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Abstract 
 

 This work examines the detailed flow characteristics of direct measuring skin friction 

gages with computational methods.  This type of device uses a small movable head mounted 

flush to a wall such that the head is assumed to be exposed to the same shear stress from the flow 

as the surrounding wall.  The force caused by the action of the shear stress on the head deflects a 

flexure system monitored by instruments such as strain gages mounted at the base of a beam. 

 The goal of the study was to develop an understanding of the effects that the geometric 

design and installation parameters of the sensor have on the surrounding flow and the ability of 

the sensor to reflect the undisturbed shear stress value.  Disruption of the external flow due to 

poor design and/or improper installation of the sensor can take the form of intrusion into the 

flow, recession into the wall, and/or tilted alignment of the sensor such that the head is not flat in 

the plane of the wall, as well as flow into or out of the small gap surrounding the sensing head.  

Further, the performance of a direct measuring skin friction sensor in the presence of a pressure 

gradient has always been a concern.  These effects are studied here with a three-dimensional, 

Navier-Stokes code based on a finite element method technique. 

 Numerical solutions for cases in which one or more design parameters were varied are 

shown for a variety of flow situations.  These situations include: (a) a laminar fully-developed 

channel flow at a low Reynolds number, (b) a turbulent flat plate boundary layer flow at a high 

Reynolds number, and (c) strong favorable and adverse pressure gradient turbulent boundary 

layer flows created by converging and diverging channels at high Reynolds number.  Reported 

results for all cases include detailed flow visualization and stress field imagery, and total surface 

forces on the sensing head and gage flexure.  Under ideal circumstances, these total forces 

should reflect as accurately as possible the average value of undisturbed shear stress times the 

exposed sensing head area (the friction force).  Any deviation from this value was considered an 

�error� in the simulated measurement. 

 The laminar channel flow case with a strong favorable pressure gradient showed the 

importance of proper alignment of the sensor.  Protrusion or recession of the sensing head proved 

to be the dominant effect on resulting forces seen by the gage, changing the output by up to 15% 

for head protrusion and 10% for head recession for misalignments up to +/-1% of the head 

diameter.  The thickness of the lip on the edge of the head also proved to have a significant effect 

on the output, with a smaller lip thickness generally showing better performance than a large 
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one.  Zero lip thickness indicated accuracy to within 1% of the desired wall shear result, since 

the pressure differences had little influence on the sensing head.  Finally, the assumption of a 

linear pressure variation from the surface to the cavity along the lip as has been suggested in the 

past was investigated.  The results indicate that the linear assumption works well only for large 

ratios of lip thickness to gap size, a fact which is correlated with previous experimental results. 

 For the turbulent external flat plate case, misalignment remained the dominant effect on 

the sensor response.  Results indicated that, in general, protrusion is more costly than the same 

level of recession, and a protrusion of +1% of the head diameter was shown to cause in excess of 

100% error in indicated wall shear output.  Both protrusion and recession produced large 

variations in both force and moment on the sensing flexure, but the outcome was that for 

protrusion the errors caused by these two effects tended to sum together, while for recession they 

tended to partially cancel out. 

 The gap size played an increased role in the high Reynolds number boundary layer cases.  

Gap sizes of 1.67% up to 6.67% of the head diameter were studied and were shown to produce 

output errors between 4% and 22% (with larger errors corresponding to larger gap sizes), thus 

showing the importance of minimizing the gap for high Reynolds number flows.  The lip was 

shown to have no significant effect for a flow without a pressure gradient. 

 Finally, the favorable and adverse pressure gradient flows showed reasonable 

performance of the skin friction gage.  Errors in output were shown to be -6% for the favorable 

pressure gradient case and 17% for the adverse pressure gradient case.  Only the baseline gage 

design was studied for these situations, but the results from the two cases indicate that further 

reducing the lip thickness may not improve the performance of the gage.  The error in output was 

caused almost entirely by applied moment for the adverse pressure gradient, while the applied 

force and applied moment had a cancellation effect in the favorable pressure gradient case. 

 As a general result, the use of computational fluid dynamics has been shown to be an 

effective tool in the design and analysis of skin friction gages.  Using a computational approach 

has the advantage of being able to resolve the small, confined gap regions of the gage, providing 

information that has been shown to be unavailable from previous experimental studies.  This 

work has contributed to a much better understanding of the detailed flow over, in, and around 

skin friction gages.  This will lead to improved gage design and reduced uncertainty in these 

important measurements. 
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u, v, w  Cartesian components of velocity 

uτ  friction velocity 

U∞  free-stream velocity 

VX, VY, VZ Cartesian components of velocity [Ansys] 

w  channel width, finite element method weighting function 

w1  distance from channel symmetry plane to outer boundary placement 

WV  viscous work term 

x, y, z  Cartesian coordinate directions 

Z  misalignment distance 

Greek Symbols 

δ  boundary layer thickness 

ε  turbulent dissipation 

θ  momentum thickness 

κ  turbulent kinetic energy 

Λ  taper angle 

µ  dynamic viscosity 

µT  turbulent viscosity 

ν  kinematic viscosity 

ρ  density 

σ  surface tension coefficient 

τ  shear stress 

τW  wall shear stress 

Φ  degree of freedom, viscous dissipation 

yi  finite element method shape function 

Ω  integration domain 

Superscripts 

*  non-dimensional or normalized value 

~  finite element method approximate solution 

Subscripts 

dnstr  downstream condition 
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E  edge value 

EXACT exact (infinite grid) solution 

INLET  condition at problem inlet 

i, j, k  indices 

o  true, or nominal value 

OUTLET condition at problem outlet 

ref, REF reference condition 

upstr  upstream condition 

w  wall value 

x, y, z  Cartesian components 

0  stagnation quantity 

1  fine grid index 

2  coarse grid index 

∞  infinite or free-stream value, dimensionless scaling quantity 
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1.1 Introductory Comments 
 

 Since the beginning of recorded history, mankind has sought to understand and utilize 

fluids in every aspect of human life.  A fluid is defined as any matter which continuously 

deforms under the presence of a tangential stress [Anderson, 1991], and is commonly thought of 

as a liquid or a gas.  Even in ancient times, humans created irrigation systems, wells, and even 

boats and ships � all to utilize a fluid to improve their lives in some way.  Within each human 

body, life is sustained by the presence and action of fluids, including the living fluid pump 

known as the heart driving the circulation of needed nutrients to various parts of the body, saliva 

and digestive fluids which isolate and bring those nutrients into the body, and the fluid cushion 

that helps to protect and support the brain itself.  Indeed, from beginning to end, life is immersed 

in the presence and actions of fluids. 

 To mankind, however, it is typically not these fluids themselves that are so important.  

Whether it is the motion of air flow over an aircraft wing or the movement of a fluid through a 

pipe or channel, an essential piece of information about the process is how the fluid interacts 

with the solid objects that it come in contact with.  A fluid and a solid affect each other by the 

exertion of forces on the other -- forces which can always be broken up into two components: a 

pressure and viscous normal force which is defined to be normal to the solid surface at a point, 

and a viscous shear force which is defined to be tangent to the solid surface at a point [Anderson, 

1991].  These two forces are stress fields which act over finite areas of contact between a fluid 

and a solid.  A diagram of such a component resolution is shown in Fig. 1-1. 

 The tangential shear stress term is often termed as �skin friction,� for its orientation of 

action is similar to what is experienced when two solids are rubbed together � a resistive force 

opposing the direction of motion for each of the two solids, acting at their interface.  In modern 

aerodynamic profiles, where the pressure field is approximately symmetric, this skin friction 

force can account for over one-half of the total drag force on the body of interest. 
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 As one of the defining parameters in such a calculation, skin friction is often given in 

coefficient form, a dimensionless or normalized version of shear stress as in eqn. (1-1). 

2
EE

W
f

Uρ
2
1
τC ≡  

(1-1) 

The shear stress is normalized by the dynamic pressure of the flow.  This is the term given on the 

bottom of the fraction in eqn. (1-1), and it is sometimes abbreviated with the designation q. 

 

 
Figure 1-1. Component Illustration of Fluid Forces upon any Solid Object 

 

 These forces act on a solid object to resist its motion relative to the surrounding fluid.  

Drag in general opposes the direction of motion of an object, and is always caused by a 

combination of these two stress fields.  The skin friction drag already discussed is a major 

contributor to most bodies, provided they are relatively streamlined.  Another source of drag on 

an object is the force caused by a pressure field that is not horizontally symmetric about the body 

� one in which there is separation.  This is also called form drag [Anderson, 1991], and is 

increasingly significant for bluff bodies (bodies with large frontal areas in general).  Wave drag 

is caused by compressibility of the fluid at higher speeds.  Shockwaves resulting from 

compressibility can create large pressure differences over the body, creating drag [Bertin and 

Smith, 1998].  Also, induced drag is a result of any finite length wing or aerodynamic shape.  
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The uneven lift distribution caused by the wing ends leads to an additional drag resulting from 

the change in effective angle of attack on the finite wing [Shevell, 1989].  These contributions 

can be analyzed individually or in summation, and are often given in coefficient form similar to 

the Cf definition.  The drag coefficient is defined in eqn. (1-2).  Again, the dynamic pressure 

appears specifically, multiplied by a given reference area.

REF
2

D

AρU
2
1

DragC
∞

≡  
(1-2) 

 Fluid-dynamic drag is, of course, probably the most fundamental parameter in evaluating 

the effectiveness or efficiency of any such solid object.   The already referenced author John 

Anderson provides some of his vast historical knowledge about the interest here.  In 1588, one of 

the largest naval battles in history was fought in the English Channel between Spain and England 

� a battle which was to forever change the course of history in both Europe and the world.  The 

result of this battle is that the lighter, faster, and more maneuverable ships of the English fleet 

decimated the heavy, slow-moving Spanish armada despite their superior firepower.  The 

outcome of this battle solidified the link between a ship�s naval success and its speed and 

maneuverability on the water.  Reducing resistance in the ocean became a central issue in 

engineering and design. 

 Many theories developed over the next few centuries, attempting to quantify the resistive 

drag caused by these forces.  This progress eventually led to a stagnating point � caused by a 

seemingly complete description of fluid dynamics now termed the Euler equations of fluid 

motion.  This set of equations for a fluid with no friction can be solved to illustrate the very 

famous d�Alembert�s paradox.  This concept stated that for a rigid, non-accelerating body 

moving in such an ideal fluid, the drag on that object was identically zero [Karamcheti, 1966].  

The paradox is that this conclusion is obviously not true for real objects like ships moving 

through the water.  Methods were sought to measure this drag, and one systematic study of this 

phenomenon hinted at aspects of things to come and formed one of the first relatively modern 

measurements of friction for streamlined shapes [Froude, 1872].   

 Froude dragged planks of approximately uniform cross-section, but varying length 

through the water at various speeds.  Resistance in the water was measured by the extension of a 

spring holding the planks and recorded onto paper by a pen attached to the spring.  Froude had 
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exceptional foresight however, making the following statement about the variation of drag with 

plank length:  

�It has always seemed [impossible that surface-friction varies directly with wetted 

surface area], because the portion of surface that goes first in the line of motion, in 

experiencing resistance from the water, must in turn communicate to the water 

motion in the direction in which it is itself traveling; �the portion of surface which 

succeeds the first will be rubbing, not against stationary water, but against water 

partially moving in its own direction, and cannot therefore experience as much 

resistance from it.  �doubling, for instance, the length of a surface, though it 

doubles the area, would not double the resistance, for the resistance of the second 

half would not be as great as the first� [Froude, 1872]. 

He found, among other things, that the above statement was true, and that the drag scaled 

approximately with velocity to the 1.8 power (closely indicative of a constant drag coefficient as 

defined by eqn. 1-2).   

 His thought predated, but conceptually paralleled, the pivotal conclusions drawn by 

Prandtl, published to the world only a few years later � the concept of the boundary layer.  In 

1904, Prandtl showed that a thin layer of influence between a fluid and a solid is dominated by 

the viscosity of the fluid in an otherwise ideal, inviscid motion [Schetz, 1993].  The only 

qualification of this statement is based on the Reynolds number of the flow.  Higher Reynolds 

number in general means that the viscous layer is increasingly thinner and more confined, while 

a very low Reynolds number (below about 600 or so for external flows) suggests that the entire 

flow-field must account for the effects of viscosity.  The bulk of engineering subjects, however, 

have a sufficiently high Reynolds number to make use of the boundary layer.   

 So, since the origin of mankind�s curiosity about the world around him, the problem of 

the resistance to fluid motion has been a central one in countless advancements and 

developments of better ways to do things.  The age of flight has accelerated an already blooming 

field of analysis, and the need to understand shearing friction has been magnified.  In the modern 

world, with the marvels of jet fighters, automobiles, hydraulics, power stations, aircraft carriers, 

and rockets, skin friction becomes one of the uniquely defining parameters of the development 

and improvement of such devices.  Measuring and knowing skin friction quantitatively is 

essential for some of the following reasons: 
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(1.)  Most often, resistance to fluid motion is a governing criterion in assessing the 

performance of the design of any fluid-mechanical device. 

(2.) In both experimental and computational investigations of a fluid system, skin friction 

remains one of the most difficult quantities to quantitatively understand with accuracy. 

(3.)  In studying fluid flow turbulence, the shear stress is a central parameter in describing 

turbulent boundary layer characteristics through its presence in the friction velocity, 

given by: 

ρ
τu W≡τ  

(1-3)

 

1.2 Methods of Measuring Skin Friction 
 

 After addressing the question of why in relation to measuring skin friction, the next 

logical step is to ask how.  Froude�s work, Prandtl�s theory, and the resulting work of many 

others have enhanced man�s understanding of the physics through which this shearing stress is 

applied.  The field of skin friction measurement has grown both in response and in need of 

continuing to take the next step. 

 Generally, skin friction measurement techniques can be divided into two broad 

categories: (1) direct measurement, and (2) indirect measurement.  Significant variation exists in 

these categories (particularly the second), and techniques are often divided up in other ways, but 

this division suffices for the purposes here.  Indeed, after a brief discussion, the indirect methods 

will be dropped and not mentioned again, as they are not studied further here. 

 Indirect methods, in general, operate on the principle of analogy; these methods measure 

some quantity and then get a measure of skin friction through a known relationship to that 

quantity [Nitsche et al., 1984].  Since there are many possibilities for relationships involving skin 

friction, there are many types of indirect methods.  One obvious choice involves velocity profile 

measurement, using hot-wire techniques, laser-doppler-velocimetry, and similar methods.  It is 

then possible to use an analogy like the famous law of the wall [Schetz, 1993] to obtain an 

estimate of skin friction.  Similarly, Pitot devices like the Preston tube, Stanton tube, and 

boundary layer rake make measurements which can be correlated to skin friction through the 

same law [Winter, 1977].  Additionally, analogies for heat transfer and mass transfer exist with 
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the skin friction coefficient in their forms � a simple example of which is the Reynolds analogy 

[Schetz, 1993]. 

 Readers interested in details about indirect methods are referred to authors like 

Haridonidis [1989], Winter [1977], and Brown and Joubert [1969].  Here, it is sufficient to 

recognize the nature of such methods.  These methods certainly have validity and have been 

proven to work well in some applications.  Indirect methods, however, have the common 

restriction that they require advance knowledge of some characteristics or relationships in the 

flow conditions.  In other words, these methods tend to work well when the exact analogy is 

known.  In complex flow situations, however, it becomes difficult to know the analogy.  

Coincidently, these very situations are often the ones where skin friction measurements are the 

most needed.  Under these situations, tools like Reynolds analogy or the law of the wall become 

suspect or cease to be valid entirely, leaving a researcher with little alternative.  Areas of 

difficulty for indirect methods in general include heavily 3D flows, unsteady flows, flows with 

chemical reaction or mixing, flows with shockwaves in the region of interest, uncertain 

laminar/turbulent transition zones, etc. 

 Direct methods, by contrast, operate on a very different principle.  These sensors seek to 

measure shear stress directly by measuring the force distributed over a known area.  These 

methods are the subject of this document, and are preferred here based on their universality and 

simplicity of operation.   This method requires no prior knowledge of flow conditions, as 

(hypothetically) the shear force on the wall is the same as the shear force on the direct measuring 

sensor head.  A two-dimensional schematic of a typical sensor of this type is shown in Fig. 1-2.  

In this figure, a small break is made in the wall surrounding the sensing head.  This head is 

attached to a support structure, a cantilevered beam in this case, which feels the effects of a force 

applied on the head by the outer flow.    

 It is necessary to note at this point that there are two distinct types of direct measuring 

gages.  What is pictured in Fig. 1-2 is called a non-nulling gage.  In contrast, the second type � 

nulling � is similar in principle, but varies in mechanism and operation.  The device in Fig. 1-2 is 

a cantilever-type structure that reacts to the flow force by deflecting somewhat.  It is important to 

insure that the actual deflections are small enough that the head does not move significantly in 

relation to the gap, disrupting the flow field and altering the measurement.  This small deflection 

can be measured by a displacement (proximity) system of some sort, or most commonly by the 
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application of high sensitivity strain gages near the base in a region of high strain.  For a beam 

designed with sufficient stiffness to keep the shear force loading in the range of elastic, linear 

deflections, this static reaction is linearly scaling and highly repeatable.   

 

 
Figure 1-2. Typical Non-nulling Type Direct Measurement Skin Friction Sensor Schematic 

 

 Of course, one can utilize structural forms other than a cantilever beam.  Parallel linkages 

are sometimes used [Haridonidis, 1989], which consists of a pair of cantilever beams on each 

side of the floating head, bending in parallel.  More complex truss structures can be used as well 

to accommodate spatial or measurement constraints.  Also, although Fig. 1-2 shows only a two-

dimensional schematic, the more realistic beam shape can be pictured in Fig. 1-3.  The floating 

head can be either rectangular or round (although circular is most common), as can the beam.  

For the beam, a circular cross-section avoids the issue of torsional warping during bending.  As 

shown in Fig. 1-3, a circular beam usually has milled flats at the base on four sides, and a strain 

gage bridge is placed on opposing faces in two directions.  Thus, two components of shear stress 

in the plane of the surface can be independently measured, and the vector direction of the shear 

force can be determined.  This is important in flows where the direction of motion is either 
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unknown or changing with time.  No special requirements are necessary to account for this with 

a gage built as shown in Fig. 1-3. 

 

 
Figure 1-3. Three Dimensional View of Typical Non-nulling Skin Friction Gage Showing Strain 

Gage Placement 
 

 Nulling gages, by contrast, work to keep the structural member in its nominal or �null� 

position as a change in shear stress is encountered by providing a restoring force to the flexure.  

The measurement is taken with the head in the null position, which is done to avoid disturbing 

the flow any more than is necessary.  Shear force is then read by the amount of countering force 

required to keep the device in its null position.  Traditionally, most of these devices operate by 

replacing the cantilever boundary with a pivot point, the other side of which is connected to a 

level with a magnet or linear positioning motor.  The current into the motor therefore represents 

the shear force on the beam.  Unfortunately, these types of devices tend to be very large, heavy, 

and complex in order to accommodate the motors or magnets and deflection sensing instruments 

used.  In addition, response time can be an issue as the device must detect a change in shear and 

then react by applying a countering force.  An example of this type of device will be pictured in 

Chapter 2.  It should be noted that most early devices were nulling gages, while more recent 

devices have tended to move toward the non-nulling type.  Sensitive semi-conductor strain 

gages, better material choices, improved machining techniques, and experience have allowed the 
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non-nulling gages to become increasingly smaller, thus removing the fear that they will disrupt 

the flow.  The increased complexity of nulling gages has begun to offer little reward.  Alternate 

terminology that is sometimes used refers to nulling gages as feedback gages, while non-nulling 

gages are also known as displacement gages [Haridonidis, 1989].  The standard terms �nulling� 

and �non-nulling� are much more popular, but the choice of the alternate terminology for each 

type is obvious.   

 In general, it is possible now to create a non-nulling cantilever type gage shown in Fig. 1-

2 for a particular range centered on a design shear load.  The design shear load dictates many 

design variables like head area, beam length, and other overall dimensions.  Things like material 

choice, temperature stabilization (cooling), vibrational characteristics, and physical handling and 

installation are all factors which must be considered in an application design.  The interest here, 

however, is in analyzing induced variance from the desired measurement, and not to design for 

one particular application.  Effort will be made in this document to keep the analysis as generic 

as possible.  Winter [1977], Nitsche et al. [1984], Haridonidis [1989], and Schetz [1997] give 

some useful, broad overviews of the capabilities of direct skin friction design, and a variety of 

examples and tests done with these sensors in recent years.  These papers provide many 

references for different interests.  Interested readers seeking design information can view recent 

documents like Magill [1999], Sang [2001], or Smith [2001] for case studies and discussions of 

design choices for specific given applications. 

 One additional item of note involves a common technique used to enhance the 

performance of direct measuring gages.  Often, the internal cavity of the sensor is filled with 

viscous liquid, like silicone oil or glycerin.  Fig. 1-4 shows the use of such a substance, and a 

comparison with the schematic of Fig. 1-2 shows its implementation in the cavity.  The presence 

of this oil serves a wide variety of purposes.  First, with the use of strain gages, the oil provides a 

great deal of thermal stability to the gages.  Second, it provides additional viscous damping for 

the beam, alleviating some vibrational distress.  Third, the high viscosity of the liquid compared 

to most gases serves to lessen the flow rate through the cavity, providing a more continuous 

surface for the external flow being measured.  Finally, an incompressible liquid with a high 

surface tension is typically used to alleviate the application of pressure differences from the main 

fluid flow upon the sides of the sensing head [Hirt et al., 1986]. 
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Figure 1-4. Typical Non-nulling Type Direct Sensor Schematic Showing Oil Fill Technique 

 

 This liquid, however, extracts a high price with its benefits.  Both from pressure 

differences and from the bulk convective motion of the external fluid, the liquid is typically 

extracted from the cavity and pulled downstream with the flow.  This means that the gage 

requires almost constant refilling.  A vacuum usually needs to be applied to the surface during 

filling to insure that air does not get trapped in the cavity and compromise a measurement.  This 

inadequacy precludes long duration tests with the oil, and the constant maintenance hinders 

commercialization of products of this type.  Further, in a moving flight vehicle, or in any 

application where the gage is not upright, it is almost impossible to use the oil at all. 

 Basic notation must now be introduced, to provide a foundation for analysis and 

discussion that follows.  Fig. 1-5 shows a typical skin friction gage of the type discussed here 

already.  The dimensions listed are some of the major design parameters that have some bearing 

on the fluid mechanics of a gage and over which a designer has some control.  Using the 

convention employed here, DHEAD represents head diameter, G represents gap width, c represents 

a dimension termed lip thickness, and LBEAM will be used for the total beam length (including 

beam and head height).  Additionally, Z represents a misalignment variable, defined normal to 

the head surface.  One other important thing to define on the subject of notation is that, 
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frequently in this document, variables such as these (and others) will be annotated with an 

asterisk, *, superscript.  This asterisk denotes that that variable is non-dimensional, being equal 

to that variable normalized by some scale.  The scaling value will be apparent in each individual 

discussion as the case arises. 

 

 
  Figure 1-5. Non-nulling Direct Skin Friction Sensor Design Variable Notation 

 

1.3 Research Focus 
 

 Despite any problems with it, the direct measurement method of skin friction has been 

used successfully both with and without oil fill many times.  It offers a universality that is 

missing with any of the indirect methods, allowing a researcher to get a measure of skin friction 

without knowing anything about the fluid flow.  The previous discussion though, stands on one 

particular assumption: the assumption that the shear force as shown in Fig. 1-2 is the only force 

on the beam.  Sheltered though they are, it should be apparent to a fluid dynamicist that, in 

reality, the floating head and flexure structure below the surface are exposed to a surrounding 

pressure field and shear stress field.  It certainly seems reasonable to expect that there are 
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circumstances in which these force fields cause significant deviations from the desired 

measurement of the surface shear force acting on the floating head. 

 The general purpose of this document, then, is to look at some of the effects associated 

with this deviation from the desired outcome for some generic circumstances, without specific 

reference to a particular gage or application.  It is important to point out up front that this 

departure from the desired output shall be termed here as error in skin friction analysis.  This 

error is distinct and different from experimental error in which the reading of a measurement is 

uncertain and thus allows for some value other than the true value to be recorded.  This 

document looks at the force fields actually present on the head and support flexure, and considers 

these to be the true conditions for the problem in question.  One should not look here for things 

like uncertainty in strain gage readings.  This document will assume that the true reading is 

recorded without bias or precision uncertainties; it simply is not the reading that the researcher 

wants, as it is comprised of forces other than the one sought.  The issues of measurement 

uncertainties are not a concern in this work since all work is computational in nature, and the 

skin friction gage errors discussed here are determined by comparison with a computationally or 

analytically determined target value.  No experimental measurements are involved. 

 For this analysis, some objectives are presented, to be addressed and answered in a 

fashion in the following chapters: 

 

(1.) to understand the details of the flow in and around a typical direct measuring skin 

friction gage and also causes and contributions to error in measurement resulting from 

the complex and subtle flow and stress fields involved 

(2.) to develop general guidelines for minimizing inherent errors in direct measuring, non-

nulling skin friction sensor design 

(3.) to quantify and provide typical performance benchmark data and also develop a 

procedure for estimating error in an actual experiment using a skin friction gage 

 

 The first goal is one of understanding.  With the small physical sizes of many of the 

features such as the gap size and lip thickness of the gage, it is difficult to judge the effectiveness 

of the gage operation for a given stress load and flow condition without first understanding what 

causes the gage to behave in the way that it will. 
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 The second goal will address the issue that some configurations must certainly perform 

better than others in a given circumstance.  It is always desirable to design with the thought of 

minimizing imperfection as much as possible from the outset.  To facilitate this, variations of 

several of the major design parameters (shown in Fig. 1-5) will be presented, showing clearly 

what values of those parameters may be the best. 

 The third goal addresses the issue that no design, even from the second point, can be 

perfect.  This document will provide estimations for some generic designs under relatively basic 

circumstances.  Where applicable, this will provide quantitative data for estimating error in an 

experiment.  For applications that do not match those analyzed here, it is hoped that this 

document will serve as a template for performing an analysis specific to those relevant 

circumstances.  This will allow a researcher to answer these important questions for the specific 

case of interest if they are not sufficiently similar to what is covered here. 
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2.1 A Description of Common Sources of Error in Direct Skin 

Friction Measurements 
 

 In principle, direct skin friction measurement offers the simplest and most straight 

forward methodology in attaining the goal of successful shear stress quantification that any 

technique could offer.  Despite this simple approach, the direct technique is, of course, not 

without problems and issues regarding accuracy and usability.  In a 1977 overview paper on the 

subject of skin friction measurement, Winter [1977] summarizes the main concerns with this 

method.  These items are listed in Table 2-1. 

 The ten items listed in Table 2-1 will first be discussed briefly in order to gain an 

appreciation for advancements in direct skin friction measurement that have brought about 

changes since the writing of the information by Winter.  In light of recent trends of this 

technique, several of these points will be highlighted here as having priority in terms of lack of 

understanding and, hence, their possibility of causing inaccuracies in experiment.  Some of these 

points will be the focus of subsequent sections of this document.   

 Point (1) is an important design criterion in that the size of the floating element must be 

designed to be sufficiently large to provide measurable deflection for a given nominal shear 

stress load.  Further, Winter�s comment was actually made at a time when nulling-type sensors 

were the standard.  In moving to a non-nulling gage, keeping the deflections small while still 

maintaining accuracy becomes more important, since large deflections will intrude on the flow 

field, thus altering the conditions of the measurement.  The application of semi-conductor strain 

gages provides a gage factor (output for a given strain) of approximately 100 times that of 

conventional metal foil gages, thus allowing for the measurement of very small movements of 

the floating element.  Many successful measurements have been made at Virginia Tech 

employing these semi-conductor strain gages, as outlined by Schetz [1997]. 
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TabTabTabTable le le le 2222----1111. Summary of Itemized Problems with Accuracy of Direct Measuring 
Skin Friction Method [Winter, 1977] Showing the Particular Issues Studied Here 

in this Dissertation 

(1) 
Provision of a transducer for measuring small forces or 
deflections, and the compromise between the requirement to 
measure local properties and the necessity of having an element of 
sufficient size that the force on it can be measured accurately. 

 

(2) The effect of the necessary gaps around the floating element. ! 

(3) The effects of misalignment of the floating element. ! 

(4) Forces arising from pressure gradients. ! 

(5) The effects of gravity or of acceleration if the balance is to be 
used in a moving vehicle.  

(6) Effects of temperature change.  

(7) Effects of heat transfer.  

(8) Use with boundary-layer injection or suction.  

(9) Effects of leaks. ! 

(10) 
Protection of the measuring system against transient normal 
forces during starting and stopping if the balance is to be used in a 
supersonic tunnel. 

 

 

 Points (2), (3) and (4) are the central foci of this document.  These three points are still 

little understood, and their investigation is paramount to assessing the error bounds of skin 

friction measurement.  These items offer uncertainty of two forms.  First, the presence of gaps, or 

breaks, in the wall and protrusion or recession can disrupt the flow of thin, high Reynolds 

number boundary layers.  Second, these items all change the total amount of force on the floating 

head, thus altering the total reading of the strain gages.  With no way to differentiate the desired 

force from the undesired forces, these phenomena must be well understood in order to separate 

their effects. 

 Some of the possible manifestations of these items are pictured schematically in Fig. 2-1.  

Point (3), misalignment, can take various forms.  Fig. 2-1 (a) shows the issue of tilting such that 

the head is no longer oriented with the plane of the wall.  With a non-nulling gage design, the 
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flexure actually deflects, producing a small amount of tilt during operation.  This was initially 

thought to possibly be a central problem, but some simple calculations of the structural 

properties of a typical sensing flexure studied here (the data of which is given in Chapter 4) 

revealed that typical deflections are on the order of one one-hundredth of the gap size for this 

design for most common metallic material choices (e.g. aluminum, stainless steel, and copper).  

The associated tilt rotations at the end of the beam caused by this deflection are on the order of 

0.01 degrees at maximum.  These values are simply too small to make a significant effect of the 

gage performance, so tilt was not studied in later chapters.  This simple analysis assumed the 

sensitivity requirements of the semi-conductor strain gages discussed already for point (1), 

giving a practical example of their utility in this design process.   

 

 
Figure 2-1.  General Types of Misalignment Errors Possible with a Direct Measuring Skin 

Friction Gage 

 

 Tilt can also occur as a result of machining and fabrication.  A beam with uneven 

concentricity, poorly machined edges, etc., or even poor assembly of the gage pieces can result 

in a flexure that is not straight in the housing.  For a beam that is tilted in the null position by 

poor construction, these effects could be large depending on the amount of tilt.  Unfortunately, 

only some of the most significant effects could be studied here, and tilt could not be included.  

The types of misalignment seen in Fig. 2-1 (b) and Fig. 2-1 (c) were assumed to occur more 
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often than tilting in sufficiently compromising magnitudes.  This conclusion was based both on 

previous experimental literature and observation from practical design experience.  Tilt is, 

however, an excellent starting point for future work to continue the study of skin friction gage 

effects. 

 As seen in Fig. 2-1 (b) and Fig. 2-1 (c), misalignment can be either protrusion out into the 

flow or recession back in the wall, respectively.  These effects pictured have the potential to 

significantly change both the pressure field and the shear stress field of the sensing head.  These 

two effects are given a high priority in this study. 

 Finally, Fig. 2-1 (d) pictures a pressure gradient, placing an uneven pressure force on the 

head and into the side gap areas.  This gradient has the general effect of placing both extra forces 

and extra moment on the sensing head, doubling its capability for damaging the measurement.  

Of course, what is implied in all parts of Fig. 2-1 is that, from point (2), the simple presence of 

the gaps alone can cause changes in a measurement by disrupting the boundary layer 

development and by allowing the flow an opportunity to access the sensing head and flexure in 

the cavity and place extraneous forces upon the gage.  These three points are central to this 

document, and Section 2.2 focuses on previous publications discussing these issues. 

 Point (5) is not an issue discussed here as it is not a result of the fluid motion it is exposed 

to; rather, it is a result of the solid body motion of the test conditions.  Although important, this, 

like number (1), has been shown to be addressable via recent research techniques.  In particular, 

Sang [2001] and Smith [2001] have demonstrated successful gages for actual flight vehicle tests 

at transonic and higher speeds.  By innovative and careful design as well as information 

collection, this problem has been circumvented by these researchers.   

 Points (6) and (7) also represent issues in which particularly little information is 

available.  Although they are not addressed in detail in this document, there is certainly a need to 

do so in the future.  What relevant information exists about temperature and heat transfer effects 

is reviewed briefly at the end of Section 2.2. 

 Point (8) is probably the least understood of the ten listed, and represents the final 

boundary in skin friction sensor design and use.  Although there is some literature involving 

applications of skin friction gages in the presence of injection (porous plates and similar devices 

used by Schetz and Nerney [1977] and some others), no literature has been discovered 

concerning a detailed assessment of skin friction gage performance under these conditions.  
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Influence of mass transfer is, however, the ideal argument for the techniques of computational 

fluid mechanics employed here to study some of these phenomena. 

 Point (9) is a particularly bothersome item which is addressed in later chapters.  As 

discussed already in Chapter 1, skin friction gages are often filled with viscous oil, and this oil 

�leaks� out over time.  In fact, at supersonic speeds, where surface tension and capillary forces 

become negligible, it can typically take only a matter of seconds to significantly decrease the oil 

reservoir in the cavity of the gage.  This makes it necessary to constantly refill and maintain the 

gage.  This is one reason why skin friction gages have not undergone extensive commercial 

development.  Other limitations of the oil can be seen in Chapter 1.  There is little discussion of 

this issue from a quantitative perspective in relevant literature.  Even without oil fill, there is still 

a �leaking� effect from simple flow rate of the external fluid through the exposed gap. 

 Finally, point (10) is again an issue that needs to be addressed in a design, but one that is 

well understood and that can be circumvented with intelligent design.  Almost all design projects 

at Virginia Tech are tested in the Virginia Tech Aerospace and Ocean Engineering supersonic 

wind tunnel.  This tunnel ranges in speed from Mach 2.4 to 4, and is described in detail in 

Chapter 4.  Many researchers in recent years have demonstrated survivability in this tunnel and 

in other supersonic facilities [Schetz, 1997]. 

 From this Table 2-1, points (1) and (10) can be considered to be a non-issue with proper 

design thanks to advancements since the time of Winter.  Points (2), (3), and (4) concerning the 

effects of the gap presence on the boundary layer, the changes caused by pressure gradients, and 

the effect of misalignment in the form of protrusion and recession are the central subjects of this 

document.  Although not comprehensively addressed, point (9) concerning leakage through the 

gap is studied from the point of view of mass flow rate and flow patterns in and out of the cavity.  

The effect of an oil filled gap leaking out is not studied, but an oil free (air only) gage can be 

considered to be the worst possible condition in terms of flow rate.  The other points � 

temperature effects, heat transfer, mass transfer, oil fill performance and leaking, and 

acceleration effects � are not studied here, although these issues certainly need to be addressed.  

Unfortunately, it is not possible to study everything, so a few of the most fundamental concerns 

were selected here as a starting place. 
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2.2 A Review of Literature Addressing Error in Direct Skin 

Friction Measurements 
 

 Skin friction has been studied and measured by a large number of researchers spanning 

more than 100 years.  All of this work has employed an equally wide variety of methods in its 

path to fruition.  Interestingly, despite a wealth of studies on measuring skin friction, there is 

significantly less research on looking at the errors of those measurements.  Historical 

investigation reveals that, with the exception of Schultz-Grunow, who performed low speed wind 

tunnel tests [Dhawan, 1952], there is a period of many years during the early to mid part of the 

twentieth century in which little effort was made in direct skin friction measurement.  There was, 

consequently, even less effort in skin friction error analysis for some time.  Winter [1977], in 

providing the information given in Table 2-1, also gives a comprehensive overview of the 

attempts to deal with errors caused by those points discussed in the table.  Some of this is 

recounted here, with additional information from the original sources and subsequent sources as 

appropriate to this discussion. 

 

2.2.1 Gap Effects 

 

 Dhawan [1952] gives some early discussion of the effect of the presence of gaps in the 

wall.  He provides assessment of the size of a �small� gap, under the postulation that a small 

enough gap around the floating head will not affect the flow noticeably.  For this purpose, he 

tested the effects of small slots in a flat plate under laminar and turbulent boundary layers at 

Mach 1.4.  Schlieren photographs of the flows indicated small disturbance waves for the 

turbulent plate near the slots.  Investigation with a sensitive static-pressure probe, however, could 

find no indication of pressure variations.  Additional experiments involved matching the 

Reynolds number based on slot width of the previous case in a low speed wind tunnel � where 

the boundary layer thickness was sufficiently thick to be easily measurable.  Hot wire data was 

taken for a 2 mm slot at various positions normal to the wall to form a velocity profile.  The data 

in Fig. 2-2 shows a small amount of velocity into the gap, on the order of 1% of the free-stream 
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speed.  However, Dhawan�s analysis indicated no noticeable change in velocity gradient near the 

surface due to the disruption. 

 

 
Figure 2-2. Velocity Profile on a Turbulent Flat Plate with Slot, ReX = 40,000 and ReS = 1000 

[Dhawan, 1952] 
 

 In the same time frame, Hakkinen [1955] suggests that the problem of the presence of the 

gap around the sensing head be looked at as changing the effective area of the sensor.  After 

recognizing that there is indeed some correction required for this, Hakkinen argues qualitatively 

that the �total effective area� is equal to the actual head surface area plus at least ½ the area of 

the surrounding gap.  Citing a lack of concrete data, this reference uses an extra 8.25% for the 

value of the effective area over the actual head surface area (being equal to ¾ of the gap area). 

 Much later, Acharya et al. [1984] provided a brief discussion of these phenomena in their 

investigations for the development of a 20 mm head diameter floating element sensor.  A variety 

of tests by these authors includes some attempts to acquire evidence of flow through the gaps of 

their gage.  They tried to visualize the flow with smoke, followed by measurements with a hot 

wire probe at stations over the center of the head and over the gap (similar in theme to the 

measurements made by Dhawan decades earlier).  According to them, the visualization attempt 

failed to show anything, thus suggesting to them that the flow rate must be of a very low 

magnitude. Additionally, the velocity measurements could detect no changes in the velocity 
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profile, leading them to believe that the flow through the gap of the gage is negligible (at least in 

their case). 

 

2.2.2 Misalignment Effects 

 

 A group from the University of Texas (Austin) is particularly noted for early work on this 

problem of misalignment errors.  Their citing of earlier data indicated that depressions (negative 

Z) of as much as 13 µm caused no disruption, while any protrusion produced more noticeable 

deviations [O�Donnell, 1964].  They found no existing coherent study of this effect and that 

some earlier references [Coles, 1953 and Dhawan, 1953] saw the need for extreme care in 

aligning the balance, while others [Smith and Walker, 1959 and Shutts et al., 1952] seemed to 

feel that less stringent requirements were needed [O�Donnell and Westkaemper, 1964].  In their 

work, a gage of head diameter approximately 25 mm (1 inch) was tested for a range of 

supersonic Mach numbers.  By adjusting conditions, they took care to remove any pressure 

gradients in the tunnel during the test runs.  In the absence of any pressure gradient (ideally) and 

at a flush position, there is no contribution to the reading other than the friction component.  

O�Donnell found in his work that any amount of misalignment in either direction produced a 

change in output from the flush reading.  He noted that a protrusion (positive Z) tends to produce 

more error than an equal recession (negative Z).  He also noted that any effect of Mach number 

is minor.  He also made some significant practical observations.  He claimed that, on a smooth 

surface, a misalignment error of 5 µm could possibly be felt, while 13 µm could be visually seen 

for his sensor. 

 Fig. 2-3 shows some results for a range of Reynolds numbers at Mach 2.67 and for a 

range of Mach numbers at a Reynolds number based on momentum thickness of 10,000.  As 

O�Donnell states, there is no clear dependency on either Mach number or boundary layer 

Reynolds Number in any of his data.  It seems more likely that a Reynolds number based on gap 

size or some other dimension directly related to the sensor would provide more clear 

information.  The large range of Mach numbers tested � 1.73 through 3.62 � seems to indicate 

that this phenomenon is not a particularly strong function of external conditions � at least in the 

supersonic flow range. 
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Figure 2-3. Percent Change from Nominal Value for Various Reynolds Numbers (Reθ) and 

Mach Numbers as a Function of Misalignment (Z), [O�Donnell, 1964] 

 

 Probably the most comprehensive study of error effects of direct skin friction 

measurement can be attributed to Allen from NASA Langley in the late 1970�s, who released 

some pivotal documents on the subject.  Fig. 2-4 shows a typical floating element, with 

component forces on it.  Allen�s supposition was that the effects on a direct measuring skin 

friction gage head could be divided up into these components. 



Chapter 2, Section 2: A Review of Literature Addressing Error in Direct Skin Friction Measurements 

page - 23 

 
Figure 2-4. Schematic of Aerodynamic Forces Present on Floating Head, [Allen, 1976] 

 

By summing the aerodynamic moments about the moment center, remembering the internal 

moment of the beam itself, the following equation can be found [Allen, 1976]: 

( )21 cFbFaFM LNF −++=  (2-1) 

Dividing by the dynamic pressure, q, times the length, a, times the head area, A, gives the same 

equation in a useful non-dimensional form with the skin friction coefficient, CF, explicitly 

appearing: 

LNFM C
a
cC

a
bCC 



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
 −++=

2
1  

 

(2-2) 

At the time of Allen�s writing, he was concerned primarily with nulling skin friction gages.  In 

his original work, the beam moment, M, was referred to as a �restoring� moment, as that was the 

moment necessary to restore the gage to its nominal position.  Also, the moment center was 

typically a physical pivot point to which the beam was pinned.  The movement of the beam 

would be a rotation about this point in the nulling case.  Since 1976, non-nulling gages have 

gained significant popularity, but eqn. (2-2) still holds for both cases.  The former pinned pivot 
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point about which the moments were taken becomes the point about which the beam moment is 

read. 

 Allen tested extensively an apparatus designed by Fowke a few years earlier.  This device 

was a nulling floating head sensor of 127 mm (5 inch) head diameter and rated for skin friction 

values from 17.5 Pa to 175 Pa [Fowke, 1969].  The total weight of this apparatus was around 630 

N (140 lbf).  A picture of this device is given in Fig. 2-5 for perspective against the types of 

devices analyzed here.  Besides the 127 mm (5 inch) head diameter, this nulling gage possessed 

variable heads such that the gap distance could be varied between 127 µm and 1,270 µm.  The 

lip size was approximately 5 mm.  A mechanism allowed the sensor to be purposely misaligned 

by values of up to plus or minus 1.27 mm.   

 

 
Figure 2-5. Images of Fowke�s Gage [Fowke, 1969] 

 

 Allen studied the performance of the gage in Fig. 2-5 in a supersonic environment.  His 

work covers mainly the effects of misalignment in a nominally zero pressure gradient flow 

situation.  Figures 2-6 and 2-7 show a summary of some essential data from Allen [1976] giving 

his results of the contributions of the terms in eqn. (2-2) as a function of misalignment.  The 

heaviest, solid line in each of the two figures shows the sum of the three component terms, which 

are graphed as well on the same scale for reference.  The data in these figures was obtained by 

Allen via a Preston tube for the friction coefficient, and pressure taps normal to the gage head 

and in the wall opposite the gage lip region for the normal and lip components, respectively.   
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 Both graphs show similar numbers and identical trends at Reθ values of 16,200 and 

38,400, further backing O�Donnell�s assertion that the Reynolds Number of the external flow has 

only a small effect on the readings.  It is easy to see, as might be expected, that both the lip 

component and the normal component have little effect at or near perfect alignment, while both 

quickly climb in magnitude to overpower the contribution from the desired source as the gage 

was misaligned.  Both effects are due to extra forces from pressure, a phenomenon often referred 

to in the existing literature, albeit confusingly, as wave drag for the purposes of misalignment. 

 

 
Figure 2-6. Coefficient Contributions of Eqn. (2-2) for Allen�s gage at Reθ = 16200 [Allen, 

1976] 

 

 Wave drag was discussed in Chapter 1 and is defined as a compressibility effect [Bertin 

and Smith, 1998].  Although compressibility is certainly a factor in Allen�s supersonic work, this 

phenomenon given here is simply a part of form drag instead.  The presence of the body exposed 

in the flow indeed can cause excessive extra drag even in incompressible regimes.  Thus, the 

term �wave drag� as it is used in the referenced works is a point of continuing confusion on this 

matter of misalignment in skin friction. 

 



Chapter 2, Section 2: A Review of Literature Addressing Error in Direct Skin Friction Measurements 

page - 26 

 
Figure 2-7. Coefficient Contributions of Eqn. (2-2) for Allen�s gage at Reθ = 38400 [Allen, 

1976] 

  

 Some of Allen�s overall observations about his work are of great interest. 

1. His first, and most famous, postulation is that a larger gap makes the balance less 

sensitive to misalignment errors.  Further, for a well-aligned (zero misalignment) 

head, the effect of gap size on the reading becomes negligible [Allen, 1980].  

Thus, there is no advantage to a small gap at all. 

2. From Figs. 2-6 and 2-7 and Allen�s other data, he could find no particular 

preference for protrusion or recession from the perspective of measurement 

accuracy [Allen, 1976]. 

3. Reducing the size of the lip, c, reduced the area over which the pressure could act, 

thus improving measurement accuracy dramatically.  It also served to reduce the 

effect of gap size [Allen, 1980]. 

 It seems that eqn. (2-3) adequately captures at least some of the basic physics of the error 

issues.  Correct functionality of the coefficients of that equation should adequately capture these 

effects.  Allen�s research shows that this functionality can work by his comparison of his force 

summation estimates (Figs. 2-6 and 2-7) to those read from the actual gage in some of his tests.  

Although not shown here, it is sufficient to note that those values match reasonably well for most 

of his cases.  Interested readers are referred to his work for actual graphs [Allen, 1976]. 
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2.2.3 Pressure Gradient Effects 

 

 Discussion of the effects of pressure gradients on direct measurement of skin friction 

opens with a relatively recent reference by Seto and Hornung [1991].  These authors explored the 

possibility of measuring shear stress by calculating the distortion rate of a thin film of oil on the 

surface.  As this technique is not the central focus of this work, the specifics of their method will 

not be discussed.  Interested readers should seek their paper directly for more information.  What 

is relevant here is that they compared their technique to a floating element gage for reference in 

favorable, zero, and adverse pressure gradient situations.  One of their postulations about their 

method is that, under the correct conditions, it becomes indifferent to the effects of pressure 

gradient.  A look at their results in Fig. 2-8 illustrates the core of the problem with the direct 

method, as it is easy to see how the pressure gradient affects the direct method severely.  The oil 

film methods of Seto and Hornung are not discussed or analyzed here, but if one were to assume 

for the moment that their hypothesis of pressure gradient independence for their methods is 

correct, the direct method sees a change by +/- 70% of the nominal value from the pressure 

gradient. 

 

 
Figure 2-8. Plots of Skin Friction Coefficient of Technique of Seto and Hornung vs. Direct 

Method for Favorable and Adverse Pressure Gradient Conditions [Seto and Hornung, 1991] 
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 An important note needs to be made here concerning terminology.  Discussion here refers 

to this effect in terms of the pressure gradient or pressure variation, and is a consequence of 

different pressures being present on the upstream side of the gage than the downstream side.  

This pressure imbalance becomes a force imbalance on the output measuring system.  

Classically, however, many references, including Brown and Joubert [1969] and Acharya et al. 

[1984], refer to this phenomenon as buoyancy force.   These terms are one and the same in the 

world of skin friction measurement, and it was deemed important to address this issue here to 

avoid confusion. 

 It was apparent from early results that this effect of pressure variations around the 

floating element can be quite severe.  For instance, Eimer [1953] measured skin friction via a 

direct method to be 6% to 11% higher than theoretical predictions.  One of the major reasons 

cited for this discrepancy was that the measurements occurred under a severe pressure gradient.  

One of the first systematic investigations of this pressure phenomenon again comes from the 

University of Texas [Everett, 1958].  Everett suggested from an earlier source [Coles, 1953] that 

the pressure variation could be described by a linear variation from the free-stream down the 

sides of the floating head to the gage cavity pressure.  He postulated the following corrections to 

shear stress for a rectangular (not cylindrical) gage, 

dx
dPAcFP 2

1−=  
(2-3) 

)1(0 h
cfT +=τ  

(2-4) 

where eqn. (2-3) estimates the total pressure drag by integrating the assumed linear pressure 

variation over the lip surface, and eqn. (2-4) gives a correction to the shear stress due to this extra 

term in (2-3).  A similar form can easily be derived for the cylindrical gage body that has been 

commonly used in more recent experiments.  The symbol A is the exposed head surface area of 

the gage.  The variable τ0 represents the true shear value, and fT represents the measured value.  

He tested this hypothesis in a channel of variable height, h.  He found from these experiments 

that the term in eqn. (2-3) did not adequately capture the effects of the pressure gradient error, 

though he noted that the correction performed the best for small gap size, G, and greater lip 

height, c.  This analysis indicates that there is indeed something much more complex occurring 

than a simple linear correction. 
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 A somewhat more complex model of the buoyancy effect, or pressure variation effect, 

comes from Brown and Joubert [1969]. These authors utilize the same formulation from eqn. (2-

3) above for the force, but do not restrict themselves to a constant of ½.  Further, they allow for 

momentum exchange between the external flow and the flow through the cavity.  Their form is 

given in eqn. (2-5): 

( )
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(2-5) 

What is important to note from eqn. (2-5) is the explicit presence of the friction velocity uτ.  This 

value, of course, contains the shear stress, and it is an important parameter for turbulent 

boundary layers.  Once again, note that the second term on the right hand side is identical in form 

to eqn. (2-3), except that the arbitrary constant, K1, can be taken to reflect situations other than 

the simple linearly varying pressure through the gap.  The last term again serves to quantify a 

momentum exchange contribution between the external flow and that in the gap, as it contains a 

proportionality to flow rate through the gap. 

 It is also interesting to note the basic similarity of eqns. (2-3) and (2-5) in appearance to 

the form of Allen in eqn. (2-2), noting that a more robust estimate of the effects of pressure 

gradients can be wrapped up in the coefficients.  It seems apparent that Everett [1958], Brown 

and Joubert [1969], and Allen [1976] have developed functionally similar corrections to shear 

stress readings, and that transformations are possible to move between one formulation and 

another. 

 Brown and Joubert also note the importance of �minor� effects, which include the 

presence of the gaps and the effective area of the head due to shear stress transmission that has 

already been mentioned [Hakkinen, 1955].  What is interesting about these effects is their 

assumption of the form that the effects take, being a function of parameters like a friction 

Reynolds number, given as: 

ν
τuA

fr

2/1

Re =  
(2-6) 

Looking through all of this literature, it is easy to see that a variety of different Reynolds number 

scales are used by different authors.  One of the main conclusions drawn by many people is that 

there seems to be little dependence of the shear stress errors on flow Reynolds numbers (such as 

Reδ and Reθ).  It certainly seems -- to this writer at least -- that a scale like that given in eqn. (2-
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6) makes much more physical sense than one based on free-stream flow conditions or boundary 

layer parameters.  Brown and Joubert found errors caused by the pressure gradient of up to 15%, 

which seems consistent in magnitude with what has been seen so far. 

 One additional recent reference deserves some consideration as well.  In parallel to their 

attempts to see effects of the gaps, Acharya, et al. [1984] proposed an equation very similar to 

the forms seen in eqns. (2-2), (2-3) and (2-5).  They too tried to capture the effect of the 

buoyancy contribution in the gap by assuming a linear pressure variation form identical to Brown 

and Joubert (see eqn. 2-5).  Likewise, they allowed for the constant to be other than ½, and 

further did experiments to try to find this constant for different situations.  Interested readers can 

consult their paper, and study their equation (1) [Acharya, et al., 1984].  They found, at least for 

their particular sensor design, that the pressure gradient was approximately linear in the gap.  

The particular sensor that they gave data on had a lip thickness to gap size ratio (c/G) of 27, 

which was much higher than those studied by Everett � showing consistency with his main 

conclusion.  These researchers found, as well, that their experiments revealed different values of 

the constant for positive and negative pressure gradients.  They give a value of 1/2 for favorable 

pressure gradient, and 1/5 for adverse pressure gradients for their particular sensor (remember 

again their large lip thickness). 

 Thus, from these studies by these researchers, it is apparent that pressure causes 

important effects on a direct measuring skin friction gage.  The effects of a pressure gradient can 

be seen by Fig. 2-4, showing that a pressure gradient can affect the read measurement, CM, both 

through application of a lip force, CL, and by creating an asymmetric normal force by shifting the 

moment arm location, b. 

 

2.2.4 Oil Fill Effects 

 

 One of the only attempts to treat the issue of filling the cavity with the oil is given by Frei 

and Thomann [1980], who provide an analytical model of surface tension of a viscous liquid in 

the gap of a sensor.  Their equations are strongly based on geometry, which is shown in Fig. 2-9.  

They found from this analysis that the largest pressure difference that could be statically 

supported is given in eqn. (2-7).  In eqn. (2-7), σ is the liquid surface tension coefficient, and all 

other parameters are given in Fig. 2-9. 
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 Their corresponding equation for the net force, K, induced by the surface tension effect is 

reproduced in eqn. (2-8).   
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(2-8) 

The important thing that eqn. (2-8) shows is that (for no misalignment), the force, K, becomes 

small as gap size becomes small (b1 and b2).  Frei and Thomann determined that the maximum 

supported pressure difference, given in eqn. (2-7), was more than sufficient for their needs, and 

made attempts to minimize the extra force seen from eqn. (2-8).  This analysis is an interesting 

one in looking at the effect of the oil, but it does not seem to capture all that happens in a skin 

friction experiment.  Experience has shown that even a nominally zero pressure gradient flow 

causes all the oil to be pulled from the cavity if the external fluid is moving fast enough.  For 

supersonic tests, this process happens quite rapidly.  The surface tension effects in Fig. 2-9 are 

purely static and do not account for the effect of bulk fluid convection.  Convection becomes 

dominant in higher speed flows.  The interplay between surface tension and convective transport 

is beyond the effects studied here. 

 

 
Figure 2Figure 2Figure 2Figure 2----9999. Geometry Considerations for Surface Tension Effect [Frei and Thomann, 1980] 
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2.2.5 Other Effects 

 

 Additional issues that are not addressed in this document, but which certainly contribute 

to understanding of error effects in direct skin friction measurement, are the concerns of 

temperature mismatches between the floating head and the surrounding wall surface, heat 

transfer, and mass transfer at the gage locations.  As mentioned earlier, there is even less 

information on these topics than there is on the issues of pressure gradients and misalignments.  

The group at the University of Texas (Austin) once again appears in the literature.  One of them 

developed an experiment in which a plate was kept at a constant temperature by means of water 

cooling and a copper bodied-gage was allowed to heat up by aerodynamic heating during the 

flow runs at Mach 5.0 [Westkaemper, 1963].  The copper gage was used with the intention that 

there would be little chance of thermal gradients existing within the sensor itself.  The outcome 

of this experiment was that no clear correlation could be shown between temperature mismatch 

and variation in the shear stress reading.  If any correlation existed for his test conditions, 

Westkaemper concluded that it could account for no more than a 2% deviation in measurement 

[Westkaemper, 1963]. 

 A later and more in depth analysis by Voisinet [1978], reveals a more pronounced effect 

of temperature mismatch.  His analysis at Mach numbers of 2.9 and 4.9 consisted of long 

duration data of up to 90 minutes.  Several different Reynolds numbers were tested resulting in 

the following curve fit by Voisinet for his data: 

( ) 1795555.0Re/0310988.0 10
0 +=

−
− mLog

TT WFE

FE ττ  
(2-9) 

The shear stress values are measured in Pascals, the temperatures in degrees Kelvin, and Re/m 

represents the local Reynolds number per meter.  The �FE� subscript indicates the values of the 

measured floating element, and τ0 is the extrapolated value of shear stress for no temperature 

mismatch.  Voisinet goes one important step further by referencing the earlier work of 

Westkaemper [1963], and uses the above formula (2-9) to calculate the shear stress variation for 

Westkaemper�s maximum temperature mismatch of 34 oK.  This value comes out to be 1.96%, 

which matches well with Westkaemper�s estimate of 2%. 

 Paik and Schetz [1995] found much higher estimates of temperature effects on skin 

friction.  Their work was in an unheated supersonic facility at Mach 2.4 at a nominal 300oK total 
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temperature.  Their work consisted of a heated element within the skin friction sensor, increasing 

the head temperature by as much as 18.7oK over the nominal wall temperature.  This temperature 

difference produced a 24% increase in skin friction values as a result. 

 Finally, the subject of skin friction measurement with injection or suction has seen very 

limited review.  Dershin and Gallaher [1967] provide one of the first dedicated studies that could 

be found on the subject.  They discuss measurements of skin friction with injection or suction 

dating back as early as 1954.  Their particular experiment consisted of a porous flat plate at 

supersonic Mach number in which the skin friction gage itself was made porous and placed in 

the wall.  Their experiments correlate well with their analytical predictions of the skin friction 

coefficient.  However, there is no discussion of any particular errors associated with the 

measurement, related or unrelated to the presence of injection or suction. 

 A few more recent studies of skin friction measurements involving wall injection can be 

found in Schetz and Nerney [1977], Schetz and Kong [1981], and Kong and Schetz [1982].  All 

three of these papers made measurements on a cylindrical body for varying surface roughness 

and porosity values.  Although these works included measurements of a direct measuring skin 

friction gage, there is no mention of error analysis present in these works.  Although these papers 

may provide a starting place for future work on gage error estimation, it is clear that this scenario 

bestows a difficult problem in separating the effects occurring simultaneously. 

 

2.3 Motivations and Approach to Present Study of Errors in 

Direct Skin Friction Measurement 
 

 In looking at the wealth of research reviewed in the previous section, two things become 

obvious.  First, all of the studies addressing the issues of error management in direct measuring 

skin friction gages are purely experimental.  Second, the majority (although not all) of the 

research utilized nulling-type gages. 

 The current work provides the first known analysis of these phenomena using a different 

technique � computational fluid dynamics (CFD).  CFD offers capabilities unique from 

experiments.  In a CFD model, certain effects can be isolated and studied, as a model is defined a 

priori.  Conditions and geometries are defined, and as such, are exact within the computational 
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framework.  This is in contrast with an experiment, where experimental apparatus contains 

inherent uncertainty in things like geometry, positions, distances, etc. 

 One common result of many researchers is that the tiny gaps and cavities of the gage, as 

well as the thin boundary layer profiles, are far too small to effectively make measurements over.  

Indeed, several independent researchers already mentioned tried to measure flow rate through the 

cavity of the sensor and failed to achieve noticeable results.  CFD removes these scaling and 

sensitivity issues and provides a different perspective on the problem.  Among other things, this 

document will use this capability to provide the first look at the flow vectors through a typical 

sensor.  Although so small as to be impossible to measure, it is known that these flows exist; 

providing the first look at the flow through a sensor will provide valuable understanding to the 

induced errors of skin friction measurement. 

 Secondly, recent trends have shown that nulling is typically not necessary since semi-

conductor strain gages and fiber optic displacement sensors can detect very tiny deflections far 

below the threshold of affecting the flow conditions.  Although much of the research should be 

applicable to both nulling and non-nulling types, many of the gages tested have been rather large 

and heavy (as demonstrated in Fig. 2-5) because of the necessary internal motors and electronics 

used to null the gage head.  It is desired to provide some data that is more directly applicable to 

the small, non-nulling gages built today. 

 The approach taken here does not seek to refute experimental work done so far, but to 

complement and complete it in new ways.  In fact, the previous section of this document has 

been included for more than historical perspective.  As CFD results are developed here, they will 

be compared to some of the experimental graphs and formulas already discussed in Section 2.2 

in order to provide some �real world� perspective to the computational analyses.  CFD can look 

at things that experiment never could, and experiment can verify the applicability of 

computational solutions.  Each of these techniques brings with it some uncertainties in the final 

measured product.  These uncertainties are different, however, and they can provide perspective 

for the other. 



Chapter 3, Section 1: Formulation of Numerical Methods 

page - 35 

 
 

3.1. Formulation of Numerical Methods 
  

 As the central analysis technique utilized, computational fluid dynamics (CFD) is an 

integral part of the research performed in this document.  The purpose here is not to make a 

detailed study of the techniques of CFD directly or to develop or study new algorithms.  

However, it is essential to have a good understanding of the fundamental concepts and issues 

involved in solving a computational problem. 

 Any computational mechanics code solves a particular partial differential equation (or set 

of equations).  In fluid mechanics, there are a variety of mathematical governing equation sets 

for various conditions.  These include formulations like (1) Navier-Stokes, (2) thin layer Navier-

Stokes, (3) parabolized Navier-Stokes, or (4) Euler equations [Walters, 2000].  Each of these 

formulations can contain equations for mass conservation, momentum conservation, energy 

conservation, chemical reactions, and other effects depending on circumstances.  Technically, 

the term Navier-Stokes refers specifically to the instantaneous momentum equations only (there 

are 3, for 3 coordinate directions in space), but this term is often used to refer to the whole 

composite set of time-averaged equations, as the momentum equations require support from 

continuity and other equations in order to obtain a solution.  Such a meaning is used here. 

 Ascertaining the validity of a differential, mathematical model is a complex issue in 

itself.  The issue is one of cost, and the answer depends on the nature of the problem, and what 

the desired output is.  For instance, the Euler equations typically offer a huge calculation savings 

versus the Navier-Stokes equations.  For many problems, the Euler equations are sufficient, 

depending on what the desired results are.  For a generic aerodynamic shape in a high Reynolds 

number flow, the Euler equations tend to do a reasonable job calculating aerodynamic lift, but 
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not drag.  But, of course, this depends on the exact problem, accuracy requirements, and a 

variety of other concerns.  For the purpose here, the full Navier-Stokes formulation is used to 

solve problem, and thus, will be the only one considered further.  This model is typically 

considered to be the �standard� in fluid mechanics, containing only a few very basic assumptions 

about fluid motion.  The details of the development of the Navier-Stokes equations and its 

related forms can be found in a variety of references, including Bertin and Smith [1998], Schetz 

[1993], and Tannehill, Anderson, and Pletcher [1997].  The major assumption of the Navier-

Stokes formulation is that the fluid must be a Newtonian one; a Newtonian fluid is one in which 

the shear stress for a fluid element varies linearly with the rate of strain.  This proportionality 

constant is, of course, the dynamic viscosity, which can vary with temperature and other 

conditions, but which is a constant at any fixed state for a Newtonian fluid.  The standard 

Navier-Stokes formulation seems to be clearly valid for all problems solved here.  All problems 

treated here are incompressible with common Newtonian fluids. 

 With a selected mathematical model, the numerical discretization scheme can then be 

applied, giving birth to a computational algorithm.  There are three common broad categories of 

schemes of computational codes � finite element, finite volume, and finite difference.  All 

schemes have the same basic goal � turn the continuous partial differential mathematical 

problem into a set of algebraic equations that can be solved by a computer.  This is done by 

cutting the continuous domain of the problem up into manageable pieces and making a limited 

number of assumptions to turn a differential equation into an algebraic one which is valid for that 

piece [Tannehill, Anderson, and Pletcher, 1997]. 

 The differences in these schemes come through the way in which this goal is realized. 

There are many differences in the details of these methods, in the assumptions of the forms of the 

governing equations in the �cells,� in the connectivity between adjacent cells, and other things.  

As a general rule, however, finite differencing tends to be concerned with the values at distinct 

points, or nodes.  Connectivity is built by developing relationships from point to point.  The 

finite element method by contrast is more concerned with a discrete volume, or element, over 

which the solution is obtained.  This formulation is built by assuming a particular profile over 

this element, then solving for the values of this profile.  Finite volume discretization combines 

features of both of these methods, and it builds a formulation where both the points and the space 

between the points are important in solving the problem.  An excellent source of information on 
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finite volume and difference methods is Tannehill, Anderson, and Pletcher [1997], while 

excellent sources of information on the finite element method are Reddy [1994] or Bathe [2000].  

These discretization methods are simply mathematical tools for solving a difficult equation and 

have nothing to do with the physics or the problem to solve, so any relationship with the physical 

domain is simply one of convenience.  All three formulations have been demonstrated 

successfully many times in solving the Navier-Stokes and similar equations.  Here, the finite 

element method is used exclusively, selected as part of a commercial code called FLOTRAN by 

Ansys, Inc. 

 The finite element method operates by making use of a weak form or Galerkin-type 

procedure.  Interested persons are again referred to the references by Reddy or Bathe for details 

on the finite element method.  The first step is to decide on a differential equation model, as 

discussed above.  This differential operator will be of the form in eqn. (3-1), with the variable u 

as the dependent variable. 

f(u) =L  (3-1)

This equation can be of arbitrary order, contain any number of independent variables, and even 

non-linearities, at this conceptual stage.  Obviously, an exact solution (sometimes there can be 

more than one) for u satisfies this equation.  An inexact solution does not.  However, the finite 

element method implementation allows for a minimized approximate solution, ũ, such that the 

equation can be satisfied in a weighted sense.  This is called the weighted-integral form, and the 

Galerkin method gives the form of eqn. (3-1) as: 

[ ]∫ −=
Ω

dΩf)u~(w0 L  (3-2)

 In eqn. (3-2), the function w is called a weighting function, and many integrable functions 

can be used, although there are some standard choices.  Now, an approximation to u can be made 

such that u is of the form: 

∑
=

=
N

i 1
iiuu~ y  

(3-3) 

The approximate solution is the summation of values at known points, or nodes, given by the 

ui�s, coupled with the yi functions.  These are called shape functions, for they determine the 

shape of the solution over the element surface. 
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 One of the advantages of the finite element method is that it allows eqn. (3-2) to be 

reduced to a more advantageous form.  As written, using eqn. (3-3) in eqn. (3-2) requires that the 

approximation for u is differentiable at least as many times as the order of the differential 

equation.  So, for a second order equation, like those found in the Navier-Stokes formulation, ũ 

must be at least parabolic (if it is a polynomial) or twice differentiable (in general) to correctly 

satisfy all the terms of the equation.  However, the technique of integration by parts allows the 

differentiation to be equally distributed between the differential operator L(ũ) and the weighting 

function w.  This means that one can use shape functions of a lower order to approximate u.  This 

is called the weak form, since u no longer has to satisfy such stringent requirements in the 

function.  The weak form of eqn. (3-2) is given in eqn. (3-4). 

∫∫∫ −=∇•−∇•∇
ΩΓΩ

dΩwfdSG)wn�(dΩ)u~G(w  (3-4) 

In this case, G(ũ)is simply a more specific form of the general operator L(ũ).  For the weak form 

development, L(ũ) must be at least twice differentiable to distribute one differentiation onto the 

weighting function (it can be more than twice differentiable if appropriate).  The notation switch 

is a convenience to allow L(ũ) to be expressed equivalently as ∇ 2G(ũ). 

 There is, however, an important thing to note about eqn. (3-4), as integration by parts 

causes the highest order boundary conditions to appear explicitly in the equation.  These 

boundaries are called natural boundary conditions, and now become part of the weak form 

directly.  This has the additional advantage that the natural boundary conditions are satisfied 

approximately through the weak form solution, and the choice of ũ need not satisfy these 

equations.  Boundaries below one-half the equation order are essential boundary conditions, and 

are still handled by the approximate u function of eqn. (3-3).  Thus, the choice for the shape 

functions has less strict requirements on the selection than in the original weighted-integral form.  

Reduction to the weak form of the equation causes the additional requirements that the natural 

boundary conditions are implicitly prescribed to be zero on a boundary where essential boundary 

conditions are not specified [Shames and Dym, 1985]. 

 With the approximate ũ, and an assumed set of weighting functions (the shape functions 

themselves are used in the Galerkin method), the weak form of the integral can be solved to form 

a system of equations, for the only remaining unknown values become the ui�s, which have no 
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spatial dependence.  The finite element method works by assembling this algebraic system of 

equations from the integrated results and accounting for interconnected elements.  A linear or 

non-linear system of equations can be solved by any number of matrix algebra solver routines on 

a computer. 

 For problems in this document, a pre-developed and pre-tested commercial code was 

selected that solves the full Navier-Stokes equations using the finite element method.  

Ansys/FLOTRAN is part of much larger package capable of solving fluid, static structural, 

dynamic structural, buckling, heat transfer, electromagnetic, acoustic, and a variety of other 

types of problems.  Contact information for Ansys, Inc. can be found in Appendix A. 

 Ansys/FLOTRAN seemed the logical choice for the problems studied here for many 

reasons.  It was selected partially because it is part of such a large suite of products.  For an 

application like the design of skin friction gages, such a product is ideal.  Designing and building 

a floating head flexure requires structural, vibrational, CFD, and other analyses to be successful.  

Much of this analysis is beyond the scope of this study, but the flexibility and power of such 

capabilities is an asset in remaining competitive in such a field as direct skin friction 

measurement. 

 Although Ansys/FLOTRAN does not have some of the advanced capabilities of some 

other CFD codes, it is well-suited to solve the problems studied in this work.  As will be shown, 

Ansys/FLOTRAN is built with incompressible problems in mind.  As well, it offers some 

common choices for turbulence models and allows for structured, unstructured, or hybrid 

gridding � useful for complex geometries. 

 As shown in Fig. 3-1, Ansys/FLOTRAN provides both 2D and 3D fluid elements, both 

with linear shape functions; these elements have 4 and 8 nodes respectively.  The ANSYS Theory 

Reference [Kohnke, 2001] gives details related to the Ansys/FLOTRAN code.  

Ansys/FLOTRAN manipulates each of the equations in the Navier-Stokes governing system to 

solve for a particular variable associated with it.  These variables are the ui variables in eqn. (3-

3), and are called degrees of freedom for the finite element solution; the nodal degree of freedom 

list for these elements and the associated Navier-Stokes equation for each is given in Table 3-1. 

 

 



Chapter 3, Section 1: Formulation of Numerical Methods 

page - 40 

 
Figure 3-1. Nodal Patterns of CFD Elements Featured in Ansys/FLOTRAN 

 

Table 3-1. List of Nodal Degrees of Freedom for Ansys/FLOTRAN 

symbol DOF equation associated 

u x-velocity X-momentum 

v y-velocity Y-momentum 

w z-velocity Z-momentum 

P pressure continuity 

T temperature energy 

κ turbulent kinetic energy turbulent kinetic energy 

ε turbulent dissipation turbulent dissipation 

c1 - c6 species concentration species transport 

 

 One of the major issues in a set of transport equations like the Navier-Stokes equations is 

the ratio of convection to diffusion in the equation, also called the Peclet number.  According to 

Tannehill, Anderson, and Pletcher [1997], this can also be referred to as the mesh Reynolds 

number and it plays an important role in the characteristics of the equation.  Since the convection 

terms contain the non-linearities, careful consideration must be made of the way in which these 

terms are discretized (Peclet number tends to play an important role in this).  The convective 
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terms have a considerable effect on the stability and convergence properties of the numerical 

scheme. 

 FLOTRAN offers two schemes for integrating the weak form of the Navier-Stokes 

equations, both of which offer variations on the simplified, general version of the integral given 

in eqn. (3-2).  The first, the monotone streamline upwind scheme (MSU), is described by Rice 

and Schnipke [1985].  In a few words, this method basically takes the two-dimensional or three-

dimensional convective terms and integrates them in a single path along a streamline passing 

through a particular element.  The process of Rice and Schnipke first calculates the downwind 

node of an element, and interpolates the upwind place where that streamline enters the element.  

Integration proceeds in an upwind manner, and the MSU method is known to be monotonically 

converging and to provide first order spatial accuracy [Kohnke, 2001]. 

 The second scheme is the streamline upwind/Petrov-Galerkin (SUPG) method discussed 

by Brooks and Hughes [1982].  This method is somewhat more complex than MSU.  From their 

discussion, the motivation for Brooks and Hughes was that the Galerkin method by default 

produces central-type differencing.  This differencing tends to produce spurious oscillations in 

the solution.  To combat this, upwind differencing can be employed as in the MSU method.  

Brooks and Hughes discuss that the upwind differencing schemes can be interpreted as a 

summation of a central difference plus an artificial diffusion term, which lowers the accuracy of 

the method and artificially corrupts the problem.  The SUPG method basically uses the upwind 

approach in series with an additional term of negative diffusion in the stream-wise direction to 

balance that which is artificially added by the upwinding.  This extra term is introduced by 

modifying the weight function w to reflect the reduced stream-wise diffusion.  As the mesh is 

refined, the extra term goes to zero, and the method becomes second order spatially accurate.  

The SUPG formulation, however, tends to produce oscillatory spatial convergence behavior 

[Kohnke, 2001].  This is consistent with Godunov[1959] who discussed the fact that any 

convective scheme greater than 1ST order cannot, in general, guarantee monotonic convergence.  

Note that this statement means something entirely different than the spurious nodal oscillations, 

discussed above, that the SUPG method seeks to remove � this is a stability issue, not a spatial 

convergence issue.  Kohnke�s reference is to the behavior of the converged solution as the mesh 

is refined, which contrasts with the MSU scheme which monotonically converges to the 
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continuous solution with increasing mesh refinement.  More about discretization errors and 

convergence will be given in Section 3.6. 

 From a usability standpoint, the help guide of Ansys/FLOTRAN states that the SUPG 

formulation offers more accuracy, but less diagonal dominance and, therefore, less ideal 

convergence properties.  This manual offers some tips for getting the SUPG method to converge 

correctly, but explains that it is sometimes much more difficult to get an SUPG solution started 

than with MSU (in fact, one recommendation is to start with MSU, then switch to SUPG after 

some iterations) [ANSYS Online Help, 2001]. 

 Although most interesting problems here are completely steady-state problems, it will be 

noted for completeness now that Ansys/FLOTRAN uses a 2ND order accurate implicit time 

formulation.  As such, there is no Courant-Friedrichs-Lewy (CFL) number restrictions associated 

with doing a transient problem using Ansys/FLOTRAN.  The code allows an arbitrary time step 

to be entered, or can calculate one automatically by analyzing all elements and determining the 

maximum time step for which any fluid particle entering any element still remains in that 

element.   

 Once the governing equations are properly discretized and the global matrices are built, 

solution of the finite element matrices in Ansys/FLOTRAN proceeds via a segregated solution.  

There are two basic types of solution algorithms, coupled and segregated.  Coupled solvers try to 

solve the entire non-linear equation set at once by common methods like Picard iteration, 

variations of Newton�s method, etc.  Segregated solvers solve the equations one at a time, 

addressing the nonlinearities by using the current, approximate solutions for the other degrees of 

freedom in each equation.  The segregated solver routine has the advantage of not needing to 

actually assemble one large global matrix all at once.  Instead, smaller matrices can be assembled 

and removed as needed [FIDAP, 2001].  Remember again that a derived form of the continuity 

equation serves as the pressure equation (see Table 3-1). 

 In keeping with the segregated algorithm, Ansys/FLOTRAN uses a general class of 

segregated methods known as SIMPLE [Patankar and Spalding, 1972].  Specifically, 

Ansys/FLOTRAN uses a method of this class specially adapted for the finite element method 

called SIMPLEF [Schnipke and Rice, 1985].  SIMPLEF does not require the staggered grid used 

in some of the original formulation, as it appears in Patankar and Spalding.  In this method, the 

velocities are solved for twice � once approximately near the beginning of the global iteration 
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and once near the end to update the velocities with the pressure solution from that iteration.  For 

each individual equation matrix, a variety of iterative solvers and a direct solver can be used.  

These include common techniques like Gauss-Seidel iteration, conjugate gradient solution, etc.  

Once again, the theory reference manual [Kohnke, 2001] gives all the details of the solution 

algorithm.  The program performs a specified number of global iterations, or marches until some 

convergence parameters are met.   

 

3.2. Non-dimensionalization 
  

 One important matter that requires attention is that of non-dimensional form.  Often, 

numerical codes based on any of these complex schemes solve a �normalized� set of equations, 

where all variables in the equation are divided by a reference value to scale the equations.  This 

is typically done for a couple of reasons.  First, in dimensionless form, characteristic parameters 

like Reynolds number, Prandtl number, Mach number, etc. appear explicitly in the equations 

[Tannehill, Anderson, and Pletcher, 1997].   

 Second, since all the values are normalized, they fall within prescribed limits.  This can 

be advantageous by making the solution more understandable and sometimes by providing an 

easy check of solution quality.  For example, if the maximum velocity is picked as the reference 

value, and the solution predicts a value greater than one, the solution should be questioned.  

Further, normalizing values seems to often provide some numerical benefits (at least in 

Ansys/FLOTRAN) by making the solution more stable and convergent [Pelletier, 1984].  

Normalization tends to keep the code from making badly scaled calculations as the solution 

proceeds (like multiplying a very large number by a very small one), but the quantitative benefit 

here is difficult to ascertain in a general sense.    

 Third, and finally, normalizing also makes any generated solution more universal, as it 

applies to any of a class of geometrically similar problems; the scale simply changes.  Any 

problem of the same geometry sharing the same Reynolds number and all other dimensionless 

quantities automatically shares the same scaled solution.  This will become clearer later on after 

the detailed dimensionless scheme is revealed.  This fact is particularly useful here as the goal of 

this work is to provide a general treatment of direct measuring skin friction gages.  
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Dimensionless scaling allows each solution to be applicable to a whole class of skin friction 

sensors. 

 FLOTRAN in particular makes no internal dimensionless scaling at all.  However, there 

is also no tabulation of units or dimensions of any sort.  Therefore, it is possible to put all values 

into the code in non-dimensional form and receive the corresponding non-dimensional output 

since the equation form is the same.  This requires that a consistent scheme of non-

dimensionalization to be used.  The following pages will show that the correct form does indeed 

produce the correct equations, looking identical except for the asterisks, *, which indicate 

dimensionless quantities. 

 The non-dimensional scheme presented here starts with the particular forms of the 

equations in Kohnke [2001], since the focus here is particularly on the Ansys/FLOTRAN code.  

Other sources may tabulate the equations of interest slightly differently, but the derivation 

presented should work universally for the standard Navier-Stokes formulation.  Readers are 

cautioned to note, however, that the equations used are actually the same as shown here.  This is 

particularly true in the turbulence equation, as there are many variations in the κ−ε turbulence 

model [Schetz, 1993]. 
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Y-momentum: 
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Z-momentum: 
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Energy (in terms of T0): 
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Species Transport: 
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Turbulent Kinetic Energy Transport: 
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Turbulence Dissipation Transport: 
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This is the complete Reynolds Averaged Navier-Stokes (RANS) formulation presented in 

Cartesian coordinates as it is given in Kohnke and solved by Ansys/FLOTRAN.  The second 
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viscosity coefficient is neglected for Ansys/FLOTRAN since it is zero by definition for 

incompressible flow and negligible in many compressible situations. 

 First, it is necessary to expand on some of the terms in eqn. (3-8a), which were 

abbreviated in Kohnke for space reasons.  This includes the viscous work (WV), momentum 

dissipation (Φ), and kinetic energy (EK) terms as used in this form of the governing equations. 
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Next, it is beneficial to write the complete forms of eqns. (3-5a) � (3-12a) in tensor notation, as 

the length and complexity of some of these makes them difficult to manipulate.  Eqns. (3-13b), 

(3-14b), and (3-15b) are used and inserted as appropriate.  Further, since all components of any 
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vector will have the same dimensionality anyway, it is redundant to write all three components 

out (details of tensor notation can be found in Shames and Dym [1985]).  Re-writing in tensor 

notation yields the following: 
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 In each equation, a non-dimensionalizing scheme can be inserted into the original eqns. 

(3-5b) � (3-12b), and after canceling terms, an identical form is produced with the non-

dimensional quantities.  This process is shown for all equations in Appendix B.  The compatible 

non-dimensionalizing scheme for all variables appearing in eqns. (3-5b) � (3-12b) is given in 

Table 3-2.  Note that the turbulent viscosity, µT, is defined as a derived quantity through either a 

zero-equation turbulence model or the two-equation κ−ε model.  In either case, its definition is 

consistent with that of the laminar fluid viscosity in the equations.  The forms given by the 

dimensional equations and dimensionless equations are identical, proving the validity of Table 3-

2. 
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Table Table Table Table 3333----2222. Dimensionless Scheme for the Navier-Stokes Equation Set 
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3.3. Initial Conditions 
 

 Another matter which deserves some discussion is that of initial conditions.  Here, 

analysis was, to a large extent, directed by the capabilities and design of the particular code.  

Ansys/FLOTRAN uses a default initial value of zero for all degrees of freedom unless otherwise 

specified.  Of course, any specified Dirichlet boundary conditions override any specified initial 
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conditions.  It seems advantageous to specify more accurate initial conditions whenever possible 

to speed up solution convergence. 

 One technique commonly used in CFD to accelerate convergence is the idea of multigrid.  

This relatively recent idea is based on two principles.  Brandt [1977] is a classic reference for 

more details on the multigrid algorithm.  The first, the smoothing principle, is that iterative 

solvers tend to smooth out the solution error over many iterations.  High frequency errors tend to 

be damped out quickly, while low frequency (long) error waves tend to survive. The second 

principle, the coarse grid principle, is that these smooth or low frequency errors can be well 

approximated on a coarser grid [Trottenberg, Oosterlee, and Schuller, 2001].  Multigrid operates 

by solving for this smoothed error on a coarse grid to provide a better guess on the fine grid.  

Because the coarse grid iteration uses a small amount of calculations in comparison to the fine 

grid, this technique is successful. 

 Unfortunately, Ansys/FLOTRAN does not implement such a technique in its formulation.  

To gain any benefit from multiple grid interaction, it is necessary to look at a primitive precursor 

of multigrid.  Trottenberg, Oosterlee, and Schuller refer to this as nested iteration.  Nested 

iteration is a simple concept; one uses course grid solutions to obtain a better initial guess for a 

finer grid, which is a one-way process from coarse to fine rather than the interactive formulation 

of multigrid.  In general, nested iteration uses Richardson extrapolation, which is a technique 

utilizing Taylor series expansion for several points at once to get a better estimate of an �exact� 

value [Matthews and Fink, 1999].  Kronsjö and Dahlquist [1972] used two coarse grid solutions 

(of element size h and 2h) to obtain a 4th order accurate approximation to a fine grid of mesh size 

h/2 for the two-dimensional, elliptic Laplace equation.  This approximation was then used to start 

iteration on the fine grid such that it reached the designated level of accuracy in only a few 

iterations.  Although not a necessary requirement, the steady state Navier-Stokes equations 

happen to be an elliptic problem as well for subsonic, incompressible flow.  Complex geometries 

and non-linearities certainly complicate the process somewhat, but the method can be assumed to 

be useful.  It is interesting to note that, although figuring much more prominently in the later 

Section 3.6 on computational errors, Roy, McWherter-Payne, and Oberkampf [2000] mention 

the use of this technique for their finest models to accelerate convergence of hypersonic flow 

problems. 
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 This basic technique has been used quite successfully in Ansys/FLOTRAN here to 

accelerate convergence.  Implementing this technique using Ansys/FLOTRAN is somewhat 

difficult however, so the steps involved are listed in Appendix C for future use.  Because of the 

complexity, only a 1ST order accurate approximation has been used to transfer conditions from a 

single coarse grid onto a fine grid.  This amounts to simply using linear interpolation (via the 

shape functions) to transfer the coarse grid solution values directly as a starting guess on the fine 

nodes.  Although not as robust and accurate as that used by Kronsjö and Dahlquist, this simple 

procedure is still significantly better than using zero as a uniform initial guess.  Since the 

transferring of conditions in Ansys/FLOTRAN is time consuming in itself, using more than a 1ST 

order approximation would probably be prohibitive except on extremely large problems where 

the savings could be large. 

 As a brief example, a sample pipe problem was run in Ansys/FLOTRAN with and 

without the 1ST order coarse grid acceleration.  This problem consisted of an incompressible, 

laminar, axisymmetric pipe with fully developed flow.  A coarse grid with 600 two-dimensional 

elements was solved, as well as a fine grid with double the mesh density, or 2400 two-

dimensional elements.  The fine grid was solved twice, once with the nested iteration as an initial 

guess, and once with the Ansys/FLOTRAN default of 0.  All three problems were solved to 

approximately the same level of convergence; a value of 1x10-8 on the PRES variable 

convergence monitor (discussed in the final section of this chapter) was used as a stopping 

criterion.  Results of the total number of seconds that the CPU spent in solving each case are 

shown in Table 3-3. 

 

Table 3-3. Nested Iteration Test Problem CPU Times 

Case CPU Time (seconds) 

coarse grid 11.17 

fine grid, nested iteration 59.70 

fine grid, default initial conditions 90.96 

 

 It is easy to see that even for such a simple example, the nested iteration provided 

savings.  Even with the additional calculation time of the coarse grid, nested iteration required 
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only 78% of the CPU time that the default problem did, saving about 20 seconds out of 90.  

Although no similar tests were performed on any of the primary problems of interest here, it is 

assumed that similar or better reductions were seen there, especially in the 3D problems where 

grid doubling multiplies by a factor of 8 rather than just 4. 

 

3.4. Boundary Conditions 
 

 A brief discussion also must be made at this time on the subject of boundary conditions 

for general types of problems, specifically related to the finite element method.  The exact 

boundary conditions used for specific problems will be given as they are discussed later, but a 

general understanding of boundary condition types will be given now. 

 As already discussed, there are two types of boundary conditions in performing a finite 

element analysis of this type: essential and natural.  The relationship of these conditions within 

the finite element method has already been briefly discussed in Section 3.1.  The implementation 

of the boundaries are equally important in solving a real problem, as making the correct 

boundary condition choices is probably the most important step to obtain a correct solution.  In 

the typical form of any transport equation, the Navier-Stokes equations are second order in the 

velocity components u, v, and w.  The turbulence equations are second order in the turbulent 

kinetic energy and dissipation, κ and ε.  The energy equation is second order in temperature, T.  

And, of course, the momentum equations are first order in pressure, P.   

 One standard boundary type is the inlet condition.  Flow is specified in the form of the 

three velocity components.  Here, u, v, and w are given specifically as essential boundary 

conditions, even if that value is zero.  Of course, this value need not be constant over the inlet, as 

a velocity profile can be utilized.  Turbulence values κ and ε also must be specified at an inlet, 

although this is something that is often not known.  Ansys/FLOTRAN has a feature which 

automatically places 1% inlet intensity (the ratio of turbulent velocity fluctuation to average 

velocity) and length scaling on any inlet where κ and ε are not specified.  Specifying essential 

condition values for these variables on an inlet overrides this feature.  One common choice is to 

make κ equal to zero and ε equal to 1, indicating that there is no incoming turbulence at all.  The 
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Ansys/FLOTRAN manual specifically states that ε should never be set to zero [ANSYS Online 

Help, 2001]. 

 Walls are traditionally defined by setting all velocity components to zero.  

Ansys/FLOTRAN allows a moving wall to be specified (as in a Couette flow, for example) by 

setting the tangential components to a value other than zero.  Again, however, all velocities are 

specified as essential conditions.  The difference between a wall and an inlet is that the normal 

velocity component is identically zero for a wall and non-zero for an inlet.  The two-equation 

turbulence model is uniquely problematic at walls, as the standard κ-ε model is not defined at 

such a point.  Because of this, no boundary conditions are specified by the user for κ and ε on a 

wall.  The typical approach for this issue is to create a point above the wall in the log region of 

the boundary layer where the κ-ε model stops, and to use the law of the wall to solve the 

remaining distance to the wall.  This is called a wall function [Schetz, 1993]. 

 Many finite element codes have specialized wall elements to handle this situation along a 

wall surface [FIDAP, 2001].  The two region wall model of Ansys/FLOTRAN designates 

elements that border a wall with a special status.  This is similar to the recommended procedure 

from Turgeon, et al., [2002], as they employ a two region model as well.  The code internally 

makes a decision about whether the node adjacent to the wall lies in the laminar sublayer region 

or the log region based on the value of y+ that is calculated.  This quantity is a dimensionless 

scale of distance from the wall near the surface, and is given by: 

ν
yuy *≡+  

(3-16) 

Most of the default wall parameters are consistent with the recommended values in Schetz 

[1993], with an additional transition y+ value of 11.5.  Although this numerical formulation of 

the turbulent wall model makes no allowance for an overlap region between the log and laminar 

sublayer regions, studying the plot of turbulent velocity profiles in these regions shows that little 

error is induced by neglecting the overlaping region.  The details of the wall formulation can be 

found in the Ansys Theory Manual [Kohnke, 2001] and the Ansys Online Help guide [2001].  

This formulation is critical here, since the wall shear stress calculation for turbulent flows comes 

as a direct result of the turbulence wall model. 

 From the information obtained by a calculation of the value of y+ based on the distance 

between each wall node and near wall node for each designated wall element, it is determined 
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whether the specialized wall element resides in the log region or the laminar sublayer.  With this 

determination, the effective viscosity for that particular element is set to either the laminar value 

only in the case of the laminar sublayer (turbulent viscosity of zero), or an effective viscosity 

calculated from the law of the wall in the case of the log region.  In generating the nodal solution 

of the Ansys/FLOTRAN Navier-Stokes equations, the wall element would contribute to the 

coefficients of the operator matrix using an effective viscosity determined from the above wall 

function analysis, and all other elements would contribute to the coefficients based on an 

effective viscosity calculated using the values of κ and ε as in the bulk of the flow.  Given the 

nature of the equations, non-wall nodes governed by the κ−ε model that are close in proximity to 

the near wall nodes (such as a corner where two walls meet at right angles) will be strongly 

affected by the boundary conditions from the wall treatment.  Nodes farther out in the flow 

domain will be less strongly affected. 

 The result of this wall treatment is that the code allows for the near wall node (and hence 

the wall element) to fall either in the laminar sublayer or the log region.  The code uses the 

special wall formulation to correctly utilize experimental turbulence information to calculate 

boundary conditions for κ and ε based on a calculation of y+.  Above this element, however, the 

calculation of effective viscosity requires that the κ−ε model be valid.  Thus, any nodes above 

the first must lie within the log region.  Values of y+ above 30 or so are ideal for log region 

behavior.  This issue will be discussed further later, but the correct use of the high Reynolds 

number, two option wall treatment κ−ε model requires that the nodes above the near wall node 

be far enough from the wall to correctly calculate κ and ε and thus effective viscosity.  

Clustering too many nodes too close to the laminar sublayer can have detrimental consequences 

on the solutions near the wall surfaces.  The shear stress is also a product of the specialized wall 

element treatment, which calculates shear stress according to an appropriate formula based on 

the zone in which the element resides.  Correct calculation of the shear stress along the wall 

surface requires that the mesh be correctly designed near the wall in order to make correct use of 

the wall function. 

 A most interesting boundary condition is that of the �free� condition.  A free boundary is 

generally known as a type of far-field condition, or a boundary where disturbances have been 

damped out.  The boundary is termed so because it allows unrestricted inflow or outflow, but it 

prevents this flow rate from changing at the boundary (i.e. no disturbances or fluctuations in 
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space), as described by Oberkampf and Blottner [1998].  The free condition is the easiest type of 

boundary to implement, as no effort is required.  However, its effect is quite profound.  This is 

the natural condition that has been discussed in Section 3.1.  By not specifying a degree of 

freedom on a boundary in the finite element method, one is automatically inferring that a 

combination of velocity derivatives is zero.  Ansys/FLOTRAN even explicitly states this in its 

boundary condition dialog box with the message �warning: Blank values not interpreted as 

zero!!.�  Developing from eqn. (3-5a), the natural boundary condition corresponding to the 

essential degree of freedom velocity component, uj, is given by eqn. (3-17).   

0n
x
u

x
u =











∂
∂

+
∂
∂

i
i

j

j

i
(3-17) 

The ni variables are the direction cosine components of the respective surface.  One or all 

degrees of freedom can be left as free.  Leaving them all as free says that the values are no longer 

changing at that boundary.  The actual values need not be zero, but their normal derivatives are 

zero.  This boundary condition is useful far above a boundary layer in an external problem, 

sufficiently far away that the disturbance is no longer felt.   

 Symmetry boundaries are marked by setting the normal velocity component to zero.  The 

other two components are left as free.  If the w component is set to zero, for instance, then this 

infers that ∂w/∂x + ∂u/∂z = ∂w/∂y + ∂v/∂z = 0 as well from eqn. (3-17).  A symmetry plane is 

exactly that � no flow passes through the symmetry plane, and an identical flow pattern takes 

place mirrored through the plane.  Using symmetry where appropriate allows a reduction in 

computational effort required. 

 Finally, the outflow boundary condition is discussed.  The inlet condition required known 

values of the velocity components based on problem definition.  Unfortunately, it is rare that the 

outlet conditions will be known, so it is impossible to accurately specify them.  The outflow is in 

fact an artificial boundary, as the continuous domain does not really stop at that point.  However, 

computational feasibility requires that the problem domain be reasonably limited.  Although 

unintuitive, the best choice for outflow conditions is also the free condition.  Renardy [1997] 

indicates that using the free outlet condition masks an effective boundary condition at a point 

near the outlet.  A somewhat longer paper by Griffiths [1997] discusses the implications of this 

free condition for some specific cases including p=1, where p is the order of the element shape 
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functions.  This paper examines the effects of free outflow on the advection-diffusion equation 

given in eqn. (3-18).
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 This equation is simply a general version of the forms seen in the Navier-Stokes 

equations already discussed.  For the natural boundary condition to vanish at the last element as 

is necessary, a reduced form of the governing variational equation must identically vanish (since 

∂2T/∂x2 is zero), as outlined in detail in his paper.  This form is given in eqn. (3-19).   
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Since linear shape functions are always positive, application of the Mean Value Theorem to the 

reduced equation variational integral means that the terms of the integral must equal zero at some 

point in the last element.  For this case, if the advection coefficient (a velocity component in the 

fluid flow case) and the momentum source term are linear functions in space, this point must be 

at 2/3 of the element length (or 1/3 of the element length from the outflow boundary).  Thus, the 

no outflow boundary condition is equivalent to satisfying the reduced equation (given in the 

parenthesis of eqn. 3-19) at this point in the element.  This is the implied condition suggested by 

Renardy. 

 The important result from Griffiths is that for this free outflow condition, the errors 

induced are on the order of µ2, which is the viscosity in the Navier-Stokes equations.  This is the 

deviance from the exact condition, which is actually only true at �infinity.�  On a practical note, 

the free outflow tends to cause some local smearing of the solution right at the outlet edge, but it 

serves adequately to close the problem and provide correct solution on the interior [Pelletier, 

2000].  As long as a desired feature is not right at the outlet, the free boundary condition is 

useful. 

 For incompressible flows, pressure is only relative, as the gradient of pressure appears in 

the momentum equations, but no reference is made to pressure directly.  Thus, a single pressure 

needs to be prescribed somewhere for reference, but only the difference from that reference 

matters.  This pressure is often prescribed on the outlet, but it can sometimes be placed elsewhere 

as well.   
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 Note that this entire discussion of boundary conditions is dependent on the fact that 

Ansys/FLOTRAN uses first order (linear) shape functions, as well as their choices in weak form 

reduction.  Regardless, it would be necessary to, in some manner, enforce the same amount of 

boundary conditions due to the order of the governing equations.  However, the interpretation 

and application to the code would be slightly different if higher order shape functions or alternate 

integration schemes were used. 

 

3.5. The Embedded Region 
 

 One technique employed in this work is termed an �embedded region.�  A discussion of 

the embedded region concept follows directly from the boundary condition discussion, since the 

use of the boundary conditions is an integral part of an embedded region problem.  The idea of 

the embedded region problem is to avoid the unnecessary and impractical need to solve an entire 

problem three-dimensionally in which the solution over the majority of the domain exhibits 

nominally 2D characteristics and the 3D effects are confined to a small percentage of the domain 

only. 

 Some of the flow problems studied in later chapters incorporate turbulence effects in the 

models.  For the general problem of a direct measuring skin friction gage placed in the wall over 

which a nominally 2D turbulent boundary layer is developing, the study of errors on that skin 

friction gage under turbulent flow conditions requires that the gage be placed sufficiently far 

down the wall surface that the boundary layer has grown enough to display dominantly turbulent 

traits.  Since a turbulent boundary layer requires very fine grid spacing near the wall, this makes 

the grid requirements quite large for 3D cases and this also makes the issue more difficult to treat 

with limited computational resources.  For uniform free-stream boundary conditions and a 2D 

geometry, the boundary layer growth is essentially a 2D problem only.  Therefore, it is simply 

inefficient to treat a large region where flow is essentially 2D with a 3D grid. 

 The effects generated by the skin friction gage are indeed three-dimensional, but they are 

confined to a small region of the boundary layer after it has already grown over a long distance 

on the wall.  In this light, the embedded region concept was implemented for some problems 

here to make efficient use of the computational resources available.  The implementation of the 

embedded region involves several steps.  First, the entire global boundary layer problem is 
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solved in 2D only.  For the problems here, this consisted of solving the turbulent boundary layer 

problem on the wall without the skin friction gage present.  Then, at a selected station along the 

wall of the global problem, the solution conditions are extracted.  Next, a 3D embedded region 

problem is created, including all 3D geometry (the skin friction gage in this case).  The model is 

made only sufficiently large to safely encompass all 3D effects that the problem might generate.  

This requires testing of the boundary placement of the 3D embedded problem to insure that all of 

the three-dimensional effects are enclosed in the domain.  The results from the global 2D 

problem without the gage or other 3D effects are then applied as fixed (constant) boundary 

conditions on the inlet on the embedded region.  Since the embedded region contains all 3D 

effects within its domain, the inlet conditions are applied uniformly across the inlet plane in the 

third dimension of the embedded region.  The other boundary conditions on the embedded 

problem along the top and bottom surfaces must be applied as they were for the represented 

section of the global, 2D problem (i.e. a symmetry plane must remain a symmetry plane, etc.).  

The 3D embedded region problem is finally solved. 

 The embedded region technique has theoretical validity because of the nature of the 

problems studied here.  Although the Ansys/FLOTRAN CFD code itself numerically solves the 

full, elliptical, Navier-Stokes equations for the problems solved here, the physical nature of the 

problem of a boundary layer is a parabolic one.  Thus, despite the fact that the CFD code allows 

for upstream communication, a high Reynolds number boundary layer physically shows almost 

no influence of the downstream effects on an upstream station.  For this reason, the 3D 

embedded region is not expected to affect the boundary layer development in the upstream 

portion of the wall, and the inlet conditions utilized from the solution of the global 2D problem 

could be taken as fixed boundary conditions.  Caution is warranted in using this approach in a 

general sense for elliptic problems where there might be strong two-way coupling in the flow, 

but for boundary layers, it is valid. 

 

3.6. Sources of Computational Error 
 

 One of the most important issues in making a computational calculation is assessing the 

uncertainty in that calculation.  Results from an experiment will always contain inherent 

uncertainties.  These arise due to limited precision and/or capability of any and all instruments 
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involved in the measurement.  These uncertainties can compound to adversely affect the desired 

result.  For instance, a thermocouple might be limited to measuring a temperature accurately to 

within, say, 1 degree.  Further, the placement of the thermocouple in the apparatus can only be 

determined to the accuracy of the ruler or calipers used.  Thus, not only is the temperature 

measured uncertain, but so is the place where it is made.  Computational analyses are just as 

prone to uncertainty, but the types and sources of this uncertainty are different.  Much of what is 

discussed in this section is generic to all types of computational analysis, but particular emphasis 

shall be placed on CFD. 

 The first, and most fundamental, matter to consider in a CFD analysis was alluded to in 

Section 3.1 and it is the issue of modeling error.  This can be best described in a paper by Roache 

[1997], who gives the definitions �of verification as �solving the equations right,� and of 

validation as �solving the right equations.��  Validation is the issue of addressing modeling errors 

in a CFD calculation � determining whether the equations solved correctly describe the problem 

or not.  Thus, one must first be sure that a valid set of equations is being solved, otherwise there 

is, of course, a great deal of modeling error built into the calculation.  As discussed in Section 

3.1, Ansys/FLOTRAN solves the full Navier-Stokes equations, which are the �right� equations 

for just about any fluid calculation.  The Navier-Stokes formulation contains very few 

approximations, and these equations should clearly be applicable for the problems solved in the 

next few chapters.  Using the Navier-Stokes equation set, the most common issue of validation 

or modeling error is in the choice of turbulence modeling formulation.  There are a large number 

of turbulence model variations available, and one finds that there are really no models that are 

particularly universal.  A specific argument that the turbulence models chosen here for the 

turbulent flow analyses are adequate will wait until those chapters. 

 Once one is convinced that the calculation is performed using a valid set of equations 

and/or addressed any modeling errors as a result of validation issues, one must move on to the 

issue of verification.  Verification is the issue of numerical errors accumulated in solving a set of 

equations with a computational algorithm.  Assessing the accuracy of (or verifying) a valid 

calculation requires some further attention than looking at just the modeling error sources.  

Numerical error in a CFD calculation is due to several sources, which can be divided up into the 

following general categories: 

1. computational round-off error 
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2. iterative convergence error 

3. (ordered) discretization error 

4. far-field boundary condition errors 

These categories will be addressed one at a time in the order listed. 

 First, it is obvious that all computers operate on numbers of finite precision and this leads 

to round-off errors.  For most things, like the word processing program that this document is 

being typed in, the numerical precision of a machine is inconsequential, for it provides much 

more precision than the word processing program needs.  Engineering calculations, however, can 

sometimes suffer from round-off error due to the machine precision limits.  An excellent, simple 

example of round-off error is to pick a simple function and evaluate its derivative using finite 

differences.  Whether using forward, backward, or central differencing, the calculation will take 

the function evaluated at some points, and divide by the spacing between those points in some 

fashion.  One finds that, as the spacing is decreased over a number of successive calculations, the 

approximation to the derivative gets better.  As the spacing continues to decrease, however, one 

will find that suddenly the approximation begins to get worse again.  This odd phenomenon is 

because the calculations of the derivative begin to suffer from round-off error as the subtractions 

and division approach the machine limits [Matthews and Fink, 1999].   

 One finds that this phenomenon can manifest itself in a couple of ways.  First, round-off 

error becomes a problem when numerical calculations are poorly scaled.  For example, 

subtracting a very tiny number from a very large number can cause the large number to appear 

unchanged (take 1x1020 minus 1x10-20 for instance).  Even worse things can happen when one 

starts multiplying and dividing badly scaled numbers.  One way to combat this in a preventative 

way is the method outlined in Section 3.2 � non-dimensionalization.  Although not a guarantee 

against poor scaling, solving the non-dimensional problem tends to normalize things as outlined 

in that section.  Further, round-off error can appear deviously in a complex calculation.  Even if 

it is not a particular issue in a given operation, tiny round-off errors can compound together, 

because complex CFD computational codes do literally millions, and probably billions, of 

operations in order to obtain a solution.  A small round-off error multiplied one billion times 

over can become an issue. 

 One finds in CFD that, for the issue of the third source of error (discretization error) to be 

discussed in detail below, it is desirable to have small element size.  This must be balanced, 
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however, with the issue of round-off error, and one finds that in practice, literally driving a mesh 

to infinite density is not as fruitful as it might appear to be. 

 The second error source is that of iterative convergence error.  This is a major contributor 

to computational error, but also the source that is probably easiest to identify and work with.  

Iterative convergence error occurs because the resulting algebraic system of equations is non-

linear.  Because of its non-linearity, it is necessary to solve the system by iteration (as seen in 

Section 3.1).  Although each guess hopefully gets ever closer to the true solution, there is always 

going to be some difference between the iterated, approximate solution and the true solution to 

the algebraic system.  There are a couple of ways to address the issue of incomplete convergence 

error.  The design of the individual features of the code obviously plays a role in accessing this 

issue. 

 First, it is possible to use the solution variables directly to measure convergence.  This is 

accomplished by calculating the norm of the change between two successive iterations divided 

by the true value.  Since the true value is not known, the current guess can be substituted 

[FIDAP, 2001].  This rate of change can be calculated for any degree of freedom that is 

available.  Ansys/FLOTRAN implements a convergence monitor which utilizes this basic 

concept.  The rate of change of each degree of freedom (VX, VY, PRES, etc.) is normalized and 

summed up globally over all nodes as shown in eqn. (3-20).
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This value is called a convergence monitor in Ansys/FLOTRAN, and is updated real time for 

each individual degree of freedom on the screen while the solution proceeds.  Ideally, the rate of 

change should decrease as the solution approaches the correct one.  This indicates that the 

solution is changing less and less as it approaches the true solution.  In fact, the standard option 

in Ansys/FLOTRAN is to set a convergence criterion, which iterates the model until the 

convergence monitors of all degrees of freedom are below a specified level. 

 Obviously, this calculation is advantageous since it provides constant, real-time feedback 

of the solution process.  However, it is not always as useful as it may appear.  It is true that most 

of the time the convergence monitor indicates that the solution is converging as it (MΦ) goes to 

zero.  Occasionally, however, the numerical iteration of the solver can stall.  The convergence 
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monitor could possibly show little change, but the solver is stuck at some incorrect solution.  In 

practice, the convergence monitor tends to be better at doing the opposite of its intended purpose 

� it is usually good at detecting a diverging or erratic solution.  If the convergence monitor stays 

at a large value over many iterations or fluctuates erratically, this usually indicates a problem 

with the model construction.  A well-behaved convergence monitor is an excellent sign, but not a 

guarantee of success. 

 In real problems, the convergence monitors tend to fluctuate somewhat due to complex 

non-linearities, although extremely erratic behavior is always bad.  This seems to be particularly 

true when the turbulence equations are involved due to the coupling of the boundary conditions.  

Also, if the true solution for a certain degree of freedom is small or zero, then the convergence 

monitor tends to fail.  For instance, one of the problems studied in this document involves an 

external flat plate with zero pressure gradient in which the true solution is exactly zero relative 

pressure everywhere in the domain.  As the pressure degree of freedom converges, it changes 

less and less, but approaches zero as well.  Thus, the denominator of eqn. (3-20) shrinks too, and 

the convergence monitor never decreases much.  The other variables decrease as normal 

however.  A final issue is that the monitor is global in nature.  Thus, the convergence monitor 

may be excessively dominated by only a few nodes, while the majority of the problem is well-

converged, and the monitor cannot distinguish this behavior well. 

 Another standard method of addressing iterative convergence error in CFD is through the 

use of a residual.  A residual is basically what it sounds like � it represents a measure of what is 

left over between the guessed, or approximate, solution and the true solution.  In fact, a residual 

is actually the difference between a given equation evaluated with the true solution and the 

guessed one.  Again, it is desirous to drive the residual to zero for complete convergence.  For 

any numerical system as shown in eqn. (3-1), the approximate solution does not correctly satisfy 

that relation as described in that section.  The true (unknown) solution does, however, satisfy 

eqn. (3-1).  The residual appears in eqn. (3-21) by evaluating the relation with the approximate 

solution. 

)~()~( uRuf =− LLLL  (3-21) 

 This is both a standard and necessary part of all common commercial codes.  Exactly 

how the residual is used varies from code to code.  Probably most common is for the code to sum 

the nodal residual value over each node and normalize by the starting residual.  This is similar to 
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what was done with the individual degrees of freedom directly in eqn. (3-20).  When the residual 

has dropped a certain number of orders of magnitude from its original starting value, the 

calculation ceases. 

 FLOTRAN offers a slightly different way of interpreting the residual.  The stopping 

criteria are set by the degree of freedom convergence rates as given in eqn. (3-20).  The residual 

values are calculated as a secondary item just before the solution stops.  The residual values are 

stored along with the data on a nodal basis, and it is possible to post-process the residual values 

just like the solution data.  Thus, it is possible to see the entire residual field.  This technique has 

the advantage of seeing not only how large the actual residual magnitude is, but also where the 

maximum values are located.  As with the convergence monitor calculations, it is common to see 

that the portions of the model is at differing states of convergence.  Very often, the majority of 

the model shows small residual values while a few nodes have much larger values.  Seeing this 

can help to identify and address problem areas, mesh inadequacies, problem construction issues, 

etc.  If the model is correctly created and the region of high residuals is not in an area of interest, 

then no further iteration may be required. 

 The actual output variables in Ansys/FLOTRAN represent normalized residuals, where 

the actual residual values are divided by the main diagonal entries of that particular matrix line 

for that node.  The idea behind this is that, for a diagonally dominant matrix, the normalized 

residual value can be compared directly with the corresponding value of the degree of freedom at 

that node.  A percent error could then be calculated. 

 Although the residual method generally tends to be more reliable than a solution variable 

convergence index, it is possible for a type of stall to occur in this sense as well.  Oscillation can 

occur such that the degrees of freedom are changing dramatically, but the residual changes only 

slightly.  Thus, it seems best to use a combination of the degree of freedom convergence monitor 

and the residual convergence monitor to evaluate a solution�s progress. 

 One final note on convergence is actually an extension of the degree of freedom 

convergence actually discussed.  It is often possible to monitor the desired global output 

quantities to evaluate their asymptotic convergence to the correct value.  This might be a 

parameter like a lift coefficient or drag coefficient.  Since these types of parameters are just 

summations of the degrees of freedom, the same benefits and deficiencies already discussed 
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apply here as well.  However, since this is the actual output that is desired from the model, 

observing these quantities over a number of iterations seems prudent as well. 

 The third error source is that of ordered discretization, and that is the source to which the 

most consideration shall be given here.  In the previous paragraphs, the issue was how close one 

could get to the true solution for a particular algebraic representation.  Now, the discussion will 

broaden by one step to ask how close that particular algebraic system is to approximating the true 

differential equation system.  Even if it could be assumed that one has the exact, converged 

answer for the algebraic system of one mesh, generating a new mesh or grid will yield a different 

system of equations, and hence a different solution.  This new solution may or may not be 

similar to the solution on the first grid, and both may or may not be close to the exact, 

differential solution. 

 This is the issue of discretization.  In order to solve the problem, the continuous domain 

must be broken up into discrete approximate pieces.  The continuous problem is best represented 

by a mesh of infinite density, or zero element size.  Obviously, this is not practical, and from the 

round-off error discussion, it is also apparent that there are numerical issues associated with 

doing so.  Computing power, time, and precision constraints limit the density of the mesh.  

Therefore it becomes necessary to develop an estimate of the error associated with solving the 

discrete problem rather than the ideal, continuous one. 

 The typical way of addressing ordered discretization error is by using the technique of 

Richardson extrapolation.  This technique was mentioned briefly in Section 3.3, and it can be 

found in Matthews and Fink [1999].  Roache [1998, 1997, 1994] provides the most 

comprehensive discussion of this topic, and the remainder of this section will follow his notation 

and development, although a virtually identical technique has been documented by many others 

[Roy, 2001; Roy, McWherter-Payne and Oberkampf, 2000; Oberkampf and Blottner, 1998; 

Blottner, 1990; etc.].  As pointed out by Roache [1997], the following technique is advantageous 

over simply reporting a percent difference between two finite grids, as things like the order of 

convergence of the method and the relationship of the grids to the exact solution are not 

accounted for. 

 A desired output value from a CFD model is assumed to be a general function of grid 

size, h, and thus a Taylor�s series representation can be written for the relationship between that 
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output value, f, on the discrete grid compared to the �exact� value on an infinite grid.  Eqn. (3-

21) shows the Taylor�s series expansion.
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The gi terms are functions of the continuum, and thus are completely independent of h.  This 

relationship is valid for any degree of freedom output provided that the scheme is monotonically 

converging and the grid is within the asymptotic region of refinement.  More will be said about 

these two points later. 

 The power of the technique becomes apparent when two similar grids of differing grid 

size are used to eliminate the leading terms of the Taylor series.  Using two grids in the most 

general sense can eliminate g1 from the result.  However, if g1 is zero, then g2 can be eliminated, 

and so on.  This is the case if the method is second order accurate in space.  Recall from Section 

3.1 that the two discretization schemes used in Ansys/FLOTRAN are MSU and SUPG, of which 

the MSU is analytically first order (g1 ≠ 0), and SUPG is approximately second order (g1 = 0) 

under ideal circumstances. 

 With two grids, grid 1 is noted as the fine grid and grid 2 is the coarser grid.  If g1 is not 

zero, for instance, then the fine grid Taylor�s series can be multiplied by r12, the ratio of h2/h1, 

and the coarse grid Taylor�s series can be subtracted from it to get eqn. (3-22).
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Assume that h1 and h2 are on the same order of magnitude, or alternately that r12 is on the order 

of 1.  Rearranging and canceling gives eqn. (3-23). 
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If the method is second order and symmetric in space (g1 = 0), the same procedure can be used to 

obtain eqn. (3-24). 
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 Thus, in general, the form of eqn. (3-25) gives an expression for the relationship of the 

exact solution to the fine grid solution for any arbitrary order method. 
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There are several important things to note about eqn. (3-25).  First, r12 by definition must be 

greater than 1.  Second, the approximation is good to at least an order of (p+1).  Depending on 

the numerical scheme involved, cancellation of terms may provide better results if the (p+1) 

order terms drop out.  Thus, eqn. (3-25) gives an estimate of the �error,� or difference between a 

grid of a certain finite resolution and the exact answer by means of a third, coarser, grid and a 

numerical scheme of known order of convergence, p. 

 Eqn. (3-25) says that the exact solution, fEXACT, is equal to the fine grid solution, f1, plus 

some additional error term as shown.  With this definition, a fractional or percent difference, A1, 

between the exact solution and the fine grid solution can be approximated by E1 as shown in eqn. 

(3-26), 
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where E1 is defined in eqn. (3-27).
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Since it is not readily obvious why eqn. (3-26) has the truncation error that it does, the details of 

this equation are derived in the Appendix D and can be found by using binomial series expansion 

[Stewart, 1991].  The Richardson extrapolation error estimator, E1, contains the fractional error 

between the coarse and fine grids, but it also includes a correction based on the order of 

convergence, making it a more realistic and robust measure of discretization error.  The binomial 

series expansion requires that E1 be less than 1 for the series to converge, and since the 

truncation of the series is of order E1
2, the estimation works best for small values of E1. 

 Defined as such, E1 is accurate to order of hp+1 or greater.  Since there is no measurement 

of these terms of order hp+1 and greater, the E1 estimator has � all things being equal � a 50% 

chance of overestimating or underestimating the true error.  In cases where these higher order 

terms are significant, the E1 estimator can easily be optimistic.  Further, eqn. (3-27) requires that 

the order of convergence, p, be known.  While most common CFD codes aspire to 2ND order 

accuracy, many factors in real problems limit the observed order to less than the theoretical 

order.  Factors like boundary conditions, turbulence models, coordinate transformations, 

discontinuities (shockwaves), flux limiters, and many other issues affect the order of 

convergence.  Of course, the definition of the error estimator assumes that there is no iterative 
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convergence error as discussed earlier.  Care must be taken to remove as much of this as 

possible, as an unconverged solution impairs the error estimator as well. 

 Specific reference has been made to hybrid methods, which depend on cell Reynolds 

number and approach 2ND order accuracy as this Reynolds number goes to zero.  This is exactly 

the formulation used in the SUPG algorithm by Ansys/FLOTRAN.  These types of methods 

present a problem, as the order of convergence for a practical grid is some imprecise value 

between 1 and 2.  Uncertainty in p further contributes to uncertainty in the error estimator. 

 Roache recommends a factor of safety in the Richardson extrapolation error estimator to 

insure that the estimate is conservative.  The presence of a factor of safety, Fs, overshadows 

uncertainties such as these mentioned here.  Thus, the grid convergence index (GCI) is defined 

by Roache as given in eqn. (3-28). 
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Eqn. (3-28) is for the fine grid, although a similar formula can be developed for the coarse grid.  

Again, this factor of safety, 3 in this case, all but insures that the estimation is conservative.  In 

fact, Roache allows for a factor of safety of less than 3 for well studied situations in which 

multiple grids are used.  However, the factor of safety of 3 is standard practice and has the effect 

of relating the GCI to an order of convergence, p, of 2 and a refinement, r12, of 2 (since the 

denominator term and the factor of safety will cancel if rp is 4).  Roache [1997] emphasizes �that 

the GCIs are not error estimators but are three [or Fs] times the error estimators, representing 

error bands in a loose statistical sense.� 

 A few final notes of interest are needed in the GCI derivation.  First, using two grids 

provides a GCI value, if the order of convergence is already known.  If three grids are used, the 

observed order can be determined from the results.  As mentioned earlier, the observed order will 

usually be lower than the hypothetical order, and it may be much lower depending on the code 

and circumstances of the problem.  Thus, using three grids is a much more robust procedure.  

 Second, although this discussion strictly applies to a degree of freedom, the same 

discussion applies to a global quantity derived from combinations of the degrees of freedom.  

This includes things like lift and drag coefficients on a body; for the specific skin friction sensors 

studied here, it applies to the global surface force integrations presented which are similar to lift, 
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drag and pitching moment.  Because different quantities converge at different rates, the GCI of 

one quantity does not necessarily reflect the GCI of another. 

 On a practical note, using the GCI is not as simple as the foregoing description may 

seem.  Again, the other sources of computational error pollute the ordered discretization 

estimate, particularly for global quantities which sum up many degrees of freedom.  Even small 

convergence and rounding errors get summed as well, magnifying those effects.  Hybrid 

methods, like the SUPG formulation, may not show a constant order of convergence over a range 

of grids as the method approaches 2ND order cell by cell 

 A major issue in using this technique is that it requires the grid solutions to be in the 

asymptotic range.  This means that the solutions must approach the true solution in a clean, 

asymptotic manner as the grid is refined.  Grids that are too coarse will not be in the asymptotic 

range.  In addition, many real problems will converge, but display non-monotonic convergence.  

The true solution is approached, but not in a steady manner.  Fig. 3-2 shows a generic example of 

monotonic versus non-monotonic convergence.   
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Figure 3-2. Example of Monotonic versus Non-monotonic Numerical Asymptotic Convergence 

Behavior for Successive Grid Doubling 

 

Shown are several hypothetically obtained results by successively doubling the grid from each 

previous case.  It is apparent that the numerical points represent the monotonic curve well, but 
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not the non-monotonic curve.  This type of behavior results from interaction between error terms 

in the truncation error, causing canceling or additive effects at various grid levels [Hosder, 

2002].  In fact, a general hybrid method will show both the first order and second order terms to 

be active and significant.  Roy [2001] shows that this activity may produce non-monotonic 

convergence. 

 Strictly, the GCI is not valid unless the solution is monotonic and in the asymptotic 

range.  Roy [2001] shows that using a third grid to determine the order of convergence fails if the 

convergence is strongly non-monotonic.  Oberkampf and Blottner [1998] reveal that their cases 

required grids producing an error estimator E1 on the order of 0.1% to demonstrate converging 

behavior.  Thus, in their opinion, very tight error tolerances are required to even calculate the 

error (in part alluding to the fact presented earlier that the technique works best for small errors).  

The factor of safety of 3 provides a lot of room for uncertainty in the error estimation.  Although 

the GCI with Fs incorporated provides excessively conservative results in many cases, it also 

serves to protect the researcher from some of these issues.  It seems that some care must still be 

taken to address these practical concerns to insure the overall validity of the method, and that an 

Fs of 3 is sufficient. 

 The final issue of computational error deals with the problem of far-field constraints.  

This problem is, in a way, also a problem of discretization.  However, it requires separate 

consideration, for it does not tend toward zero as the mesh is refined.  This is simply the problem 

of placing the correct boundary conditions on the edges of the problem.  For instance, a body 

(say, a car) is traveling at a speed of 30 m/s.  Performing a CFD calculation of the aerodynamics 

of the external vehicle requires that a suitable grid be generated around the outline of the body, 

with some distance upstream of the body and some distance downstream of the body.  An inlet 

condition of 30 m/s is then applied at the upstream surface.  However, the upstream 

communication effect on the air flow by propagating pressure waves insures that the air stream is 

disturbed ahead of the body.  Thus, at a given distance ahead of the car, the airflow is not 

actually moving at exactly an undisturbed 30 m/s in the physical problem.  Thus, placing the 

boundary condition at that point produces some error from the desired physical result.  

Analytically, the air is only undisturbed at an infinite distance, thus being given the name of a 

�far-field� condition. 
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 The discrete boundary condition will better approximate the far-field condition as it is 

moved farther from the object of interest.  In fact, Roache [1994] has shown that the error 

associated with this boundary placement varies inversely with the distance from the region of 

interest to first order.  This conclusion was drawn by Roache for airfoil flows in an infinite 

medium and may not hold for all cases.  In other words, doubling the distance to a boundary in 

that case cuts the error it induces in half.  This distance is referred to by a script �L,� or LLLL. 

 In general, upstream conditions and downstream conditions may be subjected to this 

issue of boundary placement and dependence.  Also of issue are free conditions, such as the 

upper surface of a boundary layer solution (i.e. placing the top of the domain too close to or into 

the boundary layer).  As with the ordered discretization error, a simple percent difference can be 

calculated with two grids of differing boundary placement.  As pointed out in the preceding 

pages, this is not technically reasonable, but since the far-field induced errors tend to be much 

smaller than the mesh dependent errors (at least in these cases), the issue is not so critical.  Of 

course, the easiest thing to do in this regard is to double the boundary distance for the successive 

grids.  This has been done for the cases studied here.  The 1ST order dependency on boundary 

placement is assumed to hold for these cases as well as in Roache�s (citing a lack of more 

accurate empirical evidence).  Since the method is assumed to be 1ST order, from eqn. (3-27) the 

Richardson extrapolation error estimator resorts to the percent difference between the grids 

anyway. 

 In many cases, the ordered discretization error is the dominant error contributor.  This is 

true in the cases studied here.  As will be shown in the next chapters, the errors induced from the 

other sources are minor compared to the GCI calculations.  However, in a strict sense, one caveat 

of the GCI derivation requires that these additional error sources are not there at all.  In addition, 

changing the boundary placement means that a different mesh is generated.  In short, these errors 

are not as decoupled as they might seem to be.  Despite this, the computational errors will be 

presented for the various cases in this fashion.  Most cases will reveal that only the mesh 

dependent error is particularly significant.  Of course, the ever-present factor of safety in the GCI 

helps to envelope any uncertainty in the calculations. 
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4.1 The Physical Model 
 

 The first flow situation selected here for studies of error sources and their respective 

magnitudes in skin friction gages is that of a nominally two-dimensional, incompressible fluid 

channel.  This problem was selected as a representative laminar, internal flow case, where the 

exact solution for the shear stress is available. 

 This flow also models an existing test facility in the Aerospace Engineering Department 

at Virginia Tech called the Skin Friction Gage Calibration Rig.  The actual apparatus is pictured 

in Fig. 4-1 (a) with a supporting schematic representation in Fig. 4-1 (b).  This device has been 

used as a calibration and testing apparatus, primarily for direct measuring skin friction gages.  

The working fluid is glycerin, which provides an incompressible, laminar flow that is steady for 

a reasonable length of test time.  The customary method of calibrating a direct skin friction gage 

is to apply or hang a calibrated weight on the head.  With the action of gravity, the force applied 

is known, and the output can be recorded.  The resulting curve of output versus force should be 

linear with small flexural deflections.  Dividing the force by the known gage head area gives the 

shear stress as a function of the signal output.  However, since the static calibration method is not 

very representative of the actual conditions in which skin friction gages will be expected to 

perform, it is prudent to use a facility like the calibration rig to provide some verification of the 

gage�s calibration and operation.  In addition, some gage designs such as small MEMS type units 

make attaching a weight impractical due to constraints like the physical size of the head. 

 The advantages of using this type of channel in particular are many.  First, the channel is 

easy to set-up and control.  Second, as detailed below, the solution of a fully developed laminar 

CHAPTER 4: Studies of Skin CHAPTER 4: Studies of Skin CHAPTER 4: Studies of Skin CHAPTER 4: Studies of Skin 
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flow in a channel is one of the few exact solutions for the Navier-Stokes equations that are 

available.  Third, the flow conditions of the channel are relatively mild in terms of the possibility 

of physically damaging or harming the gage.  There are no shockwaves present, no significant 

vibration, etc.  Finally, the shear stress levels that the facility can generate range up to about 100 

Pa, which is indicative of much faster external flows in air. 

 

  
  (a)       (b) 

Figure 4Figure 4Figure 4Figure 4----1111. Frontal Picture (a) and Schematic Rendering (b) of Virginia Tech Calibration Rig 

Facility 
 

 The physical apparatus is a long channel filled with glycerin, which is a thick, viscous 

fluid with a density of 1261 kg/m3 and a viscosity of 1.41 Pa-s at room temperature (20O C) 

[Dow, 1997].  The channel is 6.35 mm high by 127 mm wide, giving it an aspect ratio of 20:1.  

The channel is about 0.5 m long.  As shown in Fig. 4-1, the flow is fed by a tank which is filled 

with glycerin from a large reservoir.  This tank provides head pressure which sets up flow when 

the valve is opened.  After a short entrance length, the flow becomes fully-developed in the 

channel.  Also, because of the high aspect ratio, flow is two-dimensional in the center portion of 

the channel as well.  A pump recirculates the glycerin back into the reservoir after it exits the 

channel.  The tank can be filled to any desired height up to the maximum, but the full height 
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configuration has been used most, as this provides the highest shear stress level and longest run 

times.  This is the condition studied in this chapter. 

 The solution of a two-dimensional (infinite) channel is a straight-forward manipulation of 

the laminar Navier-Stokes equations, consisting of a continuity equation, and two momentum 

component equations.  The third component and the energy equation are not needed for this 

analysis.  This solution is commonly called Poiseuille flow after the famous 19TH century French 

physician [Panton, 1984], and is one of the rare cases in fluid mechanics which offers an 

analytically exact solution.  The velocity profile in the channel is given in eqn. (4-1). 
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By either momentum balance or by taking the derivative of eqn. (4-1) in a Newtonian fluid, the 

shear stress can be shown to be: 

dx
dP

2
hτW −=  

(4-2) 

Oddly, the shear stress in the fluid is constant in the channel, and completely independent of the 

fluid�s viscosity.  This formula depends only on the pressure gradient and channel height.  

Finally, the maximum centerline velocity can be found at a y-station of half the channel height 

(h/2), as given in eqn. (4-3). 

dx
dP

8µ
hu

2

MAX −=  
(4-3) 

 Fig. 4-2 shows a schematic of the gage placement in the channel and the region of the 

channel actually modeled in the physical model.  The schematic is not to scale, as some 

dimensions (particularly the gap around the head and the channel width) have been exaggerated 

for clarity.  Since the flow is fully-developed, only a section of the channel in the flow direction 

needs to be modeled.  This piece needs only to be long enough upstream and downstream of the 

gage to account for any 3D effects and disturbances that the floating head might create. 

 Because of the high aspect ratio of the channel, it was not necessary to solve all the way 

to the outside wall for the computational models.  Thus, the physical model was truncated with a 

free boundary (discussed in the previous chapter) at some distance from the symmetry plane, but 

less than the whole channel half-width.  This distance is referred to as w1 to distinguish it from 

the entire width, w.  While w refers to the entire channel (both sides), w1 is the distance from the 
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symmetry plane to the boundary of a single side.  This boundary placement is justified in the 

final section of this chapter. 

 

 
Figure 4-2. Schematic showing Relevant Components and Geometry of the Calibration Rig 

Physical Model (not scaled) 
 

 The pressure conditions come from experiment in the facility.  Magill [1999] showed the 

pressure gradient to be -0.123 psi/in, which converts to -33,350 Pa/m, as measured from a series 

of pressure sensors mounted in a row along the centerline of the top of the channel.  The pressure 

trace was shown to be linear over the bulk of the channel, and was certainly so around the 

mounting area of the skin friction gage that is represented in the physical model used here.  This 

pressure gradient physically corresponds to an approximately full tank of glycerin. 

 As discussed in Chapter 3, all problems have been solved non-dimensionally.  For this 

flow situation, the normalizing values for the non-dimensionalization were selected as follows: 

for the scaling length, L∞, the channel height of 0.00635 m was picked, thus setting the 

dimensionless channel height in the model to 1.0.  For the velocity, V∞, the maximum 

analytically predicted value of velocity (found at the channel centerline) was used, as calculated 

from eqn. (4-3) and the known pressure gradient.  This value equals 0.119 m/s.  Thus, in the 

computational model, the solution should show a maximum dimensionless centerline velocity of 
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about 1.0, provided the gage effects do not greatly disturb the flow.  Finally, the density, ρ∞, was 

selected as the nominal density of glycerin of 1261 kg/m3.  Since the problem is incompressible, 

this results in a dimensionless fluid density, ρ*, throughout the domain of 1.0. 

 Table 4.1 shows the dimensional values selected for all the gage parameters along with 

all relevant channel dimensions.  Adjacent to these are the corresponding non-dimensional 

values actually used in the code.   

 Since this model is based on an actual facility, typical values were picked for all relevant 

parameters based on recent successful skin friction gage designs at Virginia Tech.  In particular, 

the work of Smith [2001] provided general proportions for most of the gage dimensions.  This 

gage design was developed for use in high speed flight vehicles and was tested successfully in 

multiple supersonic wind tunnel applications, flight vehicle qualifications tests, and, of course, 

the calibration rig.  The known physical dimensions of the channel geometry complete the 

scaling.  Since this gage design represents one of the latest in the field of skin friction 

measurement, these values were used so as to be practical by making the results of this work 

actually implementable in real experimental work.  The gap size, G, and the lip size, c, in 

particular were chosen for the actual gages of Smith and for the hypothetical generic gage 

studied here to be representative of the smallest values that can be confidently manufactured 

without compromising quality of machining and fabrication. 
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Table 4-1. Relevant Geometry and Variable Definitions for Channel Flow 

Baseline Case, Shown Dimensionally and Non-dimensionally 

dimensional values dimensionless values 

h 6.35 mm h* 1.00 

w1 8.76 mm w1* 2.00 

LUPSTR 8.76 mm L*UPSTR 1.38 

LDNSTR 8.76 mm L*DNSTR 1.38 

DHEAD 7.62 mm D*HEAD 1.20 

DBEAM 3.175 mm D*BEAM 0.50 

G 0.127 mm G* 0.02 

c 0.254 mm c* 0.04 

LBEAM 25.4 mm L*BEAM 4.00 

Z 0 m Z* 0.00 

Λ 30 deg. Λ 0.53 

PUPSTR (gage) 847.1 Pa P*UPSTR 47.43 

PDNSTR (gage) 0 Pa P*DNSTR 0.00 

PREF 101,325 Pa P*REF 5673.79 

µ 1.41 Pa-s µ∗ 1.48 

ρ 1261 kg/m3 ρ∗ 1.00 

 

Fig. 4-3 shows a scaled representation of the geometry so one can appreciate the relative 

magnitudes of the numbers.  This forms the �baseline� case to which all other variations are 

compared.  Additional cases for this channel configuration simply vary one parameter at a time 

from this configuration to evaluate the effect of that parameter.  All other variables remain the 

same.  The geometric variables from Table 4-1 are defined again in Fig. 4-3.  Dimensions that 

are difficult to see due to the scaling can be found in Fig. 1-5.  The relative scaling applies to 

both the dimensional values and non-dimensional ones. 
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Figure 4-3. Scaled Three Dimensional View of Baseline Physical Model 

 

4.2 The Computational Model 
  

 The computational model is an extension of the physical model.  The Ansys/FLOTRAN 

program offers an integrated geometry and mesh generation pre-processor for all of its various 

modules.  The mesh generator is capable of mesh generation in two or three dimensions.  Grids 

can be structured (tetrahedral or hexahedral elements) or unstructured. Hybrid grids can be 

created by combining structured and unstructured elements in different regions of the same 

model. 

 It seemed from early testing in Ansys/FLOTRAN that structured grids tended to produce 

more accurate results and better convergence properties.  Since shear stress calculations are a 

central result of the analysis, the structure near the walls seemed to provide better estimation of 

the sensitive shear stress quantity.  This is not to infer that unstructured grids are inferior or could 

not have been used.  Turgeon et al. [2002] have demonstrated the feasibility of unstructured 
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grids for applications generally similar to this one in their uncertainty analysis work, and their 

work is specifically mentioned here because their code formulation is similar to that of 

Ansys/FLOTRAN.  Thus, the structured choice is really as much a choice of perception as a 

mathematical one. 

 Table 4-2 lists the cases that were solved along with a description of the variation 

involved in that case (the values not listed remained the same as in the baseline case).  Cases #2 

through #5 are gages with misalignment (Z) normal to the wall surface, Cases #6 and #7 vary the 

size of the lip (c), and Cases #8 and #9 change the gap size (G).  For each case, multiple grids 

were used.  Each grid is indexed for each case, starting at “A” for the finest, and increasing 

toward the coarsest mesh.  Table 4-2 lists the total number of elements for each grid as an 

indication of the grid density.  Uniform refinement was applied from the coarse grid to generate 

finer grids in each case.  The various cases were compared to the baseline case #1 to evaluate 

any differences and assess the importance of that particular variable.  Results of these cases are 

presented in the next two sections. 

 

Table 4-2. Relevant Variations and Case Nomenclature for Three-Dimensional Channel 

Models 

Case # 
Modified 

Variable 
Value 

Grid A 

(finest) 

Grid B Grid C Grid D 

(coarsest) 

1 baseline - 99,680 72,612 40,572 12,460 

2 Z* +0.012 73,710 21,800   

3 Z* +0.006 68,040 15,700   

4 Z* -0.006 71,820 21,240   

5 Z* -0.012 72,660 21,100   

6 c* 0 68,580 20,280   

7 c* 0.08 76,680 22,680   

8 G* 0.01 54,480 15,580   

9 G* 0.04 59,130 17,360   

 

 The choice of variation levels in all the cases was somewhat arbitrary, with the overall 

goal being to cover a conceivable range of practical implementation and possible usefulness to a 
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designer.  The misalignment cases were chosen to represent a span of +/-1% of the head 

diameter, which was considered to represent a worst possible installation of the gage.  This range 

mirrored the range covered by Allen [1976] (his was about +/-1% of his gage’s head diameter as 

well) and exceeds by about three times the range studied by O’Donnell [1964].  The lip size was 

simply an extension of the baseline case value.  A doubling of that lip size was a reasonable 

upper bound, and the Case #6 with 0.0 lip size was studied as a limiting case.  Similarly, the gap 

size was halved for Case #8 and doubled for Case #9 in relation to the baseline case #1. 

 Fig. 4-4 shows the computational model of the finest grid density for the baseline case.  

The viewpoint is similar to that of Fig. 4-3.  Again, the mesh is fully structured, utilizing entirely 

six-sided, eight-noded bricks like the one shown in Fig. 3-1 except at the center of the head, 

where five-sided wedges are used (which are just bricks with the surface area of one face set to 

zero).  As Fig. 4-4 shows, elements are highly concentrated along the channel walls, along the 

head, and in the gaps.  This is as it should be, since the quantities of interest are calculated in 

these regions and a high mesh density increases accuracy.  The element fineness in the gaps 

extends upward through the channel over the head because the mesh is structured. 

 

 

Figure 4-4. Structured Mesh of Computational Model of Baseline Case at Finest Grid Level 
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 Fig. 4-5 shows a close-up view of the elements along the symmetry line in the area of the 

upstream gap (the downstream gap looks the same) for the finest mesh, Fig. 4-5 (a), as pictured 

by Fig. 4-4, as well as the coarsest mesh, Fig. 4-5(b).  The refinement ratio between grids A and 

D is exactly 2 for this case.  Thus, there are twice as many elements in each direction for grid A 

as for grid D.  Since the refinement is uniform, relative scaling of the elements and element 

aspect ratios remains the same. 

 

 

Figure 4-5. Mesh in Upstream Gap Vicinity for Baseline Case at (a) Coarsest and (b) Finest 

Grid Levels 

 

 Mesh structures for the remaining eight cases are virtually identical.  In fact, care was 

taken to make the grids as consistent as possible from case to case to lend credibility to the 

comparisons made in the next sections.  Of course, varying features required some small changes 

between cases.  For example, Fig. 4-6 shows a view similar to that of Fig. 4-5 of the mesh in the 

sensitive gap area.  Pictured in Fig. 4-6 (a) and (b) are the finest meshes for the misalignment 

Cases #2 and #5 respectively.  The misalignment required that the mesh be modified slightly, but 

the basic style and size density is consistent. 
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Figure 4-6. Mesh in Upstream Gap Vicinity of Finest Grid for (a) Case 2 and (b) Case 5 

 

 Boundary conditions were straightforward for this problem.  The no-slip condition was 

applied to the entire upper channel wall, the lower channel wall, the floating gage head, the 

flexure body, and the internal cavity walls.  This means that all three components of velocity 

(VX, VY, VZ) were set to zero at every node on these surfaces.  The nodes at the inlet were 

given a dimensionless pressure condition (PRES) of 47.43 uniformly.  The nodes on the outlet 

received a pressure condition of 0.0.  Following the discussion of Chapter 3, this infers that the 

velocity derivative in the flow direction is zero, creating a fully-developed flow profile.  The 

pressure gradient solution is linear throughout the domain, excepting in regions very close to the 

head where the flow may possibly be disrupted. 

 The symmetry plane was also discussed in Chapter 3, and the VZ component of velocity 

was set to zero on all nodes on the symmetry plane, which is consistent with the flow coordinate 

system.  This leaves the VX and VY components set to free by default.  Finally, the outer 

boundary was left as free in all velocity components, since the flow was not actually solved to 

the channel side wall.  This numerically allows the three components themselves to be non-zero 

at this plane, but the actual solutions show the VZ component to be approximately zero for all 

cases.  This physically means that the flow has not been disturbed by the effects of the gage at 

that distance. 
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4.3 Flowfield Results 
 

4.3.1 Velocity Field Results 

  

 Analysis and results of this problem begins with a look at the nature of the overall flow 

for various model cases.  Understanding the properties of the flow as a whole brings physical 

understanding to the numerical force results on the gage to be presented and discussed later.  

Thus, the results presented in this section will help to illustrate the sources of the force 

components on the various parts of the gage, i.e. the relative importance of shear stress, pressure, 

the flow through the gaps, etc.  Since all cases studied have many similarities, the majority of the 

effort will be spent on the baseline case.  Some interesting differences between it and the various 

other cases will be illustrated as necessary. 

 For the flow of glycerin in the basic channel configuration (making no special allowance 

for the gage effects), the Reynolds number based on hydraulic diameter and average velocity is 

0.86.  Since the Reynolds number is so low, one would expect the various cases to display 

properties typical of a low Reynolds number flow � i.e. flow remaining attached to surfaces and 

showing little separation, small steady flow rates, no turbulence, viscosity dominated flow field, 

etc.  This is indeed the case as will be shown here. 

 Figure 4-7 shows the predicted flow pattern from a control case which is simply the two-

dimensional channel problem only with no gage.  This test case was an important benchmark of 

the performance of the code, and it helps to illustrate the correct formulation of the physical 

problem.  Figure 4-7 (a) shows the contour plot of the non-dimensional x-direction velocity 

component, u*, a quantity which is normalized by the maximum centerline velocity (see Table 3-

1).  Confidence in the code was built since the figure indicates that the velocity has a maximum 

of 1.001, indicating that the Ansys/FLOTRAN solution is virtually identical to the analytical 

solution that was used as a normalizing factor.  Figure 4-7 (b) shows the velocity vector profile.  

The vector magnitudes (lengths) reflect the contours from Fig. 4-7 (a), since the y-direction 

component, v*, is approximately zero.  The vectors show the correct parabolic profile for this 

flow field.  Also, Ansys/FLOTRAN predicted a constant value of 105.6 Pa for shear stress when 

the result was dimensionalized again.  This value too agrees well with the 105.8 Pa predicted by 

eqn. (4-2) and the data of Table 4-1. 
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Figure 4-7. Non-dimensional X-direction Contours (a) and Velocity Vector Profile (b) of 

Channel Control Case 
 

 Since shear stress is the single most important quantity in the study, it is prudent to look 

at the important influences on that quantity.  For a Newtonian fluid in laminar flow, the shear 

stress is directly calculated from the normal derivative of the tangential velocity at the wall.  

Thus, any disruption in the velocity, u*, of the channel will result in a change in shear stress.  In 

fact, even small changes in the values of u* next to the wall can produce large changes in its 

derivative. 

 Figure 4-8 considers the results of the baseline Case #1 with the nominal skin friction 

gage mounted in the channel wall.  This figure shows the velocity profile in the channel directly 

above the upstream gap of this case.  The analytically predicted profile with no gage given by 

eqn. (4-1) is shown as well as the numerical result for the baseline case with the gage.  It is clear 

that the two results match well over the whole channel height.  From the formulation of the finite 

element method, the numerical solution at the nodes predicts the analytical solution from eqn. (4-

1) almost exactly.  The linear shape functions of the Ansys/FLOTRAN elements are apparent 

near the centerline where there is some discrepancy in between the nodes and the mesh is coarse.  

This small interpolation error does not affect any of the conclusions drawn here.  Since the gap is 

present at the lower surface of the numerical solution, however, the no-slip condition is not 

enforced at the point, and the profile distorts accordingly.  The close-up view of the 2% of the 

channel height against this lower surface shows the distortion in the x-component of the velocity.  



Chapter 4, Section 3: Flowfield Results 

page - 83 

This variation appears only very close to the surface, and is quickly damped out farther up into 

the channel.  The derivative of tangential velocity over the gap is obviously altered in this region. 

 

 
Figure 4-8. Channel Velocity Profile Stationed at Midpoint of Upstream Gap along Gage 

Symmetry Plane for Baseline Case #1 
 

 Figure 4-9 shows several of these close-up profiles at successive x-stations, starting with 

the one shown in Fig. 4-8.  This is labeled as �x1� in Fig. 4-9 and indicated in the position 

location drawing in the top corner of this figure.  Three other near-wall profiles are shown as 

well, each successively downstream of x1 as indicated in the top left corner.  From the last profile 

(x4), it is apparent that after only a relatively short distance � less than one gap width downstream 

of the gap � the profile has returned to almost normal.  Thus, it should be expected that the 

presence of the gaps of this size has only a minimal effect on the total shear force on the head, at 

least in terms of the disruption to the x-direction velocity component, u*. 
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Figure 4-9. Channel Velocity Profiles at Given X-stations along Gage Symmetry Plane for 

Baseline Case #1 
 

 Figure 4-10 shows some views of velocity vectors at various stations along the channel 

symmetry plane for the baseline Case #1.  Shown at the upper right for reference is a vector 

profile across the channel at the center of the head of the gage.  This profile displays the classic 

parabolic velocity profile already seen in the previous several figures and predicted by eqn. (4-1).  

Even surrounded by a gap ring, this region is sufficiently far away from any disturbance in the 

flow, so that the profile mimics that found in the previous Fig. 4-7.  The centerline velocity is 

labeled, and has a magnitude of approximately 1.0, just like in Fig. 4-7.  The remaining four 

regions represent areas of interest around the upstream and downstream gaps. 

 Although the scale is different in each view in order to most clearly display the results in 

that view, a separate reference vector is provided for each individual view and is indicated in the 

wall region of each.  In each view, this vector represents 1% of the maximum centerline velocity 

in the channel.  As the various views indicate, the order of magnitude of the vectors moving into 

and out of the gage cavity by flowing through the gaps and around the head is much less than 
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1%.  This is, of course, why the experimental efforts to measure this phenomenon resulted in 

such little success.  Measuring a velocity that is less than 1 mm/s in a region which is only 100 

µm wide is a difficult challenge experimentally, thus enforcing the argument made here about 

the advantages of using CFD for this application. 

 

 
Figure 4-10. Velocity Vectors of Baseline Case #1 as Seen from Symmetry Plane, Flow 

Moving from Right to Left 
 

 In general, Fig. 4-10 shows what would be expected in a flow with a significant pressure 

gradient.  The vectors indicate that the flow enters the upstream gap, moves through the cavity, 

and exits the downstream gap, always moving toward lower pressure region.  The flow is smooth 

due to the low Reynolds number, allowing the fluid to make sharp turns without separation or re-

circulation appearing in the flow-field. 
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 Figure 4-11 shows contours of the y-direction velocity, v*, for the baseline Case #1 along 

the gage symmetry plane.  This plot is useful, because it gives an impression of the domain of 

influence over which the presence of the gaps extends.  This region is obviously very small, and 

it exhibits a maximum normal velocity magnitude of less than 0.5% of the centerline velocity, 

corresponding to what was seen in Fig. 4-10.  The encouraging result of this figure is that the 

flow over the surface of the head seems almost completely unaffected by the presence of the 

small gaps surrounding it.  This should result in a minimal disturbance in the shear stress as well. 

 

 
Figure 4-11. Non-dimensional Y-direction Velocity Contours Along Symmetry Plane for 

Baseline Case #1 
 

 Figures 4-12 and 4-13 show the same type of image for Cases #2 and #5, respectively.  

With either positive or negative misalignment of the floating head, the y-direction velocity 

disturbance becomes much more prominent.  In contrast with the effect in Fig. 4-11, a 

disturbance reaches over the entire height of the channel, and it has a much wider upstream and 

downstream influence zone around each gap.  For Fig. 4-12, the maximum magnitude is about 

1.4%, and it is 1.5% for Fig. 4-13.  Thus, not only is the influence zone of the disturbance much 

greater, but the magnitude of that disturbance is over three times greater than in the baseline 

case.  This is certainly not a desirable feature of the flow. 
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Figure 4-12. Non-dimensional Y-direction Velocity Contours along Channel Symmetry Plane 

for Protrusion Case #2 (Z* = +0.012) 

 

 
Figure 4-13. Non-dimensional Y-direction Velocity Contours along Channel Symmetry Plane 

for Recession Case #5 (Z* = -0.012) 

 

 Since the models of Cases #2 and #5 contain both a gap and a misaligned sensing head, it 

is difficult to access whether the effects noted are caused by only one source or a combination of 

both.  To address this question more completely, a set of two-dimensional models was created.  

These models illustrate the flow effects of an infinitely wide sensor with a gap at the Case #2 and 

Case #5 configurations compared to identical models without the gap (just a step in the wall). 



Chapter 4, Section 3: Flowfield Results 

page - 88 

 Figure 4-14 (a) shows the 2D version of Case #2, and Fig. 4-14 (b) shows the 

corresponding identical step with no gap in the wall.  Both images show the same behavior as 

that in Fig. 4-12.  The small effects of the gaps themselves can be seen between the sensing head 

and the wall which is not present in Fig. 4-14 (b), while the effect of the misalignment accounts 

for the bulk of the disturbance and appears identically in both pictures.  Looking closely, it is 

interesting to note in this case that the flow through the gap in the y-direction is opposite the bulk 

flow caused by misalignment.  The flow above the surface at the gap upstream of the head in Fig. 

4-14 shows positive v* motion as it approaches the head and negative v* values moving through 

the gap itself.  The opposite occurs around the gap downstream.  The same reasoning applies in 

Fig. 4-15 (a) for the 2D version of Case #5 and in Fig. 4-15 (b) for the corresponding step 

without a gap.  The only exception is that the flow moves universally upward or downward in the 

gap regions for the recessed head cases. 

 

 
Figure 4-14. Y-direction Velocity Contours for 2D Representation of Z* = +0.012 Protrusion 

Case #2 with and Without Gap 
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Figure 4-15. Y-direction Velocity Contours for 2D Representation of Z* = -0.012 Recession 

Case #5 with and Without Gap 

 

4.3.2 Stress Field Results 

 

 The conclusion of the documentation of the velocity flow patterns is essential for 

understanding the results in the next section.  All nine cases have a great deal of similarities, but 

with some subtle differences which result in the force variations shown in Section 4.4.  The 

reasons for those variations will be illuminated by looking back at those results.  Before 

presenting the global force parameter results, it is useful to look at a few features of the pressure 

and shear stress fields.  As discussed in Chapter 2, Everett [1958] investigated the effects of a 

pressure gradient in a channel similar to that of these cases.  His major finding was that the 

assumption that the pressure gradient varies linearly through the gap does not hold well, and gets 

progressively worse with small lip size, c.  Acharya, et al. [1984] found good agreement with the 

linear pressure variation assumption for their sensor with a lip to gap ratio that was over one 

order of magnitude larger than Everett’s. 

 In order to address this issue, Fig. 4-16 presents pressure traces along the lip surface of 

the head at various angles around the head with respect to the flow.  The direction of the trace is 

also shown in the figure, and S also lies in the same direction as the negative y-direction.  The 

various θ values are angles in the x-z plane as indicated.  It is quickly apparent that the pressure 
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traces are not linear at all, supporting Everett�s conclusions.  After further examination, an 

interesting point to make is that the region near the center of the graph does show relatively 

linear characteristics.  This is true between S values of about 0.15 to 0.3 or so, and can be seen to 

roughly be similar to fully developed pipe flow sufficiently far away from the entrance and exit 

of the pipe.  It is likely that Acharya et al., with their very long (deep) gap, saw this effect over a 

much larger percentage of the surface, and thus saw much better agreement with the linear 

pressure variation assumption.   

 

 
Figure 4-16. Pressure Traces along Head Surface for Baseline Case #1 at Various Angles 

with Respect to the Incoming Flow 

 

 This conclusion is supported by Fig. 4-17, which shows the same kind of pressure traces 

for Case #7, the case with double the baseline lip size.  In this figure, a much higher percentage 

of the curves remain linear (about 75% or so).  It could certainly be extrapolated that as the gap 

increases, so would this percentage, approaching 100% for a very deep gap, i.e. large lip size, c. 
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Figure 4-17. Pressure Traces along Head Surface for Case #7 with Double Lip Size (Deepest 

Gap) at Various Angles with Respect to the Incoming Flow 

 

 The discussion of Fig. 4-9 in the previous section indirectly discussed the issue of shear 

stress in looking at the disruption of the velocity profile in the vicinity of the gap for the baseline 

Case #1.  The outcome was that the velocity profile is restored almost immediately after passing 

onto the head area again from the gap.  Thus, one would expect almost no disruption in shear 

stress as a result.  Fig. 4-18 shows the shear stress distribution over the head and surrounding 

channel wall.  The target analytical value of shear stress is 5.93 as a dimensionless number.  The 

dimensionless shear stress, incidentally, happens to be equal to ½ the skin friction coefficient, Cf, 

based on centerline velocity.  Fig. 4-18 agrees well with this value, showing the same numeric 

result.  Further, the shear stress distribution is constant over the whole head and surrounding wall 

area.  The gaps make no visible impact except in a very narrow ribbon adjacent to the gaps.  This 

region acts over an insignificant percentage of the surface area, and so it should not affect the 

total shear force appreciably.  The shear stress distribution plot from Case #9 (the double gap 

model) is not shown here as it looks visually identical to Fig. 4-18.  Although the gap is twice as 

large, it visually makes no more impact on the shear plot.  Any numerical differences in the 

various gap variation models are not noticeable on the shear plots. 
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Figure 4-18. Dimensionless Shear Stress Distribution over the Exposed Head Surface and 

Surrounding Wall Area for Baseline Case #1 
 

 The shear stress changes caused by misaligning the gage do make a visual impact to 

some extent.  Figure 4-19 shows the shear stress distribution over the head of the gage for Case 

#2 with misalignment Z* of 0.012.  The surrounding wall is not shown since it is not in the plane 

of the head surface for this case.  The distribution is constant over the surface, which is an 

excellent sign, but the values are somewhat inflated, leading to an excessive contribution from 

shear stress.  The Case #5 distribution (misalignment with Z* of -0.012) is shown in Fig. 4-20, 

without the wall for the same reason.  Here, the values are too low.  Also, the values are varied 

significantly over the surface, as the leading and trailing sections of the head surface are 

sheltered by the presence of the wall.  Of course, this will lead to a corresponding decrease in the 

total skin friction force compared to the expected value. 
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Figure 4-19. Dimensionless Shear Stress Distribution over the Exposed Head Surface for 

Protrusion Case #2 (Z* = +0.012) 

 

 
Figure 4-20. Dimensionless Shear Stress Distribution over the Exposed Head Surface for 

Recession Case #5 (Z* = -0.012) 
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4.4 Force and Moment Results 
  

 Since the overall goal of this study is to see how much the total force on the sensing 

flexure deviates from the expected or desired value, the force results from each case are central.  

These forces are a result of a combination of a field of shear stress and a field of pressure acting 

over the exposed surface of the gage flexure.  The nodal pressure and shear stress quantities are 

part of the finite element solution.  Ansys/FLOTRAN offers a convenient function to integrate 

these stress fields over a specified surface, which calculates the total vector force and vector 

moment on that surface expressed in Cartesian components.  Appendix E details the integration 

process, specifically applied to the non-dimensional form that was employed to solve the 

problems. 

 Since the entire computational model was developed in a 

dimensionless form to provide generality, the force component results 

are provided similarly.  With the problem symmetry, the sideforce 

component in the z-direction cancels out, as do the corresponding x-

direction and y-direction moment components.  The remaining 

components on the gage are the x-direction force in the flow direction, 

the y-direction force pointing upward away from the head, and the z-

direction moment.  The coordinate system is consistent with that defined 

in previous sections and is shown in Fig. 4-21, which illustrates an 

image of the head alone with the coordinate origin applied at the head 

center.  These components can be transformed from the form in the 

appendices to that presented in eqns. (4-4) through (4-6). 

 Each respective force is normalized by the desired (in this case 

analytical) value of shear stress times the head area.  The moment is 

normalized by the same force multiplied by the head diameter, DHEAD.  

T

i

o

t

Figure 4-21. 
Floating Head 
Coordinate System 
with Moment 
Center Location 
page - 94 

hus, a value of F*
X of 1.0 is the desired value.  Likewise, the values of F*

Y and M*
Z should 

deally be zero, since the ideal shear force would pass through the coordinate origin.  In the case 

f an F*
X of 1.0 and an M*

Z of 0.0, the gage would read exactly the correct value.  In addition to 

he totals, it is also useful to look at the contribution to each of these components from shear 
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stress and pressure individually.  This is useful to understand the causes of any inaccuracies in 

the reading. 

HEAD
EXACT
W

X,TOTAL*
X Aτ

F
F =  

(4-4) 

HEAD
EXACT
W

Y,TOTAL*
Y Aτ

F
F =  

(4-5) 

HEADHEAD
EXACT
W

Z,TOTAL*
Z DAτ

M
M =  

(4-6) 

 Although there are many possible arrangements for a flexure connected to the floating 

head, a cantilevered beam is a common choice.  There are also numerous schemes for measuring 

the displacement or strain of the flexure resulting from the applied force, but the most common 

method is probably the use of strain gages like that shown in Fig. 1-3.  It is straightforward to 

transform the dimensionless force parameters into an equivalent error in strain.  From Budynas 

[1977], the summation of an end force and an end moment applied to a cantilever beam causes a 

total moment at the end of the beam as given in eqn. (4-7). 

ZBEAMX MLFM −=  (4-7) 

Similarly, the desired moment is equal to the shear stress on the exposed head surface times the 

exposed head area times the beam length, so that a ratio of the actual total moment to the exact 

moment is given in eqn. (4-8).  

BEAMHEADW

ZBEAMX

EXACT LAτ
MLF

M
M −=  

(4-8) 

Taking the ratio of the two provides an estimate of the ratio of strain as well, since the strain near 

the end of the beam is hypothesized to be proportional to the moment in that region.  Taking 

advantage of the dimensionless forms in eqns. (4-4) to (4-6) produces the resulting strain ratio in 

(4-9).  By turning this strain ratio into a percent error in strain, one obtains: 

*
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BEAM

*
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M
L
DF

ε
ε

M
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(4-9) 

1M
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DF%ε *

Z*
BEAM

*
HEAD*

XDIFF −−=  
(4-10) 

 The strain expression does not contain any direct reference to the normal force, F*
Y.  This 

force comes almost entirely from pressure, and that is the normal force term accounted for by 



Chapter 4, Section 4: Force and Moment Results 

page - 96 

Allen in eqn. (2-2).  The only contribution of this force is through the moment if the normal force 

does not act through the center of the head because of a pressure gradient.  Thus, M*
Z is really 

inherently a function of the combination of the net F*
Y and its line of action on the gage.  The 

force itself applies compressive axial strain on the flexure, which should not be felt by a 

symmetric strain gage bridge; other measurement systems may need to account for the effect of 

this force depending on their particular functionality. 

 Although F*
Y will be calculated and given for all cases in this document, it is necessary to 

understand at the front that this value only has limited meaning.  The parameters F*
X and M*

Z are 

functions of the pressure gradient (or general pressure imbalances) only.  For these terms, only 

the difference between two pressures matters.  And for incompressible flow, the same is true � 

only the gradient of pressure appears in the equations, so pressure variations are always relative 

to some reference point.  This is not true of the y-direction force.  For these channel problems, 

dimensionless relative pressures of 47.43 and 0.0 were used as end conditions for the 

computational domain.  Since Ansys/FLOTRAN uses relative pressures, this means that there is 

some reference value above absolute pressure.  This value impacts the reading of F*
Y as well.  

Using pressure conditions of 147.43 and 100.0 on the channel, for example, would produce the 

exact same flow pattern, the exact same values of F*
X and M*

Z, but would make a significant 

difference for F*
Y.  Defined as such and detailed in Appendix E, Ansys/FLOTRAN only gives 

the force results relative to the offset value.  Thus, the actual value of dimensionless pressure on 

the head for the baseline case would be about 23.71 plus whatever reference pressure may exist.  

Since the reference pressure will cancel out over the head surface except directly above the 

flexure column, the actual value of F*
Y can be shown to be of the form given by eqn. (4-11). 
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
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+= *
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P1P

Dτ
DF  

(4-11) 

Thus, if reference pressure is zero, Ansys/FLOTRAN shows the correct value as it tabulates the 

term outside of the parenthesis in eqn. (4-11).  But whatever P*
REF may be, it has no impact on 

the physical flow characteristics, and thus is completely arbitrary in all respects except this one.  

Therefore, F*
Y is of limited use except perhaps to compare cases in a restricted sense.  

 From the force terms of eqns. (4-4) through (4-6), in the terms of Fig. 2-4, the friction 

force term is the same as the contribution to F*
X by the shear stress only.  Again, the force due to 

shear stress on the head is the desired output.  Shear stress acts on all parts of the head and the 
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flexure, but visual results from the models indicate that the shear contributions are negligible on 

parts other than the head surface.  The normal force term comes from F*
Y, and is due almost 

entirely to pressure only (shear contributes 1/100,000 of the pressure contribution as a typical 

estimate).  The lip force is created by the contribution to F*
X from pressure.  The moment M*

Z is 

due to the asymmetrical line of action of the normal force due to pressure and some small 

addition from the lip force.  The two conventions can be seen to interrelate in this manner, and it 

is possible to calculate one from the other. 

 The presentation of the total force results for the sensing flexure begins with examination 

of the results of the misalignment variations.  Fig. 4-22 shows the effects of varying 

misalignment values, Z, ranging from +1% to -1% of the head diameter or dimensionless Z* from 

+0.012 to -0.012.  Tables 4.1 and 4.2 give all the necessary geometry details.  Fig. 4-22 (a) 

shows the x-direction force F*
X, while Fig. 4-22 (b) shows the z-rotation moment, M*

Z.  Again, 

both of these components will contribute to equivalent displacement, stress, and strain in bending 

on the flexure.  For the case of the cantilevered beam as used here, eqn. (4-10) gives this 

relationship for strain.  Other structures may have slightly different relationships.  The individual 

contributions from the shear stress field and the pressure field are shown for comparison, along 

with the total force and moment from both components together. 

 The effects of misalignment are apparent when considering that the ideal situation is for 

the F*
X of the shear stress component to be identically 1.0, with no other contributions on the 

flexure.  This component is not exactly zero at perfect alignment, but close, being too high by 

only a little under 2 percent.  The difference is a small effect from the presence of the gap as 

discussed in the previous section, and also because the analytical solution that was used to 

normalize is not exactly identical to the numerical solution from the code.  Additionally, the 

pressure term contributes several percent to the total force term since a higher upstream pressure 

acts on the lip surface than on the downstream.  This is the lip force term from Fig. 2-4. 
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Figure 4-22. Effects of Misalignment Variation on Pressure, Shear Stress, and Total 

Contributions to F*
X and M*

Z 
 

 Misalignment seems to be the most important factor in this particular flow scenario.  

Relatively small values of misalignment produce significant deviations from the desired result, 

on the order of 10 � 20 % in the presence of a small flow rates quantified by Fig. 4-10.  Using 

eqn. (4-10), the results of Fig. 4-22 (a) and (b) can be combined to reflect the strain error.  The 

total strain error is given in Fig. 4-23.  Since the M*
Z moment is positive for all values of 

misalignment, the moment tends to bring the strain error values closer to the desired value when 

compared to F*
X alone.  This can be explained by the normal force term of eqn. (2-2), which 

combines the normal force itself with its moment arm.  In a negative pressure gradient, the 

upstream direction of the moment arm tends to provide a restorative moment to partially cancel 

out the effects of the additional lip force caused by the pressure difference. 

 For the misalignment cases, it appears that recession is somewhat preferential over 

protrusion, although neither is attractive.  For a recessed (Z<0) gage, the reduction in shear force 

caused by the sheltering of the head somewhat offsets the additional force caused by the pressure 

gradient.  In fact, Fig. 4-23 shows that there is a match point at a Z/DHEAD of approximately  

-0.3% (Z*=-0.004) where the two effects cancel out perfectly.  It is not recommended, however, 

that the skin friction gage ever be purposely misaligned to try to take advantage of this fact.  The 

match point will depend on geometry, pressure gradient, flow conditions, and a myriad of other 
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factors, making the prediction difficult in a general application.  The protrusion cases experience 

increased shear force as well as increased pressure forces due to the intrusion into the flow.  

Although not studied here for this flow configuration, it is presumed that a gage in a positive 

pressure gradient will exhibit different characteristics where the lip force tends to reduce the total 

beam force rather that add to it. 

 

 
Figure 4-23. Percentage Error in Strain at Flexure Base for Misalignment Variation 

 

 The lip thickness bears scrutiny as the next parameter of influence in the channel flow 

results.  Figure 4-24 shows the same data as for the misalignment cases � the F*
X force for the 

shear stress, pressure, and total components in Fig. 4-24 (a), and the M*
Z moments for the same 

in Fig. 4-24 (b).  Generally, it seems preferable to minimize lip thickness, a conclusion which is 

consistent with the expectations from Fig. 2-4 and eqn. (2-6).  By minimizing the area over 

which the lip force acts, it is presumed that this addition will also be minimized.  The pressure 

force in Fig. 4-24 (a) does indeed go approximately to zero as lip thickness decreases to the 

same.  The total force does not pass exactly through 1.0 because the gap is still present, even at 

zero lip size.  In fact, the razor sharp edge of the head creates a relatively complex geometric 

situation for the flow.  The contribution by the shear stress actually rises slightly at a lip 
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thickness of zero for Case #6, although this increase is within the numerical uncertainty, and thus 

cannot be interpreted too strictly. 

 

 
Figure 4-24. Effects of Lip Thickness Variation on Pressure, Shear Stress, and Total 

Contributions to F*
X and M*

Z 

 

 Like with the misalignment variation cases, the lip thickness variation cases show very 

little change in the moment component contribution for different variations.  Although the 

changing parameters shift the overall moment arm by small amounts, the generation of the 

moment comes almost exclusively from the presence of the pressure gradient.  For a given 

constant pressure gradient, it seems that specific geometric variations have little influence.  It is 

presumed here that only changing the pressure gradient imposed or possibly the head diameter 

will drastically impact the moment. 

 The strain error resulting from Fig. 4-24 for Cases #1, #6, and #7 are shown in Fig. 4-25.  

As with the misalignment cases, the moment effect here serves to lessen the severity of the x-

direction force error also.  Minimum lip area is preferable for the reasons already discussed.  

Although the pressure differential can have a component in the flow direction against the tapered 

surface with zero lip, the increasing area going down into the cavity quickly dissipates any 

pressure differences. 
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Figure 4-25. Percentage Error in Strain at Flexure Base For Misalignment Variation Cases 

 

 Finally, the results of the gap variation study are presented in Fig. 4-26.  The F*
X force 

contributed by the shear stress, pressure, and total is presented in Fig. 4-26 (a), while the M*
Z 

moment is presented in Fig. 4-26 (b).  The gap generally seems to have the smallest effect of the 

accuracy on a direct measuring skin friction gage in a negative pressure gradient of any of the 

parameters studied, but there is a distinct influence with changing gap size.   

 

 
Figure 4-26. Effects of Gap Size Variation on Pressure, Shear Stress, and Total Contributions 

to F*
X and M*

Z 
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 The resulting strain error in Fig. 4-27 corroborates this conclusion as well.  Although 

Allen stated that there is no benefit to a small gap, Fig. 4-26 indicates that there is some benefit.  

Allen�s tests were under different flow conditions, but if it were assumed that the relative 

importance of the parameters remains consistent under different flow conditions, it may be that 

the importance of the gap was lost in Allen�s misalignment analysis.   

 

 
Figure 4-27. Percentage Error in Strain at Flexure Base For Misalignment Variation Cases 

 

 From Fig. 4-26 (a), it looks by extrapolation as if the shear stress term will indeed pass 

through approximately 1.0 if the gap size were reduced to zero.  A gap size of zero is obviously 

absurd, as this would not correspond to an operating, functional gage (the sensing head could not 

move), but one would expect this to be a desirable limiting case.  The pressure term from this 

figure, however, does not seem as if it would pass through exactly 0.0.  This fact is not 

particularly surprising, since the pressure gradient would continue to act upon the head as long as 

there is any possibility of a flow rate through the gap.  No doubt some complex effects would 

begin to dominate as the gap approached a small value where the molecular mean free path scale 

became important.  This might occur in a MEMS type sensor, but the gap points selected for the 

cases presented here are typically of machining sizes on recent conventional gages. 
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 One last note about parameter variation concerns the taper angle, Λ.  Table 4-2 shows 

that this angle was set to thirty degrees for all cases.  Taper angle variation was actually the first 

parameter that was studied, with angles of 15, 30, and 60 degrees.  The results indicated that the 

change in angle only changed the total resulting force and moment coefficients by about 1%.  

Considering the uncertainty of the numerical aspects of the solutions, this is not a significant 

enough change to draw any strong conclusions.  It seems that smaller angles offered a slight 

improvement, but that even the relatively large angle of 60 degrees had similar error levels.  

Obviously, from the results of the lip thickness variation study, it is necessary to have some 

significant tapering angle present below the head, but it seems the exact value of this angle is not 

particularly important.  Thus, a reasonable value of 30 degrees was arbitrarily picked for the 

remainder of the study. 

 The y-direction component of force has not been mentioned in the foregoing analysis and 

results presentation.  All nine cases that have been presented resulted in virtually identical values 

of F*
Y.  The dimensionless force ranged only from -0.698 to -0.700 for all cases.  This 

component is the actual normal force from Fig. 2-4 (not its moment), and it comes entirely from 

pressure.  It is important to note again that this force is dependent on the pressure directly and 

not the pressure gradient.  This is unlike the x-direction force and the z-direction moment, where 

only the derivative of pressure was important.  Thus, a channel that is pressurized such that it has 

the same pressure gradient characteristics will have a correspondingly higher value of F*
Y.  

Again, using a symmetric strain gage bridge should nullify the effects of F*
Y no matter what it 

happens to be if the flexure is perfectly machined, but it is still not desirous to have F*
Y larger 

than F*
X for sensitivity reasons.  Unfortunately, conditions external to the gage determine what 

F*
Y is, and this study shows that there is little that can be done to the gage itself to address this.  

Only one value of D*
BEAM was used for this study, but it is presumed that decreasing the head 

diameter will decrease the effects of the normal pressure. 

 Finally, the numerical force results are presented in tabular format in Table 4-3.  

Although the previous several figures contain all the important results, these force computations 

are repeated in tabular format so that the exact values are available.  Table 4-3 lists the values for 

F*
X, F*

Y, and M*
Z for shear stress, pressure, and the combined total for each of the nine cases 

detailed in Table 4-2. 
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4.5 Validation and Verification 
  

 Validating the mathematical model of this flow scenario is relatively straight-forward in 

this instance.  Since the Navier-Stokes equations are identified by a fully viscous description of 

the fluid, it would seem that a viscosity dominated problem would be the ideal match.  The basic 

problem studied is one of the few exact solutions that are available from the Navier-Stokes 

equation set, so the choice of the mathematical model is in this respect validated a priori, 

particularly since this scenario is somewhat hypothetical anyway.  The major objectives for this 

analysis were to illustrate direct measuring skin friction gage performance in a generic channel 

configuration in the presence of a strong pressure gradient and to learn and assess the 

performance of the code. 

 The geometry of the mathematical model was also initially motivated by the Skin 

Friction Gage Calibration Rig at Virginia Tech that is pictured in Fig. 4-1.  This physical channel 

in particular is clearly modeled by the Navier-Stokes solution as well.  Magill [1999] shows that 

the pressure gradient at the symmetry plane of the channel for most of the length of the channel 

is indeed linear.  This is a central result of both the exact and numerical solutions from the 

Navier-Stokes set, thus illustrating that the physical channel facility is well-described by the 

mathematics.  This closes the subject of validation of this chapter�s flow conditions. 

 Convergence is a basic issue in all CFD solutions, and this case is no different despite its 

relative simplicity compared to many other fluid mechanics problems.  Although the basic 

Poiseuille flow channel offers a linear, solvable solution that is mathematically exact, 

Ansys/FLOTRAN does not have the advantage of a symbolic solver, so it must still deal with the 

full non-linear system.  Also, the presence of the gage in the wall introduces non-linearities, 

meaning that the full capabilities of the CFD code are required. 

 Fortunately, the low Reynolds number of the flow that reduces convective coupling and 

the absence of any complex boundary conditions (like turbulent wall functions) make the 

convergence behavior of the various cases almost ideal.  Often, dominant convective coupling or 

other effects that strongly integrate the equations can slow the convergence rate down or even 

completely stall the solution in some cases. 

 For all nine cases, iterations were performed until all convergence monitors reached at 

least 1x10-10 or lower.  The convergence monitors were defined in eqn. (3-20), and they indicated 
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the stopping criteria for the CFD code.  A separate monitor for each of the three components of 

velocity and pressure all had to reach the stopping criterion individually.  Because of the nature 

of the SIMPLE algorithm, the pressure monitor was in all cases the limiting factor as it was the 

last to reach the desired value. 

 Table 4-4 shows the corresponding residual values for the various cases by degree of 

freedom after converging to the aforementioned convergence level.  As Ansys/FLOTRAN gives 

residuals on a per node basis, this table reflects the maximum value found at any node in the 

model.  All other nodes have residuals smaller than the indicated number, many considerably so.  

As discussed in Chapter 3, these values are normalized residual values, an implementation that is 

intended by Ansys/FLOTRAN to be comparable to the actual value of that degree of freedom at 

that particular node.  For reference in looking at Table 4-4, consider that the velocity in the 

channel varies between 0.0 and 1.0.  Non-dimensional pressure varies between 0.0 and 47.43.  

Thus, the residuals are extremely small when compared to degrees of freedom, which are on the 

order of 1.0. 

 

Table 4-4.  Maximum Values of Normalized Nodal Residual for All Cases 

Maximum Nodal Residual (absolute value) 
case 

VX VY VZ PRES 

1 1.18x10-9 5.20x10-11 3.27x10-11 3.07x10-8 

2 9.93x10-10 7.13x10-11 2.60x10-11 5.09x10-9 

3 5.69x10-10 3.45x10-11 1.38x10-11 1.92x10-9 

4 4.87x10-10 2.60x10-11 1.41x10-11 1.43x10-9 

5 4.84x10-10 2.71x10-11 1.39x10-11 2.01x10-9 

6 4.87x10-10 2.32x10-11 1.43x10-11 2.93x10-9 

7 4.98x10-10 2.32x10-11 1.46x10-11 1.07x10-9 

8 4.78x10-10 2.68x10-11 1.52x10-11 8.02x10-10 

9 6.11x10-10 3.32x10-11 1.61x10-11 1.86x10-9 

 

 Although Table 4-4 certainly indicates that adequate, perhaps even excessive, 

convergence was obtained for all cases, it is prudent to take a brief look at an iteration history for 

at least the baseline case as a further justification.  Because of the relatively small changes in 
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total force from case to case given in the previous section, it was necessary to eliminate virtually 

all uncertainty from numerical errors in order to make those results meaningful in the numerical 

noise.  Thus, iterative convergence was tightly controlled since it is a manageable source of error 

� i.e. it is easy to eliminate as much iterative convergence error as necessary, provided sufficient 

computer time is spent on the solution. 

 Figure 4-28 gives the iterative history for the changes in F*
X, F*

Y, and M*
Z for the 

baseline Case #1.  Since these three parameters are the major results required from the models, 

they are a more reasonable measure of the issue of convergence than nodal residual values.  

Seeing that these three numbers converge is what really counts here.  For each of the three 

components, the values at any iteration are normalized by the final value obtained when the 

stopping criteria were satisfied.  This makes it possible to view all three trends on one graph. 

 

 
Figure 4-28. Iterative History of Normalized Change in Global Force Components for Change 

Case #1 Illustrating Convergence Properties 

 

 Ordered discretization error, or grid dependence, is a much more difficult issue to deal 

with than convergence.  In order to address grid dependence error, multiple grids were used as 
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listed in Table 4-2.  All solutions were run using the same stopping criteria just mentioned, but 

only results from the finest grids have been given in this and the previous two sections.  The 

finest grids are considered to be �closest� to the exact solution, with error bounds to be given.  

The coarse grids served two purposes: to provide initial guesses via nested iteration described in 

Section 3.3 and to allow calculation of the Richardson extrapolation error estimators as described 

in Section 3.6. 

 The organization used was to solve the baseline case on at least three successive grids.  

This allows the computation of the observed order of convergence, p, via the discussion of 

Roache [1998].  This was done using grids A, B, and C.  Then, grids A and B were used to 

calculate the error estimator and GCI for each global force and moment component via eqns. (3-

22) and (3-24), respectively.  For the remaining eight cases, the order of convergence for the 

baseline case was assumed to hold for all variations and the case was only solved on two 

different grids.  This is a reasonable assumption since the models are all for the same basic type 

of problem and only relatively small variations exist between the cases.  Additionally, from 

Roache [1998], it seems that actually calculating the order of convergence at all is an infrequent 

exercise among CFD users.  In this light, the steps taken here to address grid dependence are 

quite robust in comparison to the norm.  With p from the baseline analysis, the error estimators 

and GCI�s were found using grids A and B from each case, the only two used for all variation 

cases. 

 Calculating the order of convergence is quite difficult in practice despite its simplicity in 

principle.  Since the discretization scheme in Ansys/FLOTRAN is a mixed-order scheme, there 

is no reason that the spatial convergence needs to be monotonic at all.  This issue was already 

discussed with the work of Roy [2001] in mind.  Despite this, an estimation was attempted.  The 

results are given in Table 4-5 as they were found using the Richardson extrapolation method 

(requiring strictly monotonic convergence).  Obviously, the order of convergence for the y-

component force and the z-direction moment is not even sensible, with one value that is even 

negative.  If the convergence was monotonic and well-behaved, one would expect values that fall 

somewhere between 1.0 and 2.0.  Only the x-direction force results exhibit a sensible value, 

although it is almost certainly non-monotonic as well.  This is an unfortunate drawback to using 

mixed-order schemes.  The encouraging fact, however, is that the x-direction force is the primary 

quantity of interest.  Also of issue is the fact that the values between grids are extremely close.  
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The narrowness of the differentiation between grids creates a significant digit issue, meaning that 

it is difficult to calculate the order of convergence with any accuracy and that other errors (like 

convergence error, rounding error, etc.) will be magnified in their influence on the calculation.  

The non-physical values for order of convergence, particularly with reference to the values from 

F*
Y and M*

Z, are likely to be functions dominated by this significance issue. 

 

Table 4-5. Global Force and Moment Results (dimensionless) for Grids A, B, and C of 

Baseline Case #1 and Resulting Order of Convergence Calculation 

 Grid C Grid B Grid A p 

F*
X pressure 1.3134x10-04 1.3186x10-04 1.3228x10-04 1.10 

F*
X shear stress 2.4462x10-03 2.4507x10-03 2.4545x10-03 0.97 

F*
X total 2.5775x10-03 2.5825x10-03 2.5867x10-03 0.98 

F*
Y pressure -1.6729x10-03 -1.6743x10-03 -1.6747x10-03 6.81 

F*
Y shear stress -4.4532x10-08 -2.8818x10-08 -2.3900x10-08 6.37 

F*
Y total -1.6729x10-03 -1.6743x10-03 -1.6747x10-03 6.81 

M*
Z pressure 2.7898x10-06 2.7897x10-06 2.7895x10-06 -5.39 

M*
Z shear stress 1.6163x10-07 1.6697x10-07 1.6911x10-07 5.00 

M*
Z total 2.9514x10-06 2.9567x10-06 2.9586x10-06 5.46 

 

 Thus, after looking at the results, an order of convergence of 1.0 was used in all the error 

estimator calculations to follow.  It is obvious that the actual observed order of convergence is 

actually non-monotonic, but this is to be expected given the discretization scheme.  The value of 

1.0 for p is considered to be very conservative for monotonic convergence, as the SUPG 

formulation approaches 2.0 as the mesh is refined.  With a very conservative value for p, it is 

hoped that the error estimator A1 will provide a conservative estimate despite the non-monotonic 

convergence behavior.  The GCI with the factor of 3 again serves to protect against these types 

of problems with extreme error bounds. 

 The Richardson extrapolation error estimator value, A1, and the corresponding GCI for 

each case are shown in Table 4-6.  These values are given individually for each force and 

moment coefficient, since these values will converge at different rates in general.  Again, the 

order of convergence is 1.0 for all calculations.  Despite the issue of monotonic convergence, the 
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error estimator predicts relatively low values of uncertainty for all models, with the average GCI 

estimates from all nine cases being 1.6% for the x-direction force, 1.3% for the y-direction force, 

and 2.1% for the moment.  The moment coefficient varies the most strongly, although all error 

estimates are still reasonably low.  These values are low enough to make the results in the 

previous section significant and useful. 

 

Table 4-6. Richardson Extrapolation Error Estimation and GCI of Global Force and Moment 

Components for All Cases Given as a Percentage 

F*X F*Y M*Z 
case 

% A1 % GCIfine % A1 % GCIfine % A1 % GCIfine 

1 -0.65 1.95 -0.10 0.29 -0.26 0.78 
2 -0.80 2.41 -0.47 1.40 -1.10 3.30 
3 -0.65 1.95 -0.47 1.42 -0.44 1.31 
4 -0.36 1.08 -0.47 1.40 -0.60 1.81 
5 -0.32 0.96 -0.46 1.38 -0.79 2.36 
6 -0.10 0.30 -0.46 1.39 -1.08 3.23 
7 -0.49 1.47 -0.47 1.41 -0.58 1.74 
8 -0.64 1.93 -0.48 1.44 -0.73 2.20 
9 -0.90 2.70 -0.49 1.47 -0.67 2.01 

 

 The final source of error to be discussed is the placement of the boundaries.  The 

upstream, downstream, and side boundaries lie 69 gap sizes away from the gap for the baseline 

Case #1 (the gap variation cases will be proportionally different). It was shown in Section 4.3 

that the disturbances caused by the gaps are damped out in a very short distance due to the highly 

viscous nature of the flow problem.  Although the boundaries were not considered to be 

particularly an issue after looking at the flow patterns, the boundary placement was tested for the 

baseline case just to be sure of the accuracy of the model.  It is assumed that the errors seen on 

the baseline case from the boundary sources will be consistent with other cases.  This is justified 

because variations from case to case are relatively small, and the boundary placement is very far 

away from these variations. 
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 The baseline Case #1 as given in Section 4.1 was compared to an expanded model which 

solved all the way to the side wall, using the no-slip condition at that surface.  The full channel 

width, w*, was 20, so the dimensionless half width was 10.  This was compared to the Case #1 

half width w1
* of 2.0.  In addition, the dimensionless upstream and downstream lengths of this 

boundary case were increased by a dimensionless length of 3.5 each.  This is almost triple the 

values of Case #1. 

 The result of this comparison is that, of the three global parameters of eqns. (4-4), (4-5), 

and (4-6), none of them changed by more than 0.024%.  Although the Richardson extrapolation 

error estimator could again be employed as with the grid refinement issue (even by varying the 

boundaries one at a time), it is clear from the simple percent difference that the change induced 

by the boundary placement is very small.  It is over one order of magnitude smaller than the 

mesh dependent error described previously. 

 In fact, it is apparent that the mesh or ordered discretization error is the dominant source 

of error in the computational analysis.  Although lack of convergence and boundary placement 

do add some small amounts to the total computational error, these contributions are relatively 

insignificant.  This is to be expected, as grid dependence error is most often the main source of 

error in any computational analysis. 
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5.1 The Physical Model 
 

 Although the treatment of the basic flow problem in the previous chapter offers a great 

deal of insight into the importance of relevant parameters in skin friction gage design and 

installation, engineers are most interested in situations that are much more complex than the one 

presented there.  Since there is a direct correlation between the complexity of a flow and the 

interest in making a skin friction measurement, it is fruitful to look at a case that has at least 

some features that more directly resemble a situation which might be interesting to a fluid 

dynamicist.  It is still necessary, however, to look at a situation that is well understood in order to 

evaluate the error effects on a skin friction gage.  A typical complex application that requires 

accurate skin friction measurements might be a hypersonic engine inlet for example.  However, 

since the �correct,� or exact, answer is not well understood, it becomes impossible to address the 

accuracy of the skin friction gage in detail.  A paradox results: one seeks a complex situation 

which is simple to understand. 

 The case of the turbulent flow over a flat plate is studied in this chapter as a reasonable 

compromise for this dilemma.  The flat plate is undoubtedly the most well understood case 

involving external, turbulent flow.  Turbulence is a key defining factor in virtually all practical 

applications requiring skin friction gage measurement.  Unfortunately, turbulence invariably 

brings with it a lack of general understanding and an inability to make accurate predictions of the 

details of the flow (highlighting the need for an accurate skin friction measurement). 

 The flat plate is a unique case in turbulent flow.  It is the simplest possible general case, 

and it is the best documented.  Experimental data from flat plate models have been used in 

developing virtually every turbulence model available for computational analysis.  This is the 

famous law of the wall, which is in some way a part of these turbulence models [Schetz, 1993].  

CHAPTER CHAPTER CHAPTER CHAPTER 5555: : : : Studies of Studies of Studies of Studies of Skin Skin Skin Skin 
Friction Friction Friction Friction Gages inGages inGages inGages in a Turbulent  a Turbulent  a Turbulent  a Turbulent 

Flat PlateFlat PlateFlat PlateFlat Plate FlowFlow FlowFlow 
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Despite the fact that CFD is used for complex geometries involving pressure gradients, the 

turbulence models typically rely on this law and the assumption that the law of the wall holds for 

many general situations besides a flat plate.   Thus, the flat plate was chosen partly out of a desire 

to avoid any excessive computational dependence on the turbulence modeling scheme.  Although 

any CFD calculation is invariably dependent on the particular turbulence model used, it is 

assumed that a flat plate is the case for which the model will generally behave the most 

consistently and provide the best solution since it is what the models are based on. 

 Also, the flat plate case is well-documented.  There have been a large number of 

measurements made for a flat plate by various researchers.  Schetz [1993] documents two of the 

best known correlations for skin friction that have resulted from these experiments.  The first is 

originally from Blasius, and is given in eqn. (5-1).  The second, originally by Schoenherr, is 

given in eqn. (5-2).  Both of these relations are valid for a smooth flat plate in turbulent flow.   
0.25
δf 0.0456ReC −=  (5-1) 

1.7)C4.15log(Re
C
1

fX
f

+=  
(5-2) 

Kays and Crawford [1993] also document a similar formula from Schultz-Grunow, valid for 

Reynolds numbers above 500,000 in the same circumstances.  It is given in eqn. (5-3). 

2.584
X10

f )Re0.185(log2
C −=  (5-3) 

The disadvantage of eqn. (5-1) is that it is based on the turbulent boundary layer thickness, so a 

correlation is then needed for boundary layer thickness as a function of plate distance.  

Unfortunately, boundary layer thickness is not well-defined, even for a flat plate.  A typical 

crude approximation for δ(x) comes directly from the 1/7-power law, the result of which is given 

in eqn. (5-4) [Schetz, 1993].  

51
XRe

0.375xδ(x) ≈  
(5-4) 

The Schoenherr formula, in contrast, has the advantage of being directly in terms of the desired 

plate station, x.  The fact that it is non-linear is trivial given standard numerical solution 

techniques such as the Bisection method [Matthews and Fink, 1999].  Eqn. (5-3) from Schultz-

Grunow is ideal in that it is a function of ReX and requires no iteration to solve. 
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 The flat plate problem has, of course, zero pressure gradient.  In this respect it is quite 

different from the channel problem of Chapter 4, so one would expect that the effects of the skin 

friction gage parameters will be somewhat different without a governing pressure force affecting 

the results. 

 The global flat plate problem shown in Fig. 5-1 is two-dimensional in nature.  Turbulence 

effects in the third direction are not considered in this scenario, at least in the global sense.  The 

plate is exposed to incoming air of uniform free-stream speed, incident in a direction parallel to 

the plate itself.  Since the flow is subsonic for this case, there is some upstream communication 

in the free-stream.  The velocity profile at the start of the plate, x = 0, is no longer uniform, as 

the flow has already started to adjust to the plate presence.  Because of this, the physical model 

domain includes an upstream section of length LENT ahead of the plate to allow the flow field to 

adjust correctly to the plate edge without being unfairly influenced by the inlet boundary 

conditions.  The boundary layer thickness drawn in Fig. 5-1 is not exactly to scale, but is given 

as an indication of what behavior the physical problem will exhibit.  All the other geometric 

dimensions in this figure are to scale, however.  The embedded region highlighted in this figure 

will be discussed below. 

 

 
Figure 5-1. Scaled Drawing of Physical Model of Incompressible, Turbulent Flat Plate Problem 

 

 The fluid in this problem is air, which is typical of a realistic aerospace application.  At 

room temperature and sea level conditions, air has a density of approximately 1.225 kg/m3 and a 

dynamic viscosity of approximately 1.90x10-5 Pa-s in SI units.  Table 5-1 lists these and all other 

relevant parameters for the flat plate model, given both dimensionally and non-dimensionally.  

For this plate, the reference length, L∞, was selected to be 0.075 m.  The reference velocity, V∞, 
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was chosen to be 103.4 m/s, and the reference density, ρ∞, to be the density of the fluid 1.225 

kg/m3.  Since the incoming velocity was set to 1.0 in the code, the incoming velocity is identical 

to the reference velocity.  This represents a very much higher value than that of the channel flow 

that was studied in Chapter 4.  Assuming the standard value of the speed of sound in air at room 

temperature, this corresponds to a Mach number of 0.30.  Although there is no clear line, this 

Mach number is typically considered to be about the upper limit for which incompressibility still 

holds, and this flat plate problem was designed so. 

 

Table 5-1. Relevant Geometry and Variable Definitions for 2D Global 

Turbulent Flat Plate Problem, Shown Dimensionally and Non-dimensionally 

dimensional values dimensionless values 

h 18.75 mm h* 0.25 

LPLATE 300 mm L*PLATE 4.00 

LENT 112.5 mm L*ENT 1.50 

PREF 101,325 Pa P*REF 7.64 

µ 1.90 x 10-5 Pa-s µ∗ 2.0 x 10-6 

ρ 1.225 kg/m3 ρ∗ 1.00 

 

 A critical parameter in designing the physical problem is the Reynolds number.  With the 

values given in Table 5-1, the Reynolds number at the end of the plate, ReL, works out to be 

2,000,000.  In a physical sense, the flow over a flat plate like this one transitions from laminar 

flow to turbulent flow somewhere around a Reynolds number of 500,000.  With a value of 2x106 

at the plate end, the flow will certainly be turbulent. 

 On a final geometric note, prescribing the Reynolds number automatically infers the plate 

length.  The correct domain height for the problem was selected based on simple analyses.  For 

correct boundary placement, the domain height, h*, should be significantly higher than the 

maximum boundary layer thickness.  First, and most simply, the boundary layer height can be 

estimated from eqn. (5-4).  Using the Reynolds number at the end of the plate and Table 5-1, the 

boundary layer thickness, δ, is 0.00618 meters or 0.0824 in dimensionless units. 
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Figure 5-2. Screen Capture Image of Java ITBL Program Showing Boundary Layer Thickness 

Solution Estimate 

 

 This value was then verified using slightly more sophisticated means.  The values from 

Table 5-1 were input into a pair of Java applets found on the Virginia Tech Java Engineering 

Applets Webpage [Devenport et al., 2001].  The first of these is titled �ILBLI,� short for 

incompressible laminar boundary layer implicit, was started and run to a transition Reynolds 

number of 500,000.  The information from this program was used to start the companion �ITBL� 

program, short for incompressible turbulent boundary layer, which was used to solve to the end 

of the plate.  The resulting value for boundary layer thickness, δ, was given from this program as 

0.00432 meters, which is 0.0576 in dimensionless terms.  This value is somewhat lower than the 

estimation from eqn. (5-4), because the laminar portion of the boundary layer is accounted for at 

the leading edge of the plate using the Java applet.  Laminar boundary layers tend to be much 

thinner than corresponding turbulent ones, thus creating a smaller final thickness.  The applet 

window is pictured in Fig. 5-2, showing the applet layout and the boundary layer plot as 

indicated.  The second curve labeled is labeled δ* by the applet graph but is annotated as δ1.  This 

quantity is not the non-dimensional boundary layer value, but rather is the displacement 
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thickness, which is defined in Schetz [1993].  Displacement thickness is referred to as δ1 here to 

avoid confusion. 

 From these two estimates, the domain height, h*, was set to 0.25 as a rounded value of 

sufficient magnitude.  This number is approximately three times the value predicted from eqn. 

(5-4), and over four times that predicted by the program as shown in Fig. 5-2. 

  The global flat plate problem discussed already is two-dimensional in nature, but 

the specific goal is to study the performance of a typical direct measuring skin friction gage 

under these conditions.  This particular aspect of the problem is three-dimensional in nature.  

Therefore, the problem is approached here using the embedded region idea discussed in Section 

3.5.  First, the global 2D flat plate problem was solved as described by the physical model in Fig. 

5-1.  This global problem contained no gage or cavity.  Next, the area circled in red on Fig. 5-1, 

termed an �embedded region,� was separated out.  This region is the region containing the gage 

itself.  This region only was solved as a 3D problem, and it was created to be large enough to 

encompass all the 3D effects caused by the presence of the gage.  The embedded region problem 

is shown in Fig. 5-3, scaled with appropriate dimensional labeling.  The choice of the geometry 

and location of the embedded region is justified just below. 
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Figure 5-3. Scaled Drawing of 3D Embedded Region with Skin Friction Gage for Flat Plate 

Turbulent Boundary Layer Problem with Relevant Dimensions 
 

 The solution of the physical model of the embedded problem shown in Fig. 5-3 is similar 

to that of the global problem in Fig. 5-1 (in terms of boundary conditions, problem set-up, etc.), 

with one important aspect: the coupling of the global to the local solution through the placement 

of the inlet conditions.  More details will be given in the next section, but the inlet conditions for 

the region in Fig. 5-3 come directly from the global problem at the indicated inlet x station as the 

process was described in Section 3.5.  This includes velocity components, turbulent kinetic 

energy, and turbulent dissipation, which come from the solution at a dimensionless x* station of 

3.23 on the plate.  This results in the center of the gage head being placed at a Reynolds number 

of approximately 1.7 x 106.  This was chosen to be sufficiently high to see a dominantly 

turbulent flow, but short of the plate end where the global solution might be compromised by the 
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proximity of the outflow boundary.  Table 5-2 covers all the relevant dimensional and 

dimensionless parameters for the embedded region.  The parameters of the gage are the same as 

the gage model in Chapter 4.  The dimensionless values are different because of the different 

scaling used, but the physical model represents the same gage body. 

 

Table 5-2. Relevant Geometry and Variable Definitions for 3D Embedded 

Region of Baseline Case, Shown Dimensionally and Non-dimensionally 

dimensional values dimensionless values 

h 18.75 mm h* 0.25 

w1 11.43 mm w1* 0.1524 

LUPSTR 9.218 mm L*UPSTR 0.1229 

LDNSTR 3.142 mm L*DNSTR 0.04189 

DHEAD 7.62 mm D*HEAD 0.1016 

G 0.127 mm G* 0.001693 

c 0.254 mm c* 0.003387 

LBEAM 25.4 mm L*BEAM 0.3387 

DBEAM 3.175 mm D*BEAM 0.0423 

Z 0 mm Z* 0 

Λ 30 deg. Λ* 0.53 

PREF 101,325 Pa P*REF 7.64 

µ 1.90 x 10-5 Pa-s µ∗ 2.0 x 10-6 

ρ 1.225 kg/m3 ρ∗ 1.00 

 

5.2 The Computational Model 
 

5.2.1 The Global Problem Model 

 

 The computational model for the global flat plate problem is straightforward, and is 

shown in Fig. 5-4.  Since the problem domain is completely two-dimensional and rectangular, 

meshing proceeds simply.  As any turbulent boundary layer should be treated, the elements are 
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highly staggered with the first few points extremely close to the wall.  In fact, there are 75 

divisions in the vertical (+y) direction, although the points near the wall are too close to see 

effectively. 

 

 
Figure 5-4. Mesh of Global 2D Turbulent Flat Plate Problem with Entry Length 

 

 The big issue in the global mesh is the proximity of the near wall nodes (the first points 

directly adjacent to the wall).  The staggering of points was kept consistent between this problem 

and the embedded region, so the issue reflects on the following models as well.  As discussed in 

Section 3.4, Ansys/FLOTRAN employs a two-option wall treatment for the κ−ε turbulence 

model which divides the wall region into two zones � the log region and the laminar sublayer � 

using special wall elements and makes a determination about the location of the wall element.   

 This formulation was investigated very systematically by varying the point spacing 

throughout the range of the two wall regions, and comparing the predictions for skin friction to 

the experimental correlations of eqns. (5-1), (5-2), and (5-4).  After examination, it was found 

that the shear stress result got increasingly better as the near wall node moved closer to the wall 

itself, but still within the log region.  However, the results got increasingly worse after the near 

wall point moved into the laminar sublayer.  This conclusion is actually not a direct result of the 
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position of the near wall node.  Instead, it is a result of too many points residing in the region 

defined by a y+ of less than approximately 30.0, which is the approximate lower limit for which 

the κ−ε model is valid.   

 As a result of this systematic investigation, the following conclusions were drawn based 

on theoretical and practical observations.  Ansys/FLOTRAN allows for the near wall node to be 

very close to the wall and deep within the laminar sublayer.  However, logical grid spacing 

indicates that the distance from the second point to the wall will be slightly more than twice the 

distance to the first node to the wall.  Since the second point must have a y+ distance of 

approximately 30.0 or so for adequate validity of the κ−ε model, the first point cannot, in 

practice, be deep within the laminar sublayer.  The other criterion for mesh design involves the 

nature of the problem being studied.  Since the objective of this work is to study the flow and 

force results over a small intricate object in the wall with tiny gap regions surrounding it, it is 

also necessary to get as many points in the region of interest as possible.  Particularly just above 

the gaps, it is desirable to have elements with as close to an aspect ratio of 1.0 as possible.  Thus, 

the near wall node along the wall surface needs to be as close as possible. 

 Therefore, the logical conclusion was to design the near wall node to fall just above the 

laminar sublayer at a y+ in the range of 13-14 or so.  This design choice causes 

Ansys/FLOTRAN to use the log region wall function option in the wall modeling treatment.  

This choice satisfies as best as possible both criteria � the aspect ratios of the elements just above 

the gaps are made as small as possible while still allowing for proper turbulence model 

operation, and the choice of near wall node placement allows for valid operation of the 

turbulence model over all nodes beyond the first, near wall node (resulting in nodes above the 

first node residing in the log layer at y+ in the range of 30.0 or so).  Meshing the turbulent wall in 

this way insures that the κ and ε values are applicable in the elements above the wall element and 

a quality solution is obtained along the wall surface.  This criterion really drove the design of the 

mesh, both for the global flat plate problem and the embedded region.  The results of the global 

problem showing the agreement with the experimental values will be presented in Section 5.3. 

 The boundary conditions are relatively simple for the global problem.  For the flow in 

Fig. 5-4, the inlet was given values for the velocity components VX and VY of 1.0 and 0.0 

respectively.  Conditions for the turbulence model are required for the inlet, and 

Ansys/FLOTRAN automatically assumes values if they are not given.  The value of turbulent 
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kinetic energy, ENKE, was set to 0.0, and the turbulent dissipation, ENDS, to 1.0.  This 

corresponds to zero free-stream turbulence or completely smooth air quality.  Since this problem 

is not modeling a particular physical situation, this seems to be a reasonable choice.  These 

values correspond to those indicated by the Ansys Online Help guide [2001] for a region where 

the turbulence model is totally inactive.  Thus, any turbulence levels in the solution will be 

generated by the boundary layer forming on the plate. 

 The plate surface itself received the no slip condition, with both velocity components set 

to zero.  As discussed earlier, the κ−ε conditions are governed by the special wall formulation.  

The bottom surface of the entry length before the plate start received a value for VY of 0.0 with 

VX left free, registering that line as a streamline.  The entire top surface was left free for all 

degrees of freedom, indicating that this surface is well above the boundary layer.  This is the 

correct condition for this surface, but it emphasizes the need to make sure that this surface is 

much farther away from the wall than the maximum boundary layer thickness.  Finally, the outlet 

condition was discussed at some length in Chapter 3, and all conditions are left free except the 

pressure, which was set to 0.0 on this surface.  Like the channel problems of Chapter 4, this 

problem is incompressible, so pressure is all relative.  Thus, the pressure value really does not 

matter as long as a condition is specified somewhere in the problem.  For the flat plate, the 

pressure gradient is zero, so the pressure works out to be approximately zero throughout the 

domain anyway. 

 

5.2.2 The Embedded Region Model 

 

 Just as for the cases of Chapter 4, the computational models and solution proceeded by 

creating variations on the baseline case of the embedded region problem, changing one or two 

parameters at a time to evaluate the effects.  Table 5-3 lists the cases along with the total number 

of elements for each case model. 
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Table 5-3. Relevant Variations and Case Nomenclature for Three-

Dimensional Embedded Region Models 

Case # 
Modified 

Variable 
Value 

# of Elements, 

Grid A  

1 baseline - 84,636 

2 Z* +0.001016 82,980 

3 Z* +0.000508 84,348 

4 Z* -0.000508 85,320 

5 Z* -0.001016 86,004 

6 c* +0.001693 83,484 

7 G* +0.003386 93,836 

8 G* +0.006774 101,772 

9 Z* / G* +0.001016 / +0.006774 99,468 

10 Z* / G* -0.001016 / +0.006774 101,124 

 

 In the case of a turbulent boundary layer, it is useful given the nature of the operation of 

the device to provide some measure of the physical parameters of the device in terms of scaling 

appropriate to the inner region of the boundary layer.  The variable y+ defined earlier in Chapter 

3 is a logical measure of inner boundary layer scaling.  Looking at the dimensions of the device 

in this way is useful in extrapolating the results of the device to other flow conditions � flows 

where the actual physical dimensions might be different, but the turbulent scaling values may be 

similar.  Table 5-4 provides the major gage dimensions and the parameter variation levels in 

terms of boundary layer units. 
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Table 5-4. Relevant Parameter Baseline Values and Parameter 

Variation Values in Wall Unit Terms 

parameter Case # value 
Parameter 

variation 
Case # value 

D+
HEAD 1 1991.0 Z+ 2 19.9 

G+ 1 33.2 Z+ 3 10.0 

c+ 1 66.3 Z+ 4 -10.0 

D+
BEAM 1 6635.0 Z+ 5 -19.9 

L+
BEAM 1 829.0 c+ 6 33.2 

   G+ 7 66.3 

   G+ 8 132.7 

 

 In these alternate wall units terms, the laminar sublayer of the boundary layer typically 

has a height of approximately 7 � 10 and the boundary layer itself can be very crudely 

considered to be of the order of 5,000 or so [Schetz, 1993].  These reference values give an 

indication of the scaling of the parameter variations within the framework of the boundary layer 

and provide points of comparison to other flows.  The parameter variations will be discussed in 

terms of the dimensionless star quantities in giving the results, but Table 5-4 is useful in further 

understanding the results. 

 Fig. 5-5 shows the mesh for the baseline Case #1 for the embedded region.  Shown to the 

right at the inlet in this figure is a scaled representation of the velocity profile that was applied 

from the global problem.  This profile is indeed typical of a turbulent boundary layer profile, 

with a very steep gradient near the wall, and very little change in the upper part of the boundary 

layer. 
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Figure 5-5. Mesh of 3D Embedded Region Baseline Case #1 with Velocity Profile Boundary 

Conditions 

 

 For all of the embedded region cases, conditions were taken from the well-converged 

global flat plate problem of Fig. 5-4 for all nodes at the x* = 3.23 station.  The two components 

of velocity (x and y), turbulent kinetic energy (κ), and turbulent dissipation (ε) were transferred.  

The conditions were applied uniformly in the z-direction, with the third component of velocity 

set to zero.  The nodal spacing in the y-direction (the normal direction to the wall) for the 

embedded region exactly matched that of the global problem.  This was done to insure that no 

interpolation was needed to transfer the conditions.  Given the sensitivity of the degrees of 

freedom in the near wall region of a turbulent boundary layer, interpolation could have been a 

compromising problem. 

 Again here, all the wall surfaces of the gage body and surface wall received the no-slip 

condition.  As before, the upper surface of the model was left to be free in all degrees of 
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freedom.  Just like the global problem, the outflow boundary received the pressure condition of 

zero only, with all other degrees left free. 

 The new boundaries in the third dimension received standard treatment as well.  The 

symmetry plane had a condition of VZ of 0.0 (normal to that surface), while all other conditions 

were left free.  The outer boundary again was completely free just like the upper boundary, again 

indicating that the effects of the gage are not felt at that distance. 

 Fig. 5-6 shows a contained view of the gap region, upstream and downstream, for the 

symmetry plane of the baseline Case #1.  As with the channel problems, the three-dimensional 

grid is just an extrusion of this mesh revolved around the gage centerline 180 degrees.  As 

discussed briefly before, the placement of the elements adjacent to the wall was critical in these 

models, with a very tight range of accuracy in the wall treatment.  Great effort was made to 

properly develop the mesh in this region, particularly at the gap interface, within the constraints 

for the design of the mesh.  The resulting aspect ratio of the elements directly above the gap 

itself is not particularly desirable since large gradient levels are expected in this region of the 

model.  It is, however, necessary to fulfill the more fundamental constraint of keeping the y+ 

value just above 11.5.  Fortunately, the mesh size is still of an order smaller than the gap size.  

Any issues of quality will be dealt with in Section 5.6 in analyzing the ordered discretization 

error. 

 

 
Figure 5-6. Mesh of 3D Embedded Region for Baseline Case #1 along Symmetry Plane in 

Gap Regions 
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 Fig. 5-7 shows similar examples of the local symmetry plane mesh density around the 

gap region for some of the misalignment cases, where slight alterations were obviously necessary 

to account for the non-planar configuration.  It was important to keep the wall element placement 

consistent, even though the elements on the head surface did not line up with their counterparts 

on the exterior walls.  Fig. 5-7 shows the results of the necessary modifications to insure the 

correct and consistent calculation of shear stress.  Given are the symmetry plane meshes for head 

protrusion Case #3 and head recession Case #5 in Fig. 5-7 (a) and (b), respectively as examples. 

 

 
Figure 5-7. Mesh of 3D Embedded Region along Symmetry Plane around Upstream Gap for 

Head Misalignment Cases 
 

5.3 Solution of the Global Flat Plate Problem without a Gage 
 

 The solution of the 2D, global flat plate problem is examined briefly first since it will 

impact the embedded region problem that is more centrally important.  It was necessary to insure 

that the global solution is reasonable to avoid damaging the quality of the embedded region 

calculations.  This is the reason for the discussion about near wall placement in the preceding 

section. 
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 Fig. 5-8 shows the solution of skin friction coefficient, Cf, over the plate length for the 

mesh of Fig. 5-4, along with the matching experimental correlations of eqns. (5-1), (5-2), and (5-

4).  First, it is worth noting that the experimental curves do not really match very well with each 

other.  The Schultz-Grunow formula matches quite well with the Blasius formula, but the Blasius 

formula required the crude 1/7TH power law assumption from eqn. (5-3).  Thus, its result is quite 

crude, and not as reliable as the other two.  The Schoenherr formula predicts similar, but lower, 

levels of skin friction than the other two.  The current numerical prediction falls right in the 

middle of the range covered by these experimental curves.  This is encouraging, particularly 

considering the fact that one should not expect the numerical solution to exactly follow any one 

experimental correlation.  Although the κ−ε turbulence model does make use of the empirical log 

law in its wall formulation, none of the experimental correlations are of the form required for 

compatibility with the log law results [Schetz, 1993].  All three correlations are simply curve fits 

of experimental data. 

 

 
Figure 5-8. Computational and Experimental Results of Skin Friction Coefficient over 

Turbulent Flat Plate Length 
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 The discrepancy occurs partially because of the laminar region which is known to 

physically exist near the leading edge of the plate.  Fig. 5-9 shows a plot of the effective 

viscosity, which is just the sum of the laminar viscosity of the fluid and the additional turbulent 

viscosity from the turbulence model.  Comparing with the dimensionless laminar viscosity of 

2x10-6 from Table 5-1, the figure illustrates that the levels near the plate and near the upper 

boundary are very close to the laminar value, with a turbulent viscosity near zero.  The turbulent 

viscosity grows with plate distance as the boundary layer becomes increasingly more turbulent, 

and the turbulent region never grows too large for the domain.  Despite the fact that turbulence 

levels are low near the plate beginning, the algorithm itself is still turbulent, solving for values of 

κ and ε (even if they are small), and calculating shear stress based on these values rather than 

what one might use in a fully laminar problem.  This changes the results, making laminar 

calculations difficult.  Of course, the experimental correlations are not trustworthy near the plate 

leading edge either.  Kays and Crawford [1993] explicitly state that eqn. (5-4) is really only valid 

above a Reynolds number based on plate length (ReX) of 500,000.  There are similar restrictions 

on the formulas in eqns. (5-1) and (5-2) as well. 

 

 
Figure 5-9. Turbulent Global Flat Plate Dimensionless Effective Viscosity Contours over 

Computational Domain 

 

 Even into the turbulent region there are other factors to consider.  The computational 

model is a perfectly smooth flat plate.  Also, the inlet boundary condition has exactly 0.0 

incoming free-stream turbulence levels � perfect conditions in an ideal world.  For all of the real 

experimental correlations, these conditions are not reasonable.  Although the plates studied by all 

those researchers were smooth, the plates must have contained some small amount of surface 

roughness.  As well, there is no discussion of free-stream turbulence attached to those formulas, 

but it is impossible for it to be exactly zero.  Differing conditions like this, along with the usual 

experimental uncertainties help to explain why the correlations do not provide better agreement, 

and why the numerical result does not match exactly with any of the correlations. 
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 Fig. 5-10 shows the y+ values on the wall over the plate length, which are in the target 

range to stay just above the critical value of 11.5.  Thus, from discussion in Section 3.4 and 

previously in this chapter, this is the optimal nodal wall placement for this particular CFD code.  

With this mesh, the nodes in the boundary layer that require solution based on the values of κ 

and ε reside the proper distance from the wall in the log region as they should for accurate 

boundary layer and shear stress calculation. 

 

 
Figure 5-10. Plot of y+ Values along Wall Surface over Turbulent Flat Plate Length 

 

 Finally, given the variations between the various results in Fig. 5-8, it will, unfortunately, 

not be possible to compare the results from the embedded region cases with an �exact� answer.  

Comparing these solutions to any one of the experimental correlations obviously seems to be 

unfair.  Thus, the current global flat plate problem solution itself must be used as a comparison in 

order to be consistent.  Since the position of the gage in the wall is known exactly, the length of 

the plate where the gage head will reside was numerically integrated to produce an average skin 

friction coefficient as a target value for the gage.  Using the trapezoid rule over the 0.1016 length 

of the wall at the correct station resulted in an average Cf value of 0.00307.  This is the number 

for the converged and undisturbed flat plate predicted with the numerical turbulence model.  

Thus, it is the target value for the sensing head, and the value used later to non-dimensionalize 

the force results for eqns. (4-4), (4-5), and (4-6). 
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5.4 Flowfield Results 
 

 As with the channel flow scenario considered in the previous chapter, presentation of the 

turbulent flat plate problem results begins with a look at the flows generated by the floating head 

of the gage to build understanding of the physical effects causing any changes in force and 

moment output.  Flow analysis starts with a brief look at an initial test that was performed to 

evaluate the concept of the embedded region, as discussed in Section 3.5.  This model consisted 

of a simple 2D representation of the floating head in the embedded region that was set up exactly 

as the later 3D embedded problems were with the transferred inlet conditions. 

 Fig. 5-11 shows the predicted skin friction results in the embedded region, compared with 

the global flat plate solution.  The result verifies the hypothesis about the nature of the problem.  

The two places where the skin friction coefficient drops to zero represent the two gaps, upstream 

and downstream, where there is no �wall� and thus no wall shear stress.  Even with the 

disruption of the gaps, the skin friction coefficient remains very consistent with that predicted for 

the 2D global problem with no gage.  Upstream of the first gap, the two curves are identical, 

which is exactly what is expected.  Thus, the embedded region concept and the choice of the 

upstream and downstream boundaries are validated for this case.  Indeed, the region of influence 

of the gage for a 2D equivalent model will be much larger than in a 3D model of the actual gage 

geometry. 
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Figure 5-11. Plot of Skin Friction Coefficient in the 2D Embedded Region Test Case 

Compared with the Global Solution 

 

5.4.1 Velocity Field Results 
 

 The flow patterns for the baseline Case #1 show some different characteristics than the 

results in Chapter 4 for the channel flow, since there is no longer a governing pressure gradient 

to drive the flow in the upstream gap region and out the downstream region of the gap.  Instead, 

the result is the flow pattern in Fig. 5-12.  This figure shows the upstream and downstream gap 

regions of the symmetry plane of Case #1.  The large head area between the gaps is removed for 

clarity.  Plotted in the background are contours of the y-direction dimensionless velocity 

component, overlaid with selected velocity vectors shown with scaling.  Many points have been 

removed to make those remaining more visible.  Fig. 5-12 (a) shows the flow in the upstream 

gap while Fig. 5-12 (b) shows the flow in the downstream gap, both at the symmetry plane of the 

gage body. 
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Figure 5-12. Velocity Vectors Over Y-component Velocity Contours along Symmetry Plane for 

Baseline Case #1 in Gap Regions (Vector Points Arbitrarily Selected for Clarity) 

 

 The flow patterns show the flow circulating in both gaps in almost the same manner, 

moving downward near the right edge of each gap where the y-component contours are blue and 

upward at the left edge of each gap where the contours are red.  With most of the flow circulating 

in this region, only a small fraction of this flow actually escapes down through the gap.  What is 

most interesting about this flow pattern is that at both the upstream and downstream gaps, the 

flow moves in the negative y direction, or into the cavity. 

 This seems counterintuitive, since mass must balance via the continuity equation for 

steady flow.  Thus, any mass that enters the gage cavity must leave at the same rate.  The 

solution to this issue can be found by looking at the flow from a different perspective � from the 

top down.  Fig. 5-13 shows several contour plots of the y-direction velocity component at 

varying stations in the gap seen from above the gage looking down into the cavity.  Positive 

values of the contours indicate flow moving out of the page and out of the gap, while negative 
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values indicate motion into the page and into the gap toward the cavity.  The y-coordinate 

locations of the stations are indicated corresponding to the surface, Fig. 5-13 (a), the midpoint of 

the lip, Fig. 5-13 (b), and the bottom of the lip, Fig. 5-13 (c), or the top of the cavity.  The result 

is that, as Fig. 5-12 indicates, the flow does indeed move down into the cavity at both the 

upstream and downstream locations of the gap (negative values).  However, for the gap near the 

sides of the gage, the opposite occurs � flow moves out of the cavity back into the main flow 

(positive values) to balance the continuity equation.  At the surface, Fig. 5-13 (a) at y = 0, the 

effect is strongest as the flow accelerates, and this effect has an important influence on the skin 

friction pattern that will be shown in the next section. 

 It should be noted that the flow shows some recirculation characteristics within the cavity 

itself, as the flow patterns do not seem to follow a direct path into and out of the cavity region.  

This determination is a purely qualitative observation, however, and it is difficult to make any 

quantitative conclusions in this region.  The actual magnitudes of the dimensionless velocities in 

this region are on the order of 1x10-6 or lower.  With this small scaling in the cavity region, the 

numerical uncertainty in the solution of this region is too high to make any definitive judgments.  

The fact that the velocity is close to zero, however, means that the shear stress along the walls of 

the cavity is also nearly zero, and the results also show that the pressure is approximately 

uniform in this region as well.  These two results indicate that the flow pattern in the cavity is not 

an important feature in this analysis.  The important internal effects occur only in the gap 

regions. 
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Figure 5-13. Y-component Velocity Contours in the Gap Region at Various Stations as seen 

from Above for Baseline Case #1 

 

 One issue that deserves some consideration is that of turbulence propagation, looking at 

effective viscosity values in some critical regions and assessing the physical realism of the 

turbulence modeling algorithm.  More will be made of this in the final section of this chapter on 

the issue of validation, but a look at the visual aspects of the issue is prudent now.  Fig. 5-14 

shows contours of turbulent kinetic energy for the symmetry plane of the baseline Case #1.  

Turbulent kinetic energy (κ) is, of course, a measure of turbulence, and thus, this shows the 

regions of active turbulence in the model (along the symmetry plane at least). 

 Out in the free-stream flow above the boundary layer, the turbulence is expected to be 

small.  Although Fig. 5-14 shows only the region around the sensing head along with about 25% 

of the exterior height of the domain, turbulent kinetic energy has already dropped to a very small 
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relative value.  This corresponds approximately to the edge of the boundary layer region.  Also, 

it was expected that turbulence levels would be minimal in the cavity of the gage, since the gap 

is quite small and the velocities are very low in the cavity region.  Fig. 5-14 shows that indeed 

this expectation was justified by the physics of the flow.   

 

 
Figure 5-14. Contours of Dimensionless Turbulent Kinetic Energy from κ−ε Turbulence Model 

Solution of Baseline Case #1 as Seen in the Gage Symmetry Plane 

 

 In the gap and cavity regions, the value of the friction velocity uτ decreases significantly, 

altering the characteristics of the turbulent wall model in the code.  Since there are several nodes 

across the gap region, the code proceeds much as it does with the free-stream boundary layer 

flow.  The near wall node is designated as being in the laminar sublayer in this case by the wall 

model, and the solution at the nodes out in the middle of the gap is calculated using an effective 

viscosity calculated from the κ−ε equation solution.  The solution shows that values of turbulent 

kinetic energy are so small in the tiny gap regions of the gage that the turbulent viscosity is 

approximately zero regardless of the nodal wall placement.  Equally, shear stress is small enough 

on the lip surface and wall cavity surface that its effects on the total forces are negligible.  Thus, 

node placement in these areas is not governed by the same criteria of the node placement in the 

external boundary layer flow.  Finally, it can be seen that streaks form near the wall after both 
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the upstream and downstream gaps, with high turbulence values in those regions.  This feature 

will be discussed further in Section 5.6.  It seems that the disruption of the gap with the sharp 

edge of the following walls generates the additional turbulence seen in these regions. 

 Fig. 5-15 confirms these observations, showing contours of effective viscosity over the 

same region as the previous figure for baseline Case #1.  Effective viscosity is also a measure of 

the importance of turbulence, and it is a combination of turbulent kinetic energy (κ), and 

turbulent dissipation (ε).  As with the turbulent kinetic energy, the solution shows that effective 

viscosity goes to approximately zero in the cavity region.  Small disruptions directly above the 

gaps are to be expected, and they seem to disrupt the boundary layer only locally.  Thus, the 

result is exactly what might be guessed, but concrete evidence validates what would only be 

hypothesis otherwise. 

 

 
Figure 5-15. Contours of Dimensionless Effective Viscosity (Laminar plus Turbulent 

Contributions) of Baseline Case #1 in Gage Symmetry Plane 
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 As might be expected, wider gaps cause increasingly stronger effects.  Figure 5-16 shows 

selected vectors in the gaps, upstream and downstream of Case #8 with the largest gap in this 

study.  Although the patterns are similar to that of the baseline Case #1, with flow swirling in 

both gaps, a comparison with Fig. 5-12 shows that the magnitudes of the vectors in this region 

are much larger than with the smaller gap.  The visual patterns of flow are similar in both 

instances, but it is apparent that the differences in geometry in these two cases lead to a 

pronounced result.  Because the gap is wider than the lip height in the case shown by Fig. 5-16, 

the velocity remains relatively high all the way down into the cavity, where in baseline Case #1 

there was a significant decrease in flow strength caused by resistance into the cavity.  This 

translates into a larger flow rate into the cavity area for Cases #7 and #8, the larger gap cases.  

This will certainly have an impact on the force characteristics presented in the next section, but 

even the simple presence of the flow is not desirable since the goal is to avoid disrupting the 

external flow at all. 

 

 
Figure 5-16. Velocity Vectors along Symmetry Plane for Largest Gap Case #8 in Gap 

Regions (Vector Points Arbitrarily Selected for Clarity in Flow Region) 
 

 As in the channel cases, misalignment plays a very important role in skin friction gage 

performance.  This effect was studied by Allen along a flat plate similar to this one, although at 
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much higher speeds.  As discussed in Chapter 2, his general conclusions included the fact that 

misalignment was extremely detrimental in making a good measurement.  Flowfield imagery 

here solidifies this conclusion, as the flow contours for misalignment cases show a very different 

pattern than for the cases seen already. 

 Figure 5-17 shows the upstream and downstream gap regions for the maximum positive 

misalignment (protrusion) Case #2.  The velocity vectors with appropriate scaling information is 

plotted over contours of the y-direction velocity component, giving an estimation of the flow rate 

through the gap into the cavity.  The flow is quite different than for the zero misalignment cases.  

In this case, the flow proceeds along a definite course from upstream to downstream, moving 

into the cavity via the upstream gap and out via the downstream gap region.  Magnitudes of the 

flow are somewhat larger than for baseline Case #1, but no more so than for the larger gap cases 

as shown by Fig. 5-16.  However, the protrusion into the main flow produces large asymmetries 

in the flow which make the overall effects on the beam flexure much more dramatic than for a 

simple gap increase. 

 

 
Figure 5-17. Velocity Vectors and Y-Direction Velocity Component Contours along Symmetry 

Plane for Upstream and Downstream Gap Regions for Head Protrusion Misalignment Case #2 

(Vector Points Arbitrarily Selected for Clarity) 



Chapter 5, Section 4: Flowfield Results 

page - 140 

 Figure 5-18 shows additional flow characteristics of this head protrusion Case #2.  In this 

case, the flow field is viewed from above, with both the velocity vectors and magnitude contours 

(which are equivalent to the length of the vector) plotted.  With a head protrusion, a very short, 

stubby cylinder sticks up into the main flow and away from the wall.  A wake-like region is 

evident immediately behind the cylinder area as air is forced to flow around the sides of the 

cylinder and over the top.  Although the wake directly is of no concern, it has the indirect effect 

of generating large pressure forces on the sensing head (a buoyancy force).  In addition, the head 

surface is exposed farther out into the turbulent boundary layer, since it is no longer in line with 

the wall.  This causes the total shear force to increase somewhat above the target value.  

Combined, these effects generate considerable deviation from the exact F*
X of 1.0. 

 

 
Figure 5-18. Scaled Velocity Vectors and Total Velocity Magnitudes at a Y* Station 

Approximately +0.0007 with Head Protrusion, Just Above Surrounding Wall and Below Head 

Level for Case #2 

 

 With the head protrusion cases in particular, turbulence model performance is a concern.  

The stagnation region just in front of the exposed cylinder where the flow is quickly decelerated 

to a stop and the region just behind the head with the wake characteristics generates some 
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concern, due generally to the complexity of the situation and the fact that the standard κ−ε model 

tends to have problems calculating in regions of high strain.  Figure 5-19 shows the symmetry 

plane contour values of turbulent kinetic energy for the head protrusion Case #2 from the κ−ε 

solution.  Regions of turbulence appear on the leading edge of the head surface, resulting from 

the sharp leading edge of the head sticking out into the flow.  Additional turbulence generation 

occurs from the rear edge of the head, carrying downstream for a short distance before slowly 

damping out again to nominal levels.  This seems as it should be in a general sense, leading to a 

general feeling of satisfaction over the qualitative performance of the turbulence model.  Again, 

the details of the model will be looked at in Section 5.6 in a bit more detail. 

 

 
Figure 5-19. Dimensionless Contours of Turbulent Kinetic Energy (κ) in Head Region from 

Head Protrusion Case #2 along Gage Symmetry Plane 

 

 Results for the head recession Case #5 are pictured in Fig. 5-20, again along the gage 

symmetry plane.  As with the other cases, this figure shows velocity vectors overlaying contours 

of the y-direction velocity component, illustrating flow into or out of the gap.  The normal 

velocity magnitude is of a similar level to that of the head protrusion case shown earlier.  The 

flow pattern, however, is exactly opposite what that case as revealed in Fig. 5-17.  Here, the flow 
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moves into the gap at the downstream station, and back out at the upstream station in a reversed 

motion, showing little to none of the swirling flow that was seen in the non-misaligned cases. 

 

 
Figure 5-20. Velocity Vectors and Y-Direction Velocity Component Contours along Symmetry 

Plane for Upstream and Downstream Gap Regions of Negative Misalignment (Head Recession) 

Case #5 (Vector Points Arbitrarily Selected to Provide Clarity) 
 

 Finally, Fig. 5-21 presents the results of a comparison of the numerical results with the 

law of the wall at a point at the center of the gage head for the baseline Case #1, the protrusion 

Case #2, and the recession Case #5.  This view of the velocity profile in the boundary layer 

illustrates the capability of the κ−ε turbulence model to model the experimentally obtained law 

of the wall in the boundary layer.  The numerical data indicates that the turbulence model 

sufficiently replicates the law of the wall throughout its range of applicability.  The law of the 

wall is typically quoted as being valid up to a y+ of approximately 300, and one sees the expected 

departure from this standard for y+ values higher than this range while the aligned and recession 
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cases show good correlation with the range of less than 300.  Figure 5-21 also gives an indication 

of the changes to the flowfield caused by the misalignment parameter variation of each case.  As 

shown by this figure, the aligned and the recessed cases show only minimal changes from the 

law of the wall within the log region.  The protrusion case does show some significant changes in 

the boundary layer as a result of the misalignment of the gage.  This change in the boundary 

layer will have strong effects on the total force on the floating head. 

 

 
Figure 5-21. Comparison of Law of the Wall with Dimensionless Velocity Profile over 3D 

Boundary Layer of Baseline Case #1, Protrusion Case #2, and Recession Case #5 at Gage 

Center Station 

 

5.4.2 Stress Field Results 

 

 For the baseline case, there is no bulk pressure gradient to affect the force measurement, 

and thus, one would expect the lip and normal forces defined by Allen in eqn. (2-2) to be small.  

The friction force should ideally be undisturbed by a small gap, but changes in the total friction 

force caused by the presence of the gap may affect the readings.  This is generally the case, as 
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Fig. 5-22 shows a plot of skin friction over the head surface and surrounding wall region caused 

by the flow of the baseline Case #1.  This plot shows the result of some features that were 

discussed in reference to Fig. 5-13 in Section 5.4.1.  As Fig. 5-22 illustrates, the skin friction 

coefficient is relatively constant over the bulk of the head surface, and this constant value is 

close to the target value of 0.00307 calculated from the 2D global solution.  Looking at the 

leading edges of the head and the rear wall behind the head, one can see a small localized 

increase in the skin friction value right at the rim of each.  Also, on the wall directly behind the 

outside gap edges, there is a localized decrease in skin friction trailing downstream from the gap 

edges. 

 

 
Figure 5-22. Variation in Skin Friction Coefficient, Cf, on Head and Surrounding Wall for 

Baseline Case #1 

 

 Schetz [1993] shows that, as a general rule, injection decreases skin friction, while 

suction increases it as does roughness (of which the gap might be considered a single element).  

It is no coincidence that these variations in skin friction on the surface correlate with the flow 

patterns seen in Fig. 5-13.  One can see that the patterns of normal flow in and out of the gap 

correspond to the variations in Fig. 5-22.  Earlier it was shown that much of the flow becomes 

trapped in the gap region for this case, circulating with only small amounts of flow actually 
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entering and exiting the cavity.  Fortunately, these variations are small, and they act over a very 

small percentage of the head, with some of the effect on the surrounding wall rather than the 

head itself.  Because of this, the total force due to shear stress is impacted only slightly for this 

case.  Although small, these effects are nevertheless important. 

 For this case, the pressure force variation also deserves some brief consideration.  Of 

course, the 2D global problem is one of a flat plate, which is a flow with zero pressure gradient.  

This is true in a numerical sense with the global problem, as the relative pressure solution is 

approximately zero within round-off and iterative convergence errors.  Even with the gage body 

introduced, the pressure variations remain relatively low, but not zero as shown by Fig. 5-23.  As 

a general statement, pressure is actually a little bit higher in the cavity than in the external flow, 

and it is quite uniform on all parts of the flexure inside this cavity. 

 

 
Figure 5-23. Variation in Pressure on Head for Baseline Case #1 as Seen from Upstream 

(Scaled Dimensionally and Non-dimensionally) 

 

 Although first intuition may be to assume that this is a purely numerical feature, a little 

reflection provides a different explanation.  Since the velocity in the cavity goes virtually to zero, 

the dynamic energy of the flow must go somewhere.  Much of the energy is dissipated within the 
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boundary layer, but some small part of it survives and is converted to pressure within the cavity.  

This effect is on the order of only a few Pascals, only a tiny fraction of the absolute pressure, but 

remember that small changes in pressure can be significant compared to the tiny shear forces 

sought.  This pressure effect will contribute to the F*
Y force, which will cancel out with 

symmetric strain gages, but which must be considered. 

 The same basic theory is true with the other interesting feature of Fig. 5-23.  One can see 

a significant high pressure region just under the gage surface.  This is also a stagnation issue, 

where the flow near the wall surface comes to a halt against the far wall of the upstream gap 

(against the head), as it begins to enter the cavity.  Again, the boundary layer dissipates much of 

the flow energy, but some remains to affect the gage head.  As Fig. 5-23 shows, this pressure 

force has a maximum of dimensionless pressure of 0.01, or 131 Pa in dimensional terms.  In 

contrast the free-stream dynamic pressure is 0.5, or 6550 Pa.  That dynamics pressure is 50 times 

the maximum pressure against the head.  The pressure effect is small in this case, but it does 

make an impact on the total force.  Misalignment cases obviously have much more complex 

pressure fields surrounding the head. 

 Figure 5-24 shows the contours of pressure for Case #8 with quadruple the baseline gap 

along the gage symmetry plane.  The previous pressure graph, Fig. 5-23, showed the contours 

against the three-dimensional surface of the entire head, while Fig. 5-24 shows a cut through the 

entire symmetry plane of the flow.  The pressure patterns on the surface are similar, and thus this 

view provides some contrast to the previous one.  The same pattern can be seen in both cases, 

with a stagnation region forming against the upstream wall just under the surface.  As this figure 

shows, the same thing happens on the downstream wall, although this fact is of no direct 

consequence in terms of the gage performance.  However, the significant facet of comparison is 

the magnitude of the pressure variations.  Comparing with Fig. 5-23, one sees that the pressure is 

almost 4 times higher in the stagnation region than in the corresponding location of baseline 

Case #1.  The force results presented later in this section will show that the pressure contribution 

for baseline Case #1 is small compared to the shear force (which is good of course), and the 

pressure contribution for Case #8 with the large gap is still small, but much more significant, and 

an undesirable effect. 
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Figure 5-24. Variation in Pressure along Gage Symmetry Plane for Maximum Gap Size Case 

#8 (Scaled Dimensionally and Non-dimensionally) 

 

 Misalignment produces a much more complex situation, just as it did in the channel flow 

cases.  Head recession Case #5 produces significantly different pressure variations than the non-

misaligned cases do.  Fig. 5-25 shows the pressure contours over the head surface for this head 

recession case.  Here, remember that the front of the sensing head is sheltered down below the 

wall.  In this case, the previously seen stagnation region in the upstream gap is not visible on the 

head.  Instead, the pressure is high at the back half of the head surface, and it actually reduces 

considerably near the upstream edge.  The magnitude of the pressure variations is moderately 

higher than in baseline Case #1.  The placement of the pressure field, however, is such that a 

large negative moment will be created about the head center caused by the imbalance between 

the front and back edge pressure differences.  This effect was not noticeable in the baseline case. 
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Figure 5-25. Variation in Pressure on Head for Z/DHEAD = -1% Recession Case #5 as Seen 

from Upstream (Scaled Dimensionally and Non-dimensionally) 
 

 Fig. 5-26 shows the shear stress distribution over the sensing head surface, as seen from 

above.  One may infer from the flow imagery and the pressure contours of Fig. 5-26 that the 

shear stress will be equally disrupted by the misalignment.  This is true, although the disruption 

is perhaps not as dramatic as it might seem to be.  It is easy to see immediately, however, that the 

skin friction coefficient reaches only a maximum value of 0.0028 for this case, meaning that the 

shear contribution will be at least 9% too small when compared to the nominal value of 0.00307.  

Also, since the distribution over the surface is not constant, the upstream part of the head 

experiences much lower stress values, further reducing the shear contribution below the desired 

value. 
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Figure 5-26. Variation in Skin Friction Coefficient on Sensing Head for Recession Case #5 

 

 Positive misalignment, or protrusion, is even worse in terms of force misbalance.  Figure 

5-27 shows the same pressure contours over the head surface for Case #2, the maximum 

protrusion case.  Here, the sensing head is partially exposed out into the flow, and thus generates 

a much more significant stagnation region around the lip of the head.  For this case, 30% of the 

lip area is actually exposed above the wall surface, and, with the gaps, the entire area is much 

more vulnerable to the flow effects.  Obviously, as this figure shows, the pressure levels are 

much more significant, approaching quantities comparable to the dynamic pressure itself.  The 

characteristics of the pressure variations are similar to that of the baseline Case #1, showing a 

seemingly uniform distribution with the exception of the front stagnation edge.  This is 

somewhat of an optical illusion, however, because of the excessive magnitude of pressure for 

this region.  Looking at the scales, the entire pressure variation scale from Fig. 5-23 can fit into 

one color division on Fig. 5-27.  Thus, large variations exist on the surface of this head 

protrusion case which are masked by their scale in comparison with the maximum variation for 

the surface.  Even though the pressure looks uniform on the head, large forces and moments are 

generated that contribute to the global totals.  From the visual information in Fig. 5-27, one 
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would expect to see at the very least a large contribution to F*
X from pressure.  This is the case, 

as will be shown later. 

 

 
Figure 5-27. Variation in Pressure on Head and Flexure Surface for Z/DHEAD = +1% Protrusion 

Case #5 as Seen from Upstream (Scaled Dimensionally and Non-dimensionally) 
 

 The shear stress pattern for the head protrusion case is equally interesting.  Figure 5-28 

shows this information as it is distributed over the head surface.  Exposed out into the flow, the 

shear stress obviously increases significantly over the desired level.  While the head recession 

case showed skin friction level deficits from the nominal value, the protruded sensing head sees 

skin friction coefficients substantially higher over large areas than the baseline Case #1, by about 

10% to 15%.  Much higher values occur locally near the leading edge of the gage, with skin 

friction coefficient values in that region exceeding the baseline by a factor of almost two.  Thus, 

one sees that the shear stress contribution to x-direction force will be higher than desired.  

Coupled with the high contribution by the pressure term, deviations in output for protrusion 

cases can be expected to be excessively large. 
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Figure 5-28. Variation in Skin Friction Coefficient on Sensing Head Protrusion Case #2 

 

5.5 Force and Moment Results 
 

 As in Chapter 4, the force results are presented in a dimensionless form.  Eqns. (4-4), (4-

5), and (4-6) define the x-direction force, F*
X, the y-direction force, F*

Y, and the z-direction 

moment, M*
Z.  These values are exactly as defined in Fig. 4-21 with respect to directionality and 

location.  Variation of the forces over the flexure becomes much more significant in this scenario 

because of the relatively high Reynolds number when compared to the low Reynolds number of 

the channel flow, in which the disruptions caused by the gage were small. 

 After looking at the stress fields above in Section 5.4.2, integration of the pressure and 

shear stress follows directly, as outlined by Appendix E.  Misalignment is considered first, since 

it seems to be the most important parameter again for this external flow scenario.  It also creates 

the most complicated effects of any of the parameters studied. 

 The effect of misalignment on F*
X and M*

Z are given in Fig. 5-29 (a) and (b) respectively.  

Figure 5-29 (a) shows that misalignment does affect the shear stress totals by the amounts 

indicated previously, which is on the order of +/- 20% for a given misalignment up to 1% of the 

head diameter.  Figures 5-26 and 5-28 gave an indication of why this is so.  The effect on the 

shear stress is small, however, when compared to the effect that misalignment has on the 
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pressure force.  Figure 5-29 (a) shows that the pressure force changes dramatically, particularly 

for protrusion.  The pressure effect remains small for modest recessions.  Perfect head alignment 

results in some positive pressure force contribution, so that recessing the gage forces the pressure 

effect to cross zero before subtracting from the total at higher recession values.  Thus, modest 

recessions offer some reprieve from the error levels that larger misalignments feel. 

 

 
Figure 5-29. Effects of Misalignment Variation on Pressure, Shear, and Total Contributions of 

F*
X and M*

Z 
 

 Moment values are more erratic than the force values.  The moment levels for the 

misalignment cases were among the most difficult values to calculate in this study due to their 

sensitivity to small uncertainties in pressure.  Thus, Section 5.6 will show that these values are 

among those with the largest error estimations attached.  The trend however, is that the gage 

produces virtually no moment effects at perfect alignment.  This is excellent and to be expected 

since the shear stress passes through the moment center and the pressure force is both small in 

magnitude and acting quite close to the moment center via Fig. 5-23.  As soon as misalignment 

occurs, however, the moment effect gets very large.  Both protrusion and recession tends to 

produce negative moments, although recession interestingly seems to produce larger magnitudes 

because of the pressure imbalance seen in Fig. 5-25.  The pressure acts such that the moment arm 

about the head center is long. 
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 The ultimate result of the moment can be felt by the strain error, pictured in Fig. 5-30.  

For a given protrusion case, F*
X is over-predicted, and a negative moment effect tends to increase 

the strain error beyond what the force contributes alone.  For recession, however, the force F*
X is 

under-predicted, but the moment still tends to add to the total strain error.  Thus, there is a 

cancellation effect, with small recessions actually increasing strain error.  This is a subtle point 

that is not intuitive without numerical evidence � a result of the fact that the moment increases 

with much smaller recession values than the force decreases.  Ultimately, however, large 

recession values cause large negative strain errors, which is the logical conclusion. 

 

 
Figure 5-30. Variation of Strain Error with Misalignment Variation 

 

 The result of Fig. 5-30 is that recession really is somewhat to be preferred over 

protrusion, if a choice must be made between the two.  This correlates to what was seen in the 

last chapter, and also with the conclusions of O�Donnell [1964].  Further, it tends to be the 

logical conclusion, since it seems intuitive that sticking the head out into the flow would be 

much more disruptive than removing it from the flow.  This contradicts Allen�s statement that 

there in no preference for misalignment. 
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 It is useful to transform the results given from Fig. 5-29 to the form given by Allen in 

eqn. (2-2) for comparative purposes.  Figure 5-31 shows the comparison of the lip force term and 

the normal force term from Allen�s experimental data in Fig. 2-6 versus the numerical data from 

Fig. 5-29.  The coefficient terms are given normalized by the target friction force component in 

each case, and this comparison is given as a function of misalignment as a percentage of the 

respective head diameters of the gages.  First, it is difficult to make any exact quantitative 

comparisons of the data due to the large discrepancy in the flow conditions, gage dimensions, 

etc.  A basic qualitative comparison, however, shows agreement with many of the general trends 

of the data. 

 

 
Figure 5-31. Comparison of Trends Given by Numerical Results from Fig. 5-29 with 

Experimental Results of Allen from Fig. 2-6 

 

 For the lip force term, both studies show a negative contribution to the total output for a 

recessed gage and a positive contribution for a protruded gage.  Both Allen�s experimental data 

the numerical data from Fig. 5-29 show increasing levels of lip force output for increasing 

misalignment in either direction.  For the normal force term, a more complex relationship 
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follows.  Recession shows large positive contributions to output for even small recession values.  

Protrusion shows that small positive Z values actually provide a small negative contribution to 

output, while this contribution becomes positive for larger protrusions.  The numerical and 

Allen�s experimental results show this trend for the normal force as well.  Allen�s supersonic test 

results show generally higher magnitudes than the incompressible flow numerical results given 

in Fig. 5-29, but a detailed quantitative comparison is impossible. 

 Finally, Fig. 5-32 presents the F*
Y results for the misalignment variation cases.  This is 

the only space devoted to the y-direction force in this chapter.  The reasons for this were outlined 

in the last chapter, and continue to be valid here.  Further, the F*
Y values have a lot of uncertainty 

in them.  The imbalance of pressure in the cavity and the external flow is what causes F*
Y to 

exist.  As with the moment presentation, this solution quantity is highly sensitive to even a small 

uncertainty in the pressure surrounding the head, and additionally the misalignment cases offer 

an extremely complex and delicate geometry to solve.  Because an uncertainty in pressure gets 

integrated out over the entire surface area, F*
Y is difficult to predict accurately for these cases.  

Of course, shear stress contributes nothing to the normal force.  It does seem from the trends that 

misalignment, particularly protrusion, can generate increased levels of relative normal force 

when compared to the baseline Case #1.  Again, shear stress levels tend to be so much smaller 

than the pressure forces that it does not take much change in pressure to overshadow the intended 

measurement.  F*
Y is normalized by the shear stress, so it is really a scale factor of the relative 

pressure to the skin friction coefficient.  Of course, the importance of these values depends on 

the reference pressure level as already discussed and given by eqn. (4-11). 
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Figure 5-32. Variation in Y-Direction Force F*

Y with Misalignment Variation Cases Showing 

Pressure, Shear, and Total Contributions 

 

 Next the effects of the gap are considered.  In the channel flow problems, the effect of the 

gap was noticeable, but much smaller than the misalignment effects.  The same is true here.  

Figure 5-33 shows the effects of gap size variation on the F*
X force, which directly affects the 

error in shear stress interpretation.  From Fig. 5-33, the shear contribution equals almost exactly 

1.0 for all three cases, which is excellent.  The fact that changing the gap size does not 

appreciably change the shear stress on the head is quite an encouraging result.  With an increase 

in gap size, however, pressure begins to assert itself more.  This is exactly what was expected 

from looking at Figs. 5-23 and 5-24.  Increased gap size allows for more significant intrusion by 

the outer flow field, and thus higher pressure values against the upstream lip.  
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Figure 5-33. Change in X-Direction Force F*

X with Gap Size Variation Showing Pressure, 

Shear, and Total Contributions 
 

 Figure 5-29 previously showed that the moment M*
Z contribution from baseline Case #1 

is almost zero, and this remains true for all three gap cases.  There is some small moment 

increase with gap size, but this value is small enough to be inconsequential in terms of output 

error.  Thus, there is no point in showing a graph for this component.  With a trivial moment, 

strain error is a function of the total force only.  This strain error is pictured in Fig. 5-34, which is 

approximately a straight line.  The interesting issue in this figure is that the strain error will pass 

quite close to zero as gap size is reduced (within about 2%).  Since the strain error is almost 

totally a function of pressure force alone, the same point can be made by Fig. 5-33.  Any non-

zero intercept in the graphs can easily be accounted for as being within the numerical uncertainty 

of the results.  This fact, too, is an encouraging one.  The result of the gap analysis is that the 

error caused by gap size can be considered to grow as a linear function of the gap spacing, with a 

perfect result occurring at zero gap size.  This is in contrast to the channel flow problems where 

the pressure gradient seemed to impose some non-linear effects at small gap sizes.  The slope of 

the strain curve can be estimated from the points, and, by forcing the intercept through zero, a 
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statement of error as a function of gap size can be postulated in eqn. (5-6) for these types of flow 

conditions � subsonic turbulent flow with no pressure gradient. 

( )G41.5mm%ε 1
ERROR

−=  (5-6) 

It is impossible given the current data to say whether eqn. (5-6) could possibly hold for 

supersonic conditions as well.  The strain error estimation is given as well in Fig. 5-34 for 

comparison. 

 

 
Figure 5-34. Change in Strain Error for the Gap Size Variation and Resulting Design Formula 

(5-6) Comparison 

 

 Eqn. (5-6) was developed based on a dimensional gap size in millimeters.  Although the 

figures of this section are presented non-dimensionally as a percentage of the head diameter, this 

strain error is a result of the pressure force alone.  The plots of Fig. 5-23 and 5-24 would seem to 

suggest that it is the gap size directly that has an impact on the strain error, as the spacing allows 

more or less pressure to infiltrate the gap region.  Since the head is so much larger than the gaps, 

it is reasonable to assume that the gaps have no influence on each other, and thus G/DHEAD is not 

a good choice for developing eqn. (5-6).  This equation is contingent upon the caveat, however, 

that the gaps are actually much smaller than the head diameter so there is no communication 



Chapter 5, Section 5: Force and Moment Results 

page - 159 

across the width of the head.  The utility of eqn. (5-6) is twofold.  First, it provides a tool for a 

designer of a skin friction gage to target a certain accuracy of measurement, assuming that the 

gage could be properly aligned.  For crude applications, a larger gap may suffice, which would 

mean that the gage will be easier to machine and build (less strict tolerances).  Second, it gives a 

reasonable estimate of the penalty paid for a given operational gage.  This formula is an example 

of the fulfillment of the two primary goals outlined at the beginning of this document. 

 One of the major experimental results found from the literature search on the topic of 

skin friction error analysis is that a larger gap makes the head less sensitive to misalignment.  

Since it has already been shown that there is indeed some advantage to small gap size in these 

situations, this secondary issue was looked at as well to fully understand the premise.  Cases #9 

and #10 varied the sensor by the maximum misalignment extremes, but with the gap enlarged to 

the same value as in Case #8 (four times the baseline case).  This represents four times the 

baseline gap size, allowing for comparisons to be made to see whether misalignment effects 

really do change with gap size or not.  Figure 5-35 shows the results for F*
X divided up by the 

contributions from pressure, shear stress, and the total force.  Shown are the values for the 

modified gap cases #9 and #10 as well as the original gap Cases #1 through #5 for comparison.  

Since there is a great deal of information to process from this simultaneous variation of two 

parameters, the moment M*
Z is plotted separately in Fig. 5-36. 
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Figure 5-35. Variation of X-Direction Force Quantity F*

X with Misalignment for Quadruple (4X) 

Gap Size, G/DHEAD=6.67%, and Compared to Baseline Gap Size, G/DHEAD=1.67% 

 

 Figure 5-35 shows many interesting features. As shown, the gap size change basically 

serves to shift the curves upward, without dramatically changing their slopes.  Just as was shown 

in the simple gap variation study with an aligned gage head, the shear force shows little influence 

from gap size.  This fact obviously remains true with misalignment.  The pressure force, 

however, contributes additional force as gap size increases, which increases the total 

proportionally.  However, gap change does seem to have a slightly larger effect on recession 

cases than protrusion cases.  From this trend in x-direction force only, it seems that the influence 

of gap size grows with increasing recession due to the pressure force and decreases for greater 

protrusion. 
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Figure 5-36. Variation of Z-Direction Moment Quantity M*

Z with Misalignment for Quadruple 

(4X) Gap Size, G/DHEAD=6.67%, and Compared to Baseline Gap Size, G/DHEAD=1.67% 
 

 Fig. 5-36 shows that head recession effects have only a very slight dependence on gap 

size.  Head Protrusion effects, however, do change somewhat.  Both pressure and shear stress 

moment contributions become more negative with increased gap spacing.  This has the effect of 

moving the shear component closer to the zero level, while pressure moves further negative.  

Figure 5-37 shows the resulting strain error for the two sets of cases.  Again, the entire curve is 

shifted upward slightly due to the increased gap size.  Looking at the respective difference 

between the misaligned and non-misaligned cases for each set, one sees that the quadruple gap 

does slightly decrease the changes.  The difference between the 1% head protrusion and the 

aligned case, for example, reduces from about 101% to about 91% for the large gap.  This 

decrease does support Allen�s supposition on this point, but the effect is relatively minor 

considering that the overall deviance from the desired value of output is greater with the larger 

gap, and the head protrusion case is still off by over +/-100%.  The recessed head, however, does 

exhibit a value closer to the desired value with a large gap size because of the cancellation of the 

force and moment effects on the head. 
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Figure 5-37. Strain Error with Misalignment Variation for Baseline Gap Size, G/DHEAD=1.67%, 

and also with Quadruple Gap Size, G/DHEAD=6.67% 
 

 Finally, the lip thickness effect variation from baseline Case #1 and Case #6 is considered 

briefly.  In the channel flow cases involving a governing pressure gradient, the lip size made a 

significant impact on the outcome.  Here, things are different.  Without an imposed pressure 

gradient, the size of the lip has virtually no impact on the resulting forces or moments.  Figure 5-

38 (a) shows the results of dividing the lip thickness in half on all three global parameters: F*
X, 

F*
Y and M*

Z.  Next to it, Fig. 5-38 (b) shows the strain error from these two models resulting 

from F*
X and M*

Z, summed as usual.  It is clear that, between these two cases, almost nothing 

happens.  While the strain error does indeed increase slightly with lip size, the change is less than 

0.25%, which is not a significant deviation after considering changes in excess of 100% caused 

by some of the other parameters.  Because so little was seen from this parameter for these cases, 

no further c* variation were tried.  Although c* has no real impact in a zero pressure gradient 

flow, it should not be overlooked.  As soon as a pressure gradient is applied, lip thickness begins 

to get more important again.  Since it is difficult in a real situation to guarantee that there will not 

be any pressure gradient, it is still wise to minimize lip thickness on the basis of the results of the 

last chapter. 
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(a)      (b) 

Figure 5-38. Total Lip Thickness Variation Effects on Global Parameters F*
X, F*

Y, and M*
Z and 

Strain Error 
 

 This concludes this section concerning the results of the force effects on a direct 

measuring skin friction gage acting in a turbulent flow on a zero pressure gradient flat plate.  Just 

like in Chapter 4, the numerical results are tabulated in Table 5-5 for use by others later.  These 

values have been used in developing all of the graphs of this section. 
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5.6 Validation and Verification 

 

 Almost all validation and verification for these complex models was carried out in two-

dimensions rather than three.  Although it would certainly be ideal to perform error analysis in 

3D, it is unfortunately not realistic when considering the costs.  The laminar channel cases of the 

last chapter were analyzed using a coarse and fine grid for each case, but the situation is 

somewhat different here.  The number of elements used in each fine model is not all that much 

greater than the number for the channel cases, but the addition of the turbulence equations adds 

two more degrees of freedom per node (totaling six instead of four).  In addition, the numerical 

complexity of the problem requires many more iterations to solve adequately.  So, even with the 

current level of computing power available, it is still a considerable effort to solve a single 

problem in three dimensions. 

 In this light, it was necessary to reduce computational time, and solve only the minimum 

number of 3D cases required.  Therefore, mesh refinement, boundary placement, and validation 

investigations were performed using two-dimensional projections of each case.  The mesh 

density along the symmetry plane was preserved, so that each corresponding 2D case simply 

represents the 3D mesh without the extruded revolution about the gage axis.  In two dimensions, 

the beam flexure was removed, so that flow rate through the gap was possible, leaving only the 

head.  This can be justified from the results of the 3D models which show that the net pressure 

forces in the cavity really are nearly zero, as are the shear forces since the velocity in the cavity 

is basically zero. 

 Figure 5-39 shows the resulting mesh for the 2D version of the baseline Case #1, which 

looks identical to the images of Fig. 5-6.  This is as it should be.  Here, the region directly 

underneath the head in the cavity is meshed as well.  This region was partially occupied by the 

flexible beam, which was removed for these 2D cases to allow flow to pass through the gaps.  

Although the 2D projection cannot hope to fully capture all of the effects of the full 3D problem, 

Fig. 5-38 is seen as a �worst case� scenario.  In two dimensions, the head is a true obstacle, 

forcing the flow above and below it only (rather than the relief provided by flow moving around 

the sides of the head in three dimensions).  Involving the third dimension allows the flow to 

move around the head in the z-direction, reducing the influence of the obstacle.  Therefore, any 
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disruptions caused by the obstacle in 2D should be magnified, and the error study is performed 

based on this conclusion. 

 

 
Figure 5-39. Mesh of 2D Projection Model of Case #1 for Mesh Studies 

 

 This section begins with a bit of validation, which is much more important in this 

instance than for the flow scenario of Chapter 4.  The global problem is one of a flat plate, which 

is relatively straight forward when compared to typical problems often seen in the engineering 

world.  The boundary layer growth itself is actually a parabolic problem and requires much less 

sophisticated equations to describe it than the Navier-Stokes formulation.  The detail of the gage 

geometry, however, is a fully viscous problem, and the Navier-Stokes equations are sufficient 

and necessary for this application. 

 The validation issue is in using the RANS, or Reynolds Averaged Navier-Stokes 

equations, which add extra terms due to turbulence to the standard formulation covered in 

Chapter 3.  The RANS equations themselves are of no concern on this topic, but the turbulence 

terms must therefore be modeled using additional information.  This is a general concern in CFD 

calculations, as turbulence modeling errors are usually a significant source of uncertainty.  There 
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are a variety of models ranging from very simple to highly complex in terms of intricacy and 

extra effort required.  Schetz [1993] gives a good overview of most of the common options for 

those who are interested in the details of the current state of turbulence modeling. 

 The standard κ−ε model [Launder and Spalding, 1974] as given in Chapter 3 is the one 

employed here for the calculations.  This formulation is probably the most well-known, and the 

most common model used in CFD applications.  This model uses two separate additional 

equations beyond those prescribed for the RANS � one differential equation for κ and one for ε, 

from eqns. (3-11a) and (3-12a), respectively.  The various two-equation formulations seem to, in 

general, be the best balance between capability and computational requirements.  Higher order 

models (Reynolds Stress models, Large Eddy Simulation, etc.) can, in some cases, offer 

additional accuracy, but at the cost of significant computational effort, making the time required 

for solution too high for many engineers. 

 Although the κ−ε model is quite common and well validated, there can be concerns over 

its use in certain situations.  This model tends to produce excess turbulence levels in regions of 

large strain.  These include stagnation regions and regions of strong acceleration or deceleration 

[Ansys Online Help, 2001].  The choices in Ansys/FLOTRAN are somewhat limited, but the 

code does offer some alternatives to the standard κ−ε model.  All the models are two-equation 

models as well (except for a zero equation mixing length model which was not employed here) 

and all are variations on the κ−ε model, but all four alternatives utilize alterations which are 

specifically designed to overcome some of the limitation of standard κ−ε.   

 These four alternatives include a well-known variation commonly referred to as the 

Renormalization Group (RNG) model [Yakhot, et al., 1992].  The RNG model modifies the 

constants of the equations with more complex forms and adds a couple of new terms in an 

attempt to alleviate the tendency toward overproduction of turbulence in stagnation regions by 

accounting for the strain rate. 

 The κ−ε (NKE) model due to Shih, et al. [1995] features changes made with similar 

motivations � to reduce overproduction of turbulence in sensitive areas.  Shih et al. accomplish 

this by making complex changes to some of the constants by making them variable.  Examples in 

their paper include boundary layer flows with favorable and adverse pressure gradients and a 

backward facing step, all of which are similar in many respects to the cases studied here.  In 

these examples, the NKE variation in general produced better results than the standard form, 
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notably predicting the boundary layer thicknesses better for all the pressure gradient cases.  

Ansys/FLOTRAN recommends the NKE model for rotating flows in particular. 

 The κ−ε model (GIR) by Girimaji [1995] again alters the constants of standard κ−ε by 

making them extensive, complex non-linear functions of the strain tensor terms.  The model 

contains terms especially accounting for rotational speed.  Because of this, the GIR model is 

recommended by Ansys/FLOTRAN both for rotating flows and for flow with secondary vortices 

in the main flow. 

 Although all of these models are two-equation models for κ and ε, the variations and 

additions of the terms in the equations provide more realistic solutions for the regions in which 

the standard model might be suspect.  A small validation study was made using these different 

turbulence model choices to assess the model dependence.  The study consisted of successive 

variations of the 2D projection of baseline Case #1 (just as shown in Fig. 5-38).  Everything 

remains the same � identical mesh, boundary conditions, solver controls, convergence levels, etc. 

� except that the various turbulence models were activated to understand the differences.  After 

looking at these results, the maximum head protrusion Case #2 was also analyzed in the same 

manner with one of the alternate turbulence models, since this case is the one which obviously 

should create the largest disruption in the boundary layer and, therefore, the most complex flow.  

These results are presented in Table 5-6, with resulting force and moment components and the 

percent difference from the control case using the standard model. 

 

Table 5-6: Results of Turbulence Model Dependence Study Showing Percent Differences 

from Various Turbulence Options 

F*X F*Y M*Z F*X F*Y M*Z

1.0252 1.9675 -0.0593 2.1000 19.3460 -0.7270

0.80 15.34 21.07 <- % diff. 2.28 2.37 2.68 <- % diff.

1.0091 2.0486 -0.0615

2.36 11.85 18.14 <- % diff.

1.0555 1.5978 -0.0393

2.13 31.25 47.64 <- % diff.

BASELINE CASE #1

1.0335 2.3240 -0.0751 -0.7470

Z/DHEAD = +1% CASE #2

GIR

NKE

RNG

standard κ−ε

NKE

standard κ−ε 2.1490 19.8160
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 The result of this is that, for both Cases #1 and #2, the differences are reasonable given 

the uncertainty in employing turbulence models in general.  The desired measurement, F*
X, is the 

paramount variable, and the percent differences between the various cases are small at 2% or 

less, even for the protrusion case.  The other two parameters are not so nearly important, but the 

M*
Z moment does have some utility.  For Case #2, where the moment is large due to the 

misalignment, the percent difference is again small, illustrating consistency.  For the baseline 

case, the percent differences in the moment are large, but the moment is nearly zero for all the 

models.  In cases such as this, percent difference is not a very reflective measure of accuracy.  

Comparing the moment to the value of F*
X for example, puts a better perspective on the 

numbers.  For baseline Case #1, the predicted values of M*
Z are small enough that they will have 

little to no effect on gage performance regardless of the turbulence model used.  For F*
Y, the 

differences are more significant for baseline Case #1, but as already discussed this is to be 

expected anyway due to the nature for the 2D problem, which should present an effect much 

worse than in 3D.  Also, since the value of F*
Y itself is somewhat arbitrary anyway, little concern 

is needed over this value, and predicting the value to even 20-30% is sufficient for the studies 

here. 

 After review, the results are actually quite good considering the uncertainty in using 

turbulence models in the engineering world.  Even for Case #2, little difference was seen 

between the standard model and the NKE model variation.  As a result, the issue is considered 

validated for the 3D cases studied.  The standard κ−ε model was used for all cases in Sections 

5.4 and 5.5, and it seems that standard κ−ε is sufficient to predict results for this application in 

this type of flow condition. 

 Convergence is again the first issue of verification to be studied.  As with the channel 

problems, the models were converged to tight tolerances, although not quite as much as in 

Chapter 4 due to time constraints.  Still convergence will be shown to be minimal compared to 

the ordered discretization error caused by the computational mesh.  The channel flow cases were 

ideal in terms of convergence behavior.  For those, the convergence monitors decreased in a 

steady, linear fashion to the stopping criteria almost from the start.  Here, the situation was not so 

tidy.  Although the convergence monitors did decrease, the behavior was often not so steady.  

The monitors exhibited oscillations, decreasing and increasing randomly in a somewhat 

downward trend.  Typically as well, the monitor for one degree of freedom would decrease while 
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another increased.  After some number of iterations, the opposite would occur.  This is certainly 

caused by the high Reynolds number of the flow, the complex boundary conditions, the extra 

degrees of freedom from the turbulence models, the large variation in element size, and the 

importance of the convective coupled terms in the solution, etc. 

 

Table 5-7.  Maximum Values of Normalized Nodal Residual for All Cases 

Maximum Nodal Residual (absolute value) 
case 

VX VY VZ PRES ENKE ENDS 

1 4.4 x 10-5 1.6 x 10-5 5.7 x 10-7 4.6 x 10-6 2.6 x 10-5 1.5 x 10-5 

2 1.4 x 10-4 7.9 x 10-6 8.0 x 10-7 2.9 x 10-6 3.3 x 10-4 8.3 x 10-4 

3 1.2 x 10-4 2.1 x 10-4 1.2 x 10-6 2.1 x 10-5 2.6 x 10-3 2.4 x 10-1 

4 1.1 x 10-4 8.2 x 10-6 4.0 x 10-7 9.0 x 10-7 6.2 x 10-5 2.4 x 10-3 

5 8.1 x 10-5 1.3 x 10-5 1.1 x 10-6 1.1 x 10-6 1.5 x 10-4 7.3 x 10-2 

6 5.0 x 10-3 8,6 x 10-5 3.0 x 10-6 1.2 x 10-5 1.6 x 10-5 1.1 x 10-5 

7 1.1 x 10-4 8.2 x 10-5 4.0 x 10-7 9.0 x 10-7 6.3 x 10-5 1.0 x 10-2 

8 8.4 x 10-5 1.3 x 10-5 1.0 x 10-6 1.1 x 10-6 1.6 x 10-4 8.8 x 10-3 

9 1.6 x 10-4 1.0 x 10-5 5.5 x 10-7 1.0 x 10-6 6.4 x 10-4 2.0 x 10-2 

10 1.1 x 10-4 6.1 x 10-5 3.0 x 10-6 2.4 x 10-6 3.6 x 10-3 3.5 x 10-2 

 

 As a result, it typically took many more iterations to solve the external flow problems to a 

level even approaching what the channel flow problems were converged to.  Table 5-7 shows the 

results of the maximum normalized residual values for each degree of freedom at a node in each 

case.  Again, this is the maximum magnitude seen for that degree of freedom by any one node.  

The bulk of the nodes in each problem exhibited much lower values, with average values 

throughout the domain of 1000 times less than the maximum being typical.  Even these 

maximum numbers, however, are quite satisfactory. 

 It seems apparent from experience with the channel flow problems and looking at the 

values of Table 5-7 that convergence is not a primary issue in this case either.  Since the results 

files are somewhat larger for these problems than the channel flow cases, a complete iteration 

convergence history was not saved for any of the cases like what was shown back in Fig. 4-28.  

This would have required a large amount of space for enough points to plot a history.  However, 
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for the baseline case, the final 1000 iterations produced a change in F*
X of 0.00004%, which is 

similar to what was shown in Fig. 4-28.  Since these values are on the same general level and in 

both cases are extremely small compared to the mesh dependency error, convergence is 

considered to be a non-issue in the computational error effects analysis. 

 Just as in the previous channel flow situation, mesh dependence or ordered discretization 

error becomes the primary contributor in the accuracy estimations for the case of external 

turbulent flat plate flow.  As with the turbulence modeling validation, most of this mesh 

refinement analysis was performed in two dimensions to make the processing time required more 

feasible.  The mesh refinement study consisted of direct two dimensional projections of the 3D 

volume elements of the computational model for each of the ten cases. 

 Analysis consisted of utilizing two grids for each case � a 2D projection of the fine mesh 

used in the presented results, and a coarser model of uniform refinement ratio 0.68.  This number 

was chosen in particular for reducing the y-direction points (those covering the boundary layer 

from 75 to exactly 51.  A grid halving (ratio of 0.50) was initially tried, but that proved too few 

to capture the boundary layer well, leading the author to suspect that the asymptotic range was 

not reached at this level.  In addition, it is not possible to go sufficiently finer, since the mesh 

spacing is already close to the y+ transition value of 11.5.  Crossing this boundary would make 

any comparison of results a meaningless exercise in this case.  Although not a grid doubling or 

halving, this seemed sufficiently distinct to produce reasonable error estimates. 

 The order of convergence was initially analyzed for the baseline case only, just as with 

the laminar channel flow problems.  Carefully converged models (1x10-10 or less residual values) 

on the varying grids were examined, using refinement ratios of 0.68 and 1.16 from the baseline 

model.  The third grid is only a small (16%) increase from the base grid, but that was the 

maximum amount that could be used before crossing the transition boundary and comprising the 

wall formulation of the turbulence model.  Roache recommends a minimum 10% change for any 

grid refinement to be valid, so this is just over the minimum level required.  For this reason, it 

was not used to calculate the error estimator, but was considered sufficient for estimating p.  It 

seems from the extra 2D grids solved for baseline Case #1 that the spatial convergence behavior 

is again somewhat non-monotonic.  All of the categories (for each of pressure, shear stress, and 

combined total) for the F*
X parameter produced non-physical values of p (strongly deviant from 

the expected range of 1.0 to 2.0).  Values for F*
Y, and M*

Z were found to be about 1.6 and just 
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under 1.0 respectively, although these values should be somewhat suspect based on the 

experience with F*
X.  This is unfortunate but once again expected given the nature of the SUPG 

advection algorithm.  The solution values for this case were sufficiently different for the different 

grids that significant digits is not as central of a problem as in determining order of convergence 

in the last chapter.  The problems with calculating p are more a function of the non-monotonicity 

of the spatial solution for these cases. 

 These values were then evaluated using a more appropriate method as outlined by Roy 

[2001], valid for mixed order spatial convergence exhibiting non-monotonic behavior.  Roy�s 

mixed order analysis uses three grids (the same three that were just used to determine p), and it 

retains the first two error terms from eqn. (3-22).  In this case, that is the first and second order 

terms, with the leading truncation term as O(h3).  Roy gives some lengthy formulas resulting 

from the algebraic mathematics, giving E1 and thus A1 based on the non-constant refinement 

ratios between the grids and the differences in solution between each two successive grids.  The 

mixed order error estimator A1 for the total contribution to F*
X was found to be -9%, as an 

example.  These numerical results will be completed and compared later to provide some 

perspective on the mixed order result. 

 All remaining cases consisted only of two grids, so the standard Richardson extrapolation 

error estimator was employed, as given in eqn. (3-26).  In calculating the A1 estimator, an order 

of convergence, p, of 1.0 was again used to be as conservative as possible.  This value for 

baseline Case #1 was also calculated to see how well this procedure models the true non-

monotonic behavior captured via the Roy method. 

 Values for A1 resulting from the nominal 2D projection grid and the uniform coarsening 

of 0.68 grid are given in Table 5-8 for all three global parameters, divided up into the 

contribution to said parameters by pressure alone, shear stress alone, and the sum total.  As Table 

5-8 shows, there is considerable variation in the numbers, ranging from virtually zero to 

excessively high numbers.  Clearly, some appreciation for the circumstances of each individual 

error estimation is required.  This will begin after presenting the resulting GCI values based on 

the factor of safety of 3.0, given by eqn. (3-28).  These GCI values are presented in Table 5-9 as 

a percentage. 
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Table 5-8. Richardson Extrapolation Error Estimator Values Given by Case Number as a 

Percentage 

%A1 F*
X %A1 F*

Y %A1 M*
X Case 

# pressure shear total pressure shear total pressure shear total 

1 -61.8 -1.7 -3.7 -47.9 -179.2 -47.8 -101.1 -85.2 -102.0 
2 -54.4 4.0 -20.8 -27.6 -3383.8 -27.4 -40.9 -179.6 -37.5 
3 -55.8 3.7 -8.5 -71.9 -643.4 -71.7 -119.8 -147.5 -117.6 
4 30.3 -8.7 -18.0 7.4 -134.4 7.2 44.0 32.8 43.8 
5 -35.9 -2.2 30.3 -49.3 -217.1 -49.5 -5.7 -52.4 -6.4 
6 -117.2 4.3 1.9 -88.7 -409.5 -88.7 -199.6 -156.7 -202.2 
7 -80.5 4.7 -0.3 -32.3 -603.4 -32.1 -101.5 -175.6 -98.6 
8 -15.3 3.9 0.1 -14.9 -214.0 -14.7 -19.3 -84.6 -16.8 
9 -17.1 4.1 -5.9 -16.2 -76.8 -16.1 -32.0 -261.9 -31.1 
10 135.3 -0.4 6.8 -2.8 -29.4 -2.9 -8.9 25.9 -9.3 

 

Table 5-9. Roache GCI Values Given by Case Number as a Percentage 

%GCIFINE F*
X % GCIFINE F*

Y % GCIFINE M*
X Case 

# pressure shear total pressure shear total pressure shear total 

1 185 5.1 11.1 143 537 143 303 255 306 
2 163 12 62.4 82.8 10,151 82.2 122 538 112 
3 167 11.1 25.5 215 1,930 215 359 442 352 
4 90.9 26.1 54 22.2 403 21.6 132 98.4 131 
5 107 6.6 90.9 147 651 148 17.1 157 19.2 
6 351 12.9 5.7 266 1,228 266 598 470 606 
7 241 14.1 0.9 96.9 1,810 96.3 304 526 295 
8 45.9 11.7 0.3 44.7 642 44.1 57.9 253 50.4 
9 51.3 12.3 17.7 48.6 230 48.3 96 785 93.3 
10 405 1.2 20.4 8.4 88 8.7 26.7 77.7 27.9 

 

 The non-monotonic analysis by Roy�s method can now be fully appreciated.  The -9% 

error estimation predicted for the Case #1 quantity F*
X by that analysis is clearly much greater 

than the value predicted in Table 5-8.  This is, of course, the exact case made for using GCI, 



Chapter 5, Section 6: Validation and Verification 

page - 174 

which predicts 11% for this variable.  Thus, the A1 estimator is strongly liberal, while only the 

GCI is conservative.  The actual non-monotonic error falls somewhere in between.  The rest of 

the nine components in Tables 5-8 and 5-9 exhibit the same behavior � the non-monotonic error 

falling outside the error estimator and equaling just less than the GCI.   

 The results of Table 5-8 and 5-9 are actually quite interesting.  The parameter F*
X is 

obviously the most important of the three parameters by far.  Of the other two, M*
Z has moderate 

importance in some cases, while F*
Y is difficult to interpret because of its arbitrary reference 

point.  F*
X shows excellent overall accuracy characteristics from these tables.  The x-direction 

contributions by shear stress offers exceptional accuracy, especially when considering the fact 

that the shear stress is a derived quantity from the turbulence model which is sensitive to wall 

placement and turbulence levels.  The x-direction contribution by the pressure shows somewhat 

higher levels of uncertainty, at least for the misalignment cases.  For the aligned cases, the 

pressure contribution is so small as to have little impact on the total. 

 For these cases where the pressure becomes significant, however, the result seems 

somewhat counterintuitive.  In most CFD applications � an airfoil analysis for example �, 

pressure tends to be the most accurate quantity, while shear stress is harder to capture with any 

certainty.  Here, the opposite is true, which seems odd until the nature of the contributions is 

brought into the picture.  The general cases involve the contribution of inviscid pressure 

contributions, which are much easier to calculate accurately.  Here, the contribution is made by 

pressure in a very intricate flow feature trapped totally within the boundary layer itself.  As 

discussed extensively in the previous two sections, the pressure force comes from dynamic 

pressure which survives the boundary layer.  This is, of course, very difficult to calculate and 

quite sensitive.  As was shown, something on the order of 2% of the dynamic pressure survives 

into the gap region.  For misalignment cases, the pressure deviations are even greater.  Even this 

2% though, is still about 7 times the shear stress level, and so even a relatively small change in 

the gap region dynamic pressure can make a large impact on the total x-direction force.  Thus, 

even errors of the magnitudes shown in the table are quite good given the sensitivity of the 

pressure imbalances at the wall of the boundary layer. 

 A similar argument can be made for F*
Y, which is totally dominated by pressure 

differences between the cavity and the free-stream.  Shear force produces so little y-direction 

force that the nonsensical values of the GCI calculated in that column are meaningless anyway.  
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As with the x-direction force, the F*
Y pressure contribution is governed by a highly sensitive 

boundary layer calculation, in which a small deviation causes a small change in pressure, which 

integrates over the head to produce seemingly dramatic force changes.  Of course, the argument 

has already been made that for the y-direction force is an arbitrary calculation anyway, since the 

absolute pressure is not accounted for and thus the F*
Y force is only useful to compare two cases 

in a restricted sense. 

 Also for many of the zero misalignment cases, the moment in the z-direction is so small 

that error estimation has little meaning here as well.  For these instances, the discussion of round-

off error in Section 3.6 applies.  The error estimation calculation requires a subtraction operation 

followed by a division operation among the solution results of the grids.  From the round-off 

discussion, these two operations can cause significant difficulties in cases where the values are 

either close in magnitude or close to zero.  Both of these qualities apply to the moment results for 

these cases, and thus the error estimators for these values must be considered accordingly.  

Fortunately, these instances where the error estimator of the moment is high are also instances 

where the value is close to zero.  Thus, the contribution of the moment to the total output of the 

flexure in these cases is unimportant.  For all cases (even misaligned cases), the shear force 

contribution is again too small to contribute in any case, and the values are excellent for the 

pressure contribution given the complexity of the situation.  The uncertainties in the moment are 

much higher than in F*
X in general, but this is already expected since the very nature of moment 

effects makes them quite sensitive to both the converged nodal values and the nodal placement 

together. 

 Finally, just for a test of the two-dimensional refinement method, a two grid refinement 

was done for the baseline case only in three dimensions.  This extra effort could not be made for 

all cases, but seemed necessary for at least one trial.  The baseline Case #1 mesh was used with a 

0.68 refinement mesh, and the error estimation was calculated for the three global parameters.  

The result of this is that the A1 estimators are -0.80%, -105%, and -25% for F*
X, F*

Y, and M*
Z 

respectively.  This indicates that for F*
X and M*

Z, the 2D projection models are a significant 

overestimation of A1.  This is as intended and reflective of the fact that the 2D case offers a larger 

disruption than the 3D case which can relieve the flow as necessary.  Only F*
Y shows any 

increased sensitivity in the 3D case, and this seems due to the fact that pressure operates over a 
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larger three-dimensional area for this case, which makes it even more sensitive to a small 

pressure adjustment than the two-dimensional line cases. 

 So, after this rather intricate and confusing analysis of the adequacy of the CFD models, a 

short summary is useful to highlight and clarify the main points and results.  The three 

dimensional refinement case shows that the two dimensional refinement cases overestimate the 

F*
X and M*

Z error estimators A1.  The non-monotonic analysis described by Roy show the A1 

estimators to be insufficient for the respective 2D refinement models, but they may be more 

applicable to the three dimensional problems.  Since the GCI is significantly conservative for 

even the 2D problems, it is assumed that it will be very conservative for the corresponding 3D 

counterpart.  In general, the F*
X parameter is the most accurate parameter, followed by the 

moment M*
Z and finally the y-direction force F*

Y, which is only marginally useful anyway. 

 Finally, the boundary placement is given brief consideration, although it will quickly be 

shown to be a non-issue like the iterative convergence error.  For this issue, the two-dimensional 

projection technique is again employed as a tool for error analysis.  With the baseline Case #1 

2D projection, the boundary length upstream, LUPSTR, and the boundary length downstream, 

LDNSTR, were doubled one at a time.  These results were then compared to the nominal case.  The 

important issue again is that the problem is a physically parabolic one.  Thus, there should be 

almost no downstream dependence of the problem (as a parabolic problem is a �one-way� street, 

with information moving downstream only). 

 Doubling the downstream boundary indeed had the expected effect.  Comparison with the 

nominal case revealed that all force and moment coefficients are exactly the same, to the double 

precision output that Ansys/FLOTRAN provides.  Thus, there was no change for all global 

coefficients.  Doubling the upstream length produced slightly higher results.  This comparison 

produced differences of 0.0120% for the F*
X variable, 0.135% for the F*

Y variable, and 1.75% for 

the M*
Z variable.  Just like with the turbulence and grid convergence cases, the nominal moment 

for the baseline Case #1 projection is only -0.075, so a 1.75% difference is quite minor.  Since 

the error is assumed to be first order in length and length doubling was used, these percent 

differences are also equal to the Richardson extrapolation error estimator. 

 Although these values are measurable, the results are much less significant than the errors 

from the ordered discretization error.  The width boundary in the z-direction was not studied 

since it is not possible to do so in two dimensions.  Fig. 5-40 shows the full plot of skin friction 
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for baseline Case #1, which is a quantity that is quite sensitive to velocity variations.  This plot 

was shown in Fig. 5-22, but for only the head region without the full outer wall area.  Fig. 5-40 

clearly shows that the variations remain concentrated in an area around the head only and do not 

propagate anywhere near the outer boundary at all.  Even if the error was on the order of the 

upstream boundary, this is still less than the mesh error anyway.  Finally, the outer boundary is a 

free one, which is somewhat less restrictive than a Dirichlet boundary anyway.  Because of this 

heuristic reasoning, no effort was made to analyze this boundary further. 

 

 
Figure 5-40. Skin Friction Contours on Sensing Head and Surrounding Wall for Entire 

Computational Region, Showing Boundary Placement 
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6.1 The Physical Models 
 

 Chapter 4 covered a laminar flow problem scenario with a large imposed pressure 

gradient, but no distinct convective presence.  Chapter 5 covered a turbulent problem scenario 

with a high Reynolds number but with no pressure gradient.  The similarities and differences in 

these two scenarios can be found by re-reading those sections.  The results of the laminar flow 

channel analysis and of the turbulent external flat plate analysis stimulates a need to push a bit 

further into the examination of the detailed flow in and around a skin friction sensor.  Thus, the 

next step taken in this chapter is to analyze a condition involving high Reynolds number AND 

significant pressure gradients. 

 The subject of this chapter is to extend the turbulent, external flat plate case to something 

similar, but with a pressure gradient imposed.  By definition, a flat plate has no pressure gradient 

in normal external flow.  A surface of this type must be curved to exhibit varying pressure.  A 

curved surface, however, was not seen as a reasonable choice because of the complexity to 

model, as well as the uncertainty in calculating skin friction on a complex geometric surface.  

Also, the gage head is normally flat, so that at least a portion of the curved surface would need to 

be straight around the head itself.  This type of problem seemed to have far too many extraneous 

issues to be of use in this matter.  Channels generate pressure gradients as was seen in Chapter 4.  

The channel flow in Chapter 4, however, was at a very low Reynolds number, and a flow would 

need to be at very much higher Reynolds numbers to be comparable with the flat plate flow in 

Chapter 5.  In this light, a compromise was made.  The flow problems for this chapter are for 

high Reynolds number channels that involve diverging and converging geometry of slope, m, to 

generate negative and positive pressure gradients, respectively.  The walls of the channels are 

CHAPTER 6: Studies of Skin CHAPTER 6: Studies of Skin CHAPTER 6: Studies of Skin CHAPTER 6: Studies of Skin 
Friction Gages in Turbulent Friction Gages in Turbulent Friction Gages in Turbulent Friction Gages in Turbulent 
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flat, solving the issue of placing the head on a curved surface.  The Reynolds number of these 

models was chosen so that the boundary layer along the walls of the channel is quite thin 

compared to the channel cross-section.  Thus, the channels are not fully-developed, and the bulk 

of the channel center remains fully inviscid.  This is similar to the flat plate of the last chapter, 

but a pressure gradient is now imposed on the flow. 

 

 
Figure 6-1. Scaled Drawing of 2D Global Converging Channel Model (Favorable Pressure 

Gradient) 
 

 
Figure 6-2. Scaled Drawing of 2D Global Diverging Channel Model (Adverse Pressure 

Gradient) 
 

 Fig. 6-1 shows a scaled drawing of the converging channel, and Fig. 6-2 shows the same 

scaled drawing for the diverging channel case.  Since both global models are conceptually 

identical, the features of both are looked at together.  In both cases, the channel is symmetric, 

thus avoiding the need to resolve two boundary layers in the computational model and saving a 

great deal of elements.  Again, the wall is flat, mimicking the flat plate model, at least from the 

perspective of the skin friction gage buried within the boundary layer.  For both models, the 
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positive x-axis runs parallel to the plate from the leading edge and the positive y-axis runs 

perpendicular to the plate out into the flow. 

 The two channel cases are dimensioned similarly to the straight flat plate, with the 

exception that the plate length is defined horizontally rather than along the plate.  This was done 

simply to facilitate drawing the models.  The heights h and hOUTLET are the half-heights of the 

channels.  Just like with the flat plate, an entrance length provides the flow with a chance to 

adjust to the presence of the wall leading edge.  In these cases, the flow must not only adjust to 

the wall, but also make a turn into the channel at the same time. 

 The two cases presented in this chapter do not necessarily adhere to any physical 

situation.  The entry length spans two streamlines, forming a streamtube.  The global problems in 

Figs. 6-1 and 6-2 are simply numerical constructs designed to produce a localized effect in the 

boundary layer in the region of the gage.  This pair of channel physical models was designed 

with a one-dimensional flow model governed by eqns. (6-1) and (6-2), which are just the 

incompressible momentum equation called Bernoulli�s equation, and the supporting continuity 

equation for constant density flow.  

A(x)
Auu(x) INLET

INLET=  
(6-1) 

[ ](x)uuρ
2
1PP(x) 22

INLETINLET −+=  
(6-2) 

For one dimensional incompressible flow, total pressure must remain constant, striking a balance 

between pressure and flow speed.  This analysis does not take into account the viscous effects of 

the boundary layer of course, but serves as an excellent tool to design the basic geometry of the 

problems. 

 Design of the problem proceeded by balancing the various desirable criteria for each 

situation.  The goal was to reproduce the conditions of the simple flat plate as much as possible.  

This consisted of matching the free-stream velocity above the gage location to the free-stream 

velocity of the flat plate case (103.4 m/s), matching the boundary layer thickness as closely as 

possible and, creating a large enough pressure gradient to create an interesting problem and to 

cause a large enough change in skin friction coefficient to be different from the zero gradient 

cases.  Eqns. (6-1) and (6-2) were employed, followed by the useful Java boundary layer applets 

[Devenport, 2002] to get a rough estimate of the boundary layer properties of the channels.  One 
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important design criterion imposed was to avoid boundary layer separation for the diverging 

channel.  This limited the level of acceptable pressure gradients.  The channel height values must 

also be sized correctly to be much higher than the maximum boundary thickness predicted by the 

Java applets for each channel.  The dimensionless scaling was preserved from the flat plate 

problems to provide consistency.  For this, length scaling L∞ is 0.075 m, scaling velocity V∞ is 

103.4 m/s, and density ρ∞ of 1.225 kg/m3.  The dimensionless free-stream velocity applied at the 

inlet is no longer equal to 1.0, as the goal was to create a boundary layer edge velocity of 1.0 

directly above the gage location.  This required the use of eqn. (6-1) to calculate the entrance 

velocity required to produce this condition.  The final geometry for both cases is given in Table 

6-1. 

 

Table 6-1. Relevant Geometry and Variable Definitions for Global 2D Converging and 

Diverging High Reynolds Number Channels, Shown Dimensionally (left) and Non-

dimensionally (right) for each Case 

Converging channel 

(Fig. 6-1) 

Diverging channel 

(Fig. 6-2) 
Flat Plate (Chapter 5) 

variable (-) (*) (-) (*) (-) (*) 

uINLET 70 m/s 0.677 180 m/s 1.740 103.4 m/s 1.0 

vINLET 0 m/s 0 0 m/s 0 0 m/s 0 

POUTLET 0 Pa 0 0 Pa 0 0 Pa 0 

m 0.05 0.075 0 

α 2.862O 0.05 rad 4.289O 0.075 rad 0 0 

LENT 112.5 mm 1.5 112.5 mm 1.5 112.5 mm 1.5 

LPLATE 300 mm 4.0 300 mm 4.0 300 mm 4.0 

h 37.5 mm 0.50 24.8 mm 0.33 18.75 mm 0.25 

hOUTLET 22.5 mm 0.30 47.3 mm 0.63 18.75 mm 0.25 

µ 
1.9 x 10-5 

Pa-s 
2.0 x 10-6 

1.9 x 10-5 

Pa-s 
2.0 x 10-6 

1.9 x 10-5 

Pa-s 
2.0 x 10-6 

ρ 1.225 kg/m3 1 1.225 kg/m3 1 1.225 kg/m3 1 
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 Also, in an effort to quantify the strength of the pressure gradient, the correlation 

parameter which originally was proposed by Clauser [1954] to govern equilibrium pressure 

gradients in analyzing turbulent boundary layers was used.  This correlation is given in eqn. (6-

3). 

dx
dP

τ
δβ

W

1=  
(6-3) 

In this equation, the displacement thickness is given as δ1 to avoid confusion with the non-

dimensionalization scheme.  Clauser originally performed some experiments with this parameter 

between 0 (a flat plate flow) and 7.0.  The value β is useful, because it gives a pressure gradient 

strength in terms of the pressure gradient, shear stress, and a boundary layer parameter, all of 

which are important in the skin friction gage performance. 

 

 
Figure 6-3. Scaled Drawing of 3D Embedded Region with Skin Friction Showing Relevant 

Dimensions for Converging Channel Case (Favorable Pressure Gradient) 
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 From these global problems, the embedded region around the skin friction gage is again 

employed, just as in Chapter 5.  Figures 6-3 and 6-4 show scaled images of the two embedded 

problems which correspond to the global problems of Figures 6-1 and 6-2. 

 

 
Figure 6-4. Scaled Drawing of 3D Embedded Region with Skin Friction Showing Relevant 

Dimensions for Diverging Channel Case (Adverse Pressure Gradient) 

 

 Table 6-2 gives the associated geometry for these two cases.  Additional fluid properties 

and information was reused from Table 6-1.  Just like in Chapter 5, the inlet and outlet 

conditions of the embedded problems come from the corresponding solutions from the global 2D 

problems.  The distance along the plate to the center of the head corresponds to a Reynolds 

number that is comparable to the gage position along the turbulent flat plate studied in the 
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previous chapter.  The x-direction distance along the wall that governs the Reynolds number is 

recorded in Table 6-2 with the other relevant gage geometries.  Here, only the baseline 

configurations are considered with gage geometry corresponding to the baseline Case #1 of the 

turbulent, flat plate problem in Chapter 5 and the head aligned with the wall.  No additional 

parameter variation or misalignment conditions are considered in conjunction with the pressure 

gradient. 

 

Table 6-2. Relevant Geometry and Variable Definitions for 3D Embedded 

Problems for  Converging and Diverging Channels, Shown Dimensionally 

(left) and Non-dimensionally (right) for each Case 

Converging channel 

(favorable pressure gradient) 

(Fig. 6-3) 

Diverging channel 

(adverse pressure gradient) 

(Fig. 6-4) 

variable 

(-) (*) (-) (*) 

xGAGE 255.2 mm 3.402 260.9 mm 3.479 

h 25.6 mm 0.3408 43.1 mm 0.5740 

hEXIT 24.0 mm 0.3194 45.5 mm 0.6065 

LHORIZ 32.0 mm 0.4267 32.5 mm 0.4337 

LUPSTR 12.1 mm 0.1611 12.4 mm 0.1650 

LDNSTR 12.1 mm 0.1611 12.4 mm 0.1650 

w1 16.0 mm 0.2136 16.3 mm 0.2175 

G 0.127 mm 0.001693 0.127 mm 0.001693 

c 0.254 mm 0.003386 0.254 mm 0.003386 

DHEAD 7.62 mm 0.1016 7.62 mm 0.1016 

DBEAM 3.175 mm 0.0423 3.175 mm 0.0423 

LBEAM 25.4 mm 0.3386 25.4 mm 0.3386 

Λ 30O 0.524 rad. 30O 0.524 rad. 

 

 As in the previous chapter, it is advantageous to look at the dimensions of the gage in 

terms of wall units.  This again has the utility of relating the results of the flow conditions 

studied here to other flow conditions that share similar wall unit dimensions.  Table 6-3 gives the 
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gage parameters of the baseline configuration in terms of wall units for the favorable pressure 

gradient, converging channel and the adverse pressure gradient, diverging channel.   

 

Table 6-3. Relevant Variations and Case Nomenclature for Three-

Dimensional Embedded Region Pressure Gradient Models 

parameter Converging channel (dP/dx<0) Diverging channel (dP/dx>0) 

G+ 37.1 28.3 

c+ 74.2 56.7 

D+
HEAD 2226.0 1700.0 

D+
BEAM 927.0 708.0 

L+
BEAM 7421.0 5668.0 

Z+ 0 0 

 

6.2 The Computational Models 
  

 The computational model of each channel case is a straightforward extension of the 

physical model.  With one exception, the meshing and boundary conditions are the same as 

Chapter 5.  The global problem models are shown in Figs. 6-5 and 6-6 for the converging and 

diverging cases, respectively.  The mesh is similar to the flat plate mesh of Chapter 5, marked by 

highly concentrated elements near the wall, with fewer elements near the top centerline of the 

model.  To enhance the viewing potential of the images, the view is zoomed in to show the 

region at the start of the plate for both figures.  The structured mesh covers the plate length in 

this way. 
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Figure 6-5. Mesh of 2D Global Converging Channel Problem in the Leading Edge Region 

 

 
Figure 6-6. Mesh of 2D Global Diverging Channel Problem in the Leading Edge Region 

 

 Here again, the design of the mesh required keeping the near wall node of the first 

element close to a y+ of 11.5 without being lower.  This constraint was more difficult to satisfy in 

these cases since the boundary layer characteristics are somewhat more complex than the simple 

flat plate, but (after some trial and error) the result is quite satisfactory as shown in the next 

section.  A total of 100 points was used in the vertical direction in both cases.  In the flat plate 

problem, there was little happening above the boundary layer, so the computational domain 
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required almost no points in that region.  Although the mesh is still highly staggered in favor of 

the wall area, there are some stream-wise effects happening here in the inviscid region of the 

problem, so more points were used to account for this. 

 For the embedded region computational models, identical structured grids were built 

consisting of approximately 118,000 elements each.  These grids reflect a somewhat larger 

number of elements than the flat plate cases of Chapter 5 (compared to Table 5-3).  With more 

points in the vertical (y) direction, and a more complex situation, the increase was deemed 

necessary. 

 

 
Figure 6-7. Mesh of 3D Embedded Region for Converging Channel Case (dP/dx < 0) 

 

 Figures 6-7 and 6-8 show the resulting finite element meshes for the converging and 

diverging embedded regions, respectively.  Just like previous work, elements are concentrated 

heavily near the wall and in the gap region, with coarser regions near the outside of the boundary 

layer and deep into the cavity where there is little happening.  The vertical distance and point 

spacing at the inlet and outlet was kept the same as the corresponding global problem meshes to 

make the boundary condition application accurate without requiring interpolation. 
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Figure 6-8. Mesh of 3D Embedded Region for Diverging Channel Case (dP/dx > 0) 

 

 Finally, Fig. 6-9 shows a close-up view of the upstream gap region of the converging 

channel case, Fig. 6-9 (a), and the diverging channel case, Fig. 6-9 (b), for comparison.  The 

meshes are slightly more dense than, but generally consistent with, those used in the flat plate 

problem computational models in Chapter 5. 

 



Chapter 6, Section 2: The Computational Models 

page - 189 

 
Figure 6-9. Mesh of Upstream Gap Region along Gage Symmetry Plane for Converging and 

Diverging Channel Cases 
 

 The boundary conditions for the global and embedded problems are the same as they 

were for Chapter 5, with one notable exception.  The walls all received the no-slip condition and 

the inlet length of the two global problems before the plate received the symmetry condition of 

no vertical velocity with other conditions left free.  The inlet of each global problem received the 

usual turbulence conditions of 0.0 for turbulent kinetic energy, and 1.0 for turbulent dissipation, 

as well as a vertical velocity component of 0.0, and the dimensionless stream-wise value, uINLET, 

as given in Table 6-1.  The outlet of both global problems was given a pressure condition of 0.0. 

 The significant difference from the flat plate problem of Chapter 5 to these problems here 

is that here the top surface of both global problems and both embedded problems represents a 

symmetry plane.  Thus, a normal velocity of zero was imposed on all those surfaces.  This is 

unlike Chapter 5 in which the correct condition on the top surface was a free boundary.  Here, 

the upper surface forms the streamtube, forcing all flow to enter the inlet and exit the single 

outlet of the computational region.  Because of this, pressure is solved relative to the outlet 

condition, balanced by the changing velocity imposed by the continuity equation. 
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 One note about the pressure is that it is important to remember that the pressure solution 

over the computational domain is calculated relative to the outlet.  Thus, the diverging channel 

case will predict negative pressure values as dictated generally by eqn. (6-2).  Obviously, a 

negative absolute pressure is non-physical, but the solution is only relative to the reference point 

of the outlet, so the solution is valid.  Also, note again that the conditions of these problems show 

that only the gradients of pressure are important anyway, so the pressure level itself is irrelevant. 

 With these conditions applied to the global problems, the embedded problems use the 

same scheme where applicable.  In addition, the centerline of the gage represents a symmetry 

plane, while the outer z-boundary was left as free, just like in Chapter 5.  The lateral distance in 

the z-direction of the embedded models, w1, was increased some from that for the flat plate case 

in Chapter 5 just to make allowances for unexpected features of a more complex flow. 

 As for the flat plate case in Chapter 5, inlet conditions for the embedded region problems 

consisted of direct transfer of u, v, κ, and ε from the global solutions.  In addition, P was directly 

transferred from the appropriate station of the global solution to the embedded region outlet.  

Although analytically it is known that pressure is approximately constant normal to a boundary 

layer flow, it was thought best to transfer the exact numerical solution to the outlet for 

consistency.  The numerical condition does confirm that the pressure changes very little along 

this boundary. 

 

6.3 Solution of the Global Channel Problems without a Gage 
 

 The global problems provide the basis for the embedded problems to come, so the results 

from these two problems are given before moving into the embedded region cases with the gage 

involved.  The analysis begins with the resulting shear stress coefficient plot from these two 

solutions as shown in Fig. 6-10, compared to the nominal flat plate case for reference.  

Remember that one of the desired features of these problems was to produce a shear stress 

significantly different from the flat plate flow.  In all cases, the coefficient is normalized by the 

reference free-stream dynamic pressure, the same as used on the flat plate.  There is no 

correction made for the changing edge velocity at various stations in the boundary layer of the 

channel problems.  The diverging channel case obviously avoids separation along its length, as 

desired. 



Chapter 6, Section 3: Solution of the Global Channel Problems without a Gage 

page - 191 

 
Figure 6-10. Comparison of Global Problem Cf Results for Converging, Diverging, and Flat 

Cases, Coefficient Based on Reference Dynamic Pressure 
 

 The position chosen for the center of the gage head in all three problems is illustrated by 

a black arrow head on all three curves, located just before an x* station of 3.50.  For all three 

cases, the edge velocity at the top of the boundary layer is approximately 1.0.  This was a desired 

feature, as was keeping the channel gage cases at a similar Reynolds number based on plate 

length as for the flat plate flow.  This obviously was accomplished too, since the arrow heads are 

approximately lined up vertically.  Because the dynamic pressure is the same in all three cases at 

this point, comparing the Cf values between cases is more straightforward. 

 From the information in Fig. 6-10, the target Cf value for each problem was calculated, 

numerically integrating over the head length at the appropriate station for each case just as 

before.  This number works out to be 0.00384 for the converging channel, and 0.00224 for the 
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diverging case.  Both numbers are sufficiently different from the flat plate case (Cf = 0.00307) as 

to be useful.  The issue of separation was also avoided in the adverse pressure gradient case, 

since the skin friction coefficient value remains significantly above zero even at the end of the 

plate.  

 The x-direction velocity contour distributions are given by Figs. 6-11 and 6-12.  Looking 

at these contours provides some indication of the boundary layer thickness for each case.  The 

boundary layer appears very thin for the favorable pressure gradient flow in Fig. 6-11, almost too 

small to see.  This was a major limiting factor in the design of that problem.  Although increasing 

the plate slope could have increased the pressure gradient further, the boundary layer continues 

to get thinner as this occurs.  The thickness of the boundary layer for the adverse pressure 

gradient case in Fig. 6-12 is much larger. 

 

 
Figure 6-11. Contour Plot of Dimensionless X-Direction Velocity Solution for Converging 

Channel Case (dP/dx < 0) 
 

 
Figure 6-12. Contour Plot of Dimensionless X-Direction Velocity Solution for Diverging 

Channel Case (dP/dx > 0) 
 

 The resulting pressure distributions for the two cases are presented in Figs. 6-13 and 6-

14.  These solutions match up quite well with the simple 1D predictions of eqn. (6-2).  Both plots 

are given relative to the pressure of zero set on the outlet face.  Of course, the gradient of 
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pressure is more directly important here.  Therefore, the flow is further validated by showing a 

plot of the pressure gradients compared to the simple 1D predictions of eqns. (6-1) and (6-2) in 

Figs. 6-15 and 6-16 for the two relevant cases.  A simple, centered operator finite difference was 

used for the discrete solution of pressure along the centerline of each case, so this explains some 

of the waviness seen in the numerical solution.  The trend and approximate values, however, line 

up extremely well with the predictions.  The small variation in each case can be explained by 

considering that the effective cross-sectional area is changed slightly by the presence of the 

boundary layer. 

 

 
Figure 6-13. Contour Plot of Pressure Solution for Converging Channel Case (dP/dx < 0), 

Scaled Non-dimensionally and Dimensionally 
 

 
Figure 6-14. Contour Plot of Pressure Solution for Diverging Channel Case (dP/dx > 0), 

Scaled Non-dimensionally and Dimensionally 
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Figure 6-15. Pressure Gradient as a Function of Plate Station for Converging Case, 

Compared to 1D Analytical Solution from Equation (6-2) 

 

 
Figure 6-16. Pressure Gradient as a Function of Plate Station for Diverging Case, Compared 

to 1D Analytical Solution from Equation (6-2) 
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 The work of Clauser [1954] using his pressure gradient parameter given in eqn. (6-3) 

showed that positive values around 3.0 or so showed significant departure in characteristics from 

the flat plate case.  The idea then, was to target symmetric values of +/- 3.0 for these two cases.  

The diverging channel case produced an average pressure gradient in the region of the embedded 

problem 19,933 Pa/m or 0.1141 in dimensionless terms.  The displacement thickness was 

estimated by numerical integrating the boundary layer profile value (1 - u*/U*
EDGE) at the station 

corresponding to the head center.  These results generated an estimated β of 2.61.  The 

converging channel case showed an average pressure gradient of -28,391 Pa/m or -0.1626 in 

dimensionless terms.  This is somewhat higher in magnitude than the diverging case, but 

produced an estimated β of only -0.44.  Raising the pressure gradient higher by tilting the wall 

more only made the boundary layer thinner, and β remained basically unchanged.  Thus, 

symmetry in the β parameter is not really a valid expectation, and these values were considered 

acceptable given the magnitude of the actual pressure gradients for both cases. 

 Finally, Fig. 6-17 shows a plot of y+ along the wall for both cases to show that this 

important criterion was well satisfied for both cases.  Further, the value is consistent enough for 

both cases to justify the validity of making comparisons between the two. 

 

 
Figure 6-17. Plot of Global 2D Channel Solution y+ Values, Including Transition y+ Limit 
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6.4 Flowfield Results 
 

6.4.1 Velocity Field Results 

 

 As before, a look at the flow field through the gap can be insightful in understanding the 

relationships and roles of the resulting forces in the gage performance.  The flow results of the 

two cases are presented in Figs. 6-18 and 6-19, showing the flow patterns at the gage symmetry 

plane.  Figures 6-18 (a) and 6-19 (a) are for the upstream gap region, and Fig. 6-18 (b) and 6-19 

(b) show the downstream gap region, with the center of the head of each figure removed so that 

the gap area can be enlarged for clarity. 

 

 
Figure 6-18. Scaled Vector Field Overlaid with Velocity Magnitude Contours for the 

Converging Channel (dP/dx<0) Case in the Gap Regions (Vector Points Arbitrarily Selected for 

Clarity) 
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Figure 6-19. Scaled Vector Field Overlaid with Velocity Magnitude Contours for the Diverging 

Channel (dP/dx>0) Case in the Gap Regions (Vector Points Arbitrarily Selected for Clarity) 

 

 The converging channel case, Fig. 6-18, shows some recirculation in the upstream gap, 

but a significant flow rate passes into the cavity from this gap.  Flow moves out of the 

downstream gap area.  Some blockage is again created here by recirculation, but a significant 

flow rate moves back out into the flow.  The flow rate is somewhat higher in magnitude 

compared to what was seen in the baseline flat plate case of Chapter 5.  In that case, most of the 

gap showed circulating motion, and only a small flow actually entered the cavity.  Here, the 

velocity is around 2-3% of the free-stream velocity. 

 The diverging channel case, Fig. 6-19, shows similar but opposite behavior.  Flow enters 

from the downstream gap, moves in the negative x-direction through the cavity, and exits back 

out from the upstream gap.  Again, some recirculation can be seen, but the fraction of the total 

flow exhibiting this behavior is much smaller than in the flat plate cases of Chapter 5 and the 

overall flow is significant and follows a distinct path. 
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 In both cases, the important result is that the flow follows the path from high pressure to 

low pressure, as caused by the pressure gradient applied in each case.  The magnitudes of the 

velocity present in the gap (approximately 10% of the free-stream velocity) is generally 

consistent with the magnitudes seen in the baseline flat plate case of Chapter 5, but the fraction 

of this flow entering the cavity region is much greater than in the flat plate cases.  This change in 

behavior is certainly caused by the fact that there is now a pressure difference between the 

upstream and downstream gap regions in both cases, providing a driving force for the flow in the 

gap and cavity regions.  The complex patterns seen in the gaps themselves for both cases will 

reflect the transmission of pressure forces seen in the next sub-section. 

 

6.4.2 Stress Field Results 

 

 In Chapter 4, the issue of the validity of an assumed linear pressure gradient in the gap 

was addressed.  The general conclusion from that chapter correlated with the conclusions of 

Everett [1958], which was that the assumption was not generally valid, but that increasing the lip 

to gap ratio (c/G) of the gage made the actual variation most linear.  Thus, a very high c/G value 

could be approximated with a linear pressure drop in the channel.  The flow conditions in which 

Everett investigated this assumption were quite similar to the laminar channel flow in Chapter 4, 

and this investigation continues here with these high Reynolds number cases.  As with the results 

in Chapter 4, traces of pressure are presented along the lip surface from the top of the head 

exposed to the flow downward into the cavity to the end of the lip.  These traces are given at 

various angle stations around the circular head, starting at the upstream edge of the gage. 

 Figure 6-20 shows the pressure traces from the converging channel case.  Just as for the 

flat plate cases in Chapter 5, this figure shows that the same stagnation region appears on the 

upstream face of the lip as a result of the rapid flow deceleration moving into the gap.  In fact, 

this effect is quite strong, particularly on the upstream symmetry plane.  The downstream part of 

the face (from 90 to 180 degrees) shows some pressure change in a pattern similar to the baseline 

channel case from Chapter 4, but the pattern is no longer symmetric about the cavity region. 
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Figure 6-20. Dimensionless Pressure Traces at Various Angle Stations in the Gap Area along 

the Lip Surface of the Converging Channel Case 
 

 In similar fashion, the pressure traces along the lip surface for the adverse pressure 

gradient diverging channel case are shown in Fig. 6-21.  This figure shows a more intricate 

pattern than the converging channel case above.  With the knowledge from the last section that 

the flow is actually reversed in this case, an interesting set of features emerges.  On the upstream 

side, the same stagnation pressure region exists that was highlighted earlier.  Comparing with 

Fig. 6-20, the increase above the 90 degree line is about the same amount as in the converging 

channel case.  Since the dynamic pressure is similar in both cases, this is logical.  On the 

downstream side, one would expect that the pressure in the gap would be high since the pressure 

gradient is positive overall for this case.  Figure 6-21 shows that this is not the case, however.  

The pressure on the downstream gap actually decreases considerably, apparently caused by the 

presence of the gap, and the pressure driven flow enters through this gap rather than exiting as in 

the first case.  Farther down into the gap, the pressure on the downstream side does rise back up 

to the expected levels, but the behavior near the surface significantly deviates from the expected 
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outcome.  It is clear that for both cases there is no semblance of a linear pressure pattern in the 

gap region. 

 

 
Figure 6-21. Dimensionless Pressure Traces at Various Angle Stations in the Gap Area along 

the Lip Surface of the Diverging Channel Case 
 

 The pressure contours over the head will obviously reflect the data shown in the previous 

two figures.  Those two figures give an indication of the lip force defined by Allen [1976].  In 

addition, there is the issue of the imposed pressure gradient over the top of the head, and the 

complex interactions around the gap.  Figure 6-22 shows the pressure contours over the head 

surface for the converging channel case, as seen from upstream and above the head.  Just like in 

Fig. 6-20, a stagnation region clearly appears along the front surface.  In addition, the negative 

pressure gradient is clearly visible on the top of the head.  This pressure variation will lead to a 

strong positive z-direction moment.  This is opposite to the additional positive force caused by 

the lip force or the stagnation region on the front of the head. 
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Figure 6-22. Pressure Contours over 3D Head Surface of Converging Channel Case, Scaled 

Dimensionally and Non-dimensionally 
 

 Figure 6-23 shows a side view of the pressure field on the symmetry plane of this same 

converging channel case.  The side view more clearly shows the pressure along the lip surface 

into the gap that Fig. 6-20 illustrated.  In addition, it is perhaps easier to see the pressure 

variation resulting from the pressure gradient, as well as the pressure changes occurring right at 

the edge of the gap entrances in Fig. 6-23. 

 Figure 6-24 shows a split view of the head surface of the diverging channel case.  Figure 

6-24 (a) shows the head viewed from generally upstream and above the head, while Fig. 6-24 (b) 

shows the head viewed from downstream and above.  The stagnation region at the front can be 

seen, as can the low pressure region along the back of the lip surface.  This combination still 

yields a positive net lip force, despite the pressure gradient.  In this case as well, the pressure 

gradient along the top of the head produces a negative z-direction moment contribution.  Thus, 

this diverging case is expected to be the worst of the two cases in terms of accuracy since the 

contributions sum rather than cancel. 
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Figure 6-23. Pressure Contours along Symmetry Plane of Converging Channel (Favorable 

Pressure Gradient) Case, Scaled Dimensionally and Non-dimensionally 
 

 
Figure 6-24. Pressure Contours over 3D Head Surface of Diverging Channel (Adverse 

Pressure Gradient) Case, Scaled Dimensionally and Non-dimensionally 
 

 Finally, a shear stress plot is given for the converging channel case in Fig. 6-25.  Except 

for some small increase near the leading edge of the head, the skin friction coefficient remains 
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relatively undisturbed despite the large pressure effects happening on the gage.  The target Cf 

value is again 0.00384 for this case.  The figure shows that the head sees this value over most of 

its surface.  This leads to the conclusion that the shear stress (friction) force contribution will be 

close to what it is supposed to be. 

 

 
Figure 6-25. Skin Friction Coefficient Contours over Head Surface and Surrounding Wall Area 

for Converging Channel (Favorable Pressure Gradient) Case 

 

 Figure 6-26 shows a plot of skin friction coefficient for the diverging case.  Similarly 

here, the nominal level is close to the target value of 0.00224, and the flow is mostly 

undisturbed, except near the leading edge and near the extreme outer edge.  Both Fig. 6-25 and 

Fig. 6-26 exhibit the same characteristics that were seen in Chapter 5: a local skin friction 

increase near the leading edge of the gage and the edge of the downstream wall, and a localized 

decrease at the outer gage edge, trailing downstream over the wall for some distance.  This is an 

effect of the flow through the gap, and it has only a small effect on a well-aligned sensing head. 
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Figure 6-26. Skin Friction Coefficient Contours over Head Surface and Surrounding Wall Area 

for Diverging Channel (Adverse Pressure Gradient) Case 

 

6.5 Force and Moment Results 
 

 Now, the force and moment results of the two pressure gradient cases are presented.  

Here, they are given only in tabular format, since there are not a sufficient number of similar 

cases to justify plots.  The dimensionless force results are given in Table 6-4.  The results 

indicated by the stress field plots do indeed have their implied effects on the total force values. 

 In both cases, shear stress contribution is well-predicted.  Contribution by the lip 

(pressure) force is a concern in the converging channel case (which raises the error level in F*
X 

up to 9%), but this same value works out to be small in the diverging channel case.  This is 

supported by Fig. 6-21, where the upstream and downstream values of pressure cross midway 

into the cavity.  Thus, the pressure variation has only a small net effect on the force.  In both 

cases, moment is a strong contributor to the total strain in the flexure as a result from the normal 

force term caused by the pressure gradient.   
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Table 6-4. Results of Global Force and Moment Parameters for Favorable and Adverse 

Pressure Gradient Varying Area Channel Cases 

Converging channel (dP/dx < 0) Diverging Channel (dP/dx > 0) 
component 

pressure shear total pressure shear total 

F*
X 0.0624 1.0275 1.0899 0.0079 0.9941 1.0020 

F*
Y -9.7316 -0.0063 -9.7379 9.2651 0.0056 9.2707 

M*
Z 0.4929 0.0082 0.5011 -0.5570 -0.0021 -0.5591 

% strain 

error 
-6.0 % 17.0 % 

 

 The overall outcome of these two cases is actually quite encouraging.  These two models 

represent high Reynolds number flow conditions with significant pressure gradient levels.  Under 

these conditions, the indicated stream-wise force error was only 9% and the highest strain error 

level found was only 17%, which are no more significant than the errors induced by a large gap 

in the preceding chapter for a comparable case without a pressure gradient.  This speaks well 

about the ability of this basic design to minimize the potential problems caused by pressure 

gradients in general.  The pressure field plots indicate that making the head diameter smaller 

would further reduce the effects of the pressure gradient via the normal force term.  Although 

only one head size was studied here, this conclusion is supported both by logical supposition and 

by the data available here. 

 It is also known from earlier that minimizing the lip size can have an effect on this result.  

Minimizing lip size will also minimize the contribution by pressure to F*
X.  However, from the 

data in Table 6-3, this could actually make the situation slightly worse since the positive pressure 

force somewhat offsets the negative strain error contribution from the moment.  In the diverging 

channel case, minimizing the pressure is desirable, but the force is small.  It only adds about 1% 

to the strain error total, so a lip size change there would have very little effect.  This suggests that 

there might be some optimal non-zero lip thickness that would correctly balance the two pressure 

effects (force and moment) for the converging channel case while still remaining small enough 

that the force contribution by pressure will be minor in the diverging case.  A similar result was 

seen for the negative pressure gradient case in Chapter 4, with the exception that the moment 

effect was small enough that offsetting the moment with the extra force seemed too risky for 
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what amounted to less than 1% of possible benefit.  Thus, it was recommended there that the lip 

be simply made as small as possible.  Here, the data suggests that there possibly could be some 

benefit in high convection applications to optimizing the lip thickness to a non-zero value. 

 Without further detailed study of this lip thickness effect, it is impossible to say whether 

the optimum lip size would hold for a wide range of pressure gradient levels and flow conditions.  

Designing an individual gage for each specific pressure gradient level is not practical unless the 

lip size could be fixed for at least a reasonably large range of pressure gradient levels.  Although 

increasing the lip size further could possibly have some benefit in these cases, the danger in 

doing this is high without understanding the full ramifications of doing so and any such action 

would have to be studied very carefully.  In the absence of such data, the only course of action is 

to minimize the lip thickness and live with the moment generated by the pressure gradient on the 

head.  This value could be estimated with pressure sensors in the same region or analyzed with 

CFD solutions and subtracted from the resulting skin friction measurement as a reasonable 

alternative. 

 Finally, it is very important to note here that acceptable gage accuracy can be achieved 

without a viscous liquid fill in the gage cavity for cases with rather strong favorable and adverse 

pressure gradients.  This has a great practical advantage because of the many problematic and 

challenging issues surrounding the liquid-filled gages. 

 

6.6 Validation and Verification 
 

 The usual issues in verification and validation are discussed here as appropriate to these 

two pressure gradient cases.  Since these two models are similar in most ways to the flat plate 

cases of Chapter 5, many aspects of these issues have been covered there already.  Validation, in 

fact, is such an example.  The last chapter covered a study of the adequacy of the turbulence 

model performance in and around the complex gap region for a flat plate case.  Based on the 

results of that study and supporting evidence of the effective viscosity determination of the 

baseline case given in that chapter, the turbulence model is assumed valid (or at least adequate) 

for these cases here as well.  It can be said that similar effective viscosity plots were seen for 

these two cases also � a damping of turbulence in the gap and cavity regions similar to Fig. 5-15.  

Since there are no differences in these two cases which would be considered an issue in the 
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standard κ−ε performance, the default turbulence model was used again here without additional 

specific assessment. 

 Convergence has been a non-issue so far when considered against the other sources of 

computational model error.  This is true again here.  Normalized residual values for each 

individual degree of freedom are given in Table 6-5 for both pressure gradient cases.  The levels 

are consistently low for all degrees of freedom for both problems.  As before, these numbers are 

the maximum absolute values for any node in the model, so most nodal values are much lower. 

 

Table 6-5.  Normalized Maximum Magnitude Nodal Residual 

Values Given by Degree of Freedom for Each Case 

Degree of freedom Converging case Diverging case 

VX 3.1 x 10-5 4.7 x 10-5 

VY 1.1 x 10-4 1.5 x 10-5 

VZ 1.3 x 10-5 1.0 x 10-5 

PRES 1.5 x 10-4 2.2 x 10-5 

ENKE (κ) 1.0 x 10-5 1.5 x 10-5 

ENDS (ε) 2.7 x 10-5 2.0 x 10-5 

 

 As a confirmation that the residual values are indeed sufficiently low, an iterative history 

for each case is given if Fig. 6-27, with Fig. 6-27 (a) for the converging channel case and Fig. 6-

27 (b) for the diverging channel case.  In both graphs, a percent difference from the final value is 

tabulated for the global force components as well as the strain error.  The diverging channel case 

in particular has a significant iterative convergence error at the start of the history, but most of 

the error damps out by the stopping point.  The converging channel case shows low levels 

throughout, although the convergence is highly non-monotonic.  Looking near the stopping 

point, it is apparent for both cases that the percent differences for all the monitors have reduced 

to something on the order of 0.1%.  This is more than reasonable and insignificant relative to the 

mesh dependence error contributions. 
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Figure 6-27. Iteration History Illustrating Convergence Level for each Global Force 

Component 
 

 The ordered mesh dependence study proceeds just as it did earlier.  For each of the two 

pressure gradient cases, a representative two-dimensional model was created, using the identical 

structured mesh for the 2D projection.  This projection was solved using the same boundary 

conditions (exempting the z-direction boundaries of course) and the solution calculated as a 

�worst-case� scenario, based on the fact that the sensing head in this 2D case is a stronger 

obstruction to the flow.  For generating Richardson extrapolation error estimators, a second 

coarser 2D grid was created, this time with a refinement ratio of 1.333.  This results in 75 points 

across the boundary layer, compared with 100 in the main grid. 

 Table 6-6 gives the resulting error estimation values, A1, for each global parameter in the 

two pressure gradient cases, broken up by the pressure contribution, the shear stress contribution, 

and the weighted sum of the two for each variable.  The results appear quite similar to what was 

seen for the flat plate case in Chapter 5, although the overall estimations here are actually 

somewhat improved over those cases when considering the practical implications of the table. 

 As before, there is a large variation in the error estimations for the different contributions 

made to force and moment.  F*
X is the primary variable to study, and, for both of these cases, the 

contribution to this parameter by pressure is small compared to the shear stress contribution.  

This is particularly true for the diverging channel case, where pressure contributes only 0.79% of 
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the total x-direction force on the head.  Even though the error estimation predicts a seemingly 

excessive level of uncertainty (200%) for this value, the small fraction of the total that the 

pressure term contributes cannot meaningfully impact the total force even with the indicated 

uncertainty level in the results.  In other words, the uncertainty in this term results in an 

uncertainty of only +/-1.6% in the total.  With smaller error levels predicted by the shear stress, 

Table 6-6 shows that the accuracy of the total is estimated to within approximately 5.3% (or 16% 

GCI) or less for both cases.  The exact opposite scenario occurs for the moment, M*
Z.  There, the 

pressure error levels are small, while the shear stress levels are excessive.  Since the shear 

contributes almost nothing to the moment though, the total levels are just slightly higher than for 

the x-direction force.  The F*
Y variable is the only parameter of the three that shows significant 

uncertainty values, being approximately one order of magnitude higher than the other two.  The 

case for the accuracy and subjectivity of this parameter was already made in detail in Chapter 5, 

however, so the reader is referred back to Section 5.6 for that discussion.  It will not be repeated 

here, except to say that these levels are more than acceptable for the purposes of that parameter 

as used here. 

 

Table 6-6. Richardson Extrapolation Error Estimator and GCI Values for Pressure Gradient 

Cases, Given by Individual Global Parameter and Divided by Shear and Pressure Contributions 

pressure shear stress total 
Parameter & case 

A1 GCIFINE A1 GCIFINE A1 GCIFINE 

F*
X -30.5 91.6 -0.8 2.4 -2.7 8.2 

F*
Y -87.2 261.7 -144.2 432.7 -87.0 261.1 
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M*
Z 8.2 24.6 -61.6 184.8 7.5 22.4 

F*
X 198.9 596.8 -2.9 8.7 -5.3 16.0 

F*
Y -46.1 138.4 -80.1 240.4 -46.2 138.6 
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M*
Z -9.7 29.0 98.9 296.7 -9.4 28.1 
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 Finally, the boundary placement dependence was looked at briefly for the baseline flat 

plate case in Chapter 5, and was shown to be small compared to the error just discussed.  Since 

these two cases are under similar conditions (similar Reynolds number, identical gage geometry, 

similar flow patterns, etc.), the study done in that chapter is considered to be valid for these two 

pressure gradient cases as well.  Just to be sure, all three boundaries � LUPSTR, LDNSTR, and w1 � 

have been increased from that case, so the boundary error should be even more of a non-issue 

here.   
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7.1 Overview of Significant Results 
 

 The results presented here have been the outcome of a broad effort to fulfill the goals set 

out in the beginning of this document.  These goals are reproduced again here as a reminder of 

the major conclusions of this work. 

(1.) understand the detail of the flow physics in and around a typical direct measuring 

skin friction gage as well as the causes and contributions to error in measurement 

caused by the complex and subtle flow and stress fields involved 

(2.) develop general guidelines for minimizing inherent errors in direct measuring, non-

nulling skin friction sensor design 

(3.) quantify and provide typical performance benchmark data and also develop a 

procedure for estimating error in an actual experiment using a skin friction gage 

 These objectives have been met directly and indirectly in a number of ways.  Skin friction 

gage behavior was studied here in a range of flow situations including: (a) laminar and turbulent 

flows, (b) internal and external flows, (c) liquid and gaseous flows, and (d) flows with and 

without pressure gradients.  The flowfield results presented give fundamental information of 

some of the qualitative and quantitative features of the respective flow situations that are caused 

by the presence of the skin friction gage floating head and flexure in the wall.  These features, in 

turn, drive the performance of the skin friction gage and provide understanding about the sources 

of any error in the force and moment components for the gage.  Also, in a simultaneous 

fulfillment of goals (1) and (3), the force results presented for the flow cases studied were 

divided up into the contribution by pressure and the contribution by shear stress to the total 

forces and moments.  This tabulation indicates situations where induced errors are caused 

exclusively by either pressure forces or shear stress forces, as well as situations where the 

sources contribute by either summing together or partially canceling each other out. 

CHAPTER CHAPTER CHAPTER CHAPTER 7777: : : : Concluding Concluding Concluding Concluding 
RemarksRemarksRemarksRemarks 
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 First, the laminar channel flow problems showed the importance of proper alignment of 

the sensor, even in a flow of very small Reynolds number.  In this case, the misalignment 

variable Z was the dominant effect.  The effects of misalignment were found to be significant, 

changing the output by up to 15% for head protrusion and 10% for head recession in the range 

studied.  The governing presence of the negative pressure gradient causes some positive strain 

error in the flexure even at perfect alignment, so recession of the sensing head first causes the 

strain error to reduce to zero before moving into the negative region.  This study thus shows that 

head recession tends to be less costly than an equal amount of protrusion given a choice between 

the two. 

 The lip played an important role in the flow caused by the pressure gradient, because the 

lip of the gage controls the effective area over which the pressure differences are allowed to act.  

This lip force can be approximated by the contribution by pressure to F*
X.  Results show that 

minimizing the lip size can reduce the effect of the lip force to very low levels.  Although 

pressure can still have a small effect even at zero lip thickness, this is negligible and provides 

accurate measures to within 1%.  Thus, minimizing lip size in the presence of a pressure gradient 

under low Reynolds number conditions is a direct realization of the second objective.  In 

addition, the detailed results can provide some estimates for the third objective under low 

Reynolds number, fully viscous conditions like these.  The results confirmed the conclusions of 

Everett [1958], who suggested that the pressure variation into the gap along the lip surface 

cannot be simply treated as a linear function.  Data here shows that pressure is indeed a non-

linear function of distance into the gap, but larger lip to gap (c/G) ratios produce increasingly 

linear characteristics.  Thus, for a very deep gap, a linear correction may be useful for a viscous 

(low Reynolds number) flow situation at the discretion of the researcher. 

 The low Reynolds number of this flow reduces significantly the importance of 

convection.  Under these conditions, the gap size had only a minor influence on the accuracy of 

the measurement.  Although research indicated that reducing the gap size as small as possible has 

some benefit, this effect is much smaller than the other variables in the study. 

 Second, the external, turbulent flat plate flows paint a different picture of gage behavior.  

Here, the importance of convection was increased dramatically, while the removal of the 

governing pressure gradient in the flow shuffled the importance of the design parameters.  In this 

case, gap size took on an increased role, providing significant strain errors in the flexure up to 
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20% in the range studied.  A suggested design rule provides both an estimate of error caused by 

the flow through the gap and a design tool to size the gap for a specific application. 

 For these cases, lip thickness had no effect on the outcome.  For zero pressure gradient 

flow at perfect alignment, the lip force is small, causing only a relatively minor level of strain 

error.  Reducing the lip size had little effect on the resulting strain error, since the lip force 

application point is very close to the surface edge.  It is still wise to minimize the lip size in 

general, however, to make a more versatile design and to prepare for experiments where 

unexpected pressure gradients may occur. 

 Once again, misalignment took precedence as the major contributor to error in the 

turbulent, external flow problems, producing errors of over 100%.  A comparison of Allen�s 

experimental work with the present numerical misalignment results shows good correlation in 

terms of the general qualitative trends.  Allen divides the forces into the lip component (1-

c/2a)CL, which can be compared to the F*
X contribution by pressure, the friction component, Cf, 

and the moment component, (b/aCN), which can be compared to the total moment M*
Z (most of 

which comes from pressure).  Note that negative M*
Z has the effect of adding to the total 

resultant error.  Allen shows a trend of strongly increasing moment effect, or large negative M*
Z 

for head recession, while head protrusion shows a shallow decrease (positive M*
Z) at a point of 

inflection, followed by a weaker negative M*
Z effect for larger head protrusions.  This is the 

behavior predicted here.  Additionally, the lip force is positive for protrusion and negative for 

recession, a feature which is also generally predicted here.  Further numerical comparison is 

difficult due to the large discrepancy in flow conditions. 

 Third, the results for the high Reynolds number pressure gradient flow cases indicate that 

the baseline geometry of the skin friction gage as studied here can significantly reduce the effects 

of either a sizable favorable or adverse pressure gradient.  The data indicated that this gage 

suffered only a 6% deviation from the nominal target output for the favorable pressure gradient 

case, and 17% deviation for the adverse pressure gradient case.  This error level is manageable.  

Previous results from the laminar channel flow study indicate that this error level could possibly 

be reduced even further with intelligent design of the lip and gap surfaces.  The resulting 

pressure traces along the lip surface indicate that the assumed linear pressure variation through 

the gap as suggested by Coles [1953] and studied by Everett [1958] has no validity for these flow 

conditions.  Finally, the adverse pressure gradient case indicated that the pressure force was 
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reduced to a small level, and that the 17% error associated with this case was caused almost 

exclusively by the z-rotation moment caused by the pressure gradient.  This indicates that a 

smaller lip thickness will not necessarily improve the accuracy of a skin friction gage under this 

type of pressure gradient. 

 The estimates of computational error given for all cases provide reasonable assurances 

that the results are adequate for the purposes intended.  For comparative purposes, the work of 

Levy, et al. [2002] is cited.  These authors summarized data resulting from a CFD drag 

prediction study by several different numerical codes on an external wing-body configuration.  

The results of that work included that fact that the total drag predictions, CD, ranged from 0.0226 

to 0.0500, which is more than a factor of 2.  This information serves two purposes � first to assert 

that the results given here, including the A1 estimators and the GCI, are quality estimates with 

reasonable error bounds given the current capabilities of CFD technology.  In a broader sense, 

the fact that drag could only be predicted accurately to within a factor of 2 underscores the need 

for experimental skin friction measurements using devices like those studied here.  One can see 

that even the worst cases studied here showed output errors of about 100%, which is still as good 

as the best estimate from the Levy, et al. [2002] CFD wing-body cases.  Careful control over the 

skin friction gage design and installation as guided by the results given here can significantly 

reduce the error in measurement to much lower levels. 

 The oil fill issue is indirectly addressed throughout this document.  Ansys/FLOTRAN 

does not have the capability to analyze a free surface boundary of the complexity between 

viscous oil and air in a small gap like in a skin friction gage, since the surface tension of the fill 

oil is such an essential part of that analysis as discussed by Frei and Thomann [1980].  This is an 

extremely difficult problem to solve.  But, all of the air flow cases studied here assumed no oil 

filling, and this gave the external air the freedom to maneuver through the cavity as required by 

the numerical solution.  This issue was, therefore, addressed based on a �worst case� scenario.  

The results highlight the worst error levels that the gage could see.  Although the analysis of Frei 

and Thomann [1980] does not model the reality of using oil fill, it does predict that filling the 

cavity with oil could only make the situation better than that predicted here for as long as the oil 

remained in the cavity. 

 Finally, the derivation of a friction Reynolds number was presented, and this seemed to 

make much more sense than using free-stream representation for the purpose of talking about the 
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conditions under which the gage operates (free-stream Reynolds number values are still 

necessary for talking about things like turbulence levels, skin friction levels, etc.). This friction 

Reynolds number is defined in an identical way as the dimensionless wall units of the various 

gage parameters and variations based on the definition of y+.  The use of the turbulent boundary 

layer inner wall units can be reflected on by looking at them as a friction Reynolds number.  The 

gap friction Reynolds number, G+, in particular seems to be a good candidate for characterizing 

the conditions of the skin friction gage.   

 The conditions of the laminar channel flow here result in a G+ of 0.033.  Although uτ is a 

quantity that is really only employed with respect to turbulent analyses, the mathematical 

definition is used for the laminar channel flow problem to calculate G+ of the channel.  For the 

turbulent external flat plate flow, the value of G+ works out to be 33.2.  It is hoped that these 

numbers are more significant in addressing the gage conditions than a free-stream representation 

which does not adequately reflect the operation of the gage.  Using a friction Reynolds number 

(a �+� quantity) should provide broader applicability of the results from this study. 

 Finally, in terms of broader applicability of the results, the performance of a direct 

measuring skin friction gage as studied here looked at a gage that had a head diameter much 

larger than the gap that surrounded it (G/DHEAD=1.67% for the baseline case).  This fact is useful 

based on the empirical observation that some of the results are a function of the gap size directly 

and not a function of the ratio between the gap and the head diameter.  Thus, many of the results 

presented here can be extended to devices with different G/DHEAD ratios as long as the head 

diameter is still much larger than the gap.  In particular, a formula was presented for estimating 

the lip force error caused by stagnating pressure on the lip surface.  This was assumed to be a 

function of gap size alone, and it could be extrapolated to other device geometries under similar 

flow conditions.  The head diameter itself also seemed to play a role in the normal force.  

Although only one head diameter size was studied, the results suggest that minimizing the head 

diameter will have a direct result on the magnitude of the normal force term (which contributes 

to the output through the z-direction moment). 

 In this way, it is possible to analyze the effects of pressure gradients in the flow by 

simply integrating the pressure gradient over the head to get an estimate of the normal force and 

resulting z-direction moment for a given head size.  Also the effects of the convective stagnation 

on the head can be estimated for any gap size in the range studied.  The effects of the lip force 
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caused by pressure gradients in the flow were shown to be very complex, but the magnitude of 

the effect was shown to be small, particularly in the diverging channel, adverse pressure gradient 

case.  Much of this information could be useful is addressing quality of measurement in a wide 

range of gage geometries. 

 Although it seems possible to extrapolate much of the perfectly aligned effects of the lip 

and normal force terms to other geometries, flow conditions, etc., misalignment seems 

particularly complex and difficult to model in any simple analytical way.  The comparison of the 

numerical results with the results of Allen shows that these incompressible flow results the main 

physics involved in the misalignment problem.  Estimating the exact magnitude of the influence 

of misalignment for any general flow condition, however, is a much more difficult prospect.  

O�Donnell [1964] came to the same conclusion, explicitly stating that an analytical description of 

misalignment was probably not feasible. 

 In general, this study illustrates and validates the use of CFD for analyzing and designing 

skin friction gages.  The success of calculating the flow rates and flow patterns in the tiny gap 

regions speaks to the utility of the technique.  This study has used CFD to provide the first 

detailed look at some of the effects that were unreachable by Dhawan [1952], Acharya et al. 

[1984] and others who tried to experimentally measure these effects and were unable to do so.  

The correlation and comparison with experimental literature has been relatively successful and 

shows good agreement while providing a fundamental understanding of the flows and effects for 

direct measuring, non-nulling skin friction gages. 

 

7.2 Future Study 
 

 This study has attempted only to analyze a generic situation involving skin friction gage 

performance.  The idea here has been that a user of this information can pick any set of scaling 

parameters and values that result in the dimensionless values from these problems and make use 

of the valid solution.  Thus, an infinite family of scaled, similar problems is provided in one 

tabulated solution.  Although a great effort has been made to select the problems treated here so 

as to be as useful and general as possible, there will certainly be a need for study of specific 

performance effects on specific gages under specific flow conditions.  Also, further work in 

using a specific application to validate the solutions provided here is necessary, since the 
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comparison with experimental results in this document is limited by a lack of appropriate 

experimental data. 

 Beyond the issue of validation with applied experiment, the next logical step is to further 

increase the flow complexity to compressible, subsonic conditions and then supersonic cases.  

These will represent many more situations for which engineers are interested in the use of skin 

friction gages.  It is certainly argued here that even the relatively low speed, incompressible 

cases presented capture much of the physical aspects of a broader level of situations based on the 

similarities with the results of Allen.  However, compressible problems will involve more 

complex effects including the issues of temperature and heat transfer which were not dealt with 

here, but which will certainly produce results as interesting as any of the issues presented in this 

work. 

 Even in the flow regime studied here, there are additional issues that need more 

understanding.  A treatment of the oil fill problem including the effects of both convection and 

surface tension of the oil is needed to fully understand the usefulness of the oil fill in cases where 

it is used and to quantitatively assess any benefits that the oil might have in decreasing the 

effects of a pressure gradient.  This analysis would require a code capable of gas-liquid interface 

boundary conditions, as well as a surface tension effect for the liquid coupled into the force term 

of the Navier-Stokes equations of motion. 

 The issue of an optimum lip thickness is another point which requires additional study to 

resolve.  The work presented here indicates that there may possibly be a non-zero lip thickness 

which may be optimum for a sufficient range of flow conditions in a pressure gradient.  Finding 

this optimum value for a set of conditions would be a useful result for superior skin friction gage 

design. 

 The issue of tilt was also discussed briefly.  Tilting caused by deflection under loading of 

an otherwise untilted gage head was shown to be inconsequential for the sizes and styles of skin 

friction gages studied here.  However, if a gage is tilted due to poor fabrication or installation, 

errors due to head tilt could become an issue.  This is loosely related to misalignment, but only 

misalignments normal to the wall surface were studied here.  Work in understanding tilting 

would complement the head protrusion and head recession results given here. 

 Finally, there are other styles of direct measuring skin friction gages exist which would 

benefit from study.  This work picked a generic version of the most typical style of gage used at 
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this time, but the field of tiny MEMS gages is emerging.  Many of these gages are much smaller 

than what was studied here, and their tiny size results in different constraints and flexure designs.  

Even without the geometry alterations, the size of the gages alone may have some impact on the 

performance analysis of the skin friction gage.  The skin friction gages studied here were much 

larger than the fluid particles in the flow so the common continuum approach is justified, but it is 

not clear what impact there may be on the flow in a MEMS-type situation where this assumption 

may no longer be true in the very tiny gap regions. 
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Appendix B: Derivation of Non-dimensionalization Scheme 

 

 Although non-dimensionalization is a common technique in computational methods, 

schemes often vary between individual implementations.  The Navier-Stokes equation set as 

solved by Ansys/FLOTRAN was given in Section 3.2, along with a dimensionless scheme 

appropriate to that particular formulation.  The dimensionless forms of those equations are 

derived here as proof that the scheme chosen is consistent with the Ansys/FLOTRAN equation 

set. 

 

Continuity: 

Starting from an expanded form of eqn. (3-5b): 
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substituting from Table 3-2: 

 

( ) ( )
( ) 0
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uVρρ

V
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*
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*

*

=
∂

∂+









∂

∂

∞

∞∞

∞

∞

∞

i

i  

 

canceling and simplifying, 

 

( )
( )

( )
( ) 0
x
uρ

L
Vρ

t
ρ

L
Vρ

*

**

*

*

=
∂

∂+
∂
∂

∞

∞∞

∞

∞∞

i

i  

 

gives the resulting dimensionless continuity equation: 

 

( ) 0
x
uρ

t
ρ

*

**

*

*

=
∂

∂+
∂
∂

i

i  
(B-1b) 
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Momentum: 

Starting from an expanded form of eqn. (3-6b) � (3-8b) 

 

( ) ( )



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


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
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∂
∂
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∂
∂

∂
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∂
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+
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∂
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i

i
j

j
j

i
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x
u

x
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x
R

x
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x
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t
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(B-2a) 

 

and substituting from Table 3-2: 
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*

*

**2*

*
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L
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∞∞
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∞
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∂
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




=

∂
∂

+





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


∂

∂
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( )
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*

*

*

*
*

*
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R
L
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i

i

j
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i
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∞

∞

∞
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∞
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∂
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



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






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



∂
∂

+
∂
∂∂
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






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collecting and simplifying, 

 

( ) ( ) ( ) *
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2

*
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*
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x
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L
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L
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x
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L
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t
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L
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j
j

i
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∂
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∂
∂

+
∂
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∞

∞∞

∞
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*

*

*

*

*
*

2
*

2

x

x
u

x
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L
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L
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i

i

j

j

i

j ∂



























∂
∂

+
∂
∂∂

++
∞
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∞
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gives the dimensionless momentum equation set: 
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


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

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


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

∂
∂

+
∂
∂

∂
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∂
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∂
∂

+
∂

∂
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*

*

*
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*
*

*

*
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*
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*
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x
u

x
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x
R

x
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x
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t
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i

j

j

i

i
j

j
j

i

ji  
(B-2b)  
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Energy: 

First, analyzing the stagnation temperature alone: 

 

P

2

0 2c
VTT +=  

(B-3a) 

( ) ( ) ( ) ( )








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∞
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∞∞∞
∞
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2
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*

0  

( ) ( )
*

P
2

2*2*2*2
*

0 c2V
wvuVTTTT

∞

∞∞
∞

+++=  

( )









 +++= ∞ *
P

2*2*2*
*

0 2c
wvuTTT  

 

showing that the stagnation temperature is consistent with the temperature non-

dimensionalization scheme: 

 
*

00 TTT ∞=  (B-3b) 

 

Starting from an expanded form of eqn. (3-9b): 
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
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∂
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∂
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
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∂
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∂
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∂
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x
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x
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∂+

∂
∂
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
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∂
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i
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(B-4a) 

 

substituting from Table 3-2 and eqn. (B-3b): 
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*
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*
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∂
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











∂
∂

∂
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∞
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*

*
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L
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∞∞∞

∞
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∂
∂










∂
∂+

∂
∂+

∞

∞

∞∞

∞

∞

∞

∞

∞

∞
∞∞∞

V
tL

PVρ
xL
uV

xL
uV

xL
uVµLVρ

*

*2

*

*

*

*

*

*
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simplifying: 
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



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∂
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∂
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∂
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







∂
∂
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x
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*
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*

*

*
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∂
∂
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∂
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∞∞
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yielding the dimensionless energy equation: 

 

( ) ( )











∂
∂
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(B-4b) 
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Species Transport: 

Starting from an expanded form of eqn. (3-10b)  

 

( ) ( )





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




∂
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∂
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(B-5a) 

 

and substituting from Table 3-2: 
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simplifying: 
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yielding the dimensionless species equation: 
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(B-5b)

 

Turbulent Kinetic Energy: 

Starting from an expanded form of equation (3-11b)  
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(B-6a) 

 

and substituting from Table 3-2: 
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simplifying: 
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and yielding the dimensionless κ equation: 
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(B-6b) 

 

Turbulent Dissipation: 

Starting from eqn. (3-12b): 
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and substituting from Table 3-2: 

 

( ) ( )( )
( ) ( )

( )
( )





















∂









∂

∂
∂=

∂



















∂

+









∂









∂

∞

∞

∞

∞∞∞

∞∞

∞

∞
∞∞

∞

∞

∞

∞
∞

*

*3

ε

*
T

**

*3
**

*

*3
*

xL
L
εV

σ
µLVρ

xLxL

L
εVuVρρ

V
tL
L
εVρρ

iii

i

 



Appendix B 
 

page - B7 

( ) ( )
( )
( )

( )
( )

( )
( ) ( ) ( )*2

2*3

*
2*

*

*

*

*

*

*2

*3

*
T1ε κV

L
εV

ρρC
xL
uV

xL
uV

xL
uV

κV
L
εV

µLVρC
∞

∞

∞

∞
∞

∞

∞

∞

∞

∞

∞

∞

∞

∞∞∞










−
∂
∂










∂
∂+

∂
∂









+
k

i

i

k

k

i  

 

simplifying: 
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to obtain the dissipation equation: 
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(B-7b) 

 

 In all equations, the dimensionless form of the respective equation is identical to the 

dimensional form.
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Appendix C: Procedure for Using Nested Iteration in Ansys 
 

 The procedure of nested iteration was discussed extensively in Section 3.3 of this 

document.  This simple precursor to multigrid consists of using an interpolated solution 

generated on a coarse grid as a starting guess on a fine grid.  The idea is that, even with the 

interpolation, the coarse solution is a much better initial guess for iterative solution than a 

random starting point.  Ansys/FLOTRAN does not implement either multigrid or nested iteration 

directly as a feature.  However, it is possible to create a nested iteration procedure using some 

other commands built into Ansys. 

 The Ansys/FLOTRAN program offers a technique they term �submodeling,� which is a 

feature designed with structural analysis in mind. In submodeling, small, intricate features like 

fillets can be neglected in a large global model, but solved for by creating a model of only that 

region around the fillet to resolve the sensitive stresses in that area.  Doing this requires the 

solution from the global problem, which is used for boundary conditions for the region around 

the fillet.  This technique is very similar to what was done in Chapters 4 and 5 with respect to the 

global versus local fluids problems. 

 Submodeling requires that the global model and the local feature model be located in the 

same spatial coordinates.  Then, all boundary nodes from the local problem are imported into the 

previously solved global problem, the values interpolated based on the spatial coordinates of the 

boundary nodes, and then brought back to the local problem, and applied as boundary conditions.  

This technique assumes that the boundaries are sufficiently far away from the fillet or whatever 

so that they are not disturbed. 

 From this, nested iteration can be created using the following steps.  Assuming two 

problems are created with the jobnames �coarse� and �fine�: 

1. Solve coarse.db model to satisfaction. 

2. Build and mesh fine.db model, insuring that the model lies in the same spatial coordinates 

as the coarse model. 

3. In the fine model (after meshing), go to Main Menu>Preprocessor>Create>Nodes>Write 

Node File, and save the node list file as (fine jobname).node.  This is a complete list of 

the spatial coordinates of all nodes in fine.db. 

4. Close fine.db, and open coarse.db.  Load the converged results file for this model. 
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5. In Main Menu>General Postprocess>Submodeling>Interp DOF, and select (fine 

jobname).node as the node list file and (fine jobname).cbdo as the submodeling file to 

save to.  Ansys/FLOTRAN will interpolate the solution onto the fine grid.  This step may 

take some time. 

6. Close the coarse.db model, and open the (fine jobname).cbdo file in a word processing 

editor, like Microsoft Word on a PC, or NEDIT in UNIX that has the �find and replace� 

feature.  Find all instances of �D,� and replace with �IC,�.  This changes the command 

list from applying as boundary conditions (which are fixed) to initial conditions.  This 

operation can take considerable time on a PC, and seems to go much faster on a UNIX 

machine (less than 10 seconds on an SGI O2 workstation).  Save the modified file, and 

exit the editor. 

7. Open up fine.db again in Ansys.  Switch to either the PREP7 or SOLU menus (not the 

Begin level). 

8. Select Utility Menu>File>Read Input From, and select the (fine jobname).cbdo file.  This 

operation will apply all degrees of freedom on all nodes as initial conditions from the 

coarse model. 

9. Save the fine.db model, and proceed. 
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Appendix D: Derivation of Richardson Extrapolation Error 

Estimator with Truncated Terms 
 

Using a Taylor series expansion for a grid of element size, h, about the �exact� infinite density 

grid solution: 
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Since the derivatives of fEXACT are, by definition, independent of the grid size h, they are given a 

more compact notation. 
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where gP is a function of flow conditions and independent of the grid size. 

For any solution on a grid, i, with a method of arbitrary order of convergence, p, the terms g1 to 

gP-1 will be exactly zero, so eqn. (D-2) can be expanded as: 
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This expansion in eqn. (D-3) can be used for two successive grids of different element size h, 

labeled 1 for the finer grid and 2 for the coarser grid.  Multiplying the fine grid equation by 

(h2/h1)P produces the eqn. set (D-4): 
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Subtracting (D-4b) from (D-4a) produces the following: 
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which can be re-arranged using the definition of r12 as h2/h1, a term that, by definition is always 

greater than one.  This re-arrangement produces eqn. (D-5). 
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Assuming that O(h1) = O(h2), or alternately that O(r12) = 1, eqn. (D-5) can be re-arranged and 

simplified as follows: 

)O(h
1r

1P
P

12

21
1EXACT

++
−

−+= ffff  (D-6) 

Eqn. (D-6) of course, shows the exact solution to be the fine grid solution plus some other terms 

which represents an error between the two solutions. 

 

The fractional difference between the fine grid and the exact solutions can be defined as: 
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(D-7) 

From Stewart [1991], the mathematical definition of a binomial expansion is given in eqn. (D-8), 

valid for any condition for which k is real and the absolute value of x is less than one (|x|<1). 
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For k = -1, this binomial expansion reduces to eqn. (D-9). 
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With the term in brackets standing for (1+x) and k being equal to -1, the binomial expansion 

from (D-9) can be substituted into eqn. (D-7) to yield: 
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Using the definition of the normalized error term, E1, from Roache [1998], A1 can be represented 

by eqn. (D-11): 
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with E1 given by eqn. (D-12): 
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This approximation shows the normalized error estimator is equal to the fractional error 

estimator, accurate to an order of truncation of hP+1, and the normalized error squared.  This 

analysis is valid for E1 less than one, so E1
2 must be small as well. 
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Appendix E: Derivation of Global Force Parameters with Respect 

to Non-dimensionalization Procedures 
 

 Although not directly a part of the Navier-Stokes formulation itself or a factor in the 

input selection, the integration of total force is the primary result of interest from the CFD 

solution output.  If non-dimensionalization is used (as it has been in this document), most 

secondary quantities � like velocities, pressures, effective viscosity, etc. can be recompiled into 

dimensional form via the use of Table 3-2.  The global or integrated force parameters, however, 

require a bit more thought to transform the output of Ansys/FLOTRAN into the variables defined 

in eqns. (4-4), (4-5), and (4-6). 

 The global forces as output by Ansys/FLOTRAN are a mixture of integration of pressure 

and shear stress, which are both surface forces, or force per unit area.  The non-dimensional 

pressure and shear stress can be seen from Table 3-2 or worked out dimensionally, and will be of 

the form given by eqns. (D-1a) and (D-1b). 

2
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PP
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From the Ansys/FLOTRAN manual, the INTSRF command performs the integration of these 

forces over a selected surface area, which basically does a numerical integration of eqns. (E-2) 

and (E-3) to get the respective force and moment components of the vectors. 

∫∫ +=
A WA

dA dA PF τr
rr

 (E-2) 

∫∫ ×+×=
AA

dA rdA PrM Wτrrrrr
 (E-3) 

In three dimensions, surface area is simply normalized by L∞
2 to make it dimensionless.  Thus, 

the following substitutions can be made into eqns. (E-2) and (E-3): 
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From Stewart [1991], the constants can be brought out of the cross-product in the moment 

equation to produce eqn. (E-4) for the force vector and eqn. (E-5) for the moment vector. 
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Since the actual code output is in terms of the dimensionless asterisk quantities, these equations 

show the relationship between the dimensional and dimensionless force and moment results.  Re-

arranging produces eqns. (E-6) and (E-7),  

( ) *22 FLVρF
rr
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( ) *32 MLVρM
rr
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which show that the dimensionless output of the forces of Ansys/FLOTRAN can be multiplied 

by ρ∞V∞
2L∞

2 to get the original dimensional values for each component.  Likewise, multiplying 

the output moment components by ρ∞V∞
2L∞

3 will get the dimensional moment contributions.  

This transformation can be used to move from dimensionless to dimensional results as necessary.  

If the problem is two-dimensional instead of three dimensional, the integration area will be a line 

rather than a surface.  In this case, one of the dimensional scaling terms is removed, and the 

transformation is ρ∞V∞
2L∞ for the force terms and ρ∞V∞

2L∞
2 for the moment terms. 

 A translation of the force and moment system is also required, whether dimensional or 

not.  Ansys/FLOTRAN tabulates the resulting vector system about the global origin of the 

model, which is probably not where the head center of the sensor is located.  Thus, the system 

needs to be moved to the equivalent system applied on the head, located at the coordinates (xH, 

yH, zH) in Cartesian space.  Fig. 4-16 shows the required system conventions for this gage head. 

 The translation will not affect the components of the force vector, but the moment vector 

is indeed affected.  Fig. D-1 shows the move, which will produce an additional moment about 

the new point calculated by the vector cross product r x F.  The resulting system about the head 

center is termed the prime, ', system in this appendix only.  The general relationship between it 

and the original system about the origin is given in relations (E-8) and (E-9). 
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Figure E-1. Translation of Force/Moment System from Global Origin to Head Center 
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All results presented throughout this document are in terms of the head center system, which 

employed this translation.  For the cases of the skin friction gages, the z component of force and 

the x and y components of moment are zero by symmetry.  For a gage with head center located at 

an arbitrary point (xH, yH), thus making r = {-xH, -yH, 0}, relations (E-8) and (E-9) simplify to the 

eqns. of (E-10) and (E-11).  These two equations were used on every model to insure correct 

calculation of the total forces and moments about the head center of the gage. 
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