂τxy

∂y
] (4.111a)

Fy = [∂(ρ̄ṽ)
∂t

,
∂(ρṽũ)
∂x

,
(ρṽṽ)
∂y

,
∂P

∂y
,
∂τ̃xy

∂x
,
∂τ̃yy

∂y
,
∂τxy

∂x
,
∂τ yy

∂y
] (4.111b)

Where matrix Fx, Fy ∈ Rn×k = [fi,j]. k is both the number of terms in the governing

equations, e.g., k = 8 in the Favre-averaged momentum equation or number of clusters.

n = nw × ns is the number of spacetime points. where ns is the number of snapshots,

and nw is the number of interrogation windows. Each row in the matrix Fx and Fy is a

point in the state-space whose coordinates are associated with the terms in the governing

equations. Where each row, equivalently each data point in the state-space, can be defined

by a vector xi ∈ Rnt , where nt is the number of terms in each equation, e.g., nt = 8

in the Favre-averaged momentum equation. Matrix Fx is called some observations of the

governing equations. Gaussian Mixture Models (GMMs) assume that these observations can

be represented by combining a set of clusters. The GMMs assumes that the Probability
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Density Function (PDF) for the observations of data points in matrix Fx is a weighted linear

sum of a set of Gaussian distributions:

Prob(xi) =
k∑

p=1
αpN (xi|µp, σp) (4.112)

The probability that observed point xi comes from cluster k is defined as follows:

γi,j = p(z = j|x = xi) (4.113)

γi,j is defined as the responsibility of the cluster j takes for the data point xi. Eq. (4.113)

is computed for a mixture of Gaussian distribution as follows:

γi,j = αjN (xi|µj,Σj)
k∑

c=1
πcN (xi|µc,Σc)

(4.114)

In this case, the points assigned softly to cluster c can be defined as follows:

nc =
n∑

i=1
γi,c (4.115)

Expectation-Maximization (EM) algorithm [2] has been used to compute the maximum

likelihood. The EM algorithm looks for the maximum local likelihood of the parameters of

the GMM model. The objective is to determine αj, µj, and Σj for each Gaussian probability

distribution. An estimate of the Gaussian distribution parameters is using the Expectation-

Maximization (EM) algorithm. The algorithm starts by assuming an initial guess of the

parameters, αj, µj, and Σj, for all clusters. the posterior probability of a data points xi can
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be determined using Eq. (4.114). These step is called ”E-step” and it is evaluated for all

data points and all clusters, e.g. i = 1, ..., n j = 1, ..., k. Next, the weighted-averaged of the

mean values and covariance matrices is re-estimated as follows:

µnew
c = 1

nc

n∑
i=1

γi,cxi (4.116)

Σnew
c = 1

nc

n∑
i=1

γi,c(xi − µnew
i )(xi − µnew

i )T (4.117)

πnew
c = nc

n
(4.118)

This step is called the ”M-step.” These two steps are repeated iteratively until the log-

likelihood converges.

4.10 Phase Transition Modeling

The following Partial Differential Equation (PDE) has been suggested that represents the

mass production or destruction term:

ṁv = N(p, pt, px, py, ux, vy, αx, αy, x, t, q) (4.119)

N(.) is a nonlinear function of pressure, void fraction, space, time, and system parameters

such as density. Given the mass production term, the function N(.) may be prescribed
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to model the system’s measurements at space and time. It is assumed that some of the

parameters are contributing to the physics of the cavitating flow and the rest of the terms

are negligible or correlated with noise that promotes the sparsity of such a model. r and ζj

determine the sparsity of the model, and q is a constant.

N =
r∑

j=1
Nj(p, pt, px, py, ux, vy, αx, αy, x, t, q)ζj

The transport equation based on vapor volume fraction reads:

ṁv = ∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
(4.120)

Rudy et al. [65] proposed a method capable of discovering the source term in Eq. (4.120),

given the spatial and temporal data of the variables. To construct the regression model,

firstly, the time and space data of mass transition term, ṁv, are collected into a column

vector U ∈ Rm×n where m and n represent the time and space points, respectively. Next, a

library of linear and nonlinear terms and their partial derivatives, consisting of pressure and

void fraction and the derivatives, are collected in Θ ∈ R(m×n)×D where D is total number of

linear and nonlinear terms. Each column of Θ represents the values of one of the linear or

nonlinear terms. The source term field PDE may be expressed as follows:

ṁv = Θ(U)ζ (4.121)

The linear system of equations mentioned above is solved for coefficients, ζ. U and Θ matrices

read:
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U =



U(x1, t1)

U(x2, t2)
...

U(xn, tm)



Θ =



1 p(x1, t1) pt(x1, t1) . . . pxx(x1, t1)

1 p(x2, t1) pt(x2, t1) . . . pxx(x2, t1)
... ... ... ...

1 p(xn, tm) pt(xn, tm) . . . pxx(xn, tm)



The Least Absolute Shrinkage and Selection Operator (LASSO) minimizes the smallest l2

norm subjected to an l1 regularization:

arg min
ζ

∥Θζ − U∥2 + λ ∥ζ∥1
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Chapter 5

Verification and Validation of

Mathematical Models
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This chapter shows the relative error of the simulation implemented using an in-house CFD

code; the results of both true pressure field and estimated pressure field are plotted in one

graph. In this regard, firstly, compressible form of Navier-Stokes equations are used to com-

pute the pressure field over a transitional boundary layer as it occurs on a flat plate. Direct

Numerical Simulation (DNS) of a transitional boundary layer over a flat plate has been im-

plemented, thereby yielding the instantaneous pressure and velocity field, which is assumed

to be the true value of variables. The DNS has been developed and implemented at Johns

Hopkins University. incompressible Navier-Stokes equations are discretized and solved using

a Finite Volume Method (FVM). Given the true velocity vector field obtained from DNS

results, the estimated pressure field has been acquired using the in-house CFD code. Accord-

ingly, compressible form of momentum equation is solved for the pressure field. It should be

noted that, by definition, a compressible CFD code converges to the incompressible solver,

given the fact that the density is a constant.

Additionally, the uncertainty of the pressure computations is presented. The data obtained

from the flow field past the throat of the Venturi-type test section is utilized to assess the

propagation of the uncertainty from the velocity field and void fraction to the reconstructed

pressure. The method was applied to the experimental test case in which the sheet cavity

is fully developed; look at the region # 1 depicted in figure 3.4. The covariance matrix of

the velocity in the non-cavitating and cavitating regions, accompanied by the covariance

matrix of the void fraction extracted from the uncertainty measurements of X-ray imaging,

is utilized in the Monte Carlo simulations. The upper bound of the uncertainty assigned to

reconstructed pressure has been acquired for non-cavitating and cavitating flow fields.
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5.1 Free-stream

The freestream at the leading edge of the plate is assumed to be composed of a uniform

velocity, U∞ and freestream turbulent fluctuations u′
F ST . Since the turbulent component of

the velocity decays as it is transported to the leading edge, the Turbulence intensity adjacent

to the leading edge is Tu = 3%.

5.2 Boundary Conditions

A No-slip boundary condition is prescribed at the flat plate wall. A periodic boundary condi-

tion is applied at the side endings of the plate to extend the plate to infinity. The continuity

boundary condition is applied at the top of the computational domain. Zero pressure gradi-

ent is prescribed at the top of the computational domain. An advective boundary condition

is considered for the outlet where the plate ends.

5.3 Computational Domain

This section presents the flat plate geometry. DNS of incompressible flow is implemented

over a flat plate. The dimensions of the flat-plate is shown in figure 5.1. The half-thickness

of the plate is L, and it is used as a reference length scale. Free-stream velocity, U∞, is

used as the reference velocity. As shown in Table 5.1, the length of the plate is Lx = 1050L

measured from the leading edge and its width is Lz = 240L. Flat plate leading edge has an

elliptical shape whose geometry is governed by the following relation:
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(1 − 1
AR

x

L
)4 + (y + 1

L
)2 = 1 (5.1)

Where AR is the aspect ratio of the elliptical shape, the Reynolds number based on the

plate half-thickness, free-stream velocity, and fluid viscosity is ReL = 800.

Figure 5.1: The figure represents the flow over a flat plate as a boundary of the computational
domain. The solution domain extends 204×L, in the spanwise direction, where L is the half
thickness of the plate. The flat plate extends to 1050 half thickness of the plate downstream
of the leading edge.

5.4 Computational Mesh

The domain size and grid resolution have been shown in Table 5.1. The number of grid

points at the leading edge is 475. Minimum grid spacing, 0.001L, is applied to the leading

edge where the stagnation point is located. The streamwise spacing is ∆x+ = 11.9. The

spacing normal to the wall at the vicinity of the wall is ∆y+
min = 0.124. Within y+ < 10,

29 grid points are accommodated. The spanwise spacing is 0.117L, and it is uniform in the
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spanwise direction. At x = 1000L, the spanwise spacing corresponds to ∆z+ = 4.07. Grid

stretching between adjacent cells in both the tangential and normal to the wall is less than

3%.

The simulation time step is ∆t = 0.005L
U∞

. Only the data corresponding to the rectangular

domain in the downstream has been utilized for the the validation, and the data in the

shallow body-fitted domain adjacent to the leading edge is dismissed. The data used for

validation corresponds to x ∈ [30.2185, 1000.065]L, y ∈ [0.0036, 26.4880]L and z ∈ [0, 240]L.

Table 5.1: computational domain size, number of grid points, and spatial resolution of
boundary-layer at x = 1000 × L

(Lx, Ly, Lz)/L (Nx, Ny, Nz) ∆x+,∆y+
min,∆z+

(1050, 40, 240) (4097, 257, 2049) (11.9, 0.124, 4.07)

5.5 Spatial and Temporal Schemes

The First-order Euler scheme is used for both of the simulations. A linear upwind scheme has

been employed for the divergence terms to improve the solver instability. For the Laplacian

term, a second-order central differencing scheme has been used.

5.6 Results and Analysis

All results in this section are compared against the pressure field obtained from JHTDB [40].

The instantaneous pressure field in the rectangular domain in the downstream obtained from

JHTDB and the results of the in-house CFD code have been shown in figure 5.2. It should be
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noted that the velocity vector field and pressure field obtained from JHTDB is the true value.

Given the true value of the instantaneous velocity vector field, pressure has been estimated

using the in-house CFD code. The discrepancy between the black and blue curves in figure 5.2

displays the estimated relative error. A favorable pressure gradient is acquired in both cases

in the direction of the flow field. Adjacent to the wall and around x ≈ 0 − 275L, a laminar

inflow region is located, and the instantaneous pressure steadily decreases. Transitional

behavior in the pressure fluctuations is observed for x > 275L that corresponds to the

viscous sublayer. Strong pressure fluctuations are observed around x > 370L located at the

fully developed turbulence downstream. Adjacent to the wall, the pressure obtained from

Poisson’s equation and DNS agree very well with less than 5% discrepancy in the laminar

and transitional regions. The discrepancy grows significantly in the fully developed regions.

The significant difference in the fully turbulent region is since DNS uses high-order spatial

schemes. According to the theoretical prediction of the boundary layer theory, Along y
L

= 20

the inertial sublayer occurs at x > 42L. The strong pressure fluctuations are observed at

x > 500L along y = 20L. Since the flow field is located inside the inertial sublayer, pressure

fluctuations are not comparably high.
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Figure 5.2: Representation of the relative error between the DNS data, which is the true
value, and the estimated pressure field obtained from the in-house compressible CFD code (a)
Instantaneous pressure distribution of transitional boundary-layer obtained from the Direct
Numerical Simulations (DNS) of an incompressible flow over a flat plate [40] at t = 0.5
sec. and ReL = 800. (b) Instantaneous pressure distribution obtained from the numerical
simulation of compressible form of the pressure Poisson equation, Eq. (4.88). (c) streamwise
pressure gradient at y

L
= 20. (d) Convergence of the pressure field in the L2 norm. (e)

Streamwise pressure distribution on the plate. (f) Streamwise pressure distribution at y
L

=
20.

In figure 5.3, the solution for the instantaneous pressure gradient vector field at t ≈ 1.5s is

presented, which illustrates the inception of the vapor sheet past the throat of the Venturi-

type test section. The pressure field starts to decrease at the throat of the test section giving

rise to the sheet cavity growth depicted through the iso-contours of void fraction. At the

interface of the sheet cavity, the magnitude of the pressure gradient vectors acquires the
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maximum value, which emphasizes the role of sudden pressure drop before the cavitation

inception. The sheet cavity continues to grow along the length of the test section while the

magnitude of pressure gradient in the regions with the high void fraction is comparatively

lower. In the high void fraction, the wall-bounded sheet cavity, and the interface between

liquid and vapor phase, a significant misalignment is observed between the instantaneous

gradient of pressure and gradient of density. This misalignment is because the density is

a function of both pressure and temperature. This fact emphasizes that the two-phase

cavitating flow can not be assumed a barotropic fluid, specifically in the region with a

high void fraction, e.g., at the sheet cavity’s leading edge. The misalignment between the

pressure gradient and the density gradient results in a high vorticity region, i.e., in the

vicinity of the liquid-vapor interface and inside the attached sheet cavity. The vorticity

generated due to the baroclinity gives rise to a perturbation adjacent to the vapor-liquid

interface and the wall. The perturbation on the interface results in velocity discontinuity

that gives rise to Kelvin-Helmholtz instabilities at the interface of two phases, and growth

of the instabilities eventually creates a coherent attached sheet cavity along the length of

the Venturi. Besides, the role of the baroclinic torque is imperative in the production of

the eddies and modification of the vapor structures in the sheet cavity. Production of the

vorticity in the sheet cavity emphasizes the importance of baroclinic instability. Baroclinic

instability provides the required energy for the momentum transport between the liquid and

vapor strata. The highly vortical region shows that the presence of the eddies in the sheet

cavity results in the mixture of the tracer particles.
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Figure 5.3: Flow characteristics past the throat of the Venturi-type test section at location
(1), look at figure 3.4 (a) Sample of the instantaneous pressure gradient vector field overlaid
with the contours of the instantaneous gas volume fraction. (b) Sample of the velocity vector
overlaid with the contour of the instantaneous pressure field. (c) Time-averaged pressure field
at location (1). (d) Sample of instantaneous solenoidal iso-contour depicting baroclinity’s
high value inside the attached sheet cavity and on the vapor-liquid interface. A high value of
baroclinity is the primary mechanism of the attached sheet instability. The misalignment of
the pressure gradient vector field (green arrows) and the density gradient vector field (blue
arrows) influence the vorticity field. Baroclinic torque is an imperative mechanism of the
intermittent vapor jet propagating.

While the previous sections focused on the estimation of the relative error in the numerical

scheme as a result of the truncation of the higher-order terms, this section presents the

uncertainty that arises in the reconstructed pressure field as a byproduct of the uncertainties

in velocity and void fraction experimental measurements. Solution of Eq. (4.91) for the static

pressure imposes uncertainties due to the carried uncertainty in the velocity and void fraction

fields obtained from the post-processing of the high-speed X-ray imaging. Monte Carlo

simulations have been implemented for the cavitating regions and non-cavitating regions to

illustrate the propagation of the uncertainty of the measurements in the velocity vector field

and void fraction to the pressure field. Figure 5.4 depicts the propagation of the random
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velocity and local void fraction uncertainties into the pressure field. The difference between

the two figures is corresponding to the measurement uncertainty in the vapor-liquid mixture

flow field and the single-phase flow.

Figure 5.4: Representation of the one-dimensional uncertainty propagation from the velocity
vector field and the local void fraction to the pressure field. The measurement uncertainties
for the velocity vector field of the liquid-vapor mixture and single-phase flow are 0.46m

s
and

0.11m
s
, respectively. The uncertainty measurement of the local void fraction is 0.06. Graphs

show the standard deviation of the calculated pressure using the Monte Carlo simulations in
the (a) single-phase flow and the (b) cavitating flow.
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Chapter 6

Data-driven Modal Analysis

6.1 Introduction

In the present chapter, an in-depth analysis of the modes of instabilities in the cavitating flow

has been presented by using three distinct data-driven techniques: Dynamic Mode Decom-

position (DMD), Proper-Orthogonal Decomposition (POD), and Clustered-based Reduced-

Order Modelling (CROM). The multi-modal behavior of the cavitating flow has been studied

using DMD. Besides, the initial amplitude, decay rate, and frequency of each instability mode

are distilled by analyzing DMD results. The POD time coefficient data is reduced using the

Gaussian low pass and bandpass filter. The purpose of reducing the data is two-fold: (1)

identifying POD modes associated with distinct instability mechanisms in cavitating flow,

(2) showing the energy path and exchange of the TKE between different length scales in

the flow field. Besides, the combination of the POD modes of instability can reconstruct

the different instantaneous flow regimes, including premature condensation and vapor cloud

shedding. In the next step, the non-linear states of the POD time dynamics were studied

using FTLE and LLEs to shed light on the stability of the energetic POD modes. FTLE and

LLEs reveal the short-term and global stability of the POD time coefficients. The CROM

technique takes advantage of the phase-averaging to find the flow patterns, cluster centroid,

representing the big population of flow field status. Next, CROM displays the path and the

probability of intermittent, spontaneous transition between different regimes (clusters). Ad-
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ditionally, CROM Identifies the bifurcation occurrence where the flow regime goes through a

drastic change in its pattern. Statistical evaluation of the asymptotic probability distributing

shows the time duration spent on each shedding regime.

The velocity vector field of a two-phase cavitating flow in a Venturi-type profile has been

acquired through time-resolved Particle Image Velocimetry (PIV). Length scales of the co-

herent structures are decorrelated using the standard POD algorithm, and most energetic

mode shapes are selected. Thanks to the assumption made in the Takens’ theorem that

time-delayed reconstruction of the state-space conserves the attractors, or the geometrical

shape of the original state-space, a time-delayed reconstruction of the original state-space

has been obtained. After computation of the delayed reconstruction of the state-space POD

time coefficients, the delay for the reconstructed state-space is set to be the local minimum

of Average Mutual Information (AMI). Next, the minimum embedding dimensions of the

temporal coefficient attractors has been obtained using the False Nearest Neighbor (FNN)

algorithm. In the next step, the Rosenstein method has been employed to obtain the Largest

Lyapunov Exponent (LLE) and Finite-time Lyapunov Exponent (FTLE) of time coefficients

of each of the POD modes. The LLE and FTLE of each POD mode are further analyzed

to shed light on the dynamics of the geometry of the attractors in the state-space. Next,

the time scales of the coherent structures have been decorrelated using the standard DMD

algorithm. Thanks to the time scales decorrelation, the associating frequency and decay rate

to each DMD mode shape is presented. The correlation coefficient of the eigenvectors of

POD and DMD modes are obtained and further analyzed to complement the identification

through POD. Such analysis determines the most probable energy content associated with

the frequency content of DMD modes.

Cavitation in a venturi profile has been extensively studied in the past. Thanks to the sig-

nificant reviews in the literature [54, 62], there is abundant background knowledge on the
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cavitation inception, growth, and condensation process past a wedge-shaped profile. The

rising interest in the cavitating flow in a venturi profile has been witnessed in the literature;

however, understating the complex spatio-temporal structures and the governing dynamics

exhibited by this dynamical system has not been studied carefully. Cavitating flow through

a venturi shape test section is a proper model for investigating fundamental physics gov-

erning the nonlinear state of the two-phase flow fields. It is a complex nonlinear system

due to numerous effective system parameters and multiple variables exhibiting some chaotic

behavior.

The Reynolds number and free stream cavitation number can significantly influence the

system’s dynamics, as mentioned above. The cavitation behavior is also governed by some

system variables, such as the magnitude of the adverse pressure gradient. Depending on the

system parameters and variables impacting the dynamical system, cavitation may occur in

some regions of the flow field. Large-scale coherent structures of the cavitating flow, includ-

ing attached sheet cavitation and cloud cavitation, are incepted for low cavitation numbers

and low-pressure areas. Evaporation of the liquid phase occurs due to a strong adverse

pressure gradient in the separated shear layer past the venturi throat. Consequently, the

accumulation of the vapor phase leads to the formation of the attached sheet cavity. Due

to the non-linearity in the system dynamics, such as advective mechanisms, the cavitation

regions yield a quasi-periodic behavior resulting in intermittent and stochastic shedding in

the form of coherent vapor spatial structures known as the cloud. The attached sheet cavity

growth process and growth rate and the onset of the closure of the cavity are profoundly

affected by the non-linearity of the dynamical system, thereby making all subsequent events,

including (1) the re-entrant liquid phase flow, (2) the shedding of the cloud and (3) conden-

sation of the detached cavities behaving quasi-periodical. The non-linearity of the cavitating
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flow has been emphasized in the literature. Recently, Chen et al. [25], using piezoelectric

pressure transducers, demonstrated that unsteady pressure pulses obtained from the flow

in a convergent-divergent channel are quasi-periodic. They also attributed the occurrence

of quasi-periodic to all evolution stages of the sheet to cloud cavitation. This experimental

study is reasonably aligned with the experiment implemented by Reboud et al. [39]. Laser

Doppler Velocimetry (LDV) measurements of a cavitating flow have also been implemented

by Danlos et al. [6] on a venturi profile. This investigation studied the phase portrait ob-

tained from the POD mode time coefficients. The phase portrait implies that the dynamical

system governing the cavitating flow is nonlinear, non-periodic, and lives in high-dimensional

state-space even in a low-rank framework, including the POD reduced models.

Cavitation stages introduce several instabilities with an array of time and length scales to

the system, thereby giving rise to the nonlinear behavior of the flow field. The aperiodic

oscillation of the attached sheet cavity length triggers instability in the velocity field and,

consequently, pressure fluctuations. This instability has been studied comprehensively by

many authors [4, 43, 51, 68, 69, 80]. The velocity difference on the interface of the liquid-

phase and the vapor-phase region of the flow field gives rise to another dominant instability

associated with Kelvin-Helmholtz mode studied by Lush and Peters [45] and Danlos et al.

[6]. This type of instability can be mainly observed in the closure region of the attached

sheet cavity and the re-entrant jet. The condensation process and the resultant pressure

wave has been studied, and its instability mechanism has been emphasized by Leroux et al.

[43].

As mentioned before, since cavitating flow instabilities accommodate an array of distinguish-

able length and time scales, investigating the switching between different instability modes
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is challenging. However, the dimensionality of this complex system can be reduced through

proposed methods such as DMD, POD, and CROM. CROM technique takes advantage of

two robust data analytic techniques: (1) clustering the phase-state of the dynamical system

and (2) transition matrix. The finite-time high-fidelity snapshots of a dynamical system can

be represented through a phase portrait. Subsequently, CROM splits this phase portrait into

a few clusters, each representing the state of the system statistically. Then, the probability

of staying at each state is determined, and the probability values are sorted into a transi-

tion matrix. Next, a Markov process is employed to obtain the transition between different

states. This process yields a framework through which the instability mechanism and tran-

sition between those can be distilled in an unsupervised fashion. Numerous researchers have

previously applied the CROM strategy to extract the instability mechanisms statistically.

This method can be applied along with DMD and POD to complement the understanding of

the instability mechanism. In this regard, CROM separates the dominant instability mech-

anisms of the dynamical system and obtains the intermittent switching between different

instability modes.

Continuous dynamical systems such as fluid dynamics governing equations often can be de-

scribed in terms of finite degrees of freedom. In this regard, high-fidelity snapshots of some

variables defining the dynamical system’s state can be decomposed into a set of coherent

structures using Dynamic Mode Decomposition (DMD). DMD has been proven to be a ro-

bust tool for extracting coherent features of the fluid flow that might facilitate understanding

and study of this class of continuous non-linear systems. Orthogonality of the eigenvalues

decorrelates the DMD modes, thereby yielding a separation of the time scales of the co-

herent structures [15]. Separation of the time scales facilitates our understanding of the

dominant mechanism of the dynamical system; for instance, one of the brilliant time scale
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decorrelations is presented by Noack et al. [10]. They proved that the transient and steady

response of the flow field past a circular cylinder could be well-defined through three phys-

ically understandable state variables exhibiting significantly different time scales. Besides,

DMD spectral analysis yields the growth rate, phase lag, and initial amplitude associated

with each mode shape. The initial amplitude of each mode and the phase of the mode, and

DMD spectral analysis are connected to the Koopman operator. Koopman operator is an

infinite system of linear equations that can define the behavior of a continuous non-linear

dynamical system. Likewise, Koopman’s observables yield a time scale separation of the

continuous system, implying that DMD and Koopman operator power spectral analysis may

approximately be an estimation of each other [17].

Moreover, another technique emphasized in the literature, as a reduced-order framework,

is POD. POD has been applied previously to decompose the high-fidelity trajectories into

hierarchical mode shapes ranked in terms of energy content. This post-processing tech-

nique rests on projecting the high-dimensional state-space trajectories on a low-dimensional

subspace that conserves the imperative features and energy of the high-dimensional space.

POD modes statistically decorrelate [64] eigenvectors representing the mode shapes of the

fluid field or the length scales of the coherent structures; however, the behavior of the time

evolution of POD modes has not been studied comprehensively in the literature. A better

understanding of the complex instabilities in the cavitating flow may be achieved through a

close study of the trajectories in state-space and the associated attractors of the POD time

coefficients.
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6.2 Analysis of the High-speed Images

The periodic shedding of the large-scale cloud accompanied by intermittent small-scale shed-

ding of the vapor structures is observed in the present section. Figure 6.1 depicts the se-

quential high-speed images from the profile view of the Venturi. In each cycle, the cavitating

region grows after the throat of the Venturi section and generates an interface with the liquid

phase. The trailing edge of the sheet cavity exhibits strong instability. The trailing edge of

the sheet is unstable and gives rise to a series of bubbly coherent structures that are shedding

intermittently.

The bottom surface of the sheet at the closure region appears to detach from the wall, and

a strong re-entrant jet composed of the liquid phase, shown with the red arrows, is traveling

toward the leading edge of the cavity. In the same frame, another re-entrant jet appears on

the flow field region with a high void fraction. In the next frame, the sheet cavity length-scale

instability leads to the shedding of a partial vapor structure. As a result, the length of the

sheet cavity decreases, and the re-entrant flow travels further beneath the cavity and reaches

the leading edge. As the partial coherent vapor structure is convicted to the downstream,

the structure is distorted due to the pressure gradient. It gives rise to several incoherent

vapor structures and finally dissipates out due to the condensation process. Meanwhile,

the sheet cavity begins to recover its length by accumulating small vapor structures. The

same sequence of events, as mentioned above, is observed until frame 6; shedding of partial

coherent vapor structure, distortion of the vapor structure in the downstream, and finally

dissipation process. The large-scale cloud cavitation shedding begins in frame 7. At frames

8 and 9, the re-entrant jet impinges on the interface of the cavity at a location very close

to the leading edge, then cuts the sheet cavity into two parts and results in the formation

of a vapor cloud. The re-entrant jet exists persistently underneath the cavitation, and its
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corresponding thickness and velocity fluctuate aperiodically. Based on the flow field images,

it is observed that the cloud cavitation is composed of multiple time and length scales. In the

present flow condition, the time scales are not necessarily multiple integers of one another;

therefore, cloud cavitation shedding occurs quasi-periodically.

The images obtained from high-speed photography may also be used to study the Kelvin-

Helmholtz (KH) instability. Due to an interface between vapor and liquid phases, the streams

of velocity and the density are distinct in these two regions. The velocity vector field in the

region close to the interface of two phases depicts an evident variation of the velocity. The

re-entrant jet underneath of the sheet cavity leading edge perturbs the interface of the two

streams; look at figure 6.1. Besides, the liquid phase over the sheet cavity also impinges on

the interface of the two phases through a vertical velocity component. The flow becomes

unstable and gives rise to the (KH) instability, Given a small perturbation on the interface of

the two streams of vapor and liquid phases. Without the perturbation, the flow is in neutral

stability and acts as two strata with different velocities and densities. After introducing the

perturbation on the interface of two layers of flow with a shear effect, the KH instability

mixed up the two strata through inertial forces. KH instability uses up the two species’

kinetic energy, and the instability evolves until two layers of liquid and vapor begin to mix

up. Figure 6.1 shows the nonlinear stage of the KH instability in which the sheet cavity

interface is rolling up in a vortical pattern.
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Figure 6.1: Visualization of the velocity vector field overlapped with the raw images from
high-speed photography. Illustration of the re-entrant jet, shear instability, intermittent
cloud shedding and condensation process as it occurs in a Venturi-type profile at Re = 15, 000
and σ = 1.95. The blue (red) vector field depicts the stream-wise velocity (re-entrant jet).
Frame # 1-3 depicts a strong re-entrant jet (red arrows) of the liquid phase followed by the
intermittent cloud shedding. Frame # 4 illustrates the vapor structures’ dissipation as they
are convecting on the downstream. Frame # 7-9 shows the convection of the large-scale
cloud shedding.

6.3 Technique # 1: Applications of DMD to the Flow

Past the Throat of the Venturi Test Section

6.3.1 Application and results of DMD technique

As shown in sections 6.2 and 6.1, in the current flow condition, cavitating flow is composed

of multiple shedding scales and possibly with distinct time-scales. The cavitating flow is

composed of multiple frequencies due to dominant large-scale shedding followed by low-rank

partial shedding. DMD technique isolates the segments of the time signal evolving with a

unique frequency. Furthermore, DMD detects the spatially coherent structures associated
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with each frequency, thereby yielding a framework through which the cloud shedding scale

can be studied. The DMD method achieves this through an approximation of the Koopman

operator modal decomposition.

Each snapshot of the given dynamical system, i.e., velocity vector field, can be rearranged

into a vector in time, time step k. Likewise, all snapshots may be rearranged into some

vectors yielding the sequential, k = 1, ...,m, state of the dynamical system. Instead of work-

ing with the state measurements obtained from PIV, one may use all possible functions of

the PIV measurements called observables and stack them into an infinite vector called func-

tions of measurements. The action of the linear Koopman operator, K, on the observables

advances the dynamical system one-time step forward in time, yielding the state of the dy-

namical system one time step in the future. Koopman operator is a linear, infinite-dimension

matrix, and in practice, it needs to be approximated with a finite-dimensional linear ma-

trix. The low-rank behavior of the complex nonlinear data of the flow field is described

through spectral decomposition of the Koopman operator. The spectral decomposition of

the Koopman operator yields the mode shapes and eigenvalues of the state of the dynamical

system. The mode shapes dynamic behavior is linear in time. Therefore, this method yields

a spatially coherent structure and the associated unique frequency.

DMD algorithm has successfully been employed to identify the underlying physics from the

data of complex flow fields. The technique extracts finite low-rank coherent structures from

the high-dimensional dynamical system. The low-rank system contains the major portion of

the energy of the high-dimensional system. Such a system is highly interpretable in terms of

the length scales of the coherent structures and their corresponding linear time dynamics.

DMD technique complements the previous observations of the KH instability in the cavi-

tating flow extracted from the raw high-speed photography. The sheet cavitation generates

92



a shear layer formed in the present study due to the discontinuity of velocity between the

liquid-phase and high void fraction region. This shear layer gives rise to the KH instabili-

ties that eventually generate coherent structures of the vapor shedding into the wake. To

characterize this instability DMD technique has been utilized. DMD technique separates the

time scales of distinct instabilities mechanisms. i.e., it separates the time scales of the in-

stabilities that arise from the shear layer velocity discontinuity between two phases and KH

vortices shedding (or cloud shedding). Besides, the spatial structures of these instabilities

are obtained and visualized through iso-contours of the eigenvectors. The wavenumber of

the distinct instabilities is extracted from the iso-contours of the eigenvectors. Furthermore,

DMD provides a quantity for the growth (or decay) rate of the KH instability process that

eventually leads to the detachment of cloud cavitation.

6.3.2 Analysis and discussion of DMD results

Kelvin-Helmholtz instabilities developed at the interface, and vaporizations and implosions

of cavitating structures inside the vortices were observed. DMD technique has been applied

to extract the coherent structures from the snapshots of the fluctuating component of the

velocity vector field of the liquid phase past the throat of the Venturi profile. Representative

DMD mode shapes are displayed in figure 6.2 using the magnitude of the velocity vector

field of the liquid phase in the plane of the laser sheet. Figure 6.2 presents the modes

associated with the labeled eigenvalues and the initial conditions in figure 6.3. The first

two modes correspond to the largest wavenumbers, while the higher modes increasingly

show smaller wavenumbers. The first two unstable modes are corresponding to the largest

coherent structures. The attached sheet cavity creates an interface with the liquid phase,

thereby leaving the liquid phase with a large vortical region that expands over the entire

Venturi. These modes are well associated with the Kelvin-Helmholtz instability due to
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the velocity difference at the liquid phase interface and the attached sheet cavity. Other

unstable modes have significantly emphasized the role of the shedding of the cloud and the

condensation process. The unsteady re-entrant cavity with the high void fraction creates

an interface with the liquid phase. The attached sheet cavity’s length begins to fluctuate

aperiodically and closes back at the tip of the cavity to form a re-entrant jet. The re-entrant

jet interferes with the cavity and liquid phase interface, resulting in coherent structures in

the form of a cloud of vapor. Since the inertial forces govern the back propagation of the jet,

it yields a non-linear, quasi-periodic behavior. In this regard, the re-entrant jet may move

far back into the upstream to interfere with the root of the attached sheet cavity, thereby

resulting in a large-scale cloud shedding. However, the re-entrant jet may also travel a shorter

distance and impinge on the sheet cavity closer to the tip of the cavity, thereby giving rise

to relatively smaller scale cloud cavitation. The condensation of the cloud cavitation in

the high-pressure region of the wake results in highly vortical coherent structures in the

velocity vector field of the liquid phase. The cavitating cloud time and length scales vary

from cycle to cycle. Consequently, their shedding and condensation process form coherent

vortical regions in the liquid phase with a range of time and length scales. DMD separates

the distinct modes of instabilities, i.e., the separation of the velocity shear instability and

cavitating cloud shedding and condensation process. This separation of the instabilities also

demonstrated the non-linear, quasi-periodic behavior of the above-mentioned cavitating flow,

look at figure 6.3. The dissipation rate of the secondary instabilities, instability due to the

cloud cavitation shedding, is higher than the shear velocity instabilities. DMD decorrelates

the time scales and identifies several frequencies associated with one of the mode shapes.

The largest coherent structure, mode shape 2, yields very large time scales, ≈ 1.8Hz. The

time scales of the other modes representing the secondary instability, modes 3-12, are ranging

from the Strouhal frequency to roughly eight times the Strouhal frequency. The spectrum

analysis of DMD shows the role of the inertial forces qualitatively due to the convection and
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the subsequent break down of the bigger structure into the smaller structure and eventually

the molecular dissipation process. Each mode shows a strong time oscillation, but ultimately,

the oscillation dissipates out. Figure 6.4 illustrates that an unstable eigenvalue with a positive

real growth rate is not observed since the flow asymptotes to an unstable fix point over the

temporal observation. These observations well address the equilibrium condition of the flow

due to the dissipation terms. The initial condition of the modes, β values, also displays

the mixing energy and coherence measure of associated modes for each coherent structure.

Notwithstanding with POD chaotic time dynamics, DMD yields a dynamical system that

is linear and overdamped; any initial mixing energy, the initial condition of the modes, of

the coherent structure exponentially decays. In this regard, DMD separates the coherent

spatial structures possessing the mixing energy that goes through a linear dissipation process

through time. The mixing energy available for the small scales is higher than the large

scales. DMD model implies that the mixing energy corresponding to each coherent structure

diminishes temporally, and the small scales lose energy at a higher rate.
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Figure 6.2: Representative of the DMD mode shapes, visualized by the velocity magnitude,
for the liquid phase at Reh = 15, 000, and σcav = 1.95 . (a-b) The largest coherent structures
correspond to the instability created due to velocity shear on the liquid phase and vapor
phase interface, (c-l) unstable branch corresponding to the vortical coherent structures of
the liquid-phase induced by quasi-periodic shedding and condensation of the cloud cavitating.
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Figure 6.3: (a) DMD spectrum versus the initial amplitudes of the mode shapes associated
with the velocity magnitude of the liquid phase at Reh = 15, 000, and σcav = 1.95. (b)
Monotonic decay rate associated with each mode.

Figure 6.4: Complex eigenvalues of Â matrix for cavitating flow with Re = and σcav =.
Eigenvalues lie inside the unit circle implying the convergence, e.g., monotonic decay, of the
corresponding mode.
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6.4 Technique # 2: Applications of POD to the Flow

Past the Throat of the Venturi Test Section

6.4.1 POD technique application

The first modal decomposition technique used in this research is POD. Since each resulting

POD mode shape acquires a unique wavenumber, POD is helpful in the study of the length

scale of unsteadiness. POD assigns a maximum energy level for each of the POD modes,

knows as singular values. As a byproduct of unique wavenumber for each mode shape, the

time coefficients are not orthogonal, resulting in impure frequency content consisting of mul-

tiple harmonics. The time coefficient of the POD modes represents the TKE budget available

instantaneously for each of the modes. This feature of POD determines the distribution of

TKE between different length scales. Besides, the time fluctuations of the energy show the

energy path between different length scales. The interactions of POD modes, or the en-

ergy exchange between different length scales, can be studied using the coherence measure

of the time coefficient signal. Similarly, such a technique can be used to study the energy

exchange between the mean flow, slowly varying POD modes, and the modes associated

with low wavenumbers. Slowly varying POD modes represent the TKE production range

that provides the energy of the inertial and dissipation length scales. Correlation between

the time coefficients of the production length scales and the inertial and dissipation length

scales displays the mean flow energy extracted by low wavenumbers. This study also shows

the stresses imposed by the low wavenumbers on the mean flow.
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6.4.2 Nonlinear behavior based on POD dynamics

POD is utilized to investigate the mechanism of the energy exchange between different

wavenumbers in the flow field. Previous studies have shown that POD modes yield the

instantaneous growth of vortex shedding strength and the limit cycle in the phase space

[1, 10, 37, 81, 82]. In the previous models, the vortex shedding dynamics are coupled to

mean-field in the wake of the bluff body. The fluctuations of the POD time coefficients are

represented as energy flux between the small time scales and large time scales representing

the vortices and the mean-field drift, respectively.

The POD mode shapes, time dynamics and the associated power spectral are shown in figure

6.5. From the power spectral density of the signal, the coherence measure has been computed.

It is seen that the input, POD coefficient one, and output, POD coefficient two, display a

relatively strong coherence of 0.8-0.9 over a wide frequency range figure 6.6. Coherence

function diminishes at very low frequencies and for high frequencies as well. From the power

spectral density, most of the energy has been concentrated in the relatively lower frequen-

cies, in the range approximately from 50 Hz to 700 Hz, where the coherence is high. High

coherence implies that a linear relationship exists between the POD modes corresponding

to the largest length scales. Besides, the probability distribution of the phase angle between

the POD coefficients of modes one and two indicates an intermittent behavior. When mode

one oscillations are strong, mode two oscillations are weak, and the converse is also observed,

look at figure 6.6. Likewise, POD coefficients associated with modes three and four yield

a strong coherence in a comparably shorter range. The PDF of phase angle deviates from

the Gaussian distribution, and the peak is lower. It can be cautiously notified that the

observations mentioned above indicate that the large scales linearly exchange energy to one

another in the corresponding frequency range, or one drives the oscillations of the other.

On the other hand, the coherence between any other pairs of the POD coefficients yield
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very low values and the associated phase angle displays a uniform PDF, thereby implying

that a non-linear relationships govern the energy exchange of the small length scales. For

further analysis, the influence of the other variables including the velocity field fluctuations

of the vapor phase and pressure fluctuations on the energy exchange process needs to be

investigated to improve the confidence of the analysis.
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Figure 6.5: (a) POD mode shapes of the liquid-phase velocity components. The flow is
visualized using the iso-contours of the transversal velocity component. (b) POD time co-
efficients of the transversal velocity of the first eight modes. (c) Power spectral of the time
coefficients of the transversal velocity of the first eight modes

101



Figure 6.6: The figure depicts the spectrum of the coherence measure associated with the
POD mode pairs (a) one and (b) two. The high value of the coherence indicates a linear
interaction between the signals, while low coherence indicates a correlation with the nonlinear
phenomenon or noise. The figure shows the PDF of the phase difference between the POD
time dynamics of mode pairs (c) one and (d) two. The high probability around 90◦ suggests
that the kinetic energy mutually is transferred between the corresponding POD modes.

Additionally, the wavelet coherence can detect the scale of the relationship between two-

time series and determine whether that relationship changes in the time-frequency map.

This method can be applied to estimate the fraction of the energy of the output that is

not obtained or derived by the input at a particular frequency. Besides, it quantifies the

output energy, for instance, the region with relatively high values of coherence that is un-

correlated with noise or other inputs. The decomposition via POD yields a broad insight

into the instantaneous distribution of mixing energy between distinct length scales and their

corresponding time dynamics of the mixing energy. Moreover, it obtains the exchange of

the energy between different coherent structures with distinct length scales. Since the high-

dimensional data of the velocity field is embedded in four dimensions in the phase-space and

the energy interaction between pairs of the first four POD are dominantly linear, the sum of
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the energy of these components are studied in this section. Here, the kinetic energy available

for the length scales that can interact linearly and in a reversable fashion are investigated.

The first and second modes depict the largest length scales possessing the highest energy

for the transport of momentum. The instantaneous phase angle between these eddies are
π
2 implying that they mutually transfer energy through a linear mechanism. Furthermore,

The wavelength coherence of the first pair of POD is used to identify frequency range within

which two time coefficients are covarying. This pair shows a coherence greater than 0.9

in the f ∗
s ≈ 0.03 − 1 bands and for the entire lifetime of the oscillations, with significantly

lower coherence outside of these time scales. Low coherence associated with large time scales

implies that they are not mutually correlated linearly. The low coherence also suggests that

independent processes operates at the large time scales, f ∗
s < 0.03. The vectors in figure 6.7

indicates the phase lag between first mode pair at short-term time windows. The vectors are

depicted where the coherence measure is higher than 0.8. In the 0.05 second cycles, mode

one and mode two are about π
2 out of phase: the peak of the kinetic energy of mode one and

mode two are not synchronous in f ∗ = 0.03 − 1. This phase lag appears constant over the

higher frequencies, while the phase angle decreases for lower frequencies. The first and the

third mode display a high coherence measure for the larger time scales, f ∗
s > 0.25. The low

phase lag and high coherence measure indicates that the peak of the kinetic energy of the

modes are concurrent and they interact linearly. These results suggest that in the entire life-

time of the signals modes one through four strong interactions through a linear phenomena.

It should be noted that the interactions of mode one with modes two and three occurs in the

time scales where the power spectra of both modes show relatively high power. In coherence

measure of modes one and four there is low coherency outside of the band,f ∗
s ≈ 0.3125−0.25

, suggesting that the interaction of mode one and four is either through non-linear processes

or noise operates at the smallest and largest time scales. The mode two and mode three show

a high coherency in shorter, intermittent time intervals and shorter frequency bands. The
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intermittent change in these modes appear as an interval of low coherency for time duration

of 0.05sec, especially in the f ∗
s ≈ 0.3125 − 0.125 band. Besides, the phase lag between the

mode two and mode three is ≈ π
4 . The mode two and mode four show high coherence in the

f ∗
s ≈ 0.3125 − 0.125 band for the entire lifetime of the data and their corresponding phase

lag is lower than the previous case. Occasional strong interactions also is observed for the

higher and lower time scales than the above-mentioned interval, f ∗
s = 0.3125 − 0.125. Mode

three and mode four show a high coherence in the high frequency band and an intermittent

time intervals of high coherence in the low frequency band. These observations suggest that

the interactions between time dynamics of modes one, two, three and four are affected by a

non-linear terms or uncorrelated noise that is most probably triggered by the time dynamics

of mode three and four.
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Figure 6.7: The figure presents the wavelet coherence of the first four energetic POD mode
coefficients: the scalogram of coherence measure. Contours depict the coherence measures.
The vectors indicate the phase difference between POD time coefficients only where the
coherence measure is greater than or equal to 0.8. A vertical arrow displays an out-phase
pair of signals, and a horizontal arrow denotes an in-phase pair of signals. A dashed white
line is used to discriminate between the data susceptible to the edge effects from the graph’s
high-fidelity region.

In this section, to investigate the dynamics of the mode shapes of POD, the time records,

power spectral, and two-dimensional representation phase space of the POD time coefficients

are studied. The PDF of the FTLE has been shown to demonstrate the short-term behavior

of the POD time coefficients trajectories in the state-space. The LLE of each POD time

coefficient has been acquired, and comments have been made on the short-term and global

behavior of the phase space trajectories. The first eight POD modes and their corresponding

time coefficients and power spectral are shown in figure 6.5. Since POD decorrelates the

length scales, each mode shape represents the length-scale of one of the coherent structures;

besides, these modes are phase-shifted in the streamwise direction. The power spectral of
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each mode yields several peaks, implying the energy is concentrated in distinct frequencies.

Since the frequencies corresponding to the peaks value in power spectral are not multiple

integers of each other, the temporal coefficients of these modes are quasi-periodic. This well

demonstrates that in this regime of non-dimensional system parameters, the frequencies of

the modes are not ”locked-in”; therefore, the dynamical system never exactly repeats itself.

Since the mean period of the first three modes is significantly greater than the high order

modes, the time scale of the higher modes is very low. In other words, With an increase in

the frequency of coherent structures, their length scales are decreasing.

The state-space of the POD time coefficients of mode pairs and the corresponding numerical

simulations obtained from the model, Eq. (6.1), are displayed in figure 6.8. The trajectories

of all mode pairs close on themselves, implying that the attractor embedding dimensions

are higher than two. The minimum embedding dimension has been acquired employing Eq.

(4.58). For d = 4, the number of FNN is minimum for all POD modes, implying the at-

tractor can be accommodated in four dimensions. Since the POD coefficients power spectral

contains multiple dominant harmonics and cannot be expressed as a ratio of integers, the

complete geometry of the attractors cannot be identified from the state-space in two dimen-

sions.
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Figure 6.8: Representation of the trajectories in the state space for (a) the first pair, (b)
the second pair, (c) modes one and three, and (d) mode one and mode four of the POD
time coefficients associated with the transversal velocity. The percentage of the FNN versus
the number of embedding dimensions for the first four POD coefficients trajectories in the
phase-space. FNN is computed at the symbol points and is connected by linear regression.
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dν1

dt
= z1,1ν1 + z1,2ν2 + z1,3ν3 + z1,4ν4

dν2

dt
= z2,1ν1 + z2,2ν2 + z2,3ν3 + z2,4ν4

dν3

dt
= z3,1ν1 + z3,2ν2 + z3,3ν3 + z3,4ν4

dν4

dt
= z4,1ν1 + z4,2ν2 + z4,3ν3 + z4,4ν4 + z4,16ν

3
1

(6.1)

To quantify the sensitivity of the nearby trajectories to divergence or convergence in a short

time, FTLE has been computed for three distinct intervals of L = 1, 10, 100 and for four POD

time coefficients. PDF of the FTLE for three distinct intervals are shown in figure 6.9. For a

finite swarm of trajectories with a size less than the total samples, the Lyapunov exponent is

negative; the trajectories in the state-space of the dynamical system converge into a generic

attractor, or the geometry of phase-space is rapidly shrinking. Conversely, for short-time

evolution of the trajectories, the Lyapunov exponent is positive, so the trajectories stretched

and diverged rapidly in the phases-space, or the geometry of the attractor is dilating. The

previous observation means that the dynamical system is chaotic for a finite amount of time,

and for some short time, no chaos exists in the system. Thus the dynamical system for some

intervals of time is locally unstable yet for others stable. Since the system switches between

stable and unstable conditions, the dynamical system exhibits the characteristics of a strange

attractor. The LLE of the entire time signal of the POD time coefficients demonstrates the

global stability of the modes. The values on Table 6.1 show that modes 1, 2, 3, and 5 are

globally stable, while modes 4, 6, 7, 8 are globally unstable. The coherent spatial structures

of POD mode shapes represent the highly vortical regions in the flow. Thus, the structures

provide an intuition of the mixing length scales and their hierarchy regarding the available
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total mixing energy corresponding to each length scale. Besides, the POD time dynamics

exhibit the time fluctuation of the strength of the mixing corresponding to each length scale.

Since the dynamical system governing the POD time coefficients exhibits the characteristics

of a strange attractor with at least a short-time positive Lyapunov exponent, thus a chaotic

mixing occurs in this flow field.

Figure 6.9: FTLE distribution function associated with POD time dynamics of the first four
modes for the different realization of time interval samples, L = 1, 10, 100.
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Table 6.1: LLE, embedding dimensions, mean period, number of the period for the entire
sample, and time lag for the time evolution of the temporal coefficients of POD modes.

POD temporal coefficients α1(t) α2(t) α3(t) α4(t) α5(t) α6(t) α7(t) α8(t)

Lag τ (ms) 2 1.2 1.2 0.4 0.4 1.6 1.2 0.8

Tmean (ms) 8 8 16 2 1 5 2 5

NT 125T 125T 63T 500T 1000T 200T 500T 200T

Embedding dimension 4 4 4 4 4 4 4 4

LLE -0.0267 -0.0757 -0.0350 0.0275 -0.0286 0.0466 0.0579 0.1057

6.4.3 POD time dynamics modeled via system of ODEs

In this section, a reduced-order model is developed for the time dynamics of POD mode

coefficients. This model contains the first four dominant modes obtained from the POD

algorithm mentioned above. i.e., it accounts for the first four harmonics associated with the

highest length scales. In the following, a system identification approach has been performed

that addresses the structure of the dynamical system and further tunes the parameters. The

POD of the high-fidelity instantaneous velocity field yields mode shapes and time dynamics.

The signals representing the time dynamics of the modes are utilized to obtain a system

of ODEs. Here it is assumed that the domain is sufficiently large that the first four length

scales are conserving energy, and they only exchange energy between each other.

Since the conservation of mass equations and momentum equations for both species are

fairly sparse polynomial forms, only a few terms of the polynomial may describe the physics

of the problem. To make the proposed model interpretable, the tuning of the coefficients,

ζi, are subjected to l1 regularization with varying λreg.. Each realization of λreg. provides a

dynamical model, for example, an ODE, with different closure coefficients. Besides, as λreg
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increases, the number of non-zero closure coefficients increases, thereby yielding a more com-

plex model that is highly exposed to overfitting. In this regard, for the different realization

of λreg., the performance of the model in terms of the Mean Squared Error (MSE) and the

uncertainty bar is evaluated. Figure 6.10 illustrates the cross-validation error for the POD

time dynamics for different realization of λreg. It is assumed that the uncorrelated noise has

been eliminated in the regularization process, and the shape of the attractor obtained from

the ODEs is not affected by an external perturbation source such as noise. The probability

distribution of time dynamics of the first four energy-carrying POD modes obtained from

the numerical simulation and experimental data have been depicted in figure 6.11.

The first ODE, Eq. (6.1), defines the growth rate of the kinetic energy of mode one depending

linearly on the instantaneous amplitudes of modes one to four. Mode one draws energy from

mode two and is damped by modes three and four. The second mode only extracts energy

from mode three and is damped by modes one and four. Table 6.2 shows the coefficients of

the model of POD time dynamics.

Figure 6.10: Ten-fold cross-validation error for the POD time dynamics for different realiza-
tion of λreg.. Mean Squared Error (MSE) is obtained via cross-validation (red square-shaped
dots) and one-standard-deviation grey bars associated with the uncertainty band.
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Figure 6.11: POD time dynamics probability distribution functions associated with modes
(a) one, (b) two, (c) three, and (d) four obtained from the experimental data (dashed, red
line) and the numerical simulation of the coupled ODEs dynamical model (solid blue line).

Table 6.2: Values of the coefficients defining the model of the POD time dynamics, Eq. (6.1)

z1,1 = 0.00062 z1,2 = 1153.134 z1,3 = −152.663 z1,4 = −86.338

z2,1 = −1153.758 z2,2 = 0.00011 z2,3 = 892.651 z2,4 = −299.965

z3,1 = 156.564 z3,2 = −875.581 z3,3 = 0.00013 z3,4 = 1814.536

z4,1 = 59.616 z4,2 = 278.634 z4,3 = −1763.784 z4,4 = 0.00015

z4,15 = 31818.929

6.4.4 Interactions of the POD length scales

Figure 6.12 shows the spatio-temporal structures of the first two POD modes from low-

frequency drift flow, the time dynamics, and the PSD of the associated modes. These modes
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are associated with the lowest wavenumbers. The spectra of the modes coefficients exhibit a

dominant peak at f ∗
s = 0.48 followed by several sub-harmonics and super-harmonics. Since

dominant frequencies of mode one become close to mode two, the phenomenon of lock-in

happens. The wavelength of the structures is approximately similar, and its length scale is

comparable with the length of the test section. Clearly, the time dynamics of all the drift

modes show aperiodic oscillations with intermittent modulation in the peaks. These modes

are corresponding to the energy-carrying modes with very low wavenumbers. It is observed

that the time dynamics of mode two are influenced by a drift flow whose time scale is on

the order of 0.4 sec. The intermittent modulation in the time dynamics demonstrates that

these modes have acquired stochastic kinetic energy.

Figure 6.12: (a) 2-dimensional (2D) POD mode shapes of slowly varying drift flow. Shown
are the iso-contours of the transversal velocity components. (b) Time fluctuation of the first
two POD modes, (c) and the associated spectrum. Time fluctuation of the modes represents
the fluctuations of the available energy of the corresponding mode.

Figures 6.13 and 6.12 show the spatio-temporal structures of the first two POD modes from

KH instability, and the first five POD modes associated with the vapor cloud-shedding, the

time dynamics, and the PSD of the associated modes. The wavenumbers are larger than

the drift flow modes. It is expected that the slow varying drift flow, KH instability, and

cloud-shedding are linked via a TKE energy exchange mechanism. The high energy drift

oscillations are the key aspect of oscillations due to KH instability and cloud cavitation.
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In this section, the connection between the mechanisms mentioned above of instability is

examined. A significant exploration is presented on the phase relationships between the

modes time dynamics to shed light on the expected causality links.

Figure 6.13: (a) (2D) POD mode shapes of KH instability. Shown are the iso-contours of
the transversal velocity components. (b) Time fluctuation of the first two POD modes, (c)
and the associated spectrum. Further information can be found in figure 6.12

The coherence plots between the modes shape of the drifting flow and the KH instability

has been shown in figure 6.14. There is a cone shape of occurring regions of significant

coherence, f ∗
s ≈ 0 − 0.5. There are intermittent occurring regions of significant coherence

at f ∗
s ≈ 1 − 2. Straight-down vectors are indicating the lead of drift flow with respect to

the KH instability. This observation demonstrates a particular period when drift energy

is high, while the energy budget of KH instability is low. Due to the lead of drift flow

signal, it provides the energy of KH instability through a linear process. The second mode,

the drifting flow, and KH instability yield an opposite behavior: KH instability leading the

drifting flow. The broadband high coherence measure between KH instability and drift flow

is associated with their almost unvarying exchange of TKE at low wavenumbers. On the

other hand, the significant coherence measure between KH instability and cloud shedding

modes is time-variant. At f ∗
s ≈ 0.25 − 1, arrows indicating the relative phase relation are

pointing left, e.g., an anti-phase relationship, or pointing down, showing that the KH signal

is leading the cloud shedding signal. High coherence time intervals are intermittent and only
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yield significant coherence aperiodically. There is an aperiodic energy exchange between the

KH instability and cloud-shedding modes that rise to intermittent shedding regimes in the

flow field.

Figure 6.14: Representation of the linear link between the POD modes of low wavenumber
drift flow and KH instability. The wavelet coherence between drift flow and KH instability
time dynamics: the scalogram of coherence measure. The first subscript defines the mode
number of the drifting flow, and the second subscript represents the mode number of the
KH instability. Further explanation of the graph is illustrated in figure 6.7.
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Figure 6.15: (a) (2D) POD mode shapes are associated with high-frequency cloud shedding.
Shown are the iso-contours of the transversal velocity components. (b) Time fluctuation
of the first two POD modes, (c) and the associated spectrum. Further information can be
found in figure 6.12.

Cavitating flow shows some dominant oscillatory behaviors shown in the previous analysis.

For instance, slow varying drift flow, KH instabilities, and vapor cloud-shedding are some of

the dominant oscillatory dynamics observed in the flow field. Oscillating coherent structures

can define cavitating flow with low-frequency drift flows and the modulation of the high-

frequency oscillation of the KH instabilities and vapor cloud-shedding. In practice, the

combination of POD modes associated with KH instabilities and vapor cloud shedding can

reproduce different regimes observed in the cavitating flow past the throat of the Venturi-test
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section. Figure 6.16 displays three dominant flow patterns occurring in the cavitating flow.

• The preceding observation shows that the velocity vector field’s oscillations inside the

attached sheet cavity are comparably low. In contrast, these oscillations are signif-

icant at the leading edge of the attached sheet cavity. Frames #2 − 4: Premature

condensation of the vapor cloud has been observed in the leading edge of the attached

sheet cavity. As a consequence of the condensation, the length of the attached sheet

cavity oscillates rapidly. In frames #2 − 4, the interaction of the first pair of POD

associated with the vapor cloud-shedding explains velocity vector field fluctuations as

premature condensation occurs, look at figure 6.17. In these snapshots, the amplitude

of both POD modes associated with cloud-shedding is greater than %65, while the

amplitudes of the other modes are insignificant. The previous result is due to the fact

that POD pairs’ wavelengths are shifted. The phase-shifted relationship may lead to

destructive (constructive) interference of the modes that result in low (high) amplitude

oscillations.

• frames #8 − 18: Large-scale vapor cloud is transported to the downstream where the

pressure field is comparably higher than the throat of the test section—the pressure

recovery results in the collapse of the bubbly structures. In frames #8 − 18, the

amplitude of the first POD associated with the cloud-shedding is high, while amplitudes

of all other modes are comparably low, look at figure 6.17. The observation mentioned

above emphasizes that the transversal velocity fluctuations on the downstream region

are significantly higher than the other flow regions.

• frames #20 − 46: small-scale vapor cloud is shedding on the downstream. Since the

pressure increases along the length of the test section, vapor structures go through

distortion, and they dissipate in the wake. In this case, it is observed that the amplitude
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of the pair of modes corresponding to KH instability and slowly varying drift flow is

high. In contrast, the amplitude of the modes corresponding to cloud shedding in most

of the snapshots is low.
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Figure 6.16: POD time dynamics of the drifting flow, KH instabilities, and cloud-shedding
POD mode pairs. Red circles (blue diamond) display the snapshots where the amplitude
of the first (second) POD mode of drift flow is greater than %65. Gray squares (orange
crosses) display the snapshots where the amplitude of the first (second) POD mode of KH
instabilities is greater than %65. Green plus signs (cyan asterisks) display the snapshots
where the amplitude of the first (second) POD mode of cloud-shedding is greater than
%65. First two dominant POD modes of the drifting flow, attached sheet cavity, and cloud
shedding. The flow is visualized through the contours of the transversal velocity component.
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Figure 6.17: The figure illustrates the visualization of the velocity vector field overlapped
with the raw images from high-speed photography. The blue (red) vector field depicts the
stream-wise velocity (re-entrant jet). (a) Representation of the premature condensation of
the cloud at the leading edge of the attached sheet cavity (frames 2-4). (b) Representation
of the large-scale cloud cavitation convection and the consequent condensation due to the
pressure recovery at the outlet (frames 8-18). (c) Representation of a series of intermittent
small-scale clouds shedding (frames 20-46).
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6.5 Technique # 3: Applications of CROM to the Flow

Past the Throat of the Venturi Test Section

6.5.1 Application of CROM technique

Cavitating flow as it occurs past the throat of the Venturi-type section yields several modes,

flow patterns, with intermittent switching between the modes. The attached sheet cavity

growth and the cloud shedding are inherently aperiodic, resulting in a flow field composed

of multiple modes—cavitating flow composed of distinct dominant flow patterns known as

the centroids of the CROM technique. The CROM technique can investigate intermittent

transitions between the flow patterns. CROM technique statistically extracts the preceding

flow patterns giving rise to the current flow pattern, so one may use it to study the mechanism

causing the transition from one flow regime to the other. The results obtained from CROM

are employed to extract the mechanisms resulting in flow pattern transition. CROM is

an approximation of the Perron-Frobenius Operator (PFO). PFO is a linear and infinite-

dimension operator in terms of probability density functions (PDFs), and in practice, CROM

yields a finite-dimensional approximation of PFO. CROM splits the data set in the phase

space into dissimilar, non-overlapping clusters, each of which is represented via a centroid.

Each of the centroids represents the mode shape of the corresponding cluster. Data points in

the phase space close to a centroid are labeled with the name of the corresponding centroid.

Therefore, the centroid mode shape represents the flow pattern of the data points inside

of its cluster. In other words, the data points inside a cluster yield a similar flow pattern

which is represented via the corresponding centroid. CROM technique primary outcomes

are as follows: (1) clustering of the phase space to create some centroids, mode shapes (2)

discovering the mechanism that explains the transition of the current status of the flow field
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to the future status. Since the data points inside a cluster are similar and dissimilar to the

data points outside the cluster, the intermittent transition from one flow pattern to the other

flow pattern can be extracted.

6.5.2 Analysis and discussion of CROM results

In this section, the results of the CROM strategy applied to the velocity vector field obtained

from PIV measurements of the cavitating flow are investigated. CROM algorithm initially

is applied to the instantaneous velocity obtained from the PIV measurements. The cluster

analysis splits the data in the phase space into 20 clusters. The dissimilarity between the

clusters is maximum, and the similarity between the points inside each cluster is maximum.

In case that the behavior of the flow is periodic, the discretization process of the phase-space

yields the same result as the phase-averaging process. However, for cases where the non-

linearity in the dynamical system hinders a well-developed periodic behavior, the clustering

process may extract the dominant convective mechanisms and the transitions between these

mechanisms.

The geometry of the clusters may also be studied by plotting a Voronoi diagram. Here the

geometry of the clusters can be accurately defined in 4 dimensions. Since the POD time

coefficients attractors can accommodate in four dimensions, the two-dimensional Voronoi

diagram can only depict a drastic approximation of the cluster geometric shape. As shown

in figure 6.18 the points in the 2D phase space are located inside of an incorrect region,

implying that the cluster can only be accommodated in the higher dimensions.
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Figure 6.18: The figure shows the Voronoi diagram of the clusters, the cluster centroids
(solid black bullets labeled with numbers), the data points (solid color dots) projected in
the two-dimensional space of the first two POD time dynamics ν1 and ν2. Clusters are
discriminated through different colors assigned to the dots. Dots trespassing the borders of
the corresponding cluster indicate that the attractor lives in higher dimensions.

Snapshots taken from the flow display fluctuation of the attached sheet cavity length giving

rise to successive irregular small cloud shedding. Patterns and geometry of the sequential

cloud shedding seem to change from cycle to cycle, implying that the growth of the attached

sheet cavity and consequently the shedding process is aperiodic. In this regard, CROM

cluster shape modes are examined closely to study the effect of the aperiodic cloud shedding

on the coherent spatial structures. The associated transition probability matrix is shown in

figure 6.19. pj̃k′ provides the probability to move from a particular state located in cluster j̃
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to another state inside of cluster k′. The red color and bigger geometric structures mean that

the probability for a particular transition is high. The cluster shape mode vectors determine

the mean status of all snapshots in a particular cluster. In this study, the snapshots are

grouped into 20 clusters, thereby creating 20 CROM mode shapes, figure 6.20. The first

four clusters, k′ = 1 − 4 seem to be associated with sequential convective behavior through

which two coherent structures with negative velocity values are transported upstream of

the flow field. On the other hand, mode shapes for clusters k′ = 5 − 9, and k′ = 11 − 20

display a sequential convection of three coherent structures. These two clusters exhibit a

similar pattern; however, the contours of the positive and negative values of the transverse

velocity correspond to each set of clusters are significantly different. Next, a Markov graph

can be extracted from the transition probability matrix depicting the transitions between

preceding different flow states. Since the matrix presented is not sparse, the full rank Markov

graph and the associated transition are complex, thereby yielding numerous connections,

making the model’s study difficult. For this reason, some of the connections with very low

probability values are ignored, which does not improve the understanding of the dominant

transition mechanisms shown on the graph. It should be noted that the arrows represent the

direction of the transition from one state to another. Based on the Markov graph, figure 6.21,

an inner-group cycle exists for both triple structure shedding and pair shedding processes.

Furthermore, since a direct switch between these groups exists, an irregular alternation of

states is conceived due to intermittency in the dynamical system. Cluster k′ = 10 mode

shape displays a vortex merging process, thereby making it distinctive. This cluster acts as

an intermediate state between the other three groups. This analysis demonstrates that all

states in the dynamical system may be accessed via another state that implies some level

of inherent chaotic behavior. In other words, the future status of the system is likely very

sensitive to the current status, and very negligible changes in the current status may result

in a radically different dynamical behavior in the next time steps.
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Likewise, the distance matrix analysis yields an understating of the similarity inside a set of

clusters and dissimilarity outside of them. The cluster group, k′ = 1 − 4, associated with the

Pair structures distance to the triple structures convection, let say k′ = 6 − 9, 13 − 18, is

comparably high. In contrast, the double structure inner-cluster distance between the mode

shape vectors is minimum. Moreover, The inner-cluster distance between the mode shape

vectors of the W −Triple structures is significantly higher than the corresponding distances

inside of groups Triple and Pair.

Figure 6.19: (a) CTM and (b) cluster centroid distance matrix. Simplification of the con-
nectivity between the cluster centroids yields Three cluster dominant groups, figure 6.21,
k′ = 1, 2, 3, 4, k′ = 5, 6, 7, 8, 9, and k′ = 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. One transition
cluster k′ = 10 that is associated with the vortex pairing is observed in the matrices.
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Figure 6.20: CROM mode shapes, corresponding the cluster centroid κ = {c1, c2, ..., cktot}.
The colors show the contours of positive (red) and negative (blue) velocity for each cluster
centroid. The flow is coming from left to right.
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Figure 6.21: CTM schematic diagram of the velocity field associated with the liquid phase.
The arrows indicate the direction of the possible transitions. A threshold is chosen to simplify
the connectivity diagram. The diagram depicts three cyclic cluster groups associated with
the convection of coherent triplet structures (gray and black clusters) and pair structures
(white clusters). The green cluster represents an intermittent phenomenon that occurs as a
consequence of the bifurcation point.

The evolution of the probability distribution can be determined by studying the map of

eigenvalues of the CTM, figure 6.22. Eigenvalues are located inside of a unit circle, imply-

ing that all eigenvectors decay asymptotically. The largest eigenvalue l̃CT M,1 = 1 and the

corresponding eigenvector ωCT M,1 is associated with the stationary probability distribution.

The dominant eigenvalue and the converged probability distribution are equal to each other,

figure 6.22. The long-term evolution of P∞ converges to a unique matrix, so the system is

ergodic. Despite, the system is highly sensitive to the initial point in the state space, as

shown previously, the ensemble mean converges to the time mean, implying the dynamical

system is statistically reproducible. The preceding observation also demonstrates that the

geometry of the state-space is reproducible.
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Figure 6.22: Stability analysis of the CTM: (a) complex eigenvalues of CTM with the largest
eigenvalue equals to +1. The color bar displays the absolute value of the eigenvalue (b)
qk′ the initial probability distribution of the data, ρ∞ corresponds to the asymptotic PDF,
the eigenvector ωCT M,1 associated with the dominant eigenvalue (c) converged CTM. All
eigenvalues are located inside of the unit circle implying that the dynamical system is ergodic.

6.6 Conclusions on the Modal Analysis of the Cavitat-

ing Flow

The chapter presents the instabilities mechanism in the cavitating flow as it occurs on a

Venturi-type test, the section using planar velocity vector field. Three data-driven techniques

are applied to the fluctuating component of the velocity, and the following results have been

obtained:

• Modal decomposition through DMD yields modes of instabilities: (1) corresponding to

the velocity difference across the liquid-vapor interface (2) related to the vapor cloud

shedding. Since the frequency contents of different vapor cloud instability modes are in-

commensurate, quasi-periodic behavior of the vapor cloud shedding was demonstrated.

Kelvin-Helmholtz instabilities are shown to acquire a higher decay rate, lower frequency

ratio, and lower initial energy than vapor cloud instabilities.
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• The low pass and bandpass filters applied on the fluctuating component of the veloc-

ity vector field separated the length scales in the flow field. The length scales’ time

dynamics reveal three distinct instabilities: slow-varying drift flow, instability due to

the vapor-liquid velocity shear, and the vapor cloud shedding. The path of the TKE

energy is tracked; accordingly, the energy loss by the mean flow is transferred to the

slow-varying drift flow which distributes this energy to the smaller length scales in-

cluding the velocity shear instability and the shedding of the vapor cloud. Study of

the LLEs of POD energetic modes, modes 1-3, time dynamics demonstrates that the

largest length scales are globally stable. Although, the time dynamics in a short period

of time shows some level of chaos, the system asymptotical becomes periodic. Finally,

combination of the energetic POD modes is utilized to reconstruct the instantaneous

status of the flow field. In this regard, the premature condensation occurred on the

trailing edge of the attached sheet cavity and the vapor cloud shedding is accurately

predicted using the combination of the POD modes.

• The instabilities in the form of coherent structures that are the byproduct of the vapor

cloud shedding are studied using the CROM technique. Results obtained from CROM

technique revealed the dominant patterns in the flow field by means of phase-averaging.

Four dominant flow regimes are identified; modes of instabilities are related to the con-

vection of the coherent structure in the wake of the attached sheet cavity. Fundamental

changes (bifurcation) in the flow regime are assigned to the occurrence of particular

clusters that were tagged and studied separately. Path and probability of transition

between different dominant flow regimes are shown. It has been observed that 68%

of the time, triple structures are formed and transported toward the outlet. On the

other hand, 28% of the time, a pair of coherent structures is formed and convected

downstream. A bifurcation cluster has been identified that acts as an intermediate
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between the dominant flow regimes mentioned above.
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Chapter 7

Dominant Physical Mechanisms

7.1 Introduction

The chapter investigates the turbulent energy cascade as it occurs in the attached sheet

cavity and the free stream. A term-by-term inspection of the equation governing the averaged

kinetic energy in the turbulent fluctuations is presented to track the mean flow kinetic energy

path. In this regard, the underlying physical mechanisms impacting the local rate of change

of turbulence kinetic energy following the mean flow in the compressible flow are enumerated,

and the dominant mechanisms are distilled. Besides, the effect of the liquid-vapor phase

change on values of shear production, transport of the TKE, pressure work, and pressure-

dilatation is investigated and further compared against the free-stream flow. It is shown

that the production of Turbulence Kinetic Energy (TKE) resulting from high shear stress in

the sheet cavity imparted more instability to the flow than other physical mechanisms. The

pressure fluctuation is comparable to the velocity fluctuations and contributes to the reduced

transport of turbulence kinetic energy at the liquid-vapor interface. Finally, to shed light

on the role of pressure work and pressure-dilatation terms in the turbulent energy cascade,

the reversion of the sign in values of these terms is highlighted. It is demonstrated that

the pressure-dilatation and pressure work is more effective than the dissipation term and

contribute to the dissipation in the attached sheet cavity.

131



The following section presents mechanisms causing time-averaged momentum variation in

the sheet cavity and the perturbed free stream. The mechanisms diminishing or increasing

the momentum in different regions of the flow field are enumerated. The role of the isotropic

and anisotropic stresses in the destabilization of the attached sheet cavity is demonstrated.

Besides, the stresses applied on the fluid elements in cavitation inception and transport are

highlighted.

Next, dominant, underlying mechanisms causing the local momentum variation in different

regions of the flow field are presented. In complex fluid flows, the local behavior of the flow

can be described accurately by the balance between a few dominant physical processes in

the governing equations [38]. In the present chapter, identifying the dominant balance rela-

tions in the cavitating flow has been implemented using Gaussian Mixture Models (GMMs).

Then the maximum variance for each cluster has been approximated using Sparse Principal

Component Analysis (SPCA). Points in the equation space are obtained from the X-ray data

acquisition, accompanied by numerical simulations of the instantaneous pressure field. The

pressure distribution in a Venturi-type test section is estimated using the Ultra-fast Time-

resolved Particle Image Velocimetry (TR-PIV) and local void fraction obtained from X-ray

imaging. Poisson’s equation obtained from the conservative form of compressible momen-

tum equation is solved to result in the instantaneous snapshots of the pressure field. The

dominant balance model suggests that the turbulence anisotropy is significant in the regions

where the local void fraction level is high, i.e., attached sheet cavity and near wake where

cavitation break-up occurs. The level of turbulence anisotropy rapidly decreases in the free

stream and the boundary layer, proving that the isotropic turbulence delineates the flow

field’s dynamics in the free-stream and boundary layer. The pressure fluctuation is com-

parable to the velocity fluctuations and contributes to the reduced transport of turbulence

kinetic energy at the liquid-vapor interface.
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In the last section, the dominant forces instantaneously applied to each element of fluids are

investigated. It is shown that the flow field can safely be assumed inviscid. Acceleration

terms in each flow field region are shown to be in balance with the isotropic pressure forces.

Additionally, it has been demonstrated that the pressure gradient forces introduce instability

to the flow field where the attached sheet cavity is formed. The degree of the correlation

between the terms in the dominant balance model is depicted that further demonstrates the

role of the pressure gradient forces in the causation of the attached sheet cavity instability

and the advective acceleration in the free stream.

7.2 Exact Compressible Turbulence Kinetic Energy Equa-

tion

In this section, the mechanism of the kinetic energy dissipation is inspected using equations

that govern the mean flow kinetic energy and the average kinetic energy of the fluctuations.

The exact equation governing the mean Turbulence Kinetic Energy (TKE) is extracted

by multiplying the instantaneous momentum equation by the Favre fluctuating velocity

component and then time averaging:

∂

∂t
(ρk)+ ∂

∂xj

(ρũjk) = ρτ̃ij
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(7.1)

where TKE is defined as follows:
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k = 1
2

(u′′2 + v′′2) (7.2)

Eq. 7.1 is the energy balance or energy-budget equation for TKE. The left-hand side of the

equation expresses the unsteady time-averaged density-weighted TKE and convection of the

TKE. The right-hand side terms represent the mechanisms that enforce changes to the TKE

in the differential level. ETKE equation terms are defined as follows:

• ∂
∂t

(ρk) is the rate of change of turbulence kinetic energy due to non-stationary signal

of the mean flow.

• ∂
∂xj

(ρũjk) is the rate of change of turbulence kinetic energy due to the advection by

the mean flow.

• ∂
∂xj

(τjiu′′
i − ρu′′

j
1
2u

′′
i u

′′
i − p′u′′

j ) is the diffusion of kinetic energy due to the molecular

processes, the turbulent fluctuations, and pressure fluctuations, respectively.

• ρτ̃ij
∂ũi

∂xj
is the rate of production of TKE extracted from the mean flow.

• τji
∂u′′

i

∂xj
is the rate of dissipation of TKE due to the molecular processes.

• u′′
i

∂P
∂xi

is the pressure work term. If the velocity and pressure are in the same direction

work term is positive.

• p′ ∂u′′
i

∂xi
is pressure dilitation. This term defines expansion or contraction of the fluid

element in all direction at the same time.

Diffusion due to the pressure fluctuations represents the spatial transport of TKE by pressure

fluctuations. Instantaneous viscous stresses also play a role in the spatial transport of the

TKE; this term was introduced previously as the molecular diffusion of TKE. At the scale
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of an infinitesimal volume of the fluid, pressure and viscous diffusion terms introduces an

acceleration to the adjacent elements and results in the transportation of the TKE. The other

mechanism that gives rise to the spatial transport of TKE is turbulent stresses. The TKE

can be directly transported to other regions through turbulent fluctuations. The turbulence

diffusion terms in a fluid volume in space transport the energy from regions with high TKE

regions with low TKE. In an Eulerian perspective, the transport terms are only responsible

for distributing the energy in the domain of the dynamical system. Statistically, the above-

mentioned diffusive-type mechanism will only be applied to smear out the energy from regions

of higher kinetic energy to lower. These terms neither produce nor dissipate the TKE energy

in the lifetime of the dynamical system. Therefore, the accumulation of the TKE in some

regions of the flow is smoothed out via diffusion terms.

The third term in Eq. (7.1) is the shear-production term representing the rate of transfer of

the kinetic energy from mean flow to turbulent fluctuations. The non-zero shear production

inside the sheet cavity demonstrates that the mean flow shear is non-zero, and the turbulence

must be significantly anisotropic. The preceding fact also indicates that the level of the

anisotropic turbulence in the sheet cavity is higher than the free-stream; therefore, the

energy input rate inside of the sheet cavity is higher. In some sense, the mean shear deforms

the large-scale eddies in the regions with high void fractions and feeds them with significant

energy. The shear stress gives rise to the production of the TKE. Then the kinetic energy

is transferred down to the smaller eddies through the turbulent energy cascade and finally

is dissipated by viscous forces as heat at the small scales, Kolmogorov scales. As mentioned

above, the fourth term in Eq. (7.1) is the viscous dissipation of TKE. The sign of the shear

production and the viscous dissipation is different, and their magnitudes for most of the

regions are typically similar, thereby balancing each other in the Eq. (7.1). Production term

is the only means by which energy is exchanged between the mean flow and fluctuations.
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The TKE production term and the pressure correlation term transfer energy from the mean

flow to the TKE. Since the dissipation value is negative through the entire field, the energy is

irrecoverable, and TKE loss eventually occurs due to the transfer of this energy into internal

energy. However, the dilatation term may result in a reversible exchange between interior

and kinetic energies. In this regard, pressure-dilatation and pressure work affect the cascade

process by reversing the kinetic and internal energies at distinct scales. On the other hand,

the viscous effect results in the dissipation of the kinetic energy as heat. Figure 7.1 shows the

computed terms of exact compressible turbulence kinetic energy equation in the cavitating

flow as it occurs in the Venturi-type profile.
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Figure 7.1: Representation of the exact turbulence kinetic energy equation for the cavitating
flow (a) rate of change of TKE due to the instability in the mean flow (b) rate of change of
TKE due to the advection of the mean flow(c) Rate of production of TKE extracted from
the non-stationary signal of the mean flow (d) fluctuating viscous stresses work against the
fluctuating strain rates or deformation of the fluid material or velocity deformation rate. (e)
Transport of TKE due to the viscous stresses (f) Transport of the TKE due to the velocity
fluctuations. (g) mechanism of transportation of the TKE due to the pressure fluctuations.
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7.3 Favre-averaged Momentum Equation in a Cavitat-

ing Flow

High-resolution data obtained from simultaneous measurements of the planar velocity vector

field and the void fraction and the numerical results of the pressure field are utilized to

compute the terms in Favre-averaged momentum equation, figure 7.2. It is observed that, in

the cavity sheet, the momentum goes through a drastic reduction as a result of the advection

of the mean flow changes. Besides, the dominant mechanism of the momentum variation is

advection which is two orders of magnitude higher than the instability mechanisms. In the

vicinity of the throat, the instability increases the momentum, while this mechanism tends

to reduce the momentum away from the throat. Since the mean pressure gradient is very

strong inside the sheet cavity, it causes the most dominant stress applied to this region’s

fluid element. The strong gradients give rise to the coherent vortical structures that are

advected downstream with the mean flow. It is also shown that the pressure gradient is

negative, implying that tensile stress is applied to the fluid element inside the sheet cavity;

therefore, the element goes through an expansion, which is the main factor leading to the

vapor structure deformation. As expected compared to the viscous stresses, the Reynolds

stresses apply a greater load on the fluid elements. It is also displayed that away from

the sheet cavity where the gradients of the field are relatively small, viscous stresses and

Reynolds stresses do not contribute significantly to the dynamics. It can safely express

that outside of the cavitating flow, an inviscid balance between acceleration term, advection

terms, and external stresses exist. Besides, the viscous terms impact on the dynamics of

the flow field is negligible. Thus, the coherent structures formed in the flow field will be

transported downstream with an insignificant energy loss. Both Reynolds stress anisotropy,

isotropic part of Reynolds stress, and viscous stresses apply a tensile load on the liquid-vapor
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interface that contributes to the inception of the cavitation. On the other hand, these terms

apply a compression load on the elements inside of the sheet cavity. The strong tensile

stresses applied to the elements adjacent to the cavitation flow causes a major reduction in

the momentum. It should be noted that Reynolds stresses are one order of magnitude less

than the mean pressure gradients isotropic stress.

Figure 7.2: Representation of the Favre-averaged momentum equation where the sheet cavity
is formed. (a) rate of change of momentum of the fluid element as a result of the mean flow
instability. (b-c) rate of change in momentum of the fluid element owing to the advection as
it occurs in the mean flow. (d) the isotropic stress applied as a result of the mean pressure
field gradient. (e-f) Reynolds stresses as a result of the fluctuations in the velocity vector
field. (g-h) Viscous stresses are applied to the fluid element due to the molecular processes.

139



7.4 Favre-averaged Momentum Transport Dominant Mech-

anisms in Transition to Cavitating Flow

In this section, the dominant balance forces of an internal flow going through a transition

to cavitating flow have been investigated. For this purpose, the data obtained from X-

ray imaging has been utilized. Figure 7.5 depicts the equation space clusters and associated

dominant balance models for the Favre-averaged momentum equation. The method identifies

regions corresponding to high void fraction, wall-bounded layer, free stream, vapor-liquid

interface. In practice, the spatial domain of the cavitating flow may be broken down into

distinct regions where only some of the terms are dominantly contributing to the momentum

balance equations. For instance, anisotropic turbulence is not observed in the free stream;

conversely, pressure gradient and TKE spatial changes apply significant forces to the fluid

element. At the high void fraction region, rotation or buoyancy effects play an essential

role in giving rise to strong anisotropic turbulence. Since turbulence is isentropic in the

red, green, and blue regions, Reynolds stress tensor in the governing equations of Reynolds

stress transport may be replaced by TKE. Besides, some regions of the flow field depict

independence to the unsteadiness. For instance, part of the liquid-vapor interface, the flow

adjacent to the wall at the throat, and the free stream flow are in a steady state. In the purple

region located inside the high void fraction region, mean pressure gradients and Reynolds

stresses apply a compressive load on the fluid element that leads to the recovery of the

momentum. On the other hand, in the red region representing the liquid-vapor interface,

since isotropic and anisotropic part of the stresses due to the velocity fluctuations and the

mean pressure gradients apply a tensile load on the elements, momentum reduction occurs.

Another method to interpret the GMM is by extracting the covariance matrices, look at

figure 7.3. The color bar indicates which terms are not contributing to the dominant bal-

140



ance made in each cluster. Since the number of clusters is set to 6, the redundant clusters

are not observed. The regularization value is set to 107. The norm of the discarded terms

in the cluster region determines the residuals of the inactive terms. Cluster # 1 depicts

the region where the vapor concentration is significant. It can be observed that the flow

field in this region is unsteady, and pressure gradients and Reynolds stresses apply notable

accelerations leading to momentum transport in the form of advection. Cluster # 2 depicts

the free stream flow where the correlation between the unsteady and other terms is negli-

gible; therefore, flow can be safely modeled as a steady flow. It can be observed that the

strong gradient of pressure primarily derives the momentum variation in the free stream.

Clusters # 3 and 5 depict the liquid-vapor interface. A strong correlation exists between

the pressure gradients and the instabilities mechanism. Therefore, it is observed that the

compressive stress applied by the pressure gradients force is the mechanism giving rise to the

instabilities on the liquid-vapor interface. Cluster # 6 falls into the region where the cavi-

tation concentration is significant. Isotropic stresses applied by the mean pressure gradients

are the primary mechanism governing the momentum flux and cause the instabilities in the

flow field. The covariance matrix shows that the Reynolds stresses are correlated with the

unsteady term and the advection terms. The isotropic and anisotropic parts of the stresses

due to the velocity fluctuations are of secondary and tertiary importance in the transport of

momentum by the mean flow field and introduce the instabilities to the flow field.
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Figure 7.3: The figure presents the Identification of the dominant terms on the Favre-
averaged momentum equation in x-direction represented by covariance matrices inferred by
the GMM. Covariance matrices depict dominant terms in separate regions: region (1) volume
fraction is significantly high, region (2) freestream, regions (3), (5) interface of the liquid and
gas phases, region (4) wall-bounded cavitating flow, and region (6) where most of the terms
are contributing to the balance.

To describe the correlation between the forces in the Favre-averaged momentum equation,
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figure 7.4 depicts the equation space clusters of the Favre-averaged momentum equation in

the cavitating flow. Sets of points have significantly reduced correlation in equation space’s

specific directions that show the signature of the dominant balance phenomenon in different

regions of the flow field. Equation space representation identifies the local balance relations

between the forces applied to an element of the fluid in the corresponding local region.

For instance, the black cluster shows a strong linear correlation between pressure gradients,

Reynolds stresses, momentum transport due to the instabilities, and the advection by the

mean flow field. Compared to the black cluster, the points in the red and green clusters

show randomly distributed points in the equation space. The weak correlation between the

terms in the red and green clusters was previously shown in the graph of the covariance

matrix, where the pressure gradients were the primary mechanism driving the transport of

the momentum, and other mechanisms were deactivated. In the yellow cluster, the strongest

correlation is observed in the plane of the pressure gradient and the advective terms, where

the points can be collapsed into a linear curve. The same observations can be made for

the blue cluster: the pressure gradients depict a linear correlation with the unsteady and

advective terms. In practice, GMMs application to the data points creates redundant clusters

that can suffer the interpretability of the provided model, figure 7.4. To solve the preceding

issue, SPCA, which uses l1 regularization, is employed. SPCA yields parsimonious dominant

balance models by dismissing the insignificant terms in the equation space. Clusters that

are representative of the dominant balance regime are interpretable via the direction of the

maximum variance. SPCA is applied to the set of points in each GMM cluster, and the

active terms in the cluster are defines as the terms that have non-zero entries in the sparse

approximation to the leading principal component, figure 7.5.
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Figure 7.4: Visualization of the equation space associated with Favre-averaged momentum
equation in the cavitating flow. The equation space representation enables clustering and
sparse approximation of the momentum equation. Extraction of distinct geometrical struc-
tures in the space corresponding to dominant balance terms is feasible. The equation space
represents the correlation of the forces in momentum equation in non-overlapping regions of
the flow field. The dominant forces in each region can be extracted and the balance between
different forces can be studied.
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Figure 7.5: Schematic of the dominant balance identification applied to a cavitating flow for
λreg = 107. The equation space is associated with the Favre-averaged momentum equation in
the x-direction. (a) The entire domain is segmented using the balance models shown in (c).
The segmentation enables the identification of distinct regimes of flow. GMM probabilistic
model enables investigation of the clustering uncertainty. (b) Summation of the uncertainty
associated with the models that cannot be accommodated in the balance relation. (d)
Residuals of the inactive terms in the models as a Sparse Principal Component Analysis
(SPCA) regularization function.

7.5 Compressible Momentum Transport Dominant Mech-

anisms in Transition to Cavitating Flow

Figure 7.6 displays the dominant balance model of the cavitating flow. To eliminate the

redundant clusters and identify the sparse balance models in each cluster, SPCA is applied

to the points in each GMM cluster. The leading principle component gives the direction of

maximum variance; nonzero components in the sparse approximation correspond to active
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terms in that cluster. The dominant balance model obtained in this section suggests that the

free stream, the orange region, is inviscid and acceleration terms balance pressure gradient

force in the form of wall-normal and stream-wise advection. Orange cluster indicates the free

stream flow where unsteadiness is negligible. Adjacent to the bottom wall, the stream-wise

advection terms balance with the pressure gradient, represented by the blue region. It is

observed that unsteadiness is emphasized in the regions with a high void fraction represented

by the green cluster. Like the time-averaged governing equation, strong isotropic stresses

applied by the instantaneous pressure gradients drive the flow field’s instabilities. It can be

expressed that the primary mechanism causing instabilities in the velocity vector field inside

of the attached sheet cavity at the wake of the throat is the presence of a strong pressure

gradient. Visualizing the equation space helps to extract the underlying linear relationship

between different terms in the momentum equation, look at figure 7.7. As expected, the

variation in the instantaneous momentum of a fluid element due to the instabilities is corre-

lated with the pressure gradient for the green cluster. Conversely, for the other two clusters,

the points in the equation space are randomly distributed, showing no meaningful linear cor-

relation between the pressure gradient and the time-dependent acceleration term. Since the

points in the equation space corresponding to the viscous terms are distributed randomly,

the viscous terms show the lowest correlation with the other terms. It can be observed that

the pressure gradient shows a linear correlation with the advective acceleration for all of the

clusters.
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Figure 7.6: Schematic of the dominant balance identification applied to a cavitating flow for
λreg = 107. The equation space is associated with the compressible momentum equation in
the x-direction. (a) The entire domain is segmented using the balance models shown in (c).
(b) Summation of the uncertainty associated with the models that cannot be accommodated
in the balance relation. (d) Residuals of the inactive terms in the models as a Sparse Principal
Component Analysis (SPCA) regularization function.
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Figure 7.7: The figure presents the visualization of the equation space associated with the
compressible momentum equation in the cavitating flow. SPCA is employed to the set of
points in each GMM cluster and. For further information look at figure 7.4
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7.6 Conclusions on Dominant Physical Mechanisms on

Venturi-type Profile

This chapter investigates the physical mechanisms governing the variations in the TKE

attached sheet cavity, liquid-vapor interface, and the non-cavitating free-stream flow. It is

shown that the numerical method mentioned above employing the TKE budget equation

implies the following outcomes:

• The highest rate of the shear stress production occurs on the liquid-vapor interface

where the velocity difference between the free-stream and the attached sheet cavity is

significant. Since the magnitude of the production term is high compared to the other

terms, the shear stress introduces the most significant impact on the instabilities in

the flow field.

• Pressure fluctuations delay the redistribution of the TKE on the interface of the two

phases. On the other hand, velocity fluctuations contribute to the transport of the

TKE from regions with high levels to low-level regions.

• Dissipation term is shown to have the most negligible impact among other mechanisms.

Therefore, the loss of kinetic energy due to the exchange of the TKE into internal energy

does not play an essential role in the variation of the TKE.

Additionally, the dominant time-averaged stresses enforcing the spatial and temporal varia-

tion of the momentum past the throat of the Venturi section are scrutinized. According to

the numerical results obtained from the Favre-averaged momentum equation, the following

findings are extracted:

• Strong pressure gradients give rise to instability in the flow field, increasing the mo-
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mentum adjacent to the throat, while this instability diminished the momentum in the

near wake of the throat.

• The pressure gradients apply tensile stress on the fluid elements located inside the

attached sheet cavity that causes the transport of the void fraction and growth of the

vapor structures.

• Since the viscous stresses in the flow field is three orders of magnitude lower than

the Reynolds stresses and pressure gradients forces, the energy loss resulting from the

deformation of the eddies in the flow field can be neglected.

• Anisotropy and isotropic part of Reynolds stress enforce a tensile load added up to the

isotropic pressure gradients. Therefore, Reynolds stresses influence the transport of

void fraction, and they can improve the production of the vapor phase at the liquid-

vapor interface.

In the following two sections, the dominant forces in different regions of the flow field and

their effect on the momentum transport resulting from the advection and instabilities are

extracted utilizing GMMs. GMMs numerical results can be summarized as follows:

• The primary mechanism of the instabilities in the sheet cavity is the intense anisotropic

stress that is caused as a result of the buoyancy force.

• In the cavitating flow, a strong correlation between the pressure gradients and the in-

stabilities mechanism is observed. Isotropic and anisotropic stresses applied on the fluid

element due to the mean pressure gradients and the temporal fluctuations of velocity

cause strong instabilities inside the sheet cavity and at the liquid-vapor interface.

• In the non-cavitating flow, the momentum flux occurs as a result of the advection.
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Since the isotropic terms, including the isotropic Reynolds stress and the mean pressure

gradients, are dominant in the non-cavitating flow, the anisotropic turbulence can be

safely neglected. Besides, the flow field in this region is independent of temporal

variations implying a steady state.

• The results obtained from the balance of the forces in the momentum transport equa-

tion confirm the time-averaged momentum transport equation. Accordingly, the in-

stantaneous pressure gradients forces inside the sheet cavity are correlated with the

mechanism of the instabilities.
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Chapter 8

Data-driven Discovery of Phase

Transition Field Equation

8.1 Introduction

In the study of the inception of the cavitation, it is imperative to consider the liquid compo-

sition. Depending on the impurity of the liquid phase, different scenarios might occur as the

flow field variables change. For instance, in case of a rapid drop of the pressure, liquid may

cross the thermodynamic saturation without necessarily going through the phase transition

process. The pressure recovery in the far-field may not result in the phase change of the

vapor phase. In the conditions mentioned above, the flow field is called to be in metastable

equilibrium. In this flow condition small disturbances in the flow field or adding impurity

to the liquid result in a phase transition. The inception of the cavitation occurs where the

tensile strength of the liquid is small [14]. The cavitation inception can be grouped into

two forms: homogeneous and heterogeneous inception. The thermal activities govern ho-

mogeneous cavitation inception within the flow field, resulting in small-scale voids in the

medium. On the other hand, large-scale cavitation formation is governed by surface tension.

High surface tension prevents the growth of the small scales voids in the pure liquid. In

contrast, the heterogeneous cavitation inception occurs in an impure liquid medium where
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the local surface tension is significantly small. Since the water is composed of impurity in

the current experiments, the tensile strength of the liquid phase is small locally. Therefore,

given that the pressure field crosses the thermodynamic saturation curve the large-scale cav-

itation occurs. In other words, in practice, the inception of the cavitation is governed by

the thermodynamic saturation curves, and the metastable equilibrium does not happen in

this flow condition. Impurity in the tap water results in heterogeneous cavitation inception,

and accumulation of nuclei leads to large-scale vapor structures. In the current chapter,

it is assumed the cavitation inception occurs when the pressure field crosses the saturation

pressure, and the metastable state does not happen. To further improve the understanding

of the cavitation inception, one may need to know the composition of the water. The preced-

ing description implies that the thermodynamic saturation curves are valid for a particular

composition of water that needs to be determined in advance. In the current research, it

is assumed that the cavitating flow is composed of a mixture of the vapor and liquid that

behaves as a single species; for instance, the relative motion between the phases is negligible,

so the phases move simultaneously with the same velocity. Besides, it is assumed that the

two phases are in mechanical equilibrium: the local pressure field for both species is the

same. It is also assumed that the flow goes through an isothermal process, and the density

of the vapor phase dependence on the pressure field is insignificant.

Furthermore, cavitation bubbles transporting past the throat of the Venturi depend on the

pressure gradient. Figure 3.4 depicts the scanning positions. Pressure gradient intensities

in the first region depend highly on the location. Besides, the pressure gradient interaction

with the vapor structures is strong in the first and second regions of the flow field. Here

it is instructive to assume that the pressure is acting on the liquid phase as a tensile force.

To cause a rupture in the liquid phase, a pressure field exceeding the local tensile strength

is necessary. Impure water cannot tolerate tension and will cavitate in the flow field region
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where tensile stresses acting on the fluid exceed the tensile strength. The previous tensile

force acting on the bulk liquid phase is sufficient to counteract the attractive forces available

in the region where the initial nuclei are present. The approach mentioned above is very

intuitive in the interpretation of the volume fraction spatial and temporal changes. In

regions one and two, the pressure gradient acting on the bulk liquid dictates the spatial rate

of tensile stress in the field, balanced with the spatial and temporal changes in the void

fraction field. The governing equations illustrate that the rate of change of tensile stress

determines the rate of production or destruction of the liquid phase. The spatial rate of

change of tensile stress is implicitly correlated with the rate of change of the fluid element

volume or the growth of the nuclei, which requires moderate tensile stress to keep growing.

In other words, the spatial rate of change of tensile stress determines how fast the element of

fluid is contracting or expanding in cartesian coordinates. In another viewpoint, the spatial

rate of change of tensile stress determines the growth rate of holes in the flow field. The

preceding analysis is very similar to the solids’ behavior: the solid’s failure occurs in the

region where nucleation exists. Similarly, in this case, the inception and propagation of the

crack occur in the weak spots located adjacent to the nucleation. Therefore, the flow field

imposes varying pressure gradients on vapor structures traveling in the flow. The pressure

gradient changes the structures of the vapor phase significantly, and it results in the vapor

structure’s growth or condensation depending on the location and time. In this sense, the

instantaneous cavitation propagation and evolution can be defined through the local tensile

strength of liquids.

This chapter presents the numerical modeling of the cavitation inception, break-up, and

shedding as it develops in a Venturi-type section. An emphasis is placed on comparing

the void ratio transport and production (destruction) of void ratio in both time and space.

In this regard, instantaneous void ratio, 2-D velocity vector field, and static pressure are
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utilized to implement cavitation modeling and validation. Validation and comparisons are

implemented with X-ray measurements accompanied by the pressure results obtained from

simulations.

As discussed in the previous chapters, cavitating flow evolution is aperiodic. It is assumed

that the void transport equation governs the mass transfer between phases. A mass term or

void fraction term is added to the right-hand-side of the mass transfer equation:

∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
= ṁv (8.1)

The mass term consists of closure parameters that are tuned through the data-driven tech-

nique mentioned in section 4.10, and the performance of the model is compared against

the other models. Euclidean norms of the models are compared with each other. Various

formulations of the mass transfer equation have been proposed, each of which simulates the

mass transition process in a particular region of the flow field.

Modeling the cavitating flows past the throat of the Venturi-type section is challenging:

as mentioned in the previous chapters, the flow mentioned above is composed of distinct

regimes with complex aperiodic evolution that cannot be described through equilibrium

thermodynamic relations. Although the numerical formulations of cavitation flow have been

investigated thoroughly [8, 16, 27, 29, 33, 49, 56, 57, 60], the performance of the current

models may be enhanced using data-driven techniques. The application of the data-driven

technique allows us to extract the dominant physical terms governing the phase transition

in each region of the cavitating flow. Likewise, the method identifies dominant terms men-

tioned in the classical cavitation models or is new terms improving our understanding and

modeling performance. The fluid is assumed a homogeneous mixture of vapor and liquid in
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all interrogation windows. The mixture of the two phases can be treated as a single fluid,

given that the local velocity and pressure of the phases are in equilibrium.

8.2 Phase Transition Modeling in Distinct Regions of

Cavitating Flow

As discussed, the void fraction and velocity vector field obtained from X-ray measurements

are used in phase transition modeling. Initially, POD reduces the noise in the experimentally

measured velocity vector field and void fraction field. In the second step, the void fraction

transport equation is solved to obtain the instantaneous rate of phase transition in each

interrogation window. Next, given the pressure field from the numerical simulation and

the X-ray data, including the instantaneous void fraction and velocity vector field, phase

transition modeling in distinct regions of the flow field has been implemented. In other

words, given the spatial and temporal data of mass transition term ṁv, the best fit model

is obtained using the LASSO method. As it was shown in section 4.10, the LASSO method

performs the variable selection subject to a regularization parameter, λreg. promoting sparsity

of the resultant model. LASSO method improves the accuracy of the suggested model in

terms of l2 norm. At the same time, it promotes the physical interpretation of the model by

penalizing less correlated terms or correlated to the noise corresponding to the coefficients

close to zero. Initially, λreg. small number where the l1 penalty term does not promote any

sparsity; therefore, the model contains all of the terms in the library. An increase in λreg.

results in the elimination of the uncorrelated terms whose coefficients are close to zero, so

the complexity of the model decreases with an increase in λreg.. Here the model with the

lowest number of terms and small l2 norm is selected. Figure 8.1 illustrates the norm two

obtained from the discrepancy between the experimental data and the numerical simulations.
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Only the terms that are most correlated to the phase transition terms are selected as part

of the LASSO method. A library of the candidate’s linear and non-linear terms is selected

to fit a model to the aforementioned data. Three variables are assumed to play a role in

void fraction transport and phase transition phenomenon: pressure field, void fraction level,

and instantaneous velocity vector field. The library consists of the polynomial functions of

the system variables or any non-linear combination of the variables. Besides, the first and

second spatial derivatives of the variables are accommodated in the library. In selecting

the windows acquiring void fraction, only the grids that acquire more than 5% vapor are

taken into account in modeling. The cavitating flow is broken down into four regions with

different characteristics; look at the regions one to four in figure 3.4. After the throat of

the section, the production of the vapor phase is the dominant mechanism of the transition

process. Since the evaporation is dominated in this region, a high concentration of the vapor

phase is observed in the region #1.
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Figure 8.1: Norm two obtained from the discrepancy between the void fraction transport
relation, ∂α

∂t
+u∂α

∂x
+v ∂α

∂y
,and vapor phase transition model, ṁv in different regions of the flow

field: (a) inception of the cavitation (b) vapor phase shedding, (c) break-up of the vapor
phase and (d) condensation of the vapor structures. Models suggested for each region is
presented in Eqs. (8.2)-(8.5).

Figure 8.2 depicts the gradient of pressure in the first region of the cavitating flow. Strong

pressure gradient in this region causes spatial and temporal changes in the void fraction field.

∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
= ψ1

√
p∞

ρh6
t

ht

p∞

∂p

∂y
(8.2)

∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
= ψ1 + ψ2

∂v

∂y
+ ψ3α +

√
p∞

ρlh6
t

ht

p∞
[ψ4

∂p

∂x
+ (ψ5 + ψ6α)∂p

∂y
] (8.3)

The spatial rate of change of tensile stress applied on the initiated nucleation of cavities

results in a rupture in the fluid. Next, this void region is filled with vapor.

158



.
Figure 8.2: Representation of the non-equilibrium cavitation model suggested for region #
1 where the vapor phase is massively generated due to the high-pressure gradient. (a) the
pressure gradient mainly governs the mass transition term.

According to the transport equation shown in Eq. (8.3), the rate of change of the void

fraction depends on the divergence of the velocity. The preceding behavior is also observed

in the third region, where the divergence of the velocity is the only mechanism of the phase

transition:

∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
= ψ1α

∂u

∂x
(8.4)

The local void fraction spatial and temporal changes enforce significant changes in the other

variables of the flow field, such as the static pressure and pressure gradients. On the other

hand, Eqs. (8.3) and (8.4) imply that the instantaneous velocity divergence is correlated

with the void fraction changes. For instance, in the region where the void fraction is high,

infinitesimal local patches of negative divergence of velocity are observed that implies the

local expansion of the fluid elements, look at figures 8.3 and 8.4. The expansion causes a

local increase in the vapor phase. On the other hand, in the regions where the compression

of the fluid element occurs (positive velocity divergence), vapor structures are destroyed.

The magnitude of the velocity divergence determines the magnitude of the compression
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or expansion. For example, in regions with higher velocity divergence, the destruction of

the vapor phase occurs at higher rates. Since the velocity and void fraction divergence are

correlated, the speed of sound affects the void fraction transport implicitly. The active terms

in the different regions suggest that the spatial and temporal changes of the void fraction are

introduced by the rate of change of tensile stress, look at figure 8.6. In the first region and

the locations where the vapor phase accumulates significantly, orange and red clusters, void

fraction variation occurs both spatially and temporally. Besides, this variation is caused by

the rate of change of tensile stress applied to the fluid elements. On the other hand, since

vapor structures transport is intermittent adjacent to the wall, the void fraction is only a

function of time; look at the green region in figure 8.6. It should be noted that α is zero in

the blue region and the flow field is incompressible, thereby yielding no meaningful balance

between the provided terms. The analysis of the dominant balance mechanism, applied to

the flow field past the throat of the Venturi-type section, proves that in the regions where

α is non-zero, the tensile stress is the dominant mechanism in the flow field that results in

temporal and spatial changes or in one sense distribution of the void fraction field. The

tensile stress distribution activates the temporal and spatial changes in the region with a

concentration of void fraction. On the other hand, the applied tensile stress only causes

temporal variation of the void fraction in the wake of the throat and the vicinity of the

wall. The orange region depicts the region of the flow field where the unsteadiness in the

void fraction is insignificant; therefore, a balance between the spatial derivatives of the void

fraction and the tensile stress is acquired. Figure 8.7 illustrates that the rate of change of

void fraction is balanced by the rate of change of the fluid element volume and the applied

tensile stress. Once the fluid element enters the second region where the vapor cloud shedding

occurs, it goes through rapid extension and contraction due to varying tensile stress. The

expansion and contraction of the fluid elements manifest themselves in terms of spatial and

temporal variation of the void fraction; look at the red cluster in figure 8.7. The variables
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mentioned above are very intuitive: strong gradient pressure induces a strong divergence of

velocity. Consequently, the divergence of velocity causes gradients in the void fraction. In

some sense, tensile stress implicitly affects the distribution of the void fraction in the flow

field. This clustering also shows other regions with distinct dominant balance models, such

as temporally non-varying void fraction region (blue cluster), non-advective region where

the void fraction transport does not occur due to the flow motion (orange region). Since,

in some regions of the flow field, the concentration of the vapor phase is insignificant, the

flow field is non-advective due to zero gradient of void fraction. The preceding observation

proves that the void fraction time variation in an infinitesimal fluid element is balanced

by the sink or source of the vapor structures caused by the variation in tensile stress and

volume changes of the fluid element. Figure 8.9 displays the role of the velocity divergence

on the void fraction transport. Contraction occurred due to the changes in the fluid element

volume, causing the condensation of the vapor phase. On the other hand, expansion of the

fluid element is the only mechanism causing the production of the cavitation structures. A

unidirectional advection term is activated in the blue and orange clusters, implying that the

void fraction transport resulting from the advection mechanism is dominant in one direction,

and the transport process in the other direction is negligible. For instance, in the orange

cluster closer to the bottom wall, the advection occurs in the x-direction. Green cluster

shows a balance between temporal changes of void fraction in an element, redistribution

of the void fraction due to the advective terms and generation or destruction of the vapor

phase. The green cluster is very intuitive in understanding the underlying mechanism of the

transport of void fraction. As a result of the expansion of the fluid element, vapor structures

are generated in an element. Part of the vapor structures accumulates in the element, giving

rise to the temporally varying void fraction. The rest of the vapor structures are carried

away to the other locations.
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Figure 8.3: Representation of the non-equilibrium cavitation model suggested for region #
2 where the shedding of cloud cavitation is initiated. (a), (b) negative (positive) pressure
gradient patches result in a sudden drop (increase) of the pressure field. The negative
pressure gradient is the forerunner of cavitation structures production. A strong negative
pressure gradient is observed at the liquid-vapor interface, where the pressure gradient is the
dominant mechanism in cavitation production. (c) Divergence of the velocity represents the
second mechanism of the production or condensation of the vapor structures. The negative
(positive) patches of the divergence of the velocity delineate an expansion (contraction) of
fluid element leading to production (destruction) of the vapor phase. (d) Instantaneous
snapshot of the field of the void fraction in the near wake of the throat.

Figure 8.4: Representation of the non-equilibrium cavitation model suggested for region # 3
where the cavitation break-up occurs. (a) the divergence of the velocity mainly governs the
mass transition term. For further information, look at figure 8.3 (b) Instantaneous snapshot
of the field of the void fraction where the cavitation break-up occurs.
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Figure 8.5 presents the effect of the pressure recovery on the condensation rate. In the near-

wake of the throat, as the vapor structures pass on into the high pressure field, the vapor

structures go through a condensation followed by bubbles collapse. The governing equation

of the condensation process in the near-wake reads:

∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
=
√
p∞

ρlh6
t

1
p∞

p2(ψ1 + ψ2p) (8.5)

The static pressure field determines the rate of destruction of the vapor phase. The cubic

static pressure term causes a rapid condensation of the vapor phase. Figure 8.9 illustrates

two condensation regimes: balance between non-linear pressure field and the spatial and

temporal changes in the void fraction field. Since region # 4 is far from the test section

geometry changes, the pressure gradient and velocity divergence terms are not included in

the balance emphasizing that the production of the vapor structures does not occur in this

region.

Figure 8.5: Representation of the non-equilibrium cavitation model suggested for region # 4
where the pressure recovery occurs. (a) the pressure field mainly governs the mass transition
term. Since the pressure drops in the near wake, condensation of the vapor structures
occurs. (b) Instantaneous snapshot of the field of the void fraction in the near wake of the
Venturi-type section throat.
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Figure 8.6: Schematic of the dominant balance identification applied to a cavitating flow
for λreg = 103. The equation space is associated with the void ratio transport equation
that governs cavitating flow right after the throat of the Venturi-type section. For further
information look at figure 7.5.
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Figure 8.7: Schematic of the dominant balance identification applied to a cavitating flow for
λreg = 103. The equation space is associated with the void ratio transport equation that
governs cavitating flow where the vapor cloud shedding occurs. For further information look
at figure 7.5.
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Figure 8.8: Schematic of the dominant balance identification applied to a cavitating flow for
λreg = 102. The equation space is associated with the void ratio transport equation that
governs cavitating flow where the cavitation break-up initiates. For further information look
at figure 7.5.
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Figure 8.9: Schematic of the dominant balance identification applied to a cavitating flow
for λreg = 103. The equation space is associated with the void ratio transport equation
that governs cavitating flow in the near wake, where the pressure recovery imposes the
condensation of the vapor phase. For further information look at figure 7.5.
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Chapter 9

Conclusions and Future Research

Directions

9.1 Conclusions

In chapter 6, a priori physical information extracted from the analysis of the raw high-speed

images illustrates the dominant cavitating flow regimes. The observations demonstrate that

the cavitating flow is aperiodic. Besides, numerous flow regimes are identified from the raw

images as follows:

• Length of the attached sheet cavity oscillates significantly, and the maximum length

changes in each cycle.

• Since the re-entrant jet convection is distinct in each cycle, the vapor cloud shedding

pattern and scale are distinct.

• The small-scale vapor structures dissipate in the high pressure field region, while down-

stream larger structures collapse where the pressure field is comparably higher.

Furthermore, data-driven techniques are applied to the planar time-resolved PIV to investi-

gate the transitions between distinct regimes of cavitating flow as it occurs in a Venturi-type
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profile. Three data-driven techniques are used on the PIV data to shed light on the transition

mechanisms.

Analysis of the DMD results yields the modes of instabilities. These modes are shown to be

corresponding to the dominant flow patterns. Besides, similar to the Fourier transform, it has

been demonstrated that the mode’s isolated frequency is imperative in identifying the mode.

Since DMD obtains the best fit linear model that sends the current status of the dynamical

system to the future, each instabilities monotonic decay rate and their corresponding initial

amplitude can be extracted. Following results are obtained applying the DMD technique on

the PIV measurements:

• Modes corresponding to the Kelvin-Helmholtz instabilities developed at the interface

of the two phases acquire higher decaying rate, lower frequency ratio, and lower initial

amplitude.

• Instabilities modes corresponding to the vapor cloud shedding and the condensation of

the vapor phase in downstream acquire lower decay rate, higher frequency, and higher

initial amplitude.

CROM technique has identified three dominant flow regimes: (1) convection of a pair of co-

herent structures, (2) convection of triple (3) weakly triple structures. The transition matrix

obtained from CROM displays the path of the transition between cavitating flow regimes.

Bifurcation clusters, representing the precursor of the regime change, are illustrated—the

probability of regime change or the time duration that the flow pattern changes are ex-

tracted. Besides, the time duration that the flow field remains in each pattern is extracted.

The CROM analysis shows that the regime transition is tightly connected to the vapor cloud

shedding, governed by the dynamics of the re-entrant jet. Besides, analysis of the POD re-

sults complements the underlying mechanisms of the transition between distinct regimes.
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Separation of the length scales thorough POD deterministically revealed the path of transi-

tion between distinct instabilities. Application of the POD on the filtered data revealed the

following instabilities:

• Premature condensation causes high amplitude oscillations in the closure region of the

attached sheet cavity.

• Collapse of the bubbly structures gives rise to the Instabilities in the downstream

region.

• The velocity and density discontinuity on the interface of the two phases lead to the

KH instabilities.

• Energy transfer from the mean flow to the high-frequency fluctuations known as Drift

flow instabilities.

In chapter 7, GMMs, along with SPCA, are used to cluster the force points in the Favre-

averaged momentum equation space. The preceding data-driven technique facilitates the

segmentation of the flow field into regions where a subset of the forces in the momentum

equations are essential. Following results are obtained from learning dominant forces in the

cavitating flow:

• The study mentioned above suggested the regions of the flow field where the turbulence

anisotropy plays the central role in the balance between forces in an infinitesimal fluid

element.

• Instabilities resulting from the formation of the attached sheet cavity and the cavitation

break-up give rise to anisotropy terms. Strong anisotropic turbulence shows that the

rotation level is significant inside the attached sheet cavity.
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• Isotropic turbulence is the main force contributing to the balance in the governing

equation, specifically in the free-stream and boundary layer.

• Pressure gradient reduces the rate of transport of TKE where the liquid-vapor interface

is located.

• Pressure-dilatation and pressure work can reverse the cascade of energy.

• It is observed that the transport of kinetic energy due to the velocity and pressure

turbulent fluctuations is more efficient than the transport through molecular processes.

Chapter 8 focuses on the modeling of the liquid-vapor phase transition. A few assumptions

have been placed for the modeling as follows:

• The process happens rapidly; therefore, it is assumed that the process is isothermal.

• Density of the species is constant and independent of pressure.

• The two phases are well mixed up, and the mixture is assumed to be homogeneous.

As the initial step in the modeling, void fraction transport is assumed to be balanced by a

phase transition term. Then, it is suggested that the rate of change of void fraction in an

infinitesimal element of fluid is correlated with three distinct mechanisms:

• Spatial rate of expansion (contraction) of the fluid element.

• Spatial rate of change of tensile stress applied on the fluid element

• Absolute compressive stress applied on the fluid element.

It is shown that the first two mechanisms are both responsible for the destruction and

production of the vapor phase, and they are functions of time and space. The last mechanism
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is responsible for the condensation of the vapor phase, and it occurs in the regions where

the pressure value is comparably high.

9.2 Future Research Directions

Besides the research outline states in the previous section, the following topics can be studied

further to improve our understanding and modeling of the cavitating flows:

• The suggested models for the void fraction transport can be combined to obtain one

unified equation valid for the entire domain. In this regard, a blending function needs

to be defined that bridges the near-throat relations to the other regions of the flow

field where the vapor cloud shedding and cavitation break-up occur. The blending

function requires an explicit measurement of some variables in the system, such as

void fraction. In other words, the blending function explicitly depends on a variable

that uses the preceding variable to blend the near-throat formula with the formulas of

the other regions. The blending function can predict the variables of the flow field in

a variety of regimes.

• Although in the current study it is assumed that the flow field is viscous, the limited

resolution of the camera was a barrier that might underestimate the viscous terms in

the governing equations significantly. Based on the boundary layer theory, the role of

the viscous stresses are significant in the vicinity of the wall; however, since the spatial

resolution was limited in the vicinity of the wall, the viscous stresses are underesti-

mated. Besides, higher spatial and temporal resolution is required to shed light on the

underlying physics of the viscous stresses in distinct regions of the cavitating flow.

• Investigation of the effect of the collapse of the vapor cloud on the evolution of the
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attached sheet cavity
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