
Chapter 3

High Breakdown Estimation for

Multivariate SPC Data

Robust estimation methods for univariate quality control data (such as those based on a

median or trimmed mean) are straightforward and have received attention in past research

(Rocke, 1989; Rocke, 1992; Tatum, 1997; de Mast and Roes, 2004; Davis and Adams, 2005).

Robust methods for multivariate data are not as straightforward, nor as easily implemented.

Robust estimation methods have been widely used in a regression context but they have

only recently been introduced to multivariate quality control applications. Because of the

differences that can result from competing methods, the choice of which robust estimator to

use has not been made clear from previous studies (Wisnowski, Simpson, and Montgomery,

2002; Vargas, 2003).

To evaluate the performance of competing methods for Phase I applications the probabil-

ity of a signal is the preferred measure. When the data come from an in-control process then

the probability of a signal should be close to a specified nominal value. When data come

from an out-of-control process then the probability of a signal should be large to ensure that

the out-of-control points are not included in the calculation of the control limit for Phase II.
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In this chapter we give a brief overview of high breakdown estimation methods and vari-

ous high breakdown estimation methods based on the minimum volume ellipsoid (MVE) and

the minimum covariance determinant (MCD) for multivariate Phase I applications. A com-

prehensive simulation study allows us to determine the conditions under which each method

is preferred. We also give control limit values for practical use.

3.1 Properties of Estimators

There are four major measures or properties that can be used to determine the usefulness

of a multivariate estimator. The first, the breakdown point, has many different definitions,

but the definition used here is the finite sample replacement breakdown point as defined by

Donoho and Huber (1983). This value, π, is the smallest fraction of arbitrarily large bad data

points that can be present before the estimator is impacted. As the sample size increases, π

will often converge to an asymptotic breakdown point. The asymptotic breakdown point is

often used to compare different estimators.

Classical estimation methods have low breakdown points while the high breakdown esti-

mators considered here have breakdown points that approach 50%, the maximum possible

value. The higher the breakdown point, the more resistant the estimator is to bad data. In

other words, the less susceptible it is to the “masking effect”.

The second property to consider is that of affine equivariance. Changing the measurement

scale should not impact the properties of the estimator. Lopuhaä and Rousseeuw (1991)

showed that the maximum possible asymptotic breakdown point for an affine equivariant

estimator is 50%. The estimators of location and dispersion that are considered here are all

affine equivariant (Rousseeuw and Leroy, 1987). For an example of non-affine equivariant
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estimators, see Maronna and Zamar (2002) who found that alternative estimators can be

found by relaxing the restriction of affine equivariance.

The third property is the statistical efficiency of the estimator. This concerns how well

it makes use of all the good data available. For the univariate case it is well known that

while the median is very robust, it is also very inefficient when compared to the mean. There

often has to be some tradeoff between increasing the breakdown point and the decreasing

efficiency.

Finally, it should be possible to calculate the estimators with a reasonable amount of

computing power in a reasonable amount of time. It should not always be expected that

a reasonable time to compute the estimators be only a few seconds. It is good to spend

the necessary time to get good estimators that give accurate information in the spirit of the

following statement: “Statistical analysis is generally just a small part of the effort and cost

of any data gathering and analysis . . . we consider it clearly far better to use an analysis

that takes 10 hours but finds all the outliers than one that takes 10 seconds yet misses most

outliers” (Hawkins and Olive, 2002, p. 146).

3.2 High Breakdown Estimation

Robust estimation methods can be used in two different approaches. The first approach is

to use the robust estimators in place of classical estimators. This has been the primary focus

of a large amount of research dedicated to robust estimation procedures and is most useful

in a regression context where the data does not necessarily have a given time order. Here

the goal is to identify, for descriptive and predictive purposes, a good model that has not

been unduly influenced by outliers. This approach has a higher priority on efficiency.
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The second approach is to use the robust estimators to identify and remove outliers and

then use classical estimators on the remaining “good” data points. Phase I quality control

applications (both univariate and multivariate) have predominantly utilized this second ap-

proach. This second approach seems to be a reasonable trade off between the good efficiency

of the classical estimates and the high breakdown point of resistant methods. Under this

framework robust methods that are efficient are not as useful if they have lower breakdown

points. In this second approach, the statistical properties are not as well defined and some

authors have disapprove of such “ad hoc” type methods (de Mast and Roes, 2004).

When using the second approach, the computability and breakdown point of the estimator

become more important. As a consequence, statistical efficiency is not as crucial because the

resistant estimators will eventually be replaced by classical estimators. Therefore estimators

based on the minimum volume ellipsoid (MVE) and the minimum covariance determinant

(MCD) are considered here. Algorithms for computing them are more plentiful, they are

affine equivariant, and most importantly, they have high breakdown points. They have lower

statistical efficiency because they only use slightly more than half of the available points,

but this is of minor concern in Phase I analysis, especially when the Phase I data set is

sufficiently large. The main concern in our Phase I setting is to provide protection against

outliers.

There is a wide variety of robust estimation methods that are not considered here for

multivariate data. For example, methods based on M-estimation have been widely used in

a regression context. M-estimation seeks to appropriately down weight outliers in order to

minimize their impact. As such, they are more efficient than the high breakdown methods

considered here, but they have lower breakdown points that get even worse as the number of

dimensions increases. Other methods include S-estimation, the projection methods of Stahel-
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Donoho (Rousseeuw and Leroy, 1987, Section 7.1.c), and the sequential point addition type

methods of Hadi (1992, 1994) and Atkinson (1993). These other methods are usually applied

to regression problems.

3.3 Minimum Volume Ellipsoid Estimator

The minimum volume ellipsoid (MVE) estimator, first proposed by Rousseeuw (1984), has

been studied extensively for non-control chart settings and frequently used in the detection of

multivariate outliers. One seeks to find the ellipsoid of minimum volume that covers a subset

of at least h data points. Subsets of size h are called halfsets because h is often chosen to be

just more than half of the m data points. The location estimator is the geometrical center of

the ellipsoid and the estimator of the variance-covariance matrix is the matrix defining the

ellipsoid itself, multiplied by an appropriate constant to ensure consistency (Rousseeuw and

van Zomeren, 1990; Rousseeuw and Van Zomeren, 1991; and Rocke and Woodruff, 1996).

Thus the MVE estimator of location and dispersion do not correspond to the sample mean

vector and sample variance-covariance matrix of a particular halfset.

To achieve the highest breakdown point possible, Davies (1987) and Lopuhaä and Rousseeuw

(1991) showed that the integer value of h = (m+p+1)/2 should be used for the MVE. This

will achieve a breakdown value of [(m−p+1)/2]
m

percent which converges to 50% as m → ∞.

The value of h can be increased, to say, .75m, if it is believed that the percentage of bad

data is low. This will increase the efficiency of the MVE estimator. However caution must

be exercised because the consequences of having a value of h higher than the number of

good data points is more severe (contaminated estimates) than the consequences of having

a value of h lower than the number of good data points (loss of statistical efficiency but
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still giving good estimates). For this reason, h is often set to achieve the highest breakdown

point possible, as is the case here.

Finding the MVE estimators is essentially a two-part process. The first part is to find the

best halfset consisting of h points. The second part requires finding the ellipsoid of minimum

volume that covers the halfset. For a given halfset there are many ellipsoids that cover it.

Titterington (1975) found that the solution to this second step is equivalent to finding a

D-optimal design for a design region where the points in a halfset are the design points. As

a consequence, iterative algorithms to find D-optimal designs could be used to find the best

covering ellipsoid for the best halfset. The first step is referred to as the “subset” problem

and the second step is referred to as the “covering problem” (Agullo, 1996).

While the idea of the MVE is very intuitive, actually finding the MVE estimator can

be very difficult in practice. As the sample size (m) and data dimension (p) increase, the

required computational effort increases dramatically. For example, if m = 30 and p = 3,

so that h = 30+3+1
2

= 17, then there are a total of 30!
13! 17!

= 119, 759, 850 halfsets that

could potentially be the basis for the MVE estimator. Even when this halfset is found, it

takes additional calculations to find the best covering ellipsoid for the particular halfset.

As a consequence of the computational difficulty, Rousseeuw and Leroy (1987) proposed an

approximate method to find the MVE estimators by a subsampling algorithm.

3.3.1 Subsampling Algorithm

The subsampling algorithm is very commonly used, is widely accessible, and is the basis of the

MVE functions of software packages such as S-Plus and SASr. This subsampling algorithm

takes a fixed number of random subsets, known as elemental subsets, each containing p + 1

points. For each elemental subset, the sample mean vector and sample variance-covariance
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matrix are calculated, which determines the shape of an ellipsoid. This ellipsoid is then

increased in size by multiplying by a constant until the inflated ellipsoid covers at least h

data points. The inflated ellipsoid with the smallest volume is then used to obtain the MVE

estimates.

Rousseeuw and Leroy (1987, p. 199) recommended doing a minimum of 500 subsamples

for small datasets with low dimensions. More subsamples should be used as m and p increase.

Rousseeuw and Leroy (1987, p. 260) showed that if ǫ is the true proportion of outliers in

the dataset then a probabilistic argument can be used to determine the number of random

subsamples (j) needed to ensure with a high probability (α) that at least one contains only

good points. The probability that at least one sample contains only good points is

α = 1 − (1 − (1 − ǫ)p+1)j, (3.1)

and (3.1) can be rewritten to solve for j as

j =
ln(1 − α)

ln(1 − (1 − ǫ)p+1)
. (3.2)

Use of (3.2) shows that when p ≤ 5 and ǫ ≤ .50 then 500 subsamples will ensure that α will

be greater than .999. If p ≤ 10 and ǫ ≤ .50 then 10, 000 subsamples will ensure that α will

be greater than .99.

A similar argument along these lines to determine the probability that a particular halfset

will contain only good points shows that the number of halfsets that need to be considered

is very large indeed. To see this value, replace the value of p + 1 (the size of the elemental

subset) in (3.2) with the integer value of h = (m+p+1)/2 (the size of the halfset). Table 3.1

shows the number of halfsets that need to be considered when p = 3 to have a 95% chance

of obtaining one containing only good points. This illustrates the difficulty in finding a good

MVE estimator, particularly as the sample size and the proportion of bad data increase.
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Table 3.1: Number of halfsets that need to be considered to ensure that one only contains
good points with probability .95 for sample size (m) and proportion of outliers (ǫ) for p=3.

ǫ
m 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20 4 10 20 43 94 215 526 1375 3909 1.23E+04
30 6 17 46 132 398 1287 4538 1.77E+04 7.77E+04 3.93E+05
40 8 29 106 405 1678 7661 3.91E+04 2.28E+05 1.54E+06 1.26E+07
50 11 51 240 1238 7076 4.56E+04 3.37E+05 2.93E+06 3.07E+07 4.02E+08
60 14 86 542 3780 2.98E+04 2.71E+05 2.91E+06 3.76E+07 6.09E+08 1.29E+10
70 19 147 1224 1.15E+04 1.26E+05 1.61E+06 2.50E+07 4.84E+08 1.21E+10 4.12E+11
80 25 249 2759 3.52E+04 5.30E+05 9.60E+06 2.16E+08 6.23E+09 2.41E+11 1.32E+13
90 32 423 6219 1.07E+05 2.23E+06 5.71E+07 1.86E+09 8.01E+10 4.78E+12 4.22E+14
100 42 717 1.40E+04 3.28E+05 9.40E+06 3.40E+08 1.60E+10 1.03E+12 9.50E+13 1.35E+16

In addition, it is important to recognize that while this subsampling approach is compu-

tationally easier, it is only an approximation. Even when elemental subsets with only good

points are used, this does not ensure that the resulting halfsets will only have good points.

This is because the resulting ellipsoid that covers the halfset is proportional to the ellipsoid

for the corresponding elemental subset, which is not necessarily the minimum volume ellip-

soid for the halfset. An exhaustive calculation using all possible elemental subsets will still

yield an approximate estimator (Cook and Hawkins, 1990). This is because the ellipsoid for

the MVE estimator is not necessarily proportional to the ellipsoid for any of its elemental

subsets. In fact, it is almost certain that the MVE is not proportional to the ellipsoid of one

of its elemental subsets.

While the number of possible elemental subsets is smaller than the number of possible

halfsets, there is still the same drastic increase in number of possible elemental subsets as m

and p increase. For the example shown earlier with m = 30 and p = 3, there are a total of

30!
4! 26!

= 27, 405 elemental subsets that need to be considered if an exhaustive calculation were

done. This increase in the number of elemental subsets needed to ensure a good approximate

estimate limits the types of problems that can be analyzed using the MVE.

Finally, there are potential repeatability issues with this subsampling approach. If an
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exhaustive calculation using all possible elemental subsets is not done, then two different

analyses on the same data set will likely yield different results. We believe this to be a

potential drawback of the method because it removes the objectiveness of the analysis. One

could conceive of a situation where if the initial analysis done by a consultant was not to a

client’s satisfaction, that the analysis could simply be redone with a different set of randomly

generated subsets to obtain different results. The lack of repeatability is not a problem for

smaller sample sizes because all possible subsamples can be used. For larger samples sizes,

the difference in results from multiple analyses of the same data tends to be more severe as

m and p get larger, because for a fixed number of random elemental subsets, the proportion

of subsets that can be feasibly calculated relative to the total number of available subsets

gets smaller. However, our simulation studies later in this chapter show that the MVE is

preferred for smaller sample sizes, thus repeatability will not impact our conclusions.

For an example of the repeatability issues of the subsampling method, Vargas (2003)

calculated the T 2
mve,i statistics based on the MVE estimators using the subsampling algorithm

for the data of Quesenberry (2001). Table 3.2 shows the results obtained by Vargas using

S-PLUS which we call Method 1, our results using the “call mve” function of SASr for

500 subsamples which we call Method 2, and our results using all 30!
3! 27!

= 4, 060 possible

subsamples, which we call Method 3. Notice here that different values are obtained depending

on the number of subsamples used. It is not clear what number of subsamples or what

covering methods that Vargas (2003) used.

3.3.2 Alternative Approaches

To avoid some of the difficulties with the subsampling approach, an exact method to calculate

the MVE estimators was proposed by Cook, Hawkins, and Weisberg (1993). It considers
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Table 3.2: Comparison of T 2
mve,i obtained by MVE subsampling algorithm for Quesenberry

(2001) data. Method 1 is the results from Vargas (2003), Method 2 is the call MVE function
from SASr for 500 subsamples and Method 3 is all possible subsamples.

Observations Method 1 Method 2 Method 3
1 0.835 0.860 0.921
2 25.770 30.803 24.960
3 0.432 0.484 0.353
4 2.398 2.700 2.614
5 1.434 1.420 1.506
6 0.227 0.274 0.313
7 1.143 1.282 1.292
8 1.039 1.126 0.928
9 0.064 0.066 0.094
10 0.867 1.064 1.034
11 0.878 0.970 0.768
12 1.175 1.332 1.033
13 0.467 0.560 0.585
14 5.712 6.815 6.101
15 0.183 0.220 0.121
16 5.117 5.212 4.949
17 2.268 2.194 2.303
18 3.060 3.014 3.151
19 1.702 1.865 1.868
20 6.736 6.770 6.569
21 1.885 1.818 1.899
22 6.385 7.896 5.952
23 0.380 0.367 0.390
24 1.012 1.119 1.146
25 1.637 1.580 1.631
26 0.476 0.477 0.440
27 0.576 0.604 0.509
28 4.622 5.648 4.265
29 3.329 3.977 3.044
30 0.181 0.182 0.218

all the possible halfsets and would require an enormous amount of computation even for

modest sample sizes in lower dimensions. Once the best halfset is found the “covering”

solution is found using the approach of Titterinton (1975). To speed up the algorithm they

proposed a modification based on the fact that the ellipsoid cannot decrease in volume with

each successive iteration. The volume is measured by the determinant so in the algorithm

if a subset of points yields a value for the determinant larger than the current best value,

then the halfset is not evaluated any further. This modification allows the calculation of the

exact MVE without the explicit calculation of the minimum covering for every halfset. This
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speeds up the algorithm considerably, as a great majority of halfsets do not require explicit

calculation. Cook, Hawkins, and Weisberg (1993) found that for typical datasets fewer than

1% of the possible halfsets require explicit evaluation. However, even with this speedup of

the algorithm, this exact method is still only feasible for small datasets where m ≤ 30 and

p ≤ 5 (Cook, Hawkins, and Weisberg, 1993).

Agullo (1996) proposed an exact method to calculate the MVE estimators based on a more

computationally efficient branch and bound method. Similar to the modification proposed

by Cook, Hawkins, and Weisberg (1993) to speed up their algorithm, the branch and bound

method utilizes the fact that the volume of a subset of points cannot decrease as additional

points are added. In other words, the volume is monotonically non-decreasing as points

are added to the subset. For example, consider the situation with p = 2, m = 30, and

h = 16. During the search if a subset of 8 points is found to have a higher volume (as

measured by a determinant) than the best halfset found to that point, then no further

halfsets containing those 8 points need to be considered. This reduces substantially the

number of halfsets for which a determinant is calculated. Once the best halfset is found,

Agullo (1996) recommended using an algorithm by Atwood (1973) that is faster than the

approach of Titterington (1975) to solve the “covering problem”. The branch and bound

algorithm can be sped up by ordering the data prior to beginning the search. As a result,

the branch and bound method is computationally feasible for datasets where m ≤ 100 and

p ≤ 5.

Other computationally feasible methods to find an approximate MVE have been proposed.

For example, Hawkins (1993) proposed a feasible solution algorithm (FSA). This algorithm

considers a randomly selected halfset (called a random start) and then makes use of swapping

techniques to find a better halfset for which its covering ellipsoid is found. Then the procedure
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is repeated for many randomly selected halfsets, each of which converges to a local feasible

solution. The MVE estimators are based on the minimum of the local solutions. If enough

randomly selected halfsets are used, this algorithm will eventually yield an exact solution,

but this will not be guaranteed for a finite number of halfsets. If we denote by θ the

proportion of initial halfsets that will yield the best halfset, then the probability of finding

the exact result, Pr(exact), is 1 − (1 − θ)N where N is the number of random starts. This

expression can be use to determine the number of random starts that is needed to achieve

a certain probability of getting the exact results. Hawkins (1993) showed that for many

common datasets previously studied in the literature (with m ≤ 50 and p ≤ 5) that the N

required to achieve a high probability of success is often less than 100 (Hawkins, 1994) so

the computation time is substantially smaller than those of Cook, Hawkins, and Weisberg

(1993) and Agullo (1996).

Croux and Haesbroeck (1997, 2002) showed how the efficiency of the subsampling ap-

proach can be improved for the MVE. Instead of just picking the optimal elemental subset

that gives the minimum volume, they first computed the ordered minimum volumes and

then averaged some of the smallest ones. These estimators still retain consistency, affine

equivariance, and have the highest possible breakdown point. However, it is still an approx-

imate method and if an exhaustive calculation is not done, this averaged approach still has

the repeatability problem.

Methods to find the MVE based on a heuristic search algorithms were proposed by

Woodruff and Rocke (1993). These search algorithms reduce the amount of computing time

needed to solve the “subset” problem and include genetic algorithms, simulated annealing,

and their corresponding enhanced versions.

Many of these alternative algorithms can be shown to be more computationally efficient
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than the subsampling method and do not suffer from the repeatability issue. They have

been shown to give good results but in our comparison to be discussed later, the alternative

algorithms are not considered because the algorithms to compute them are not easily acces-

sible. In addition, because of the prevalence of the subsampling method to obtain the MVE

estimator, we wish to show where it does not work very well.

3.4 Minimum Covariance Determinant Estimator

An alternative high breakdown estimation procedure to the MVE is an estimator based on

the minimum covariance determinant (MCD), which was first proposed by Rousseeuw (1984).

It is obtained by finding the halfset that gives the minimum value of the determinant of the

variance-covariance matrix. The resulting estimator of location is the sample mean vector of

the points that are in the halfset and the estimator of the dispersion is the sample variance-

covariance matrix of the points multiplied by an appropriate constant to ensure consistency,

just as was done for the MVE. Thus in contrast to the MVE, the MCD estimators correspond

to the sample mean and sample variance-covariance matrix of a specific halfset. Thus once

the best halfset is determined, the estimators are calculated using the expressions in (2.2)

and (2.3) where m is replaced with h. Because the MCD estimators are simple to calculate

once the best halfset is found, they can be easier to compute than for the MVE.

The MCD estimators are intuitively appealing because a small value of the determinant

corresponds to a small eigenvalue, which suggests near linear dependencies of the data in

the p-dimensional space. A near linear dependency suggests that there is a group of points

that are similar to each other, which would be a desirable group of points to use for the

estimator, particularly if there are outliers present.
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Like the MVE, the MCD estimators have the same maximum breakdown point, which is

achieved when h is the integer value of (m + p + 1)/2. Furthermore, the MCD estimators

can be very computationally difficult to obtain because of the rapid increase in the number

of potential halfsets that need to be considered as m and p increase. As a result, the

approximate methods and algorithms to obtain MVE estimates can also be used to obtain

the MCD estimates. For example, MCD estimates can be computed via the exact method

of Cook, Hawkins, and Weisberg (1993). The branch and bound method of Agullo (1996)

can also be used, as shown in Agullo (2001). The subsampling approach of Rousseeuw and

Leroy (1987) can be used to get an approximate MCD estimates which would have the

same repeatability issues as the approximate MVE obtained via subsampling. The feasible

solution algorithm of Hawkins (1993) can be implemented for the MCD, as shown by Hawkins

(1994). An improved version of the feasible solution algorithm for the MCD was proposed

by Hawkins and Olive (1999).

3.5 Hybrid Algorithms

Other high breakdown estimation methods for detecting multivariate outliers are hybrid

algorithms that combine various components of earlier methods with modifications. Two

notable ones are the hybrid algorithm of Rocke and Woodruff (1996) and the FAST-MCD

algorithm of Rousseeuw and Van Driessen (1999).

The hybrid algorithm of Rocke and Woodruff (1996) is a combination of the data par-

titioning methods of Woodruff and Rocke (1994), the FSA algorithm involving the MCD

from Hawkins (1994), a sequential point addition algorithm, and M-estimation. This hybrid

algorithm is very effective in detecting a larger percentage of outliers. A more complete
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explanation of the algorithm and the justification for its various components can be found

in Rocke and Woodruff (1997).

Rousseeuw and Van Driessen (1999) proposed a hybrid algorithm which they called the

FAST-MCD that is based on an iterative scheme and the MCD estimators. The algorithm

can be described as follows:

1. Start with a fixed number, A, of random elemental subsets and use them to construct

corresponding halfsets.

2. Carry out two concentration steps (C-step ) on the A halfsets and select a small number

of “best” ones.

3. For the “best” halfsets, carry out C-steps until convergence and the FAST-MCD esti-

mators are based on the halfset with the lowest determinant of the covariance matrix.

The C-steps are based on the fact that for any given halfset and its estimates of location

and dispersion, a better (or at least equivalent) solution can be found by reordering the

observations of the full dataset according to their Mahalanobis distances from the sample

mean based on the sample variance-covariance matrix. A new and improved halfset of

the reordered points is found by selecting from the full dataset those with the smallest

Mahalanobis distances. The new halfset will have a smaller determinant of the variance-

covariance matrix than the determinant of the original halfset. So each C-step yields a

halfset that is more concentrated than the previous halfset. If enough C-steps are done on

enough halfsets, convergence to the exact MCD estimator results. Because not all halfsets are

considered, the FAST-MCD will be an approximate method unless a large enough number

of initial halfsets are considered.
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The FAST-MCD method is able to handle large data sets within a reasonable amount

of time. In fact, Rousseeuw and Van Driessen (1999) successfully analyzed a data set with

m = 132, 402 and p = 27, which is certainly beyond the capabilities of all the high breakdown

estimation algorithms discussed previously. For smaller datasets that they analyzed (all with

m ≤ 75 and p ≤ 5), the FAST-MCD algorithm resulted in estimates that were equivalent

to the exact MCD estimates. This means that the number of halfsets considered was large

enough to achieve convergence to the exact MCD estimates. It remains to be seen how

large m and p can be and still obtain the exact result with a high probability. The control

charts that are considered here generally use smaller values of m and p suggesting that the

FAST-MCD for practical purposes is likely to give the exact result.

Because of the concentration steps, the FAST-MCD algorithm does not have the repeata-

bility issues that are present in the subsampling algorithm. Thus the FAST-MCD serves as

a better algorithm to obtain the MCD estimator than the subsampling algorithm for the

MVE estimator especially as m and p increase.

3.6 Asymptotic Properties

The MCD and MVE estimators have been used historically as a starting point for other

robust estimation procedures, such as M-estimation. As such, it has not been as important

that the MCD and MVE estimators be exact. However, in Phase I quality control appli-

cations, the MCD and MVE are used directly to determine multivariate outliers and thus

it becomes more important that they be sufficiently accurate. It is also important to have

some understanding of the distributions of the MCD and MVE estimators in order to be able

to obtain an appropriate control limit for the T 2
mve,i and T 2

mcd,i statistics. The distributions
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of the exact MCD and MVE estimators of location and dispersion are not known in closed

form. So when quantiles are needed from the distributions to calculate a control limit, they

have been found via simulation (See Vargas, 2003; or Williams, Woodall, and Birch, 2003).

However, the asymptotic distributions of the MVE and MCD estimators can be derived.

Davies (1987, 1992) showed that the exact MVE estimators of location and dispersion are

consistent for µ and Σ given that the xi are independently and identically distributed with

a common distribution. Butler, Davies, and Jhun (1993) showed the corresponding result

for the exact MCD estimators of location and dispersion. However, the MCD estimators

converge to its population counterparts at a rate of n−1/2 while the MVE estimators converge

at a slower rate of n−1/3, thus the MCD estimators are more efficient. In addition, the

distribution of the MCD estimator of location converges to a normal distribution, which is

not necessarily the case for the MVE estimator of location. Thus, the asymptotic properties

of the MCD estimators are superior to those of the MVE estimators. An intuitive reason for

the superior convergence properties of the MCD can be found by noting that as ǫ → 0 the

location MVE estimator converges to the center of the ellipsoid covering all the data while

the location MCD estimator converges to the mean vector of all the points.

The asymptotic distributions of the T 2
mve,i and T 2

mcd,i statistics follow directly from the

consistency of the MVE and MCD estimators, as seen in the following theorems.

Theorem 3.1 As m → ∞, the distribution of T 2
mve,i converges in distribution to a χ2

p

distribution for i = 1, . . . ,m.

Proof. The assumption of multivariate normality satisfies the conditions of Theorem 3 of

Davies (1987), therefore the MVE estimators are consistent, i.e., they converge in probability

to their parameter values, so we write xmve
p
→ µ and Smve

p
→ Σ as m → ∞. We note that if
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a sequence of random variables converges to a constant then a transformation of the sequence

converges to the transformation of the constant. This implies that S−1
mve

p
→ Σ−1 because the

matrix inverse is just a transformation. Thus we then have

T 2
mve,i = (xi − xmve)

′

S−1
mve (xi − xmve)

p
→ (xi − µ)′ Σ−1 (xi − µ) ∼ χ2

p

Theorem 3.2 As m → ∞, the distribution of T 2
mcd,i converges in distribution to a χ2

p distri-

bution for i = 1, . . . ,m.

Proof. Same as the proof of the previous theorem but replacing Theorem 3 of Davies (1987)

with Theorem 3 of Butler, Davies, and Jhun (1993) to show the consistency of the MCD

estimators.

It should be noted that because the subsampling algorithm to obtain the MVE estimators

and the FAST-MCD algorithm are approximations, their asymptotic distributions are not

necessarily χ2
p. If it were computationally feasible to compute exactly the MVE and MCD

estimators, the control limit could be easily approximated using the corresponding quantile

of the χ2
p distribution when the Phase I sample size is large. It should also be noted that as

the proportion of bad points, ǫ, goes to 0, the T 2
mcd,i statistic converges to the T 2

1,i statistic

which has a χ2
p distribution.

3.7 Control Limits

As mentioned in the previous section, the distribution of the T 2 statistic based on the MVE

and MCD estimators are only known asymptotically, thus implementation of the Phase I

control chart requires control limits to be generated via simulation. Tables 3.3 - 3.6 contain
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the control limits for T 2 statistic based on the MVE estimators obtained via the subsampling

method and for the MCD estimators obtained via the FAST-MCD method. To obtain the

simulated control limits, 200,000 data sets were generated for each combination of m and p

with a zero mean vector and the identity covariance matrix. Datasets rather than individual

values are simulated because of the dependence of the Phase I T 2 statistics within a dataset

(Mason and Young, 2002). Due to the invariance of the T 2
mve,i and T 2

mcd,i statistics, these

limits will be applicable for any values of µ and Σ. The T 2 statistics for each observation in

the data set were calculated and the maximum value attained for each data set was recorded.

The 95th percentile of this generated empirical distribution is the simulated control limit.

As will be seen shortly, use of control charts based on T 2
mve,i and T 2

mcd,i will be preferred for

different situations. Thus the control limits are only provided for the situations where the

particular estimator is preferred.

Figure 3.1: Plot of simulated control limits for the MCD estimator versus the size of the
data set, m, when p = 3.

The control limits are dependent on the integer value of h used and are not monotonic

functions of m. For example, consider Figure 3.1, which shows the scatterplot of the control
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limit of the chart based on T 2
mcd,i vs. m for p = 3 where the overall probability of a signal

is .05. The sawtooth pattern here is also present when using control charts based on T 2
mve,i

and is due to the fact that the integer value of h is the same for successive values of m.

It should be noted that the control limits are only appropriate for the particular algorithm

used. That is, the limits for T 2
mcd,i are appropriate when the FAST-MCD algorithm is used

and the limits for T 2
mve,i are appropriate when the MVE estimator with subsampling is used.

Here the number of subsamples for the MVE estimator is the default number based on the

SASr MVE algorithm. A difference in the algorithm changes the variability of the results

from that algorithm and thus the generated control limits would vary. Because the resulting

estimates can vary depending on which robust estimation algorithm is used, it is helpful

to think of the “algorithm as the estimator” as discussed by Woodruff and Rocke (1994,

p. 889). These control limits are based on the integer value of h = (m + p + 1)/2, which

gives the maximum possible breakdown point. Using a different value of h will change the

appropriate control limit.

3.8 Simulation Study

We made some performance comparisons of the high breakdown estimators. Wisnowski,

Simpson and Montgomery (2002) did a performance study via simulation to compare various

types of robust estimation procedures. They compared a sequential point addition algorithm

of Hadi (1992, 1994), M-estimation, the approximate MVE calculated by the subsampling

method, the FAST-MCD and the hybrid algorithm of Rocke and Woodruff (1996). However,

their comparisons of the MVE obtained via subsampling and the FAST-MCD involve com-

binations of p, m, and the proportion of outliers (ǫ) obtained via factorial designs and thus
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only used 2 design points for each “factor”. The design points were m = 40, 60, p = 2, 6, and

ǫ = 10%, 20% and were only evaluated for large shifts. Use of only two design points will

be insufficient to determine which method is best because there is not a method that will

be superior for all combinations. Wisnowski, Simpson, and Montgomery (2002) concluded

that the hybrid algorithm performed best and that the FAST-MCD was slightly better than

the MVE based on simulation runs involving 1000 datasets. They also considered various

other outlier situations not considered here such as outliers scattered in random directions,

clusters of outliers in all p variables, clusters of outliers in one of p variables, clusters of

outliers in some of the p variables, and multiple clusters in close proximity. Vargas (2003)

did a simulation study to compare use of control charts based on T 2
1,i, T 2

2,i, T 2
mve,i obtained via

subsampling, and T 2
mcd,i obtained via the FAST-MCD. He concluded that the chart based

on T 2
mve,i gave the best performance in terms of probability of a signal when outliers are

present. However, his comparisons between the MVE estimator obtained by subsampling

and the FAST-MCD only covered the case for p = 2 and m = 30.

We performed a similar study to those of Wisnowski, Simpson, and Montgomery (2002)

and Vargas (2003) to compare the MVE subsampling and FAST-MCD algorithms. Our study

involves more combinations of p, m, and k. Of the m observations, k of them are random

data points generated from the out-of-control distribution, and the other n− k observations

were generated from the in-control distribution. For a particular combination of p, m, and

k, a number of datasets were generated.

The in-control distribution is a multivariate normal where it can be assumed that µ = 0

and Σ = I without loss of generality. The out-of-control distribution is a multivariate normal

with the same variance-covariance matrix but where the mean vector has been shifted by
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some amount. This amount depends on a value of the non-centrality parameter, given by

(µ1 − µ)′Σ−1(µ1 − µ), (3.3)

where µ1 is the vector to which the mean vector has shifted. Thus the conclusions here

will hold no matter the direction of the shift as long as all the outliers have shifted in the

same direction. The larger the value of the non-centrality parameter, the more extreme

the outliers are. The proportion of datasets that had a least one T 2 statistic greater than

the control limit was calculated and this proportion becomes the estimated probability of a

signal. The control chart based on T 2
1,i was included in our study as a reference because of

its common usage.

Figures 3.2 - 3.5 show the probability of a signal for different values of the non-centrality

parameter and for some of the values of m and k considered in our study. For p = 2, 3, and 5

a total of 100, 000 datasets of size m were generated for each combination of m, k, and

value of the non-centrality parameter. For p = 10, 50, 000 datasets were generated for each

combination.

As expected, when the value of the non-centrality parameter is small, the probability of

a signal is close to .05 which is what would be the case for an in-control process. As the

value of the non-centrality parameter increases the probability of a signal will increase. If

not, then this indicates that the estimator has broken down and is not capable of detecting

the outliers. In general, for small values of m, use of the MVE performs best, unless the

number of outliers is large. As m increases, use of MCD is more likely to be superior. The

actual breakdown point of the MVE method is smaller than that of the MCD although in

theory they should have similar breakdown points. It is clear that the method based on T 2
1,i

possesses little ability to detect multiple outliers. As p increases for a fixed value of m, the

breakdown points of the MVE and MCD get smaller. This suggests that the larger p is, the
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larger m will need to be in order to detect outliers. In general, there was always one estimator

that was found to be superior across all the values of the non-centrality parameter as long

as the proportion of outliers was not so large as to cause the estimators to break down. This

greatly simplifies the conclusions that can be made about when the MVE method or MCD

method is preferred.

Figures 3.6 and 3.7 summarize the results of the probability of signal graphs from the

simulation study by showing which of the three estimators (Standard, MVE, MCD) is pre-

ferred for the various combinations of m, p, and ǫ. Based on Figures 3.6 and 3.7, some broad

recommendations can made made.

The standard estimator should be used if at most one outlier is expected. When m ≤ 50

the MVE will be the best estimator unless the percentage of outliers is greater than 25%.

When m > 50, the MCD is preferred as long as the percentage of outliers is less than 40%.

As p increases, then the percentage of outliers that can be detected by the MVE estimator

will decrease until it is only 10% for p = 10. It is true for both the MVE and MCD that the

number of outliers that can be detected decreases as p increases.

Thus for Phase I applications where the number of outliers is unknown, the control chart

based on the MVE should only be used for smaller sample sizes for which it is also compu-

tationally feasible. The control chart based on the MCD should be used for larger sample

sizes or when it is believed that there is a large number of outliers. As more variables are

monitored (p), the larger the sample size will need to be to ensure that the estimator does

not break down and lose its ability to detect the outliers.
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Table 3.3: Control limits for T 2
mve,i statistic obtained via subsampling to maintain an overall

in-control probability of signal = 0.05.

p

m 2 3 4 5 6 7 8 9 10

20 30.15 38.48 63.28 62.83 97.05 89.44 149.47 140.90 284.29

21 25.46 43.74 48.11 72.39 68.58 101.70 100.27 154.19 156.86

22 28.70 35.21 54.51 54.34 75.19 75.16 107.58 107.21 167.24

23 24.22 39.88 43.49 60.38 59.66 80.36 82.58 116.23 118.72

24 26.50 33.40 47.82 49.27 64.11 65.27 87.01 89.92 126.12

25 23.61 36.44 39.98 53.04 53.40 69.42 71.86 95.80 100.59

26 25.72 31.76 43.08 45.71 57.23 58.87 74.65 79.58 105.12

27 23.18 34.34 37.64 47.94 49.41 62.19 65.45 83.00 88.05

28 24.88 30.48 40.20 42.68 52.25 54.66 67.87 72.59 91.04

29 22.91 32.66 36.01 44.97 46.83 56.67 60.81 74.57 79.35

30 24.31 29.52 37.97 40.21 48.48 51.65 62.15 67.41 81.74

31 22.50 31.45 34.42 42.00 44.42 53.23 57.06 68.67 73.84

32 23.70 28.74 36.37 38.84 46.18 49.00 58.47 63.16 75.60

33 22.26 30.32 33.39 40.13 42.75 50.21 53.97 64.14 69.49

34 23.48 28.02 34.70 37.41 44.13 46.78 55.51 60.12 70.52

35 22.03 29.35 32.46 38.60 41.24 48.07 52.14 60.81 65.62

36 23.05 27.58 33.54 36.27 42.18 45.46 52.86 57.84 67.13

37 21.79 28.71 31.67 37.43 40.11 46.58 50.49 58.23 63.12

38 22.71 26.98 32.69 35.43 41.01 44.50 51.26 55.38 63.86

39 21.58 28.04 30.95 36.24 39.22 45.29 48.84 56.33 60.83

40 22.48 26.50 32.09 34.84 40.04 43.02 49.61 53.67 61.23

41 21.52 27.51 30.68 35.43 38.44 43.81 47.65 54.35 58.71

42 22.48 26.19 31.28 34.00 39.26 42.23 48.24 52.15 59.35

43 21.27 26.98 30.10 34.88 37.65 42.88 46.58 52.76 57.20

44 22.02 25.90 30.80 33.76 38.33 41.59 47.10 50.84 57.59

45 21.25 26.61 29.68 34.16 36.94 42.10 45.85 51.60 55.84

46 21.92 25.57 30.34 32.99 37.72 40.85 46.27 50.00 56.18

47 21.20 26.32 29.29 33.67 36.54 41.39 44.85 50.70 54.70

48 21.78 25.38 29.87 32.64 37.02 40.22 45.35 49.32 54.89

49 21.08 25.90 28.91 33.21 36.05 40.58 44.23 49.47 53.49

50 21.68 25.24 29.46 32.25 36.49 39.58 44.56 48.20 53.75
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Table 3.4: Control limits for T 2
mve,i statistic obtained via subsampling to maintain an overall

in-control probability of signal = 0.05.

p p

m 2 3 4 5 m 2 3 4 5

51 20.97 25.86 28.64 32.73 76 20.70 23.76 27.09 29.80

52 21.53 24.96 29.12 31.99 77 20.31 24.00 26.70 30.01

53 20.90 25.40 28.39 32.33 78 20.66 23.68 26.91 29.70

54 21.33 24.86 28.90 31.64 79 20.32 23.99 26.66 30.00

55 20.77 25.26 28.22 32.05 80 20.69 23.62 26.89 29.68

56 21.27 24.58 28.54 31.44 81 20.37 23.85 26.65 29.95

57 20.72 25.06 27.95 31.73 82 20.69 23.62 26.82 29.51

58 21.24 24.52 28.35 31.14 83 20.34 23.76 26.52 29.79

59 20.62 25.00 27.79 31.59 84 20.57 23.49 26.73 29.52

60 21.16 24.34 28.16 30.97 85 20.29 23.75 26.54 29.67

61 20.64 24.80 27.67 31.26 86 20.56 23.46 26.70 29.45

62 21.08 24.29 28.01 30.78 87 20.25 23.72 26.41 29.62

63 20.60 24.66 27.40 31.06 88 20.58 23.45 26.67 29.40

64 21.09 24.21 27.84 30.60 89 20.30 23.65 26.38 29.51

65 20.59 24.61 27.29 30.88 90 20.57 23.41 26.63 29.21

66 20.94 24.06 27.60 30.42 91 20.33 23.63 26.35 29.50

67 20.45 24.46 27.24 30.69 92 20.50 23.48 26.49 29.26

68 20.91 23.96 27.46 30.29 93 20.24 23.64 26.31 29.40

69 20.47 24.38 27.10 30.55 94 20.48 23.28 26.51 29.18

70 20.84 23.95 27.43 30.12 95 20.23 23.51 26.23 29.31

71 20.44 24.30 27.03 30.45 96 20.46 23.27 26.41 29.12

72 20.79 23.85 27.28 30.11 97 20.23 23.56 26.22 29.25

73 20.42 24.16 26.90 30.28 98 20.48 23.32 26.38 29.12

74 20.71 23.76 27.14 29.98 99 20.23 23.51 26.21 29.23

75 20.40 24.01 26.82 30.15 100 20.40 23.25 26.35 29.08
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Table 3.5: Control limits for T 2
mcd,i statistic obtained via the FAST-MCD algorithm to main-

tain an in-control overall probability of signal = 0.05.

p

m 2 3 4 5 6 7 8 9 10

20 116.35 221.31 512.57 573.00 1263.75 1261.29 3216.16 2732.59 8607.95

21 101.69 267.12 356.97 732.92 780.43 1749.17 1635.04 4263.75 3475.45

22 96.48 190.82 426.29 494.98 1001.39 1021.63 2306.46 2099.58 5394.73

23 88.45 225.37 312.60 614.28 658.21 1338.25 1316.79 2925.82 2617.15

24 82.50 165.93 363.30 433.36 824.27 854.21 1717.70 1654.24 3699.36

25 76.88 191.09 276.33 524.46 573.24 1080.57 1081.13 2153.21 2006.16

26 71.17 142.78 310.01 386.96 689.36 729.03 1358.16 1343.84 2640.49

27 67.76 161.40 244.43 451.12 507.49 887.25 919.94 1676.68 1606.62

28 63.58 124.24 266.56 341.02 592.22 638.91 1103.96 1118.05 2010.77

29 60.79 140.21 218.91 397.85 453.10 752.13 784.03 1328.16 1330.95

30 57.87 109.75 229.62 306.61 521.58 565.05 920.97 938.37 1584.42

31 56.06 121.26 192.12 348.47 403.29 649.23 682.26 1100.83 1109.26

32 52.81 96.93 198.93 273.13 461.13 502.58 791.71 811.53 1278.29

33 51.65 106.74 169.80 306.25 368.58 567.87 603.86 927.22 943.58

34 48.73 87.04 174.05 243.99 402.76 446.01 678.92 709.17 1064.44

35 47.82 94.92 151.74 272.18 331.76 502.06 535.50 787.65 798.08

36 45.88 78.60 151.54 219.12 359.95 403.76 592.05 618.53 893.32

37 45.39 85.04 135.32 240.93 299.32 446.20 478.61 685.69 703.16

38 43.28 71.83 134.45 195.70 320.15 368.05 523.59 550.52 768.13

39 42.95 77.90 121.48 214.69 273.21 398.36 435.75 598.72 621.28

40 40.83 66.67 118.92 176.28 283.51 331.61 466.44 493.09 670.10

41 40.89 71.31 110.40 190.07 245.31 358.95 391.38 532.95 552.36

42 39.16 62.05 108.37 158.55 255.07 300.85 417.22 444.66 591.07

43 39.04 66.12 100.11 171.10 223.88 325.15 355.00 476.19 497.57

44 37.40 58.53 98.07 142.79 229.56 273.68 377.42 401.43 527.47

45 37.57 61.83 91.20 153.44 203.37 294.03 325.84 432.77 446.93

46 35.95 55.21 90.13 129.36 205.50 251.08 340.95 367.12 474.81

47 35.91 58.29 85.00 137.97 184.30 266.10 297.59 388.44 408.06

48 34.83 52.52 82.86 118.33 185.14 228.42 311.98 337.64 427.32

49 34.96 55.05 78.76 125.40 170.19 240.78 272.27 351.29 373.57

50 33.63 50.05 76.83 109.48 166.78 208.99 281.82 307.01 388.70

51 34.00 52.21 74.30 114.33 153.54 221.02 251.74 322.26 340.80

52 32.80 47.63 72.24 100.22 152.20 190.70 260.23 284.55 353.93

53 33.00 49.94 69.68 104.77 141.09 199.71 234.03 297.29 316.36

54 32.08 45.89 68.06 93.16 138.70 175.65 236.04 261.73 326.26

55 32.51 47.86 65.91 97.77 129.80 185.02 215.83 273.59 291.71

56 31.44 44.24 64.20 86.75 128.02 160.04 216.92 242.96 299.15

57 31.42 46.12 62.25 90.67 119.58 169.09 197.30 250.11 270.43

58 30.60 43.00 60.88 81.39 117.37 149.04 198.86 224.10 277.98

59 30.85 44.21 59.22 84.91 111.41 154.91 182.85 233.49 254.14

60 29.93 41.51 58.09 76.89 108.83 137.20 182.80 208.72 257.63
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Table 3.6: Control limits for the T 2
mcd,i statistic obtained via the FAST-MCD algorithm to

maintain an overall in-control probability of signal = 0.05.

p

m 2 3 4 5 6 7 8 9 10

61 30.37 42.94 56.89 79.90 103.46 142.42 170.75 217.32 236.53

62 29.60 40.05 55.66 72.70 100.76 128.10 169.24 193.12 240.25

63 29.81 41.60 54.41 75.19 96.07 132.49 158.53 200.15 219.66

64 28.97 39.30 53.53 69.09 94.22 118.68 157.60 180.96 222.52

65 29.31 40.50 52.23 71.24 90.69 123.39 147.74 186.37 206.70

66 28.52 38.19 51.52 65.55 88.53 110.76 146.46 169.88 209.14

67 28.78 39.42 50.62 67.75 85.59 114.25 137.55 174.27 193.82

68 28.20 37.55 49.63 62.58 83.68 103.68 136.62 158.56 193.39

69 28.43 38.56 49.04 64.45 81.00 108.00 128.53 162.14 181.61

70 27.83 36.53 48.24 60.42 79.45 97.71 126.77 148.48 181.76

71 28.03 37.58 47.41 61.90 77.35 100.50 120.42 151.79 170.44

72 27.50 35.87 46.58 58.14 75.28 92.39 118.68 139.10 170.02

73 27.69 36.77 46.03 59.70 73.34 94.81 113.96 142.75 161.94

74 27.05 35.22 45.36 56.10 72.34 87.58 112.12 131.52 160.34

75 27.38 35.89 45.00 57.47 70.37 89.91 107.88 133.60 152.33

76 26.85 34.45 44.20 53.92 68.94 83.38 105.06 123.58 151.70

77 27.10 35.30 43.74 55.49 67.63 84.98 101.60 125.70 144.50

78 26.57 34.19 43.17 52.45 66.11 79.10 99.23 116.99 142.80

79 26.76 34.80 42.70 53.80 64.74 80.83 95.81 118.40 136.02

80 26.24 33.46 42.03 50.93 63.46 75.95 94.29 110.74 134.38

81 26.67 34.10 41.72 52.00 62.33 77.57 92.27 112.47 128.79

82 26.02 32.99 41.20 49.55 61.36 72.67 90.02 105.60 127.13

83 26.25 33.71 41.16 50.67 60.19 74.76 87.58 107.04 123.17

84 25.84 32.56 40.45 48.36 59.59 70.01 85.75 99.78 120.54

85 26.05 33.11 40.34 49.19 58.18 71.34 83.71 102.45 116.80

86 25.61 32.07 39.66 47.17 57.70 67.48 82.18 94.92 114.90

87 25.90 32.71 39.58 47.94 56.54 68.76 80.03 97.42 111.43

88 25.50 31.90 38.79 46.19 55.73 65.49 78.83 91.25 109.30

89 25.70 32.36 38.75 46.82 54.98 66.34 77.46 92.95 106.56

90 25.24 31.45 38.26 45.19 54.11 63.28 75.59 87.85 104.28

91 25.53 31.93 38.17 46.07 53.68 64.00 74.57 89.18 101.58

92 25.12 31.07 37.77 44.15 52.94 61.22 73.18 84.42 99.39

93 25.37 31.59 37.50 45.08 52.28 62.35 71.91 85.44 97.31

94 24.93 30.73 37.17 43.48 51.37 59.57 70.76 81.17 95.86

95 25.12 31.17 37.14 44.17 51.16 60.49 69.53 81.71 93.73

96 24.76 30.47 36.56 42.67 50.50 58.00 68.21 78.23 92.06

97 25.03 30.83 36.51 43.29 50.09 58.80 67.09 79.56 89.75

98 24.60 30.15 36.18 42.05 49.29 56.77 66.18 75.89 88.54

99 24.81 30.62 35.99 42.52 48.79 57.35 65.43 76.20 86.71

100 24.47 29.90 35.68 41.30 48.28 55.25 64.40 73.49 85.16
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Figure 3.2: Probability of signal for various combinations of m and k for p = 2. The circles
and solid line correspond to the MVE, the triangles and dashed line correspond to the MCD,
and the squares and dotted line correspond to the standard estimator.
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Figure 3.3: Probability of signal for various combinations of m and k for p = 3. The circles
and solid line correspond to the MVE, the triangles and dashed line correspond to the MCD,
and the squares and dotted line correspond to the standard estimator.
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Figure 3.4: Probability of signal for various combinations of m and k for p = 5. The circles
and solid line correspond to the MVE, the triangles and dashed line correspond to the MCD,
and the squares and dotted line correspond to the standard estimator.
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Figure 3.5: Probability of signal for various combinations of m and k for p = 10. The circles
and solid line correspond to the MVE, the triangles and dashed line correspond to the MCD,
and the squares and dotted line correspond to the standard estimator.

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

m= 30  and k= 2

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.045

0.050

0.055

0.060

0.065

0.070

0.075

m= 30  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.045

0.046

0.047

0.048

0.049

0.050

0.051

m= 30  and k= 6

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.044

0.045

0.046

0.047

0.048

m= 30  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

m= 50  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.050

0.055

0.060

0.065

0.070

0.075

m= 50  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.046

0.048

0.050

0.052

0.054

m= 50  and k= 12

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.042

0.044

0.046

0.048

m= 50  and k= 16

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

m= 75  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

0.16

0.18

m= 75  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

m= 75  and k= 15

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.04

0.05

0.06

0.07

0.08

0.09

m= 75  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

m= 100  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

m= 100  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m= 100  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.04

0.06

0.08

0.10

0.12

m= 100  and k= 30

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

46



Figure 3.6: Summary of preferred estimator for p = 2 and p = 3. The unlabelled area is
where the MVE and MCD methods perform equally well.

Figure 3.7: Summary of preferred estimator for p = 5 and p = 10. The unlabelled area is
where the MVE and MCD methods perform equally well.
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