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Abstract

In this study, a new and efficient numerical algorithm is developed to solve both
the two-dimensional and three-dimensional compressible hydrodynamic stability problem.
A parametric study of free shear flows with two or more supersonic streams is performed.
Flows examined included shear layers, jets/wakes, and various geometrical combinations
of these flows. The effect of Mach number on the stability characteristics of the flow is
studied and found to confirm the work of other researchers who found that increasing the
relative (or convective) Mach number increases the stability of the flow. For 2-D mean
flows, the most amplified disturbance is shown to be axial for M<1.2 and fully three-
dimensional for M>1.2. Disturbances for three-dimensional mean flows are found here
to be axial in the presence of side walls. The variation of the eigenfunctions and flowfield
disturbances as a function of Mach number and the flow geometry was also studied.
Comparisons of the stability code results are also made to several turbulent mixing experi-
ments. The stability code correctly predicts which parameters will accelerate mixing. New

correlations of the effects of some important parameters on stability are developed.
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1. Introduction

The study of the stability of compressible shear layers has been going on for many
years. Since the recent interest in the development of the National Aerospace Plane
(NASP), these studies have taken on a renewed vigor because this vehicle would be
propelled by a supersonic combustion ramjet, or scramjet, propulsion system. Subsonic
mixing is fairly well understood, and augmentation methods such as the addition of swirl
are used with great success. However, these subsonic mixing techniques fail to provide
efficient mixing for high speed flows. Since the residence time of fuels in supersonic
combustors is exceedingly short, the mixing of two parallel supersonic streams is of
primary importance to the design of propulsion systems using supersonic combustion.
Methods that could increase the rate of mixing of the fuel-air layers would have a large
impact on the size of the combustor. Because the NASP will have a highly integrated
airframe, a reduction in the size of the propulsion system can have a large effect on the
total weight of the aircraft. Therefore, it is of the utmost importance to understand the
physics behind the rate at which these shear layers can be mixed. This interest has led to
numerous experiments to determine conditions and configurations that will provide for
enhanced mixing. This, in turn, would allow for the design of more efficient supersonic
combustors. Wind tunnel experiments performed by King and Schetz [1] dealing with the
mixing characteristics of combined normal and tangential supersonic injection found that
for the proper combination of geometry and pressures, the production of large turbulent

eddy structures could be greatly increased. These large structures and their subsequent



breakdown into smaller eddies are responsible for the entrainment of free stream air into
the fuel streams, so that efficient combustion can take place. However, the exact
configurations that produced these structures was extremely hard to predict, and they were
found mostly by "trial and error" experimentation. And, since these experiments consisted
mainly of cold flow conditions, they did not adequately take into account rriorc realiStic
conditions found in actual combustors. It was decided that an analytical framework that
could assist in the prediction of the growth rates, sizes, and locations of these structures
as a function of important flow parameters, such as Mach number and velocity profile
shapes, would be of great practical application, and development of the methods described
in this study was begun. Such a tool would also be useful for assessing other augmenta-
tion schemes.

It has long been established that the spreading rates (and hence mixing rates) of
supersonic free shear layers is substantially less than that of subsonic and incompressible
mixing layers. This was originally thought to be due to density ratio effects. However,
studies by Bogdanoff [2] and Papamoschou and Roshko [3] introduced the concept of the
convective Mach number as the proper parameter with which to scale compressibility

- effects. The convective Mach number is defined by

a +a,

where U, and U, are the velocities and a, and a, are the sound speeds in the two streams.

It is the Mach number measured in a moving frame of reference fixed to the dominant



waves or structures in the mixing layer, i.e. in a Lagrangian frame of reference. They
suggested that the normalized growth rate of turbulent compressible mixing layers is a
function of the convective Mach number. They also noted that the curve of the
normalized spreading rate versus the convective Mach number is very similar to that of
the normalized instability growth rate curve, implying that the decrease in spreading rate
is directly related to the reduction of the instability of the mixing layer. This has since
been confirmed by many other researchers, including Ragab and Wu [4] using multiple
scale and Floquet methods, Tam and Hu [5], who derived the relevant dispersion relation
and used grid searching techniques to find the poles, and Zhuang et al. [6], who used
shooting methods. Lele [7] also confirmed these results using direct numerical simulations
of compressible free shear layers. So, by studying the mathematical problem of the
stability of high speed shear layers, some light can be shed on the processes by which
these shear layers actually mix and grow.

Hydrodynamic stability theory is concerned with whether or not a given velocity
profile is stable with respect to small disturbances. By "stable" we mean that perturbations
to the flow decrease with time, returning the flow to its initial state. Suppose that Q,
represents a flow solution, or an approximate solution, to the governing flow equations.
A small disturbance Q’ is assumed and then added to the basic solution, and this
perturbed solution, Q,+Q’, is substituted back into the governing equations. The terms
involving Q, that identically satisfy the governing equations are eliminated, and we are

left with the disturbance equations that describe the behavior of Q’ in terms of Q, and the



parameters of the flow being considered. If the disturbance increases with time, the flow
is said to be unstable. Note that the disturbance, which generally may be represented in
terms of its Fourier components, must be stable at all frequencies in order for the flow
to be considered stable. If even one frequency component is found to be unstable, then
the entire flow must be considered unstable. The theory says nothing concerning whether
an instability leads to some permanent divergence or some other stable configuration. The
stability referred to here is temporal stability, as opposed to spatial stability. That is, the
equations describe how the disturbances grow in time, rather than how they grow in
space. Use of temporal stability can be justified by the following argument. Since the
governing equations for supersonic flow are hyperbolic, a disturbance at some point
cannot influence the flow upstream of it. This behavior is also seen for temporally
growing mixing layers, since a temporal disturbance does not affect the previous
development of the flow. A Lagrangian viewpoint is assumed in this study in order to
simplify the mathematics, but it is also justified from the concept of a convective
reference frame attached to the dominant flow structures. Temporal and spatial stability
are found to be equivalent only at points of neutral stability.

Some of the first studies into the linear stability of two supersonic streams were
conducted by Landau [8], Pai [9], and Hatanaka [10]. These authors considered an
unbounded vortex sheet and found that the Mach number must be less than V8 as a
requirement for stability. Miles [11] found the same results using transform methods.

Blumen [12], Blumen et al. [13], and Drazin et al. [14] dealt with unbounded continuous



profiles and found multiple modes of instabilities. The hyperbolic-tangent profile has been
studied by many authors. They include Michalke [15], who studied the this profile using
the inviscid Rayleigh stability equations. Ragab and Wu [16] studied the effect of flow
parameters on the growth of instability waves using both viscous and inviscid stability
analysis to study both two-dimensional and oblique modes.

While the development and roll-up of vortices in the shear layer is clearly a
nonlinear process, the initial physics of this process can be conveniently examined using
linear theory. The classic experiments of Schubauer and Skramstad [17] established once
and for all the basic correctness of linear stability theory as the mechanism for the
instability of laminar incompressible shear layers. These experiments consisted of placing
a thin metal ribbon close to the wall and oscillating it electromagnetically. The
disturbances downstream were measured with a hot wire probe, and the results were
found to agree very well with the linear theory. Similar experiments for compressible flow
were performed by Laufer and Vrebalovich [18]. Riley and Metcalfe [19] used direct
numerical simulations of incompressible flows using perturbations of the Orr-Sommerfeld
equations and saw that vortices corresponding to the wavelengths predicted from linear
theory were indeed produced. McMurtry [20] extended that work to low Mach number
compressible flows. Numerical studies have been carried out by Sandham et al. [21] who
studied the spatial stability of three-dimensional modes in high speed flows and found that
the maximum growth rates are proportional to the predicted linear growth rates of those

modes. They also noted that the physics controlling the nonlinear roll-up of vortices is



contained in the linear eigenfunctions. Soetrisno et al. [22] studied the role of shocks in
compressible mixing layers and found that their growth is inhibited as the Mach number
is increased. Wind tunnel experiments have been performed to measure spreading rates,
and the results have been compared to theory by Gilreath and Sullins [23]. Greenough et
al. [24] studied the effect of walls on inviscid compressible mixing layers, and conducted
direct numerical simulations in order to study the nonlinear development of the instability
waves. These results confirmed the effect of Mach number on the reduction of the growth
rate, and they concluded that the linear theory can be very useful in understanding the
physics of compressible free shear layers and predicting the actual nonlinear growth rate
of plane mixing layers.

Although researchers have studied both viscous and inviscid stability, the inviscid
analysis shows much promise when examining high speed shear layers. Figure 1.1 [from
25, p. 401] shows the stability characteristics for incompressible viscous flow derived
from the Orr-Sommerfeld equations. It indicates that for incompressible flows, profiles
with an inflection point are unstable for all Reynolds numbers above some critical
Reynolds number, while flows without an inflection point tend to be more stable and are
always stable in the limit of large Re;. Rayleigh [26] showed that for an inviscid flow
(Res—<0), an inflection point in the velocity profile is a necessary condition for instability.
For compressible flows, similar results have been obtained. Figure 1.2 shows some of
Lessen’s calculations [27] for the stability of compressible unbounded shear layers. The

wavenumber associated with the point of neutral stability is seen to approach a constant



value for large Reynolds numbers, and this indicates that an inviscid analysis is
appropriate to determine the limits of stability for these conditions. Figure 1.3 shows that
this effect also holds for unbounded planar jets [28,29]. Therefore, since this study will
be dealing with compressible flows at high Reynolds number with one or more inflection
points, an inviscid analysis is deemed to be adequate.

Not many researchers seem to have addressed the stability of three-dimensional
mixing flows. Koshigoe and Tubis [30,31], Baty and Morris [32], and Morris et al. [33]
have studied three-dimensional shear layers and jets of arbitrary geometries, but have
mostly limited their studies to incompressible cases. They found that circular jets are
nearly stable, and that the profiles must be noncircular in order to promote rapid growth.
They have used a spatial stability analysis which is not directly comparable to temporal
analyses except for the stability region boundaries (i.e. on the neutral curves), but some
researchers feel that spatial stability can be better compared to experimental data.

In this study, the hydrodynamic stability of confined free shear layers will be
studied in an attempt to discover the effect of several flow parameters on the mixing of
two (or more) supersonic streams. These parameters include the relative Mach number (in
this study, the relative Mach number is equal to twice the convective Mach number),
shear layer and jet thicknesses, and geometric parameters, such as jet spacing and wall
placement. Inviscid linear stability analysis from a temporal viewpoint provides a
relatively straightforward method to examine this problem. It provides information about

the most amplified wavenumbers, the range of amplified wavenumbers, and the spatial



extent, both lateral and transverse, of their disturbances. The types of flows treated in the
current study include two-dimensional shear layers, planar jets, and combinations of these
two flows. Variations of these flows were also studied in three dimensions, including
shear layers in three dimensions with the addition of side walls, axisymmetric and elliptic
jets, and combinations of shear layers with jets similar to those studied experimentally by
King and Schetz in [1].

The approach used here was developed as a new hybrid linear/nonlinear scheme
aimed at reducing the total memory and run times needed to solve the stability equations.
A large global linear eigenvalue problem is solved to get an initial point in the growth
rate plane. Then, a highly efficient nonlinear inverse iteration routine is used to find the
stability characteristics at other points until the instability surface is mapped out
sufficiently. This hybrid method has been found to be extremely effective in reducing the
total cost of these calculations. Recently, a similar method has been reported by Malik
[34], who used it to solve a different set of equations in the study the transition of
compressible wall boundary layers. These methods differ from those of Greenough et al.
[24], who used shooting method techniques to integrate the equations across the flow, in
that no a priori knowledge of the growth rates are needed in order to solve the eigenvalue

problem.



2. Stability of Two-Dimensional Background Flows

2.1 Derivation of the Governing Equations
The unsteady Euler equations are the appropriate governing equations for inviscid,

compressible fluid flows:

p tl‘ + Vt.(p ‘V.)=0
p'V'!,-Fp-(V"V')V' +V-p-=0 ’ (21)
plet+ (V' V)e]=p (V- V)
where the asterisks denote dimensional quantities. Assuming ideal gas behavior, no heat
addition or shocks, and constant entropy and total enthalpy upstream, the energy equation

can be replaced with the isentropic relation

P_—constant.
p

These equations are nondimensionalized by the freestream conditions:

V=ALU“= [u,v,w]T, r=%= [x,y,z]
(2.3)
P=p—:’ -2 - V=V, z=t'AE].
Pe P, L

where AU" is a characteristic relative velocity and L" is a characteristic length for the
problem. The constants p, and a, are the ambient density and sound speed, respectively.
When these are substituted into Eqn. 2.1, and the constant in the isentropic relation is

evaluated at the ambient conditions, the nondimensional equations are



p,+V(pV)=0

1
pV,+p(VV)V+ _WVp =0 22)

p _1

pr Y
These equations are linearized with respect to the ambient conditions of the mean

flowfield. The disturbed quantities are

p=1+p
V=V +V (2.3)
1
p=—+p
Y
where the small disturbance quantities are denoted by primes. Equation 2.3 is substituted
into Eqns. 2.2. In order to linearize the disturbed isentropic relation 1+yp’=(1+p’)?, the
binomial expansion, (a+x)"=a"+na™'x+%n(n-1)a"*x*+ - where x<1, is used. The isentropic
relation then reduces to p’=p’,after neglecting terms of order p’?, thus eliminating p” from
the set of disturbance equations. When Eqns. 2.3 are put back into Eqns. 2.2 and products
of primed quantities are neglected, we get the following set of disturbance equations:
p/ +VV+(V V)p'=0
] 24
V +(V VIV +(V-V)V _+__Vp/=0.
o [ M2
The domain of interest is a plane channel air flow bounded by walls at y=y, and

y=y,, extending to infinity in the x- and z-directions, and consisting of 2-D parallel flow

in the x-direction. Since the directions x and z extend to infinity, it is reasonable to expect
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that the solutions should be either periodic in x and z, or independent of them [35]. Thus,
the disturbances to the mean flow can be represented by a superposition of sinusoids in

the x-z plane and travelling in the x-direction:

0r) | 50)]
W) | oo ay) | .
- A k,l i(kx+lz-cki)
Vi(rp) g.;. z-z-;- e v(y) ¢
w/(r,1) el

where k and 1 are the x- and z-wave number components and ¢ is the complex phase
speed. The vector function of y on the right hand side is the mode shape of the
disturbance, while A(k,l) is the disturbance amplitude at time t=0. The real part of each

spectral component is of the form

pO)

'?(Y) cos (kx +1z-c k1). (2.5)
V()

LWO’)J

Each component propagates at an angle ¢=tan"'(I/k) with respect to the x-axis at a speed

Akhe™

¢, and with a growth rate of ck. If the complex quantity ¢ is defined as -(ick) the growth
rate is simply ©,. Positive values of the growth rate indicate that the disturbance is
unstable and will grow in time. Damped disturbances are indicated by negative values.
Note that the disturbance can be fully oblique even if the background flow is only two-

dimensional.
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If the form of the disturbance defined by Eqn. 2.5 is substituted back into Eqn.

2.4, the disturbance equations for a particular wave number w=[k,I]" are written as

ik(u,-c)p +iku+lw) + 2 =
dy

ik .

.Wp +ik(u,-c)u +
1 dp
M? dy

_ll_p +ik(u,—c)w=0

— +ik(u,~c)v=0

where the primes have been dropped for convenience. By applying a rotation of the

coordinate system in the x-z plane to align with the wavenumber vector @

K=k, Jai=ku+lw,
u,=u,oso, k=lécos¢,
a reduction of the number of variables is achieved by eliminating w. This is similar to

Squire’s analogy used in incompressible stability analysis, but it is used here only to

simplify the mathematics. The rotated equations are

dv
zk(u -c)p + i+ 2 -0
dy

. rd . d ’
K o v i,y Z0v=0 2.6)
M? dy
1 4p +zk(u -c)v=0.
M?dy

In matrix notation these are
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B ’ I T — — y—
iki, ik D |[p p}
L, di
AT )
M? ° dy ||u|=-©
'p 0 its
L‘M_z‘ y [ Lv_ A

2.7)

<

where Dy=d/dy. It is obvious from Eqn. 2.7 that we are dealing with a linear eigenvalue

problem. These three equations can be reduced to one equation for p:

(u,-c)

d’p 44, dp
~2 0 9P LMy )~ (u,-)(k2+1D) |p = 0. 2.8)
dy*  dy dy [ ]p

Equation 2.8 can also be written in the form of a nonlinear eigenvalue problem

[A0+cAl +c2A2+c3A3]p =0 2.9)

where

du,

dy

Ay=u,D;~2—_°D +k®M*u} - u (k*+1%)

A, =-DJ-3k*Mu. + k> + I

(2.10)
A,=3kM,, A, =-k*M?
2
D;Ed_, Dsﬂ.
dy* 7 dy

The boundary condition used with Eqns. 2.7 and 2.8 is the condition that there be no
mass flux through the walls, or v(y,)=v(y,)=0. From the last of Eqn. 2.6, dp/dy(y,)=
dp/dy(y,)=0. If the second in Eqn. 2.6 is differentiated with respect to y and di,/dy=0 is

imposed at the walls, we obtain the last boundary condition, did/dy(y,)=dd/dy(y,)=0.
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2.2 Numerical Considerations

In order to solve the eigenproblem Eqn. 2.7, the problem can be formulated on a
finite-difference grid. The grid was generated by dividing the background velocity u, into
n discrete points. The distribution of these points is accomplished by dividing a modified
"arc length" into equal intervals. The true arclength is computed from

s, r

d
ds=f 1+.ﬁ dy.
: dy

However, this function does not give a satisfactory distribution of points, so it is modified
by writing

s, 174

du
dsf:f 1+G log| —2+1|| ay.
dy

5

where G is a parameter that allows for variable concentration of points in regions of high
velocity gradients. Typical values of G range from 1.5 to 4.0. Integrating the modified
arclength across the flowfield and dividing it into equal intervals gives a satisfactory and
efficient grid generation scheme. Grid metrics for this unequally spaced grid were also
computed.

Equation 2.7 is written in second-order accurate central difference form, and it can
be solved using the IMSL' routine DEVLCG which solves a general complex eigenvalue

problem by the QR algorithm. This algorithm is only practical when the matrix is of

'International Mathematics Software Library
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upper Hessenberg form, so DEVLCG first converts the general, complex matrix using a
series of plane rotations to eliminate the entries below the first subdiagonal. Then, this
matrix is reduced to upper triangular form using a series of unitary transformations. The
eigenvalues are then the diagonal entries of the upper triangular matrix. This algorithm
is used to find the entire eigenvalue spectrum. This routine is rather inefficient here, since
the matrix is extremely sparse. In order to overcome this inefficiency, the nonlinear
eigenproblem Eqn. 2.9 is solved for the complex phase speed (eigenvalue) ¢ and the mode
shape (eigenfunction) p(y) by a modified inverse iteration scheme [37,38]. Equation 2.9

is rewritten as a larger linear eigenproblem of the form

0 0 I|lxleclx, (2.11)
B, B, B|lx | |x

where x=cx,,;, X;=p, and B;=-A,"A,. Inverse iteration can be used efficiently here by

writing

BT | 0 ||x X,
O —'}II I X. = |X
B, B, B,-pl||x X

at each iteration j, where p is an initial estimate for the eigenvalue c. This can be

simplified further by combining the system of equations to get

Ay +nA, +12A, %A, X = A (e ) + p A ] - A
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Thus, only a single linear system must be solved at each iteration. Once the vector x,*!
has been found, the best estimate of the corresponding eigenvalue can be computed using

the Rayleigh quotient

where A and x are the matrix and vector from Eqn. 2.11. One drawback to this method
is that a sufficiently good estimate of the eigenvalue must be obtained to start each
iteration cycle. This starting value can be found by solving the larger linear eigenproblem,
Eqn. 2.7. The IMSL routine computes the entire spectrum of n eigenvalues, and the one
corresponding to the largest growth rate is used for n. A typical eigenvalue spectrum for
a shear layer is given in Fig. 2.1. Note the symmetry about both the real and imaginary
axes.

This hybrid linear/nonlinear method is particularly efficient when one is interested
in solving the eigenproblem many times while varying some parameter. Once the
eigensystem (eigenvalue and corresponding eigenvector) is determined for a certain set
of parameter values, one can use that solution to start the iteration procedure for a slightly
different set of parameters [38]. For example, the solution is marched along lines of
constant ¢ in the k-1 wavenumber plane until the growth rate approaches zero as sthn
in Fig. 2.2. The linear routine is used to find the solution at some value of k near zero
(k=0 is a singular point of the equations), and this is used to start the iteration for k+0k.

The initial solution can be used to start the iteration for all ¢=constant lines. This hybrid
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approach works quite well in reducing the total CPU time necessary to compute the
solution for the entire k-1 subplane of interest compared to using the linear scheme at all
of the points. This method is also faster than other techniques that have been used for
shear layer stability, for example the integration methods of Greenough et al. [24].

A grid refinement study was done in order to determine the optimum number of
grid points with which to discretize the velocity profiles. Some results of this study are
shown in Figs. 2.3 and 2.4 for a hyperbolic-tangent velocity profile for two different
relative Mach numbers and momentum thicknesses. Figure 2.3 shows the results for
several cases. The values plotted are normalized by the nonlinear solution for one hundred
grid points, which is assumed to be the most accurate solution, since it represents an
exceedingly fine grid. It shows that for these profiles, at least fifty grid points were
needed to resolve the growth rates to within 1% of the correct solution. In practice, sixty
points were used for these profiles, and up to seventy-five points were used for more
complex profiles. Since the computed density eigenfunctions were later integrated across
the domain in order to compute the velocity and vorticity eigenfunctions, one hundred
points were ussd to calculate the eigenfunctions to improve the accuracy of the
integrations. Figure 2.4 shows some of the density eigenfunctions for various numbers of
grid points.

The execution time of the calculations was measured. The linear portion computed
the eigenvalue spectrum for a distribution of sixty to one hundred points in less than two

CPU seconds on the Virginia Tech IBM 3090 vector processor. The nonlinear routine
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took approximately 0.1 msec per grid point per iteration. The nonlinear routine converged

to a residual of 10 in two to five iterations per point in the k-1 plane.
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3. Results for Two-Dimensional Background Flows

In order to verify that the stability code gives accurate results, test cases were run
for a shear layer with momentum thickness 6=0.03 and relative Mach numbers M=0.5
and 1.5. These results were then compared to those of Greenough et al. [24] obtained with
other solution methods. The results for M=0.5 are shown in Fig. 3.1, and for M=1.5 in
Fig. 3.2. The growth rate surfaces show excellent agreement. Therefore, we can proceed
confidently to other profiles.

3.1 Shear Layers

A typical shear layer is shown in Fig. 3.3. The important parameters under
consideration in a 2-D inviscid, compressible shear layer flow include the relative Mach
number M based on the velocity difference between the two streams, the shear layer
momentum thickness 6 (or boundary layer thickness 8), and the channel thickness ratio,
d=|y,/y,|- The variation of these parameters was studied over the following ranges:
0=<M=<3, 0.005<6<0.050, and 0.05<d<1.0. These ranges cover most supersonic shear layer
cases of practical interest. The variations are compared to a baseline case of M=(.5,
0=0.02, and d=1.0. The profile used is given by U(y)=Ytanh(ay), where a is chosen to
be 0.3069/6, or 2.647/3. (For these profiles, 8=8.6240.) This profile was chosen due to
its simple analytical form and smoothness properties, and it has been used by numerous
researchers over the years, e.g. [4,5,15,24]. The value of a is found by setting U(8)=0.99.
The phase velocity (convective velocity), c,, was found for all shear layer cases to be

equal to the average of the two stream velocities.

19



3.1.1 Effect of Relative Mach Number

Figures 3.2 through 3.13 consist of the growth rate surfaces in the k,1 plane for
various values of the relative Mach number ranging from 0.05 to 2.75, with 6=0.02 and
d=1.0 held constant. The focus of each surface indicates the wave component (wavenum-
ber and propagation angle) having the maximum growth rate. Values associated with this
point of maximum temporal growth rate are indicated by the subscript .. It is assumed
that this component will dominate the flow after some amount of time t has passed. This
disturbance component has a wavenumber of |®|=(k’+1%)* and a propagation angle
¢=tan'(I/k) with respect to the positive x-axis. For subsonic and transonic values of M,
the point of maximum growth rate is found to be located on the k-axis, indicating a
purely two-dimensional (axial) disturbance independent of z. As M is increased past
approximately 1.2, the maximum point moves off the k-axis, and the disturbance becomes
an oblique one, being a function of both x and z. The variation of this propagation angle
¢. with respect to M is shown in Fig. 3.16. The symbols represent results calculated with
the stability code. The nonzero portion of the curve can be approximated by M cos¢=1.2.
The most amplified wave number, |®|., is given in Fig. 3.17 as a function of the relative
Mach number. It is seen to be nearly constant for M<0.5, decreasing through the transonic
range, and constant again for M>1.2. If the value of |®|. is divided by its value at M=0,
the data nearly collapses onto a single curve, as shown in Fig. 3.18.

Figure 3.19 is a plot of the maximum growth rate G, versus M for various values

of 8. The maximum growth rate is seen to decrease with increasing M, as predicted by
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theory and experiments. If the growth rate is divided by the growth rate at M=0 the
curves collapse reasonably well onto one curve. This is shown in Fig. 3.20. A curve fit

to these points is given by:

c

" =cos?(0.53M) for 0sM<1
r«(M=0)
c,, _ 0.753
M

o

for M >1

Gn(M=0)

These equations were found by a linear least-squares analysis performed on the collapsed

growth rate data.

Figure 3.21 is a plot of thﬁ densitg(igenfunction p. corresponding to the most

A
amplified disturbance for various M. The eigenfunctions are seen to be nearly symmetric

A
about the center of the shear layer. It is clear from this plot that compressibility effects
of the disturbance are not confined to the shear layer itself, but extend across the entire
flow. The next two figures, Figs. 3.22 and 3.23 are the streamwise and vertical velocity
eigenfuctions. Keep in mind that these eigenfunctions are for only the one mode of the
disturbance that is believed to dominate the flow, and that the actual disturbance is made
up of the superposition of all the modes. Neither of these functions appear to have any
particular symmetry with respect to the shear layer center. These plots also show the
distribution of points calculated by the grid generation routine. The full flowfield

disturbances, p’(x,y,z;t), etc., due to these components can be calculated from Equation

2.5. Figures 3.24 through 3.27 are the density, streamwise and vertical velocities, and z-
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vorticity disturbances at time t=0 for the baseline case of 6=0.02 and M=0.5. The
vorticity disturbance is derived from the formula
o =9 W
* ox oy

Figure 3.24 is also the pressure disturbance (since p’=p’), and it indicates alternating
regions of high and low pressure on either side of the shear layer. These pressure
fluctuations result in the shear layer taking on a wavy shape and eventually rolling up into
vortical structures. Figure 3.27 shows the structure of these counter-rotating vortices.
3.1.2 Effect of Momentum Thickness

From Fig. 3.28, we can see the effect of the momentum thickness 6 on the
maximum shear layer growth rate. Lines fit to the computed data points are of the form
0.=k(M)8 "% showing a decrease in the maximum growth rate for increasing relative
Mach number. In order to collapse this data, the maximum growth rate is multiplied by
the relative Mach number. The justification for this choice of multipliers is obvious from

the equation for the dimensional growth rate

aM L

o, =k*c'=——kc, or Mkc,=McG =_0'
L a,
Thus, the quantity M, is proportional to the dimensional growth rate 6,". From Fig. 3.27,
the dimensional growth rate is seen to be independent of M for M21.

In Fig. 3.30, it is shown that the most amplified wavenumber |®[. is also

independent of M for M>1, and nearly so for M<1. The "jitter" observed for the smaller
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values of |w|. is due to the finite k step size used in the calculations in k-1 plane
(typically 8k=0.2 to 0.4).

The next three figures, Figs. 3.31 to 3.33, show the density, streamwise and
vertical velocity eigenfunctions versus 6 for M=0.5. Again, the density eigenfunctions in
Fig. 3.31 are symmetric about the shear layer center since M<I1, and no particular
symmetry is seen for the velocity eigenfunctions.

3.1.3 Effect of Wall Placement

The height of the upper wall was varied to study the effects of the wall placement
on the growth of the shear layer disturbances. The parameter d=|y,/y,| was used to
indicate the relative spacing of the walls with respect to the shear layer center. Figure
3.34 shows the variation of the maximum growth rate with the wall spacing d. It shows
that the wall placement has little effect upon o,. for large values of d. Figure 3.35 is the
same data plotted versus d/8, and it shows that d has no effect on the maximum growth
rate until d/6=2 or 3. Below this value, 6. drops off rapidly. This indicates that the shear
layer must have room above and below to grow, and placing the wall too close to the
shear layer severely dampens the maximum growth rate. The effect occurs at larger values
of d/ as M increases.

The next three figures show the effect of varying d on the eigenfunctions for the
baseline conditions of M=0.5 and 6=0.02. Figure 3.36 shows that the density eigenfunc-
tion is antisymmetric for symmetrically placed walls (d=1) and unsymmetric for d<1.

Also, note that the maximum point of the eigenfunction is pushed downward as the top
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wall spacing is decreased. Figures 3.37 and 3.38 show similar trends. Figures 3.39
through 3.42 show the full flowfield disturbances for M=0.5, 8=0.02, and d=0.6 at the
most amplified wavelength. Note that the disturbances are not affected by the upper wall,
since it is several boundary layer thicknesses above the shear layer.
3.2 Planar Jets/Wakes

In order to study the stability characteristics of 2-D jets and wakes, velocity

profiles of the form

U(y) = sech*(by), for jets

U(y) =1 -sech®*(by), for wakes
were used, where b=0.8814/r,,. As with the shear layer profile, this form of profile has

the qualities of smoothness and analytic simplicity, and it also is in agreement with
experimentally measured jets and wakes. See Fig. 3.43 for an illustration. The phase
speed of the jets was found to vary between that of the freestream and jet (i.e. between
0 and 1), decreasing for increased relative Mach number and nearly independent of the
jet half-radius. The stability characteristics of the wakes studied matched those of the
equivalent jets, except that the phase speed is equal to (1-c,;.). This can be seen by the
following argument. If the jet velocity profile, sech’(ay), is multiplied by -1, the
coefficients A, in Eqns. 2.10 change sign for even i, and remain the same for odd i. Then,
Eqn. 2.9 becomes [A,-cA,+c*A,-c*A,]p=0. Thus, if some value of c is a solution to Eqn.
2.9, -c is a solution the equation above. But, since the eigenvalues occur in oppositely

signed pairs as shown on Fig. 2.2, the phase speed (c,) and growth rates are the same for
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both cases. The addition of a unit velocity to -sech’(ay) only has the effect of shifting the
real part of ¢ by 1. This is seen in Eqn. 2.8, where ¢ only occurs in the grouping (u,-c).
Thus shifting u, by some amount has the result of shifting ¢ by the same amount. Thus,
the growth rates are the same for jets and wakes, but the wake phase speed is now
(1-¢, ). For these reasons, wakes are not discussed further in this study.
3.2.1 Effect of Relative Mach Number

The relative Mach number is now that between the jet maximum (or wake
minimum) and the freestream. Figure 3.44 is a typical plot of the growth rate in the
wavenumber plane. Figure 3.45 shows the maximum growth rate G,. versus M for several
values of the jet half-radius. The maximum growth rate is larger for a jet than a shear
layer of the same size and Mach number (see Fig. 3.19). Again, the data can be collapsed
by dividing the growth rate by the growth rate at M=0. This is shown in Fig. 3.46. As in
the case of shear layers, the maximum growth rate decreases with increasing relative
Mach number.

The variation of the most amplified wavenumber with M is shown in Fig. 3.47.
The wavenumber decreases with M as it does for shear layers. Again, the data can be
collapsed as in Fig. 3.48.

Figures 3.49 through 3.51 are the density and velocity eigenfunctions for a
nominal jet size of r,,=0.05. They are seen to be either symmetric or antisymmetric with
respect to the jet centerline. This is because the jet is symmetric in the freestream. The

disturbances widen out into the freestream as the Mach number is increased.
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3.2.2 Effect of the Jet Half-Radius

Figure 3.52 is the variation of the maximum growth rate with the jet half-radius
for various relative Mach numbers. The effect of increasing jet half-radius is to decrease
the maximum growth rate. This data does not collapse for M>1 as the shear layer results
do, showing that the dimensional growth rate is not constant for M=1. However, returning
to Fig. 3.48, the normalized maximum growth rate is nearly independent of the half-
radius. The point of maximum growth does not move off of the k-axis for M>1.2 as it
did for the shear layer cases. This indicates that the most amplified disturbance for a 2-D
jet is always an axial one.

The next plot, Fig. 3.53 shows the effect of the jet half-radius on the most
amplified wavenumber for various Mach numbers. Again, it is seen to be nearly
independent of M for M<1.

The eigenfunctions shown in Figs. 3.54 to 3.56 are all once again either symmetric
or antisymmetic about the jet centerline. The disturbance has a wider effect on the
flowfield as the jet half-radius increases. The flowfield disturbances are shown in the next
four plots, Figs. 3.57 to 3.60. Again, they indicate regions of alternating pressure (density)
along the centerline. The vortical structure is basically similar to that of the shear layers.
3.3 Combined Jet/Shear Layer Flows

The effect of superimposing a jet upon a shear layer was studied by examining

profiles of the type
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U(y)=0.5tanh (ay) + U, sech’(b (y-y,,))

as shown in Fig. 3.61, where a and b are defined as before. King and Schetz [1] found
that the size and placement of the jet on top of the shear layer can have a marked effect
on the growth of the structures in the mixing layer. That situation will be discussed in a
later chapter in a 3-D version of this case.
3.3.1 Effect of Jet Velocity

Figures 3.62 and 3.63 are typical profiles where the jet velocity U, is varied
between 0.2 and 1.2. The next two figures show the growth rate versus the wavenumber
k. There are now two dominant modes, one from the shear layer and one from the jet.
Figures 3.64 and 3.65 indicate that the jet mode quickly dominates the shear layer mode
as Uy, is increased, although the most amplified wave number of the jet mode is larger,
and hence has a smaller wavelength. Thus, for reasonably sized jets, the structure is
smaller but grows faster. Note that the maximum growth rate for the two modes where
Uj=1.0 agrees very closely with that of the shear layer and jet separately. This implies
that the effects of the two profiles are merely superimposed at this spacing. Increasing U,
also has the effect of slightly lowering the shear layer growth rate slightly. Figure 3.66
shows the maximum growth rate of both modes versus the jet velocity for both r,,=0.02
and r,,=0.05 at y;,=0.2. The jet mode seems to dominate the shear layer mode once the
jet velocity Uj,, is increased past 101,,. Figure 3.67 shows the most amplified wavenum-

ber versus the jet velocity for y;,,=0.2. The jet and shear layer mode wavenumbers are
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nearly constant as the jet velocity is increased for a small jet half-radius, but they
decrease with Uy, for larger jet half-radii.
3.3.2 Effect of Jet Location

Figures 3.68 and 3.69 show typical jet/shear layer profiles as y;, is varied between
0.1 and 0.6 for U,=0.4. Figure 3.70 indicates the effect of the jet location on the growth
rate of both jet and shear layer modes versus the wavenumber k for r,,=0.02. Both modes
appear to remain nearly unchanged until y,, is lowered to a point where the jet and shear
layer profiles begin to overlap. At this point, the maximum growth rate and the most
amplified wavenumber begin to decrease. The two modes are no longer simply
superimposed, since there is now, in fact, a new hybrid profile. Figure 3.71 is the data for
1,,=0.05. As the jet begins to merge with the shear layer, the shear layer mode growth
rate first begins to decrease, then suddenly increases for y,=0.1. This type of effect could
be responsible for the increased structure size observed by King and Schetz. These trends

are clearly shown in Figs. 3.72 and 3.73.
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4. Comparison with Two-Dimensional Background Flow Experiments

In order to more fully understand the behavior of shear layer mixing flows,
stability calculations were performed to predict the stability characteristics in conjunction
with experiments performed at the Johns Hopkins Applied Physics Laboratory by G.
Sullins and H. Gilreath [39]. The aim of this analysis was to calculate the dominant
wavelengths and mode shapes of amplified disturbances in the shear layer. The data
should predict, at least in a qualitative manner, the size and location of dominant
structures in the actual flow. If good agreement is shown by these calculations, the
stability analysis can be used to design future experiments to look for mixing enhance-
ment. This can result in a large savings of both time and money by decreasing the number
of wind tunnel tests required to determine whether a particular mixing scheme is practical.

The cases studied consisted of two confined supersonic air streams. The Mach
numbers of the lower and upper streams was 2.0 and 1.2, respectively, and the total
temperature of both streams was 520°R. The static pressure in the two streams was varied
for the five cases shown in Fig. 4.1.

4.1 Calculation of the Mean Flowfield

The stability analysis requires as input the mean velocity profile u,. Since the
analysis requires a profile at an x=constant plane, profiles at several downstream locations
must be known or computed in order to study the entire flowfield. The program CFL3DE
[40] was used to calculate these shear layer flowfields. This code can be used to solve the

2-D or 3-D, laminar or turbulent, Thin-Layer or Parabolized Navier-Stokes (TLNS/PNS)
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equations using a finite-volume formulation. For these calculations, the code was used in
the PNS mode assuming 2-D laminar flow. Laminar flow was computed to avoid having
the turbulent modelling quantities appear as additional parameters in the problem. A
viscous calculation was needed to enforce the no-slip conditions at the walls. Given the
initial profiles at the trailing edge of the splitter plate, the solution was marched
downstream. This method gives second-order accuracy in the streamwise direction. In the
direction normal to the flow, third-order accuracy was achieved in the inviscid terms, but
coupling with the viscous terms reduced the overall accuracy to second-order. A perfect
gas equation of state was used, and 2-D flow was assumed. Since the stability code
assumes constant ambient conditions along the profile in the y-direction, constant x-planes
from the PNS solutions were chosen for analysis at stations in the constant presure
regions between shocks so as to minimize the effect of the pressure and density gradients
from these shocks.

The solution was computed on a 481 x 100 point grid, Cartesian in the streamwise
direction and stretched in the transverse direction to better capture the wall boundary
layers and mixing layer. The grid generation scheme discussed previously for the stability
code was used to generate the spacing. A typical grid used is shown in Fig. 4.2. This
corresponded to flowfield dimensions of 12 x 2 inches. Flowfield velocity and pressure
contours computed for Case 2 are superimposed in Fig. 4.3. Velocity profiles computed
for several downstream planes were then used as input for the 2-D stability code. Typical

profiles taken from the PNS solutions and used for the stability code are shown in Fig.
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4.4. The small vertical component of the velocity was neglected in the stability code,
since parallel flow was assumed.
4.2 Stability Calculations

Figure 4.5 consists of the growth rate surfaces in the k-1 plane for Case 1 (matched
pressure). Note, that since the relative Mach number for all of these cases was 0.8, the
point of maximum growth always occurs on the k-axis, indicating that two-dimensional
axial disturbances dominate the flow. These six surfaces are very similar in appearance
for this case since the matched pressure flowfield has few waves to disturb the flow.
Hence, the profiles at the six stations were similar.

The maximum growth rate for all five cases at all six axial stations is shown in
Fig. 4.6a. The initial profile for the five cases was the same, hence the growth rate at x=0
is the same for all cases. For Case 3, the stream pressures were such that a Mach
reflection occurred on the upper wall near the splitter plate. The PNS solver could not
resolve the subsonic flow behind this normal shock, since the solution was marched, so
downstream profiles were not available for this case for use in the stability code. Only
the first two stations are represented for this case. It can be seen from this figure that for
Cases 2 and 3 (the overexpanded cases), the growth rate decreased from that of the
baseline case, while Cases 4 and 5 (the underexpanded cases) had increased growth rates.
This agrees well with the spreading rates measured experimentally. For all cases, the
stability code showed that the majority of the growth occurs after the initial adjustment

shocks, which tended to equalize the pressure between the streams, which then remains
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nearly constant. In order to compare the computed growth rates with the measured
spreading rates, Sullins and Gilreath normalized the growth rates and spreading rates by
the values from the baseline matched pressure case (Case 1). These values are shown in
Fig. 4.6b. The dotted line represents the condition where the two methods would correlate
exactly. Except for Case 3, the plot indicates that there is good agreement between the
theory and the experiment. That is, the stability code correctly predicted the cases for
which the spreading rate was found to increase over the baseline case. The discrepancies,
especially in Case 3, might be attributed to several factors. Primarily, for this case, the
upper stream was highly overexpanded, which violates the assumption of constant
pressure. Also, after the initial adjustment wave there is a significant vertical velocity

component, and the parallel flow assumption is no longer valid.
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5. Stability Code for Three-Dimensional Background Flows
5.1 Problem Formulation

Three-dimensional parallel flows can be analyzed in a very similar manner to two-
dimensional flows if the background velocity profile is taken to be a function of both y
and z. One important difference in the three-dimensional case is the presence of the wall
boundary conditions in the z-direction. The walls restrict the propagation of the
disturbance to the x-direction only, eliminating the z-wavenumber, 1, from the disturbance
equations. Thus, all of the disturbances for three-dimensional profiles are assumed to be

axial. The governing disturbance equations become

dv ow

ik(uy-c)p +iku+ _a_y. +_§; =0
ou

i 0
.;%p +ik(u0—c)u+%v+ a_z"w=0

#3_‘; +ik(u,—c)v=0
_l-ﬂ).+ik(uo—c)w=0

M? 0z

or in matrix form,
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Again these can be written in nonlinear form as

Pp P ou, 9p U, Jp )y
70 20| f3u 20 ke o olo-n

The form of the nonlinear problem remains very similar to the 2-D case, although the

order of the problem has now increased, and the coefficient matrices A; gain additional
terms.

A grid refinement study, similar to the 2-D study discussed previously, was done
for the 3-D code. Similar results were obtained, in that about fifty grid points in each of
the two directions was required to achieve accurate convergence to the correct growth rate
solution using the nonlinear solver. Due to memory storage limitations on the IBM 3090
computer, the size of the grid for the linear portion of the code was kept to around 31 x
31 points. This number of grid points was adequate for the nonlinear routine to converge.
Calculation times were measured, and as expected, were significantly greater than for the
2-D code. Typically, the time for computing a 3-D linear solution was on the order of

nine hundred CPU seconds for a 31 x 31 grid, and approximately 2 msec per grid point
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per iteration for the nonlinear portion. The nonlinear routine usually converged to a
residual of 10 in three to five iterations.
5.2 Use of the Method to Investigate Hybrid Injection Schemes

The full three-dimensional stability problem can be used to study a wide range of
potential injection schemes. Examples include planar shear layers and jets as before, but
now with the presence of walls in the cross-flow dimension, as well as many hybrid
schemes including arrays of jets, combined axial jet/shear layer flows, and other shear
flows. The stability code allows us to vary the spacing and geometry of the profiles over
a large range of parameters with relative ease. This in turn will allow intelligent decisions
about what configurations to actually test in wind tunnel experiments. King and Schetz
[1] found that some cases of combined normal and tangential injection into a supersonic
stream can produce substantially enhanced mixing rates and large eddy structures. The
geometry and flow parameters had a marked effect on the amount of mixing enhance-
ment, but the exact combination of parameters that produced the augmentation could only
be found by tedious "trial and error" experiments. The use of the 3-D stability code will

help better understand the interaction of the flow elements.
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6. Results for Three-Dimensional Background Flows

6.1 Comparison of 2-D and 3-D Shear Layers and Jets

In order to more fully understand the two-dimensional results discussed in Chapter
3, some of the same profiles were examined using the three-dimensional stability code.
The difference now is the added presence of walls in the z-dimension. It is expected that
this will not have a large effect on the gross stability characteristics of the flows studied
with the 2-D code, but may change some of the details.
6.1.1 Shear Layers

Shear layers with nominal momentum thickness, but now constrained into the
region -0.55z<0.5 were examined for Mach numbers of 0.5, 1.0, and 1.5. Figure 6.1
shows a typical numerical grid for these flows, with the grid points concentrated in the
region of high velocity gradients. The results are plotted in Fig. 6.2. For wavenumbers
less than |w|., the growth rate for the three-dimensional case is seen to be the same as
for the two-dimensional case. For larger wavenumbers, however, the 3-D growth rate is
less than that of the 2-D cases. This is undoubtedly due to side wall effects, since that is
the only new element that has been introduced. Figure 6.3 shows the flowfield vorticity
disturbance for M=0.5 at the most amplified wavenumber of k=6.5. The contours in the
y-z plane indicate the form of the vorticity eigenfunction. Note, that the eigenfunction is
now a function of both y and z. For this spectral component, it is seen that the greatest
amount of vorticity is generated where the shear layer meets the z boundaries, and not in

the middle of the flow. Recall that this is only one mode of the disturbance, although it

36



is the most highly amplified. The contours in the x-y planes at z=0 and z=-0.5 are also
shown. They show the periodic nature of the disturbances in the x direction. The apparent
lack of regularity in each period is due to the discretization of the eigenfunction in the
x-direction. Since the size of the domain in this direction (21) is not always an exact
multiple of the wavelength of the disturbance, the number of points in each period is not
constant. The disturbance for M=1.0 shown in Fig. 6.4 has a similar structure, but at a
slightly smaller wavenumber. Since the vortex structure at this wavenumber is slightly
larger, the disturbance on the z=-0.5 wall extends a little further in the y direction than
before. Also note that there is more of a corner effect in evidence and that the vorticity
is relatively stronger in the center of the flow domain than before.

Figure 6.5 is for the M=1.5 case at a wavenumber of k=4.5. The wall effect
extends completely up and down the side walls now and joins with the corner vorticity.
The vorticity in the center of the flow is also now much larger compared to the vorticity
at the walls.

From these last three figures it seems that as the relative Mach number is
increased, the dominant structure size increases (the wavenumber decreases), and more
vorticity is generated away from the walls. The walls seem to have a dampening effect
on the large-‘scalc structure. The fact that the corner effect only is apparent in the upper

corner is due to the asymmetry of the shear layer velocities.
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6.1.2 Planar Jets

The 3-D stability code was also used to compare 2-D and 3-D planar jets. This
grid is similar to those generated for the shear layer cases above. A comparison of the
growth rates for planar jets is shown in Fig. 6.6. Similar to the shear layers, the growth
rate is nearly identical to the 2-D cases except at the largest wavenumbers.
6.2 Fully Three-Dimensional Profiles
6.2.1 3-D Jet/Shear Layers

Figure 6.7 shows the vorticity eigenfunction for the first fully three-dimensional
profile examined. The case is for a nominal 2-D shear layer with M=1.5, 6=0.03, and a
round jet with r,,=0.05,. Again, we see the wall effects dominate at this wavenumber,
k=1, which is not the most amplified wavenumber for this case. Also, the vorticity in the
middle of the shear layer is no longer uniform between the sidewalls. This is due to the
presence of the jet above the shear layer. The fact that the vorticity from the axisymmetric
jet is not axisymmetric is probably an artifact of the grid spacing in the immediate
vicinity of the jet. The next plot, Fig. 6.8, is the flowfield vorticity disturbance associated
with the previous eigenfunction in Fig. 6.7.

The next case in this section is the same as the previous case, but for the most
amplified wavenumber of k=4.5. In Fig. 6.9, it is clear that the vorticity in the shear layer
now dominates the flow. Also, the jet has much less influence at this wavenumber, and

the wall effects are less pronounced. The flowfield vorticity disturbance is shown in Fig.
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6.10, and it shows the same features as observed in the eigenfunction shown in the
previous figure.

Figures 6.11 and 6.12 are the vorticity eigenfunction and flowfield disturbance for
the jet/shear layer case corresponding to the 2-D case where a large increase in the
growth rate was observed (see Fig. 3.71). Notice, in Fig. 6.11 the shear layer vorticity
clearly dominates this mode.

6.22 3-D Jets

Three-dimensional jets were also studied using the stability code. A typical
numerical grid used is shown in Fig. 6.13. The aspect ratio of the jets is defined as
AR=z,,/y,,, where y,, and z,, are the half-radii in the y- and z-directions. Figure 6.14
shows the growth rate versus wavenumber for several jets of different geometries at
M=1.0. All of these growth rates are significantly lower than those found for planar jets
(AR approaching infinity). Other values of M were examined, with similar results. From
this plot, we see that the effect of reducing the aspect ratio is to increase the stability of
the flow. As AR—1, the jet becomes neutrally stable, and no unstable modes were found
using this code. This result agrees with that of Shen [41], who showed mathematically

that inviscid axisymmetric jets are stable even though they possess an inflection point.

39



7. Conclusions

In this study, the stability characteristics of compressible free shear layers have
been examined using linear stability theory. A reliable and efficient method for solving
the stability equations governing the disturbances was developed and used successfully
to find the growth rates, most amplified wavenumbers, and directions of propagation of
disturbances for several two- and three-dimensional mean flow profiles.

The relative Mach number (in this study, equal to twice the convective Mach
number) was shown to be the single most important parameter to characterize the stability
of compressible mixing flows. The maximum growth rate of all profiles under study was
found to decrease with increasing relative Mach number, and the form of this dependence
was found for several cases. The normalized maximum growth rate was shown to be
independent of the momentum thickness for shear layers, and of the half-radius for jets
and wakes. For the jets, it was also seen that the most amplified wavenumber is also
independent of the half-radius.

The most amplified wavenumber of the disturbances was found to be nearly
independent of the relative Mach number for values of M<1. For shear layer flows, the
propagation angle of the most amplified wavelength was found to be zero for M<1.2, and
closely approximated by Mcos¢=1.2 for M=>1.2. For jet flows, it was found that all of
the most amplified disturbances are two-dimensional.

The eigenfunctions were calculated for each disturbance and found to vary widely,

depending on the wavenumber and relative Mach number. The jet eigenfunctions were
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found to be symmetric or antisymmetric for all cases studied. The full flowfield
disturbances were calculated from the eigenfunctions, and they proved to be great
assistance in picturing the form of the vorticity disturbances in the flow. The placement
of the upper wall was examined and was shown not to influence the growth rate of the
disturbances until it came within two or three characteristic widths of the shear layer or
jet, although it did have some effect on the eigenfunctions, tending to push the maximum
point down towards the lower wall.

The effect of superimposing profiles was slight except to include both the shear
layer and jet modes, unless the portions of the two profiles started to overlap, forming a
new type of profile. This superposition result might be expected, since the governing
equations were linearized. However, for some cases where the profiles merged, an
increase in the maximum growth rate was observed. This confirmed qualitatively
experimental results seen by King and Schetz.
yers with pressure mismatch were performed
with the code CFL3DE to compute velocity profiles for use in the stability code. The
cases studied corresponded to experimental cases studied by Sullins and Gilreath. The
velocity profiles were examined to determine which of the test cases might have improved
mixing compared to the baseline case. The stability results were compared with the
experimentally measured spreading rates and found to give good qualitative agreement.

A three-dimensional version of the stability code was also developed and

compared for simple cases with the two-dimensional code. When applicable, the 3-D
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results gave excellent agreement with the 2-D stability code. Also, potentially important
side wall effects were seen when shear layers were examined with the 3-D code.

Fully three-dimensional velocity profiles were also examined with the stability
code. Three-dimensional jets were superimposed above a shear layer to closely
approximate the experimental flows studied by King and Schetz. Cases where the growth
rate increased significantly were again found.

Axisymmetric and elliptic jets were found to have much lower growth rates than
2-D planar jets. In fact, the axisymmetric jets were found to be stable at all wavenumbers
examined. As the jet aspect ratio was increased, the growth rate increased rapidly and

approached the characteristics of a planar jet.
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Figure 1.2 Stability of mixing between two parallel compressible flows; from
Shen [41]
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Figure 1.3 Neutral stability curve for compressible planar jets; from Shen [41]
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Shear Layer: M=0.5, 6=0.05, k=1.0
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Figure 3.1 Shear layer: M=0.5, 6=0.03; (a) from Greenough et al. [24],
(b) 2-D stability code
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Figure 3.2 Shear layer: M=1.5, =0.03; (a) from Greenough et al. [24],
(b) 2-D stability code
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Figure 3.3 Typical shear layer flowfield parameters

57



Growth Rate

Figure 3.4 Shear layer growth rate surface: 6=0.02, M=0.05, d=1.0
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Figure 3.5 Shear layer growth rate surface: 6=0.02, M=0.25, d=1.0
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Figure 3.6 Shear layer growth rate surface: 6=0.02, M=0.50, d=1.0
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Figure 3.7 Shear layer growth rate surface: 6=0.02, M=0.75, d=1.0
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Figure 3.8 Shear layer growth rate surface: 6=0.02, M=1.00, d=1.0
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Figure 3.9 Shear layer growth rate surface: 6=0.02, M=1.25, d=1.0
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Figure 3.10 Shear layer growth rate surface: 6=0.02, M=1.50, d=1.0
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Figure 3.11 Shear layer growth rate surface: 6=0.02, M=1.75, d=1.0
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Figure 3.12 Shear layer growth rate surface: 6=0.02, M=2.00, d=1.0

66



Growth Rate

Figure 3.13 Shear layer growth rate surface: 6=0.02, M=2.25, d=1.0
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Figure 3.15 Shear layer growth rate surface: 6=0.02, M=2.75, d=1.0
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Figure 3.14 Shear layer growth rate surface: 6=0.02, M=2.50, d=1.0
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Figure 3.16 Shear layer most amplified propagation angle vs. relative Mach number
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Shear Layer: d=1.0
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Figure 3.17 Shear layer most amplified wavenumber vs. relative Mach number
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Figure 3.19 Shear layer maximum growth rate vs. relative Mach number
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Figure 3.21 Shear layer density eigenfunctions vs. relative Mach number
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Figure 3.22 Shear layer u velocity eigenfunctions vs. relative Mach number
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Figure 3.23 Shear layer v velocity eigenfunctions vs. relative Mach number
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Figure 3.28 Shear layer maximum growth rate vs. momentum thickness
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Figure 3.29 Shear layer maximum dimensional growth rate vs. momentum thickness
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Figure 3.30 Shear layer most amplified wavenumber vs. momentum thickness
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Figure 3.31 Shear layer density eigenfunctions vs. momentum thickness
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Figure 3.32 Shear layer u velocity eigenfunctions vs. momentum thickness
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Figure 3.33 Shear layer v velocity eigenfunctions vs. momentum thickness
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Figure 3.34 Shear layer maximum growth rate vs. wall placement
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Figure 3.36 Shear layer density eigenfunctions vs. wall spacing
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Figure 3.37 Shear layer u velocity eigenfunctions vs. wall spacing
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Figure 3.38 Shear layer v velocity eigenfunctions vs. wall spacing
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Figure 3.43 Typical planar jet flowfield parameters
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Figure 3.44 Planar jet growth rate surface; M=0.25, r,,=0.05
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Figure 3.45 Planar jet maximum growth rate vs. relative Mach number
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Figure 3.46 Planar jet maximum growth rate (collapsed) vs. relative Mach number
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Figure 3.47 Planar jet most amplified wavenumber vs. relative Mach number
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Figure 3.49 Planar jet density eigenfunctions vs. relative Mach number
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Figure 3.50 Planar jet u velocity eigenfunctions vs. relative Mach number
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Figure 3.51 Planar jet v velocity eigenfunctions vs. relative Mach number
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Figure 3.52 Planar jet maximum growth rate vs. jet half-radius
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Figure 3.53 Planar jet most amplified wavenumber vs. jet half-radius
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Figure 3.54 Planar jet density eigenfunctions vs. jet half-radius
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Figure 3.55 Planar jet u velocity eigenfunctions vs. jet half-radius
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Figure 3.56 Planar jet v velocity eigenfunctions vs. jet half-radius -
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Figure 3.61 Typical jet/shear layer flowfield parameters
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Jet/Shear Layer Profiles: 6=0.02, y,,=0.2, r;,,=0.02
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Figure 3.62 Typical jet/shear layer profiles vs. U,; 6=0.02, Yje=0.2, 1,,=0.02

116



, 6Je’r/Shec1r Layer Profiles: 6=0.02, yie,r=0.2, r1/2=0.05

0.8 S — E— S—

06| S T S T

0.4

0.2

>~ 0.0

-0.2
Y — A— S S S
P I . SR T

Y S S S S A

i | ; i ;
0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.63 Typical jet/shear layer profiles vs. Uje; 6=0.02, y,,=0.2, r,,=0.05
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Figure 3.64 Jet/shear layer growth rates vs. k; M=0.5, 6=0.02, Yje=0.2,

1,,=0.02, $=0
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Figure 3.65 Jet/shear layer growth rates vs. k; M=0.5, 6=0.02, y;,=0.2,
r,,=0.05, ¢=0
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Figure 3.66 Jet/shear layer maximum growth rates vs. U;; M=0.5, 6=0.02,
Yje=0.2, $=0
120



50

% Shear iLcyer Mode
s Jet Made ;

~
O
!

W
O
!

N
O
!

O
!

Most Amplified Wavenumber, ||,

0.0 0.4 0.8 1.2

Jet Velocity, Ujet

Figure 3.67 Jet/shear layer most amplified wavenumber vs. Ujer M=0.5,
6=0.02, y;,=0.2, ¢=0

121



Y IO S S FO— RO S

08 T—— R — — e
10 L i | a
0.0 0.5 1.0 1.5 2.0 2.5
U(y)

Figure 3.68 Typical jet/shear layer profiles vs. Yjes 6=0.02, U;,=0.4, 1,,=0.02
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Figure 3.69 Typical jet/shear layer profiles vs. y,,; 6=0.02, U,=0.4, r,,=0.05
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Figure 3.70 Jet/shear layer growth rates vs. k; M=0.5, 6=0.02, U;=0.4,
r1/2=0.02, ¢=0
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Figure 3.71 Jet/shear layer growth rates vs. k; M=0.5, 6=0.02, U;=0.4,
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Figure 4.1 APL experiment test conditions jp ge. M=1.5, 6=0.02, k=6.5.
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APL Shear Layer: Case 5, i=0 plane
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Figure 4.4 Computed u velocity profiles at each axial station for APL Case 5
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(a) APL Shear Layer: Case 1, i=0 plane
Nondimensional growth rate
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(c) APL Shear Layer: Case 1, i=141 plane
15 Nondimensional growth rate

(e) APL Shear Layer: Case 1, i=321 plane
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Figure 4.5 Growth rate planes at each axial station for APL Case 1

(b) APL Shear Layer: Case 1, i=21 plane
Nondimensional growth rate
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(d) APL Shear Layer: Case 1, i=241 plane
15 Nondimensional growth rate

(f) APL Shear Layer: Case 1, i=401 plane
15 Nondimensional growth rate
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Growth rate from stability code for baseline case
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Shear Layer: 6=0.02, ¢=0°
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Figure 6.2 Comparison of 2-D and 3-D shear layer growth rates vs. k; 6=0.02
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Figure 6.3 3-D shear layer vorticity disturbance magnitude; M=0.5, 6=0.02,

=6.5
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Figure 6.5 3-D shear layer vorticity disturbance magnitude; M
k
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Figure 6.6 Comparison of 2-D and 3-D planar jet growth rates; y =0.05, ¢=0
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Figure 6.8 3-D jet/shear layer vorticity disturbance magnitude; M=1.5, 6=0.02,
1,,=0.05, k=1.0
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Figure 6.9 3-D jet/shear layer vorticity eigenfunction; M=1.5, 8=0.03,
1,,=0.05, k=4.5
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Figure 6.10 3-D jet/shear layer vorticity disturbance magnitude; M=1.5,
6=0.03, r,,=0.05, k=4.5
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Figure 6.11 3-D jet/shear layer vorticity eigenfunction; M=0.5, 6=0.03,
r1f2=0.05, k=4.5
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Figure 6.12 3-D jet/shear layer vorticity disturbance magnitude; M=0.5,

0=0.03, 1,,=0.05, k=4.5
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Figure 6.14 Elliptic jet growth rates for various jet aspect ratios
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