
Architecture-Aware Mapping and Optimization
on Heterogeneous Computing Systems

Mayank Daga

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Wu-chun Feng, Chair
Alexey V. Onufriev

Yong Cao

April 27, 2011
Blacksburg, Virginia

Keywords: Multicore CPU, GPU, CUDA, OpenCL, Optimizations,
Performance Evaluation, Molecular Modeling

c© Copyright 2011, Mayank Daga

Architecture-Aware Mapping and Optimization
on Heterogeneous Computing Systems

Mayank Daga

ABSTRACT

The emergence of scientific applications embedded with multiple modes of parallelism has
made heterogeneous computing systems indispensable in high performance computing. The
popularity of such systems is evident from the fact that three out of the top five fastest
supercomputers in the world employ heterogeneous computing, i.e., they use dissimilar com-
putational units. A closer look at the performance of these supercomputers reveals that
they achieve only around 50% of their theoretical peak performance. This suggests that
applications that were tuned for erstwhile homogeneous computing may not be efficient for
today’s heterogeneous computing and hence, novel optimization strategies are required to
be exercised. However, optimizing an application for heterogeneous computing systems is
extremely challenging, primarily due to the architectural differences in computational units
in such systems.

This thesis intends to act as a cookbook for optimizing applications on heterogeneous com-
puting systems that employ graphics processing units (GPUs) as the preferred mode of
accelerators. We discuss optimization strategies for multicore CPUs as well as for the two
popular GPU platforms, i.e., GPUs from AMD and NVIDIA. Optimization strategies for
NVIDIA GPUs have been well studied but when applied on AMD GPUs, they fail to mea-
surably improve performance because of the differences in underlying architecture. To the
best of our knowledge, this research is the first to propose optimization strategies for AMD
GPUs. Even on NVIDIA GPUs, there exists a lesser known but an extremely severe perfor-
mance pitfall called partition camping, which can affect application performance by up to
seven-fold. To facilitate the detection of this phenomenon, we have developed a performance
prediction model that analyzes and characterizes the effect of partition camping in GPU
applications. We have used a large-scale, molecular modeling application to validate and
verify all the optimization strategies. Our results illustrate that if appropriately optimized,
AMD and NVIDIA GPUs can provide 371-fold and 328-fold improvement, respectively, over
a hand-tuned, SSE-optimized serial implementation.

To my Parents and Grandparents...
mMmF−pApA, dAdA−dAdFmA

iii

Acknowledgements

I express my heart felt gratitude to people who transformed my graduate life into a successful
and memorable voyage.

First and foremost, I am indebted to my advisor Dr. Wu-chun Feng for not only providing
me with academic guidance but also inspiring me by manifesting the facets of a remarkable
personality. His disposition to push himself and produce excellent work has many a times
stimulated me to work diligently. Contrary to the popular belief, he was around whenever
I wanted to discuss anything with him, be it directions for my thesis or career options. I
thank Dr. Feng for bringing the best out of me, which apprised me of my capabilities and
instilled a greater confidence in me. I can indubitably say that these two years of working
with Dr. Feng have been the most formative years of my life thus far.

I am grateful to Dr. Alexey Onufriev for suggesting me to work with Dr. Feng for my M.S.
degree. It has been a pleasure collaborating with Dr. Onufriev on the NAB project for the
last three years. I also thank him for being on my thesis committee.

I am thankful to Dr. Yong Cao for being on my thesis committee.

Ramu Anandakrishnan has been my oldest acquaintance at Virginia Tech. I thank Ramu for
accepting my candidature for the summer internship, which initiated my association with
this University. It has been a rewarding experience to collaborate with Ramu on the HCP
project, since the days when it was known as MLCA. Working with Ramu led to my very
first publication, which will always remain special.

Coming to United States for post-graduate studies is quite a leap from baccalaureate studies
in India and it is not uncommon for one to feel lost, especially during the initial days. I was
fortunate enough to have Ashwin Aji and Tom Scogland to resort to at such times. They
generously clarified all my doubts, no matter how naive they were. I earnestly thank them
both.

John Gordon and Andrew Fenley have unknowingly done a great favor by developing a
GEM of an application.

I thank the SyNeRGy members for providing me with constructive feedback throughout
these two years, which helped me improve my work.

iv

I thank Shankha Banerjee for helping me fix compilation errors on countless occasions.
Shankha Da has also been a great room mate and an amazing friend. I thoroughly enjoyed
the companionship of Vishnu Narayanan and would always cherish the cooking sessions as
well as after-dinner discussions that I had with him.

Anup Mandlekar is credited with making Programming Languages the most entertaining
course that I have ever taken. We experienced the zenith of enjoyment during that course.

I am greatly thankful to Michael Stewart for his unconditional help on numerous occasions
in the last two years. *Great* Michael redefines the adage, “a friend in need is a friend
indeed”.

The camaraderie I shared with Ryan Braithwaite would be memorable in the sense that even
though we were not familiar with each other’s work, we always had good albeit *infrequent*
conversations, depending upon Ryan’s presence at the CRC.

I am thankful to Vaibhav Bhutoria who insisted that I should pursue Masters.

Sony Vijay has been a confidante and the pillar of my strength. There is sheer magic in her
company which makes me forget all the worldly tensions and worries.

Last and certainly not the least, I cannot overstate my gratitude for my parents who have
always supported me in my endeavors and more importantly, have believed in my abilities.
I could never be where I am today without all they have done.

My respects to Almighty!

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 6

1.3 Contributions . 9

1.4 Document Overview . 12

2 Heterogeneous Computing 13

2.1 Systems . 13

2.1.1 Multicore CPUs . 14

2.1.2 Graphics Processing Units . 16

2.2 Programming Environments . 20

2.2.1 OpenCL . 21

2.2.2 CUDA . 22

2.3 Application . 23

3 Mapping and Optimization on Multicore CPUs 27

3.1 Optimizations . 27

3.1.1 Optimizations for Sequential Program 28

3.1.2 Parallelization . 31

3.2 Results . 32

3.2.1 Optimizations for Sequential Program 33

3.2.2 Parallelization . 34

vi

4 Mapping and Optimization on AMD GPUs 37

4.1 Optimizations . 37

4.1.1 Kernel Splitting . 39

4.1.2 Local Staging . 40

4.1.3 Vector Types . 41

4.1.4 Image Memory . 42

4.1.5 Optimizations in Combination . 43

4.2 Results . 44

4.2.1 Kernel Splitting . 45

4.2.2 Local Staging . 46

4.2.3 Vector Types . 47

4.2.4 Image Memory . 48

4.2.5 Optimizations in Combination . 48

5 Mapping and Optimization on NVIDIA GPUs 51

5.1 Optimizations . 51

5.1.1 Cookbook Optimizations . 52

5.1.2 Partition Camping . 54

5.2 Results . 63

5.2.1 Cookbook Optimizations . 64

5.2.2 Partition Camping . 66

6 Summary and Future Work 69

6.1 Summary . 69

6.2 Future Work . 71

Bibliography 74

A Micro-Benchmarks for Detection of Partition Camping 82

vii

List of Figures

1.1 Execution of a program on heterogeneous computing system 2

1.2 Need for architecture-aware optimizations. Baseline: Hand-tuned SSE opti-
mized serial implementation . 3

1.3 Peak performance on AMD and NVIDIA GPUs 5

2.1 Rise of multicore CPUs [25] . 14

2.2 Block diagram of a modern multicore CPU 15

2.3 Block diagram of an AMD stream processor and thread scheduler 17

2.4 Overview of NVIDIA GPU architectures . 20

2.5 Programming environments: {OpenCL and CUDA} 21

2.6 GEM: Output . 23

2.7 GEM: High-level overview . 24

2.8 GEM: Algorithm for CPU implementation 24

2.9 GEM: Algorithm for GPU implementation 25

2.10 GEM: Memory bounds checking . 26

3.1 SIMDization using hand-tuned vector intrinsics 30

3.2 Speedup due to optimizing the sequential program. Baseline: Basic sequential
implementation on CPU . 33

3.3 Scalability. Baseline: CPU sequential implementation optimized by (-O3)
and vector intrinsics . 36

4.1 Kernel splitting . 38

4.2 Register accumulator . 40

viii

4.3 Vector loads . 42

4.4 Image memory loads . 43

4.5 Speedup due to optimizations in isolation. Baseline: Basic OpenCL GPU
implementation. MT: Max. Threads, KS: Kernel Splitting, RA: Register Accumulator, RP: Register

Preloading, LM: Local Memory, IM: Image Memory, LU{2,4}: Loop Unrolling{2x,4x}, VASM{2,4}: Vectorized

Access & Scalar Math{float2, float4}, VAVM{2,4}: Vectorized Access & Vector Math{float2, float4} 45

4.6 Speedup with optimizations in combination. Baseline: Basic OpenCL GPU
implementation. MT: Max. Threads, KS: Kernel Splitting, LM: Local Memory, RP: Register Preloading,

IM: Image Memory, VAVM: Vectorized Access & Vector Math, VASM: Vectorized Access & Scalar Math . . . 50

5.1 The adverse effect of partition camping in GPU kernels. PC: Partition Camping . . 55

5.2 Partition camping effect in the 200- and 10-series NVIDIA GPUs. Column
Pi denotes the ith partition. All memory requests under the same column
(partition) are serialized. 56

5.3 Comparison of CampProf with existing profiling tools. gmem: global memory;
smem: shared memory. 57

5.4 Screenshot of the CampProf tool . 61

5.5 Speedup due to cookbook optimizations. Baseline: Basic {CUDA,OpenCL}
GPU implementation. MT: Max. Threads, NDB: Non Divergent Branches, RA: Register Accu-

mulator, CM: Constant Memory, SM: Shared Memory, LU: Loop Unrolling 65

5.6 GEM: Memory access pattern . 66

5.7 GEM: CampProf output . 67

6.1 Speedup when optimized for each architecture 70

A.1 Code snapshot of the ‘read’ micro-benchmark for the NVIDIA 200- and 10-
series GPUs (Without Partition Camping). Note: ITERATIONS is a fixed and
known number. 83

A.2 Code snapshot of the ‘read’ micro-benchmark for the NVIDIA 200- and 10-
series GPUs (With Partition Camping). Note: ITERATIONS is a fixed and
known number. 83

ix

List of Tables

3.1 Amdahl’s Law: Speedup vs #Cores . 35

6.1 Impact of optimization strategies on AMD and NVIDIA GPUs. Greater the

number of +s, greater is the positive impact. The ones in red are architecture-aware

optimizations . 72

x

Chapter 1

Introduction

1.1 Motivation

Homogeneous computing systems, i.e., systems that use one or more similar computational

units, have provided adequate performance for many applications in the past. Over the years,

numerous scientific applications embedded with multiple modes of parallelism (like SIMD,

MIMD, vector processing) have emerged and hence, homogeneous computing has been ren-

dered less potent than before. According to corollary to the Amdahl’s Law, the decrease in

effectiveness of homogeneous computing systems is because they are being used for appli-

cations which are ill-suited to them [6]. Therefore, the need arises to adopt heterogeneous

computing systems, as exemplified in figure 1.1.

Heterogeneous computing is the well-orchestrated and coordinated effective use of a suite

1

Mayank Daga Chapter 1. Introduction 2

1	

1	

25	

1	

17	

25	

1	

20	

25	

1	

12	

25	

0	 25	 50	 75	 100	

Heterogeneous	 Suite	

Vector	 Computer	

Serial	 Computer	

Timeline	

Vector	 MIMD	 SIMD	 Special	 Purpose	 	 Comm.	 Overhead	

Figure 1.1: Execution of a program on heterogeneous computing system

of dissimilar high-performance computational units, such as multicore CPUs in conjunction

with accelerators like CellBE, GPUs, FPGAs and ASICs. It provides superior processing

capability for computationally demanding tasks with diverse computing needs [39]. The pop-

ularity of heterogeneous computing systems is evident from the fact that three out of the five

fastest supercomputers in the world employ heterogeneous computing [1]. These supercom-

puters use traditional multicore CPU cores in conjunction with hundreds of GPU-accelerated

cores, thereby making GPUs the preferred accelerator platform for high performance com-

puting. The increased popularity of GPUs has been assisted by their (i) sheer computing

power, (ii) superior performance/dollar ratio and (iii) compelling performance/watt ratio. A

wide range of applications in image and video processing, financial modeling and scientific

computing have been shown to benefit from the use of heterogeneous computing systems [37].

Thus, heterogeneous computing systems have begot a new era in supercomputing.

Mayank Daga Chapter 1. Introduction 3

328	 318	

224	

0	

50	

100	

150	

200	

250	

300	

350	

NVIDIA	 GTX280	 NVIDIA	 Tesla	
Fermi	 C2050	

AMD	 5870	

Sp
ee
du

p	
ov
er
	 h
an

d-‐
tu
ne

d	
SS
E	

Figure 1.2: Need for architecture-aware optimizations. Baseline: Hand-tuned SSE optimized
serial implementation

However, a closer look at the performance of the GPU-accelerated supercomputers reveal

that they achieve only around 50% of their theoretical peak performance [1]. This is due

to the fact that adaptation to heterogeneous computing requires one to overcome a signifi-

cant number of challenges like (i) identification of embedded heterogeneous parallelism in an

application, (ii) reduction of cross-over overhead that occurs when different computational

units of a heterogeneous computing system interact, (iii) adaptation to new programming

environments which enable programming of diverse computational units, and (iv) develop-

ment of novel parallel algorithms for existing applications, to name a few [28]. Even if one

adapts to these challenges, one has to deal with the fact that even the same computational

units of a heterogeneous system are not created equal. For example, there exist uniform

and non-uniform memory access (UMA/NUMA) CPUs as well as GPUs from various ven-

Mayank Daga Chapter 1. Introduction 4

dors, which have different inherent architectures. On NUMA CPUs, memory is physically

distributed between cores and hence, the access times depend on the physical location of

memory relative to the core. With respect to GPUs, the difference in architectural subtleties

has to be taken into consideration. In [8], the authors present that programs do not exhibit

consistent performance across NVIDIA GPUs from different generations. Therefore, to ex-

pect a program to yield equal performance on GPUs from other vendors would be improper.

To illustrate further, we plot figure 1.2, which portrays the speedup obtained for a molecular

modeling application when run on three different GPUs; two NVIDIA GPUs, each from a

different generation, and an AMD GPU. The molecular modeling application is described in

detail in section 2.3. From the figure, we note that speedup on two NVIDIA GPUs is more

or less similar, though not exactly equal, but speedup on the AMD GPU is materially lower

than its NVIDIA counterparts.

It is intriguing that despite the materially higher peak performance of AMD GPUs, they

exhibit less performance improvement, as shown in figure 1.3. The GPUs we used are near

the far right end, where the difference increases to nearly 2-fold. While some loss from peak

performance is expected, a device with a higher peak, especially higher by almost double,

is expected to produce at least comparable if not greater performance. The fact that the

AMD GPU does not, leads us to believe that architecture-aware optimization strategies are

necessary. However, optimizations require deep technical knowledge of inherent architectures

and hence, it is far from trivial to optimize one’s program and extract optimum performance

from heterogeneous computing systems.

Mayank Daga Chapter 1. Introduction 5

0

750

1500

2250

3000

January-03 April-04 March-06 May-07 June-08 March-10

475

855

1200
1360

2720

15 40 60
200 250

346

576
648 715

1063

1345

P
e
a
k
 G

F
lo

p
s

Release Month-Year

NVIDIA GPU AMD GPU

Figure 1.3: Peak performance on AMD and NVIDIA GPUs

Therefore, even with platform agnostic programming environments like OpenCL that enable

execution of programs on various heterogeneous computing systems like, multicore CPUs,

CellBE, AMD GPUs, NVIDIA GPUs and FPGAs, it behooves one to perform architecture-

aware optimizations to realize greater performance improvement.

Mayank Daga Chapter 1. Introduction 6

1.2 Related Work

With the advent of NVIDIA’s CUDA architecture, considerable research has been done

to determine optimization strategies for accelerating programs on heterogeneous comput-

ing systems with NVIDIA GPUs [31, 32]. The NVIDIA CUDA Programming Guide lists

many optimization strategies useful for extracting peak performance on NVIDIA GPUs [36].

In [40–43], Ryoo et al. present optimization principles for a NVIDIA GPU. They conclude

that though optimizations assist in improving performance, the optimization space is large

and tedious to explore by hand. In [46], Volkov et al. argue that the GPU should be viewed

as a composition of multi-threaded vector units and infer that one should make explicit use

of registers as primary on-chip memory as well as use short vectors to conserve bandwidth.

In [48], the authors expose the optimization strategies of the GPU subsystem with the help

of micro-benchmarking.

Analytical models have also been developed to help the programmer understand bottlenecks

and achieve better performance on NVIDIA GPUs. In [44], Baghsorkhi et al. have developed

a compiler front end, which analyses the kernel source code and translates it into a Program

Dependence Graph (PDG) that is useful for performance evaluation. The PDG allows them

to identify computationally related operations, which are the dominant factors affecting the

kernel execution time. With the use of symbolic evaluation, they estimate the effects of

branching, coalescing and bank conflicts in the shared memory.

In [21], Hong et al. propose an analytical model, which dwells upon the idea that the major

Mayank Daga Chapter 1. Introduction 7

bottleneck of any kernel is the latency of memory instructions and that multiple memory

instructions are executed to successfully hide this latency. Hence, calculating the number of

parallel memory operations (memory warp parallelism) enables them to accurately predict

performance. Their model relies upon the analysis of the intermediate PTX code generated

by the CUDA compiler. However, the PTX is just an intermediate representation, which is

further optimized to run on the GPU and is not a good representation of the actual machine

instructions, thereby introducing some error in their prediction model [34].

Boyer et al. present an automated analysis technique to detect race conditions and bank

conflicts in a CUDA program. They analyze the PTX to instrument the program to track

the memory locations accessed [11]. Schaa et al. focus on the prediction of execution time

for a multi-GPU system, given that execution time on a single GPU is known [15]. They do

so by introducing models for each component of the multi-GPU system; the GPU execution,

PCI-Express, the memory (RAM), and disk.

In [22], Hong et al. propose an integrated power and performance model for GPUs, where they

use the intuition that once an application reaches the optimal memory bandwidth, increasing

the number of cores would not help the application performance and hence, power can be

saved by switching off the additional cores of the GPU. Nagasaka et al. make use of statistical

tools like regression analysis and CudaProf counters for power modeling on the GPU [20].

Our work also relies on regression techniques, but we chose very different parameters for our

performance model. Bader et al. have developed automated libraries for data re-arrangement

to explicitly reduce partition camping problem in the kernels [29].

Mayank Daga Chapter 1. Introduction 8

However, none of the work referred to so far addresses the severe performance impact caused

due to partition camping on NVIDIA GPUs. Thus, we have developed a performance model

that analyzes and characterizes the effect of partition camping in GPU kernels. Also, a tool

has been developed that visually depicts the degree of partition camping by which a CUDA

application suffers. While developing micro-benchmarks and using statistical analysis tools

is a common practice to understand the architectural details of a system, we have used them

to create a more realistic performance model than those discussed. We also deviate from

the existing literature and predict a performance range to understand the extent of partition

camping in a GPU kernel.

To challenge NVIDIA’s dominance in the GPU computing realm, AMD supports OpenCL

on its GPUs. OpenCL is anticipated to play an important role in deciding how heterogenous

computing systems will be programmed in the future. This is primarily due to fact that

it is hardware agnostic, unlike CUDA. Programs written in OpenCL can execute on GPUs

as well as CPUs, irrespective of the vendor. NVIDIA supports OpenCL by compiling the

OpenCL program to the same binary format as that of CUDA and hence, the well-researched

CUDA optimizations also work for OpenCL on NVIDIA GPUs.

On the other hand, all the published work regarding optimization strategies on AMD GPUs

has been Brook+ centric, which has now been deprecated by AMD [10]. In [26, 49], the

authors propose optimization strategies for Brook+ and evaluate them by implementing

a matrix multiplication kernel and a multi-grid application for solving PDEs respectively.

In [7], authors accelerate the computation of electrostatic surface potential for molecular

Mayank Daga Chapter 1. Introduction 9

modeling by using Brook+ on AMD GPUs. In [19], the authors present a software platform

which tunes the OpenCL program written for heterogeneous architectures to perform effi-

ciently on CPU-only systems. The only work related to OpenCL GPU optimizations that we

came across was a case study discussing an auto-tuning framework for designing kernels [27].

The present work is hence, the first attempt to propose OpenCL optimization strategies

for AMD GPUs. We believe that one needs to exploit the causal relationship between

programming techniques and the underlying GPU architecture to extract peak performance

and hence, proclaim the need for architecture-aware optimization strategies.

1.3 Contributions

The goal of this thesis is to serve as a cookbook for optimizing applications on the most

popular form of heterogeneous computing systems, i.e., one having multicore CPUs and

GPUs as the computational units. In section 1.1, we discuss that it is imperative to perform

architecture-aware optimizations to achieve substantial performance gains on heterogeneous

computing systems. To this effect, we have devised optimization strategies for the following

three architectures: (i) multicore CPUs, (ii) AMD GPUs, and (iii) NVIDIA GPUs. Below

is a succinct description of our contributions with respect to each platform.

Multicore CPUs: We discuss optimization strategies that improve the instruction through-

put of an application, such as (a) compiler optimizations, (b) vector intrinsics, and (c)

cache blocking. We also portray the benefits of parallelizing an application on modern

Mayank Daga Chapter 1. Introduction 10

multicore CPUs. Using Amdahl’s Law, we project speedups that can be obtained with

the increase in CPU cores. However, the financial burden imposed by increasing the

number of cores paves the way for the adoption of accelerator platforms such as GPUs.

AMD GPUs: To the best of our knowledge, this work is the first to present and propose

optimization strategies for AMD GPUs, based on the knowledge of its underlying

architecture. Architectural subtleties like the presence of vector cores rather than

scalar cores, the presence of only one branch execution unit for 80 processing cores,

and the presence of a rasterizer on the GPU influence our proposal of the following

optimization strategies: (a) use of vector types, (b) removal of branches, and (c) use

of image memory.

NVIDIA GPUs: Over the last three years, optimization strategies for NVIDIA GPUs have

been discussed in the literature and they have been well studied and evaluated [40,

41]. However, there exists a lesser known but an extremely severe performance pitfall

for NVIDIA GPUs called partition camping, which can affect the performance of an

application by as much as seven-fold. To facilitate the detection of partition camping

effect, we have developed a performance model which analyzes and characterizes the

effect of partition camping in GPU applications.

We have applied these optimizations to a large-scale, production-level, molecular modeling

application called GEM and present a comparison of the efficacy of each optimization strat-

egy [17]. Recent literature leads one to believe that applications written for NVIDIA GPUs

Mayank Daga Chapter 1. Introduction 11

should perform best. However, we illustrate that when optimized appropriately, performance

on a present generation AMD GPU can be better than an equally optimized implementation

on the competing NVIDIA GPU. As an example, we managed to improve the performance of

GEM on AMD GPUs from being 31% worse to 12% better as compared to NVIDIA GPUs.

Overall for the AMD GPU, we have achieved a 371-fold speedup over a hand-tuned SSE

serial version and 36-fold when compared to the SSE version parallelized across 16 CPU

cores.

Fundamental contributions: Predicting the future to foretell the existence of GPUs is

difficult. However, in case the GPUs become extinct, the ideology of architecture-

aware optimizations can be extended to future heterogeneous architectures and plat-

forms. Though the in-depth understanding of underlying architecture to obtain optimal

performance seems obvious, it is seldom exercised. One can also learn from the op-

timization strategies that we have proposed, especially, how we amortize the adverse

branching effects on GPUs. Also, the idea of predicting performance range rather than

predicting the exact application performance would be more realistic on next genera-

tion architectures, if they have large performance variations as the GPUs, which have

them due to partition camping effects.

Mayank Daga Chapter 1. Introduction 12

1.4 Document Overview

The rest of this thesis is organized as follows. In chapter 2, we discuss background information

about (i) computational units of heterogeneous computing systems, like multicore CPUs

and GPUs from AMD and NVIDIA, (ii) programming environments used to program these

systems, like OpenCL and CUDA, and (iii) the molecular modeling application, GEM, which

serves as our case-study to test all the optimization strategies that have been devised. In

chapter 3, we discuss the optimization strategies for multicore CPUs as well as portray

the performance benefits obtained by the use of these optimizations. In chapters 4 and 5,

we describe the optimization strategies for AMD and NVIDIA GPUs respectively and also

demonstrate the results. In chapter 6, we present a summary of all the optimization strategies

discussed on various platforms followed by a discussion of some future work that can be built

upon this thesis.

Chapter 2

Heterogeneous Computing

In this chapter, we present an overview of the systems and the programming environments

that we used, to propose architecture-aware optimization strategies. Lastly, we describe the

GEM application, which acts as a case study to verify and validate all our findings.

2.1 Systems

This section presents a background of the chip microprocessors and the graphical processing

units, for which we have proposed optimization strategies.

13

Mayank Daga Chapter 2. Heterogeneous Computing 14

Figure 2.1: Rise of multicore CPUs [25]

2.1.1 Multicore CPUs

Development of CPUs has been governed by Moore’s Law since the days of unicore micropro-

cessors [30]. However, as shown in figure 2.1, leveraging Moore’s Law to increase the CPU

clock frequency resulted in processors that generate as much power per square centimeter as

in a nuclear reactor and thus, hitting a power wall. If the philosophy of increasing CPU fre-

quency would have persisted, then the amount of power generated per square centimeter by

a microprocessor could have been similar to that generated by a rocket nozzle. To mitigate

this disaster, chip designers leveraged Moore’s Law to increase the number of cores rather

than increasing the frequency on the CPU and hence, multicore CPUs came into existence.

Over the years, the multicore CPU has evolved into an efficient, albeit complex, architecture.

A modern multicore CPU consists of multiple levels of hierarchy; it is a multi-socket, multi-

Mayank Daga Chapter 2. Heterogeneous Computing 15

Die 2Die 0

Die 1

Socket 0 Socket 1

x16 cHT link x8 cHT link

DDR3 Memory Channel

D
D

R
3

D
R

A
M

D
D

R
3

D
R

A
M

D
D

R
3 D

R
A

M
D

D
R

3 D
R

A
M

Die 3

Core 12

Core 14

Core 13

Core 15

Figure 2.2: Block diagram of a modern multicore CPU

die, multicore microprocessor, as shown in figure 2.2. In addition, the presence of multiple

on-die memory controllers results in a non-uniform memory access architecture (NUMA).

Each scalar core consists of four-wide SIMD units that support a wide range of vector

instructions [24]. In addition to multiple cores, there exist three levels of caches to improve

the performance of the memory subsystem. Each core contains L1 and L2 levels of cache,

while the L3 cache is shared among the cores of a die.

To improve single-thread performance, the CPU employs an out-of-order, superscalar archi-

tecture, thereby increasing the instruction-level parallelism. It also consists of a sophisticated

branch prediction unit to reduce the performance impact of branch misprediction. CPUs

provide for fast synchronization operations as well as efficient, in-register, cross-lane SIMD

operations. However, they lack the presence of scatter/gather operations for non-contiguous

memory accesses.

Mayank Daga Chapter 2. Heterogeneous Computing 16

2.1.2 Graphics Processing Units

The widespread adoption of compute-capable graphics processing units (GPUs) in desktops

and workstations has made them attractive as accelerators for high-performance parallel

programs [12]. The increased popularity has been assisted by (i) the sheer computational

power, (ii) the superior price-performance ratio and, (iii) the compelling performance-power

ratio.

GPUs have more transistors devoted to performing computations than for caching and man-

aging control flow. This means that on a GPU, computations are essentially free but memory

accesses and divergent branching instructions are not. Thus, the key aspect of GPU pro-

gramming is to successfully hide the latency of memory accesses with computations. The

GPU does this by performing massive multithreading, thereby allowing us to initiate thou-

sands of threads such that when one of the threads is waiting on a memory access, other

threads can perform meaningful work. Multiple threads on a GPU can execute the same in-

struction. This type of architecture is known as Single Instruction Multiple Thread (SIMT),

and it makes the GPU very suitable for applications which exhibit data parallelism, i.e.,

the operation on one data element is independent of the operations on other data elements.

GPUs are primarily developed by two vendors: AMD and NVIDIA. The GPUs from each

vendor is significantly different from the other, in terms of architecture. A description of

each is presented in following sections.

Mayank Daga Chapter 2. Heterogeneous Computing 17

Ultra-Threaded
Dispatch Processor

Instruction and Control Flow

General-Purpose Registers

T-Stream
Core

Stream
Cores

Branch
Execution
Unit

SIMD
Engine

Thread
Processor

Thread
Queue

Rasterizer

Figure 2.3: Block diagram of an AMD stream processor and thread scheduler

AMD GPUs

AMDGPUs follow a classic graphics design which makes them highly tuned for two-dimensional

and image data as well as common image operations and single- precision, floating point

math. A block diagram of an AMD GPU can be found in figure 2.3.

In this case, the compute unit is known as a SIMD Engine and contains several thread

processors, each containing four standard processing cores, along with a special-purpose core

called a T-stream core and one branch execution unit. The T-Stream core executes certain

mathematical functions in hardware, such as transcendentals like sin(), cos(), and tan(). As

shown in figure 2.3, there is only one branch execution unit for every five processing cores,

thus any branch, divergent or not, incurs some amount of serialization to determine which

path each thread will take. The execution of divergent branches for all the cores in a compute

unit is performed in a lock-step manner, and hence, the penalty for divergent branches can

Mayank Daga Chapter 2. Heterogeneous Computing 18

be as high as 80 cycles per instruction for compute units with 80 cores. In addition, the

processing cores are vector processors, as a result of which, using vector types can produce

material speedup on AMD GPUs.

Recent GPUs from AMD are made up of a large number of processing cores, ranging from

800 to 1600 cores. As a result, humongous numbers of threads are required to be launched to

keep all the GPU cores fully occupied. However, to effectively run many threads, one needs

to keep a check on the amount of registers used per thread. The total number of threads

that can be scheduled at a time cannot exceed the number of threads that can fit in the

registers in the register file. Hence, to support the execution of many threads, AMD GPUs

have a considerably large register file, e.g., 256 KB, on the latest generation of GPUs.

Another unique architectural feature of AMD GPUs is the presence of a rasterizer, which

makes them more suitable for working with two-dimensional matrices of threads and data.

Hence, accessing scalar elements stored contiguously in memory is not the most efficient

access pattern. However, the presence of vector cores makes accessing the scalar elements in

chunks of 128 bits slightly more efficient. Loading these chunks from image memory, which

uses the memory layout best matched to the memory hardware on AMD GPUs, also results

in large improvement in performance.

Mayank Daga Chapter 2. Heterogeneous Computing 19

NVIDIA GPUs

NVIDIA GPUs consist of a large number of compute units known as Streaming Multipro-

cessors (SMs), and each SM consists of a certain number of scalar Streaming Processor (SP)

cores. On each SM, up to a thousand threads can be run, thus enabling it to be a massively

parallel architecture. The minimum unit of execution on a NVIDIA GPU is called a warp,

which is a group of 32 threads. If threads of a warp diverge and follow different execution

paths, then the execution of these threads would be serialized, thereby slowing down the ex-

ecution. Therefore, optimal performance is obtained when all the threads in a warp execute

the same instructions.

On the NVIDIA GT200 architecture, each SM has on-chip shared memory. The shared

memory enables extensive reuse of on-chip data, thereby greatly reducing off-chip traffic

and improving application performance. On the latest NVIDIA Fermi architecture, each

SM owns a configurable on-chip memory that can act as either shared memory or as a L1

cache. The device memory consists of thread local and global memory, both of which reside

off-chip. On the GT200 architecture, the global memory has been divided into 8 partitions

of 256-byte width. If all active warps on the GPU try to access the same global memory

partition then, their accesses are serialized, which in turn, adversely affects performance.

This phenomenon is known as the Partition Camping problem [4]. NVIDIA Fermi GPUs

also consist of a L2 cache also which was missing on the previous architectures. Figure 2.4

lays out the architectural difference between NVIDIA’s Fermi and the GT200 architectures.

Mayank Daga Chapter 2. Heterogeneous Computing 20

Figure 2.4: Overview of NVIDIA GPU architectures

2.2 Programming Environments

Various programming languages exist that enable the implementation of applications on

multicore CPUs. We chose to use the C language along with hand-tuned SSE instructions

due to high performance efficiency of C.

Implementing applications on the GPUs has been assisted by the development of frameworks

Mayank Daga Chapter 2. Heterogeneous Computing 21

Kernel: bar()

Thread

Kernel: foo()

Serial Execution

Serial Execution per {workgroup,block}
{local, shared} memory

per
device
global
memory

barrier

{Workgroup, Block}

Figure 2.5: Programming environments: {OpenCL and CUDA}

like OpenCL and CUDA [18, 32]. Programs written in OpenCL can execute on a multitude

of platforms like multicore CPUs, GPUs and even the Cell Broadband Engine, whereas

programs written in CUDA can execute currently only on NVIDIA GPUs. OpenCL and

CUDA are very similar; the main difference is in the terminology. Figure 2.5 portrays the

differences, and the following two sections describe the OpenCL and CUDA programming

environments in detail.

2.2.1 OpenCL

OpenCL is currently the only open standard language for programming GPUs and is sup-

ported by all major manufacturers of GPUs and some manufacturers of CPUs, including

AMD, Intel, and most recently ARM. An OpenCL application is made up of two parts,

Mayank Daga Chapter 2. Heterogeneous Computing 22

C/C++ code that is run on the CPU and OpenCL code in a C-like language on the GPU.

The CPU code is used to allocate memory, compile the OpenCL code, stage it, and run

it on the GPU. The OpenCL code is made up of kernels, which are essentially functions

designated to be run on GPU when invoked by the CPU. Each kernel is in turn made up of a

one- to three-dimensional matrix of work groups, which consist of one- to three-dimensional

matrices of threads. The kernel is the atomic unit of execution as far as the CPU is con-

cerned, but other levels become necessary on the GPU. While a kernel is a cohesive entity,

the work groups within a kernel are not designed to communicate with each other safely.

Only threads within a work group are capable of synchronizing with one another.

2.2.2 CUDA

CUDA is a framework developed by NVIDIA, which facilitates the implementation of general-

purpose applications on NVIDIA GPUs. It provides a C-like language with API’s to be used

for various purposes. CUDA programs are executed by a kernel, which is essentially a

function defined on the GPU and launched from the CPU. CUDA logically arranges the

threads in up to three-dimensional blocks, which are further grouped into two-dimensional

grids. Each thread on the GPU has its own ID, which provides for a one-to-one mapping.

Each block of threads is executed on one SM, and these threads can share data via shared

memory. This makes synchronization within a thread block possible, but not across thread

blocks.

Mayank Daga Chapter 2. Heterogeneous Computing 23

Figure 2.6: GEM: Output

2.3 Application

To illustrate the efficacy of proposed optimization strategies, we applied them against a

production-level, molecular modeling application called GEM [17]. GEM allows the visual-

ization of electrostatic potential along the surface of a macromolecule, as shown in figure 2.6.

The working of GEM (figure 2.7) is as follows. The electrostatic potential, φi, is computed

based on a single charge located inside an arbitrary biomolecule, and di is the distance from

the source charge, qi, to the point of observation. The molecular surface is projected by

a small distance, p, and the distance between the point of observation and the center is

defined as r = A + p, where A is the electrostatic size of the molecule. GEM belongs to the

N-Body class of applications (or dwarfs1), but while most N-Body applications are all-pairs

computations given a single list of points, GEM is an all-pairs computation between two

lists. The input to it is a list of all atoms in the molecule along with their charges and a list

of pre-computed surface points or vertices for which the potential is desired. The algorithm

is presented in figure 2.8.
1A dwarf or a motif is a common computation or communication pattern in parallel algorithms [9].

Mayank Daga Chapter 2. Heterogeneous Computing 24

!
! +

qi

p "i

di

out

in

r = A + p

Figure 1: Definition of the geometric parameters that enter equation (1) used to compute the electrostatic potential φi
due to a single charge located inside an arbitrary biomolecule (in the absence of mobile ions). Here di is the distance
from the source charge qi to the point of observation where φi needs to be computed. We project the molecular surface
defined by pre-computed vertex points a small distance, p, outwards along the surface normals. The so-called effective
electrostatic size of the molecule, A, characterizes its global shape and is computed analytically48. The distance from
the point of observation to the “center” is then defined as r = A + p.

2.2. The Hierarchical Charge Partitioning (HCP) Approximation

The hierarchical charge partitioning (HCP) approximation25 exploits the natural partitioning

of biomolecules into constituent components in order to speed-up the computation of electrostatic

interactions with limited and controllable impact on accuracy. Biomolecules can be systematically

partitioned into multiple molecular complexes, which consist of multiple polymer chains or sub-

units, which in turn are made up of multiple amino acid or nucleotide groups. These components

form a hierarchical set with, for example, complexes consisting of multiple subunits, subunits

CONSISTIng of multiple groups, and groups consisting of multiple atoms. Atoms represent the

lowest level in the hierarchy while the highest level depends on the problem. Briefly, HCP works as

follows. As illustrated in Figure 2, the charge distribution of components, other than at the atomic

level, is approximated by a small set of point charges. The electrostatic effect of distant compo-

nents is calculated using the smaller set of point charges, while the full set of atomic charges is used

for computing electrostatic interactions within nearby components. The distribution of charges for

each component used in the computation varies depending on distance from the point in question:

the farther away the component, the fewer charges are used to represent the component. The actual

speed-up from using HCP depends on the specific hierarchical organization of the biomolecular

6

Figure 2.7: GEM: High-level overview

From the algorithm, we note that GEM is an inherently data-parallel application, i.e., the

potential at one surface point can be computed independently of the computation of po-

tential at other surface points. Taking advantage of this artifact, we assigned each GPU

thread with the task of computing the electrostatic potential at one surface point in our

GPU implementation of GEM. Once all the threads finish with computing the potential at

their respective surface point, a reduce (sum) operation is performed to calculate the total

surface potential of the molecule. The algorithm for the GPU implementation is presented

in figure 2.9. From the algorithm, for each thread, the coordinates of the atoms as well

GEM -CPU (){
/* Iterate over all vertices */
for v = 0 to #SurfacePoints do {

/* Iterate over all atoms */
for a = 0 to #Atoms do {

/* Compute potential at each vertex
due to every atom */
potential += calcPotential(v, a)

}
}

}

Figure 2.8: GEM: Algorithm for CPU implementation

Mayank Daga Chapter 2. Heterogeneous Computing 25

// Host function on the CPU */
GEM -GPU (){

int tot_potential , int potential [# SurfacePoints]
/* launch GPU kernel with as many
threads as #SurfacePoints */
GPU_kernel(atoms , potential)
/* Read back potential computed on the GPU */
/* Iterate over the potentials read back
from the GPU to compute total potential */
for v = 0 to #SurfacePoints do {

tot_potential = potential[v]
}

}
// GPU Kernel
GPU_kernel(atoms , potential) {

tid = thread_id;
/* Iterate over all atoms */
for a = 0 to #Atoms do {

/* Compute potential at each vertex
due to every atom */
potential[tid] += calcPotential(v, a)

}
}

Figure 2.9: GEM: Algorithm for GPU implementation

as the vertex need to be accessed #atoms times from the memory. Since for a thread, the

vertex coordinates do not change, caching them should improve application performance as

it would reduce the number of slow memory accesses. Also, the potential at each vertex

is updated for every atom and is stored in an accumulator variable. This variable can be

cached or stored in a register to provide further performance improvement.

We performed memory bounds checking of the GPU implementation to better understand

the effectiveness of GPU optimization strategies. Specifically, we studied the change in

execution time of the application with varying GPU core-clock and memory frequencies.

In figure 2.10a, the GPU memory frequency is kept constant at the default value of 1107

MHz while the core-clock frequency is varied. We note that the execution time decreases

steadily with the increase in core-clock frequency. However, this decrease levels off around

Mayank Daga Chapter 2. Heterogeneous Computing 26

50	

60	

70	

80	

90	

100	

450	 500	 550	 602	 650	 700	

N
or
m
al
iz
ed

	 T
im

e	

Core-‐clock	 Frequency	 (MHz)	

(a) Time vs GPU Core-Clock Frequency

50	

60	

70	

80	

90	

100	

800	 900	 1000	 1107	 1200	 1300	

N
or
m
al
iz
ed

	 T
im

e	

Memory	 Frequency	 (MHz)	

(b) Time vs GPU Mermory Frequency

Figure 2.10: GEM: Memory bounds checking

550 MHz; increasing the clock frequency further, even over-clocking, has no effect on the

execution time. Therefore, from the figure, we infer that the application is compute bound

until the clock frequency of 550 MHz, and after that it starts to become memory bound. We

also note that at the default core-clock frequency of 602 MHz, there is a possibility of the

application being memory bound.

To corroborate the claim made, we plot figure 2.10b, where the core-clock frequency is kept

constant at the default value of 602 MHz while the memory frequency is varied. From the

figure, we note that execution time decreases steadily with the increase in memory frequency.

In this case, even over-clocking the memory of the GPU helps in the reduction of execution

time. Therefore, we infer that the application is memory bound at the default core-clock

and memory frequencies of the GPU.

Subsequent chapters present optimization strategies for various heterogeneous computing

systems.

Chapter 3

Mapping and Optimization on Multicore

CPUs

In this chapter, we first discuss the optimization strategies for multicore CPUs and then

present the performance benefits that were obtained by applying strategies, both in isolation

and in combination, to GEM.

3.1 Optimizations

There used to be era in computer science when software developers could bank on chip

designers to make faster CPUs, which in turn made software programs run faster. However,

this free lunch is now over [45]. Although the CPUs are no longer getting faster, they employ

complex hardware to execute powerful instructions, perform pipelining, branch-prediction,

27

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 28

execute multiple instructions in the same clock cycle and even reorder the instruction stream

for out-of-order execution. All these assist in making programs run faster, though, only if

programs are appropriately optimized. Today’s CPU also consist of larger and multiple

caches which aid in reducing the number of accesses to the slow main memory. However,

efficient utilization of caches is imperative for superior performance. Optimization strategies

for a sequential program are presented in section 3.1.1.

Nowadays, CPUs consist of multiple cores instead of just a single core, but programs need to

be parallelized to efficiently use the multiple cores. However, designing parallel programs is a

daunting task, as parallel programs may suffer from load balancing, sequential dependencies

and synchronization issues [38]. A programmer has to understand these bottlenecks and go

through the arduous procedure of optimizing one’s program to reap supreme performance.

We discuss parallelization across multiple cores in section 3.1.2.

3.1.1 Optimizations for Sequential Program

In this section, we discuss optimization strategies that lead to improvement in single-thread

performance of an application.

Compiler Optimizations

With the increase in complexity of CPU hardware, compilers have become more intelligent.

Compilers improvise on the features of modern CPUs and optimize programs, though only

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 29

when the programmer explicitly asks the compiler to do so. For example, the GNU/GCC

C compiler consists of flags like i) -O1, ii) -O2, iii) -O3, iv) -march, which auto-optimize

the program during the compilation phase. Each -O{1,2,3} flag performs different types

of optimizations like speculative branch-prediction, loop-unrolling, use of in-line functions,

efficient register utilization, etc. The -O3 flag generates the most optimized program. Almost

all the optimizations performed by the compiler are targeted towards better instruction

throughput.

Most modern CPUs consist of SIMD units which can execute the same instruction on multiple

data at the same time. If the compiler is made aware of underlying CPU architecture using

-march compiler flag, it takes advantage of these SIMD units and implicitly vectorizes the

program, thereby improving performance.

SIMDization using Vector Intrinsics

Modern CPUs provide powerful instructions or vector intrinsics which enable short-vector

data parallelism (aka SIMD) on a sequential program. These instructions are known by

different names for different architectures, e.g., Intel calls them SSE instructions while on

Power7 processors, these are known as VSX instructions. Most CPUs contain four-wide

SIMD units and hence, use of vector intrinsics can theoretically provide 4-fold performance

improvement.

SIMDizing a program by the use of vector intrinsics is an arduous task on the part of

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 30

// A function to compute the sum of two arrays , arr1 and arr2
// It is assumed that length of these arrays , i.e., num_elem_arr , is a multiple of 4
int hand -tuned -SIMD(int *arr1 , int *arr2 , int num_elem_arr) {

int sum;
/* declaring vector type variables */
typedef int v4sf __attribute__ (mode (V4SF));
v4sf acc_sum , data1 , data2;
/* flushing the accumulator */
acc_sum = __builtin__ia32__xorps(acc_sum , acc_sum);

for(i = 0; i < num_elem_arr; i += 4) {
/* loading data from arrays into vectors */
data1 = __builtin__ia32__loadups(&arr1[i]);
data2 = __builtin__ia32__loadups(&arr2[i]);
/* adding two vectors and storing result in the accumulator */
acc_sum += __builtin__ia32__addps (data1 , data2);

}
/* storing the final sum in a scalar varible */
sum = acc_sum [0] + acc_sum [1] + acc_sum [2] + acc_sum [3] ;
return sum;

}

Figure 3.1: SIMDization using hand-tuned vector intrinsics

the programmer, as one has to explicitly manage the vectors and also write programs in a

construct that is not very lucid to understand. Figure 3.1 depicts a function that computes

the sum of two integer arrays and has been SIMDized using Intel’s SSE instructions. It can

be noted that the sum of four integers from each array is computed by a single instruction,

rather than four instructions as in usual case. The final result is then stored into a scalar

variable by accessing computing the sum of each padded scalar in the vector accumulator.

Cache Blocking

CPUs rely heavily on caches to hide the main memory latency. However, minimization of

cache misses is necessary to reap maximum benefits from the cache. Cache blocking is

one technique that enables better cache utilization. Cache blocking improves application

performance by enhancing the temporal and spatial locality of data accesses in the cache.

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 31

Cache blocking turns out be most beneficial for programs that have random memory access

and high operation-count-to-memory-access ratio. Random memory access pattern is the

primary requirement for cache blocking. Contiguous memory accesses increase the spatial

locality and hence, result in greater number of cache hits. Greater operation-count-to-

memory-access ratio provides the scope of using a technique for greater data re-use.

An application where cache blocking comes in handy is matrix-matrix multiplication. For

matrix-matrix multiplication, matrices have orthogonal access patterns and also require

memory to be accessed in strides, thereby satisfying the primary requirement for cache

blocking. Also, in matrix-matrix multiplication, arithmetic operation count scales as O(N3)

while, memory access count scales as O(N2). Therefore, the operation-count-to-memory-

access ratio is O(N) and hence, satisfies the second requirement for cache blocking. To

implement cache blocking, the loop nests are restructured such that the computation pro-

ceeds in contiguous blocks chosen to fit in the cache. Choosing the appropriate block size

determines how much beneficial cache blocking would be for a particular application.

3.1.2 Parallelization

Nowadays, it is difficult to find a CPU which does not have multiple cores. Hence, for

continued improvement in application performance, it is imperative that applications should

be parallelized. Programming environments like Pthreads, OpenMP, and OpenCL, assist in

implementing a parallel version of an existing sequential program [2, 3]. When parallelizing

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 32

an application, the programmer has to deal with issues like load balancing, data dependencies

and synchronization. These issues are dealt in different ways in each of the above mentioned

programming environments. In Pthreads, locks and semaphores are explicitly used to avoid

race conditions and deadlocks. On the contrary, OpenMP is pragma based and provides an

abstraction to the programmer for dealing with the above mentioned issues.

3.2 Results

In this section, we discuss the performance benefits that were realized by implementing the

optimization strategies in GEM.

To test the efficacy of the optimizations proposed for sequential programs, we used an Intel

E5405 Xeon CPU running at 2.0 GHz with 8 GB DDR2 SDRAM. The operating system

on the host is a 64-bit version of Ubuntu running the 2.6.28-19 generic Linux kernel. To

compile our program we used the GNU/GCC compiler version 4.3.3. For the purpose of

demonstrating the scalability of parallel version of GEM, we used a 16-core AMD Magny

Cours CPU with 24 GB DDR3 SDRAM and a 2.6.35-11 Linux kernel. We implemented a

parallel version of GEM using the OpenMP programming environment, which is discussed

in section 3.2.2.

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 33

2.0	

1.1	

1.9	

1.0	

2.1	

3.8	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

(-‐O3)	 (-‐march)	 hand-‐tuned	
Vector	
Intrinsics	

Cache	
Blocking	

(-‐O3	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
-‐march)	

(-‐O3)	 +	 	 	 	 	 	 	 	 	 	 	
hand-‐tuned	

Vector	
Intrinsics	

Sp
ee
du

p	

Figure 3.2: Speedup due to optimizing the sequential program. Baseline: Basic sequential
implementation on CPU

3.2.1 Optimizations for Sequential Program

Figure 3.2 depicts the speedup obtained due to various optimizations, over a basic sequen-

tial implementation, on the CPU. It can be noted that the usage of (-O3) optimization

flag of the GNU/GCC compiler results in a 2-fold performance improvement over the ba-

sic implementation. This is because the (-O3) flag improves the instruction throughput

of the application. Using compiler optimization flags like (-march) that lead to implicit

vectorization of the program did not provide much benefit.

As implicit vectorization did not achieve significant improvement, we optimized GEM with

hand-tuned vector intrinsics to implement an explicitly vectorized version. Specifically, we

used Intel’s SSE instructions and achieved a 1.9-fold speedup over the basic implementation.

Theoretically, SSE instructions are expected to provide 4-fold benefit due to the padding

of four scalars into a vector. However, the process of vectorization an application incurs a

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 34

hidden cost which is not always amortized. It is due to this reason that our achieved speedup

is not 4-fold.

GEM algorithm inherently makes an efficient use of the cache and hence, nothing more can

be achieved via cache blocking. From the algorithm in figure 2.8, it can be noted that there

are no random memory accesses and, the spatial and temporal locality is extremely high.

Also, each surface point accesses the atomic coordinates in a sequential fashion, thereby,

resulting in a large number of cache hits. Therefore, in figure 3.2, speedup due to cache

blocking is 1-fold over the basic implementation.

Using the above mentioned optimizations in combination resulted in multiplicative speedup,

as shown in the figure. Using (-O3) and hand-tuned vector intrinsics in conjunction provided

us with an improvement of 3.8-fold, and it also resulted in being the most optimized CPU

implementation of GEM.

3.2.2 Parallelization

Parallelization of an application is imperative to reap optimum performance on the modern

multicore CPU. We parallelized our most effective CPU implementation, i.e., one optimized

with (-O3) compiler flag & vector intrinsics.

Amdahl’s Law dictates the scalability of a parallelized application and hence, gives an idea

as to what would be the maximum expected improvement due to parallelization [6]. Pri-

mary requirement of using Amdahl’s Law is to figure out the part of application that can

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 35

be implemented in parallel, and also how much proportion of the total execution time is

constituted by the parallel part. This information can then be plugged in equation 3.1 to

compute the speedup ‘S’, that can be achieved by parallelizing an application.

S =
1

(1− P) + P/N
(3.1)

where, P = proportion of program that can parallelized

and, N = number of cores

Therefore, we profiled GEM and figured out that the portion of the application that can be

parallelized, i.e., the computational kernel, constitutes around 97% of the total execution

time. Using this information, we computed table 3.1, which depicts the amount of speedup

that can be obtained by increasing the number of cores in the CPU. As noted in the table,

the impact of increasing the number of cores is not significant after a certain threshold.

This is due to the fact that after certain number of cores, sequential part of the application

becomes the bottleneck and hence, parallelization further would not improve performance.

Figure 3.3 illustrates the scalability of GEM. It depicts the amount of speedup obtained with

the increase in number of cores. From the figure, we note that the achieved speedup is very

close to that predicted by Amdahl’s Law. The figure also portrays the ideal speedup that

Table 3.1: Amdahl’s Law: Speedup vs #Cores
Number of Cores

10 100 1,000 10,000
Speedup 7.8 25.2 32.3 33.2

Mayank Daga Chapter 3. Mapping and Optimization on Multicore CPUs 36

10.2	

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

Cores	
Achieved	 Ideal	 Scaling	 Amdahl's	 Law	

Figure 3.3: Scalability. Baseline: CPU sequential implementation optimized by (-O3) and
vector intrinsics

would have been obtained if 100% of the application could be parallelized. Parallelization of

GEM across 16 cores of the CPU resulted in an additional 10.2-fold speedup.

Based upon the analysis presented thus far, parallelization of GEM across 10,000 CPU

cores would result in a speedup of 126.2-fold over the basic CPU implementation. However,

procurement of 10,000 CPU cores would entail a huge investment and also getting access

to 10,000 cores at the same time is extremely difficult. Therefore, to improvise further we

implemented GEM on the GPU platform. GPUs provide similar computational benefits as

that of a massive supercomputer albeit with a fairly low financial burden. For example, a

8-GPU cluster costing a few thousand dollars, can simulate 52 ns/day of the JAC Benchmark

as compared to 46 ns/day on the Kraken supercomputer, housed at Oak Ridge National Lab

and which costs millions of dollars [23].

In subsequent chapters, we discuss optimization strategies for the graphics processing units.

Chapter 4

Mapping and Optimization on AMD

GPUs

In this chapter, we first discuss the optimization strategies for the AMD GPUs and then

present the performance benefits that were obtained by applying strategies, both in isolation

and in combination, to GEM.

4.1 Optimizations

In this section, we discuss optimization strategies that improve application performance on

AMD GPUs. These strategies have been devised by a careful analyses of the underlying

GPU architecture. The most intuitive optimization for any GPU platform is making sure

that none of the computational resources go under-utilized. On a GPU, this is done by

37

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 38

// before kernel splitting
int main () {

...
int a = 5;
clEnqueueNDRangeKernel (..., kernel , ...);
...

}

__kernel void work_kernel (int a) {
/* conditional inside the kernel */
if (a >= 5) {

/* do work 1 */
} else {

/* do work 2 */
}

}

//after kernel splitting
int main() {

...
int a = 5;
/* splitting the kernel into two */
if (a >= 5) {

/* calling kernel #1 */
clEnqueueNDRangeKernel (..., kernel1 , ...);

} else {
/* calling kernel #2 */
clEnqueueNDRangeKernel (..., kernel2 , ...);

}
...

}

/* kernel #1 */
__kernel void work_kernel1 (int a) {

/* do work1 */
}
/* kernel #2 */
__kernel void work_kernel2 (int a) {

/* do work2 */
}

Figure 4.1: Kernel splitting

executing enough threads such that none of the GPU cores are ever idle and the occupancy

is always maximum. We call this optimization Max. Threads. Other optimization strategies

are discussed in subsequent sections.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 39

4.1.1 Kernel Splitting

In section 2.1.2, it is mentioned that AMD GPUs consist of only one branch execution unit for

every five processing cores. Further it mentions that as a result, even non-divergent branches

can cause a significant performance impact on AMD GPUs. Oftentimes, even when the

outcome of a conditional can be determined before a GPU kernel is called, the conditional

is frequently pushed into the GPU kernel anyway in order to simplify the understanding

of the code. Figure 4.1 shows a simple example of this phenomenon, which we denote

kernel splitting. On CPUs, the performance lost to branching is minimal due to speculative

execution and branch prediction. On NVIDIA GPUs the cost is higher, but not as much

as on the AMD GPUs which can be reasoned as follows. On NVIDIA GPUs, threads in

a warp (i.e. 32 threads) are required to follow the same execution path whereas on AMD

GPUs, threads in a wavefront (i.e. 64 threads) are required to follow the same execution

path. This requirement doubles the probability of the occurrence of divergence on AMD

GPUs and hence, the cost of branching is greater on AMD GPUs. Presence of branching

can lead to a difference of up to 30% on AMD architectures, as showed in [7].

Kernel splitting is implemented by moving the conditionals, result of which are predetermined

at the beginning of a kernel, to the CPU. The kernel is then split into two parts, each part

executes a different branch of that conditional. Despite the simplicity of the optimization,

implementing it in practice can be complicated. For example, kernel splitting results in 16

different kernels in GEM.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 40

// before using register accumulator
__kernel void kernel(int count , __global int* global_arr) {

for (int i = 0; i < count; i++) {
/* incrementing gmem for every iteration */
global_arr[threadIdx.x] ++;

}
}

//after using register accumulator
__kernel void kernel(int count , __global int* global_arr) {

/* preloading gmem location in a register , ‘g’ */
int g = global_arr[threadIdx.x];
for (int i = 0; i < count; i++) {

/* incrementing ‘g’ */
g++;

}
/* updating gmem location with value of ‘g’ */
global_arr[threadIdx.x] = g;

}

Figure 4.2: Register accumulator

4.1.2 Local Staging

Local staging alludes to the use of on-chip memory present on the GPU. Subsequent accesses

to the on-chip memory are more efficient than accessing data from its original location in the

global memory. Conventional wisdom states that prefetching and reusing data in constant

and local memories is extremely efficient. On AMD GPUs this is true when large amounts of

data is seldom reused or when data loaded into local or constant memory is reused by more

than one thread in the active work group. In general local memory and constant memory are

faster than global memory, allowing for speedups, but they are not always the best option.

Local and constant memory on AMD GPUs are significantly slower to access than the reg-

isters. Hence, for small amounts of data and for data that is not shared between threads,

registers are much faster. Using too many registers in a thread can produce register pressure

or a case where less threads can be active on a compute unit at a time due to lack of registers.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 41

Reduction in the number of active threads can degrade performance, but since AMD GPUs

have a large register file, i.e., 256k, it is frequently worth using extra registers to increase the

memory performance. One case where this is especially true is for accumulator variables, as

shown in figure 4.2. If an algorithm includes a main loop in each thread, which updates a

value once each time through the loop, moving that accumulator into a register can make a

significant difference in performance, as will be discussed in section 4.2. It is worth noting

that there is a wall with register usage on AMD GPUs. Beyond 124 registers per thread,

the system starts putting data into spill space, which is actually global memory, and hence,

can degrade performance.

4.1.3 Vector Types

Vector types in OpenCL are designed to represent the vectors used by SIMD execution units

like SSE or AltiVec. Vector is a single large word of 64 to 512 bits in size containing smaller

scalars. Generally the most used type of this class is the float4, as it matches the size of the

registers on an AMD GPU as well as the size of an SSE word. AMD GPUs are optimized for

memory accesses of 128 bits as well as computation on vectors of 2-4 floats. However, some

math is not optimized, specifically the transcendental functions provided by the T-Stream

core. The overhead of unpacking the vector and doing the transcendentals is higher than

just doing all the math with scalars in some cases.

Even when scalar math is faster, loading the memory in float2 or float4 is more efficient than

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 42

// before vector loads
__kernel void kernel(__global float* global_x , __global float* global_y ,

__global float* global_z , __global float* global_c) {
float local_x , local_y , local_z , local_c;
int i;
/* loading scalars from gmem */
local_x = global_x[i];
local_y = global_y[i];
local_z = global_z[i];
local_c = global_c[i];

}

//after vector loads
__kernel void kernel (__global float* global_arr) {

float4 local4;
int i;
/* loading vectors from gmem */
local4 = vload4(i, global_arr);

}

Figure 4.3: Vector loads

loading scalars, as shown in figure 4.3. Prefetching with vector loads followed by unrolling a

loop to do the math in scalars, and then storing the vector can be a significant improvement.

4.1.4 Image Memory

On AMD GPUs, image memory is an efficient way to increase performance of memory

accesses, as it acts as a cache when there is high data reuse in the program. Image memory

offers many transformations meant to speedup the access of images stored within it and also

is equally capable of reading simple quads, or float4 vectors. As mentioned above, loading

larger vector types from memory is more efficient, adding to it, the benefits of caching and

more efficient memory access patterns offered by image memory, make these two a potent

combination. In addition, the changes necessary to use image memory for read-only input

data is minimal in the kernel, as shown in figure 4.4. It only requires modification of the

initial load of the float4.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 43

// before image memory loads
__kernel void kernel (__global float* global_arr) {

float4 local4;
/* loading from gmem */
local4 = vload4(0, global_arr);

}

//after image memory loads
__kernel void kernel (__read_only image2d_t image4) {

int i;
/* initial setup */
const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE |

CLK_ADDRESS_NONE |
CLK_FILTER_NEAREST;

/* setting up coordinates for image memory loads */
int2 coord1 = (int2)((i % 8192) , (i / 8192));
float4 local4;
/* loading from image memory */
local4 = read_imagef(image4 , smp , coord1);

}

Figure 4.4: Image memory loads

4.1.5 Optimizations in Combination

When applying optimizations, what happens when the optimizations are combined? If two

optimizations can improve performance of a base application, it is very alluring to assume

that they will “stack” or combine to create an even faster end result when applied together.

All the optimizations presented to this point, produce some amount of benefit when applied

to basic code but not multiplicative benefit as one would expect. Given the fact that they

all benefit the basic implementation, it would stand to reason that using all of them together

would produce the fastest application, however, this is not the case.

In the auto-tuning work of [16], Datta et al. had many optimizations to tune simultaneously,

as we do here, and decided on an approach which was later referred to as hill climbing [47].

Essentially, hill climbing consists of optimizing along one axis to find the best performance,

then finding the best parameter for the next axis after fixing the first, and so-on. This implies

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 44

that all the parameters are cumulative, or at least that order does not matter. While this is

a popular, and at least marginally effective approach, we find that the inherent assumptions

about optimization combination are not reasonable, at least when it comes to optimizing for

GPUs. Further discussion of optimization stacking will be presented in section 4.2.

4.2 Results

In this section, we demonstrate the effectiveness of each optimization technique, in isolation

as well as when combined with other optimizations. To accomplish this, we have used a AMD

Radeon HD 5870 GPU. The ‘Host Machine’ consists of an E5405 Intel Xeon CPU running

at 2.0 GHz with 8 GB DDR2 SDRAM. The operating system on the host is a 64-bit version

of Ubuntu running the 2.6.28-19 generic Linux kernel. Programming and access to the GPU

was provided using OpenCL version 1.1. For the accuracy of results, all the processes, which

required graphical user interface, were disabled to limit resource sharing of the GPU.

Figure 4.5 portrays that there is around 30% performance improvement over the basic im-

plementation, when maximum number of threads are launched on the GPU. This infers that

higher occupancy on the GPU leads to better performance.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 45

1.3	

1.7	

1.3	
1.6	

2.3	

1.2	 1.1	 1.2	 1.2	 1.1	

3.1	

2.3	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

M
T	 KS
	

RA
	

RP
	

LM
	

IM
	

LU
2	

LU
4	

VA
SM

2	

VA
SM

4	

VA
VM

2	

VA
VM

4	

Sp
ee
du

p	

Figure 4.5: Speedup due to optimizations in isolation. Baseline: Basic OpenCL GPU imple-
mentation. MT: Max. Threads, KS: Kernel Splitting, RA: Register Accumulator, RP: Register Preloading, LM: Local Memory,

IM: Image Memory, LU{2,4}: Loop Unrolling{2x,4x}, VASM{2,4}: Vectorized Access & Scalar Math{float2, float4}, VAVM{2,4}:

Vectorized Access & Vector Math{float2, float4}

4.2.1 Kernel Splitting

In figure 4.5, we compare the performance results between the basic OpenCL implementation

and the one optimized with kernel splitting. We find that kernel splitting provides 1.7-fold

performance benefit. This can be reasoned as follows. The AMD GPU architecture consists

of only one branch execution unit for five processing elements, as discussed in section 2.1.2.

Hence, branches incur a huge performance loss as the computation of the branch itself takes

five times as long as computation of branches on similar architectures. One should strive to

avoid branching on the GPU, and kernel splitting is one effective way of ensuring that.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 46

4.2.2 Local Staging

In order to obtain optimum performance on GPUs, thread utilization should be improved.

This can be achieved by reducing the number of registers utilized per thread, since more

registers mean fewer threads in the kernel. However, register file size of present generation

AMD GPUs is quite large and hence, one should not strictly inhibit the use of registers.

We achieved superior performance by making explicit use of registers in our computational

kernel. GEM involves accumulating the atomic potential at every vertex of the molecule.

Rather than updating the intermediate result in global memory, we used a register accumu-

lator. This approach provided us with a 1.3-fold speedup over the basic implementation,

as shown in figure 4.5. Using registers to preload data from global memory is also deemed

to be favorable. Preloading provides up to 1.6-fold performance benefit over the basic im-

plementation. The kernel incorporates high data reuse as same data is loaded from within

a loop and hence, preloading this data in a register and using it within the loop provides

substantial performance benefit.

Improvement due to the use of local memory is almost 2.3-fold over the basic implementation.

Local memory is an on-chip scratch pad memory present on each SIMD unit of the GPU.

It is appropriate to use local memory when there is high data re-use in the kernel which as

mentioned, is true for GEM. Performance benefit obtained due to the use of local memory

is 1.4 times more than that obtained by register preloading. This behavior of the GPU

is aberrant, as one would expect register preloading to be more beneficial than using local

memory, given the fact that register file is the fastest on-chip memory.

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 47

4.2.3 Vector Types

Loop unrolling reduces the number of dynamic instructions in a loop, such as pointer arith-

metic and "end of loop" tests. It also reduces branch penalties and hence, provides better

performance. Figure 4.5 presents the performance benefit obtained by explicit two-way and

four-way loop unrolling. As four-way unrolling reduces the dynamic instruction count by a

factor of two more than two-way unrolling, it results in better performance.

Accessing global memory as vectors proves to be more beneficial than scalar memory accesses,

as shown in figure 4.5. However, the length of vector, either float4 or float2, which

culminates in the fastest kernel performance may depend upon the problem size. From the

figure, we note that float2 is better than float4 for GEM. Use of vectorized memory

accesses pack in up to four scalar accesses into one vector access, thus conserving memory

bandwidth as accesses which would have taken four memory accesses can now be completed

with one access. Vectorized accesses also improve the arithmetic intensity of the program.

Use of vector math proves to be highly beneficial on AMD GPUs as, corroborated by fig-

ure 4.5. Vector math provides up to 3-fold speedup in case of float2. AMD GPUs are

capable of issuing five floating point scalar operations in a VLIW, and for most efficient

performance, utilization of all VLIW slots is imperative. It is almost always the responsi-

bility of the compiler to make sure that instructions are appropriately assigned to each slot.

However, there might be instances when due to the programming constructs used, compiler

may not do so. Use of vectorized math assists the compiler in ensuring that the ALU units

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 48

are completely utilized. It improves the mapping of computations on five-way VLIW and

128-bit registers of the AMD architecture. The dynamic instruction count is also reduced

by a factor of the length of vector, since, multiple scalar instructions can now be executed

in parallel.

4.2.4 Image Memory

Presence of L1 and L2 texture caches assists the image memory to provide additional memory

bandwidth when data is accessed from the GPU memory. Using image memory in read-only

mode results in the utilization of FastPath on AMD GPUs which leverages the presence of

L2 cache [5]. However, if image memory is used in read-write mode, GPU sacrifices the

L2 cache in order to perform atomic operations on global objects. Hence, one should be

judicious in using read-write image memory only when necessary. We have used read-only

image memory to store data that is heavily reused in the kernel. An improvement of up to

1.2-fold over the basic implementation was obtained, as shown in figure 4.5.

4.2.5 Optimizations in Combination

In this section, we present performance benefits obtained when various optimization strate-

gies are combined. We portray that optimizations when combined do not provide multiplica-

tive performance benefit as one would expect. In addition, we show that optimizations which

performed better in isolation may perform worse when used in conjunction with another op-

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 49

timization strategy. We also discuss the methodology that we followed in order to implement

the most optimized implementation of GEM. We would like to state that the choice of opti-

mizations is specific for GEM and may vary with other applications. Figure 4.6 depicts that

speedup obtained due to a combination of Max. Threads and Kernel Splitting is 1.8-fold over

the basic implementation. However, if individual speedups are taken into consideration, then

the multiplicative speedup should have been 2.2-fold which is greater than what we actually

achieved. Also from the figure, we note that a combination of Kernel Splitting and Regis-

ter Preloading tends to be better than that of Kernel Splitting and Local Memory, though in

isolation, local memory performs better than register preloading. This proves that a certain

optimization strategy which performs better in isolation is not guaranteed to perform well

in combination also. Similarly, when Vector Math is used in conjunction with other opti-

mization techniques like Kernel Splitting, performance obtained is not as one would expect.

Scalar Math tends to be better off with Kernel Splitting, though, in isolation the results are

otherwise. In our ordeal to find out the best performing on-chip memory in combination,

Kernel Splitting and Image Memory were used together in an another implementation. Our

results indicate that Register Preloading is the most effective on-chip memory, which is in

accordance to the fact that registers are fastest among the three.

To come up with the best combination of optimizations, we used an elimination policy,

eliminating those optimizations that have been shown to perform worse. In this way, we could

minimize the optimization search space. As Register Preloading and Scalar Math are known

to perform better than the rest, we combined these two with Kernel Splitting and achieved

Mayank Daga Chapter 4. Mapping and Optimization on AMD GPUs 50

1.8	

2.5	
2.7	

2.2	 2.3	
2.7	

3.2	

4.1	 4.2	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

KS
+M

T	

KS
+L
M
	

KS
+R

P	

KS
+I
M
	

KS
+V

AV
M
	

KS
+V

AS
M
	

KS
+R

P+
VA

SM
	

KS
+R

P+
IM

	

KS
+M

T+
RP

+I
M
	

Sp
ee
du

p	

Figure 4.6: Speedup with optimizations in combination. Baseline: Basic OpenCL GPU
implementation. MT: Max. Threads, KS: Kernel Splitting, LM: Local Memory, RP: Register Preloading, IM: Image Memory,

VAVM: Vectorized Access & Vector Math, VASM: Vectorized Access & Scalar Math

a 3.2-fold speedup over the basic implementation. Vectorized accesses have proved to be

beneficial and hence, we used image memory as it internally loads vectors from memory and

achieved a greater speedup, i.e, 4.1-fold over the basic implementation. We then combined

Kernel Splitting, Register Preloading, Image Memory and Max. Threads to achieve even greater

speedup and also the most optimized implementation of GEM.

Due to GPUs being a black-box, it is not clear why these optimizations behave the way they

do. This makes a strong case to urge the vendors to divulge more architectural details of

GPUs. Figuring out these discrepancies in the results forms the basis of our future work.

In the following chapter, we discuss how to reap superior performance on another GPU

architecture, i.e., NVIDIA GPUs.

Chapter 5

Mapping and Optimization on NVIDIA

GPUs

In this chapter, we first discuss the well-known optimization strategies for NVIDIA GPUs

and present the performance difference obtained when these optimizations are applied using

either CUDA or OpenCL. We then discuss the partition camping problem and describe the

performance prediction model that we developed to detect partition camping in GPU kernels.

5.1 Optimizations

In this section, we discuss optimization strategies that improve application performance on

NVIDIA GPUs. Use of NVIDIA GPUs has been greatly facilitated by the evolution of CUDA

programming model since early 2006 and hence, optimizing CUDA codes has been studied

51

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 52

extensively and many optimization strategies have become widely known [13,36,40–43,46,48].

We call these optimization strategies as ‘cookbook’ optimizations and do not delve in to lot

of details about them.

However, there exists a lesser known but an extremely severe performance pitfall for NVIDIA

GPUs called partition camping which can affect the application performance by as much as

seven-fold. Unlike other pitfalls which can be detected using tools like CudaProf and CUDA

Occupancy Calculator, there is no existing tool that can detect the extent to which an

application suffers from partition camping. In order to facilitate the detection of the partition

camping effect, we have developed a performance model which analyzes and characterizes

the effect of partition camping. CampProf, a visual analysis tool has also been developed.

It visually depicts the partition camping effect in any GPU application.

5.1.1 Cookbook Optimizations

In this section, we briefly describe the fairly well-known CUDA optimizations as well as

elucidate the reasons why these optimizations help in attaining optimum performance.

1) Run numerous threads. An NVIDIA GPU has up to 512 cores, each of which requires

a thread to be able to do work. If there are less threads than cores, then potential

computation is wasted, thereby reducing the occupancy. Beyond having enough threads

to fill the cores, global memory accesses are slow to the tune of hundreds of cycles

blocking. To successfully amortize the cost of global memory accesses, there has to

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 53

be enough threads in flight to take over when one or more threads are stalled on

memory accesses. Since CUDA threads are lightweight, launching thousands of threads

does not incur materially more cost than hundreds. However, to be able to achieve

high occupancy, the amount of registers used per thread has to be kept minimum.

Therefore, there is a trade-off between the number of threads that can be launched,

and the number of registers used per thread on NVIDIA GPUs.

2) Use on-chip memory. NVIDIA GPUs provide 2 types of low latency on-chip memory,

in addition to registers, namely (i) shared memory and (ii) constant memory. Shared

memory is shared among the threads of a thread-block and thus, enables data reuse

between threads within a thread-block. In addition, shared memory can also be used

as a small software managed cache thanks to its low latency and low contention cost.

Constant memory on the other hand, is read-only to kernels and is beneficial for storing

frequently used constants and unchanged parameters which are shared among all GPU

threads. However, both of these memory types are of limited capacity, thereby neces-

sitating judicious use of space. In both cases, they help reduce global memory waiting

times by reducing the global memory accesses without increasing register usage.

3) Organize data in memory. Likely the most well-known optimization on NVIDIA GPUs

is ensuring that reads from global memory are coalesced. This means that threads in

the same warp should access contiguous memory elements concurrently. In addition to

coalescing, one should also ensure that threads access data from different banks of the

shared memory to avoid bank conflicts, or else these accesses would be serialized.

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 54

4) Minimize divergent threads. Threads within a warp should follow identical execution

paths. If the threads diverge due to conditionals and follow different paths, then the

execution of said paths becomes serialized. For example, if there are four possible

branches and all are taken by some thread(s) in the same warp then the block will take

4 times as long to execute as compared to when they took the same branch, with the

assumption that all branches execute same number of instructions. In extreme cases

this could become as high as a 32-fold slowdown.

5) Reduce dynamic instruction count. Execution time of a kernel is directly propor-

tional to the number of dynamic instructions executed by it. The onus of reducing

the number of instructions lies upon the programmer. Reduction in the number of

instructions can be done using traditional compiler optimizations like common subex-

pression elimination, loop unrolling, and explicit pre-fetching of data from the memory.

However, these optimizations result in increased register usage which in turn limits the

number of threads that can be launched, thus reducing the occupancy of the kernel.

5.1.2 Partition Camping

In this section, we describe what is partition camping as well as illustrate the performance

prediction model that we developed, using an indigenous suite of micro-benchmarks, to

analyze and characterize the effect of partition camping.

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 55

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 18	 20	 22	 24	 26	 28	 30	 32	

Ex
ec
u&

on
	 T
im

e	
(m

se
c)
	

Ac&ve	 Warps	 per	 SM	

With	 PC	 Without	 PC	

7-fold
performance
degradation

Figure 5.1: The adverse effect of partition camping in GPU kernels. PC: Partition Camping

The Problem

Partition camping arises when memory requests across blocks get serialized by fewer memory

controllers on the graphics card (figure 5.2). Just as shared memory is divided into multiple

banks, global memory is divided into either 6 partitions (on 8- and 9-series GPUs) or 8

partitions (on 200- and 10-series GPUs) of 256-byte width. The partition camping problem

is similar to shared memory bank conflicts but experienced at a macro-level where concurrent

global memory accesses by all the active warps in the kernel occur at a subset of partitions,

causing requests to queue up at some partitions while other partitions go unused [35].

We developed a suite of micro-benchmarks to study the effect of various memory access

patterns combined with the different memory transaction types and sizes. Our benchmarks

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 56

!"# !$# !%# !&# !'# !(# !)# !*#

!"#$% !"#&% !"#'% !"#(% !"#)% !"#*% !"#+% !"#,%

!"#-% !"#$.% !"#$$% !"#$&% !"#$'% !"#$(% !"#$)% !"#$*%

!"#$+% !"#$,% !"#$-% !"#&.% !"#&$% !"#&&% !"#&'% !"#&(%

!"#&)% !"#&*% !"#&+% !"#&,% !"#&-% !"#'.%

!"# !$# !%# !&# !'# !(# !)# !*#

!"#$%

!"#&%

!"#&-%

!"#'.%

!"#$% !"#&% !"#'% !"#(% !"#&-% !"#'.%

"/0123%455/66/6%
789:1;9%<=2>>1?%@=0A8?B%

789:%<=2>>1?%@=0A8?B%

C
%

D
<E

%D
F1G=F%"

/0
123%

D<E%HI/5;>1?%E?896%

Figure 5.2: Partition camping effect in the 200- and 10-series NVIDIA GPUs. Column
Pi denotes the ith partition. All memory requests under the same column (partition) are
serialized.

show that partition camping can degrade the performance of some kernels by up to seven-fold

and hence, it is important to detect and analyze the effects of this problem. Details about

our benchmarks can be found in appendix A

Discovery of the partition camping problem in GPU kernels is a difficult problem. There is

existing literature on static code analysis for detecting bank conflicts in shared memory [11],

but the same logic cannot be extended to detecting the partition camping problem. Bank

conflicts in shared memory occur among threads in a warp, where all the threads share

the same clock and hence, an analysis of the accessed address alone is sufficient to detect

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 57

Tool	

GPU	 Kernel	 Characteris3cs	

Occupancy	
Coalesced	
Accesses	 	
(gmem)

Bank	
Conflicts	
(smem)

Arithme3c	
Intensity	

Divergent	
Branches	

Par33on	 	
Camping	

CUDA	 Visual	
Profiler	

✓	 ✓	 ✓	 ✓	 ✓	 ✗	
CUDA	 Occupancy	
Calculator	

✓	 ✗	 ✗	 ✗	 ✗	 ✗	
CampProf	 ✗	 ✗	 ✗	 ✗	 ✗	 ✓	

Figure 5.3: Comparison of CampProf with existing profiling tools. gmem: global memory;
smem: shared memory.

conflicts. However, the partition camping problem occurs when multiple active warps queue

up behind the same partition and at the same time. This means that a static analysis

of just the partition number of each memory transaction is not sufficient and hence, its

timing information should also be analyzed. Each SM has its own private clock, which

makes the discovery of this problem much more difficult and error prone. To the best of

our knowledge, there are no existing tools that can diagnose the partition camping problem

in GPU kernels. To this extent, we have developed a new tool, CampProf, which aims to

detect the partition camping problem in GPU kernels. Figure 5.3 depicts how does CampProf

compare to other existing tools like CudaProf and CUDA Occupancy Calculator. Note that

the impact of partition camping is severe particularly in memory bound kernels. If the kernel

is not memory bound, the effect of memory transactions will not even be significant when

compared to the total execution time of the kernel and we need not worry about the partition

camping problem for those cases.

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 58

Performance Prediction Model

We perform rigorous statistical analysis techniques to model the impact of partition camping

in any memory-bound GPU kernel. We model the effect of memory reads separately from

the memory writes, and also model the case with partition camping separately from the case

without partition camping. So, we will be designing four model equations, one for each of

the following cases: (1) Reads, Without partition camping, (2) Writes, Without partition

camping, (3) Reads, With partition camping, and (4) Writes, With partition camping. We

follow this approach because we believe that modeling at this fine level of detail gives us better

accuracy. Specifically, we perform multiple linear regression analysis to fully understand the

relationship between the execution time of the different types of our micro-benchmarks and

their parameters. The independent variables (predictors) that we chose are: (1) the active

warps per SM (w), and (2) the word-lengths that are read or written per thread. The

dependent variable (response) is the execution time (t). The word-length predictor takes

only three values (2-, 4- or 8-bytes) 1 corresponding to the three memory transaction sizes,

and so we treat it as a group variable (b). This means, we first split the data-type variable

into two binary variables (b2 and b4), where their coefficients can be either 0 or 1. If the

co-efficient of b2 is set, it indicates that the word-length is 2-bytes. Likewise, setting the

co-efficient of b4 indicates a 4-byte word-length, and if coefficients of both b2 and b4 are

not set, it indicates the 8-byte word-length. We have now identified the performance model

parameters and the performance model can be represented as shown in equation 5.1, where
11- and 2-byte word lengths will both result in 32-byte global memory transactions.

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 59

αi denotes the contribution of the different predictor variables to our model, and β is the

constant intercept.

t = α1w + α2b2 + α3b4 + β (5.1)

Next, we use SAS, a popular statistical analysis tool, to perform multiple linear regression

analysis on our model and the data from our benchmarks. The output of SAS will provide

the co-efficient values of the performance model.

Significance Test: The output of SAS also shows us the results of some statistical tests

which describe the significance of our model parameters, and how well our chosen model

parameters are contributing to the overall model. In particular, R2[2] ranges from 0.953

to 0.976 and RMSE (Root Mean Square Error) ranges from 0.83 to 5.29. Moreover, we

also used parameter selection techniques in SAS to remove any non-significant variable,

and choose the best model. This step did not deem any of our variables as insignificant.

These results mean that the response variable (execution time) is strongly dependent on

the predictor variables (active warps per SM, data-types), and each of the predictors are

significantly contributing to the response which proves the strength of our performance

model. Informally speaking, this means that if we know the number of active warps per

SM, and the size of the accessed word (corresponding to the memory transaction size), we

can accurately and independently predict the execution times for reads and writes, with and

without partition camping, by using the corresponding version of equation 5.1. We then
2R2 is a descriptive statistic for measuring the strength of the dependency of the response variable on

the predictors.

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 60

aggregate the predicted execution times for reads and writes without partition camping to

generate the lower bound (predicted best case time) for the GPU kernel. Similarly, the

predicted execution times for reads and writes with partition camping are added to generate

the upper bound (predicted worst case time) for the GPU kernel. We validate the accuracy

of our prediction model by analyzing memory access patterns in GEM in section 5.2.

The CampProf Tool

User-Interface Design and Features

CampProf is an extremely easy-to-use spreadsheet based tool similar to the CUDA Occu-

pancy Calculator [33] and its screenshot is shown in figure 5.4. The spreadsheet consists

of some input fields on the left and an output chart on the right, which can be analyzed

to understand the partition camping effects in the GPU kernel. The inputs to CampProf

are the following values: gld 32b/64b/128b, gst 32b/64b/128b, grid and block sizes, and

active warps per SM. These values can easily be obtained from the CudaProf and the CUDA

Occupancy Calculator tools. Note that the inputs from just a single kernel execution con-

figuration are enough for CampProf to predict the kernel’s performance range for any other

execution configuration. CampProf passes the input values to our performance model which

predicts and generates the upper and lower performance bounds for all the kernel execution

configurations. CampProf plots these two sets of predicted execution times as two lines in

the output chart of the tool. The best case and the worst case execution times form a band

between which the actual execution time lies. In effect, the user provides the inputs for a

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 61

Figure 5.4: Screenshot of the CampProf tool

single kernel configuration, and CampProf displays the execution band for all the execution

configurations.

In addition, if the actual kernel time for the given execution configuration is provided as

input (GPU Time counter value from CudaProf), CampProf predicts and plots the kernel

execution time at all the other execution configurations and is denoted by the ‘Application’

line in the output chart. We predict the application line by simply extrapolating the kernel

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 62

time from the given execution configuration, in a constant proportion with the execution

band. Our performance model is therefore indirectly used to generate this line.

Visualizing the Effects of Partition Camping

To detect the partition camping problem in a GPU kernel, the user can simply use CampProf

and inspect the position of the ‘Application’ line with respect to the upper and lower bounds

(execution band) in the output chart. If the application line is almost touching the upper

bound, it implies the worst case scenario, where all the memory transactions of the kernel

(reads and writes of all sizes) suffer from partition camping. Similarly, the kernel is considered

to be optimized with respect to partition camping if the application line is very close to the

lower bound, implying the best case scenario. If the application line lies somewhere in the

middle of the two lines, it means that performance can be potentially improved and there is a

subset of memory transactions (reads or writes) that is queuing up behind the same partition.

The relative position of the application line with respect to the execution band will show

the degree to which the partition camping problem exists in the kernel. For example, while

processing two matrices, the kernel might read one matrix in the row major format (without

partition camping) and the other matrix might be read or written into in the column major

format (with partition camping). This means that only a part of the kernel suffers from

camping and the actual execution time will lie somewhere between the two extremities of

CampProf’s execution band. The only remedy to the partition camping problem is careful

analysis of the CUDA code and re-mapping the thread blocks to the data, as explained in

‘TransposeNew’ example of the CUDA SDK [35].

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 63

Our approach of predicting a performance range is in contrast to the other existing per-

formance models, which predict just a single kernel execution time. But, our method is

more accurate because our model captures the large performance variation due to partition

camping.

5.2 Results

In this section, we discuss performance improvements that we achieved using the optimization

strategies mentioned in the previous section. We performed our experiments on two NVIDIA

GPUs, belonging to two different generations; NVIDIA GTX280 and NVIDIA Tesla C2050

(Fermi). The ‘Host Machine’ consists of an AMD Opteron 6134 Magny Cours CPU running

at 2.0 GHz with 8 GB DDR2 SDRAM. The operating system on the host is a 64 bit version

of Ubuntu running the 2.6.28-19 generic Linux kernel. Programming and access to the

GPU was provided using CUDA 3.2 toolkit as well as OpenCL version 1.0. For the sake of

accuracy of results, all the processes which required graphical user interface were disabled to

limit resource sharing of the GPU. NVIDIA GPUs have the benefit of being able to execute

programs written in both CUDA and OpenCL. However, do these programming models

reap equal performance? Our results portray that same optimizations when implemented

in CUDA and OpenCL on the same GPU, amount to different performance improvements.

Speedup across the two GPUs also varies due to the inherent architectural differences.

We also validate the performance model for partition camping by using the knowledge of

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 64

memory access pattern of GEM and the CampProf output. To accomplish this, we have

used NVIDIA GTX280.

5.2.1 Cookbook Optimizations

In this section, we discuss performance benefits obtained due to implementation of well-

known NVIDIA GPU optimization strategies. In [14], we have presented how these opti-

mizations affect the performance of GEM when implemented in CUDA. The idea that we

would like to put forth here is not how much beneficial each optimization strategy is, but

how these optimizations perform when implemented in both CUDA and OpenCL and exe-

cuted on the same GPU. OpenCL programs are internally converted to CUDA binaries and

executed on NVIDIA GPUs and hence, are expected to achieve similar performance benefits.

However, as shown in figure 5.5, this is not the case.

Figure 5.5a depicts the speedup obtained due to CUDA optimizations on NVIDIA GTX280

and NVIDIA Tesla C2050 (Fermi), over the basic CUDA implementations. We observe that

speedups due to various optimization strategies vary across the two GPUs. This is quite

as expected as, the underlying architecture of both GPUs is different as they belong to two

different generations/families. Similar is the trend when OpenCL is used on the two GPU

platforms, as shown in figure 5.5b. The variation among the two GPUs is more prominent

in case of OpenCL.

However, when the performance of CUDA and OpenCL implementations are compared, we

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 65

1.7	

1.2	 1.3	 1.2	 1.3	

1.0	

1.3	

1.5	

1.2	 1.2	
1.3	

1.0	

0.0	

0.5	

1.0	

1.5	

2.0	

MT	 NDB	 RA	 CM	 SM	 LU	

Sp
ee
du

p	

GTX280	

Tesla	 C2050	 (Fermi)	

(a) CUDA

1.0	

1.5	
1.4	

1.0	

1.4	

1.0	 1.1	
1.2	

1.1	

0.7	

1.1	 1.0	

0.0	

0.5	

1.0	

1.5	

2.0	

MT	 NDB	 RA	 CM	 SM	 LU	

Sp
ee
du

p	

GTX280	

Tesla	 C2050	 (Fermi)	

(b) OpenCL

Figure 5.5: Speedup due to cookbook optimizations. Baseline: Basic {CUDA,OpenCL}
GPU implementation. MT: Max. Threads, NDB: Non Divergent Branches, RA: Register Accumulator, CM: Constant
Memory, SM: Shared Memory, LU: Loop Unrolling

find that only in case of Loop Unrolling is the performance same, i.e., Loop Unrolling does not

yield any benefit. This is due to the memory bound nature of GEM, as shown in section 2.3.

Hence, what is required is the reduction in memory accesses but Loop Unrolling results in more

efficient computation, thereby making no impact on the execution time. Other optimizations

do result in performance improvement, though not equally for both programming models.

Max. Threads on GTX280, results in 1.7-fold improvement when implemented using CUDA

but none when implemented using OpenCL. Similarly, removal of divergent branches results

in 1.2-fold improvement on the GTX280 using CUDA but when implemented using OpenCL,

the benefit is 1.5-fold, whereas on Tesla C2050 (Fermi), the performance improvements are

flipped. Performance benefits are unequal for other optimization strategies also like using on-

chip memory. When Constant Memory is implemented in OpenCL on Tesla C2050 (Fermi),

a slowdown is observed but there is a performance improvement when CUDA is used.

It is not exactly clear why this disparity exists in performance benefits across programming

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 66

!"#$$%&'(' !"#$$%&')' !"#$$%&'*' !"#$$%&'+' !"#$$%&',' !"#$$%&'-' !"#$$%&'.' !"#$$%&'/'

Step 1 Warp 1

Step 2 Warp 2 Warp 1

Step 3 Warp 3 Warp 2 Warp 1

Step 4 Warp 4 Warp 3 Warp 2 Warp 1

Step 5 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 6 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 7 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 8 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 9 Warp 1 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2

Step 10 Warp 2 Warp 1 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3

!"#$%"&'()#*+&,%*--#./0&(%12&456&$+7(&89:72&

;
&

/#&#.&

Figure 5.6: GEM: Memory access pattern

models, more so when a CUDA binary is executed in both cases. It is not even the case

that either of CUDA or OpenCL optimizations always perform better than the other. These

results pave way for future work which would deal with investigating this inconsistency.

5.2.2 Partition Camping

In section 5.1.2, we showed how our performance model is used to predict the upper and

lower bounds of the GPU kernel performance. In this section, we validate the accuracy of

our performance model by comparing the predicted bounds (best and worst case) with the

execution time of GEM.

As mentioned in section 2.3, all GPU threads in GEM, access coordinates of molecule con-

stituents stored in global memory in the following order: from the coordinate of first compo-

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 67

!"

#!"

$!"

%!"

&!"

'!"

(!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #*" $!" $$" $&" $(" $*" %!" %$"

!"
#$
"%
&'
("
)*
+
,$

&-
./

"&
01
")
,$

23
4&

5)+6"&78#93&9"#&1:&

;':&

,-./0"

12234567-8"

9:/0"

Input Kernel Configuration

Figure 5.7: GEM: CampProf output

nent to the last, thereby implying that all active warps would be queued up behind the same

memory partition at the beginning of the algorithm. However, only one warp can access that

global memory partition, stalling all other warps. Once the first warp finishes accessing the

elements in the first partition, it would move on the next partition, thus, the first partition

can now be accessed by the next warp in the queue. Partition access will be pipelined, as

shown in figure 5.6. Once this memory partition pipeline is filled up (i.e. after eight such

iterations on a device with compute capability 1.2 or 1.3), memory accesses will be uniformly

distributed across all available memory partitions. The pipelined nature of memory accesses

can be assumed to not result in further stalls because the workload for all the warps is same.

This illustrates that in theory, GEM does not suffer from partition camping.

To corroborate this fact, we use CampProf to analyze the partition camping behavior in

Mayank Daga Chapter 5. Mapping and Optimization on NVIDIA GPUs 68

GEM. Figure 5.7 shows the CampProf output chart depicting the partition camping effect

in GEM. The input to the tool is the number of memory transactions and the kernel execution

time for one execution configuration (denoted by the ?). It shows the worst and best case

times for all the execution configurations, as predicted by our model. The ‘Application’

line in the graphs is extrapolated from the actual execution time that was provided as

input. The predicted ‘Application’ line is presented for only up to 16 active warps, beyond

which it was not possible to execute due to shared memory and register usage constraints

imposed by the GPU architecture. From the figure, it can be noted that the predicted

application performance is extremely close to the ‘Best’ line of CampProf, which agrees with

our discussions about GEM not suffering from partition camping. This is in conjunction to

our expectation and thereby proves the efficacy of our performance prediction model as well

as demonstrates the utility of the CampProf tool.

Chapter 6

Summary and Future Work

In this chapter, we present a summary of the optimizations discussed and also present some

future work that can be built upon this thesis.

6.1 Summary

In this section, we summarize our findings of architecture-aware optimization strategies for

heterogeneous computing systems.

Heterogeneous computing has proved to be indispensable in high performance computing.

The primary reason for the unprecedented success of heterogeneous computing has been the

widespread adoption of compute capable graphics processing units (GPUs). GPUs would

continue to enjoy popularity in future, as it is difficult to envision the efficient use of hundreds

69

Mayank Daga Chapter 6. Summary and Future Work 70

163	
192	

328	

88	

224	

371	

0	

100	

200	

300	

400	

Basic	 Architecture	
unaware	

Architecture	
aware	 Sp

ee
du

p	
ov
er
	 h
an

d-‐
tu
m
ed

	 S
SE
	

NVIDIA	 GTX280	 AMD	 5870	

Figure 6.1: Speedup when optimized for each architecture

of traditional CPU cores. However, the use of hundreds of accelerator cores in conjunction

with a handful of traditional CPU cores appears to be a sustainable roadmap.

GPUs come in various flavors and with different underlying architectures, thus, do not ad-

here to the one-size-fits-all philosophy. Hence to reap supreme performance on GPUs, one

has to perform architecture-aware optimizations and mappings. To corroborate this fact,

we present figure 6.1, which depicts the speedup obtained when three different implementa-

tions of the same application are run on GPUs from NVIDIA and AMD. The importance

of performing architecture-aware optimizations is manifested by the fact that even with

architecture-unaware optimizations, there is a performance improvement over the basic im-

plementation. However, optimum performance is obtained only when architecture aware

optimizations are performed. After performing architecture-aware optimizations, the AMD

GPU is realized to its full potential and hence, performs 12% better than the NVIDIA GPU.

Mayank Daga Chapter 6. Summary and Future Work 71

Table 6.1 presents a summary of optimization strategies discussed so far along with their

degree of effectiveness on AMD and NVIDIA GPUs.

6.2 Future Work

In this section, we discuss some future work that can be built upon this thesis.

Auto-optimization framework for OpenCL applications: The major contribution of

this thesis is to acquaint the research community with the benefits of architecture-aware

optimization strategies. With the evolution of OpenCL, application developers are en-

ticed to run the same application on various architectures, but only to find out that

dissimilar performance is obtained on each architecture. Therefore, a framework could

be developed which when made aware of the underlying architecture, automatically op-

timizes the application for that architecture. Hence, achieving optimum performance

on various heterogeneous computing systems would be guaranteed.

Auto-tuning framework to find the best combination of optimizations: This the-

sis demonstrates that there is no concrete way to figure out the best combination of

various optimization strategies for an application, on a particular architecture. Brute

force is the only method in which one can find the best combination. Therefore, a

framework could be developed, which auto-tunes an application along various dimen-

sions and identifies a set of optimization strategies that would help achieve optimum

performance on any given heterogeneous computing system.

Mayank Daga Chapter 6. Summary and Future Work 72

Table 6.1: Impact of optimization strategies on AMD and NVIDIA GPUs. Greater the
number of +s, greater is the positive impact. The ones in red are architecture-aware optimizations
Optimization Strategy AMD NVIDIA
Algorithm Design:

Recomputing instead of Transferring + + + + + + + + + +

Using Host Asynchronously + +

Execution Configuration:

Running Numerous Threads + + + + + + + + + +

Ensuring #Threads to be a multiple of Wavefront/Warp Size + + + + + + + + + +

Ensuring #Workgroups/Blocks to be a multiple of #Cores + + + + + + + + + +

Reducing Per-Thread Register Usage + + + + + + + +

Control Flow:

Removing Branches + + + +

Removing Divergent Branches + + + + + + + + + +

Memory Types:

Using Registers + + + + + + + +

Using Local/Shared Memory + + + + + + + + + +

Using Constant Memory + + + + + +

Using Image/Texture Memory + + + + + +

Memory Access Pattern:

Coalescing Global Memory Accesses + + + + + + + + + +

Avoiding Partition Camping + + + + + + + +

Avoiding Bank Conflicts + + + + + + + + + +

Instruction Count:

Using Vector Types and Operations + + + + + +

Prefetching of Data from Global Memory + + + + + + + + + +

Loop Unrolling + + + + + + + + + +

Mayank Daga Chapter 6. Summary and Future Work 73

Performance modeling tool for compute bound applications: In our efforts to char-

acterize and analyze the severe effect of partition camping in GPU kernels, we devel-

oped a performance prediction model for memory bound applications. Therefore, a sim-

ilar model could be developed for compute bound applications. Also, the model which

we have developed is amenable only to previous NVIDA GPU architecture (GT200)

and hence, one can extend the model to the present generation architecture of NVIDIA

GPUs, i.e., Fermi.

Efficacy of optimization strategies on novel architectures: The efficacy of the dis-

cussed optimization strategies on novel heterogeneous architectures like AMD Fusion

and Intel Knights Ferry would be interesting. These architectures are different from

current architectures in the sense that they combine the general purpose x86 CPU cores

and the programmable accelerator cores on the same silicon. Even if these optimization

strategies do not perform as expected, one could at least use a similar methodology of

analyzing the underlying architecture and devise new optimization strategies.

Bibliography

[1] The Top500 Supercomputer Sites. http://www.top500.org.

[2] The OpenMP API Specification for Parallel Programming, 2010. http://openmp.org/

wp/openmp-specifications/.

[3] Aaftab Munshi. The OpenCL Specification, 2008. http://www.khronos.org/

registry/cl/specs/opencl-1.0.29.pdf.

[4] Ashwin Aji, Mayank Daga, and Wuchun Feng. Bounding the Effect of Partition Camp-

ing in GPU Kernels. In ACM International Conference on Computing Frontiers (To

appear), 2011.

[5] AMD. AMD Stream Computing OpenCL Programming Guide. http://developer.

amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf.

[6] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities, Reprinted from the AFIPS Conference Proceedings, Vol. 30

(Atlantic City, N.J., Apr. 18), AFIPS Press, Reston, Va., 1967, pp. 483;485, when Dr.

74

http://www.top500.org
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf

Mayank Daga Bibliography 75

Amdahl was at International Business Machines Corporation, Sunnyvale, California.

Solid-State Circuits Newsletter, IEEE, 12(3):19 –20, 2007.

[7] Ramu Anandakrishnan, Tom R.W. Scogland, Andrew T. Fenley, John C. Gordon,

Wu chun Feng, and Alexey V. Onufriev. Accelerating Electrostatic Surface Potential

Calculation with Multiscale Approximation on Graphics Processing Units. Journal of

Molecular Graphics and Modelling, 28(8):904 – 910, 2010.

[8] Jeremy Archuleta, Yong Cao, Tom Scogland, and Wu-chun Feng. Multi-Dimensional

Characterization of Temporal Data Mining on Graphics Processors, May 2009.

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Comput-

ing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, Dec 2006.

[10] ATI. ATI Stream Computing User Guide. ATI, March, 2009.

[11] Michael Boyer, Kevin Skadron, and Westley Weimer. Automated Dynamic Analysis

of CUDA Programs. In Proceedings of 3rd Workshop on Software Tools for MultiCore

Systems, 2010.

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware.

ACM TRANSACTIONS ON GRAPHICS, 23:777–786, 2004.

Mayank Daga Bibliography 76

[13] Daniel. Cederman and Philippas Tsigas. On dynamic load balancing on graphics proces-

sors. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 57–64. Eurographics Association Aire-la-Ville, Switzerland,

Switzerland, 2008.

[14] Mayank Daga, Wuchun Feng, and Thomas Scogland. Towards Accelerating Molecular

Modeling via Multiscale Approximation on a GPU. In 1st IEEE International Confer-

ence on Computational Advances in Bio and Medical Sciences (ICCABS), pages 75 –80,

2011.

[15] Dana Schaa and David Kaeli. Exploring the Multi-GPU Design Space. In IPDPS ’09:

Proc. of the IEEE International Symposium on Parallel and Distributed Computing,

2009.

[16] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,

Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil Compu-

tation Optimization and Auto-Tuning on Sate-of-the-Art Multicore Architectures. In

High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. In-

ternational Conference for, pages 1–12. IEEE, 2009.

[17] John C. Gordon, Andrew T. Fenley, and A. Onufriev. An Analytical Approach to Com-

puting Biomolecular Electrostatic Potential, II: Validation and Applications. Journal

of Chemical Physics, 2008.

[18] Khronos Group. OpenCL. http://www.khronos.org/opencl/.

http://www.khronos.org/opencl/

Mayank Daga Bibliography 77

[19] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R.

Gaster, and Bixia Zheng. Twin peaks: a Software Platform for Heterogeneous Comput-

ing on General-Purpose and Graphics Processors. In Proceedings of the 19th interna-

tional conference on Parallel architectures and compilation techniques, PACT ’10, pages

205–216, New York, NY, USA, 2010. ACM.

[20] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi Mat-

suoka. Statistical Power Modeling of GPU Kernels Using Performance Counters. In

IGCC ’10: Proceedings of International Green Computing Conference, 2010.

[21] Sunpyo Hong and Hyesoon Kim. An Analytical Model for a GPU Architecture with

Memory-level and Thread-level Parallelism Awareness. In ISCA ’10: Proceedings of the

37th International Symposium of Computer Architecture, 2009.

[22] Sunpyo Hong and Hyesoon Kim. An Integrated GPU Power and Performance Model. In

ISCA ’10: Proceedings of the 37th International Symposium of Computer Architecture,

2010.

[23] Jen-Hsun Huang. Opening Keynote, NVIDIA GPU Technology Conference, 2010. http:

//livesmooth.istreamplanet.com/nvidia100921/.

[24] Intel. Intel SSE Documentation. http://www.intel80386.com/simd/mmx2-doc.html.

[25] Intel, 1994.

http://livesmooth.istreamplanet.com/nvidia100921/
http://livesmooth.istreamplanet.com/nvidia100921/
http://www.intel80386.com/simd/mmx2-doc.html

Mayank Daga Bibliography 78

[26] Byunghyun Jang, Synho Do, Homer Pien, and David Kaeli. Architecture-Aware Opti-

mization Targeting Multithreaded Stream Computing. In Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing Units, GPGPU-2, pages 62–70,

New York, NY, USA, 2009. ACM.

[27] Chris Jang. OpenCL Optimization Case Study: GATLAS - Designing Kernels with

Auto-Tuning. http://golem5.org/gatlas/CaseStudyGATLAS.htm.

[28] Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban, and Cho-Li Wang.

Heterogeneous Computing: Challenges and Opportunities. Computer, 26:18–27, June

1993.

[29] Michael Bader, Hans-Joachim Bungartz, Dheevatsa Mudigere, Srihari Narasimhan and

Babu Narayanan. Fast GPGPU Data Rearrangement Kernels using CUDA. In HIPC

’09: Proceedings of High Performance Computing Conference, 2009.

[30] George E. Moore. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82–85, Jan 1998.

[31] Jack Nickolls and Ian Buck. NVIDIA CUDA Software and GPU Parallel Computing

Architecture. In Microprocessor Forum, May, 2007.

[32] NVIDIA. CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[33] NVIDIA. CUDA Occupancy Calculator, 2008. http://developer.download.nvidia.

com/compute/cuda/CUDA_Occupancy_calculator.xls.

http://golem5.org/gatlas/CaseStudyGATLAS.htm
http://www.nvidia.com/object/cuda_home_new.html
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Mayank Daga Bibliography 79

[34] NVIDIA. The CUDA Compiler Driver NVCC, 2008. http://www.nvidia.com/object/

io_1213955090354.html.

[35] NVIDIA. Optimizing Matrix Transpose in CUDA, 2009. NVIDIA_CUDA_SDK/C/src/

transposeNew/doc/MatrixTranspose.pdf.

[36] NVIDIA. NVIDIA CUDA Programming Guide-3.2, 2010. http://developer.

download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_

Guide.pdf.

[37] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and

James C. Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899, May

2008.

[38] David Patterson. The Trouble With Multicore, 2010. http://spectrum.ieee.org/

computing/software/the-trouble-with-multicore.

[39] Freund Richard and Conwell D. Superconcurrency: A Form of Distributed Heteroge-

neous Supercomputing. Supercomputing Review, pages 47–50, 1991.

[40] Shane Ryoo, Christopher Rodrigues, Sam Stone, Sara Baghsorkhi, Sain-Zee Ueng, and

Wen mei Hwu. Program Optimization Study on a 128-Core GPU. In Workshop on

General Purpose Processing on Graphics Processing, 2008.

[41] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,

and W. W. Hwu. Optimization Principles and Application Performance Evaluation of

http://www.nvidia.com/object/io_1213955090354.html
http://www.nvidia.com/object/io_1213955090354.html
NVIDIA_CUDA_SDK/C/src/transposeNew/doc/MatrixTranspose.pdf
NVIDIA_CUDA_SDK/C/src/transposeNew/doc/MatrixTranspose.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore

Mayank Daga Bibliography 80

a Multithreaded GPU Using CUDA. In Proc. of the 13th ACM SIGPLAN Symp. on

Principles and Practice of Parallel Programming, pages 73–82, February 2008.

[42] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee

Ueng, John A. Stratton, and Wen-mei W. Hwu. Program optimization space pruning

for a multithreaded gpu. In CGO ’08: Proceedings of the 6th annual IEEE/ACM

international symposium on Code generation and optimization, pages 195–204, New

York, NY, USA, 2008. ACM.

[43] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, John A. Stratton, Sain-Zee Ueng,

Sara S. Baghsorkhi, and Wen mei W. Hwu. Program optimization carving for gpu

computing. Journal of Parallel and Distributed Computing, 68(10):1389 – 1401, 2008.

General-Purpose Processing using Graphics Processing Units.

[44] Sara S. Baghsorkhi and Matthieu Delahaye and Sanjay J. Patel and William D. Gropp

and Wen-mei W. Hwu. An adaptive performance modeling tool for GPU architectures.

In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN symposium on Principles and

practice of parallel programming, 2008.

[45] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software, 2009. http://www.gotw.ca/publications/concurrency-ddj.htm.

[46] Vasily Volkov and James Demmel. Benchmarking GPUs to Tune Dense Linear Algebra.

In Proc. of the 2008 ACM/IEEE Conference on Supercomputing, November 2008.

http://www.gotw.ca/publications/concurrency-ddj.htm

Mayank Daga Bibliography 81

[47] Samuel Webb Williams. Auto-tuning Performance on Multicore Computers. PhD thesis,

EECS Department, University of California, Berkeley, Dec 2008.

[48] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas

Moshovos. Demystifying GPU Microarchitecture through Microbenchmarking. In IS-

PASS ’10: Proceedings of the 37th IEEE International Symposium on Performance

Analysis of Systems and Software, 2010.

[49] Fang Xudong, Tang Yuhua, Wang Guibin, Tang Tao, and Zhang Ying. Optimizing Sten-

cil Application on Multi-thread GPU Architecture Using Stream Programming Model.

In Architecture of Computing Systems - ARCS 2010, volume 5974 of Lecture Notes in

Computer Science, pages 234–245. Springer Berlin / Heidelberg, 2010.

Appendix A

Micro-Benchmarks for Detection of

Partition Camping

While partition camping truly means that any subset of memory partitions are being accessed

concurrently, we choose the extreme cases for our study, i.e. all the available partitions are

accessed uniformly (Without Partition Camping), or only one memory partition is accessed

all the time (With Partition Camping). Although this method does not exhaustively test the

difference degrees of partition camping, our study acts as a realistic first-order approximation

to characterize its effect in GPU kernels. Thus, we developed two sets of benchmarks and

analyzed the memory effects with and with- out partition camping. Each set of benchmarks

tested the different memory transaction types (reads and writes) and different memory trans-

action sizes (32-, 64- and 128-bytes), which made it a total of 12 benchmarks for analysis.

82

Mayank Daga Appendix A. Micro-Benchmarks for Detection of Partition Camping 83

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
// TYPE can be a 2-, 4- or an 8-byte word
__global__ void readBenchmark(TYPE *d_arr) {

// assign unique partitions to blocks ,
int numOfPartitions = 8;
int curPartition = blockIdx.x % numOfPartitions;
int partitionSize = 256; // 256 bytes
int elemsInPartition = partitionSize/sizeof(TYPE);
// jump to unique partition
int startIndex = elemsInPartition

* curPartition;
TYPE readVal = 0;

// Loop counter ’x’ ensures coalescing.
for(int x = 0; x < ITERATIONS; x += 16) {

/* offset guarantees to restrict the
index to the same partition */

int offset = ((threadIdx.x + x)
% elemsInPartition);

int index = startIndex + offset;
// Read from global memory location
readVal = d_arr[index];

}
/* Write once to memory to prevent the above

code from being optimized out */
d_arr [0] = readVal;

}

Figure A.1: Code snapshot of the ‘read’ micro-benchmark for the NVIDIA 200- and 10-series
GPUs (Without Partition Camping). Note: ITERATIONS is a fixed and known number.

// TYPE can be a 2-, 4- or an 8-byte word
__global__ void readBenchmark(TYPE *d_arr) {

int partitionSize = 256; // 256 bytes
int elemsInPartition = partitionSize/sizeof(TYPE);
TYPE readVal = 0;

// Loop counter ’x’ ensures coalescing.
for(int x = 0; x < ITERATIONS; x += 16) {
/* all blocks read from a single partition

to simulate Partition Camping */
int index = ((threadIdx.x + x)

% elemsInPartition);
// Read from global memory location
readVal = d_arr[index];

}
/* Write once to memory to prevent the above

code from being optimized out */
d_arr [0] = readVal;

}

Figure A.2: Code snapshot of the ‘read’ micro-benchmark for the NVIDIA 200- and 10-series
GPUs (With Partition Camping). Note: ITERATIONS is a fixed and known number.

Mayank Daga Appendix A. Micro-Benchmarks for Detection of Partition Camping 84

Figures A.1 and A.2 show the kernel of the micro-benchmarks for memory reads, with-

out and with partition camping respectively. The benchmarks that simulate the partition

camping effect (figure A.2) carefully access memory from only a single partition. The micro-

benchmarks for memory writes are very similar to the memory reads, except that readVal is

written to the memory location inside the for-loop (line numbers 21 and 14 in the respective

code snapshots). We modify the TYPE data-type in the benchmarks to one of 2-, 4- or 8-byte

words in order to trigger 32-, 64- or 128-byte memory transactions respectively to the global

memory. Although our benchmarks have a high ratio of compute instructions to memory

instructions, we prove that they are indeed memory bound, i.e. the memory instructions

dominate the overall execution time. We validate this fact by using the methods discussed

in [4]. Our suite of benchmarks is therefore a good representation of real memory-bound

kernels.

	Introduction
	Motivation
	Related Work
	Contributions
	Document Overview

	Heterogeneous Computing
	Systems
	Multicore CPUs
	Graphics Processing Units

	Programming Environments
	OpenCL
	CUDA

	Application

	Mapping and Optimization on Multicore CPUs
	Optimizations
	Optimizations for Sequential Program
	Parallelization

	Results
	Optimizations for Sequential Program
	Parallelization

	Mapping and Optimization on AMD GPUs
	Optimizations
	Kernel Splitting
	Local Staging
	Vector Types
	Image Memory
	Optimizations in Combination

	Results
	Kernel Splitting
	Local Staging
	Vector Types
	Image Memory
	Optimizations in Combination

	Mapping and Optimization on NVIDIA GPUs
	Optimizations
	Cookbook Optimizations
	Partition Camping

	Results
	Cookbook Optimizations
	Partition Camping

	Summary and Future Work
	Summary
	Future Work

	Bibliography
	Micro-Benchmarks for Detection of Partition Camping

