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1 Introduction

Quiver quantum mechanics, and more generally gauged linear sigma models quantum me-

chanics (1d GLSM) with four or less supersymmetries, exhibit wall-crossing behavior where

the Witten index jumps discontinuously under continuous deformation of Fayet-Iliopoulos

constants ζ. With N = 4 supersymmetry, this is directly connected to the wall-crossing

of Seiberg-Witten theories [1–3] via Calabi-Yau compactification of type II string theo-

ries. Such discontinuities have been studied in many different approaches in the past. The

fundamental mechanism of BPS state disappearance in 4d was understood fairly early via

multi-center nature of generic BPS states [4] which was followed by explicit state count-

ing and wall-crossing of multi-center BPS bound states in the weakly coupled regime of

rank two or higher gauge theories [5–7] and then later in the supergravity or Calabi-Yau

setting [8–10].

These early works inspired two different approaches to the general wall-crossing prob-

lems. One resorted to more mathematical reformulation, culminating in the Kontsevich-

Soibelman wall-crossing formulae [11, 12]. This is suitable for noncompact Calabi-Yau

examples, e.g., Seiberg-Witten theories, and was later further clarified and expanded via

compactified (2,0) theory [13, 14]. The other, more faithful to the physical picture of multi-

center BPS states, was developed by and large parallel to the former. The latter resulted in
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a very comprehensive and universal index formulae [15–18], from which wall-crossing formu-

lae followed. The latter, when restricted appropriately to fit the smaller scope of the former,

has been shown to be solutions to the Kontsevich-Soibelman wall-crossing algebra [19].

Despite such a long history and several breakthroughs, there are some important ques-

tions remaining. For example, while we have several different wall-crossing formulae and

index formulae, actual evaluation of them in examples beyond 4d rank one theories are

hardly understood at a systematic level. Also, beyond such more technical issues, there

is also a conceptual mystery surrounding part of supersymmetric spectra that remain ro-

bust across walls of marginal stability. In the Calabi-Yau setting, this question appears

to be essential to complete classification and counting of supersymmetric cycles of com-

pact Calabi-Yau three-folds, and in particular to microstate counting of 4d N = 2 BPS

black holes.

To explain these wall-crossing-safe states, let us come back to 1d quiver quantum

mechanics, which are low energy dynamics of D3-branes wrapped on special Lagrange

cycles of Calabi-Yau three-fold [9, 20]. Such quiver quantum mechanics has resurfaced more

directly from Seiberg-Witten theories as well; one recent is via low energy dynamics of BPS

solitons in strongly coupled regimes [18, 21], while another is from realization of Seiberg-

Witten theory as (2,0) theories compactified on Riemannian surfaces with punctures [13,

22, 23]. Wall-crossing of 4d BPS states then translates to appearance and disappearance

of supersymmetric vacua of such 1d quiver theories.

For a simpler class of quivers like two-node Kronecker quivers, all supersymmetric

vacua disappear simultaneously across a single wall at ζ = 0. Whenever a quiver comes

with a superpotential, however, a subtlety arises. Spectrum is split into part that disappear

at such walls and part that remain robust everywhere in FI constant space [10, 24–26]. As

we will review in a later section, the latter states are all angular momentum, or SU(2)R
singlets [25, 26], and serve as building blocks in the multi-center picture or the Coulombic

picture, of the wall-crossing [28, 29]. The latter class of states should exist even when all FI

constants are set to zero, and have been dubbed the quiver invariant [25, 26], for an obvious

reason; these states, or part of Witten index that captures them, are invariant properties

of the quiver itself rather than those of individual chambers with distinct Witten indices.

Existence of such wall-crossing-safe states implies that the wall-crossing formulae are

nowhere enough for counting ground states of quiver quantum mechanics, or equivalently

counting BPS spectra in four dimensions. For the Kontsevich-Soibelman wall-crossing for-

mulae, in fact, the quiver invariants should be regarded as input data rather than solution

to their algebraic constraint. In 4d context, the quiver invariant seems to count degener-

acy of single-center N = 2 BPS black holes [26], which also tells us that for black hole

microstate counting, it is not the wall-crossing pattern that matters but rather one must

compute Witten indices and the quiver invariants more directly. Beyond simple cases like

SU(2) Seiberg-Witten, therefore, the need for direct counting of Witten indices is all the

more pressing.

Equivariant Witten index counting for general N ≥ 2 gauged quantum mechanics has

been established in a recent work [30], where the wall-crossing in ζ space is also captured and

accounted for correctly. Although actual evaluation, some r-dimensional contour integrals,
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is riddled with subtleties and also mired by heavy computational cost as rank r grows,

this result, to which we will refer as HKY, represents the most comprehensive approach

to counting supersymmetric ground states of 1d GLSM. It represents the first systematic

and comprehensive counting method; although there had been systematic approaches such

as that of Reineke [27] or those based on Coulombic approximation [16, 18], these are

effectively restricted to quivers without superpotentials and in particular cannot count

black hole microstates by themselves. This new approach supersedes existing geometrical

methods such as the Abelianization scheme reviewed in ref. [31], and has been used for

various nontrivial examples. For low-rank or Abelian examples, the prescription is very

effective and Witten indices have been computed for many N = 2, 4 GLSM’s.

Computation of high rank non-Abelian GLSM’s, other than some of very simple quiv-

ers, remains technically challenging, however.1 On the other hand, a very suggestive scaling

behavior with growing intersection numbers has been seen in the wall-crossing-safe part

of spectrum [10, 21, 24]. This could be related to Witten indices of high rank quivers in

two possible ways. One is via the MPS expansion which expresses the index of a high

rank quiver via a partition sum of the rank vector where high rank often translates to the

high intersection numbers in the computational middle steps. Another possibility is the

so-called mutation map, which can preserve Witten index under favorable circumstances

while mixing up rank vectors and intersection numbers.

The mutation, which is a form of Seiberg-duality for the quiver quantum mechanics, has

been very successfully used for obtaining BPS spectra of rank-one Seiberg-Witten theories

by Alim et al. [23] who argued how two different-looking quivers, with very different ranks,

can possess chambers of the same Witten indices and explained how two such can be viewed

as a mere change of basis. The basis element in question can be either a specific set of

simple dyons for Seiberg-Witten theory, or a set of special Lagrangian submanifolds for

Calabi-Yau three-fold. Thus, one immediate problem is to verify the proposed mutation

invariance against explicit Witten index counting. Because the mutation always acts on

a single node at a time and transforms the adjacent nodes by the connecting arrows, the

simplest prototype where all the subtleties of mutation can be seen is the cyclic triangle

quivers where each node is connected to a pair of nodes each with ingoing and outgoing

arrows. One main objective of this note is to study this class of quivers in detail and

demonstrate how mutation map manifests in HKY’s Witten index counting.

This mutation map is, however, rather specific in that it requires certain inequalities

among FI constants, ζ. Because of this, the map cannot map all physical chambers of

a quiver to those of one mutated quiver. Chamber by chamber, allowed mutations are

generically all different. While the mutation can represent a powerful method for relating

quivers of different ranks and intersection numbers, this severe ζ-dependence is subtle

enough to hinder most practical applications generally. On the other hand, such subtleties

turn out to be absent as far as quiver invariants go. As noted above, for general quivers

that accept superpotential, the notion of the quiver invariant has emerged as key ingredient

1For the simple Kronecker quivers, the large-rank scaling behavior has been also obtained with help of

this approach [32–34], although the scaling behavior found here is not related to that of N = 2 BPS black

holes but rather intrinsic to rank 2 or higher field theory BPS states.
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to understanding of the spectra [25, 26, 28, 29, 31]. Because the quiver invariant is a basic

property of a quiver, independent of chamber choices, we can anticipate that the mutation

rule preserving quiver invariant, if it exists at all, should not be mired by FI constants.

However, the usual mutation rule that preserves Witten index chamber-wise is clearly

inadequate for this as one immediately sees counterexamples where the mutated quiver

and the original quiver have two very different chamber structures.

It turns out that the relevant mutation rule for the quiver invariant is identical to the

usual mutation rule, except that it shifts the rank of the mutating node differently as

Nk → −Nk + min
(
N

(k)
f , N (k)

a

)
, (1.1)

where N
(k)
f and N

(k)
a are, respectively, the total number of chiral fields in the fundamental

representations and the total number of chiral fields in the anti-fundamental representa-

tions, with respect to U(Nk). This action is different from the usual mutation rule, yet

preserves the quiver invariants. Because of the chamber-independent nature of the quiver

invariant, this mutation on quiver invariant can act on any node of the quiver, regardless

of ζ values.

In section 2, we overview the quiver data and the quiver mutations. Here we will

introduce a few manifestations of mutation maps with different action on ranks but with

a common action on adjacency matrix. One of them, to be distinctly denoted as µ̃, will

turn out to be the right action that preserves the quiver invariant. Section 3 is devoted

to a brief review of HKY index formulae for gauge quantum mechanics, which is our

main tool for checking how mutation acts on Witten indices and quiver invariants. After

a review of wall crossing, Witten index, and quiver invariant in section 4, we move in

section 5 to ordinary mutations µ and test how they preserve Witten indices selectively,

using HKY’s Witten index formulae. Section 6 discusses mutation on quiver invariant,

given by the alternate action µ̃, and makes predictions for several sequences of triangle

quivers, numerical confirmations of which can be found in appendix A.

2 Quivers and quiver mutations

The quiver mutation rule takes a supersymmetric quiver theory with four supercharges

and maps it to another such theory with different gauge group and matter content. More

specifically, a quiver theory is specified by the following set of data:

• The nodes, labeled by i, with ranks Ni. Each node represents a vector multiplet with

the gauge group U(Ni).

• The adjacency matrix, b = [bij ], which counts the arrows from node i to node j.

Positive bij counts the chirals in the bifundamental representation, (N̄i, Nj).

• Fayet-Iliopoulos (FI) constant, ζi, for each node. For this note we take the normal-

ization for ζ’s such that FI term in the Lagrangian is of the form

−ζi
∫
dt trDi ,

where Di is the auxiliary field in the gauge multiplet of U(Ni).
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• R-charge assignment Rij for chiral multiplets.

Recall that the quiver quantum mechanics would be a low energy dynamics of BPS

state of total charge Γ =
∑

iNiγi, of some 4d N = 2 theories [9]. The simplest setting

where quiver quantum mechanics emerge is type IIB theory compactified on a Calabi-

Yau three-fold. The effective theory in the remaining four dimensions carries N = 2

supersymmetry, and the BPS states thereof are realized as D3-branes wrapped on special

Lagrange subcycles of the Calabi-Yau. When the cycle is rigid, as with S3, the vector

multiplet on the D3-brane reduces to quantum mechanical vector multiplet whose content

is the same as N = 1 vector multiplet in four dimensions.2 We denote the bosonic part of

the multiplet as

(A0, x1, x2, x3) ,

where the latter three transform under SU(2)R R-symmetry as triplet. Generators of this

SU(2)R are denoted as J1,2,3. In addition there is also U(1)R symmetry which is inherited

from its four-dimensional reincarnation. We denote its half-integral generator by I.

When we view the quiver theory as the dynamics of D-branes wrapped on supersym-

metric cycles in a Calabi-Yau three-fold, with the charge label γ’s, the adjacency matrix,

b = [bij ], of the quiver counts their intersections as bij = 〈γi, γj〉, whereby b is manifestly an

antisymmetric matrix. Finally, ζi is related to the phase of the central charge of the cycle γi.

The quiver mutation maps a quiver Q = (N ; b)Rζ to another quiver Q̂ = (N̂ ; b̂)R̂
ζ̂

.

Mathematical literatures usually start with mutation rule for the matrix b, but for our

purpose it is more transparent to start with mutation of the underlying charges γi. For

each node, say, for node k, one can define two different mutation maps µL,Rk which can be

understood most easily via their action on γi’s. For the left mutation on node k, we have

µLk (γi) =

 −γk i = k

γi + [bki]+γk otherwise

(2.1)

where [b]+ is b for positive b and zero otherwise. The right mutation is a mirror image

of this,

µRk (γi) =

 −γk i = k

γi + [bik]+γk otherwise

(2.2)

Giving the mutation rule to γ’s first has the advantage that the rule on ζ follows automa-

tically as,

µLk (ζi) =

 −ζk i = k

ζi + [bki]+ζk otherwise

(2.3)

2When the special Lagrange cycle is not rigid, there could be further chiral multiplets, such as in the

adjoint representation, although in this note we won’t consider such cases.
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Figure 1. The left and the right mutations µL,R
3 on node 3 for (1, 1, N) quivers. The integers

inside circles are ranks, while the FI constants are displayed next to them.

and

µRk (ζi) =

 −ζk i = k

ζi + [bik]+ζk otherwise

(2.4)

Both of these two mutations on γi’s lead to a common rule for b as

µk(bij) =

 −bij if i = k or j = k

bij + sgn(bik)[bikbkj ]+ otherwise

(2.5)

where we dropped the superscript since the left and the right mutations lead to a common

rule. See figure 1 for an illustration. This common rule on the adjacency matrix is the

usual starting point for the cluster algebra. Shift of R-charges, µL,Rk (Rij), is somewhat

ambiguous, due to possible mixing with gauge and flavor charges, some aspects of which

will be discussed in section 5.

When we try to apply the above mutation rule to quivers with loops, it is important to

restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles refer to arrows

start and end at the same node, and the 2-cycles refer to two non-canceling arrows with

opposite direction between two nodes. Also, the superpotential is assumed to be generic

but consistent with the gauge symmetry and R-symmetry. The latter implies that W is of

charge 2 with respect to the U(1)R in the convention where R-charges of supercharges are

±1. One underlying assumption in the above is that we pair-annihilated chirals of mutual

charge conjugate by assigning appropriate R-charges to them to allow for a bilinear term

in W , which lifts them pairwise from the low energy dynamics.

Finally, the mutated quiver needs the rank data N̂i = µk(Ni). One natural prescription

is to keep Γ ≡
∑

iNiγi invariant under the mutation, for which we have

µLk (Ni) =

−Nk +
∑

j [bkj ]+Nj i = k

Ni otherwise

(2.6)

and

µRk (Ni) =

−Nk +
∑

j [bjk]+Nj i = k

Ni otherwise

(2.7)
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Note that these two result is the same rule if
∑

j [bjk]+Nj =
∑

j [bkj ]+Nj . For example,

anomaly cancelation condition of 4d N = 1 theories of quiver type demands precisely this

identity for each and every node, and the familiar Seiberg duality map on Ni coincides

with either of µL,Rk .3

There is another natural choice of mutation rule on Ni’s: mutate the total charge

Γ =
∑

iNiγi as if it is one of nodes in the quiver [39], i.e.,

µ̃Lk (Γ) =

 −Γ Γ = nγk, n ∈ Z+

Γ + [〈γk,Γ〉]+γk otherwise

(2.8)

and

µ̃Rk (Γ) =

 −Γ Γ = nγk, n ∈ Z+

Γ + [〈Γ, γk〉]+γk otherwise

(2.9)

where we introduced the notation µ̃ to emphasize that the shifts of Ni’s are different.

Interestingly, their action, when translated to that on Ni, boils down to a common rule,

µ̃L,Rk (Ni) =

−Nk + min
(∑

j [bjk]+Nj ,
∑

j [bkj ]+Nj

)
i = k

Ni otherwise

(2.10)

Otherwise µ̃’s act on γ, b, ζ, in the same way as µ’s. We will later see that this modified

mutation preserves the quiver invariant.

3 ΩQ(ζ) via Localization: summary of HKY

As a preliminary, we will review the HKY index formula for the quiver quantum mechanics.

The equivariant Witten index of interest is

ΩQ(ζ) = lim
β→∞

tr
[
(−1)2J3y2J3+2Ie−βH(ζ)

]
, (3.1)

where we fixed the usual sign ambiguity of the index by choosing (−1)F = (−1)2J3 . When

we do this we should take care to remove the center of mass part of the low energy dynamics,

which is to say, to remove one overall U(1) decoupled from the rest of the dynamics.

For GLSM with compact classical moduli space, the localization procedure produces

relatively compact finite integration over vector multiplet zero modes. Denoting collectively

by u = β(x̄3 + iĀ0) the zero modes of Cartan part of the vector multiplet, the Witten

index for 1d N = 4 GLSM is compactly expressed as a residue integral of the following

expression [30]4

g(u) =
∏
A

g(A)
gauge(u)

∏
I

g
(I)
chiral(u) , (3.2)

3The mutation rule for the ranks can differ for different theories in various dimensions. See refs. [35–38]

for 2d and 3d examples.
4See also refs. [40, 41] for related discussions.
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which comes from one-loop determinant of nonzero modes. For instance, each gauge sector,

labeled by A, contributes

g(A)
gauge(u) =

( 1

2 sinh[z/2]

)rA
·
∏
α∈∆A

sinh[α(u)/2]

sinh[(α(u)− z)/2]

 ,
where rA is the rank of the gauge group, ez/2 = y, and α’s are root vectors. A chiral

multiplet of charge qI , with respect to the Cartan, and R-charge RI gives

g
(I)
chiral(u) = (−1) · sinh[(qI(u) + (RI/2− 1)z + fI · a)/2]

sinh[(qI(u) +RIz/2 + fI · a)/2]
,

where a collectively denotes flavor chemical potentials and fI the charges of the chiral

multiplet under flavor symmetries.

The space spanned by the Cartan zero modes u is product of cylinders (C∗)r where

r =
∑

A rA is the total rank. For quiver theories with the gauge group
∏
A U(dA), we have

r + 1 =
∑

A dA since the overall U(1) is decoupled. This zero mode space is riddled with

singular hypersurfaces defined by poles of g(u), such as α(u) = z and qI(u) +RIz/2 + fI ·
a = 0, and the Witten index is expressed as sum of iterated residues at co-dimension r

singularities. The main technical difficulty is which of such poles contribute and with what

residue. Details of this was derived in HKY, to which readers are forwarded, and here we

will summarize the result. The result is compactly expressed in terms of Jeffrey-Kirwan

residue [45, 47] as

ΩQ =
1

|W |
JK-Resη [g(u)dru] , (3.3)

where W is the Weyl group and η is an arbitrary but generic vector living in the vector

space generated by charges {Q} = {α} ∪ {q}. The above residue is a summation over all

co-dimension r singularities in (C∗)r that can be defined as the intersection of hyperplanes

via a collection of charges {Qi}. A singularity where poles due to r charges {Qip} collide

will contribute a term, computed via the JK-residue formula,

JK-Resη:{Qip}
dru

(Qi1 · u)(Qi2 · u) · · · (Qir · u)
=

1

|DetQ|
, (3.4)

if η is a positive linear span of {Qip}; otherwise, JK residue is declared to be zero. We

implicitly allowed constant shift of the pole location for notational convenience.

A couple of important points need to be clarified before we can make actual use of

this formula. Recall that quiver quantum mechanics, and more generally GLSM quantum

mechanics, undergo wall-crossing under continuous change of FI constants. ΩQ is therefore

a piece-wise constant function of ζ. This aspect is hidden in the fact that, in (C∗)r spanned

by eu’s, there are additional poles located at Re u = ±∞ or x̄3 = ±∞. Subtlety in dealing

with this additional singularity results in the wall-crossing phenomena. Here we will be

content with giving a prescription. The simplest way to achieve this is to assign a charge

Q∞ ≡ −ζ to this asymptotic region5 and reject or accept the pole at such places using the

5HKY introduced Q∞ in a more limited sense when defining an integrand in the intermediate step,

rather than as an effective charge entering the JK test. For this limited use, Q∞ = ζ chosen there works

equally well such that with η = ζ, the asymptotic contribution vanish.
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same JK residue test with Q∞ as one of Qi’s,

{Q′} = {α} ∪ {q} ∪ {Q∞ = −ζ} . (3.5)

We need to remind ourselves that the hyperplane associated with Q∞ is the asymptotic

boundary of (C∗)r. Once this is understood, a natural choice of η emerges; if one takes

η = ζ, where ζ is now embedded into the charge vector space, the JK positivity test always

rejects Q∞ ≡ −ζ, meaning the poles located at the asymptotic region of (C∗)r can be made

to be irrelevant for the Witten index.

However, sometimes this choice is not available because ζ is not generic, i.e., is spanned

by less than r charges. In such cases, we may try to shift η slightly away from ζ but still

the asymptotic poles do not contribute. To see how this can be achieved, consider a small

deformation δ such that η = ζ+δ. We wish to see for what choices of δ the additional charge

Q∞ cannot pass the JK positivity test. Suppose it does for some δ and some collection

{Q∞, Qi2 , . . . , Qir}, i.e.,

ζ + δ = b1Q∞ +

r∑
p=2

biQip

with b1,2,...,r > 0. This implies

ζ +
1

1 + b1
δ =

r∑
p=2

bp
1 + b1

Qip ,

so that a straight line between ζ and η in the charge vector space encounters a wall spanned

by a collection of r−1 charges. A rank r charge vector spaces can be divided into chambers

by walls which are positive spans of r − 1 physical charges, which is not to be confused

with the physically distinct chambers in the wall-crossing sense defined on the FI constant

space. We conclude that as long as η lives in the same chamber as ζ in the charge vector

space, the asymptotic pole never enters the JK residue formula. We will be making such

choices in all of following computations, and deal only with the hyperplanes associated

with the physical charges {Q} = {α} ∪ {q}.
This naive procedure encounters much difficulties when, at a contributing pole, more

than r such hyperplanes meet. For these so-called degenerate cases, the residue computa-

tion depends on the order of integration and the contribution from such a point consists

of several such iterated residues. This reflects the fact that the middle homology of the

Cartan zero mode space at such a singularity is no longer generated by a single cycle and

the integral required is a sum of integrals over several such. A couple of constructive pro-

cedures are available to deal with such cases, details of which will not be discussed here,

as they are available elsewhere [46, 47]. In this note we follow a constructive procedure of

ref. [47], as described by Benini et al. [48].

Finally, we wish to point out that this derivation is performed with finite β rather

than by taking β → ∞ limit, and can thus potentially fail to capture the true index.

This is remedied by taking large ζ limit while maintaining the chamber [30], which suffices

for theories with compact classical moduli space or otherwise by adding enough chemical

potential to lift flat directions. There are examples of GLSM for which these remedies are

not enough to lift asymptotic flat directions, but this goes beyond the scope of this note.
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4 Wall-crossing and quiver invariants

Wall-crossing, which is unique to 1d theories, is a discontinuity of supersymmetric spectra

in the ζ space. The co-dimension-one “walls” in the ζ space are defined as
∑

i niζi = 0,

where we also have
∑

i(Ni − ni)ζi = 0. At such places, the phases of central charges of

Γ1 =
∑

i niγi and Γ2 =
∑

i(Ni − ni)γi coincide precisely, and if both Γ1,2 exist as BPS

states, wall-crossing occurs such that degeneracy of Γ = Γ1+Γ2 can change suddenly across

the wall or at the wall. At the level of equivariant index, this can be phrased as piece-wise

constant behavior of ΩQ(ζ) in the space of ζ.

One intuitive way to understand this discontinuity is to consider the so-called

“Coulomb” description of the quiver theory, where only the Cartan part of U(Ni)’s are

kept and all other degrees of freedom are integrated out. Naively, this picture is valid when

all ζ’s are small relative to the scale of 1d gauge couplings. One ends up with a collection

of
∑
Ni charged particles in R3 space where the vector multiplet scalars live in, and the

ground states look like multi-center bound states where individual centers of charge γi’s

are balanced against one another by combination of attractive Coulomb-like potential and

repulsive “angular momentum” barrier.

The mutual distances of these constituent particles are set by inverses of ζi’s, and the

wall-crossing discontinuity happens as one or more charged particles, say of total charge∑
i niγi, move off to infinity of R3, relative to the others when

∑
i niζi vanishes. The

discontinuity of index occurs because such a state fails square-normalizability. Very general

state counting in this picture has been carried out in recent years, which we will denote

collectively as

ΩCoulomb
Q (ζ) = Tr (−1)2J3y2I+2J3e−βH

Coulomb
Q (ζ) (4.1)

and which has been compared successfully, for quivers without oriented loops and thus

without superpotential, against various mathematical results such as Reineke’s results [27]

and results deduced from Kontsevich-Soibelman [11] wall-crossing algebra.

However, it turns out that this “Coulomb” picture can miss a huge set of ground

states when the quiver admits superpotentials. These additional ground states remain

centered and compact near the origin even while
∑

i niζi → 0, and thus easily survive

wall-crossing catastrophe. The quiver invariant can be defined as those states that survive

at all the “walls,” and they continue to exist as square-normalizable wavefunctions at the

intersection of all marginal stability wall. In 1d GLSM, the latter corresponds to the origin

of FI constant space, ζi = 0 for all i. Counting the index at such a place, one is naturally

lead to the definition of the quiver invariant

ΩQ

∣∣∣∣
Inv

= lim
β→∞

TrL2 (−1)2J3y2I+2J3e−βHQ(ζ=0) . (4.2)

Although we will be mostly concerned with quiver theories in this note, it is clear that the

same definition can be extended to other 1d GLSM theories, defining GLSM invariants in a

similar manner. Note that we took care to impose L2 condition on wavefunctions, as ζ = 0

generically results in asymptotic runaway directions along the vector multiplet scalars.
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Otherwise, the quantity would be either ill-defined or could give misleading answers. This

also tells us direct evaluation will be pretty difficult.

For Abelian cyclic quivers, this split between Coulombic multi-center states and the

wall-crossing-safe quiver invariants is clean and has been understood rigorously. For ex-

ample, let us take triangle quiver with (b23, b31, b12) = (4, 5, 6). The quiver admits three

different chambers, where the Hodge diamonds turn out to be

1

0 0

0 2 0

0 0 0 0

0 0 3 0 0

0 0 26 26 0 0

0 0 3 0 0

0 0 0 0

0 2 0

0 0

1

,

1

0 0

0 2 0

0 26 26 0

0 2 0

0 0

1

,

1

26 26 .

1

For this simple class, the relevant geometry is entirely toric or a complete intersection

therein, so the cohomology is easy to compute.

One important observation, emerged from study of these cyclic Abelian quivers [25,

26, 28], is that states counted by Ω|Inv are always SU(2)R singlet but can be charged under

U(1)R, while those counted by ΩCoulomb are neutral under U(1)R and typically in SU(2)R
multiplet: the Coulombic states naturally carry angular momentum in 4d sense, since they

are always multi-center states, which translates to SU(2)R charge from the quiver quantum

mechanics viewpoint. The fact that they are U(1)R singlet, a phenomenological observation

without a known exception, is related to the so-called “No Exotics Conjecture” [14] that

says that no BPS state multiplet of 4d N = 2 field theory carries U(1)R charge. On the

other hand, Ω|Inv are undetectable by the Coulombic degrees of freedom only, meaning

their wavefunctions are constructed out of the chiral fields and thus effectively spin-less.

Such absence of angular momentum for Ω|Inv states is a generalization of the well-known

observation by Ashoke Sen [42, 43] that 1/4-BPS and 1/8-BPS black holes of the single-

center type are angular momentum singlets.

In the low energy nonlinear sigma model limit, 2J3 of SU(2)R and 2I of U(1)R label

the vertical and the horizontal directions of the Hodge diamond. For the above example,

26 + 26 states in the horizontal middle belong to Ω|Inv. It turns out that these features of

Coulombic states and wall-crossing-safe states being, respectively, vertical and horizontal

middle cohomology elements are completely general.

Any wavefunction of multi-center nature will loose its square-normalizability upon

ζ = 0, among which are states counted by ΩCoulomb
Q (ζ). However, for more general quivers,

there are also hybrid type of multi-center states where, among the constituents “particles,”

one finds quiver invariants of subquivers. Therefore, if one is to study supersymmetric

ground states in such multi-center viewpoint, one must count many different kinds of multi-
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center bound states with both elementary constituents and those from quiver invariants of

subquivers.

This physically compelling idea has been consolidated into a partition sum identity as

follows [28, 29],6

ΩQ(ζ) ∼
∑

Q=⊕pQp

ΩCoulomb
Q/{Qp} ({ζp})×

(∏
p

ΩQp

∣∣∣∣
Inv

)
. (4.3)

The right hand side requires further explanation.7 The sum is over all possible partition

of the quiver, which is to say all possible partitions of the ranks, Ni =
∑

pN
(p)
i , with

nonnegative integers N
(p)
i ’s. Each such partition defines a set of subquivers Qp with ranks

N
(p)
i . The adjacency matrix b and FI constants ζ’s of Qp are the same as those of Q. The

quiver denoted as Q/{Qp} is an induced quiver where each of subquivers Qp is treated

as if it is a single node of charge Γp =
∑

iN
(p)
i γi. The induced adjacency matrix and

the induced FI constants of Q/{Qp} are determined naturally, e.g., bpq = 〈Γp,Γq〉 and

ζp =
∑

iN
(p)
i ζi etc.

The simplest nontrivial example is again the Abelian cyclic quivers, which motivated

the above partition sum to begin with. In the latter class, the summation consists of only

two terms,

ΩQ(ζ) = 1× ΩQ

∣∣∣∣
Inv

+ ΩCoulomb
Q ({ζi})×

(∏
i

1

)
. (4.4)

The first term corresponds to Q = Q1, i.e. N
(1)
i = Ni = 1, such that Q/{Qp} is the trivial

single node Abelian quiver. The second corresponds to Q = ⊕pQp with N
(p)
i = δpi , so

that Q/{Qp} is Q itself. Finally “1” factors are associated with the elementary and free

U(1) quiver, which signals the underlying object, 4d quantum state in half-hypermultiplet

or the rigidly wrapped D-brane. All other subquivers are tree-like with vanishing Ω|Inv

and are thus absent in the sum. In this class of quivers, states counted by the first spans

horizontal middle of the Hodge-decomposed cohomology which remains robust under any

of the wall-crossing, while the second spans the vertical middle and changes chamber by

chamber. Abelian cyclic quivers are a little special, as states counted by ΩCoulomb
Q can be

given special geometric meaning [26], via Lefschetz hyperplane theorem, but generalization

of this to general quiver is not known.

This partition sum actually goes further than a mere reproduction of true index via

multi-center viewpoint. Eq. (4.3), whose idea should extend to the supersymmetric Hilbert

space itself, means that one can reconstruct the entire Hodge diamonds, or the entire super-

symmetric spectra for any given quiver Q. For general quivers, especially those involving

6Because this formula originates from a form of Abelianization routine which is natural in Coulombic

construction of vacuum states, the precise formula involves various combinatoric factors due to Weyl pro-

jections and needs to be phrased via the rational version of the index, Ω̄; here, we refer readers to existing

literatures [16–18].
7In refs. [28, 29], the counterpart of Ω|Inv is denoted as ΩS , where S stands for single-center states.

Furthermore, the authors proposed this expansion formulae for Poincaré polynomials rather than for indices,

so that ΩS of theirs is actually an integer rather than Laurent polynomials of y. However, the same

expansion formula should work for indices provided that pure Coulombic wavefunctions have vanishing

R-charges and that all states counted by the quiver invariants are SU(2)R singlets.
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Ni > 1 for some i, the cohomology computation is mathematically very challenging. The

possibility of a computationally straightforward determination of cohomologies of entire

class of quiver varieties is quite remarkable, to say the least.

To illustrate this, take a non-Abelian triangle quiver of ranks (1, 1, 3) and the adjacency

matrix with (b23, b31, b12) = (3, 5, 10). Let us denote their indices as Ω1,1,3
3,5,10. The relevant

quiver invariants are Ω1,1,N
3,5,10|Inv for N = 1, 2, 3, as no other subquiver can have a quiver

invariant. It turns out that

Ω1,1,1
3,5,10

∣∣∣∣
Inv

= 0 ,

Ω1,1,2
3,5,10

∣∣∣∣
Inv

= 6/y + 6y ,

Ω1,1,3
3,5,10

∣∣∣∣
Inv

= 0 . (4.5)

Thus, there are only two nontrivial terms in the partition sum;

Ω1,1,3
3,5,10 =

(
Ω1,1

2

)Coulomb
× Ω1,1,2

3,5,10

∣∣∣∣
Inv

×1 +
(

Ω1,1,3
3,5,10

)Coulomb
× 15 . (4.6)

One is the maximal partition, for which Q/{Qp} = Q itself. The other is (1, 1, 3) =

(1, 1, 2) ⊕ (0, 0, 1) for which Q/{Qp} is a two-node Abelian quiver with the intersection

number 〈γ3, γ1 + γ2 + 2γ3〉 = 5− 3 = 2.

For example, in the chamber of the maximal moduli space dimensions, the Witten

index is [30]

Ω1,1,3
3,5,10 = 1/y6 + 2/y4 − 2/y2 − 7− 2y2 + 2y4 + y6 , (4.7)

while the relevant Coulomb indices are(
Ω1,1

2

)Coulomb
= −1/y − y ,(

Ω1,1,3
3,5,10

)Coulomb
= 1/y6 + 2/y4 + 4/y2 + 5 + 4y2 + 2y4 + y6 . (4.8)

From these, we can reconstruct the Hodge diamond

1

0 0

0 2 0

0 0 0 0

0 0 4 0 0

0 0 6 6 0 0

0 0 0 5 0 0 0

0 0 6 6 0 0

0 0 4 0 0

0 0 0 0

0 2 0

0 0

1

(4.9)

of this chamber. Other chambers can be treated similarly.
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Currently, however, we do not know of any direct and practical computational method

for the quiver invariants. In the above example, we actually computed ΩQ’s and ΩCoulomb
Q ’s

first, and then inferred ΩQ|Inv inductively. Note that the Witten index by itself cannot

give us the full cohomology information. Construction of the Hodge diamond comes as a

bonus along the process. Absence of a direct computational tool for ΩQ|Inv, despite its very

elegant and robust nature, is unsatisfactory. One purpose of this note is to consider how

mutation might help us in determining ΩQ’s and ΩQ|Inv by mapping high-rank quivers to

lower-rank ones.

5 Mutation µk on Witten index ΩQ(ζ)

5.1 Mutations and chambers

Mutation is a Seiberg-duality [44] on quiver gauge theories, and expected to preserve

physics. Depending on dimensions, it works slight differently. In 4d, a node has the same

number of fundamental and anti-fundamental fields, due to gauge anomaly cancelation, so

µL = µR. In 2d, the equality between the incoming arrows and the outgoing arrows is

connected to Calabi-Yau condition and no longer necessary for consistency; in principle µL

and µR can induce two different dualities, although Benini et al. [35] argued that, for each

mutation step at node k, one must choose one of µL,Rk for which µk(Nk) is the larger. In

1d, even the choice of mutation node is restricted such that, given a point in ζ space, one

could mutate at most two nodes, one by µL and the other by µR.

This happens, for N = 4 quiver quantum mechanics, because of wall-crossing phenom-

ena. Given ζ’s fixed, the mutation is not allowed for all nodes. Physically clean criteria,

applied to rank-one Seiberg-Witten theories, were given by Alim et al. [22, 23], who argued

that mutation should be thought of as change of basis charges. Here the basis means that

the rest of BPS charges can be built as a sum over the basis with non-negative integer coef-

ficients. What classifies a charge as BPS instead of anti-BPS is an arbitrary convention, so

by rotating the relevant “upper-half-plane” in the central charge plane, one is sometimes

forced to give up a basis element γk, in favor of −γk. This can affect the rest of basis

as well, and µL,Rk we introduced earlier were proposed to be the correct transformation of

basis under such rotation of “upper-half-plane.”

Note that this rotation of upper-half-plane mutates one charge at a time, and the

choice is not random. The basis element to be mutated has to be the closest to the other

lower-half-plane, either along the right-side of the half planes or along the left-side. Thus,

one can anticipate that the left(right) mutation will leave physics invariant only when

acting on very specific charge. In terms of quiver theories, this translates to inequalities

among FI constants; along the real axis of FI constants, we are allowed either to mutate-left

the left-most node or to mutate-right the right-most node. For the case of (1, 1, N) cyclic

triangle quivers, FI constant plane divides into ten subchambers according to which pair

of nodes can be mutated left/right as illustrated in figure 2. Each mutation then map each

of these subchambers into one chambers of the mutated triangle quiver of type (1, 1, N ′)

as shown in figure 3.
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Figure 2. Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These are

further divided into ten sub-chambers by relative ordering of the three FI constants; for example,

(2−, 3−, 1+) means ζ2 < ζ3 < 0 < ζ1. The arrows in the lower-left corner are normal to the

respective constant ζ lines.chambers

Figure 3. Mutating on node 3 of (1, 1, N) quiver brings us back to another (1, 1, N̂) quiver. Because

the mutation flips arrow orientations, the roles of ζ̂1 and ζ̂2 are exchanged relative to those of ζ1,2.

The left mutation, allowed in three sub-chambers of figure 2 with most negative ζ3, maps indices

of chambers II and III, respectively, to those of chambers ÎV and Î. Similarly, the right mutation,

allowed in three sub-chambers of figure 2 with most positive ζ3, maps indices of chambers I and IV,

respectively, to those of chambers ÎII and ÎI.
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One immediate question to be asked here is what happens if µk(Nk) happen to be

negative for some k. The mutation is ill-defined because a negative rank appears in the

node k of Q̂. Does this simply mean that the mutation map become unavailable? Or

could there be still additional information about the original quiver? Let us observe that

the index of the original quiver vanishes whenever γk is the left-most (right-most) and

µLk (Nk) < 0 (µRk (Nk) < 0), which follows from the D-term condition at node k,

XkX
†
k − Y

†
k Yk = ζkINk×Nk , (5.1)

where Xk is a rectangular complex matrix of Nk × (
∑

j [bjk]+Nj) type and collectively

denotes all chiral multiplets associated with incoming arrows. Yk is of type (
∑

j [bkj ]+Nj)×
Nk and represents the collection of all outgoing arrows. When ζk is negative (positive), the

right hand side is of rank Nk with all negative (positive) and equal eigenvalues, and this

D-term equation can be solved only if Y (X) is of rank Nk also. When ζk is the left-most

(right-most) and thus necessarily negative (positive), this condition for non-empty moduli

space translates, upon the respective mutation, to µLk (Nk) ≥ 0 (µRk (Nk) ≥ 0). Therefore we

conclude that whenever a formally valid mutation results in a negative rank of the mutated

node, the original quiver must have been in a physically empty chamber with a vanishing

Witten index. In this sense, it suffices to consider the original quivers and the chambers

thereof such that allowed mutation results in µk(Nk) ≥ 0, to which cases we will restrict

ourselves.

With the index counting enabled by HKY’s general formula, we wish to test this

mutation idea explicitly by applying to a simplest class of triangle quivers. We will perform

numerical test as well as illustrate how HKY formula itself exhibits invariance under such

mutations. The latter may be generalized to a larger class of quivers, establishing the

mutation invariance rigorously at the level of index theorem.

5.2 A numerical check and a subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly check

the validity of the mutation invariance with a particular example of triangle quivers with

ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This will serve to check the

aforementioned assertion, regarding invariance of Witten indices of particular chambers as

well as non-preservation of Witten indices of “wrong” chambers. Indices of the original

quiver were computed in ref. [30],

Ω(I) = 50 ,

Ω(II) = 1/y4 + 2/y2 + 87 + 2y2 + y4 ,

Ω(III) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6 ,

Ω(IV) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6 . (5.2)

Under the left mutation, we find a quiver with ranks (1, 1, 3) and intersection numbers

(−4,−5,−13) with indices,

Ω(̂I) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6 ,
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Figure 4. An explicit example of mutation. Witten indices are computed for all four chambers for

each of the three quivers, showing that mutation selection rule is necessary.

Ω(ÎI) = 35 ,

Ω(ÎII) = 1/y4 + 2/y2 + 37 + 2y2 + y4 ,

Ω(ÎV) = 1/y4 + 2/y2 + 87 + 2y2 + y4 . (5.3)

Note that Ω(II) = Ω(ÎV) and Ω(III) = Ω(̂I), as anticipated. Under the right mutation, we

find a quiver with ranks (1, 1, 2) and intersection numbers (−4,−5,−13) with indices,

Ω(̂I) = 1/y10 + 2/y8 + 4/y6 + 6/y4 + 8/y2

+ 58 + 8y2 + 6y4 + 4y6 + 2y8 + y10 ,

Ω(ÎI) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6,

Ω(ÎII) = 50 ,

Ω(ÎV) = 50 . (5.4)

We find that Ω(I) = Ω(ÎII) and Ω(IV) = Ω(ÎI), again as anticipated.

Perhaps equally noteworthy is the fact that if one starts in disallowed sub-chambers,

where mutation on this node is not justified, Witten indices before and after the mutation do

not match. In fact, even the dimension of the classical moduli spaces can differ before and

after mutation. This example thus demonstrates that the selection rules for the mutable

node and choice of the mutation orientation are very much necessary.

Apart from checking the mutation invariance numerically, this exercise gives a valuable

hint on how to demonstrate mutation invariance between a pair of (1, 1, N) type quivers.

For general quivers, classifying poles according to JK positivity test poses a big combi-

natorial challenge. This is further aggravated by the presence of degenerate poles where

more than r singular hyperplanes collide. When such a degenerate pole passes JK positivity

test, the iterated residue becomes order-dependent and further combinatorial task emerges.

Such technical issues, however, are much ameliorated when one can exclude hyperplanes

associated with vector multiplets from the analysis. This not only reduces poles passing

JK test drastically but also tends to remove a lot of degenerate singularities.

For simple quivers, such as primitive tree-like quivers, there is a reasonable argument

why JK-acceptable singularities involving the vector multiplet poles must have a vanishing

residue [48]. This follows from a counting of the net number of zeros against the net

number of poles. For other quivers, such as our triangles with a loop, this argument does

not extend straightforwardly. For example, the pole due to the chirals between nodes 1 and
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2 can coincide with a vector multiplet pole of node 3, such that the vanishing argument due

to counting of zeros and poles no longer works. Furthermore, singularities of this type tend

to fail the so-called projective property which enables one to derive the residue formulae.

In the end, however, extensive numerical exercises with (1, 1, N) quivers lead us to be-

lieve that the vector multiplet poles need not be considered at all for this class of quivers.8

Most of the singularities involving vector multiplet poles and also passing JK positivity

test, can be seen to have a vanishing residue straight-forwardly. The main issue is how to

deal with those non-projective singularities. We have regulated these by shifting the coordi-

nates to split them artificially to projective ones, evaluate the residues, and “unshift.” The

reduced projective singularities give a vanishing residue, again due to the vector multiplet

poles being canceled by chiral zeros, and we are back to the statement that vector multiplet

poles need not be considered. This simplifies the problem enormously since for each cham-

ber there is exactly one iterated residue integral that contributes to the index. Establishing

duality between a mutation pair of (1, 1, N) quivers amounts to showing these two residues

agree with each other regardless of the intersection numbers (b, c, a) and (−b,−c, a − bc),
which we will show in the next subsection.

5.3 Mutation invariance of Witten index

The prototype of mutation invariance for 1d GLSM can be found in SQCD-like theories

with a single U(Nc) gauge group coupled to Nf and Na number of fundamental and anti-

fundamental chirals, as drawn in the middle of figure 5. The one-loop determinant of this

theory is

g(u, z) =

(
1

2 sinh[z/2]

)Nc∏
i 6=j

sinh[(ui − uj)/2]

sinh[(ui − uj − z)/2]

×
Nc∏
i=1

Nf∏
α=1

− sinh[(ui − aα +Rfz/2− z)/2]

sinh[(ui − aα +Rfz/2)/2]

×
Nc∏
i=1

Na∏
β=1

− sinh[(−ui + bβ +Raz/2− z)/2]

sinh[(−ui + bβ +Raz/2)/2]
, (5.5)

where aα’s and bβ ’s are flavor fugacities. Although R-charges in this simple theory are

ambiguous due to possible mixing with flavor and gauge charges, we keep them explicitly

as we wish to embed the theory to a larger theory later on.

This theory has two chambers distinguished by sign of ζ. The index at ζ > 0 can be

8Irrelevance of vector multiplet poles is hardly a general statement. Counterexamples include non-

primitive Kronecker quivers as well as, more obviously, SU(n) gauged quantum mechanics without matter

multiplets. Note that these examples have flat Coulombic directions, however, so the quantity computed by

HKY is not true L2 index. Nevertheless, these examples shows that the existing prescription rules cannot by

themselves preclude vector multiplet poles. Establishing general criteria on when we are allowed to ignore

vector multiplet poles will go a long way for our understanding of the Witten index of general GLSM.
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Figure 5. Seiberg-like dualities for 1d SQCD. There exist two different duality maps depending

on sign of the FI parameter.

evaluated by sum over all possible configurations of picking up Nc poles in the fundamentals,

JK-resζ>0 g(u, z) =
∑

A∈C(Nf ,Nc)

∏
i∈A
j∈A′

− sinh[(ai − aj − z)/2]

sinh[(ai − aj)/2]

×
∏
i∈A

Na∏
β=1

− sinh[(−ai + bβ + (Rf +Ra)z/2− z)/2]

sinh[(−ai + bβ + (Rf +Ra)z/2)/2]
, (5.6)

where summation is taken over
(Nf
Nc

)
choices of a set A which choose Nc fugacities of

fundamentals. We also denote A′ by its complement. Note that we can rewrite this

expression as ∑
A′∈C(Nf ,Nf−Nc)

∏
i∈A
j∈A′

− sinh[(−aj + ai − z)/2]

sinh[(−aj + ai)/2]

×
∏
j∈A′

Na∏
β=1

− sinh[(aj − bβ − (Ra +Rf )z/2)/2]

sinh[(aj − bβ + (2−Ra −Rf )z/2)/2]

×
∏

α∈A∪A′

Na∏
β=1

− sinh[(−aα + bβ + (Ra +Rf )z/2− z)/2]

sinh[(−aα + bβ + (Ra +Rf )z/2)/2]
, (5.7)

which is nothing but the index of the theory with U(Nf −Nc) gauge group with same num-

ber of (anti-)fundamentals together with NfNa mesons by superpotential W = Tr Φ̄MΦ.

Especially, the theory is mapped to the chamber with ζ ′ < 0 of the dual theory. Note that

the R-charges of the dual quiver is shifted to (R′f , R
′
a, Ra+Rf ) where R′f+R′a = 2−Rf−Ra.

This shows that 1d N = 4 SQCD theories also exhibit Seiberg-like duality which is very

similar to that of 2d, 3d and 4d [35, 36, 44] with the same amount of supersymmetries. Of

course, somewhat special feature of 1d version is that the theory experiences wall-crossing

so that the duality map changes when we go to ζ < 0 chamber of the original theory.

At this chamber, the JK-residue picks all poles from anti-fundamentals, whose index is

similarly mapped to the theory with ζ ′′ > 0 chamber of U(Na−Nc) gauge group. For this

example, this selection merely tells us whether µL or µR is the right mutation to perform.

The two types of dualities described above can be thought of as prototypes of the right

and left mutation of the quiver quantum mechanics respectively. One might expect that

the mutation invariance for general quivers can be straightforwardly proven by gauging

the flavor nodes of 1d SQCD example, but this procedure cannot be easily justified when

degenerate singularities appear. For such a case, the JK-residue description requires partic-

ular order of taking residue integral, which makes it illegal to integrate out Cartans of the
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Figure 6. A diagrammatic proof of mutation invariance under the right mutation µR on node 3 for

(1, 1, N) quivers when ζ3 is right-most. The down arrow corresponds replacing two Abelian nodes

as b and c flavor nodes, with all chemical potentials turned on. Dashed arrows, which are actually

singlets under SU(b)× SU(c), are the original bifundamentals between node 1 and 2, and does not

participate the mutation process. They should be understood as singlet under b and c flavor nodes.

The up arrow is a reverse process of turning off the chemical potentials and gauging the overall U(1)

in each node. The equality between to the two bottom quivers follows from the SQCD mutation.

mutating node prior to that of the flavorized nodes. Despite these subtleties, there exist

some classes of non-Abelian examples that we can prove the mutation equivalence based on

SQCD example. Consider quivers with dimension vector (1, 1, N) and their sub-chambers

where ζ3 is right-most among ζ’s. This corresponds to the three sub-chambers in figure 2,

which belongs to parts of I and IV physical chamber. Figure 6 illustrates roughly how the

proof of mutation invariance goes.

First of all, with respect to the Cartan directions, {e0; e1, · · · , eN}, let us denote the

charges of three bifundamentals as

QX = e0, QYi = ei, QZi = −e0 − ei , (5.8)

and assign the R-charges by (RX , RY , RZ) = (0, 0, 2) respectively, which is consistent with

a cubic superpotential of type XY Z. Recall that, since only R-charge information enters

the Witten index, genericity of the superpotential consistent with U(1)R and the gauge

symmetry is implicitly assumed. Then the one-loop determinant of (1, 1, N) quiver is

given by [30]

g =

(
1

2 sinh[z/2]

)N+1∏
i 6=j

sinh[(ui − uj)/2]

sinh[(ui − uj − z)/2]
×
(
− sinh[(u0 − z)/2]

sinh[u0/2]

)a

×
N∏
i=1

(
− sinh[(ui − z)/2]

sinh[ui/2]

)c N∏
i=1

(
− sinh[(−u0 − ui)/2]

sinh[(−u0 − ui + z)/2]

)b
. (5.9)
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If we put the η parameter as

η = ζ + ε(Ne1 + (N − 1)e2 + · · ·+ 2eN−1 + eN ) , (5.10)

with sufficiently small ε so that ζ and η are in the same chamber in the space of charge

vectors.

The JK-residue formula at each chamber reads as follow. In chamber I, the index gets

contribution from poles of X and Yi’s, where we have

Ω(I) =
1

N !
resu0=0resuN=0 · · · resu1=0 g(u, z) . (5.11)

In chamber II, since η is in a positive cone of X and Zi’s, we have

Ω(II) =
(−1)N

N !
resu0=0resuN=z−u0 · · · resu1=z−u0 g(u, z). (5.12)

On the other hand, at chamber III and IV where Yi’s and Zi’s contribute, the singularity is

degenerate. A single ordered charge set contributes to the integral at each chamber, which

reads, for chamber III,

Ω(III) =
(−1)N+1

N !
resu0=zresuN=z−u0 · · · resu1=z−u0 g(u, z) , (5.13)

and for chamber IV, we have

Ω(IV) =
−1

N !
resu0=zresuN=0 · · · resu1=0 g(u, z) . (5.14)

Note that the order of taking residue is crucial for the latter two cases.

Now, let us define new functions G1(u0) and G2(u0) as follows

G1(u0) :=
1

N !
resuN=0 · · · resu1=0 g(u, z) , (5.15)

and

G2(u0) :=
(−1)N

N !
resuN=z−u0 · · · resu1=z−u0 g(u, z) . (5.16)

Then For chamber I and IV, the index is expressed as

Ω(I) = resu0=0G1(u0) , and Ω(IV) = −resu0=zG1(u0) , (5.17)

while for chamber II and III, we have

Ω(II) = resu0=0G2(u0) , and Ω(III) = −resu0=zG2(u0) . (5.18)

Meanwhile, for the dual quiver with ranks (1, 1, c − N) and intersection numbers

(−b,−c,−bc+ a), we similarly have

gdual =

(
1

2 sinh[z/2]

)c−N+1∏
a 6=b

sinh[(va − vb)/2]

sinh[(va − vb − z)/2]
×
(
− sinh[(−v0 − z)/2]

sinh[−v0/2]

)bc−a

×
c−N∏
a=1

(
− sinh[(−va − z)/2]

sinh[−va/2]

)c c−N∏
a=1

(
− sinh[(v0 + va)/2]

sinh[(v0 + va + z)/2]

)b
, (5.19)
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and the indices for the four chambers can be written as

Ω(̂I) = −resv0=0Ĝ1(v0) , Ω(ÎV) = resv0=−zĜ1(v0)

Ω(ÎI) = −resv0=0Ĝ2(v0) , Ω(ÎII) = resv0=−zĜ2(v0) , (5.20)

where

Ĝ1(v0) =
(−1)c−N

(c−N)!
resvc−N=0 · · · resv1=0 gdual(vi, v0) ,

Ĝ2(v0) =
1

(c−N)!
resvc−N=−v0−z · · · resv1=−v0−z gdual(vi, v0) . (5.21)

In order to prove the equivalence of the indices under the right mutation of the node 3, we

show below that

G1(u0) = Ĝ2(u0 − z) (5.22)

holds, from which it would follow that

Ω(I) = Ω(ÎII) , Ω(IV) = Ω(ÎI) , (5.23)

where R-charges for the dual theory are now assigned as (R
X̂
, R

Ŷ
, R

Ẑ
) = (2, 0, 0).

For this purpose, we introduce auxiliary variables aγ=1,···c to split the order c pole

defined by ui = 0 into sum over residues over various simple poles;

G1(u0) =
1

N !
resuN=0 · · · resu1=0 g(u, z)

=
1

N !
resuN=0 · · · resu1=0 lim

aγ→0
g̃(u, z, aγ)

=
1

N !
lim
aγ→0

∑
τ

resuN=aτ(N)
· · · resu1=aτ(1) g̃(u, z, aγ) , (5.24)

where g̃(u, z, aγ) is defined by

g̃(u, z, aγ) =

(
1

2 sinh[z/2]

)N+1∏
i 6=j

sinh[(ui − uj)/2]

sinh[(ui − uj − z)/2]
×
(
− sinh[(u0 − z)/2]

sinh[u0/2]

)a

×
N∏
i=1

c∏
γ=1

− sinh[(ui − aγ − z)/2]

sinh[(ui − aγ)/2]

N∏
i=1

(
− sinh[(−u0 − ui)/2]

sinh[(−u0 − ui + z)/2]

)b
. (5.25)

In the last line of (5.24), the summation is taken over all different cN choices of τ(i) for

each Cartan ui. The evaluation of the residue integral for G1(u0) becomes,

G1(u0) =
1

N !
lim
aγ→0

∑
τ

resuN=aτ(N)
· · · resu1=aτ(1) g̃(u, z, aγ)

= lim
aγ→0

1

2 sinh[z/2]

∑
C(c,N)

∏
γ∈A
γ′∈A′

− sinh[(aγ − aγ′ − z)/2]

sinh[(aγ − aγ′)/2]

(
− sinh[(u0 − z)/2]

sinh[u0/2]

)a

×
∏
γ∈A

(
− sinh[(−u0 − aγ)/2]

sinh[(−u0 − aγ + z)/2]

)b
, (5.26)
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where C(c,N) denotes all combinations of subset A = {γi| ui = aγi , i = 1, · · ·N such that

aγi 6= aγj for all i 6= j}, and A′ is complement of a set A. Furthermore, using(
− sinh[(u0 − z)/2]

sinh[u0/2]

)a

= lim
aγ→0

(
− sinh[−u0/2]

sinh[(−u0 + z)/2]

)bc−a ∏
γ∈A∪A′

− sinh[(−u0 − aγ + z)/2]

sinh[(−u0 − aγ)/2]

b

, (5.27)

we can alternatively express each term in the sum of (5.26) as∏
γ∈A
γ′∈A′

− sinh[(aγ − aγ′ − z)/2]

sinh[(aγ − aγ′)/2]

×
(
− sinh[−u0/2]

sinh[(−u0 + z)/2]

)bc−a∏
γ∈A′

− sinh[(−u0 − aγ + z)/2]

sinh[(−u0 − aγ)/2]

b

, (5.28)

which is exactly equal to a term in Ĝ2(u0 − z).

Although the limit aγ → 0 is not well-defined for individual terms, it can be shown

that the limit gives finite answer when we sum up all combinations C(c,N). After we add

up all terms in the summation, (5.26) can be written in a following form.

f(Aγ , U0)∏
γ<δ(Aγ −Aδ)

∏
all γ(Aγ − U0)

,

where U0 = eu0/2, Aγ = eaγ/2, and f(Aγ , U0) is an anti-symmetric polynomial in Aγ ’s.

Since every antisymmetric polynomial is divisible by the Vandermonde determinant to a

symmetric polynomial, the first factor in the denominator is always canceled and aγ → 0

limit is well-defined at the generic value of U0. This gives

Ω(I) = Ω(ÎII), for region (2−, 1±, 3+) and (1−, 2−, 3+)

Ω(IV) = Ω(ÎI), for region (1−, 2+, 3+) (5.29)

under µR3 as promised, where each regions of original FI parameters are drawn in figure 2.

The left-mutation µL3 on node 3 when ζ3 is left-most can be checked similarly, resulting

in the identities

Ω(II) = Ω(ÎV), for region (3−, 1+, 2+) and (3−, 2±, 1+)

Ω(III) = Ω(̂I), for region (3−, 1−, 2+) (5.30)

where we remind readers that the mutated quiver under µL3 is not the same as the mutated

quiver under µR3 unless b = c.

Let us briefly comment on what happens for the mutation procedure when we start

with a different R-charge assignment. Suppose we had a triangle quiver with potential W =

(XY Z)2, which requires RX +RY +RZ = 1, as in figure 7. As can be inferred from (5.7),
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Figure 7. Mutation of a quiver with non-generic superpotential.

the dual quiver has new chiral fields X ′, Y ′, Z ′ with R-charges (R′X , R
′
Y , RX + RY ) where

R′X +R′Y = 2−RX −RY , as well as the original chiral X. Because of R-charge mismatch,

X and X ′ cannot form a mass term XX ′. The superpotential of the mutated theory is

generic of type W = X ′Y ′Z ′ + (XX ′)2.9

6 Mutation µ̃k on quiver invariant ΩQ|Inv

We start with the observation that the alternate mutation rules µ̃L,R preserve the quiver

invariant regardless of the choices of the chamber or the node, while, as we saw in previous

section, µL,R preserve Witten index of individual chambers when the node is carefully

chosen. Let us start with the explanation of why µk cannot preserve the quiver invariants.

Recall that the ordinary mutation rule µ preserves the total charge Γ = µk(Γ) and, as

we demonstrated in previous section, also preserves the index when k and L,R is appro-

priately chosen. For preservation of the index

ΩQ(ζ) = Ω
µL,Rk (Q)

(µL,Rk (ζ)) , (6.1)

the allowed choice of the mutation node k and the choice between L and R are severely

restricted by ζ. The choice becomes clearer when in a given chamber we can take a pair,

ζk and ζk′ , large positive and large negative, respectively and relative to other ζl’s: one

must perform either µLk or µRk′ .

Therefore, a chamber of Q is mapped to a chamber of such a mutated quiver µk(Q) but

another chamber of Q is not necessarily mapped to another chamber of the same µk(Q).

Instead, the latter would be generically mapped to a chamber of a differently mutated

quiver µl(Q). Generally, the number of chambers for Q is not necessarily the same as that

of µk(Q) for a given k, so wall-crossing pattern of Q cannot be the same as that of µk(Q)

anyhow. It follows that quiver invariant of Q cannot be generally the same as that of µk(Q),

even though the two share a chamber with the same moduli space topology somewhere in

the respective FI constant space.

9In standard mathematics literature, such possibilities are precluded by assuming absence of 1-cycles

and 2-cycles [49, 50].
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This happens because the quiver invariant is not a property of the quiver moduli spaces

but rather of the quiver itself, or of the gauged quantum mechanics as a whole. On the

other hand, the mutation map originates in mathematics literature as a transformation of

the quiver diagrams themselves, and it would be strange if there is no definite behavior of

the quiver invariants under the mutation maps.

A very strong hint of how quiver invariant should behave under mutation [39] is found

in the partition sum expansion of eq. (4.3). The formula implies that quiver invariants of

all subquivers should behave like an “elementary” node in the induced quiver Q/{Qp} for

any given partition Q = ⊕Qp. So as far as Q/{Qp} goes, the subquiver Qp of total charge

Γp =
∑

iN
(p)
i γi must behave as if it is an elementary node. Therefore, if this expansion

makes sense, Γp must be mapped exactly as if Γp belongs to a single node of quiver. This

is precisely the mutation maps µ̃ introduced earlier. Since any quiver can be a subquiver

of infinite number of larger quivers, this means that the mutation preserving the quiver

invariant has to be the modified one µ̃

ΩQ

∣∣∣∣
Inv

= Ωµ̃k(Q)

∣∣∣∣
Inv

, (6.2)

which brings us to the assertion at the head of this section.

Recall that the action of µ̃ is the same as µ except for the action on the ranks Ni, as

in eq. (2.10). A bonus is that since the quiver invariant is a chamber-independent concept,

we need not be careful about ζ’s, and the restriction on the choice of k does not exist.

Therefore, the above holds for any choice of k,

ΩQ

∣∣∣∣
Inv

= Ωµ̃k(Q)

∣∣∣∣
Inv

, for all k (6.3)

and, for a given quiver with K nodes, one finds as many as K mutated quivers, upon

a single mutation step, that shares the same quiver invariant. This is in fact much more

powerful and useful statement than the invariance of Witten index under ordinary mutation

µ. The latter is mired by the rather complicated choice of the node to be mutated, while

the invariance of the quiver invariants under µ̃ is completely independent of FI constants.

For example, let ΩN,m,n
a,b,c (ζ)’s be the indices for a cyclic triangle quiver of ranks N,m, n

with the opposing intersection numbers a, b, c. Using µ̃ mutation on the first node, we

obtain

Ω1,1,1
a,b,c

∣∣∣∣
Inv

= Ω
min[b,c]−1,1,1
a−bc,−b,−c

∣∣∣∣
Inv

.

For a non-Abelian cyclic triangle, the same procedure gives us

ΩN,m,n
a,b,c

∣∣∣∣
Inv

= Ω
min[bn,cm]−N,m,n
a−bc,−b,−c

∣∣∣∣
Inv

.

Negative intersection number means flipping of arrows relative to the original quiver, but

the overall direction does not matter so we will sometimes flip the intersection numbers

altogether.
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Appendix will discuss the validity of this claim for a series of (N, 1, 1) quivers which

are obtained via µ̃ mutation from Abelian triangle quivers. Here we simply list the explicit

forms of the relevant quiver invariants:

Ωk−1,1,1
k2−2,k,k

∣∣∣∣
Inv

= Ω1,1,1
2,k,k

∣∣∣∣
Inv

= k − 1 , (6.4)

Ωk−1,1,1
k2−3,k,k

∣∣∣∣
Inv

= Ω1,1,2
3,k,2k

∣∣∣∣
Inv

= Ω1,1,1
3,k,k

∣∣∣∣
Inv

=

[
(k − 1)(k − 2)

2

]
× (y + 1/y) , (6.5)

Ωk−1,1,1
k(k+1)−3,k,k+1

∣∣∣∣
Inv

= Ω1,2,1
3,2k+3,k+1

∣∣∣∣
Inv

= Ω1,1,2
3,k,2k−1

∣∣∣∣
Inv

= Ω1,1,1
3,k,k+1

∣∣∣∣
Inv

=
(k − 1)(k + 2)

2
, (6.6)

Ωk,1,1
k2−4,k,k

∣∣∣∣
Inv

= Ω1,3,1
4,3k,k

∣∣∣∣
Inv

= Ω1,1,1
4,k,k

∣∣∣∣
Inv

=
(k − 1)(k − 2)(k − 3)

6

(
y2 + 1 + 1/y2

)
+

(k − 2)(k2 + 1)

2
, (6.7)

Ωk−1,1,1
k2+k−4,k,k+1

∣∣∣∣
Inv

= Ω1,3,1
4,3k+2,k+1

∣∣∣∣
Inv

= Ω1,1,3
4,k,3k−1

∣∣∣∣
Inv

= Ω1,1,1
4,k,k+1

∣∣∣∣
Inv

=
(k − 1)(k − 2)(2k + 3)

6
(y + 1/y) , (6.8)

Ωk−1,1,1
k2+2k−4,k,k+2

∣∣∣∣
Inv

= Ω1,3,1
4,3k+8,k+2

∣∣∣∣
Inv

= Ω1,1,3
4,k,3k−2

∣∣∣∣
Inv

= Ω1,1,1
4,k,k+2

∣∣∣∣
Inv

=
(k − 1)(k2 + 4k + 6)

6
. (6.9)

This generalizes to general quivers as follows. Given a quiver, let us concentrate on a

mutating node, say of rank N , and nodes of rank mi and np, connected to it by, respectively,

ci ingoing or bp outgoing arrows. The index may be denoted as

Ω
N,mi,np,...
aij ;aip;apq ,bp,ci,...

(~ζ) ,

where b’s and c’s denote, respectively, ingoing and outgoing intersection numbers, all taken

to be positive, from the mutating node. The three set of numbers encoded in the three

matrices, aij ; aip; apq, are intersection numbers among the nodes connected to the mutation

node in the initial quiver. With this, the mutation rule for the quiver invariant is

Ω
N,mi,np,...
aij ;aip;apq ,bp,ci,...

∣∣∣∣
Inv

= Ω
min[b·n,c·m]−N,mi,np,...
aij ;aip−bpci;apq ,−bp,−ci,...

∣∣∣∣
Inv

.

As we emphasized already, the quiver invariants are properties of the quivers themselves

and therefore we do not need to be selective in choosing mutation nodes. Generally, given

a quiver with K number of nodes, there are as many as K mutated quivers whose quiver

invariants all agree with the quiver invariant of the original quiver. With such a strong and

universal statement, a very tantalizing question that should be explored further is whether

this notion of quiver invariants and their invariance under µ̃ mutations is hidden in the

existing cluster algebra structure of quivers, or can be embedded into its generalization.
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7 Summary

In this note, we have explored how mutation maps of quiver diagram work to preserve

Witten indices and quiver invariants, relying on prototypical examples of triangle quivers.

For Witten indices of 1d quiver theories, which are chamber-dependent quantities,

mutations are far more restricted than its higher dimensional counterpart. For any given

point in ζ space, only two possible mutations exist, which divides physical chambers further

into sub-chambers. The allowed mutation maps a sub-chamber into a physical chamber

of the mutated quiver, while disallowed mutation actually fails preserve the Witten index.

This identifies a specific chamber of quiver with a specific chamber of the mutated quiver.

We have shown how this equality is realized at the level of Witten index expressed as

residue integrals for simple class of (1, 1, N) triangle quivers.

Quiver invariants, on the other hand, is an intrinsic quantity of the quiver itself rather

than its chambers. As such, the complicated (sub-)chamber-dependence should be unnec-

essary, and we argued that any given node can be mutated to give another quiver of the

same quiver invariant. The mutation rule µ̃ for them differs slightly from those µ’s used

for the Witten indices, in that µ̃ acts differently on the rank vectors than µ. With a single

step of mutation, a quiver with K nodes is mapped to K µ̃-mutated quivers, therefore.

Again we have tested this assertion for the simple classes of triangle quivers, by explicit

computations.
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A Quiver invariants from direct index computations

We list indices in the four chambers of (N, 1, 1) quivers, obtained by µ̃ mutation from

(1, 1, 1) quivers, computed with the help of HKY routine. This class of quivers comes up to

four different chambers in the FI space, and we display index for each chamber. The last

item for each quiver is the quiver invariant, extracted by comparing these indices against

the Coulombic computations of MPS.10

10The Coulombic computation, which we do not explicitly display here, were obtained using the mathe-

matica codes supplied by Manschot et al. together with ref. [28]. We gratefully acknowledge their generosity

for making the code public.
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In the MPS expansion, quiver invariants of all subquivers are left as unknown input

parameters, so that the comparison against HKY computation fixes these quantity. For

the MPS expansion, for which a mathematica package supplied in ref. [28] is used, the

quantity being computed is usually Poincare polynomial rather than the index. However,

the expansion formula itself should be applicable to the index as well, because purely

Coulombic states are neutral under U(1)R while the states counted by quiver invariants

are neutral under SU(2)R. The actual vacua are obtained by simple tensor product of these

two classes of states, and their quantum numbers are already manifest individually.

The following confirms the quiver invariants of all (2, 1, 1) quivers that appear in

eq. (6.5), up to k = 9, and eq. (6.6), up to k = 8, by direct computations. To extract

quiver invariant of given (N, 1, 1) quiver, by comparing HKY index against MPS’s par-

tition sum, one ends up computing quiver invariants of (n, 1, 1) quivers for all n ≤ N

recursively. However, for all of examples below, (1, 1, 1) quivers happen to carry no non-

trivial quiver invariant. For Abelian cyclic quivers, the geometric characterization of the

quiver invariant in refs. [25, 26] is applicable, so that the quiver invariant is null whenever

there is a chamber of null Higgs moduli space. For this reason, we chose not to display the

indices of the Abelian version.

• (2, 1, 1)-Quiver with intersection numbers (2k, k, 3)

Ω2,1,1
6,3,3 =


0

0

0

0

Ω2,1,1
6,3,3

∣∣∣∣
Inv

= 1/y + y

Ω2,1,1
8,4,3 =


−1/y5 − 2/y3 − 1/y − y − 2y3 − y5

2/y + 2y

2/y + 2y

2/y + 2y

Ω2,1,1
8,4,3

∣∣∣∣
Inv

= 3/y + 3y

Ω2,1,1
10,5,3 =


−1/y9 − 2/y7 − 4/y5 − 6/y3 − 2/y − 2y − 6y3 − 4y5 − 2y7 − y9

5/y + 5y

5/y + 5y

5/y + 5y

Ω2,1,1
10,5,3

∣∣∣∣
Inv

= 6/y + 6y

Ω2,1,1
12,6,3 =


−1/y13 − 2/y11 − 4/y9 − 6/y7 − 9/y5 − 11/y3

−3/y − 3y − 11y3 − 9y5 − 6y7 − 4y9 − 2y11 − y13

9/y + 9y

9/y + 9y

9/y + 9y
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Ω2,1,1
12,6,3

∣∣∣∣
Inv

= 10/y + 10y

Ω2,1,1
14,7,3 =



−1/y17 − 2/y15 − 4/y13 − 6/y11 − 9/y9 − 12/y7

−15/y5 − 17/y3 − 4/y − 4y − 17y3 − 15y5

−12y7 − 9y9 − 6y11 − 4y13 − 2y15 − y17

14/y + 14y

14/y + 14y

14/y + 14y

Ω2,1,1
14,7,3

∣∣∣∣
Inv

= 15/y + 15y

Ω2,1,1
16,8,3 =



−1/y21 − 2/y19 − 4/y17 − 6/y15 − 9/y13 − 12/y11 − 16/y9

−19/y7 − 22/y5 − 24/y3 − 5/y − 5y − 24y3 − 22y5 − 19y7

−16y9 − 12y11 − 9y13 − 6y15 − 4y17 − 2y19 − y21

20/y + 20y

20/y + 20y

20/y + 20y

Ω2,1,1
16,8,3

∣∣∣∣
Inv

= 21/y + 21y

Ω2,1,1
18,9,3 =



−1/y25 − 2/y23 − 4/y21 − 6/y19 − 9/y17 − 12/y15

−16/y13 − 20/y11 − 24/y9 − 27/y7 − 30/y5 − 32/y3 − 6/y

−6y − 32y3 − 30y5 − 27y7 − 24y9 − 20y11 − 16y13

−12y15 − 9y17 − 6y19 − 4y21 − 2y23 − y25

27/y + 27y

27/y + 27y

27/y + 27y

Ω2,1,1
18,9,3

∣∣∣∣
Inv

= 28/y + 28y

• (2, 1, 1)-Quiver with intersection numbers (2k + 3, k + 1, 3)

Ω2,1,1
9,4,3 =


1/y6 + 2/y4 + 4/y2 + 10 + 4y2 + 2y4 + y6

1/y2 + 7 + y2

6

6

Ω2,1,1
9,4,3

∣∣∣∣
Inv

= 5

Ω2,1,1
11,5,3 =


1/y10 + 2/y8 + 4/y6 + 6/y4 + 8/y2 + 18 + 8y2 + 6y4 + 4y6 + 2y8 + y10

1/y2 + 11 + y2

10

10

Ω2,1,1
11,5,3

∣∣∣∣
Inv

= 9
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Ω2,1,1
13,6,3 =


1/y14 + 2/y12 + 4/y10 + 6/y8 + 9/y6 + 11/y4 + 13/y2

+28 + 13y2 + 11y4 + 9y6 + 6y8 + 4y10 + 2y12 + y14

1/y2 + 16 + y2

15

15

Ω2,1,1
13,6,3

∣∣∣∣
Inv

= 14

Ω2,1,1
15,7,3 =



1/y18 + 2/y16 + 4/y14 + 6/y12 + 9/y10 + 12/y8

+15/y6 + 17/y4 + 19/y2 + 40 + 19y2 + 17y4 + 15y6

+12y8 + 9y10 + 6y12 + 4y14 + 2y16 + y18

1/y2 + 22 + y2

21

21

Ω2,1,1
15,7,3

∣∣∣∣
Inv

= 20

Ω2,1,1
17,8,3 =



1/y22 + 2/y20 + 4/y18 + 6/y16 + 9/y14 + 12/y12 + 16/y10 + 19/y8

+22/y6 + 24/y4 + 26/y2 + 54 + 26y2 + 24y4 + 22y6

+19y8 + 16y10 + 12y12 + 9y14 + 6y16 + 4y18 + 2y20 + y22

1/y2 + 29 + y2

28

28

Ω2,1,1
17,8,3

∣∣∣∣
Inv

= 27

Ω2,1,1
19,9,3 =



1/y26 + 2/y24 + 4/y22 + 6/y20 + 9/y18 + 12/y16 + 16/y14

+20/y12 + 24/y10 + 27/y8 + 30/y6 + 32/y4 + 34/y2

+70 + 34y2 + 32y4 + 30y6 + 27y8 + 24y10 + 20y12

+16y14 + 12y16 + 9y18 + 6y20 + 4y22 + 2y24 + y26

1/y2 + 37 + y2

36

36

Ω2,1,1
19,9,3

∣∣∣∣
Inv

= 35

• (2, 1, 1)-Quiver with intersection numbers (2k − 1, k, 3)

Ω2,1,1
5,3,3 =


6

6

1/y2 + 7 + y2

1/y2 + 7 + y2

Ω2,1,1
5,3,3

∣∣∣∣
Inv

= 5
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Ω2,1,1
7,4,3 =


1/y4 + 2/y2 + 13 + 2y2 + y4

10

1/y2 + 11 + y2

1/y2 + 11 + y2

Ω2,1,1
7,4,3

∣∣∣∣
Inv

= 9

Ω2,1,1
9,5,3 =


1/y8 + 2/y6 + 4/y4 + 6/y2 + 22 + 6y2 + 4y4 + 2y6 + y8

15

1/y2 + 16 + y2

1/y2 + 16 + y2

Ω2,1,1
9,5,3

∣∣∣∣
Inv

= 14

Ω2,1,1
11,6,3 =


1/y12 + 2/y10 + 4/y8 + 6/y6 + 9/y4 + 11/y2

+33 + 11y2 + 9y4 + 6y6 + 4y8 + 2y10 + y12

21

1/y2 + 22 + y2

1/y2 + 22 + y2

Ω2,1,1
11,6,3

∣∣∣∣
Inv

= 20

Ω2,1,1
13,7,3 =


1/y16 + 2/y14 + 4/y12 + 6/y10 + 9/y8 + 12/y6 + 15/y4 + 17/y2

+46 + 17y2 + 15y4 + 12y6 + 9y8 + 6y10 + 4y12 + 2y14 + y16

28

1/y2 + 29 + y2

1/y2 + 29 + y2

Ω2,1,1
13,7,3

∣∣∣∣
Inv

= 27

Ω2,1,1
15,8,3 =



1/y20 + 2/y18 + 4/y16 + 6/y14 + 9/y12 + 12/y10 + 16/y8

+19/y6 + 22/y4 + 24/y2 + 61 + 24y2 + 22y4 + 19y6

+16y8 + 12y10 + 9y12 + 6y14 + 4y16 + 2y18 + y20

36

1/y2 + 37 + y2

1/y2 + 37 + y2

Ω2,1,1
15,8,3

∣∣∣∣
Inv

= 35

In all examples above, the computed quiver invariants agree with predictions from the

mutations µ̃, displayed in section 6.

We have also confirmed the quiver invariants in all (3, 1, 1) quivers that appear in

eqs. (6.7)–(6.9) up to k = 9, via direct computations along the same line as the (2, 1, 1)

cases above.
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