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An analytical semiclassical expression is derived for the two-photon transition in a three-level system under

the influence of two pulsed fields. We study the Autler-Townes doublet as a function of the time dependence

of the field amplitudes and the relaxation widths of the levels. The time variations of the field amplitudes

cause shifts in the doublet and modify the radiative decay widths of the levels. The validity of the treatment

extends into the intermediate-intensity regime.

I. INTRODUCTION

Absorption and fluorescence spectra of atoms
are modified when the exciting electromagnetic
field amplitude rises. Near resonance the fluo-
rescence spectrum consists of three peaks. ' The
spectrum has been completely calculated based on
a classical description of the field' which has since
been confirmed by a number of quantum-mechani-
cal treatments. ' The effect of the finite bandwidth
of the light source on the properties of fluorescent
light has also been investigated, "and nonmono-
chromatic excitation was found to cause a feature in
the fluorescence spectrum which is absent under
monochromatic excitation. This new feature is an
asymmetry in the spectral density when the finite
bandwidth excitation is off resonance. ' This asym-
metry, however, is absent when the excitation is
on resonance. These effects may have contributed
to recent resonance fluorescence measurements. "

On the other hand, the absorption spectrum of a
second weak light beam probing a transition which
has a common level with the saturated transition
is predicted to consist of two peaks. This doublet
structure was first observed in the microwave
region (the Antler-Townes effect). ' The optical
analog of the Autler-Townes effect has recently
received much experimental attention, ' ' but al-
though it has been observed in double optical reso-
nance, detailed comparison with theory is very
difficult owing to complications in the atomic-level
structure. However, a recent experiment, in
which a true three-level system was attained by
using an atomic beam and optical pumping meth-
ods, allowed easy and straightforward comparison
with the theory. '

Theoretical aspects of double resonance have
been treated by many researchers, ' but the inter-
action of two nearly saturating cw light beams with
a three-level system in a stepwise excitation con-

figuration h3s only recently been studied in de-
tail. "'" A numerical treatment of the equation
derived from the quantum electrodynamic equa-
tions of motion has been given, "and a dressed-
atom approach for the interaction of an intense
laser beam with multilevel atoms has been de-
veloped and used to derive analytical expressions
for the positions, widths, and weights of the var-
ious components of fluorescence and absorption
spectra. " In the first step of the dressed-atom
approach to resonance fluorescence, one neglects
spontaneous emission and determines the energy
levels of the combined isolated-atom and laser
photons for the dressed atom. Resonance fluores-
cence can then be treated as spontaneous emission
from the dressed-atom system, and double reso-
nance in the stepwise configuration can be treated
as absorption of a probe beam by the same sys-
tem.

In this paper we extend the stepwide configura-
tion of the two-photon process in a three-level sys-
tem to the case of pulsed fields. The relaxation of
the system is included in detail, with different
states allowed different relaxation constants. The
method of time-resolved double resonance with
pulsed sources has been known to give more direct
and reliable information on relaxation than the
method of steady-state double resonance. More-
over, the present analysis gives analytical solu-
tions in the intermediate-intensity regime, thus
allowing application to more experimental situa-
tions.

We investigate the excitation line shape as a
function of relaxation and the time dependence of
the fields by deriving an equation for the position
of the peaks of the Autler-Townes doublet. New
pulse-width-dependent shifts are derived, studied
as a function of detuning, and found to persist for
even an on-resonance two-photon transition. Ef-
fects due to the time dependence of the amplitude
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of excitation were previously encountered in the
respective responses of nonideal two-~ and three-
level systems" to one and two near-resonance
pulses. These effects involved an induced asym-
metry Bt the long-wavelength wing of the transi-
tion.

We also study the modification of the radiative
decay rates of the atom due to the influence of ex-
ternal fields. Owing to the nonlinear excitation,
the deeey rates include intensity-dependent terms
which also depend on the detunings, and also on
the time dependence of the field amplitudes. Such
modification is neglected in the dressed-atom ap-
proach, since spontaneous emission is treated
independently from excitation. " The expressions
for the decay rates m3y be useful to time-resolved
measurements.

This paper consists of five sections. In Sec. II
we solve for the two-photon probability amplitude
and in Sec. III we discuss the absorption spectrum,
while in See. IV we discuss the decay rates.
Finally, we make some concluding remarks in
See. V.

II. PROBABILITY AMPLITUDE

We consider a three-level atomic system with
only one of the excited states optically connected
to the ground state (Fig. 1). The position of
this level is arbitrarily taken between the ground
state and the optically forbidden higher excited
state. The state of the atom 4, at any time, set-
isfies the equation

aa)

H=H& —p, '$ +HD, (2)

where p, is the atomic dipole operator, g is the
classical electric field vector evaluated at the
eqnter of the atom, H„is the Hamiltonian of the
atomic system in the absence of an external field,
and HD describes the radiative damping of the ex-
cited states. We assume that the matrix H~ is
diagonal with the elements —.-'iS y, and —-'iS y,
for the excited states and zero for the ground
state.

The state of the atom may be expressed as a
superposition of three orthogonal time-dependent
states; that is,

g = ao(t)
~
Oa) + a, (t)e ' "~0'

~

1a)

pa (t)e "20 i2a). (3)

Explicit forms for a„a„anda2 are found by solv-
ing the equation of motion given the initial condi-
tions and the electric field. We let

8 = 2 8,(t)cos(~,t) + 2S,(t)cos(&u, t) . (4)

We assume that ~„is not near w21 and therefore
consider the case in which 8, and 82 induce only
transitions between the levels

~
Oa) —

~

la) and

~
la) —

~
2a), respectively. This approximation

neglects two-photon resonant enhanced generation
of mixed frequencies at 2~, + A@2 and ~, + 2m»
which arises when each of the field components is
taken to interact with both transitions. However,
for the study of local effects (photon echoes, opti-
cal nutation, adiabatic rapid passage, and optical
Stark shifts), the above model is viable, especial-
ly when the intermediate state is near resonance.

In the rotating-wave approximation and for w2

away from &u„Eqs. (1)-(4) give the following
equations for the & = 0 selection rule:

i8' —=Hg,
8

at

where the Hamiltonian H is written in the electric
dipole approximation as

"ao

A() = 21 P1 1A1 q

Aa+»xAi —»io iAo+~pi2~2A2 ~

A2+ i~62=i&2i~/i
(6)

10

ia)

Oa)

where the p, &&
are the elements of the dipole-oper-

ator matrix, primes denote differentiation with
respect to t, and

A, =a„A,= a, exp(i~, t), A, = a, exp(i&, t),
~ = -(& + —,

'
iW, ), 6.= -(&,+ —,

'
iW.),

1 1 lPP 2 1 2 207 2 1 2 21
FIG. 1. Energy-level diagram of the three-level

system. We determine an approximate solution to Eqs.



1668 MUNIR H. NAYFEH AND A. H. NAYFEH 19

(5)—(7) when the amplitudes 8, and 8, of the field
are slowly varying functions of time. Eliminating
&() and &, from Eqs. (5)-(7) and neglecting terms
the order of (in8„)"and [(ln8„)']',we obtain

~,"+ [i5 - (ln 8,8',) ']A,"

+ [n' —i5,(ln8, 8', )
h —i5,(ln8, 8',)']A,'+(i5R8)

—n (ln 8, 8,) '+ 2 ch a ' + 8,[ln(8, / 8,) '])&R = 0, (8)

where

X,'+ i[5, —(8',/5, )]/1, = i(8,8,/5, )a, . (12)

The elimination of the intermediate state results
in frequency shifts and two-photon coupling. In

the case of a nonresonant intermediate state, the
problem of three-level systems has been reduced
to that of two-level systems by a number of re-
searchers. "'" '

When the above conditions are satisfied in the
intermediate regime we obtain the following ex-
pressions for the g, .'

and p,„&,and p»&, are replaced by 8, and g„
as they will be in the rest of the paper. To solve
Eq. (8), we first attempt to write it as the product
of three first-order equations":

g, = iK + [1n(n'/8, 8,)]'+ R, ,

g, = ' i(5 n) —,
' [in(8, 8;/n)]'+Z„

8,=,' i(5+ n) —,' (in 8,8,'n)'+ Z„
where

(13)

(14)

(i5)

Expanding Eq. (10) and equating the coefficients
of /J" /dt" to those in Eq. (8) results in three coupled
differential equations for the g, The procedure
we use to obtain an approximate solution for the

g, is iterative. We write g, =G, + &, (i=1,2, 3)
and assume that

I ~,
I

++
I G, I. lVioreover, we as-

sume the term 6,8„aswell as the terms which
involve derivatives of the field amplitudes, to be
small and therefore contribute to &, . The lowest-
order equations involve the G,. and satisfy the fol-
lowing algebraic equations:

G, + G3=i5, G~G = m, G, = Q.

—'(in8, 8,)',0

&.=--'g, 1-— — ' ' (ln8 8')

. + —'(ln8, 8,)',

n'= 48;+ 48,'+ (5, - 5,)'.

(17)

(18)

Neglecting 5,8', in these equations demands the si-
multaneous satisfaction of the conditions

These conditions are satisfied in the case of exact
two-photon resonances (i.e., when 5, =0) because
the neglected term vanishes identically. In this
case, there is no restriction on the magnitudes of
the field amplitudes; in fact Brewer and Hahn"
obtained an exact solution for constant field ampli-
tudes. These conditions are also satisfied when
amplitude h, is weak and b, unrestricted. More-
over, since the product '521$y is involved, the ap-
proximations are valid in the intermediate-inten-
sity regime.

When the intermediate state is far from reso-
nance [I 5i/8&I ~~ 1 and

I 5R/8i
I

= o(1)], the above
conditions are satisfied. However, this case can
best be treated by reducing the three-level system
to a two-level system. Thus one can neglect A,'

in comparison with i5,A, in Eq. (6) and so solve
for A, in terms of Ao and A, . Substituting the re-
sult into Eqs. (5) and (7), we get

Using the fact that the g,. are slowly varying func-
tions of f to integrate Eq. (10) and substituting for
the g, from Eqs. (13)-(15), we obtain

A, = —' ', ' exp
(

— (hK+R, )dk)Q

c g"'g+,t, ' ' —exp — [ —,
' h(e — )+ th] R)dh

8 1/2 8 foal/2
+ ' ' ' exp — [-,' t(5+ tt)+ R]dt), ,

(20)

where c„c„andc, are determined from the con-
ditions at t= 7'.

We note that, although Eq. (20) was derived for
the case of slowly varying amplitude fields such
as adiabatically switched fields, one can apply the
present solution to abruptly changing fields by
matching solutions having the form of Eq. (20) at
the times of abrupt change. In other words, the
final state before the abrupt change will serve as
the initial state for the solution at the start of the
change. For an atom that is in the ground state
at t= ~, one finds that
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2—Q0

( s„n,)'~'
C2

g20 830

(g„jn,)'",
where the subscript 0 denotes values at t = v.

(21)

negligible and the peaks given by Eq. (25) are
given by

Re(5 + Q) = 0 . (28)

In the absence of relaxation, 6 and 0 become real
and the position of the peaks of the Autler-Townes
doublet [Eq. (28)] as a function of the detuning of
the field with respect to the first transition is

1 g +[(1 g )2+g2]l/2 (29)

III. ABSORPTION SPECTRUM

The first term in Eq. (20) has very slow oscilla-
tions; they are not important in the weak-field
limit. The second and third terms are the Rabi
oscillations of the atom. The statistical average
of the excitation probability ~A,

~

consists of two

peaks; they are the optical analog of the Autler-
Townes doublet. The doublet was first observed
in the microwave region in the absorption spec-
trum of a weak beam probing a transition which
has a common level with a saturated transition. '
Peaks for a particular set of quantities of the vari-
ables in the interaction (intermediate-state detun-
ing, field intensity, and relaxation width) occur
where the frequency of the oscillations vanishes.
This gives

Re(5 —3K+ 3iB,+ ig) = +Re(n + 2iX),

where

(22)

) I

Sj~2 &

(24)

Re(5 —3K) = +Ren(1+ 5Kjn'), (2s)

with n =
~

n
~

e"~' where

sin8=(y, —y,)(g —a,)~n~ ', (28)

~

n~=f[(n, , —~,)'+4(&', +@,') ——,
' (y. —y, )']'

+ (y, )'y(~. n,—)']"'— (27)

We now discuss the effects of the field amplitudes
and their time dependence and the relaxation of
the levels on the positions of the peaks. Equation
(22) is fairly complicated in the simultaneouspres-
ence of all of these effects. To get afeeling for the
equation we will first consider a previously de-
rived limiting case, for which the various limits
will be taken in steps. In the absence of the time
dependence of the fields —for example, in the con-
stant-field case —Eq. (22) reduces to

&,=&, —4K

where

K ' = -(LP + n. ,) 8', /[LE(LP + 6,) —4 8', —4 8,'] .

(30)

(32)

At exact two-photon resonance, where &j+ 4,= 0,
the function K vanishes, and the restriction on the
magnitudes of the 8'j field amplitude is removed;
the positions of the peaks are then given exactly
by

where ~,= ~2 —&j is the detuning of the second
transition. The analogous case where 4j and ~,
are interchanged along with 8, and @2 describes
the case where @j is strong while 52 is weak; it
has been discussed in detail previously. ' There-
fore we will briefly discuss Eq. (29). This result
indicates that when the field is resonant with the
second transition ~,= 0, the splitting in the case
of strong @2 field is 282. This is what is called
the modulation doubling or coherence splitting of
the resonant modulation effect. Under a weak 82
field, the line shows a single peak. For off-
resonance excitation, where ~,40 such that ~,
»

~
8, ~, the double-resonance signal shows two

peaks, at ~j= 0 and ~j= -~,. The latter peak is
a two-photon resonance.

The doublet structure [Eq. (29)], encountered
even when the j which connects the ground and
first excited states is very weak and when the
strong saturating amplitude 4'2 does not couple
directly with the ground state, shows the delicacy
of this process. The obvious conclusion that one
should expect a single absorption component in
view of the apparent involvement of a single sat-
urated transition is incorrect. This was recently
pointed out for a similar situation by Cohen-Tan-
noudji et al. "

We will first study the effect of the intensity of
the j field on the doublet in the absence of the
relaxation and the time variation of the amplitudes.
When @j is not very weak, the function K is not
negligible. A first-order correction to Eq. (29)
gives

When the 4', field is weak, the function K becomes
' n. ,~ [(-,' n, ,)'+ h', + 4I",]'". (33)
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Equation (31) shows that the splitting of the doublet
depends on the Rabi frequency (8', +8',)'~', since
$ y is not negligible. Moreover, with moderately
large 8, the function K' is not negligible, and
therefore causes a shift in the positions of the
peaks. The physical interpretation of the shift
E' lies in the shifts encountered in multiphoton
processes which involve nonrescnant intermediate
states. In the weak-field case where 8', and 8',
are much less than &,&„K'reduces to the well-
known frequency-shift expression 8', /b, » which
is encountered in a three-level system with an
intermediate state far from resonance. We note
that both the absolute position and the splitting of
the doublet depend on the finite Rabi frequency
the position of the peaks are thus asymmetric
about &„whereas they are symmetric in the
cases considered above: small 8, Rabi frequency
[Eq. (29)] and exact two-photon resonance [Eq.
(33)].

We now consider the effect of relaxation on the
splitting of the doublet and on its absolute posi-
tion. We consider the case of negligible 8, fre-
quency. In this case the positions of the peaks
depend only on the difference y, —y„and there-
fore become- independent of relaxation for equal
radiative decay constants. The first-order cor-
rection in y, —y, is

~,= —
—,
' ~, +0-,' ~,)'+ 8.'- [-,' (~. —~,)]'}'". (34)

Note that (34) is also valid when y, and y, are very
different from each other, as long as both are
small. The relaxation causes modulation doubling
peaks to occur at a/82 —[(-' y, —y, )]')'~' rather than
at +g, ; the peak positions around ~„however,
stay symmetric.

Let us now consider some of the effects due to
the time variation of the field amplitudes. Effects
of this kind have recently been found in the reso-
nant interaction of pulses with atomic systems.
In the interaction of smooth pulses with two- and
three-level real systems, i.e., those with finite
lifetimes, it was found that the time variation of
the field amplitude causes an asymmetry at the
long-wavelength wing of the spectral response. ""
It is to be noted that, in the adiabatic limit of the
interaction in which the l.evels have long lifetimes,
this asymmetry disappears. A line shift which is
a cross effect of relaxation and the time variation
of the field amplitude occurs in the ca,se of double
resonance. One can see that it is indeed a cross
relaxation-time variation effect by taking y, = y,
=0 in Eq. (22); the quantities 6~, 53, 6, Q, n', and
8, become real, and thus the effect of the time
variation drops out.

In order to simplify our analysis, we consider

the effect of the variation of the field amplitudes
on the doublet for the case oi two-photon reso-
nance, with the final state having long lifetime
and the intermediate state having long but finite
lifetime (y, is small). Note that in these limits,
the solution is valid even when both @, and 8, are
arbitrarily large. In this case, the peaks of the
doublet get shifted by -&,+ (&', +4QImX)'~', where

ImX= ——'(ln 8, 8,)'+ —'(ln8, 8',)'.

IV. DECAY RATES

Nonlinear excitation provokes perturbation in the
radiative decay of the population of the final state.
The fact that the two excited states are coupled
strongly indicates that the decay of the excitation
will be governed by the average of the radiative
decay of both levels, namely —,

' (y, + y,). In addi-
tion to this strong coupling effect, we expect in-
tensity-dependent contributions, which are a nat-
ural consequence of high-intensity excitation.
They show up in the response of a two-level sys-

2
I

02S

-2 I

-4
I

-2
I

0

FIG. 2. Shift 8 introduced by the time variation of the
field amplitude as a function of the detuning of the field
from the second transition. The shift and the detuning
are in units of y~. The upper and lower curves repre-
sent the shift of the peaks at —2 4 + 9 and —~E —Q,
respectively.

For &, large, the shift reduces to —2QImX/&»
while near &, -0 the shift approaches +2(QImX)'~'.
It is worth noting that the peaks get shifted by dif-
ferent amounts, so that the splitting is changed;
the time variations of the amplitudes [Eq. (34)]
remove the symmetry of the peaks around —,'~„
but symmetry is retained in the limit of g,
=O. Figure 2 shows the variation of the shift with
&,/y, for field amplitudes which have e "time de-
pendence. The graph represents the relationship
at the instant of time when (28,/y, )'+ (2 8,/y, )' = 6
and X/y, = l.
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tern' to intense fields when the lifetimes of the
levels are different, and are absent when both life-
times are equal. In a two-photon process, the
intensity-dependent terms are further compli-
cated by the presence of the intermediate state.
Moreover, the time variation of the field ampli-
tudes in a pulsed double-resonance scheme —the
case under consideration here —further contributes
to the decay rate of the population.

prom Eq. (20) one can easily write two decay
rates associated with the population:

q, = —,
' (y, + y,) —2 Re( —,

' iQ + R,),
q, = —,

' (y, + y,}—2 Re(- —' iQ + R,) (88)

for the Q, R„andR, defined in Eqs. (19), (17),
and (18), respectively. In the general case q, and

q~ ar e very complicated functions, but we would like
to consider a special case in which the excited
states have long lifetimes, namely, when y, =y,
= 0. In this case q, = -q, .

q, = -q, = -2(b, /Q)(ln 8, 8,')'+ 2(4,/Q)(ln 8, 8,)'.
(27}

This contribution, induced by the 'time variation of
the field amplitudes, is also a detuning-induced
effect. The first term is produced by the detuning
from the second transition and depends on the time
variation of 4, 8,'. The second term is produced by
the detuning from the first transition, but is pro-

portional to the time variation of 8,8, and of op-
posite sign to the first terms when 4, and ~,
have the same sign. At the peaks of the Autler-
Townes doublet 4, = ——,

' ~,+ —,
' 0, and therefore

q, = -q, =+(I a, S,)'-(~,/Q)lnS', &,'. (8

The first term of this equation, the lending con-
tribution to q„is the rate of change of the natural
log of the product of the field amplitudes, which is
the sum of the spectral widths of the pulses; its
magnitude is independent of the details of the de-
tunings of the interaction. The second term, how-

ever, is proportional to ~, and 0 ', and therefore
makes the overall contribution detuning and in-
tensity dependent.

V. CONCLUSION

The validity of the analytical treatment of pulsed
double resonance presented here extends into the
intermediate-intensity regime. We have examined
the relaxation of the levels in detail and have de-
rived expressions for relaxation- and pulse-shape-
dependent frequency shifts in the Autler-Townes
doublet, and for contributions to the radiative de-
cay rates of the levels.
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