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Abstract 

Advances in Radiation Heat Transfer and Applied Optics, Including Application 

of Machine Learning 

Mehran Yarahmadi 

Artificial neural networks (ANNs) have been widely used in many engineering 

applications. This dissertation applies ANNs in the field of radiation heat transfer 

and applied optics. The topics of interest in this dissertation include both forward 

and inverse problems.  

Forward problems involve applications in which numerical simulation is expensive 

in terms of time consummation and resource utilization. Artificial neural networks 

can be applied in these problems for speeding up the process and reducing the 

required resources. The Monte Carlo ray-trace (MCRT) method is the state-of-the-

art approach for modeling radiation heat transfer. It has the disadvantage of being 

a complex and computationally expensive process. In this dissertation, after first 

identifying the uncertainties associated with the MCRT method, artificial neural 

networks are proposed as an alternative whose computational cost is greatly 

reduced compared to traditional MCRT method. 

Inverse problems are concerned with situations in which the effects of a 

phenomenon are known but the cause is unknown. In such problems, available 

data in conjunction with ANNs provide an effective tool to derive an inverse 

model for recovering the cause of the phenomenon. Two problems are studied in 

this context. The first is concerned with an imager for which the readout power 

distribution is available and the viewed scene is of interest. Absorbed power 

distributions on a microbolometer array making up the imager is produced by 

discretized scenes using a high-fidelity Monte Carlo ray-trace model. The resulting 

readout array/scene pairs are then used to train an inverse ANN. It is demonstrated 



that a properly trained ANN can be utilized to convert the readout power 

distribution into an accurate image of the corresponding discretized scene. The 

recovered scene of the imager is helpful for monitoring the Earth’s radiant energy 

budget.  

In the second problem, the collection of scattered radiation by a sun-photometer, 

or aureolemeter, is simulated using the MCRT method.  The angular distribution 

of this radiation is summarized using the probability density function (PDF) of the 

incident angles on a detector. Atmospheric water cloud droplets are known to play 

an important role in determining the Earth's radiant energy budget and, by 

extension, the evolution of its climate. An extensive dataset is produced using an 

improved atmospheric scattering model. This dataset is then used to train and test 

an inverse ANN capable of recovering water cloud droplets properties from solar 

aureole observations.



General Audience Abstract 

Advances in Radiation Heat Transfer and Applied Optics, Including Application 

of Machine Learning 

Mehran Yarahmadi 

This dissertation is intended to extend the research in the field of theoretical and 

experimental radiation heat transfer and applied optics. It is specifically focused on 

efforts for more precisely implementing the radiation heat transfer, predicting the 

temperature evolution of the Earth’s ocean-atmosphere system and identifying the 

atmospheric properties of the water clouds using the tools of Machine learning and 

artificial neural networks (ANNs).  The results of this dissertation can be applied 

to the conception of advanced radiation and optical modeling tools capable of 

significantly reducing the computer resources required to model global-scale 

atmospheric radiation problems. The materials of this thesis are organized for 

solving the following three problems using ANNs: 

1: Application of artificial neural networks into radiation heat transfer  

The application of artificial neural networks), which is the basis of AI 

methodologies, to a variety of real-world problems is an on-going active research 

area. Artificial intelligence, or machine learning, is a state-of-the-art technology that 

is ripe for applications in the field of remote sensing and applied optics. Here a 

deep-learning algorithm is developed for predicting the radiation heat transfer 

behavior as a function of the input parameters such as surface models and 

temperature of the enclosures of interest. ANN-based algorithms are very fast, so 

developing ANN-based algorithms to replace ray trace calculations, whose 

execution currently dominates the run-time of MCRT algorithms, is useful for 

speeding up the computational process. 
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2. Numerical focusing of a wide-field-angle Earth radiation budget imager using an 

Artificial Neural Network: 

Traditional Earth radiation budget (ERB) instruments consist of downward-

looking telescopes in low earth orbit (LOE) which scan back and forth across the 

orbital path. While proven effective, such systems incur significant weight and 

power penalties and may be susceptible to eventual mechanical failure. This 

dissertation intends to support a novel approach using ANNs in which a wide-

field-angle imager is placed in LOE and the resulting astigmatism is corrected 

algorithmically. The application of this technology is promising to improve the 

performance of freeform optical systems proposed by NASA for Earth radiation 

budget monitoring. 

3: Recovering water cloud droplets properties from solar aureole photometry using 

ANNs: 

Atmospheric aerosols are known to play an important role in determining the 

Earth's radiant energy budget and, by extension, the evolution of its climate. Data 

obtained during aerosol field studies have already been used in the vicarious 

calibration of space-based sensors, and they could also prove useful in refining the 

angular distribution models (ADMs) used to interpret the contribution of reflected 

solar radiation to the planetary energy budget. Atmospheric aerosol loading 

contributes to the variation in radiance with zenith angle in the circumsolar region 

of the sky. Measurements obtained using a sun-photometer have been interpreted 

in terms of the aerosol single-scattering phase function, droplet size distribution, 

and aerosol index of refraction, all of which are of fundamental importance in 

understanding the planetary weather and climate. While aerosol properties may also 

be recovered using lidar, this dissertation proposes to explore a novel approach for 

recovering them via sun-photometry. The atmospheric scattering model developed 

here can be used to produce the extensive dataset required to compose, train, and 



 vi 

test an artificial neural network capable of recovering water cloud droplet 

properties from solar aureole observations.
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Preface 

This dissertation is the enduring record of the author’s contributions to expanding 

the scope and utility of radiation heat transfer pedagogy and practice, with 

particular emphasis on the roles played by Monte Carlo ray-trace (MCRT) method 

and machine learning. The results of this dissertation can be applied to the 

conception of advanced radiation and optical modeling tools to significantly reduce 

the computer resources required to model global-scale atmospheric radiation and 

the instruments intended for its measurement. 

This document includes evaluation of the accuracy of the MCRT method, which 

is required to evaluate the performance of next-generation instruments intended to 

monitor the Earth’s radiant energy budget in support of ongoing climate studies. 

It also contains the extension of the MCRT method to other fields, in particular to 

applied optics, and the marriage of the MCRT and machine learning to accelerate 

the applications involving radiation heat transfer and applied optics.  

The dissertation is organized around a series of peer-reviewed journal articles, 

augmented by unpublished original research, describing groundbreaking 

contributions by the author in the course of his doctoral research. Chapter 1 

introduces and briefly reviews the MCRT method and prepares the ground for 

other chapters in which this method is used to model radiation heat transfer. 

Chapter 2 reviews the two-dimensional MCRT environment and evaluates the 

legitimacy of the methods used for radiation analysis in long enclosures. This 

chapter is important since the two-dimensional MCRT method is frequently used 
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throughout this dissertation. Chapters 3 and 4 evaluate the accuracy of the MCRT 

method and provide formal statistical methodology for reporting the uncertainty 

in a Monte Carlo ray-trace analysis. Chapter 5 is an introduction to artificial neural 

networks (ANNs), a state-of-the-art technology that is ripe for applications in the 

field of remote sensing and applied optics. Chapter 6 documents the development 

of an ANN-based method to replace ray-tracing in order to speed up the 

computational process in a radiation heat transfer analysis. Chapter 7 is the 

extension of the MCRT method and ANNs to the field of applied optics, and 

presents a remarkable application for numerical focusing used in monitoring the 

earth’s radiant energy budget. Finally, Chapter 8 demonstrates a significant example 

of the simultaneous use of MCRT method in a participating medium and ANNs 

in the field of atmospheric science with the target of water cloud properties 

recovery. 

Mehran Yarahmadi 

Blacksburg 

December 2020 
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Introduction 

1.1. Brief review of the Monte Carlo ray-trace (MCRT) method 

Radiation is the dominant mode of heat transfer in many applications of practical 

engineering interest. These include situations, such as instrumentation, cryogenics, 

solar energy utilization, and certain space applications, where other modes of heat 

transfer have been suppressed or eliminated. Radiation is also important in high-

temperature processes, such as those associated with electronics, thermal plasmas, 

combustion, and detonation.  

The Monte Carlo ray-trace method [1-3] has emerged as the dominant tool for 

formulating high-fidelity models (HFMs) of radiation heat transfer processes. This 

is because of its universal applicability to problems involving radiant exchange 

among surfaces and within participating media, the ease with which it conforms to 

complicated irregular geometries, and its ability to treat directional and wavelength-

dependent optical properties. The Monte Carlo ray-trace method is a statistical 

solution technique in which energy bundles are traced as they are emitted, scattered, 

and absorbed within an enclosure. The method produces very accurate solutions 

within limits of statistical accuracy which can be estimated to a stated level of 

confidence. In addition to the applicability of the MCRT method in complex 
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geometries, it is also a very flexible method and benefits from a straightforward 

formulation that enables easier handling of further complexities such as 

directionally absorbing and reflecting surfaces and directional scattering in 

participating media [2, 3]. Furthermore, compared to other methods such as the 

finite-volume method (FVM), the Zonal method, the discrete ordinates method 

(DOM), the discrete transfer method (DTM), and the finite element method 

(FEM), the MCRT method, when properly formulated, avoids the ray effect and 

false scattering [4]. With the emergence of the Monte Carlo ray-trace method as 

the predominate tool in radiation heat transfer analysis, it has become artificial to 

separate the disciplines of radiation heat transfer and applied optics. The method 

is briefly reviewed here. 

In thermodynamics, a system is a region of space or a quantity of matter set aside 

for study. It includes anything whose thermodynamic properties are of interest and 

is embedded in and intersected with its surroundings, or environment. In radiation 

heat transfer, the system of interest is the enclosure which is the central and 

essential concept in all approaches to radiation heat transfer. It is defined as an 

ensemble of surfaces, both real and imaginary, bounding a closed volume such that 

a ray, once having entered the volume, cannot escape. Energy is conserved within 

the enclosure under this definition. In the event that a ray does leave the enclosure 

through an opening, represented by an imaginary surface, the energy it carries is 

deducted from the overall energy balance.  

The Monte Carlo ray-trace (MCRT) method as commonly practiced by the 

radiation heat transfer community begins with the creation of a matrix of radiation 

distribution factors, defined here and elsewhere [2, 3] as 

𝐷𝑖𝑗𝑘 ≡ 𝑄𝑎,𝑖𝑗𝑘 𝑄𝑒,𝑖𝑘⁄ , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝐾. (1 − 1) 

In Eq. (1-1), 𝑛 is the number of surface and volume elements making up the 

enclosure; 𝐾 is the number of wavelength intervals, or bands, occupied by the 
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radiation; 𝑄𝑒,𝑖𝑘 is the power emitted by surface or volume element 𝑖 in band 𝑘; and 

𝑄𝑎,𝑖𝑗𝑘 is the power emitted by surface or volume element 𝑖 that is absorbed by 

surface or volume element 𝑗 in band 𝑘. Equation (1-1) is completely general in that 

it holds whether the radiative interchange is among surface or volume elements or 

a combination of the two, without regard to the directionality or wavelength 

dependence of surface or volume properties. 

It is perhaps worth noting that the distribution factor considered here is distinctly 

different from the geometrical factor—also variously referred to as the angle factor, the 

shape factor, the view factor, and the configuration factor—which dominated radiation heat 

transfer pedagogy and practice in the second half of the 20th C [5-13]. Several such 

factors have been defined and used down through the years to calculate radiant 

exchange, but the distribution factor defined by Eq. (1-1) lies at the heart of the 

MCRT method. The earliest mention of this quantity is attributed to Gebhart, who 

refers to it as the absorption factor in a 1961 article [14]. Gebhart showed that, for the 

special case of a gray diffuse enclosure, the elements of his absorption factor matrix 

could be constructed from surface properties and geometrical factors. In 1968, 

Howell [15] introduced the term exchange fraction for the version of the absorption 

factor evaluated using the Monte Carlo method. Later Mahan and Eskin [16, 17] 

refer to this same quantity as the radiation distribution factor because of its essential 

role in distributing radiation emitted by surface or volume element 𝑖 to surface or 

volume element 𝑗. While this latter term is in common usage, other authorities refer 

to the distribution factor as the exchange factor [18-20], although the exchange factor 

used by Yuen [20] is more directly akin to Gerhart’s absorption factor since it is 

evaluated analytically without recourse to ray-tracing. Finally, Larsen and Howell 

[21] attribute the term exchange factor to a family of auxiliary factors that, when 

used together, describe radiative exchange in the zonal method. It should also be 

noted that Lin and Sparrow [22] use the term exchange factor to describe radiant 
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interchange among a mixture of diffuse and specular surfaces in the net-exchange 

method. 

If the enclosure contains a participating medium and the first 𝑁 out of 𝑛 are surface 

elements and the remaining 𝑛 − 𝑁 are volume elements, then the power absorbed 

by surface or volume element 𝑖 is [3] 

𝑄𝑖,𝑎 = 𝛥𝐴𝑖∑[𝜀𝑖𝑘  ∑  𝑒𝑏(𝛥𝜆𝑘, 𝑇𝑗)𝐷𝑖𝑗𝑘

𝑁

𝑗=1

]

𝐾

𝑘=1

+ 4𝜋∆𝑉𝑖∑[𝜅𝑖𝑘 ∑ 𝑖𝑏(𝛥𝜆𝑘, 𝑇𝑗)𝐷𝑖𝑗𝑘

𝑛

𝑗=𝑁+1

]

𝐾

𝑘=1

,                       (1 − 2) 

and the power emitted by surface or volume element 𝑖 is                                 

𝑄𝑖,𝑒 =

{
 
 

 
 ∆𝐴𝑖∑𝜀𝑖𝑘

𝐾

𝑘=1

𝑒𝑏(𝛥𝜆𝑘, 𝑇𝑖), 1 ≤ 𝑖 ≤ 𝑁

 4𝜋∆𝑉𝑖∑𝜅𝑖𝑘

𝐾

𝑘=1

𝑖𝑏(𝛥𝜆𝑘, 𝑇𝑖), 𝑁 + 1 ≤ 𝑖 ≤ 𝑛,

                       (1 − 3)  

In Eqs. (1-2) and (1-3), 𝛥𝐴𝑖 is the area of surface element 𝑖, ∆𝑉𝑖 is the volume of 

volume element 𝑖, 𝜀𝑖𝑘 is the emissivity of surface element 𝑖 in band 𝛥𝜆𝑘, 𝜅𝑖𝑘 is the 

absorption coefficient of volume element 𝑖 in band 𝛥𝜆𝑘, 𝑒𝑏(𝛥𝜆𝑘 , 𝑇𝑗) is the 

blackbody emissive power in band 𝛥𝜆𝑘 corresponding to temperature 𝑇𝑗 , 

𝑖𝑏(𝛥𝜆𝑘, 𝑇𝑗) is the blackbody intensity in band 𝛥𝜆𝑘 corresponding to temperature 

𝑇𝑗 , and 𝐷𝑖𝑗𝑘 is the band-wise spectral radiation distribution factor in band 𝛥𝜆𝑘. 

The net power emitted from surface or volume element 𝑖 is then 

𝑄𝑖 = 𝑄𝑖,𝑒 – 𝑄𝑖,𝑎.                                                                                                (1 − 4) 
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It is emphasized here that the validity of Eqs. (1-2) and (1-3) is independent of the 

dimensionality of the enclosure; once the distribution factors have been obtained, 

these equations are equally valid for both two- and three-dimensional enclosures. 

Two main approaches are available to generate random numbers. The first method 

measures some physical phenomenon which is expected to be random and then 

compensates for possible biases in the measurement process. Example sources 

include measuring atmospheric noise, thermal noise, and other external 

electromagnetic and quantum phenomena. The second method uses 

computational algorithms that can produce long sequences of apparently random 

results, which are in fact completely determined by an initial value, known as a seed. 

The entire seemingly random sequence can be reproduced if the seed value is 

known. This type of random number generator is often called a pseudorandom 

number generator (PRNG) [23]. MCRT approach is highly dependent on the 

availability of a fast, efficient random number generator. Only pseudo-random 

number generators, which use deterministic formulas to produce a sequence of 

numbers, are used in this dissertation. The details of  a good pseudo-random 

number generator are discussed in detail in Ref [3]. Some authorities prefer quasi-

random number generators (QRNG) which produce a sequence not intended to 

be random but rather intended to be distributed as uniformly as possible. In a 

study, Farmer et al. [24] presented a novel approach based on a low-discrepancy 

sequence (LDS) for a Monte Carlo-based radiation solver. They used Sobols 

sequence, an LDS generated operator, to develop a quasi-Monte Carlo (QMC) 

solver for thermal radiation. In this dissertation when reference is made to a 

random number it is understood to mean a pseudo-random number. 

Two-dimensional enclosures in the context of the MCRT method for radiation 

analysis have been widely studied in the literature. Section 1.2 highlights the 

importance of two-dimensional enclosures in MCRT radiation heat transfer 

analysis. 



 8 

1.2. Two-dimensional enclosures in radiation heat transfer 

The usual starting point in radiation heat transfer analysis is to define an enclosure 

whose walls are typically subdivided into surface elements of size depending on the 

desired spatial resolution. It is sometimes convenient to treat the enclosure as being 

two-dimensional. This occurs when one of the three dimensions is long compared 

to the other two, as in the case of ducts, grooves, channels, and certain industrial 

process lines. 

Because of their relative simplicity, two-dimensional enclosures have been widely 

studied in the radiation heat transfer literature to establish epistemology regarded 

as independent of dimensionality. For example, Chang et al. [25] have investigated 

the effect of radiation on combined heat transfer with convection or conduction 

in a participating medium within a two-dimensional enclosure. Ramankutty et al. 

[26] demonstrate a modified discrete ordinates solution of radiative transfer in two-

dimensional rectangular enclosures. Ismail and Salinas [27] study the application of 

a multidimensional scheme using the discrete ordinate method in a two-

dimensional enclosure with diffusely emitting and reflecting walls. Hayasaka et al. 

[28] consider the radiative heat-ray method in a two-dimensional model. Jinbo et 

al. [29] investigate the radiative heat fluxes and temperatures under the assumption 

of isotropic scattering in a two-dimensional stationary rectangular configuration. 

Two-dimensional systems have also been investigated for numerical studies of 

radiation in water droplet systems [30-35]. 

Many investigators have used two-dimensional enclosures for inverse boundary 

design in radiation heat transfer. Li [36] considers the inverse problem of an 

unknown source term in a two-dimensional rectangular medium with transparent 

boundaries. Sarvari et al. [37, 38] present an inverse analysis for finding the heat 

source distribution in an irregular enclosure to produce both desired temperature 

and heat flux profiles over the design surface of an irregular two-dimensional 

enclosure with participating media. Tito et al. [39] consider inverse radiative 
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transfer problems in two-dimensional rectangular enclosures containing 

heterogeneous isotropic scattering or linear anisotropic scattering in participating 

media. Daun et al. [40, 41], use optimization methods for finding the heater settings 

that provide spatially uniform transient heating within a two-dimensional radiant 

enclosure. The variable metric method is utilized by Kowsary et al. [42] to 

investigate the radiative boundary design problem in a two-dimensional furnace 

filled with an absorbing, emitting and scattering gas. The conjugate gradient 

method has been applied to inverse boundary design problems in an irregular two-

dimensional enclosure with participating media by Pourshaghaghy et al. [43]. 

Mehraban et al. [44] present an inverse radiation design problem for finding the 

transient heater settings that produce transient conditions over products in two-

dimensional radiant furnaces. Salinas [45] presents an optimization analysis for 

temperature field estimation in a two-dimensional gray medium. Bayat et al. [46] 

use the conjugate gradient method to investigate an optimization procedure to 

determine the heater powers of a radiant enclosure to achieve a uniform heat flux 

distribution over a diffuse-spectral temperature-specified design surface in a two-

dimensional radiant furnace. Amiri et al. [47] employ an inverse analysis to estimate 

the required input on the heater surface that produces the desired temperature and 

heat flux distribution over the design surface of a two-dimensional enclosure. 

The inverse boundary design problem for combined radiation and either 

convection or conduction heat transfer in two-dimensional enclosures has also 

been studied. An optimization technique has been applied to the design of two-

dimensional heat transfer systems in which both conduction and radiation are 

important [48]. Kim et al. [49] investigate an inverse problem based on the finite 

volume method for conduction and radiation in a two-dimensional cylindrical 

enclosure. Mossi et al. [50] report an inverse boundary design problem involving 

radiation and convection in a two-dimensional cavity. Moghadassian et al. [51] 

investigate the inverse boundary design problem in combined natural convection 
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and radiation heat transfer with the presence of a participating medium in a two-

dimensional square. 

Numerous two-dimensional studies have been based on the Monte Carlo ray-trace 

method. Oguma and Howell [52] investigate the solution of two-dimensional 

blackbody inverse radiation problems by the reverse Monte Carlo method. Erturk 

[53] considers a two-dimensional inverse design approach using a combination of 

MCRT and regularization methods. Baek et al. [54] consider a combination of the 

Monte-Carlo and finite-volume methods (CMCFVM) for solving radiative heat 

transfer in absorbing, emitting, and isotropically scattering medium with an isolated 

boundary heat source in a two-dimensional irregular geometry. Safavinejad et al. 

[55] use a micro-genetic algorithm to solve the inverse boundary design problem 

in two-dimensional radiant enclosures with absorbing–emitting media,  making use 

of the Monte Carlo method (MCM) to solve the equation of radiative transfer. In 

a second contribution, they use the same method to optimize the number and 

location of the heaters in two-dimensional radiant enclosures composed of 

specular and diffuse surfaces [56]. Mosavati et al. [57] apply the MCRT method in 

a two-dimensional enclosure for calculating distribution factors used in an inverse 

design problem. By employing the reverse Monte Carlo method for computing the 

distribution factors, they also solve the boundary inverse design in a step-like two-

dimensional enclosure with gray walls and a transparent medium with combined 

radiation-free convection [58]. In another study, Mulford et al. [59] apply two-

dimensional Monte Carlo ray-tracing to calculate the apparent absorptivity of a 

diffusely-irradiated V-groove and the apparent absorptivity of a fully illuminated 

cavity subject to collimated irradiation. Yarahmadi et al. [60] use two-dimensional 

radiant enclosures in an inverse boundary design in radiation heat transfer using a 

Fourier cosine series. In a recent contribution, Vick et al. [61] investigate two-

dimensional enclosures for the numerical modeling of combined radiation and 

conduction heat transfer using the discrete Green’s function (DGF) method. 
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In contrast to heat conduction and other boundary value problems, the Monte 

Carlo ray-trace method does not involve solution of differential equations but 

rather is based on the rules of statistics and geometrical optics. The rules governing 

diffuse emission and reflection in a three-dimensional enclosure are well 

established [2, 3]; however, it seems that the rules governing a two-dimensional 

ray-trace, while perhaps intuitively obvious and certainly widely used, have yet to 

be rigorously established in the literature. In Chapter 2 of this dissertation, the 

frequent use of the two-dimensional approximation for elongated enclosures is 

critically examined. 

1.3. Uncertainty analysis in the MCRT method 

A critical portion of any radiation heat transfer analysis involves assessing the 

accuracy of the results obtained. To this end, formal techniques are required for 

determining uncertainty of radiative heat flux and identifying the minimum number 

of rays per surface element required to achieve the desired accuracy [62]. To further 

enhance the value of MCRT method, contributions are required to establish a 

statistically meaningful paradigm for estimating the uncertainty, to a stated level of 

confidence, of predicted heat transfer results. In Chapters 2 and 3, new methods 

are explored for directly and quantitatively analyzing the accuracy of the MCRT 

method for representing radiative transfer. The results presented in these two 

chapters underscore the importance of uncertainty analysis for MCRT method. 

These two chapters are important not only because of their value in assessing the 

uncertainty of a MCRT analysis, but also because they enable a radiation 

experimental design paradigm which is important for minimizing the 

computational cost associated with ray-tracing. 

1.4. An alternative to the MCRT method 

A widely lamented disadvantage of the MCRT method is the excessive 

computational cost associated with achieving high accuracy when fine spatial 
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resolution is required. The fact that rays are mutually independent entities permits 

massive parallelization, with a proportionate reduction in processor time; however, 

associated cost, power, volume, and weight penalties exclude massive 

parallelization in applications where real-time results are required for data 

interpretation and decision-making on board autonomous space probes [63] and 

fire-and-forget weapons [64]. In an MCRT environment, when the number of 

surface elements 𝑛 is large and high accuracy is required, an exceedingly large 

number of rays must be traced. Furthermore, because 𝐷𝑖𝑗 depends on the emissivity 

𝜀𝑖, computational costs can become excessive for optimization processes in which 

𝜀𝑖 is a parameter. This motivates the search for a computationally less intensive 

approach. 

The alternative to a slow or computationally ponderous high-fidelity model (HFM) 

in such applications would be a reduced-order model (ROM) that provides 

comparable accuracy and spatial resolution but in real time and with significantly 

reduced hardware requirements [65]. In Chapter 5, Artificial neural etworks 

(ANNs) are introduced as a potential tool for an alternative approach whose 

computational cost is greatly inferior to that of the traditional MCRT method. 

Chapter 6 explores the idea of using the ANNs as a substitute to ray-tracing in 

radiation heat transfer applications involving diffuse gray enclosures in the absence 

of a participating medium, and Chapter 7 explores another application of ANNs as 

a viable means for creating computationally efficient ROMs of complex optical 

systems from computationally intensive HFMs based on the MCRT method. This 

latter chapter is an example of the intersection between radiation heat transfer and 

applied optics and demonstrates the extendibility of MCRT method to practical 

optical applications. Finally, Chapter 8 explores an example of radiation in a 

participating medium which uses MCRT method and ANNs in the field of 

atmospheric science. This chapter presents a methodology for recovering the 

properties of water clouds. 
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Two-Dimensional 

Monte Carlo Ray-Trace 

Methodology 

In spite of the frequent appearance in the radiation heat transfer literature of articles 

describing Monte Carlo ray-trace (MCRT) applications to two-dimensional 

enclosures, no formal verification may be found of the method commonly used to 

determine the directional distribution of diffuse emission and reflection when 

estimating two-dimensional radiation distribution factors. In this chapter, we 

investigate two candidate methods for determining the direction of diffuse 

emission and reflection for ray-tracing in a two-dimensional MCRT analysis. To 

evaluate the legitimacy of the two methods, the results obtained using the two-

dimensional analysis are compared with those obtained for an equivalent three-

dimensional enclosure in the limit as its long dimension is extended. The contents 

of this chapter are also available online [66]. 
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2.1. Problem description 

Consider the radiation problem, illustrated in Fig. 2.1, involving a two-dimensional 

industrial oven whose work piece produces a step-like geometry. All surfaces are 

considered to be gray and diffuse with an emissivity of 0.8, and the interior medium 

is assumed to be non-participating. This enclosure has been selected because it is a 

benchmark geometry in the literature [40, 42, 43, 47, 56-58, 60, 61]. The problem 

is to first calculate the distribution factor matrix for this enclosure using the two-

dimensional MCRT method, and then compare the results with those describing 

the equivalent elongated three-dimensional enclosure that it is intended to 

represent. The total number of surface elements for this problem is selected to be 

40. Figure 2.2 shows the equivalent three-dimensional enclosure. Note that for 

Work Piece 

 

Work Piece 

W = 1 m 

H
 =

 1
 m

 

0
.5

 m
 

0.5 m 

Figure 2.1. Cross-section of the two-dimensional industrial oven. 
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comparison of the results of two-dimensional and three-dimensional enclosures, 

the surface elements in three-dimensional enclosures are chosen to be long strips, 

as indicated by surface elements 19 and 30 in Fig. 2.2. 

The radiation distribution factors are most easily determined using the Monte Carlo 

ray-trace method, as detailed by Mahan [3]. Briefly, the steps for obtaining these 

factors for a diffuse-gray enclosure are: 

(1) Randomly distributed points from which discrete rays are launched from any 

given surface element are selected based on the values of two random numbers.  

(2) Directions of diffuse emission are determined by drawing two additional 

random numbers from which azimuth and zenith angles are calculated. 

(3) The intersection point of the emitted rays with the enclosure interior surface is 

determined by solving the equations for the surface simultaneously with the three 

equations for the line representing the ray. 

Figure 2.2. Isometric view of the long three-dimensional industrial oven (W = 

H = 1 m). 
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(4) Whether the ray is reflected or absorbed by the surface intersected by the ray is 

determined by drawing a fifth random number and comparing its value to the 

surface absorptivity. If the random number is less than the absorptivity, the ray is 

absorbed and its history is terminated. In this case the count of the number of rays 

absorbed by the intersected surface element is incremented. 

(5) If the ray is reflected, the diffuse direction is determined by returning to Step 2 

and repeating the procedure until the ray is finally absorbed by one of the surfaces 

of the enclosure. The ratio of the number of rays absorbed by surface 𝑗 to those 

emitted from surface 𝑖 is an estimator of the radiation distribution factor 𝐷𝑖𝑗 , 

whose accuracy depends on the number of rays emitted. 

The uncertainty of the results obtained using the MCRT method may result from 

the measuring errors of parameters such as temperature and emissivity. Uncertainty 

inherent to the MCRT environment is treated in detail in Chapters 3 and 4. 

2.2. Finding the minimum length of the three-dimensional industrial 

oven 

A numerical experiment has been carried out using a standard three-dimensional 

Monte Carlo ray-trace for oven lengths starting from 1 m and increasing in steps 

of 1 m. Figure 2.3 is a plot of the fraction, 𝐷𝑖𝑗 , of the energy emitted from two 

surface elements (𝑖 = 19 or 30), indicated as strips in Fig. 2.2, that is absorbed on 

either the front or back surface (𝑗 = front or back) of the three-dimensional 

enclosure. When the length 𝐿 is 100 m, the fraction of energy emitted by elements 

19 and 30 and absorbed by the front or back surfaces is only 0.17 percent and 0.10 

percent, respectively. Therefore, it is reasonable to assume that the three-

dimensional oven with a length of 𝐿 = 100 m can be considered a two-dimensional 

enclosure. 
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2.3. Two-dimensional MCRT method 

The only difference between the two-dimensional MCRT method and the three-

dimensional method is the algorithm for computing the direction of diffuse 

emission and reflection. For three-dimensional analysis, the direction cosines 𝐿, 𝑀, 

and 𝑁 are determined as [3] 

𝐿 = 𝑛𝑥𝑐𝑜𝑠𝜃 + 𝑡1,𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑡2,𝑥𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,                                           (2 − 1) 

Figure 2.3. Distribution factor value from two selected three-dimensional 

elements, (a) 19 and (b) 30, to the back (front) surfaces. 
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𝑀 = 𝑛𝑦𝑐𝑜𝑠𝜃 + 𝑡1,𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑡2,𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,                                         (2 − 2) 

and 

𝑁 = 𝑛𝑧𝑐𝑜𝑠𝜃 + 𝑡1,𝑧𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑡2,𝑧𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,                                          (2 − 3) 

where 𝑛, 𝑡1, and 𝑡2 are the unit normal, first unit tangent, and second unit tangent 

vectors of each surface element of emission or reflection, and 𝜃 and 𝜙 are zenith 

and azimuth angles measured with respect to the unit normal and tangent vectors. 

These two angles are randomly determined by 

𝜃 = sin−1[√𝑅𝜃]       and       𝜙 = 2𝜋𝑅𝜙                                                        (2 − 4) 

where 𝑅𝜃 and 𝑅𝜙 are random numbers uniformly distributed between zero and 

unity. Figure 2.4 illustrates the conventions for an emitted or reflected direction. 

In three-dimensional geometries we have three direction cosines, while in the two-

dimensional analysis we have only two, 𝐿 and 𝑀, with respect to the global 𝑥 and 

𝑦 axes, respectively. Two methods are investigated for finding the direction cosines 

of emission in two-dimensional geometries. 

𝒏 

𝒕𝟏 

𝒕𝟐 

𝜽  

𝝓 

𝑽  

Figure 2.4. Nomenclature for emitted or reflected rays. 
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First method. This method is based on the same logic as for three-dimensional 

analysis, and uses two random numbers. Here, the 𝑧-axis direction cosine, 𝑁, from 

Eq. (2-3) is forced to be zero, and the values obtained from Eqs. (2-1) and (2-2) 

are used for the other two direction cosines. Since the emission or reflection vector 

must be a unit vector, we normalize the values of 𝐿 and 𝑀 from Eqs. (2-1) and (2-

2), obtaining 

𝑽 = [
𝐿

√𝐿2 +𝑀2
,

𝑀

√𝐿2 +𝑀2
].                                                                        (2 − 5) 

Second method. This method uses only one random number. Here, the angle 𝛼 

with the 𝑥-axis is randomly determined as 

𝛼 = 2 sin−1[√𝑅𝛼 ] ,                                                                                         (2 − 6) 

where 𝑅𝛼 is again a random number uniformly distributed between zero and unity. 

Then, for the direction cosines, we have 

𝐿 = 𝑛𝑦𝑐𝑜𝑠𝛼 + 𝑡𝑦𝑠𝑖𝑛𝛼                                                                                     (2 − 7) 

and 

𝑀 = 𝑛𝑥𝑐𝑜𝑠𝛼 + 𝑡𝑥𝑠𝑖𝑛𝛼.                                                                                   (2 − 8) 

2.4. Results and discussion 

Radiation distribution factors are computed using a windows application written 

by the author [67] based on the MCRT method to compute the radiation 

distribution factors among any number of surface elements making up any two-

dimensional diffuse gray enclosure. One very effective technique to present the 

radiation distribution factor values is using histograms. Distribution factor 

histograms are similar to fingerprints, in that they are apparently unique for any 

given enclosure. Figure 2.5 shows the distribution factor values obtained using the 

two two-dimensional methods described above compared with the results for the 
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three-dimensional elongated enclosure discussed in the first paragraph of Section 

2.3. It is clear that both two-dimensional analysis methods provide distribution 

factor matrices that are virtually identical to those obtained using the three-

dimensional MCRT method. The average difference between the two-dimensional 

and three-dimensional analysis is quantified using  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ⟨
|𝐷𝑖𝑗

3𝐷 − 𝐷𝑖𝑗
2𝐷|

1
2 (𝐷𝑖𝑗

3𝐷 + 𝐷𝑖𝑗
2𝐷)

⟩ , 𝑖, 𝑗 = 1, . . , 𝑛                               (2 − 9) 

The results obtained using Method 1 are only 0.99 percent different from those 

obtained using the three-dimensional analysis, while this difference is 1.01 percent 

using Method 2. Method 2 is faster because it only requires a single random number 

to describe the direction of the emission or reflection; however, both methods yield 

approximately the same accuracy. The uncertainties of distribution factor estimates 

are shown to depend on the number of surface elements and the number of rays 

traced per surface element in Chapter 3. The comparisons made here are based on 

the same number of surface elements and rays traced, and thus are subject to the 

same inherent accuracy. 

By example, we showed that either of two methods, designated here as Method 1 

and Method 2, can be reliably used to compute the radiation distribution factors 

for a two-dimensional enclosure. Two-dimensional enclosures are widely used in 

this dissertation as a surrogate for three-dimensional enclosures, and in these cases 

Method 2 is used for determining the direction cosines of diffuse emission or 

reflection in a two-dimensional MCRT environment.   

Figure 2.5. Histogram for radiation distribution factors for (a) the two-

dimensional problem using Method 1, (b) the two-dimensional problem using 

Method 2, (c) the three-dimensional problem with L/H = L/W = 100. N = 1 

M rays per surface element is used for ray-tracing. 
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Uncertainty Analysis in 

the MCRT 

Environment – Part 1 

Despite the dominant role of the Monte Carlo ray-trace method in modern 

radiation heat transfer analysis, the contemporary literature remains surprisingly 

reticent on the uncertainty of results obtained using it. In this chapter, after first 

identifying the radiation distribution factor as a population proportion, standard 

statistical procedures are used to estimate its mean uncertainty, to a stated level of 

confidence, as a function of the number of surface elements making up the 

enclosure and the number of rays traced per surface element. To evaluate the 

statistical methodology used here, this a priori statistical uncertainty is compared 

with the observed variability in the distribution factors obtained in an actual 

MCRT-based analysis. Finally, a formal approach is developed and demonstrated 

for estimating, to a prescribed level of confidence, the uncertainty in predicted heat 
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transfer. This approach provides a basis for determining the minimum number of 

rays per surface element required to obtain a desired accuracy. This chapter is based 

on a peer-reviewed article by the author published in the Journal of Heat Transfer 

entitled “Uncertainty analysis and experimental design in the Monte Carlo ray-trace 

environment” [68]. 

3.1. Radiation distribution factors in the absence of a participating 

medium 

As previously stated in Chapter 1, the radiation distribution factor 𝐷𝑖𝑗 is defined as the 

fraction of the power emitted by surface or volume element 𝑖 that is absorbed by 

surface or volume element 𝑗, due both to direct radiation and to all possible 

reflection and scattering events [2, 3]. Note that this is not the same entity as the 

purely geometrical configuration factor 𝐹𝑖𝑗 , defined as the fraction of diffusely 

distributed power leaving (emitted plus reflected) surface i and arriving at (but not 

necessarily absorbed by) surface j by direct radiation only. The configuration factor 

is central to the net-exchange, or radiosity-irradiance, method, while the distribution 

factor lies at the heart of the Monte Carlo ray-trace (MCRT) method. 

In the MCRT method, the radiation distribution factor 𝐷𝑖𝑗 can be interpreted as 

the probability that a ray emitted by surface or volume element 𝑖 will be absorbed 

by surface or volume element 𝑗. Then in the case of surface-to-surface radiation, 

which is the topic for this chapter, the direction of emission of a ray from surface 

element 𝑖 is determined by treating the directional emissivity as the probability that 

the ray will be emitted in a specified direction, and the directional absorptivity of 

surface element 𝑗 is treated as the probability that a ray incident there from a given 

direction will be absorbed. Furthermore, if the ray is not absorbed, the direction of 

reflection is determined by relating the bidirectional reflectivity to the probability 

that the ray will be reflected in a specified direction. A similar analogy governs 

radiation in the presence of a participating medium. 
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The use of distribution factors in the absence of a participating medium implies 

that the enclosure has been subdivided into a sufficiently large number 𝑛 of surface 

elements to achieve the desired spatial resolution of results obtained. The 

distribution factor matrix for a diffuse gray enclosure, 𝐷𝑖𝑗 ,  is populated by tracing 

a large number of rays as they navigate within an enclosure subject to the rules of 

geometrical optics and probability. Upon completion of the ray-trace, the ratio of 

the number of rays 𝑁𝑖𝑗 emitted from element 𝑖 and absorbed in element 𝑗 to the 

number of rays 𝑁𝑖 emitted from element 𝑖 is taken as the estimate of the 

distribution factor 𝐷𝑖𝑗 . In other words, for the enclosure whose walls are gray and 

diffuse, Eq. (1-1) reduces to 

𝐷𝑖𝑗 ≈
𝑁𝑖𝑗

𝑁𝑖
 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛.                                                (3 − 1) 

The accuracy of the estimate increases with the number 𝑁𝑖 of rays traced. The 

details of the MCRT method are widely available elsewhere [2, 3]. 

For the diffuse gray enclosures considered here, and in the absence of a 

participating medium, if the surface temperature distribution 𝑇𝑗 is specified across 

the surfaces of a diffuse gray enclosure, Eqs. (1-2) through (1-4) reduce to 

𝑞𝑖 = 𝜀𝑖∑𝜎𝑇𝑗
4(𝛿𝑖𝑗 − 𝐷𝑖𝑗)

𝑛

𝑗=1

, 1 ≤ 𝑖 ≤ 𝑛,                                               (3 − 2) 

where 

𝛿𝑖𝑗 ≡ {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 .                                                                                                  (3 − 3) 

In Eq. (3-2), 𝜀𝑖 is the emissivity of surface element 𝑖. Equation (3-2) may be thought 

of as an approximation because Eq. (3-1) produces an estimate of 𝐷𝑖𝑗 , the accuracy 

of which increases with the number of rays traced for a given number of surface 

elements 𝑛. Concerns expressed elsewhere [18] about the perceived need to 
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“smooth” the exchange or distribution factor matrix are unwarranted when its 

elements are estimated using the MCRT method. The use of Eq. (3-1) to compute 

𝐷𝑖𝑗 ensures that both conservation of energy and reciprocity are satisfied to a high 

degree of accuracy. 

In contrast to the net-exchange method, if the surface temperature distribution is 

known, the surface net heat flux distribution can be computed directly from the 

distribution factors. When the surface net heat fluxes 𝑞𝑖 are specified and the 

surface temperatures 𝑇𝑖 are unknown, a rearranged version of Eq. (3-2) is invoked 

[3]. Similarly, a version of Eq. (3-2) is also available for the case where the net heat 

fluxes are specified for some of the surface elements and the temperatures are 

specified for the remaining elements. In this chapter we consider only the case of 

specified surface temperatures. However, we indicate at the appropriate juncture 

in the theoretical development how these alternative situations can be 

accommodated. 

3.2. Importance of establishing the accuracy of the MCRT method 

The uncertainties associated with the heat transfer results obtained using the 

MCRT method depend in some way on the uncertainties in the specified 

temperatures, the surface models for absorptivity, emissivity and reflectivity, and 

the distribution factors. The goal of this chapter is to establish a statistically 

rigorous formalism for quantifying the uncertainty in heat transfer results 

associated with these component uncertainties. 

The seminal contribution dealing with uncertainties in thermal radiative analysis 

was evidently by J. R. Howell in 1973 [69]. Howell solved the same 18-node 

combined conduction-radiation model 50 times, each time using a different set of 

emissivities, thermal conductivities, and geometries perturbed about their nominal 

values. While Howell’s radiant exchange model was based on the net-exchange 

formulation (i.e., using view, or configuration, factors) rather than on the MCRT 
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method, he did use Monte Carlo principles to randomly distribute the dimensions 

and material properties about their mean (nominal) values with a specified standard 

deviation. 

Nearly two decades passed before investigators began turning their attention to 

uncertainty in ray-trace-based methods of thermal radiative modeling. In a 

transitional 1993 paper, Planas Almazan [70] quantified the statistical errors 

inherent to a hybrid net-exchange formulation in which the (purely geometrical) 

configuration factors were estimated using a Monte Carlo ray-trace. Whereas 

Howell considered contributions to overall model uncertainty attributable to 

uncertainty in emissivity, thermal conductivity, and geometry, Planas Almazan 

considered only the contribution to overall model uncertainty due to uncertainty 

in the configuration factors. 

In two closely related papers published in 1993 [71] and 1995 [72], Taylor et al. 

consider the uncertainty propagated in the net-exchange (“radiosity-irradiance”) 

formulation due to uncertainties in the view factors, emissivities, surface areas, and 

boundary conditions. Whereas Howell assesses the a posteriori propagated 

uncertainty of heat transfer results based on repeated solutions of normally 

perturbed versions of the same problem, Taylor et al. derive explicit relationships, 

ultimately based on the formalism of Kline and McClintock [73], for assigning the 

expected uncertainty in heat transfer results based on the known uncertainties in 

the view factors, emissivities, surface areas, and boundary conditions. In contrast 

to Planas Almazan [70], whose estimates of uncertainty for the view factors are 

based on the statistical principles governing Monte Carlo ray-tracing, Taylor et al. 

simply assign uncertainties to the view factors. 

A 1997 paper by Planas Almazan [74] seems to be the first to consider uncertainty 

in the MCRT method as used elsewhere in this dissertation. The main contribution 

of this example-based paper is its early demonstration of the now well-appreciated 

convergence of the distribution factors with the number of rays traced. 
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Several significant contributions to the understanding of uncertainty in the MCRT 

method may be found in a series of papers [75-77] and a textbook chapter [2] 

stemming from M. C. Sanchez’s 2002 doctoral research effort [78]. In a 1999 paper, 

Sanchez et al. [75] introduce the now widely accepted interpretation of the radiation 

distribution factor as a population proportion whose uncertainty 𝜔𝐷, to a stated 

level of confidence, is related to its estimated value 𝐷𝑖𝑗
𝑒  and to the number of rays 

traced per surface element 𝑁𝑖 according to 

𝜔𝐷𝑖𝑗 = ±𝑊𝑐
√
𝐷𝑖𝑗
𝑒 (1 − 𝐷𝑖𝑗

𝑒 )

𝑁𝑖
,                                                                           (3 − 4) 

where 𝑊𝑐 is the critical value of a tabulated statistic whose value depends on the 

level of confidence. For example, for a 95-percent confidence interval, 𝑊𝑐 = 1.960. 

In another paper, Sanchez et al. [78] extend the result given in Eq. (3-4) to allow 

prediction of the mean relative uncertainty, averaged over all of the distribution 

factors, for an enclosure consisting of 𝑛 surfaces, 

⟨⟨
𝜔𝐷𝑖𝑗

𝑒

𝐷𝑖𝑗
𝑒 ⟩

𝑗

⟩

𝑖

≡
𝜔𝐷
𝐷
≈ ±𝑊𝑐√

𝑛 − 1

𝑁
.                                                                 (3 − 5) 

The right-hand element of Eq. (3-5) has been obtained by replacing 𝐷𝑖𝑗
𝑒  in Eq. (3-

4) with its mean value, 〈〈𝐷𝑖𝑗
𝑒 〉〉 = 1/𝑛. The significance of this result is that, to 

within the accuracy of the approximation implied by the right-hand side of Eq. (3-

5), it can be used as a predictor of the global mean relative uncertainty of the 

distribution factors without actually performing a ray-trace. In other words, within 

certain limits established here, it holds for all 𝑛-surface enclosures regardless of 

dimensionality and their actual geometry. A useful table based on this expression 

for the case of a 95-percent confidence interval may be found elsewhere [2, 3, 77]. 
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Finally, in yet another contribution by Sanchez et al. [76] results from four 

numerical experiments are reported, each using a different random number 

sequence, which demonstrate that Eq. (3-5) with 𝑊𝑐 = 1.960 represents an upper 

bound on the mean relative uncertainty of the distribution factors for a specific 

nine-surface diffuse-specular enclosure. Furthermore, the results suggest that the 

actual uncertainties approach the values predicted by Eq. (3-5) as the number of 

rays traced is increased. 

An important goal and major accomplishment of the current effort is 

establishment of the accuracy and limits of applicability of Eq. (3-5) and, ultimately, 

its replacement with a more accurate expression. Two problems representing 

demonstrably different types of enclosure—one with and one without an internal 

obstruction—are solved 50 times each with surface temperatures and emissivities 

randomly (normally) perturbed about mean values. The observed uncertainties in 

distribution factors and net heat fluxes are then compared with values predicted 

from the theory developed here. This approach leads to an improved version of 

Eq. (3-5) and to validation of a new expression for the uncertainty in net heat flux. 

3.3. Uncertainty formulation 

3.3.1. Uncertainty in the distribution factors 

If a population is randomly sampled for proportion and the sample size is 

sufficiently large, the statistical distribution of the sample proportion 𝑝 will be 

normal even though the underlying distribution is binomial [2, 3]. This means that 

hypothesis testing for proportion can be accomplished using essentially the same 

statistical tools as used in the case of the population mean. The only difference is 

that now our estimate of the sample standard deviation is based on the standard 

deviation of a binomial distribution; that is, 

𝑠 =
𝜎

𝑁
,                                                                                                                 (3 − 6) 
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where 𝑠 is the estimate of the sample standard deviation, 𝜎 is the standard deviation 

of a binomial distribution and 𝑁 is the number of observations. The standard 

deviation for a binomial distribution may be approximated by 

𝜎 ≡ √𝑁𝜋(1 − 𝜋) ≈ √𝑁𝑝(1 − 𝑝),                                                               (3 − 7) 

where 𝜋 is the true population proportion and 𝑝 is its estimate. Consequently, 

𝑠 ≈ √
𝑝(1 − 𝑝)

𝑁
.                                                                                                (3 − 8) 

The equivalent of the Student’s 𝑡 statistic in establishing population proportion 

confidence intervals is the 𝑊 statistic, 

𝑊 ≡
𝑝 − 𝜋

√𝑝(1 − 𝑝)/𝑁
,                                                                                        (3 − 9) 

where the probability distribution of 𝑊 is approximately normal. Then, the 

confidence interval for the population proportion 𝜋 is  

𝑝 −𝑊𝑐√
𝑝(1 − 𝑝)

𝑁
≤ 𝜋 ≤ 𝑝 +𝑊𝑐√

𝑝(1 − 𝑝)

𝑁
,                                        (3 − 10) 

where the critical value of 𝑊, 𝑊𝑐, as a function of confidence interval is tabulated 

in standard texts as a function of 𝑁 and the desired confidence interval. 

The true value of the distribution factor 𝐷𝑖𝑗
𝑡  is a population proportion 𝜋 and 𝑝 =

𝐷𝑖𝑗
𝑒  is its estimate [2, 3]. Therefore, we can write 

1 −𝑊𝑐√
1 − 𝐷𝑖𝑗

𝑒

𝑁𝐷𝑖𝑗
𝑒 ≤

𝐷𝑖𝑗
𝑡

𝐷𝑖𝑗
𝑒 ≤ 1 +𝑊𝑐√

1 − 𝐷𝑖𝑗
𝑒

𝑁𝐷𝑖𝑗
𝑒 ,                                           (3 − 11) 
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where the MCRT-based estimate 𝐷𝑖𝑗
𝑒  is obtained by tracing 𝑁 energy bundles. 

From Eq. (3-11), we recognize that the uncertainty in the distribution factors is 

related to their estimated values and to the related confidence interval according to 

𝜔𝐷𝑖𝑗

𝐷𝑖𝑗
= ±𝑊𝑐√

1 − 𝐷𝑖𝑗
𝑒

𝑁𝐷𝑖𝑗
𝑒 .                                                                                 (3 − 12) 

Note that Eq. (3-12) is simply a rearrangement of Eq. (3-4). In a practical ray-trace, 

it is possible that 𝐷𝑖𝑗
𝑒  will be zero to within the accuracy of the processor being 

used, resulting in an indefinite value for its relative uncertainty. This issue arises 

during the solution of Example Problem 2 in Section 3-3, where we avoid using 

values of 𝐷𝑖𝑗
𝑒  less than 5 × 10−5. This issue also appears in Chapter 6, Fig. 6.4, 

where we see that relative errors associated with the prediction of the very small 

values of the radiation distribution factors are relatively high.   

Equation (3-12), which applies for a particular distribution factor between two 

specified surface elements 𝑖 and 𝑗, leads directly to the approximation embodied in 

Eq. (3-5) when the left-hand side is averaged over 𝑖 and 𝑗 and 𝐷𝑖𝑗
𝑒  is replaced with 

the mean value of all distribution factors, 〈〈𝐷𝑖𝑗〉〉 = 1/𝑛. Note that this general 

result is independent of any specific enclosure geometry including its 

dimensionality. The degree of approximation implied by Eq. (3-5) is investigated 

in Section 3-3. 

3.3.2. Uncertainty in heat transfer results 

Consider the case in which surface temperatures are specified with stated 

uncertainties. Then the net surface radiative heat fluxes are 

𝑞𝑖 = 𝑞𝑖,𝑒 − 𝑞𝑖,𝑎 , 1 ≤ 𝑖 ≤ 𝑛,                                                                         (3 − 13) 

where 

𝑞𝑖,𝑒 = 𝜀𝑖𝜎𝑇𝑖
4                                                                                                    (3 − 14) 
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and 

𝑞𝑖,𝑎 = 𝜀𝑖∑𝜎𝑇𝑗
4𝐷𝑖𝑗

𝑛

𝑗=1

.                                                                                     (3 − 15) 

Note that Eqs. (3-13) through (3-15) taken together are equivalent to Eqs. (3-2) 

and (3-3). 

Following the widely accepted formalism of Kline and McClintock [73], 

𝜔𝑞𝑖 = ±√(
𝜕𝑞𝑖
𝜕𝑞𝑖,𝑒

𝜔𝑞𝑖,𝑒)

2

+ (
𝜕𝑞𝑖
𝜕𝑞𝑖,𝑎

𝜔𝑞𝑖,𝑎)

2

,                                             (3 − 16) 

where 

𝜔𝑞𝑖,𝑒 = ±√(
𝜕𝑞𝑖,𝑒
𝜕𝜀𝑖

𝜔𝜀𝑖)
2

+ (
𝜕𝑞𝑖,𝑒
𝜕𝑇𝑖

𝜔𝑇𝑖)
2

                                                   (3 − 17) 

and 

𝜔𝑞𝑖,𝑎 = ±√(
𝜕𝑞𝑖,𝑎
𝜕𝜀𝑖

𝜔𝜀𝑖)
2

+ (
𝜕𝑞𝑖,𝑎
𝜕𝑇𝑗

𝜔𝑇𝑗)

2

+ (
𝜕𝑞𝑖,𝑎
𝜕𝐷𝑖𝑗

𝜔𝐷𝑖𝑗)

2

.                 (3 − 18) 

Introducing the appropriate expressions for the sensitivities, we obtain 

𝜔𝑞𝑖 = ±

{
  
 

  
 
(𝜎𝑇𝑖

4𝜔𝜀𝑖)
2
+ (4𝜀𝑖𝜎𝑇𝑖

3𝜔𝑇𝑖)
2
+ (𝜔𝜀𝑖∑𝜎𝑇𝑗

4𝐷𝑖𝑗

𝑛

𝑗=1

)

2

+(4𝜀𝑖∑𝜎𝑇𝑗
3𝜔𝑇𝑗𝐷𝑖𝑗

𝑛

𝑗=1

)

2

+ (𝜀𝑖∑𝜎𝑇𝑗
4𝜔𝐷𝑖𝑗

𝑛

𝑗=1

)

2

}
  
 

  
 

1
2

, 1 ≤ 𝑖 ≤ 𝑛. 

(3 − 19) 

Note that if the surface net heat fluxes are specified rather than the surface 

temperatures, Eq. (3-19) can be solved directly for the uncertainty in the unknown 
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surface temperatures. In this case appropriate changes would have to be made in 

the following development, but they are straightforward and obvious. Less obvious 

but still possible would be application of this material to the case where 

temperatures are specified for some surface elements and net heat fluxes are 

specified for the remaining surface elements. 

Dividing Eq. (3-19) through by the heat flux emitted by surface element 𝑖 yields 

𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4 = ±

{
  
 

  
 
(
𝜔𝜀𝑖
𝜀𝑖
)
2

+ (4
𝜔𝑇𝑖
𝑇𝑖
 )
2

+ [
𝜔𝜀𝑖
𝜀𝑖
∑(

𝑇𝑗

𝑇𝑖
)
4

𝐷𝑖𝑗

𝑛

𝑗=1

]

2

+[4∑(
𝑇𝑗

𝑇𝑖
)
4𝜔𝑇𝑗
𝑇𝑗
𝐷𝑖𝑗

𝑛

𝑗=1

]

2

+ [∑(
𝑇𝑗

𝑇𝑖
)
4

𝜔𝐷𝑖𝑗

𝑛

𝑗=1

]

2

}
  
 

  
 

1
2

 

 1 ≤ 𝑖 ≤ 𝑛.                                                                                                       (3 − 20) 

Equation (3-20) expresses the uncertainty in the net heat flux from surface element 

𝑖 as a fraction of the known flux emitted by that surface element. Up to this point 

no assumptions have been made that limit the applicability of this result; that is, it 

holds for any 𝑛-surface diffuse gray enclosure regardless of its dimensionality.1 

We now seek an expression for the global mean of the relative net heat flux; that 

is, the mean averaged over all 𝑛 of the surface elements. The first step in this 

direction is to replace the local fractional uncertainties in emissivity, temperature, 

                                                 

1 Strictly speaking, since 𝐷𝑖𝑗  depends on 𝜀𝑖 through the ray-trace, Eq. (3-18) violates the Kline and 

McClintock formalism. This formalism requires that the parameters determining the results must 

be independent of each other. If not true, then an analytical expression for the interdependence 

must be available. However, no such expression exists for 𝐷𝑖𝑗 = 𝑓(𝜀𝑖). Treatment of 𝐷𝑖𝑗  and 𝜀𝑖 as 

independent parameters is then an expediency that limits the validity of Eq. (3-19) in an unknown 

manner. The effects of this limit and the usability of Eq. (3-19 is discussed later in this chapter. 
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and distribution factor in Eq. (3-20) with appropriate global mean values. 

Recognizing that in a typical situation the emissivities and temperatures for all of 

the surfaces will presumably have been evaluated using the same instruments and 

procedures, the global mean values are those associated with the accuracy of these 

measurements; i.e., 

𝜔𝜀𝑖
𝜀𝑖
=
𝜔𝜀
𝜀
,                                                                                                         (3 − 21) 

and 

𝜔𝑇𝑖
𝑇𝑖

=
𝜔𝑇
𝑇
.                                                                                                       (3 − 22) 

The local fractional uncertainty in the distribution factors is replaced with the 

global mean value obtained using Eq. (3-5); i.e., 

𝜔𝐷𝑖𝑗
𝐷𝑖𝑗

=
𝜔𝐷
𝐷
.                                                                                                      (3 − 23) 

Equation (3-20) then becomes 

𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4

= ±√[(
𝜔𝜀
𝜀
)
2

+ (4
𝜔𝑇
𝑇
 )
2

] [1 + (∑(
𝑇𝑗

𝑇𝑖
)
4

𝐷𝑖𝑗

𝑛

𝑗=1

)

2

] + (
𝜔𝐷
𝐷
)
2

[∑(
𝑇𝑗

𝑇𝑖
)
4

𝐷𝑖𝑗

𝑛

𝑗=1

]

2

,

1 ≤ 𝑖 ≤ 𝑛.                                                                                                        (3 − 24) 

Two approximations are now invoked whose impact on accuracy is eventually 

evaluated and justified by numerical experiments carried out in Section 3.3: (1) we 

replace 𝐷𝑖𝑗 with its mean value, 1/𝑛; and (2) we replace  ∑ (
𝑇𝑗

𝑇𝑖
)
4

𝐷𝑖𝑗
𝑛
𝑗=1  with the 
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mean value over 𝑗 of (
𝑇𝑗

𝑇𝑖
)
4

, ⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩
𝑗
. This is justified because ∑ 𝐷𝑖𝑗

𝑛
𝑗=1 = 1/𝑛. 

There results 

𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4 ≈ ±√[(
𝜔𝜀
𝜀
)
2

+ (4
𝜔𝑇
𝑇
 )
2

] [1 + (⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩

𝑗

)

2

] + (
𝜔𝐷
𝐷
)
2

(⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩

𝑗

)

2

 

1 ≤ 𝑖 ≤ 𝑛,                                                                                                        (3 − 25) 

Finally, a further approximation is invoked by replacing 
𝜔𝑞𝑖

𝜀𝑖𝜎𝑇𝑖
4 and ⟨(

𝑇𝑗

𝑇𝑖
)
4

⟩
𝑗
by their 

mean values over 𝑖, thereby obtaining 

⟨
𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4⟩

≈ ±√[(
𝜔𝜀
𝜀
)
2

+ (4
𝜔𝑇
𝑇
 )
2

]

[
 
 
 

1 + (⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ )

2

]
 
 
 

+ (
𝜔𝐷
𝐷
)
2

(⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ )

2

, 

(3 − 26) 

where ⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ is the mean fourth-power temperature spread, 

⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ = ⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩

𝑗

⟩

𝑖

≡
1

𝑛2
∑∑(

𝑇𝑗

𝑇𝑖
)
4𝑛

𝑗=1

𝑛

𝑖=1

.                                           (3 − 27) 

Note that Eq. (3-24) is exact while Eq. (3-26) is an approximation whose accuracy 

remains to be established. We explore the degree of this approximation through 

examples in Section 3.3. The advantage of Eq. (3-26) over Eq. (3-24) is that Eq. (3-

26) allows prediction of the mean relative uncertainty in net heat flux based on the 
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surface temperature distribution, independent of the enclosure geometry and 

without first computing the distribution factors. 

3.4. Validation of the uncertainty formulation 

We validate the foregoing formulation for the relative uncertainties in distribution 

factor and net heat flux through numerical experiments. In both example problems 

one million rays are traced per surface element.  

3.4.1. Example Problem 1 

In Example Problem 1, we consider the net heat flux distribution from each surface 

of a cubic enclosure consisting of three surfaces having a uniform temperature of 

300 K and three surfaces having a uniform temperature of 500 K. Figure 3.1 shows 

the geometry of the problem. The cubic enclosure is subdivided into 384 equal-

area surface elements, and 1 million rays are traced from each surface element. The 

surfaces are considered to be diffuse and gray, with a nominal emissivity of 0.55. 

The contributions to overall uncertainty due to the uncertainties in temperature 

and surface emissivity are sampled by executing the numerical experiment 𝑀 = 50 

times with random perturbations applied to temperature and surface emissivity in 

each case. Two successive normally distributed perturbed values of any quantity 

𝛿 (= 𝜀 or 𝑇 here) are related to the sample mean value 𝑚 and the sample standard 

deviation 𝑠 by [79] 

𝛿 = 𝑚 + 𝑠√2 ln (1/𝑅1) cos(2𝜋𝑅2)                                                         (3 − 28) 

and 

𝛿 = 𝑚 + 𝑠√2 ln (1/𝑅1) sin(2𝜋𝑅2).                                                        (3 − 29) 

In Eqs. (3-28) and (3-29), 𝑅1 and 𝑅2 are two random numbers whose values are 

uniformly distributed between zero and unity. According to the definition of the 𝑡 
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statistic, the sample standard deviation 𝑠 is related to the uncertainty 𝜔 =

 ±|𝑚 − 𝜇| by 

𝑠 =
𝜔

𝑡 √𝑀⁄
,                                                                                                      (3 − 30) 

where 𝜇 is the (unknown) true mean value of 𝛿 and 𝑀 is the number of numerical 

experiments. For the purposes of this study a relative uncertainty 𝜔𝛿 𝛿⁄  of one 

percent is assumed for both emissivity and temperature. Figure 3.2 shows the heat 

flux distribution for the cold and hot surfaces when averaged over 50 experiments 

and, because of symmetry, further averaged over the three surfaces in each case. 

The number of surface elements used, 384, represents a compromise between, on 

the one hand, achieving adequate spatial resolution and, on the other hand, limiting 

the computer resources required to compute the 3842 = 147,456 distribution 

factors. 

Figure 3.1. Exploded view of the cubic enclosure for Example Problem 1. The 

three interior surfaces comprising the upper-right section are maintained at 500 

K (hot surfaces), and the three interior surfaces comprising the lower-left 

section are maintained at 300 K. 
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3.4.1.1. Validation of the distribution factor mean uncertainty relation for Example Problem 1 

Figure 3.3 compares, for each of the 50 experiments, the observed values of the 

mean relative uncertainty, obtained by averaging Eq. (3-12) over 𝑖 and 𝑗 (solid 

symbols), with the value of mean relative uncertainty in the distribution factors 

predicted by Eq. (3-5) (continuous line). When the observed values of the mean 

relative uncertainty are averaged over the 50 experiments and expressed as a 

percentage, a value of 4.48 is obtained, while Eq. (3-5) predicts 3.83 percent for 

this same value. 

An alternative view of uncertainty of the distribution factors is the relative error in 

the distribution factor estimate suggested by Sanchez [78],  

𝑅𝐸𝑖𝑗 ≡
|𝐷𝑖𝑗

𝑒 − 𝐷𝑖𝑗
𝑡 |

𝐷𝑖𝑗
𝑡 .                                                                                        (3 − 31) 

In Eq. (3-31), 𝐷𝑖𝑗
𝑒  is the value of the radiation distribution factor from 𝑖 to 𝑗 as 

estimated using the MCRT method, and 𝐷𝑖𝑗
𝑡  is its unknown true value. This latter 

quantity may be approximated as the mean value of the distribution factors 

obtained from the 𝑀 experiments, assuming 𝑀 is sufficiently large; i.e., 

Figure 3.2. Average net heat flux distribution for the cold and hot surfaces for 

Example Problem 1. 
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𝐷𝑖𝑗
𝑡 ≈

1

𝑀
∑𝐷𝑖𝑗

𝑒

𝑀

𝑝=1

.                                                                                             (3 − 32) 

The mean relative error in the distribution factors for a given experiment may then 

be defined 

〈〈𝑅𝐸〉〉 ≡ ⟨⟨
|𝐷𝑖𝑗

𝑒 − 𝐷𝑖𝑗
𝑡 |

𝐷𝑖𝑗
𝑡 ⟩

𝑗

⟩

𝑖

=
1

𝑛2
∑∑

|𝐷𝑖𝑗
𝑒 − 𝐷𝑖𝑗

𝑡 |

𝐷𝑖𝑗
𝑡

𝑛

𝑗=1

𝑛

𝑖=1

.                            (3 − 33) 

The observed values of the mean relative error, Eq. (3-33), plotted as open symbols 

in Fig. 3.3, are also in good agreement with and are generally bounded by the Eq. 

(3-5) prediction. 

Observed Mean Uncertainty, Eq. (3-12) averaged over 𝑖 and 𝑗 
Eq. (3-41) 

Predicted Mean Uncertainty, Eq. (3-5) 
Observed Relative Error, Eq. (3-33) 

 

Figure 3.3. Comparison for each of the 50 experiments of the observed mean 

uncertainty (filled symbols) and the observed relative error (open symbols) with 

the predicted mean uncertainty in the distribution factors (continuous line) for 

Example Problem 1. 
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Even though agreement among the quantities plotted in Fig. 3.3 is adequate for the 

stated goal of using Eq. (3-5) as an a priori estimate of expected relative uncertainty 

of the distribution factors, it is still appropriate to consider sources for the 

differences in these three quantities. First, note that 𝐷𝑖𝑗
𝑒  appears in the denominator 

of the right-hand side of the expression for 𝜔𝐷𝑖𝑗 𝐷𝑖𝑗⁄ , Eq. (3-12), while 𝐷𝑖𝑗
𝑡  appears 

in denominator of the expression for the relative error, Eq. (3-31). This suggests 

that better agreement between the relative uncertainty and the relative error might 

be obtained by replacing 𝐷𝑖𝑗
𝑡  with 𝐷𝑖𝑗

𝑒  in the denominator of Eq. (3-31). However, 

in practice this replacement is found to have very little effect due to the small 

differences between 𝐷𝑖𝑗
𝑡  and 𝐷𝑖𝑗

𝑒 . Also, note that Eq. (3-5) is obtained by averaging 

the left-hand side of Eq. (3-12) over 𝑖 and 𝑗 while replacing 𝐷𝑖𝑗
𝑒  by its mean value 

1/𝑛 on the right-hand side. This is contrary to the procedure used in deriving Eq. 

(3-33), in which both sides of Eq. (3-31) are formally averaged over 𝑖 and 𝑗. We 

return to this question after consideration of Example Problem 2. 

3.4.1.2. Validation of the net heat flux uncertainty predictor for Example Problem 1 

The standard deviation of the net heat flux from surface 𝑖, 𝑠𝑖, for 𝑀 independent 

experiments is  

𝑠𝑖 = √
1

𝑀 − 1
∑(𝑞𝑖

𝑝 − 𝑞𝑖
𝑚)

2
𝑀

𝑝=1

,                                                                    (3 − 34) 

where 𝑞𝑖
𝑝
 is the net heat flux for a given experiment and 𝑞𝑖

𝑚 is the mean value of 

the 𝑀 net heat fluxes obtained; i.e., 

𝑞𝑖
𝑚 =

1

𝑀
∑𝑞𝑖

𝑝

𝑀

𝑝=1

.                                                                                              (3 − 35) 

Then we can state that the true value of the net heat flux lies in the interval 
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𝑞𝑖
𝑚 − 𝑡𝑐

𝑠𝑖

√𝑀
≤ 𝑞𝑖

𝑡 ≤ 𝑞𝑖
𝑚 + 𝑡𝑐

𝑠𝑖

√𝑀
,                                                             (3 − 36) 

where 𝑡𝑐 is the critical value of student’s 𝑡 statistic as a function of M and the 

confidence interval. Therefore, we obtain for the uncertainty in net heat flux 

𝜔𝑞𝑖 = ±𝑡𝑐 𝑠𝑖 √𝑀⁄ ,                                                                                        (3 − 37) 

and for the mean value of uncertainty of net heat flux we have 

⟨𝜔𝑞𝑖⟩ = 𝑡𝑐⟨𝑠𝑖 √𝑀⁄ ⟩.                                                                                       (3 − 38) 

An expression for the observed mean relative net heat flux can be obtained by 

dividing Eq. (3-37) by 𝜀𝑖𝜎𝑇𝑖
4 before averaging over the 𝑛 surfaces of this enclosure. 

When this is done and the result applied to the case of 𝑀 = 50 experiments, an 

observed mean relative net heat flux uncertainty of 16.95 percent is obtained with 

a confidence interval of 95 percent (𝑡𝑐 = 1.960). Alternatively, an observed mean 

relative uncertainty of 15.7 percent may be obtained for this case by averaging Eq. 

(3-24) over the 𝑛 = 384 surface elements and the 𝑀 = 50 experiments, with Eq. 

(3-5) used to estimate the relative uncertainty of the distribution factors and with 

𝜔𝜀

𝜀
=

𝜔𝑇

𝑇
= 0.01. These two observed values compare favorably with each other 

and with the value, 14.46, predicted using Eq. (3-26) with a mean fourth-power 

temperature spread of 2.4614 and using Eq. (3-5) to estimate the relative mean 

uncertainty in the distribution factors. We conclude that, for Example Problem 1, 

the overall uncertainty in mean relative net heat flux predicted before running the 

ray-trace (14.46 percent) is in acceptable agreement with the observed overall 

uncertainties of 16.95 percent and 15.7 percent obtained after running the ray-trace. 

Equation (3-26) is recommended for affixing error bars to net heat flux results 

computed for individual surface elements. 
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3.4.2. Example Problem 2 

Example Problem 2 considers an evacuated cubic oven, already considered in 

Chapter 2, intended for heating a rectangular solid product positioned on its floor, 

as shown in Fig. 3.4. Example Problem 2 is more stringent than Example Problem 

1 for validating the proposed method for predicting uncertainty in the distribution 

factors and the net heat flux distribution, because radiant exchange between some 

of the surfaces is indirect, i.e., is due to reflection only. This results in greater 

variability in both the distribution factors and net heat fluxes. The Example 

Problem 2 enclosure is subdivided into 416 equal-area surface elements, and 1 

million rays are traced from each surface element. All surfaces are once again 

diffuse and gray with a nominal emissivity of 0.55. As in the case of Example 

Problem 1, 50 numerical experiments were executed with randomly perturbed 

uncertainties in temperature and surface emissivity based on Eqs. (3-28) and (3-

Figure 3.4. Isometric view of oven in Example Problem 2. 
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29). Figure 3.5 shows the heat flux distribution when averaged over 50 

experiments. 

3.4.2.1. Validation of the distribution factor mean uncertainty relation for Example Problem 2 

Figure 3.6 compares, for each of the 50 experiments, the observed values of the 

mean relative uncertainty, obtained by averaging Eq. (3-12) over 𝑖 and 𝑗 (solid 

symbols), the observed values of the mean relative error, Eq. (3-33) (open 

symbols), and the value of mean relative uncertainty in the distribution factors 

predicted by Eq. (3-5) (continuous line). When the observed values of the mean 

relative uncertainty (solid symbols) are averaged over the 50 experiments and 

expressed as a percentage, a value of 5.746 is obtained, while Eq. (3-5) predicts 3.99 

percent for this same value. Comparison of Figs. 3.3 and 3.6 suggests that the mean 

Figure 3.5. Net heat flux distributions for the oven and product surfaces for 

Example Problem 2. 
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distribution factor uncertainty predicted using Eq. (3-5) and the observed average 

of Eq. (3-12) over 𝑖 and 𝑗 agree less well for Example Problem 2 than for Example 

Problem 1. 

3.4.2.2. Validation of the net heat flux uncertainty predictor for Example Problem 2 

As in the case of Example Problem 1, an expression for the observed mean relative 

net heat flux can be obtained by dividing Eq. (3-37) by 𝜀𝑖𝜎𝑇𝑖
4 before averaging 

over the 𝑛 surfaces of the enclosure. When this is done and the result used to 

compute the observed mean relative net heat flux uncertainty, a value of 13.47 

Observed Mean Uncertainty, Eq. (3-12) averaged over 𝑖 and 𝑗 
Eq. (3-41) 

Eq. (3-5) 

Observed Relative Error, Eq. (3-33) 

 

Figure 3.6. Comparison for each of the 50 experiments of the observed mean 

uncertainty (filled symbols) and the observed relative error (open symbols) with 

the predicted mean uncertainty in the distribution factors (continuous line) for 

Example Problem 2. 
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percent is obtained. When this same uncertainty is computed by averaging Eq. (3-

24) over the 𝑛 = 416 surface elements and the 𝑀 = 50 experiments, with Eq. (3-

5) used to estimate the relative uncertainty of the distribution factors, a nearly 

identical value of 13.75 percent is obtained. The observed value of mean 

uncertainty in the relative net heat flux agrees well with the value—12.40 percent—

predicted using Eq. (3-26) with Eq. (3-5) and a mean fourth-power temperature 

spread of 2.0377. Thus, Example Problem 2 reinforces the conclusions that the 

overall uncertainty in mean relative net heat flux predicted by Eq. (3-26) before 

running the ray-trace is in acceptable agreement with the observed overall 

uncertainty obtained after running the ray-trace. Furthermore, Example Problem 

2 confirms the conclusion, based on Example Problem 1, that Eq. (3-26) is 

appropriate for affixing error bars to net heat flux results computed for individual 

surface elements. 

3.4.3. Discussion of the distribution factor mean uncertainty results 

The difference between the observed and predicted values of the mean relative 

uncertainty in the distribution factors can be best understood with reference to the 

histogram of the radiation distribution factors themselves, shown in Fig. 3.7. Even 

though some distribution factors exceed a value of 0.01 in both example problems, 

the horizontal axes in Fig. 3.7 have been truncated at this value to better reveal the 

shape of the histogram, near the mean. It is clear that the distribution factor 

histograms are radically different in the two problems. For example, The 

histogram, corresponding to Example Problem 1, shown in Fig. 3.7(a), exhibits no 

near-zero values while the histogram corresponding to Example Problem 2, shown 

in Fig. 3.7(b), exhibits many. The reason for this, of course, is that in Example 

Problem 1 every surface element has a direct view of every other surface element, 

whereas this is far from true in Example Problem 2, where many surfaces exchange 

heat only by reflection. 
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We note that the histograms for both example problems are biased in favor of 

smaller values of the distribution factors; that is, a disproportionate number of 

distribution factors have values less than the mean value 1/𝑛. The role of 𝑛 in Eq. 

(3-5) is based on the assumption of equal influence on overall uncertainty by 

distribution factors lying above and below the mean. However, this is generally not 

the case for two reasons: (1) the majority of the distribution factors have values less 

than the mean, and (2) Eq. (3-12) clearly shows that the relative uncertainty in the 

value of a particular distribution factor increases as the value itself decreases for a 

given number of rays traced. These two factors lead us to expect that the observed 

mean relative uncertainty of the distribution factors will generally exceed the value 

Figure 3.7. Histograms for radiation distribution factors in (a) Example 

Problem 1 and (b) Example Problem 2. 
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predicted by Eq. (3-5). This expectation is realized in Figs. 3.3 and 3.6, which show 

that Eq. (3-5) (continuous line) indeed underestimates the observed values of the 

mean relative uncertainty (solid symbols). 

In principle the role of Eq. (3-5) as a predictor of the mean relative uncertainty of 

the distribution factors could be improved by replacing the global mean value of 

the distribution factors 〈〈𝐷𝑖𝑗
𝑒 〉〉 = 1/𝑛 with a suitably weighted mean of the 

distribution factors ⟦𝐷𝑖𝑗
𝑒 ⟧ that takes into account both the greater number of 

distribution factors whose values are less than 1/𝑛 and the larger uncertainty 

associated with smaller distribution factors. We can address the imbalance of the 

number of distribution factors lying above and below the mean value by equating 

⟦𝐷𝑖𝑗
𝑒 ⟧ to the value of 𝐷𝑖𝑗

𝑒  for which the cumulative distribution factor (CDF) is equal to 

one-half; i.e., 

𝐶𝐷𝐹(⟦𝐷𝑖𝑗
𝑒 ⟧) ≡ ∫ 𝑃𝐷𝐹(𝐷𝑖𝑗

𝑒 )
⟦𝐷𝑖𝑗

𝑒 ⟧

0

𝑑𝐷𝑖𝑗
𝑒 ∫ 𝑃𝐷𝐹(𝐷𝑖𝑗

𝑒 )
1

0

𝑑𝐷𝑖𝑗
𝑒⁄ =

1

2
.       (3 − 39) 

That is, after ranking the 𝑛2 distribution factors from smallest to largest, the 

resulting histogram is then integrated up to the value of 𝐷𝑖𝑗
𝑒  corresponding to one-

half of the value corresponding to 𝐶𝐷𝐹(⟦𝐷𝑖𝑗
𝑒 ⟧) = 1. The value of ⟦𝐷𝑖𝑗

𝑒 ⟧ defined 

by Eq. (3-39) is referred to as the median of the histogram. Eq. (3-39) can be well 

approximated by, 

𝐶𝐷𝐹(⟦𝐷𝑖𝑗
𝑒 ⟧) ≅

1

𝑛2
∑ 𝑃𝐷𝐹(𝐷𝑖𝑗

𝑒̅̅ ̅̅ )

⟦𝐷𝑖𝑗
𝑒 ⟧

0

,                                                            (3 − 40) 

where the summation is over the count of distribution factors in the bars in Fig. 

3.7, 𝐷𝑖𝑗
𝑒̅̅ ̅̅  is the mean value of the distribution factors in a given bar, and 𝑛 is the 

number of surfaces making up the enclosure. Equation (3-40) is implicit in ⟦𝐷𝑖𝑗
𝑒 ⟧ 

and therefore must be summed until a value of ½ is obtained. When this is done 
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for Example Problem 1, ⟦𝐷𝑖𝑗
𝑒 ⟧

1
= 0.0020, while for Example Problem 2, ⟦𝐷𝑖𝑗

𝑒 ⟧
2
= 

0.0013. These values are indicated in Fig. 3.7. When 𝐷𝑖𝑗
𝑒  is replaced with ⟦𝐷𝑖𝑗

𝑒 ⟧ in 

Eq. (3-12) we have 

𝜔𝐷
𝐷
≈ ±𝑊𝑐√

1 − ⟦𝐷𝑖𝑗
𝑒 ⟧

𝑁⟦𝐷𝑖𝑗
𝑒 ⟧

.                                                                                (3 − 41) 

(When evaluating the mean fractional uncertainty in the distribution factors for 

Example Problem 2 using Eq. (3-41), the values of ⟦𝐷𝑖𝑗
𝑒 ⟧ in the first bin of the 

histogram, in Fig. 3.7(b), are excluded because their values are approximately zero.) 

Then for Example Problems 1 and 2, Eq. (3-41) gives (𝜔𝐷 𝐷⁄ )1= 0.0438 and 

(𝜔𝐷 𝐷⁄ )2= 0.0543, which are in excellent agreement with the observed mean 

relative uncertainty results (solid symbols) in Figs. 3.3 and 3.6. Note that the 

definition of ⟦𝐷𝑖𝑗
𝑒 ⟧ does not account for the fact that the uncertainty in a 

distribution factor increases as its value decreases, which explains why Eq. (3-41) 

still slightly under-predicts the observed uncertainty in the distribution factors. 

While the agreement between Eq. (3-12) averaged over 𝑖 and 𝑗 and Eq. (3-41) is 

gratifying, Eq. (3-41) by itself cannot be used to predict the mean relative 

uncertainty corresponding to a specified number of surface element and rays traced 

per surface element. What is needed to establish Eq. (3-41) as a useful tool for 

predicting the global mean relative uncertainty of the distribution factors is a 

catalog of relationships between ⟦𝐷𝑖𝑗
𝑒 ⟧ and 〈〈𝐷𝑖𝑗

𝑒 〉〉 =
1

𝑛
 of the form ⟦𝐷𝑖𝑗

𝑒 ⟧𝑛 =

𝑓(𝜀, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦) for the various generic enclosure types. Such a catalog is the 

subject of Chapter 4. 

3.5. Experimental design of MCRT algorithms 

We can now apply the statistical principles developed here to the design of MCRT 

algorithms. That is, for a specified number of surface elements, we seek the number 
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of energy bundles 𝑁 that must be traced per surface element to attain, to a stated 

level of confidence, a specified uncertainty in the surface net heat flux results. We 

continue to consider that the temperature is specified on all of the surface elements 

of a gray diffuse-specular enclosure. Furthermore, we assume that the relative 

uncertainties in surface temperature and surface emissivity, as well as the desired 

uncertainty in surface net heat flux relative to the local emitted flux, have been 

specified in advance, all to the same level of confidence. Then experimental design 

of the MCRT model may be divided into two steps: (1) determine the relative 

uncertainty in the distribution factors consistent with obtaining the desired 

uncertainty in the surface net heat flux, and (2) determine the minimum number of 

energy bundles that must be traced per surface element to achieve the required 

uncertainty in the distribution factors. 

Step 1. Determine the mean value of the relative uncertainty in the distribution 

factors, 𝜔𝐷/𝐷. Rearranging Eq. (3-26), we obtain 

𝜔𝐷
𝐷
= {
 

 
(⟨

𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4⟩)

2

− [(
𝜔𝜀
𝜀 )

2

+ (4
𝜔𝑇
𝑇  )

2

]

[
 
 
 

1 + (⟨⟨(
𝑇𝑗
𝑇𝑖
)
4

⟩⟩ )

2

]
 
 
 

}
 

 

1
2

(⟨⟨(
𝑇𝑗
𝑇𝑖
)
4

⟩⟩ )

.  

(3 − 42) 

Step 2. Determine the minimum number of rays that must be traced per surface 

element. Knowing the desired mean relative uncertainty in the distribution factors, 

we rearrange Eq. (3-5) to obtain 

𝑁 = (𝑛 − 1) (
𝑊𝑐

𝜔𝐷 𝐷⁄
)
2

.                                                                               (3 − 43) 
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Note that the accuracy of this procedure could be significantly improved by 

replacing 𝑛 in Eq. (3-43) with 1/⟦𝐷𝑖𝑗
𝑒 ⟧. However, this would require a priori 

knowledge of the median of the distribution factor histogram. This goal is achieved 

in Section 4.3; indeed Chapter 4 is dedicated to predicting the median for a given 

enclosure. 

3.6. Conclusions and recommendations 

We have developed and demonstrated a formalism, based on well-established 

principles of statistical inference, for defining the uncertainty in the estimation of 

radiation distribution factors and in the heat transfer results obtained using them, 

at least for the important special case of specified surface temperatures. 

Furthermore, we have extended this formalism to permit prediction of uncertainty 

in radiation distribution factors and radiation heat transfer results as a function of 

the number of surface elements and the number of rays traced per surface element. 

Finally, we have indicated how this formalism can be used in the design of MCRT 

experiments; specifically, how it can be used to determine the a priori number of 

rays that must be traced in order to obtain the desired accuracy of radiation heat 

transfer results. While the results presented here are demonstrated only for the case 

of diffuse gray enclosures, no step in the analysis leading to Eqs. (3-5) and (3-26) 

depends essentially on this assumption for its validity; i.e., the derivation does not 

depend on the values of the distribution factors just as it does not depend on the 

enclosure geometry. 

While Eq. (3-5) is convenient for use in estimating the mean uncertainty in the 

distribution factors and in the corresponding heat transfer results for a given 

combination of number of surface elements and number of rays traced per surface 

element, a better estimate is available if Eq. (3-5) can be replaced by Eq. (3-41). 

Chapter 4 investigates the suitability of a correlation of the form ⟦𝐷𝑖𝑗
𝑒 ⟧𝑛 =

𝑓(𝜀, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦) that would make this possible. 
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The development elaborated here is based on diffuse gray enclosures filled with 

transparent media. However, once the distribution factors have been obtained, 

nothing in the theory excludes its extension to the case of bidirectional spectral 

enclosures. The development beginning with Eq. (3-13) and leading to the 

equivalent of Eq. (3-26) would be straightforward, while Eqs. (3-5), (3-12), and (3-

41) would remain unchanged. Finally, the major complications associated with 

extension of the formulation to enclosures containing a participating medium 

would be those associated with the inherently greater complexity of computing the 

distribution factors. In addition, new versions of Eqs. (3-13) through (3-26) would 

need to be derived, but their derivation would follow the same logic as presented 

here. 
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Uncertainty Analysis in 

the MCRT 

Environment – Part 2 

In Chapter 3, it is established that the uncertainty in heat transfer results obtained 

using the Monte Carlo ray-trace method is related to the median ⟦𝐷𝑖𝑗
𝑒 ⟧ of the 

radiation distribution factor histogram. The value of this discovery would be 

significantly enhanced if the median could be known a priori without first 

computing the distribution factors. This would allow the user to determine the 

number of rays required to achieve the desired accuracy of a subsequent heat 

transfer analysis. Presented is a correlation for the median of the distribution factor 

histogram as a function of emissivity and the number of surface elements defining 

an enclosure. This chapter is based on a peer-reviewed article by the author 

published in the Journal of Heat Transfer entitled “Estimation and use of the 
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radiation distribution factor median for predicting uncertainty in the Monte Carlo 

ray-trace method” [80]. 

4.1. Median of the distribution factor histogam and its importance 

In Chapter 3, we postulate that the histogram of the elements of the radiation 

distribution factor matrix is a unique characteristic for each enclosure, and that its 

median is a key parameter for predicting the uncertainty of results obtained using 

the MCRT method. In the current chapter, we identify a new dimensionless 

parameter whose value can be used, along with the emissivity and number of 

surface elements into which the enclosure is divided, to predict the median without 

actually carrying out a costly Monte Carlo ray-trace. 

In the absence of a participating medium, if the surface temperature distribution 

𝑇𝑗 is specified within a diffuse gray enclosure, the corresponding surface net heat 

flux distribution is related to the distribution factor matrix by Eqs. (3-2) and (3-3). 

In Eq. (3-2), recall that 𝜀𝑖 is the emissivity of surface 𝑖 and 𝑛 is the number of 

surface elements making up the enclosure. Chapter 3 describes an approach for 

assessing the uncertainty in the heat transfer results obtained using the MCRT 

method based on the known uncertainties in the distribution factors, the 

temperature distribution, and the surface emissivities. An expression for estimating 

the mean relative uncertainty in the heat transfer result, 

⟨
𝜔𝑞𝑖
𝜀𝑖𝜎𝑇𝑖

4⟩

𝑖

≈ ±√[(
𝜔𝜀
𝜀
)
2

+ (4
𝜔𝑇
𝑇
 )
2

]

[
 
 
 

1 + (⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ )

2

]
 
 
 

+ (
𝜔𝐷
𝐷
)
2

(⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ )

2

,  

(3 − 26) 
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is derived, and confirmed through a series of examples. In Eq. (3-26) ⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ is 

the mean fourth-power temperature spread, 

⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩⟩ = ⟨⟨(
𝑇𝑗

𝑇𝑖
)
4

⟩

𝑗

⟩

𝑖

≡
1

𝑛2
∑∑(

𝑇𝑗

𝑇𝑖
)
4𝑛

𝑗=1

𝑛

𝑖=1

.                                           (3 − 27) 

Recall that 𝜔 represents the uncertainty in the quantity indicated by the subscript 

and the symbol 〈𝑥〉 indicates the mean of the enclosed quantity 𝑥 with respect to 

the relevant index, 𝑖 or 𝑗. Equation (3-26) is formally derived as an approximation; 

however, in Chapter 3 the difference between heat flux uncertainty predicted using 

it and observed heat flux variability is typically within about one percent. 

The mean relative uncertainties in emissivity 𝜔𝜀 𝜀⁄  and temperature 𝜔𝑇 𝑇⁄  in Eq. 

(3-26) are assumed to be known with the same level of confidence and the 

fractional uncertainty in the distribution factors 𝜔𝐷/𝐷 is now known to be well 

estimated by 

𝜔𝐷
𝐷
≈ ±𝑊𝑐√

1 − 𝜈

𝑁𝜈
.                                                                                          (4 − 1) 

In Eq. (4-1) the symbol for the median ⟦𝐷𝑖𝑗
𝑒 ⟧ has been replaced by 𝜈 for notational 

simplicity. The critical value of the W statistic 𝑊𝑐 in Eq. (4-1) is tabulated in 

standard texts as a function of the level of confidence. For example, if 𝜔𝐷/𝐷 is to 

be estimated with a 95-percent level of confidence, then 𝑊𝑐 = 1.960. The symbol 

𝑁 in Eq. (4-1) represents the number of rays traced per surface element when 

computing the distribution factors using the MCRT method, and 𝜈 represents the 

median of the histogram of the distribution factors. In the current chapter, we 

demonstrate that the median 𝜈 is a property of the enclosure related to its shape, 

nominal emissivity, and the number of surface elements into which it is divided. 
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Equations (3-26), (3-27) and (4-1) clearly establish the critical role played by the 

median 𝜈 of the distribution factor histogram in placing error bars on heat transfer 

results predicted using the MCRT method. Once known for a given enclosure, the 

median can be used with Eq. (4-1) to compute the relative uncertainty in the 

distribution factors, after which Eqs. (3-26) and (3-27) can be used to bound the 

uncertainty in the heat transfer results. In principle, the median of the distribution 

factor histogram is computed from the distribution factors themselves, as 

described in Section 4.2. However, the utility of Eqs. (3-26), (3-27) and (4-1) would 

be significantly enhanced if they could somehow be used to determine the 

minimum number 𝑁 of rays that must be traced to ensure the desired accuracy of 

the heat transfer results. The goal of this chapter then is to establish a methodology 

for obtaining 𝜈 without first performing a costly and time-consuming ray-trace. 

4.2. Statistical properties of the distribution factor matrix 

The histogram of the elements of any matrix may be obtained using a function 

available in recent versions of both Excel and Matlab. As an example, we consider 

the histogram, illustrated in Fig. 4.1(a), of the distribution factor matrix for a cubical 

enclosure whose walls have been subdivided into 𝑛 = 384 equal-area surface 

elements, each having an emissivity of 0.55. The corresponding 𝐷𝑖𝑗 matrix will 

have 𝑛2 elements. The mean value of the distribution factors, 𝜇 = 1 𝑛⁄ , is 

indicated in the figure. Also indicated is the median of the histogram, 𝜈 = 𝐷̅𝐾, 

where 𝐾 is the value of 𝑘 for which 

𝐶𝐹𝐷(𝐾) ≡ ∑𝐷̅𝑘∆𝐷𝑘

𝐾

𝑘=1

=
𝑛2

2
.                                                                        (4 − 2) 
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In Eq. (4-2), 𝐷̅𝑘 is the mean value of the distribution factors included in bin 𝑘, 

whose width is ∆𝐷𝑘, and 𝐶𝐷𝐹(𝑘) is the corresponding cumulative density 

function shown in Fig. 4.1(b). The median is the value of 𝐷̅𝐾 for which 𝐶𝐹𝐷(𝐾) 

attains one-half of its maximum value, which means that the number of 

distribution factors binned to the left of 𝜈 is equal to the number binned to the 

right. In the figure, the abscissa has been truncated at 𝐷𝑖𝑗 = 0.010 in order to 

emphasize the behavior of the histogram and CDF in the vicinity of the mean and 

median values. 

Figure 4.1. (a) Histogram and (b) Cumulative Density 

Function (CDF) for the radiation distribution factor matrix 

of a cubic enclosure. 
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The “skew” of the histogram describes its tendency to “lean” to the left or right. 

For example, the histogram in Fig. 4.1(a) is said to be biased to the left because 

more distribution factors are binned to the left of the mean 𝜇 than to the right; i.e., 

𝜇 is greater than 𝜈. Several definitions of the skew of a histogram are given in the 

literature. We find it convenient to define the relative skew, 

𝑆𝑟 ≡
𝜇 − 𝜈

𝜇
,                                                                                                        (4 − 3) 

so that when 𝑆𝑟 > 0 the histogram is biased to the left and when 𝑆𝑟 < 0 the 

histogram is biased to the right. According to this definition, a Gaussian histogram 

would have a relative skew of zero. Sought is a correlation for the relative skew as 

a function of the enclosure shape, surface emissivity, and number of surface 

elements into which it is divided. 

4.3. Experimental study of skew for two-dimensional enclosures 

We begin by apologizing to those who cling to the belief that the term 

“experiment” should be applied only to procedures involving physical devices such 

as lasers and thermographic imagers. In the realm of radiation heat transfer analysis 

using the MCRT method, the numerical procedure by which the life cycles of rays 

are determined by applying the rules of geometrical optics and stochastics is 

commonly referred to as a “numerical experiment.” It is in this sense that we claim 

to “measure” the thermal-radiative performance of various enclosures. Use of the 

term is encouraged by the fact that generally different results are obtained when 

the same simulation is performed multiple times, each time using the same 

enclosure but a different sequence of pseudo-random numbers. Moreover, the 

different results tend to be statistically distributed in much the same way as in 

experiments carried out in a laboratory. 
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We initially limit our study to so-called two-dimensional enclosures; i.e., to 

enclosures for which one of the three dimensions greatly exceeds the other two. 

Long ducts having various cross-sectional shapes are a common example. 

Specifically, we initially confine the study to long, empty ducts whose cross-sections 

are any of the family of regular polygons, ranging from triangles to circles. The 

decision to initially limit the study to two-dimensional enclosures is motivated by 

the fact that we seek general results in a world populated by an unlimited number 

of potential enclosure geometries. Clearly, we cannot consider all possibilities in a 

reasonably limited study; more complex geometries will have to await their turn. 

However, the study of three-dimensional enclosures in the previous chapter, 

including one with an internal obstruction, supports the presumption that the 

method presented here is not limited to regular two-dimensional enclosures. 

Figure 4.2. The median 𝜈 of the distribution factor histogram, exceeds the 

mean 𝜇 = 1/𝑛 for all combinations of the number 𝑛 of surface elements and 

emissivity 𝜀 for a long circular duct. 
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The author has created a convenient windows application [67] that uses the MCRT 

method to compute the radiation distribution factors among any number of surface 

elements making up any two-dimensional diffuse gray enclosure. We have used the 

application to compute the distribution factors for enclosures whose cross-sections 

are regular triangles, squares, pentagons, hexagons, heptagons, octagons, and 

circles. We have also used it to study acute and obtuse isosceles triangular cross-

sections and a cross-section consisting of a circle concentric with a square. The 

Monte Carlo ray-trace method for two-dimensional geometries is verified and 

explained in Chapter 2. 

We begin by using the two-dimensional MCRT engine to compute the distribution 

factor matrices for a long circular duct subdivided into 𝑛 = 12, 25, 50, 100, and 201 

surface elements whose emissivities are 𝜀 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

Figure 4.3. Initial attempt at correlating the median with emissivity and the 

number of surface elements. 
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and 1.0. For each combination of 𝑛 and 𝜀 we trace two million rays per surface 

element to obtain the corresponding distribution factor matrices, 𝐷𝑖𝑗 , where 1 ≤ 𝑖 

≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛. The results are summarized in Fig. 4.2, which is a plot of the 

median of the distribution factor histogram as a function of the mean for all values 

of emissivity. We see that in each of the fifty cases represented the median 𝜈 

exceeds the mean 𝜇; that is, the relative skew defined by Eq. (4-3) is always negative. 

Based on consideration of Fig. 4.2, we hypothesize the existence of a correlation 

of the form 𝜈 = 𝑓(𝜀/𝑛). When we put this hypothesis to the test, we obtain Fig. 

4.3. The expressions for 𝜈 in the figure are linear least-square fits to the data. 

Inspection of Fig. 4.3 shows that the initial attempt at a correlation is still a function 

of the number of surface elements. Figure 4.4 is obtained by computing the mean 

slope 𝑆 = 0.0928 of the linear expressions in Fig. 4.3, and then applying the 

correlation 

𝜈 =
1 + 𝑆𝜀

𝑛
.                                                                                                       (4 − 4) 

Inspection of Fig. 4.4 reveals that the groups of symbols lie along a more-or-less 

straight line, with each group slightly tilted with respect to the correlation 

represented by Eq. (4-4). This is because the slopes corresponding to the various 

fits in Fig. 4.3 are each slightly different from the average slope 𝑆. Although Eq. 

(4-4) has been derived here on the basis of a specific two-dimensional enclosure, 

we shall see that its general form applies equally well to all two- and three-

dimensional enclosures subject to certain limitations. Solving Eq. (4-4) for the slope 

𝑆 yields 

𝑆 = −
1

𝜀
(
𝜇 − 𝜈

𝜇
) = −

𝑆𝑟
𝜀
.                                                                               (4 − 5) 

Equation (4-5) reveals that the slope parameter 𝑆 is the negative of the relative 

skew scaled by the inverse of the wall emissivity. 
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Results similar to those described above for a long circular duct have been obtained 

for long regular octagonal, heptagonal, hexagonal, pentagonal, square, and 

triangular ducts, and are summarized in Figs. 4.5-4.7. In the following discussion, 

the reader is cautioned to avoid confusing the number of walls, or physical surfaces 

𝑁 making up an enclosure (e.g., 𝑁 = 5 for a pentagon) with the total number of 

surface elements 𝑛 into which the walls are subdivided. 

Two interesting features of these results should be pointed out. First, note that the 

sign of the slope parameter 𝑆 changes from positive to negative between the 

hexagon, Fig. 4.6(a), and the pentagon, Fig. 4.6(b). For the higher-order regular 

polygons (𝑁 ≥ 6, including the circle for which 𝑁 → ∞) the slope is positive (and 

so the skew of the distribution factor histogram, is negative), and for the lower-

order polygons (𝑁 = 3, 4 and 5) the slope is negative (and so the skew of the 

distribution factor histogram is positive). 

Figure 4.4. The final correlation for the median as a function of emissivity and 

the number of longitudinal surface elements for a long circular duct. 
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 Figure 4.5. Median correlations f or long regular (a) octagonal, (b) heptagonal 

duct. 

(a) 

(b) 



 61 

 

(b) 

Figure 4.6. Median correlations f or long regular (a) hexagonal, (b) pentagonal 

duct. 

(a) 

 

(a) 

 

(a) 

 

(a) 
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Figure 4.7. Median correlations f or long regular (a) square, (b) triangular duct. 

(a) 

(b) 
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Second, note that for each duct cross-section in Figs. 4.4-4.7, the correlation 

corresponding to the smallest number of surface elements 𝑛 (open circles) “tails 

off”. In each of these cases, the correlation is excellent for small wall emissivity 

(large reflectivity) but degrades with increasing emissivity (decreasing reflectivity). 

This trend, which is gradual for the other ducts, is abrupt and spectacular for the 

triangular duct. Also, the direction of the “tail” rotates clockwise with decreasing 

polygonal order; pointing to the right for the octagonal, heptagonal, and hexagonal 

ducts; pointing more or less downward for the pentagonal duct (whose slope 

parameter 𝑆 is incidentally near zero); and pointing to the left for square and 

triangular ducts. In each case the tail points in the direction of increasing wall 

emissivity. This behavior is evidently dictated by the skew of the distribution factor 

histogram, which is negative for the lower-order polygons; i.e., biased to the right; 

and positive for the higher-order pentagons. The skew for the pentagon is near 

zero. It is noted that all of these cross-sections have in common that they are 

continuously concave; i.e. no blockage exists among their surfaces. 

The degradation of the correlation with decreasing numbers of surface elements 

and increasing wall emissivity suggests that a minimum number of surface elements 

are required to adequately model the radiative behavior of an enclosure whose walls 

have a specified emissivity. In the case of low emissivity (high reflectivity), the 

radiative behavior of the enclosure can be said to be reflection dominated, in which 

case the number of surface elements is less important. Conversely, in the case of 

high emissivity (low reflectivity), the radiative behavior of the enclosure can be said 

to be geometry dominated, and so results obtained using the MCRT method are more 

sensitive to the number of surface elements used. 

We have also investigated the radiative behavior of long ducts having isosceles right 

and acute triangular cross-sections, as well as ducts having internal obstructions. 

The correlations for the isosceles right and acute triangles are summarized in Fig. 

4.8. 
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(a) 

Figure 4.8. Median correlations for long ducts having isosceles (a) right and (b) 

acute triangular cross-sections. 

(b) 

 

(a) 

 

(a) 

 

(a) 
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Inspection of Fig. 4.8 reveals that it has been necessary to account for the departure 

from the regularity of the isosceles triangles to obtain a good correlation. The lead 

coefficient, which was unity for the equilateral triangle, has been reduced to 0.96 

for the isosceles right triangle in Fig. 4.8(a); and increased to 1.09 for the acute 

isosceles triangle in Fig. 4.8(b). That is, there seems to be an eccentricity effect.  

The distribution factor matrix histogram of all enclosures is characterized by a 

median and a relative skew, regardless of shape, dimensionality, and surface 

emissivity. It is therefore natural to speculate that the median will be related to the 

relative skew as indicated by Eqs. (4-4) and (4-5) regardless of the enclosure 

geometry. It has already been established in Chapter 3 that Eq. (3-2) is applicable 

to the case of three-dimensional enclosures, both with and without internal 

obstructions. Even though Eqs. (4-4) and (4-5) have emerged from consideration 

of long polygonal cross-section ducts, we fully expect them to apply equally well to 

three-dimensional enclosures, even those having internal obstructions, at least in 

the reflection-dominated regime.  

Fig. 4.9 shows the result for the long square-cross-section duct containing a 

cylindrical obstruction, while Fig. 4.10 illustrates a successful attempt to correlate 

the median of the distribution factor matrix histogram, for the cubical enclosure 

considered in Fig. 4.1. In the latter figure, the emissivity varies from 0.1 to 1.0 for 

𝑛 = 96 and 384. The lead coefficient is once again unity, consistent with the 

regularity of the geometry. 

Figure 4.11 represents a somewhat successful attempt to correlate the median of 

the distribution factor histogram for the case of a cubical three-dimensional 

enclosure containing a rectangular obstruction shown in the inset. The correlation 

works well in the reflection-dominated regime (𝜀 < 0.6 in this case), but less well 

in the geometry-dominated regime. This is similar to the behavior noted in Fig. 4.9 

except that now the departure of the median from the value predicted by the 
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correlation in the geometry-dominated regime is less severe. This is no doubt 

because the role played by the obstruction in creating near-zero elements in the 

distribution factor matrix is less dominant in the geometry of Fig. 4.11 (inset). 

Table 4.1 is a summary of the values of the 𝑆-parameters obtained to this point. 

Also shown in the table are the average angles of the various geometries, where 

applicable. The average angles are defined as the total of the angles divided by the 

number of facets. Thus, the definition of a triangle requires that its three included 

angles sum to 180 deg, and so the average angle will always be 60 deg. Similarly, all 

polygons are defined by the sum of their included angles and the number of sides, 

no matter the degree to which they may be distorted. We have seen this rule in 

action in the case of the three triangular cross-section ducts we have considered. 

Therefore, if we want to “flatten” an initially regular octagonal duct by increasing 

Figure 4.9. Correlation for a long square duct with a concentric circular 

obstruction. 
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the two angles at its top and the two at its bottom, we must also decrease the four 

angles at its flanks (and appropriately adjust the lengths of its eight sides) such that 

the sum of the angles remains 1080 deg. In this way, for example, we can turn a 

square into a rhombus, and so forth. Even though, with the exception of the 

triangle, we have limited the cross-sections of our unobstructed ducts to regular 

polygons, we might also have considered distorted cross-sections having the same 

numbers of sides and summations of included angles such that the average angle 

given in Table 4.1 would remain unchanged. More to the point, it is intuitively 

pleasing to contemplate the possibility that the 𝑆-parameter for a duct having a 

non-regular polygonal cross-section will be related to that for a duct having a 

regular polygonal cross-section through an appropriate parameter such as the 

eccentricity, or aspect ratio, of the cross-section. 

 

Figure 4.10. Correlation for a long square duct with a concentric circular 

obstruction. 
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Figure 4.12 represents the first step toward consolidating the results for the case of 

all enclosures free of internal obstructions into a grand canonical correlation. It 

suggests that, to an acceptable approximation, the 𝑆-parameter for all of the 

“open” enclosures considered here can be related to the geometry according to 

𝑆 = 𝐴𝑠𝑖𝑛(𝐵 − 70),                                                                                          (4 − 6) 

where 𝐴 is equal to the negative of the aspect ratio for the case of three-dimensional 

enclosures and is equal to the negative of one-half of the aspect ratio for the case 

of two-dimensional (long ducts) enclosures, and B (deg) is the average angle given 

in Table 4.1. The use of an aspect ratio in the case of a three-dimensional enclosure 

makes sense only if the enclosure is elongated or shortened in one direction with 

respect to the other two directions for which the dimensions are approximately the 

same. Equation (4-6) may be considered valid for values ranging from −0.8 to 

+0.0928, beyond which the latter value should be used. 

Figure 4.11. Correlation for a cubical enclosure with an internal obstruction. 
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Table 4.1. Summary of the S-parameter results. 

Geometry Average Angle 𝑺-Parameter 
 (deg)  

  Two-Dimensional   
  No Blockage:   
       Circular N/A +0.0928 
       Octagonal 135 +0.0996 
       Heptagonal 128.57 +0.1045 
       Hexagonal 120 +0.1381 
       Hybrid Square Hexagonal 108 +0.00315 
       Pentagonal 108 −0.0313 
       Square 90 −0.1362 
       Equilateral Triangular 60 −0.4175 
       Isosceles Right Triangular 60 −0.7721 
       Acute Isosceles Triangular 60 −0.7895 
  With Blockage:   
       Circle-In-Square N/A −0.6997 
  Three-Dimensional   
  No Blockage:   
       Cubical 90 −0.3513 
  With Blockage:   
       Cubical N/A −0.8939 

 

4.4. Discussion and interpretation of results 

The slope parameter 𝑆 central to the correlation presented here is clearly related 

to, and may even be unique to, enclosure geometry; however, the nature of that 

relationship remains elusive. One can imagine future conversations involving a 

particular radiation heat transfer analysis in which meaningful reference is made to 

a certain “positive-𝑆 enclosure,” or to an enclosure having a particular “𝑆 value.” 

Clearly it would be useful to know the value of the 𝑆 parameter for an enclosure 

before embarking on its thermal radiative analysis, because this would permit 

determination of the number of rays per surface element required to assure a 

desired level of accuracy of the results. 
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Is it possible to find, or at least estimate, the value of the 𝑆 parameter without first 

performing a ray-trace to obtain the elements of the distribution factor matrix? For 

the limited population of enclosures considered in this communication, the answer 

is now “yes,” because the results summarized in Table 4.1 are available to the 

community for this purpose. Perhaps one day a web site will be available to which 

a user can upload enclosure geometry and retrieve the value of the corresponding 

𝑆 parameter. In the meantime, we suggest that it might be possible to estimate the 

𝑆 parameter for an enclosure as the surface-weighted average of the 𝑆 parameters 

for two or more enclosures from which it is fabricated. This somewhat whimsical 

idea has not yet been systematically pursued. However, Fig. 4.13 provides the 

median correlation for a hybrid two-dimensional duct created by combining a 

square cross-section with a hexagonal cross-section. The correlation obtained is 

excellent and the value of the corresponding 𝑆 parameter, 0.00315, is essentially 

Figure 4.12. An attempt to correlate the S-parameter with enclosure geometry. 
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zero. We note that, if this point is plotted along the correlation line in Fig. 4.12, it 

falls midway between the square duct and the hexagonal duct, as might be 

anticipated. 

4.5. Conclusions 

Based on the investigation documented in Chapter 3, the median of the radiation 

distribution factor histogram is known to be a reliable predictor of uncertainty in 

the MCRT method. A correlation is presented that allows prediction of the median 

for a given enclosure geometry based on the wall emissivity and the number of 

surface elements into which the enclosure is divided. We conclude on the basis of 

results presented in the current chapter that, if an enclosure is continuously 

concave, is divided into a sufficiently large number of surface elements, is devoid 

of acute angles, and has no internal obstructions, the correlation is valid for all 

Figure 4.13. Median correlation for a hybrid square-hexagonal duct having an 

aspect ratio (AR) of 1.273. 
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values of surface emissivity. Otherwise, the validity of the correlation is found to 

be dictated by the degree to which radiation is reflection-dominated or geometry-

dominated, with performance being relatively high in the reflection-dominated 

limit and relatively low in the geometry-dominated limit. Geometry-dominated 

radiation is favored by acute angles and internal obstructions, while reflection-

dominated radiation is favored by low emissivity, obtuse angles, and a lack of 

internal obstructions. In the geometry-dominated limit the enclosure must be 

divided into a greater number of surface elements for the correlation to be valid, 

and in the presence of internal obstructions, the correlation degrades and 

eventually fails as the geometry-dominated limit is approached. 
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Introduction to the 

Artificial Neural 

Network (ANN) 

The application of the artificial neural network (ANN), which is the basis of AI 

methodologies, to a variety of real-world problems is an on-going active research 

area. However, the application of the ANN to thermal science and engineering is 

still in its infancy and is the subject of ever-increasing attention. This is due to the 

inherent complexity of thermal science and engineering systems, for which realistic 

models are often beyond the scope of traditional analysis. Artificial intelligence, or 

machine learning, is a state-of-the-art technology that is ripe for applications in the 

field of remote sensing and applied optics. This chapter is a brief introduction to 

Artificial Neural Networks. Some of the material in this chapter is repeated from 

Refs. [63, 81], peer-reviewed articles by the author published in the Journal of 

Heat Transfer and Remote Sensing. 
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5.1. Background 

Artificial neural networks (ANNs) are nonlinear mapping systems with structures 

based on principles inspired by the human biological nervous system. They provide 

a fundamentally different approach from other numerical solution methods for 

forecasting the future. Artificial neural networks can accurately model the inherent 

relationship between sets of input and output data without reference to the 

underlying physical system, and yet they are able to consider all the parameters 

affecting the physical system. Various considerations such as nonlinearity, 

multiplicity of variables and parameters, and noisy and uncertain input and output 

values are easily dealt with. Artificial neural networks depend on neither prior 

knowledge of correlations nor recourse to iterative methods, but rather require only 

a population of input/output samples. These latter are used to train the neural 

network which, once trained, is able to produce meaningful outputs in response to 

the introduction of test inputs not used in training. Artificial neural networks 

consist of a large number of processing units which run in parallel to achieve results 

whose accuracy is comparable to that obtained using computationally more 

expensive traditional approaches. They are also able to perform dynamic modeling 

and adaptive control tasks in the presence of abrupt changes in system parameters 

and imposed control signals. Complexities not easily treated by traditional 

approaches to thermal system analysis can be accurately modeled with significantly 

less computing time using an ANN. 

5.2. The ANN in thermal applications 

Artificial neural networks have been under development for about four decades. 

They have been widely used in many engineering applications because of their 

ability to obtain solutions more easily, frequently with an accuracy comparable to 

that of higher-order models [82]. In recent years, ANNs have been used in various 

thermal applications describing heat transfer in solar energy systems, design of 

steam generating plants, estimation of heating loads of buildings, waste heat 
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recovery heat exchangers, and related performance prediction and dynamic control 

applications. Thibault and Grandjean [83] used an ANN for heat transfer data 

analysis. Parcheco-Vega et al. [84] applied ANNs for modeling the heat transfer 

phenomena in fin-tube refrigerating heat exchanger systems. An ANN algorithm 

was used by Bechtler et al. [85] to model the steady-state performance of a vapor–

compression liquid heat pump. Lazrak et al. [86] modelled a dynamic absorption 

chiller using artificial neural networks. An ANN model was developed to predict 

the convective heat transfer coefficient during condensation of R134 in inclined 

tubes [87]. Chang et al. [88] predicted heat transfer of supercritical water using 

ANNs. Ye et al. [89] proposed a novel ANN model for predicting convective heat 

transfer in 𝑠𝐶𝑂2. Kaya and Hajimirza designed a two-layer ANN surrogate model 

to estimate the optical absorptivity of the solar ultra-thin organic cells [90, 91]. 

Additional investigations of heat transfer using ANNs have also been reported [92, 

93]. 

The cited applications demonstrate that ANNs are often well suited to thermal 

analysis of engineering systems. This is especially true when performing a 

parametric study involving repetitive solution of a complex model, in which case it 

is desirable to accelerate the analysis without comprising the underlying physics. 

Although a variety analytical and numerical approaches have been employed in 

radiation heat transfer analysis, to the author’s knowledge ANN methods have yet 

to be applied in this area. This further motivates the work in this and the following 

chapters, which demonstrate the applicability of ANNs to the radiation heat 

transfer analysis.  

5.3. Description of the ANN 

An artificial neural network is an information processing paradigm consisting of a 

large number of simple processing elements called neurons, or nodes, organized in 

layers [39]. The node layers are organized into three groups: the input layer, one or 
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more hidden layers, and an output layer. Each layer is occupied by a number of 

nodes, as illustrated in Fig. 5.1. All the nodes of each hidden layer are connected to 

all nodes of the previous and following layers by means of synaptic connectors. 

Each connector is characterized by a synaptic weight. The input layer is used to 

designate the parameters for the problem under consideration, while the output 

layer corresponds to the unknown variables characterizing the performance of the 

system. The weights of the connectors determine the relative importance of the 

signals from all the nodes in the previous layer. At each hidden-layer node, the node 

input consists of a sum of all the outputs of the nodes in the previous layer, each 

modified by an individual interconnector weight. At each hidden node, the node 

output is determined by an activation function, which performs nonlinear input-

output transformations. The information treated by the connector and node 

operations is introduced at the input layer, and this propagates forward toward the 

output layer [94]. Such ANNs are known as feed-forward networks, which is the 

type used in the current study. Figure 5.1 is a schematic representation of typical 

feed-forward architecture. The configuration shown has one input layer, two hidden 

layers, and one output layer. 

The error at each output node can be determined by comparing the calculated feed-

forward result with the known outputs obtained from the training data. Training of 

the network adjusts its weights to minimize the errors between the ANN result and 

known output. The training procedure for feed-forward networks is known as the 

supervised back propagation (BP) learning scheme, where the weights and biases 

are adjusted layer by layer from the output layer toward the input layer [95]. The 

mathematical basis, the procedures for training and testing the ANNs, and more 

descriptions of the BP algorithm can be found elsewhere [96]. 

Overfitting may occur because of an overly complex model with too many 

parameters. A model that is overfitted is inaccurate because the trend does not 

reflect the reality present in the data. The presence of overfitting can be revealed if 
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the model produces good results on the seen data (training set) but performs poorly 

on the unseen data (test set). This is a very important consideration since we want 

our model to make predictions based on the data that it has never seen before. 

Therefore, additional structured test scenes are introduced involving data 

completely unknown to the ANN training process. Techniques such as early 

stopping, data augmentation, regularization, and drop-out are available to 

overcome this problem if detected [96]. 

Different optimization techniques exist for training a neural network. The Adam 

optimization algorithm has shown great potential and is used in the efforts 

considered in this dissertation to converge the ANN output with the target scenes 

during the training process. This stochastic optimization method is straightforward 

Figure 5.1. Configuration of a 1-5-5-10 artificial neural network. 
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to implement, is computationally efficient, has minimal memory requirements, is 

invariant to diagonal rescaling of the gradients, and is well suited for problems that 

are large in terms of data. Further details about Adam optimization can be found 

in Ref. [97]. 

Mean-squared error (MSE) is used as the objective loss function for the ANN 

optimization in this dissertation. An inherent weakness of the BP algorithm is that 

it can converge to a local minimum. One way to avoid this tendency is to change 

the learning rate during the network training process. “Learning rate” refers to the 

rate of change of the neural network weights during optimization. Training of the 

neural network is terminated when a predetermined maximum number of training 

cycles have been completed. Selection of the maximum number is a trial-and-error 

process in which the number may be changed if the performance of the neural 

network during initial training falls short of expectations. 

An a priori selection of ANN hyperparameters such as network topology, training 

algorithm, and network size is usually made based on experience. After training, the 

final sets of weights and biases trained by the network can be used for prediction 

purposes, and the corresponding ANN becomes a model of the input/output 

relation of the given problem. Because the ANN is to be trained to interpret the 

relationship between input and output data, the data used for training must be 

sufficient to capture the dynamics of the process being modeled. Section 5.2.1 

discusses a simple example of classification using ANN. 

5.3.1. An example of ANN application 

Artificial neural networks form the base of deep learning, a subfield of machine 

learning where the algorithms are inspired by the structure of the human brain. 

Neural networks take in data, train themselves to recognize the patterns in the data, 

and then predict the output for a new set of similar unknown data. The following 

example briefly illustrates the process of training a simple ANN.  
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This example shows the process for constructing an ANN that differentiates 

between a square, circle and triangle. This is a common classroom example that will 

be familiar to readers who have studied machine learning. Figure 5.2 shows the 

process of building this network. Neural networks are made up of layers of neurons. 

These neurons are the core processing units of the network. Three kinds of layers 

form the structure of the network. The input layer, the output layer, and some 

number of hidden layers in which most of the computations required by the 

network are performed. The blue disk in the left-hand side of Fig. 5.2 is an input 

dataset composed of 28-by-28 = 784 pixels. A different pixel is fed as an input to 

each neuron of the first layer. Neurons of one layer are connected to neurons of the 

next layer through channels. Each of these channels is assigned a numerical value 

known as a weight. The inputs are multiplied by the corresponding weights and their 

sum is sent as an input to the neurons in the first hidden layer. Each of these neurons 

is associated with a numerical value called the bias, which is added to the input sum. 

This sum is then passed through a function called the activation function. The 

activation function is used to introduce nonlinearity into the network. Then, the 

neurons in the first hidden layer transmit data to the neurons of the next layer over 

the channels in a similar manner. In this way the data are propagated through the 

network. This is called forward propagation. In the output layer the neurons with 

the highest value determine the output. The values are basically a probability. For 

example, in Fig. 5.2 the neuron associated with “square” has the highest probability. 

Hence, that is the output predicted by the neural network. Of course, it is obvious 

that the neural network has made a wrong prediction. But how does the network 

figure this out? Note that the network is yet to be trained. During the training 

process, along with the input, the network also has the output of the training data 

fed to it. The predicted output is compared with the target output to realize the error 

in prediction. The magnitude of the error indicates the degree of the error of the 

network and the sign indicates if the predicted values are higher or lower than 

expected. The arrows on the right-hand side of Fig. 5.2 give an indication of the 
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direction and magnitude of change to reduce the error. This information is then 

transferred backward through the network. This is known as back propagation. Based 

on this information the weights are adjusted using an optimization method. For 

example, the gradient descent method is a process that occurs in back propagation 

where the values of weights are updated using a learning rate. This cycle of forward 

propagation and back propagation is iteratively performed with multiple inputs. 

This process continues until the weights are assigned such that the network can 

predict the input shapes correctly in most of the cases. This brings the training 

process of the ANN to an end.  

The final two chapters of this dissertation describe original applications by the 

author of ANNs to problems in radiation heat transfer and applied optics. 

 

 

 

 

 

 

Figure 5.2. Training process of a classification problem. 

0.8𝑥1 + 0.2𝑥3 + 𝐵1 → activation function 
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Artificial Neural 

Networks in Radiation 

Heat Transfer Analysis 

As developed elsewhere in this dissertation, in the Monte Carlo ray-trace (MCRT) 

method millions of rays are emitted and traced throughout an enclosure following 

the laws of geometrical optics. Each ray represents the path of a discrete quantum 

of energy emitted from surface element 𝑖 and eventually absorbed by surface 

element 𝑗. The distribution of rays absorbed by the 𝑛 surface elements making up 

the enclosure is interpreted in terms of a radiation distribution factor matrix whose 

elements represent the probability that energy emitted by element 𝑖 will be absorbed 

by element 𝑗. Once obtained, the distribution factor matrix may be used to compute 

the net heat flux distribution on the walls of an enclosure corresponding to a 

specified surface temperature distribution. As already noted in previous chapters, it 

is computationally very expensive to obtain high accuracy in the heat transfer 



 82 

calculation when high spatial resolution is required. This is especially true if a 

manifold of emissivities is to be considered in a parametric study in which each 

value of surface emissivity requires a new ray-trace to determine the corresponding 

distribution factor matrix. Artificial neural networks (ANNs) offer an alternative 

approach whose computational cost is greatly inferior to that of the traditional 

MCRT method. Significant computational efficiency is realized by eliminating the 

need to perform a new ray-trace for each value of emissivity. This chapter 

introduces and demonstrates through case studies estimation of radiation 

distribution factor matrices using ANNs and their subsequent use in radiation heat 

transfer calculations. This chapter is based on a peer-reviewed article by the author 

published in the Journal of Heat Transfer entitled “Artificial neural networks in 

radiation heat transfer analysis” [81]. 

6.1. Motivation 

A widely lamented disadvantage of the MCRT method is the excessive 

computational cost associated with achieving high accuracy when fine spatial 

resolution is required. The fact that rays are mutually independent entities permits 

massive parallelization, with a proportionate reduction in processor time; however, 

associated cost, power, volume, and weight penalties exclude massive 

parallelization in applications where real-time results are required for data 

interpretation and decision-making on board autonomous space probes [63] and 

fire-and-forget weapons [64]. The alternative to a slow or computationally 

ponderous high-fidelity model (HFM) in such applications would be a reduced-

order model (ROM) that provides comparable accuracy and spatial resolution but 

in real time and with significantly reduced hardware requirements [65]. This chapter 

describes such an alternative. 

As previously stated, in the MCRT method, when the number of surface elements 

𝑛 is large and high accuracy is required, an exceedingly large number of rays must 

be traced. Furthermore, because 𝐷𝑖𝑗 depends on the emissivity 𝜀𝑖, computational 
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costs can become excessive for optimization studies in which 𝜀𝑖 is a parameter. This 

motivates the search for a computationally less intensive approach. In this chapter, 

the computationally intensive Monte Carlo ray-trace (MCRT) method is used to 

compute the radiation distribution factors among the surface elements of a two-

dimensional diffuse gray enclosure for a range of surface emissivity. Then a back-

propagation algorithm is used to train an ANN based on these limited results. The 

ability of the much faster artificial neural network to accurately predict the 

distribution factor matrices corresponding to values of emissivity not used in the 

training cases is then evaluated. Various network configurations are investigated in 

a search for the optimal network. Once introduced, the method is then extended to 

increasingly complex problems. 

6.2. The ANN as the alternative approach 

As a demonstration of the approach advanced here, we consider three case studies 

of increasing complexity. All three cases involve radiant exchange within an 

enclosure consisting of gray diffuse surfaces in the absence of a participating 

medium; that is, radiant exchange is governed by Eqs. (3-1) through (3-3). However, 

once the distribution factors have been computed using the MCRT method, the 

ANN approach advanced here is expected to work equally well in the presence of 

a participating medium and with directional spectral surface models. The Monte 

Carlo ray-trace method described before is used to generate the training and test 

data needed to create and validate the ANN. 

6.2.1. Case Study 1: A long box channel with uniform emissivity. 

Figure 6.1 represents a long square-cross-section box channel having uniform wall 

emissivity and prescribed wall temperatures. The walls have been subdivided into 

40 equal-area segments in anticipation of an MCRT analysis. The corresponding 

ANN will have a single input node representing the emissivity 𝜀, and 1600 output 
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nodes representing the 1600 elements of the 40-by-40 radiation distribution factor 

matrix. 

In the current effort, we have used the application described in [67] to compute the 

distribution factors for the long square-cross-section duct illustrated in Fig. 6.1. The 

duct walls are maintained at uniform temperatures of 300 and 500 K as shown in 

the figure, and the corresponding net heat flux distribution on the walls is sought. 

The duct has been subdivided into 𝑛 = 40 longitudinal surface elements, and one 

hundred numerical experiments were carried out covering the emissivity range 

0.01 ≤ 𝜀 ≤ 1. For each value of emissivity, two million rays were traced per 

surface element to obtain estimates of the corresponding distribution factor 

matrices 𝐷𝑖𝑗 , where 1 ≤  𝑖 ≤ 40 and 1 ≤  𝑗 ≤ 40. The resulting dataset was then 

randomly divided into training and test datasets. The training dataset used to 

regulate the weights on the ANN contained only 10 percent of the available data. 

The test dataset, consisting of the remaining 90 percent of the data, was used to 

evaluate the predictive ability of the ANN. While it is generally recognized that it is 

more common to use the majority of the available data for training and a minority 

Figure 6.1. The long square-cross-section duct having gray diffuse walls 

considered in Case Studies 1 and 2 (dashes represent individually numbered wall 

surface elements shown separated by non-existent gaps for clarity). 
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for testing, the ratio used here was found to give excellent results across the test 

data.  

An Adam optimization algorithm is used. Mean-Squared Error (MSE) is used as the 

objective loss function for the ANN optimization. The learning rate was set to 

0.0002. The maximum number of training iterations was set to 25000. The relative 

error of every predicted output is defined by 

𝑅𝐸𝑖𝑗 = 
|𝐷𝑖𝑗

𝑇𝑟𝑢𝑒 − 𝐷𝑖𝑗
𝑃𝑟𝑒𝑑|

𝐷𝑖𝑗
𝑇𝑟𝑢𝑒 ,                                                                              (6 − 1) 

where 𝐷𝑖𝑗
𝑃𝑟𝑒𝑑 is the predicted result (that is, the output of the ANN) and 𝐷𝑖𝑗

𝑇𝑟𝑢𝑒 is 

the result from the Monte Carlo ray-trace (that is, the target output). During the 

neural network training process, performance was evaluated by calculating the mean 

value of the relative error, 

𝑀𝑅𝐸 =
1

𝑛2
∑∑𝑅𝐸𝑖𝑗 .                                                                                  (6 − 2)

𝑛

𝑗=1

𝑛

𝑖=1

 

Reciprocity and conservation of energy are two important restrictions imposed on 

the radiation distribution factor [3]. To ensure that these two restrictions are 

reflected in the predicted result, values of mean reciprocity and mean summation, 

defined 

𝑀𝑅 =
1

𝑛2
∑∑(𝜀𝑖𝐴𝑖𝐷𝑖𝑗

𝑃𝑟𝑒𝑑 − 𝜀𝑗𝐴𝑗𝐷𝑗𝑖
𝑃𝑟𝑒𝑑

𝑛

𝑗=1

𝑛

𝑖=1

)                                                (6 − 3) 

and 

𝑀𝑆 =
1

𝑛2
∑∑𝐷𝑖𝑗

𝑃𝑟𝑒𝑑

𝑛

𝑗=1

,                                                                                  (6 − 4)

𝑛

𝑖=1
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are computed. For a good prediction, 𝑀𝑅 should be near zero and 𝑀𝑆 should be 

near unity. The relative difference between the calculated net heat flux recovered 

from the predicted and true radiation distribution factor matrix, 

𝑀𝐹𝐷 =  
1

𝑛
∑

𝑞𝑖
𝑇𝑟𝑢𝑒 − 𝑞𝑖

𝑃𝑟𝑒𝑑

𝑞𝑖
𝑇𝑟𝑢𝑒 ,                                                                       (6 − 5)

𝑛

𝑖=1

 

is also evaluated. 

Generalization is a term used to describe the ability of an ANN to provide accurate 

output results when input data that have not been used for training are introduced 

into the trained network. Generalization is an essential property of any ANN. The 

network topology and size, as determined by the number of hidden layers and the 

number of hidden nodes, will affect the predicted performance. The performance 

of the trained network is evaluated by comparing its predicted results with data set 

aside for testing. In the current study, in order to facilitate the search for a 

configuration producing relatively good prediction, the ten different ANN 

configurations listed in Table 6.1 were considered. 

Table. 6.1. Comparison of errors associated with various ANN configurations 

for Case Study 1. 

ANN 
Configuration 

Train Error Test Error 

Mean 
MRE (%) 

Mean 
MR 

Mean 
MS 

Mean 
MFD (%) 

Mean 
MRE (%) 

Mean 
MR 

Mean 
MS 

Mean 
MFD (%) 

1-5-1600 2.498 9.3e-5 1.0000 0.1921 5.399 7.3e-5 0.9999 0.1923 

1-10-1600 2.531 8.3e-5 1.0000 0.1826 15.405 5.6e-4 1.0011 0.4651 

1-20-1600 1.944 4.0e-5 1.0000 0.1369 4.716 4.0e-5 1.0000 0.1738 

1-50-1600 0.375 6.6e-5 1.0000 0.0487 9.035 4.3e-4 1.0003 0.3110 

1-5-5-1600 2.524 1.0e-5 1.0000 0.1752 5.445 1.0e-5 1.0000 0.1809 

1-5-10-1600 2.526 1.5e-6 1.0000 0.1749 9.484 2.4-4 0.9991 0.3634 

1-10-20-1600 0.508 5.5e-5 1.0000 0.0763 2.863 7.6e-5 1.0000 0.1196 

1-20-20-1600 0.707 5.3e-5 1.0000 0.0693 1.831 5.8e-5 0.9999 0.0951 

1-50-50-1600 0.0264 1.2e-5 1.0000 0.0481 4.628 1.3e-4 1.0008 0.1631 

 

Note that in Table 6.1, mean 𝑀𝑅 and mean 𝑀𝑆 are averaged over all the 10 training 

datasets and 90 test datasets, with different random weight initialization for each 

input. Both quantities are important for an assessment of the relative success of the 



 87 

ANN analysis. We can see from inspection of the table that almost any 

configuration produces adequate results; however, some of them result in poor 

generalization. For example, the 1-10-1600 configuration produces a mean 𝑀𝑅𝐸 

error of about 15 percent for the test data despite the low error of 2.5 percent for 

the training data. All of the configurations yield the required reciprocity and 

conservation of energy properties of radiation distribution factors. For the three-

layer ANN, when the number of hidden nodes is increased from 5 to 10, 

improvements in mean 𝑀𝑅𝐸 and mean 𝑀𝐹𝐷 are insignificant, indicating that 

increasing the number of nodes does not necessarily lead to better performance. 

For selecting the best configuration, the mean 𝑀𝐹𝐷 for the test data in conjunction 

with the mean 𝑀𝑅𝐸 for the training and test data are both taken into consideration, 

leading to selection of the 1-20-20-1600 configuration in the current example. 

Figure 6.2. Radiation distribution factor matrix produced by the ANN approach 

for a sample of the test data corresponding to 𝜀 = 0.75 (Case Study 1). 

𝑖 =  1, 2, 3, … 

𝑗 
=
 1
,2
,3
,…
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The predicted radiation distribution factor matrix for a sample of the test data 

corresponding to 𝜀 = 0.75 is represented in Fig. 6.2. The printed values of 𝐷𝑖𝑗 are 

too small to read in the image, but the color shading, for which bright red indicates 

Figure 6.3. Comparison of the MCRT-based and ANN-based 

heat flux predictions (Case Study 1). The upper graph verifies 

the expected symmetry and the lower graph shows the 

percentage error between ANN and MCRT. 
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the maximum value (𝐷1,40  =  𝐷40,1  =  𝐷10,11  =  𝐷11,10  =  𝐷20,21  =  𝐷21,20  = 

 𝐷30,31  =  𝐷31,30  ≈ 0.2256) and dark green represents the minimum value (𝐷1,10  

=  𝐷10,1  =  𝐷11,20  =  𝐷20,11  =  𝐷21,30  =  𝐷30,21  =  𝐷31,40  =  𝐷40,31 ≈ 0.0049), 

very clearly reveals the expected symmetry in the matrix.  

Finally, Fig. 6.3 compares the MCRT-based and ANN-based net heat flux 

distributions on the four surfaces of the enclosure depicted in Fig. 6.1 

corresponding to the same ANN test case whose distribution factor matrix is shown 

in Fig. 6.2. The expected symmetry in the net heat flux distribution is evident, and 

excellent agreement is exhibited between the two approaches, with the relative 

difference between them typically on the order of 0.1 percent. It is clear that the 

ANN approach is a potentially powerful alternative to costly ray-tracing in radiation 

heat transfer analysis when a parametric study of surface emissivity is involved. For 

example, once the investment in creating and training the ANN model has been 

made, the time required to create the data in Fig. 6.2 is measured in seconds as 

opposed to hours on a typical desktop computer using the MCRT method. 

6.2.2. Case Study 2: A long box channel with non-uniform emissivity. 

In many radiation heat transfer applications of practical interest, surface emissivities 

vary with both position and instance due to the strong heterogeneity of surface 

properties associated with topography, surface chemistry, contamination, and aging. 

Here “instance” refers both to changes that take place over time for a given 

enclosure, and to differences from one enclosure to the next associated with 

manufacturing tolerances. In practice it is unlikely that the surfaces comprising any 

two enclosures will have exactly the same emissivities. Methods for monitoring the 

temporal variations of emissivity are discussed elsewhere [98, 99]. Here, as a 

practical demonstration, we allow the surface emissivity of the four walls of the 

enclosure geometry shown in Fig. 6.1 to vary from one instance to the next. It is 

assumed for each instance that each wall has a different but uniform emissivity. 
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Therefore, the emissivity of the enclosure for any instance is represented as a vector 

whose four elements are the emissivities of the four walls. In order to use the ANN 

to predict the evolution of the radiation distribution factor matrix either with time 

or from one enclosure to the next, training data are produced using the MCRT 

method with a 5-percent random perturbation of the emissivity of each wall about 

a mean value. In other words, in each instance the emissivities of the four walls are 

randomly perturbed according to 

𝜀𝑖 = 𝜀𝑑(1 ± 0.05 × 𝑟𝑎𝑛𝑑),   𝑖 = 1,2,3,4,                                                    (6 − 6) 

where 𝜀𝑑 is the design wall emissivity and rand is a uniformly distributed random 

number between zero and unity. In this case, four ANN input nodes are used 

corresponding to the four emissivities 𝜀𝑖, while the 1600 output nodes still 

correspond to the 1600 elements of the 40-by-40 radiation distribution factor 

matrix. Again, one hundred numerical experiments were carried out to produce 

data. Twenty percent of the data was used to train the neural network. The 

remaining 80 percent of the data was used as the test data to validate the predictive 

power of the network. 

Table 6.2. Errors associated with 4-100-100-1600 ANN configuration for Case 

Study 2. 

Train Error Test Error 

Mean 

MRE (%) 

Mean 

MR 

Mean 

MS 

Mean 

MFD (%) 

Mean 

MRE (%) 

Mean 

MR 

Mean 

MS 

Mean 

MFD (%) 

1.119 1.5e-4 1.0004 0.5493 34.867 3.2e-4 1.0006 0.7489 

 

Table 6.2 shows the ANN results for the 4-100-100-1600 configuration selected for 

the case under consideration. The results are not as satisfactory as in the case with 

only one emissivity as the input feature. We can see that the mean test error 

associated with predicting the radiation distribution factors is quite high; however, 

they still allow accurate prediction of the net heat fluxes. This is partially because 
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solution of radiation problems is mathematically an integration process, as opposed 

to the solution of conduction problems using differential equations. Integration 

Figure 6.4. Comparison of the percent absolute relative error in the radiation 

distribution factors between a relatively “good” (top) and a relatively “bad” 

(bottom) distribution factor matrix predicted using the ANN (Case Study 2). 
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tends to smooth out errors, whereas differentiation tends to amplify them. Also, a 

mean 𝑀𝑅 of 3.2e-4 and a mean 𝑀𝑆 of 1.0006 shows that the model is yielding the 

required reciprocity and conservation of energy. The relatively high mean 𝑀𝑅𝐸 

error in the test data is due to a small number of high errors in relatively few pixels 

for a small number of samples, as foreshadowed on page 30 in the discussion of Eq. 

(3-12). 

Figure 6.4 compares the percent absolute relative error in the radiation distribution 

factors, defined 

|𝐷𝑖𝑗
𝑀𝐶𝑅𝑇−𝐷𝑖𝑗

𝐴𝑁𝑁|

𝐷𝑖𝑗
𝑀𝐶𝑅𝑇 × 100%, 

for relatively “good” and relatively “bad” distribution factor matrix predictions 

using the ANN. Both results are drawn from the test dataset used in constructing 

Table 6.2. The red-tinted cells in the bottom (bad) matrix of Fig. 6.4, which 

correspond to errors exceeding two percent, reveal that some elements of the 

radiation distribution factor matrix are predicted with relatively poor accuracy 

including one element for which the error is 72 percent. However, these large 

relative errors correspond to small values of 𝐷𝑖𝑗 as is made clear by comparison 

with Fig. 6.2. This means that the relative errors are disproportionately amplified 

due to division by small numbers (see p. 30). Although this produces a large value 

of Mean MRE for the test dataset error in Table 6.2, the small values of these 

distribution factors themselves minimize their effect on the heat flux analysis, 

thereby yielding a small value of Mean MFD.  

Figure 6.5(a) reveals excellent agreement between the net heat fluxes predicted using 

the ANN-based and MCRT-based distribution factor matrices corresponding to the 

upper panel of Fig. 6.4, and Fig. 6.5(b) confirms that the local net heat flux errors 

are generally less than 1.5 percent in this case. Figure 6.6(a) also reveals good 

agreement between the ANN-based and MCRT-based net heat flux distributions 
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even though the distribution factor matrix prediction is relatively bad, and the local 

net heat flux errors shown in Fig. 6.6(b), though somewhat larger than those in Fig. 

6.5(b), are generally well under two percent in this case. We may conclude that the 

Figure 6.5. (a) The ANN-based net heat flux distribution plotted against 

the MCRT-based distribution, and (b) the local percentage differences 

between the two distributions corresponding to the “good” test dataset 

result of Case Study 2. 
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ANN approach works well for the case of a non-uniform emissivity distribution. 

Furthermore, while minimizing Mean MRE is a valid strategy for defining the ANN 

Figure 6.6. (a) The ANN-based net heat flux distribution plotted against the 

MCRT-based distribution, and (b) the local percentage differences between 

the two distributions corresponding to the “bad” test dataset result of Case 

Study 2. 
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hyperparameters, its value should not be interpreted as a measure of the ability of 

the ANN-produced distribution factor matrix to predict local net heat flux. 

6.2.3. Case Study 3: A long box channel with an interior obstruction. 

In Cases 1 and 2 we considered a geometry in which all wall segments have a direct 

view of all other wall segments. We now return to the consideration of the more 

complex geometry involving an interior obstruction which partially blocks the direct 

view of some surfaces from other surfaces. In such cases the MCRT method is the 

only practical approach for analyzing the radiation heat transfer. Howell was among 

the first to predict the emerging dominance of the Monte Carlo method for treating 

radiative heat transfer [1] in such cases. Figure 6.7 represents a benchmark two-

dimensional enclosure that has been used in previous radiation heat transfer studies 

[40, 42, 43, 47, 56-58, 60, 61]. In the current study we have divided it into 40 equal-

area longitudinal surface elements. 

Figure 6.7. The long two-dimensional industrial oven having gray diffuse walls 

(dashes represent individually numbered wall surface elements shown separated 

by non-existent gaps for clarity) and an interior obstruction considered in Case 

Study 3. 
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The flexibility of the Monte Carlo method to accommodate complex geometries 

comes at a significant computational cost when the code must be executed many 

times in the context of a parametric study; e.g., when searching for an optimum 

value of emissivity for a given application. This cost can be significantly reduced by 

replacing the high-fidelity MCRT model with a reduced-order ANN model of 

comparable accuracy in the search algorithm. 

Once again assuming that the emissivity is uniform across all the walls of the 

enclosure, the ANN has only a single input node, corresponding to the emissivity, 

while 1600 output nodes are required to represent the 1600 elements of the radiation 

distribution factor matrix. One hundred numerical experiments were carried out to 

produce training and test datasets and, as before, ten percent of the data were used 

to train the neural network, with the remaining 90 percent used as the test data to 

validate the predictive power and generality of the ANN. 

Table 6.3 shows the ANN results for the 1-100-100-1600 configuration selected for 

this case study. We again see that the MRE error for the test dataset, about 16.6 

percent in this case, is a poor measure of the ability of the distribution factors to 

predict the net heat flux distribution. The ANN model yields the required 

reciprocity and obeys conservation of energy to a high degree of accuracy. 

Table 6.3. Errors associated with 1-100-100-1600 ANN configuration for Case 

Study 3. 

Train Error Test Error 

Mean 

MRE (%) 

Mean 

MR 

Mean 

MS 

Mean 

MFD (%) 

Mean 

MRE (%) 

Mean 

MR 

Mean 

MS 

Mean 

MFD (%) 

1.784 6.0e-4 1.0000 0.0969 16.627 2.4e-4 1.0004 0.3284 
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Figure 6.8(a) compares the MCRT-based and ANN-based net heat flux 

distributions on the surfaces of the enclosure depicted in Fig. 6.7 for a uniform 

emissivity of 0.75, and Fig. 6.8(b) shows the relative difference between the values 

calculated for the net heat fluxes by the two methods. The accuracy—generally 

better than one percent—is quite acceptable. 

Figure 6.8. (a) The ANN-based net heat flux distribution plotted against 

the MCRT-based distribution, and (b) the local percentage differences 

between the two distributions (Case Study 3, 𝜀 = 0.75). 
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6.3. Conclusions and recommendations 

Artificial neural networks (ANNs) are investigated as an alternative to ray-tracing in 

radiation heat transfer applications involving diffuse gray enclosures in the absence 

of a participating medium. Specifically, they are used to predict the radiation 

distribution factor matrix and corresponding net heat flux distribution on the walls 

of long box structures. In each case a feed-forward back-propagation algorithm is 

used to train and test the ANN. Net heat flux results obtained using the ANN 

approach are shown to agree well with those obtained using the standard Monte 

Carlo ray-trace method for the three cases studied: (1) uniform emissivities on all 

walls of a square-cross-section duct, (2) differing emissivities from wall to wall 

perturbed about a design value for the same unobstructed duct, and (3) a rectangular 

duct containing a rectangular obstruction with uniform emissivity on all walls. The 

author recommends the approach introduced here when a parametric study is 

required to determine the optimum value of emissivity for a given application. For 

example, the results for Case Study 2, obtained with much less computational effort 

than would have been required using the MCRT method alone, could be used in a 

quality-control scheme to determine the variability in the net wall heat flux 

corresponding to a five-percent manufacturing tolerance in wall emissivity. The 

ANN approach would be the same for the case of a non-diffuse, non-gray enclosure 

filled with a participating medium as for the case of a diffuse gray enclosure in the 

absence of a participating medium demonstrated in the current effort. This 

encourages the idea that the approach advanced here would be equally applicable—

and even more useful—in these far more complex situations. 
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Numerical Focusing 

Using an Artificial 

Neural Network 

Narrow field-of-view scanning thermistor bolometer radiometers have 

traditionally been used to monitor the earth’s radiant energy budget from low Earth 

orbit (LEO). Such instruments use a combination of cross-path scanning and 

along-path spacecraft motion to obtain a patchwork of punctual observations 

which are ultimately assembled into a mosaic. Monitoring has also been achieved 

using non-scanning instruments operating in a push-broom mode in LOE and 

imagers operating in geostationary orbit [100]. The current contribution considers 

a fourth possibility, that of an imager operating in LEO. The system under 

consideration consists of a Ritchey-Chrétien telescope illuminating a plane two-

dimensional microbolometer array. At large field angles, the focal length of the 

candidate instrument is field-angle dependent, resulting in a blurred image in the 
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readout plane. Presented in this chapter is a full-field focusing algorithm based on 

an artificial neural network (ANN). Absorbed power distributions on the 

microbolometer array produced by discretized scenes are simulated using a high-

fidelity Monte Carlo ray-trace (MCRT) model of the imager. The resulting readout 

array/scene pairs are then used to train an ANN. We demonstrate that a properly 

trained ANN can be used to convert the readout power distribution into an 

accurate image of the corresponding discretized scene. This opens the possibility 

of using an ANN based on a high-fidelity imager model for numerical focusing of 

an actual imager. The emergence of the MCRT method has blurred the line 

between radiation heat transfer and applied optics. This chapter which is based on 

a peer-reviewed article by the author published in Remote Sensing entitled 

“Numerical focusing of a wide-field demonstrates the flexibility of the MCRT 

method”. [63], demonstrates the flexibility of the MCRT method. 

7.1. Introduction 

Traditional earth radiation budget (ERB) instruments such as those deployed on 

the Earth Radiation Budget Experiment (ERBE) [101] and on Clouds and the 

Earth’s Radiant Energy System (CERES) [102] and proposed for the ultimately 

deselected Radiation Budget Instrument (RBI) [103] consist of downward-looking 

telescopes in low Earth orbit (LOE) which scan back and forth across the orbital 

path, as illustrated in Fig. 7.1. While proven effective, such systems incur significant 

weight and power penalties and may be susceptible to eventual mechanical failure. 

Another approach to accomplishing the ERB mission is the Geostationary Earth 

Radiation Budget (GERB) instrument, which consists of a three-mirror imager 

illuminating a microbolometer focal-plane array (FPA) [104]. The ERB mission will 

also be assured by EarthCARE (Earth, Clouds, Aerosols, and Radiation Explorer), 

which includes a Broadband Radiometer (BBR) suite consisting of three sets of 

two-dimensional paraboloid single-mirror optics, each illuminating a 
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microbolometer linear array [100]. Both GERB and BBR rely on optical 

approaches to avoid scanning. In the case of GERB the field angle is limited by the 

extreme altitude of the instrument, which is parked in geostationary orbit. The 

narrow field angle significantly simplifies the optical design, and scanning is then 

achieved by the rotation of the Earth. The BBR suite on EarthCARE achieves 

optical simplification by push-broom operation and the use of a linear array; as in 

the case of scanning instruments, light gathering is limited to the width of a single 

pixel. Here we consider a novel approach in which a wide-field-angle imager is 

placed in LOE and the resulting astigmatism is corrected algorithmically. 

Figure 7.2 is a CERES science product showing the monthly average global 

outgoing longwave radiation for May 2001 [105]. The CERES longwave channel 

is filtered to be sensitive only to Earth-emitted radiation. The false-color map of 

monthly average band-limited flux (Wm−2) is relatively free of sharp edges and 

Figure 7.1. Radiation budget instrument (RBI) [100] scan pattern. 
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finely resolved features. This is equally true of the CERES shortwave channel, 

which is filtered to be sensitive only to Earth-reflected solar radiation. The fact that 

broadband scenes are effectively monochromatic and vary gradually within a given 

swath significantly limits their spatial frequency content. A requirement of any 

next-generation staring imager is that it produces data products capable of 

mimicking those obtained from legacy scanners. In other words, images obtained 

must be relatable to the scanner footprints shown in Fig. 7.1. Consequently, it is 

appropriate to represent Earth scenes as consisting of a relatively modest number 

of directional beams. 

Figure 7.3 represents a generic wide-field-angle ERB imager consisting of an 

entrance aperture, baffled imaging optics, and a plane two-dimensional readout 

array. Two beams of radiation emanating from point sources at infinity are shown 

flooding the entrance aperture. Corresponding point-spread functions (PSFs) in 

Figure 7.2. Global outgoing longwave radiation as mapped using data from the 

Clouds and the Earth’s Radiant Energy System (CERES) instrument (May, 

2001 [105]). 
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the readout plane indicate the distribution of the beam energy there. Depending 

on the design of the optical train, focus will generally be achieved on a curved rather 

than on a plane surface. This is especially true when two-mirror optical systems of 

the Cassegrain or Ritchey-Chrétien type are pushed to their wide-field-angle limits. 

While deemed achievable, technology permitting non-planar microbolometer 

readout arrays has not yet been demonstrated. Therefore, we limit our 

consideration here to plane readout arrays, in which case blurring is expected to 

vary with field angle across the array. The challenge then is to create an accurate 

and computationally efficient algorithm for recovering the original discretized 

scene from the blurred illumination pattern on the readout array. 

Figure 7.3. Schematic representation of a generic wide-field-angle earth 

radiation budget staring imager. 
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7.2. Image deblurring 

Following the formality of Pratt [106] the deblurring problem can be posed as 

𝐻 𝑓(𝑥, 𝑦) ≡ ∫ ∫ ℎ(𝑥 − 𝑢, 𝑦 − 𝑣)𝑓(𝑢, 𝑣)𝑑𝑢𝑑𝑣 = 𝑔𝑒(𝑥, 𝑦) + 𝑛(𝑥, 𝑦)

≡ 𝑔(𝑥, 𝑦),                                                                                (7 − 1) 

where 𝑓(𝑥, 𝑦) is the deblurred image, 𝑔𝑒(𝑥, 𝑦) is the blurred image that would 

have been recorded in the absence of noise 𝑛(𝑥, 𝑦), 𝑔(𝑥, 𝑦) is the actual recorded 

image, ℎ is a point-spread function (PSF), and 𝐻 is an unknown matrix defined by 

the expression. In the discrete version of Eq. (7-1) the double integral is replaced 

by a double sum over a discretized two-dimensional space. Then elements of the 

matrix 𝐻𝑖𝑗 are sought such that 

𝑓𝑖 = 𝐻−1
𝑖𝑗
𝑔𝑗,                                                                                                        (7 − 2) 

where the indices 𝑖 and 𝑗 represent ordered pixel numbers in a two-dimensional 

array. Then 𝑓𝑖 is the deblurred intensity of pixel 𝑖 and 𝑔𝑗 is the recorded intensity 

of pixel 𝑗. It should be emphasized that in discretized two-dimensional space both 

the deblurred image 𝑓𝑖 and the recorded image 𝑔𝑗 are defined by the same number 

of pixels; that is, 𝐻𝑖𝑗 is a square matrix. The symbol 𝐻−1
𝑖𝑗

 represents the inverse of 

the unknown matrix. While posed here as a problem in the space domain, practical 

implementation typically occurs in the frequency domain, in which case the Fourier 

transform dual of the PSF is the optical transfer function (OTF). Heuristically, 

deblurring involves deconvolution of either Eq. (7-1), or its frequency-domain 

dual. In the case of non-blind deblurring, when the PSF (or OTF) is uniform and 

known across the image, the Lucy-Richardson algorithm [107, 108] can be used to 

solve Eq. (7-1). When the PSF is unknown it can often be reasonably modeled, for 

example as a Gaussian distribution having an unknown mean and variance. In this 

case the problem is ill-posed but can still be solved if an independent criterion for 

“good focus” is available against which the success of the solution can be evaluated. 
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In such so-called blind deconvolution schemes a systemic search based on, for 

example, a genetic algorithm (GA) [109], can be conducted to identify the 

combination of deblurred images and uniform PSFs that best reproduces the 

recorded blurred image. Solutions obtained in this way are generally not unique but 

may still be useful. A viable alternative which assures stability and uniqueness is 

regularization [110]. Machine learning (ML) approaches to image deblurring have 

inevitably emerged, mostly in the context of improving PSF estimates [111-115]. 

Figure 7.4 is a scale drawing of a cross-section of a wide-field-angle Ritchey-

Chrétien telescope (RCT) consisting of a field-limiting forward baffle, a baffled 

Figure 7.4. Cross-section of the wide-field-angle Ritchey-

Chrétien telescope (RCT) which is the basis of the current 

investigation. 
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hyperbolic primary mirror, a baffled hyperbolic secondary mirror, and a plane 

readout array. A high-fidelity Monte Carlo ray-trace (MCRT) model of this 

instrument forms the basis for the current investigation. Ashraf et al. [116] have 

previously reported a novel approach to scene recovery by this instrument. In their 

previous approach a mean scene direction was computed for the rays absorbed on 

a given pixel of the readout array during simulated observation of a blackbody 

calibration source. A pixel-by-pixel calibration curve was then established by 

computing the corresponding absorbed power distribution on the readout array. 

This approach was shown to work well for the limited amount of testing to which 

it has been subjected. 

The technique presented in the current contribution is similar to one described in 

Ref. [117], with the important difference that the authors of the cited reference 

start with a discretized well-focused image to which they add known mathematical 

noise and blurring. This is in contrast to our approach in which: 

(1) The readout array power distribution, which is the input to the ANN model, is 

produced by introducing a randomly discretized scene to the high-fidelity MCRT 

optical model of the imaging system, and 

(2) The readout array does not have the same number of pixels as the output of 

the ANN model, which represents the recovered discretized scene. 

Rather than recording a replicate of the scene, the readout array is required only to 

record sufficient information to recover the original scene. Thus, our method is 

fundamentally different from previous deblurring paradigms based on the solution 

of Eq. (7-1). Instead, an artificial neural network (ANN) is used to characterize the 

relationship between the illumination pattern on the readout array and the 

corresponding discretized scene that produced it. The MCRT-based high-fidelity 

model (HFM) of the imager is used to train the ANN by presenting it with a large 

number of pairs of readout array power distributions and corresponding 

discretized scene intensity distributions. Once trained, the ANN may then be used 
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to predict the discretized scene corresponding to any recorded readout array power 

distribution. The logic flow of the technique is illustrated in Fig. 7.5. 

 

 

Step 1. Creation of Scene/Readout array Pairs 

Block 1 in Fig. 7.5 indicates a process in which scenes are synthesized as a collection 

of random-strength beams incident from a discrete set of directions. Each beam, 

representing light from a point source at infinity, consists of a large number of 

parallel rays that flood the entrance aperture of the high-fidelity Monte Carlo ray-

trace imager model of the telescope shown in Fig. 7.4 and represented by Block 2 

in Fig. 7.5. Details of the imager model are similar to those elaborated in Chapter 

3 (pp. 85–94) of Ref. [3]. Block 3 records the output of the imager HFM on a plane 

two-dimensional 19 × 19-pixel readout array. During Step 1, 2000 random-strength 

beams incident from 50 specified directions are input to the imager HFM, 

producing 2000 corresponding power distributions on the readout array. 

Figure 7.5. Numerical focusing logic block diagram. 
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Step 2. Training the Artificial Neural Network (ANN) 

A random selection of 1950 of the 2000 readout array power distributions created 

in Step 1 and loaded into Block 3 are input one at a time into the artificial neural 

network represented by Block 4. For each of these readout array power 

distributions, the synaptic weights of the ANN are adjusted in an iterative process, 

described in Section 7.4, which minimizes the difference between the ANN output 

scene represented by Block 5 and the corresponding target scene in Block 1. 

Step 3. Testing the Artificial Neural Network 

The 50 readout array power distributions created in Step 1 that were not used to 

train the ANN in Step 2 are introduced sequentially into the trained ANN. Then 

the resulting output scene (Block 5) in each case is compared to the target scene 

(Block 1) used to create it. The pixel-by-pixel differences between corresponding 

ANN output and target scenes provide a measure of the success of the proposed 

numerical focusing scheme. 

Step 4. Prediction of unknown scenes from recorded readout-array power 

distributions 

Availability of a properly trained and tested ANN model of the imager renders 

further ray-tracing unnecessary. From this point forward, the trained ANN model 

can be reliably used to convert recorded readout array power distributions to 

corresponding discretized scenes by following the path Block 3→Block 4→Block 

5. Alternatively, the operational instrument, once built, can be calibrated by 

introducing discrete beams from collimated sources incident from directions 

corresponding to the desired directional resolution. Preliminary versions of the 

ANN model can be used in the design phase of instrument development, while 

higher-order, more refined models can be used to yield scientifically accurate 

science data during on-orbit operation of the actual imager. 
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Details of the individual steps are provided in Section 7.3, Section 7.4 and Section 

7.5. 

7.3. Instrument model 

The specific Ritchey-Chrétien telescope (RCT) which informs the current 

investigation is shown in Fig. 7.4. The three ray-traces shown indicate that beams 

entering at different field angles achieve focus on a curved surface (the dashed 

curve). Therefore, the PSF of a beam on the plane readout array will be increasingly 

misfocused with increasing incidence angle. While the results reported in the 

current investigation are specific to this particular optical system, the methodology 

used to obtain them is general and therefore applicable to virtually any optical 

system for which a high-fidelity performance model is available. 

A Monte Carlo ray-trace is performed in which millions of rays are traced from 

each of 50 directions to form beams, each flooding the entrance aperture of the 

telescope shown in Fig. 7.4. Following Ashraf [118], the 50 directions are 

determined by first dividing an imaginary hemisphere surmounting the entrance 

aperture into equal-area sectors. Then the rays forming a given beam are 

constrained to pass parallel to a ray which passes normal to the centroid of one of 

the sectors. The rays are traced through the baffled telescope and eventually 

absorbed on a 361-pixel two-dimensional microbolometer array. Results of a ray-

trace for a one-million-ray beam incident to the aperture at a zenith angle 𝜗 of 10.9 

deg and an azimuth angle 𝜑 of 18.0 deg are shown in Fig. 7.6, and results for all 50 

beams showing the distribution of absorbed power from each of the 50 directions 

on the 19-by-19-element array are given in Fig. 7.7. Each incident beam direction 

is assigned a number ranging from 1 to 50. Assigned beam numbers are indicated 

in red type. In Fig. 7.6 and Fig. 7.7, the red end of the color spectrum represents 

the largest number of rays absorbed by a pixel for a given direction, and the yellow 

end of the spectrum represents the smallest nonzero number of absorbed rays, 
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with green indicating zero rays. Creation of the fifty “primitives” shown in Fig. 7.7 

required about 250 min of machine time on a laptop PC. 

It is clear from inspection of Fig. 7.6 that power from beams incident from a given 

direction is absorbed by several neighboring pixels. The distribution becomes 

increasingly distorted moving from 𝜗 = 10.9 to 𝜗 = 33.1 deg for a given value of 

𝜑. Also, the number of rays in the original beam that reach the readout plane 

decreases with zenith angle. 

Figure 7.6. Distribution on the 19-by-19 microbolometer array of collimated 

rays forming Beam 1 in Figure 7.7. 
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7.4. Use of the Artificial Neural Network 

In the current application the input layer of an ANN network consists of 361 nodes 

describing the power distribution on the readout array, and the output layer 

consists of 50 nodes describing the corresponding intensities of the beams incident 

to the instrument aperture. The ANN created for the current application features 

a 361-node input layer, two 100-node hidden layers, and a 50-node output layer. 

The output layer error can be determined by direct comparison between the 

recovered scene (Block 5 in Fig. 7.4) and the target discretized scene (Block 1 in 

Fig. 7.4). Training of the ANN adjusts its synaptic weights to minimize the errors 

between these two images. A supervised back propagation (BP) learning scheme 

was used as the training procedure for feed-forward networks. Also, an Adam 

optimization algorithm is used in the present study to converge the ANN output 

with the target scenes during the training process. Mean-squared error (MSE) is 

used as the objective loss function for the ANN optimization. The learning rate 

Figure 7.7. Distributions on the readout plane of rays incident to the 

instrument aperture from 50 directions. 
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was ultimately set to 0.0002. Training of the neural network is terminated when a 

predetermined maximum number of training cycles have been completed. In the 

current study 40,000 iterations were found as this maximum number to produce 

good results. 

The relative error of predicted output i is defined by 

𝑅𝐸𝑖 =
|𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖|

𝑡𝑎𝑟𝑔𝑒𝑡𝑖
,                                                                         (7 − 3) 

where 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 is the scene intensity predicted by the ANN, and 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 is the 

corresponding known scene intensity. In the current investigation, performance is 

evaluated by calculating the mean value of the relative error, 

𝑀𝑅𝐸 =
1

𝑛
∑𝑅𝐸𝑖

𝑛

𝑖=1

,                                                                                          (7 − 4)  

where 𝑛 = 50 for the predicted 50 incident directions in the scene. 

7.5. Implementation and results 

We create 2000 discretized scenes by combining the 50 primitive beam illumination 

patterns in Fig. 7.7 after first multiplying each of them by a random scaling factor 

representing the relative scene intensity corresponding to each direction. This 

produces a set of 2000 readout array power distributions corresponding to the 2000 

scenes viewed by the instrument. Fig. 7.8(a) shows a typical scene intensity 

distribution and Fig. 7.8(b) shows the corresponding distribution of rays on the 

readout array. Even though the ray distribution in Fig. 7.8(b) is produced by the 

single random scene in Fig. 7.8(a), essential features of the optical system are 

already readily apparent. 

We randomly select 1950 of the 2000 readout array/incident-scene pairs to train 

the ANN. Each of the 1950 361-pixel readout array power distributions is input to 

the ANN with the goal of reproducing the target 50-element scene. The training 
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process uses the optimization algorithm outlined in Section 7.4 to automatically 

adjust the synaptic weights of the ANN to minimize the global difference between 

the 1950 target scene intensity distributions and the 1950 scene intensity 

distributions returned by the ANN. It is emphasized that the ANN is used to solve 

the inverse problem directly based on the data obtained from the solution of the 

forward problem using a high-fidelity MCRT model. 

We first test the ANN (i.e., establish its accuracy) by introducing the 50 sets of 

readout array power distributions not already used for training into the trained 

ANN to produce 50 test scenes. We then compare the test scenes created by the 

ANN with the corresponding target scenes. Figure 7.9 uses color variations to 

represent the fifty test “Earth” scenes and the corresponding scenes obtained using 

the ANN. In the figure, the red end of the color spectrum represents higher 

intensity and the green end represents lower intensity. While the similarity between 

Fig. 7.9(a) and Fig. 7.9(b) is evident, with many red and green groupings being 

clearly identifiable in both, it is also possible to visually discern differences. 

Figure 7.8. (a) A typical scene power distribution over 50 directions, and (b) 

the corresponding distribution of rays on the readout array. 
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Figure 7.10 shows the direction-by-direction percentage difference in the scenes in 

Fig. 7.9(a) and Fig. 7.9(b). In the figure, the green cells indicate percentage 

differences of less than ±1.0 percent, and the pink cells indicate differences of 

greater than ±1.0 percent. Although the font size in the figure makes individual 

Figure 7.9. Each row represents (a) a random relative intensity distribution 

incident to the entrance aperture from 50 directions and (b) the corresponding 

directional relative intensity distribution produced by the ANN. 
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numbers difficult if not impossible to read, most of the pink cells in the left-hand 

third of the figure show values of less than two percent, while a few of the pink 

cells in the right-hand third show values exceeding 100 percent. The left-to-right 

degradation of the ANN scene-recovery accuracy is attributable to the declining 

signal strength with increasing beam number. This conclusion is justified by 

reference to Fig. 7.8(b), which clearly shows the roll-off of absorbed power with 

distance from the center of the readout array, and to Fig. 7.7, which shows that 

Beams 41 through 50 are responsible for illuminating the outer edges of the array. 

The randomness and unordered sequencing of the 50 scenes used to produce Fig. 

7.9 and Fig. 7.10 make it difficult to visually assess the remarkable potential of 

numerical focusing based on artificial neural networks. A clearer demonstration of 

Figure 7.10. Map of the percentage differences between the two images shown 

in Figure 7.9. Green represents an error of within ±1.0 percent, and pink 

represents an error of greater than ±1.0 percent. 
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its potential is obtained based on the ordered sequence of fifty scenes shown in 

Fig. 7.11(a). In the figure each of the fifty scenes, or horizontal strips, can be 

thought of as emanating from a swath of the Earth that might correspond to an 

appropriate number of successive RBI scans illustrated in Fig. 7.1. Figure 7.11(a) 

would then be the result obtained by assembling the fifty RBI-like footprints into 

an Earth-emitted or Earth-reflected solar image of a region of a notional Earth. 

Figure 7.11(b) is the assembled sequence of 50 scenes produced by the ANN when 

the 50 readout array power distributions corresponding to the 50 scenes in Fig. 

7.11(a) are input to the ANN. 

The scene recovery error associated with a low signal-to-noise ratio in the final ten 

beam directions is apparent in the right-most portion of Fig. 7.11(b). Otherwise 

the ability of the ANN numerical focusing scheme to accurately recover the 

incident scene from the defocused readout array power distribution is well 

demonstrated.  

Figure 7.12 shows the direction-by-direction percentage difference in the scenes in 

Fig. 7.11(a) and Fig. 7.11(b). In the figure, the green cells indicate percentage 

differences of less than ±0.25 percent, and the pink cells indicate differences of 

greater than ±0.25 percent. The ability of the ANN to produce results that are 

consistently within one-quarter of a percent of the actual scene when the scene is 

so dissimilar to the 2000 random scenes used for training and testing is evidence 

of strong generalization and a low likelihood of overfitting. 
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Figure 7.11. Two sets of 50 horizontal strips, each representing the relative 

beam power distribution incident to the instrument aperture from 50 directions. 

(a) Target scenes used to create the ANN input, and (b) the corresponding 

ANN output. 
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7.6. Summary and conclusions 

Results of the proof-of-concept investigation reported here are limited to scenes 

consisting of 50 directionally incident beams imperfectly focused onto a 361-pixel 

microbolometer array. No attempt has been made to optimize or otherwise 

improve the results by increasing the directional resolution of the scene or the 

spatial resolution of the readout array. Even using these relatively coarse scene and 

readout array resolutions, we are able to obtain scene recovery accuracy at the sub-

one-percent level over the center portion of the telescope field-of-view using an 

artificial neural network. An implication of the effort reported here that should not 

be overlooked is that, once an ANN has been trained on the basis of a high-fidelity 

Figure 7.12. Map of the percentage differences between the two images shown 

in Figure 7.11. Green cells indicate errors less than ±0.25 percent, pink cells 

indicate errors greater than ±0.25 percent. 
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MCRT model of the optical system, the much faster low-order model can be used 

in subsequent performance evaluation of the system with a significant reduction in 

computer resources. This means that the actual instrument, once accurately 

modeled, can provide on-orbit Earth radiation scene observations in real time. An 

alternative to relying upon the high-fidelity MCRT model to tune the ANN model 

would be preflight calibration of the actual instrument. This would involve the use 

of a steerable beam light source of known intensity in a thermal-vacuum chamber. 

During on-orbit operation the elements of the two-dimensional readout array 

would be time-sampled to obtain a sequence of intensity distributions incident to 

the imager entrance aperture from the discrete directions for which it was trained. 

The inverse optical model is sufficiently fast to obtain these images in real time. 

Note that the image obtained is discretized even though the scene being observed 

is continuous, as is true in the case of any imager based on an ordinary focal-plane 

array (FPA). However, in this case the number of scene pixels—fifty in the current 

application—is generally different from the number of FPA pixels—361 in the 

current application. In a future effort the relationship between these two numbers 

could be studied in an effort to maximize the accuracy of the method. 

We conclude that ANNs offer a viable means for creating computationally efficient 

models of complex optical systems from computationally intensive high-fidelity 

models based on the MCRT method. Specifically, while the MCRT method 

requires more than four hours to solve the forward problem of readout array 

illumination, the solution, once obtained, may be used to train an ANN to solve 

the much more interesting inverse problem of recovering the incident scene in real 

time. 
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Recovery of  Water 

Cloud Properties Using 

an Artificial Neural 

Network 

The influence of water clouds on the planetary energy budget depends on cloud 

top height, thickness, liquid water content, and droplet size distribution. Sun-

photometry is one of the tools available for determining the latter two of these 

properties. Presented is a novel approach for interpreting the angular distribution 

of cloud radiance at nadir when viewed from below in terms of mean droplet size 

and liquid water content using an artificial neural network (ANN). A Monte Carlo 

ray-trace (MCRT) model based on Mie scattering is used to predict the angular 

distribution of transmitted solar radiance at nadir for a range of droplet size and 
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cloud liquid water content. Once a sufficiently large population of numerical 

experiments has been carried out, the results are used to train an artificial neural 

network. While creation of the ANN is numerically intensive, once created it can 

be used for real-time recovery of cloud properties from sun-photometer 

measurements. This chapter is based on an article by the author currently in press 

for publication in Remote Sensing entitled “Recovery of Water Cloud Properties 

from Solar Aureole Photometry Using an Artificial Neural Network”.  

8.1. Introduction 

Water clouds play an essential role in determining weather and climate [119-124]. 

Atmospheric aerosols may influence the climate either directly—by scattering and 

absorbing radiation—or indirectly—by acting as cloud condensation nuclei. Water 

clouds, once formed, are strong scatterers of solar radiation depending on their 

liquid water content and their liquid droplet size distribution. Measurement of 

cloud properties is key to building cloud models. 

Sun-photometry, or aureolemetry, is a relatively inexpensive approach to cloud 

metrology when compared to the alternative of Raman lidar sounding [125], 

especially if the latter is to be implemented from low Earth orbit. In sun-

photometry the measured angular distribution of cloud radiance observed from 

below uses a physics-based model to tease out the cloud properties. This is an 

inverse parameter estimation problem which can be stated, “given an observed 

angular distribution of solar radiation under a cloud bank, find the values of mean 

droplet size and cloud liquid water content that produced it.” We seek a 

computationally efficient and accurate strategy for solving this inverse problem in 

real time, that is, during observation. Our approach is based on that bastion of 

artificial intelligence, the Artificial Neural Network (ANN). 
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8.2. Simulation of scattering in water clouds 

Consider the situation in which the circumsolar sky radiance (Wm-2sr-1) is 

monitored from below. Even on a perfectly cloudless day we find that the sky 

radiance decreases from a large value 𝐼1 at the edge of the solar disk (𝜗 = 𝜗𝑒 ≈ 0.3 

deg) to a smaller uniform value 𝐼2 sufficiently far from the solar disk. The radiance 

distribution in the solar aureole may then be written 

𝐼(𝜗) = (𝐼1 − 𝐼2)𝑓(𝜗) + 𝐼2 ,                                                                            (8 − 1) 

where 𝑓(𝜗) is a monotonically decreasing function of 𝜗 varying from 𝑓(𝜗𝑒 ) = 1 

to 𝑓(𝜗𝑎) → 0 as 𝜗 → 𝜗𝑎, where 𝜗𝑎 is the angle at which the sky radiance can be 

considered uniform. The values of both 𝜗𝑒 and 𝜗𝑎 are somewhat vague, and so 

experimental results are normally presented over a range of 𝐼 and 𝜗 where both 

can be conveniently measured. Measurements are typically made using a sun-

photometer, or aureolemeter, with direct sunlight masked by an occulting element 

[126] or a solar radiation trap [127, 128]. Generally speaking, the values of 𝐼1, 𝐼2 

and the angular extent of the solar aureole are functions of droplet concentration 

and size distribution and wavelength. 

8.2.1. Mie scattering in the MCRT environment 

Mie scattering, which describes the phenomenon that occurs when light interacts 

with a particle that is similar to or larger than the wavelength of the light, is 

commonly used to simulate the interaction of light with atmospheric aerosols. 

Although scattering centers are usually assumed to be spherical, according to 

Bohren and Huffman [129], Mie theory provides a first-order description of optical 

effects in non-spherical particles and correctly describes many small-particle effects 

even when they are not immediately obvious. 

According to the Mie scattering model, naturally polarized monochromatic light 

will be scattered into several lobes that are symmetric across the plane of incidence 
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but heavily favor forward-scattering (0 deg), as illustrated in Fig. 8.1. The refractive 

index m relative to air of pure water in the solar spectrum is essentially real, so that 

scattering is elastic; i.e., the power carried by a scattered ray remains constant. 

In 2002, Mätzler [130] published Matlab functions that serve as the foundation of 

our MCRT model. According to Mätzler the electric field distribution in the far 

field of a single scattering event may be expressed in spherical coordinates as 

𝐸𝑠𝜗 =
𝑒𝑖𝑘𝑟

−𝑖𝑘𝑟
𝑐𝑜𝑠𝜑 𝑆2(𝑐𝑜𝑠𝜗)                                                                           (8 − 2) 

and 

𝐸𝑠𝜑 =
𝑒𝑖𝑘𝑟

𝑖𝑘𝑟
𝑠𝑖𝑛𝜑 𝑆1(𝑐𝑜𝑠𝜗),                                                                              (8 − 3)  

where 

Figure 8.1. Cross-section in the plane of incidence showing the 

angular distribution, in degrees, of a Mie scattering event from a 

spherical liquid water droplet (𝑚 =  1.304 –  𝑗 0.24 ×  10−6) of 

radius 𝑎 =  1 μm for a wavelength 𝜆 =  0.55 μm. 
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𝑆1(cos 𝜗) =  ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

 (𝑎𝑛𝜋𝑛 + 𝑏𝑛𝜏𝑛)                                              (8 − 4) 

and 

𝑆2(cos 𝜗) =  ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

 (𝑎𝑛𝜏𝑛 + 𝑏𝑛𝜋𝑛) .                                            (8 − 5) 

In Eqs. (8-2) and (8-3), 𝑟, 𝜗, and 𝜑 are the usual spherical coordinates, and 𝑘 =

2𝜋/𝜆 is the angular wavenumber; in Eqs. (8-4) and (8-5) 𝑎𝑛 and 𝑏𝑛 are standard 

Mie coefficients whose formulas are given in Reference 130; and 

𝜋𝑛 = 
2𝑛 − 1

𝑛 − 1
cos 𝜗 𝜋𝑛−1 − 

𝑛

𝑛 − 1
𝜋𝑛−2                                                     (8 − 6) 

and 

𝜏𝑛 =  𝑛 cos 𝜗 𝜋𝑛 − (𝑛 + 1)𝜋𝑛−1 .                                                                 (8 − 7) 

In the MCRT environment, the angular distribution of scattered rays is determined 

using the scattering amplitude functions 𝑆1 and 𝑆2. Because the current application 

deals with naturally polarized light, only two-dimensional scattering need be 

considered; radiance does not vary with azimuth angle 𝜑 and so we are concerned 

only with the zenith angle 𝜗. For each ray, we draw a pseudorandom number 𝑅𝜗 

and use it to calculate the corresponding scattering angle 𝜗𝑠 by numerically solving 

the integral equation 

𝑅𝜗 = 
∫ √𝑆1

2 + 𝑆2
2𝑑𝜗

𝜗𝑠
0

∫ √𝑆1
2 + 𝑆2

2𝑑𝜗
2𝜋

0

.                                                                                 (8 − 8) 

With the scattering angle calculated we then draw the next available pseudorandom 

number 𝑅𝑑 and use it to calculate the distance 𝑑𝑠 the ray travels before being 

scattered again [3] (p. 161), 
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𝑑𝑠 = −
1

𝜎𝑒
ln(1 − 𝑅𝑑).                                                                                    (8 − 9) 

In Eq. (8-9), 𝜎𝑒 is the monochromatic aerosol extinction coefficient, which is 

related to the droplet mean size and the liquid water content, as developed in Eqs. 

(8-10) – (8-14). Each ray is scattered a predetermined maximum number of times 

before exiting a cloud, and the scattering angle and distance for each scattering 

event are stored for later use. 

Finally, we assume independent scattering in the present treatment. That is, we 

assume that the observable effect of multiple scattering events can be summarized 

as a single scattering event. Dependent scattering occurs when particles are so 

densely packed that their electromagnetic fields interact with those of their 

neighbors, an effect excluded in ordinary Mie scattering theory. Bressel and Reich 

[131] have studied dependent scattering in the Monte Carlo ray-trace environment 

and present results which quantify the departure from (independent) Mie scattering 

due to this effect. The inclusion of dependent scattering in our model would 

presumably improve its ability to represent actual field data, thereby enhancing the 

success of our ANN-based strategy for recovering cloud properties from sun-

photometer observations. 

8.2.2. Cloud properties 

The artificial neural network used to recover the cloud properties must be trained 

and validated using a large sky-radiance database that covers the range of cloud 

properties likely to be encountered. In the absence of a sufficiently massive 

experimental database, we have derived and used a heuristic cloud-radiance model 

to create one. The solar disk, when viewed from the Earth on a clear day, subtends 

a half-angle of about ±0.3 deg, and is surrounded by an aureole of scattered light 

out to viewing angles of 7-9 deg. However, when observing the sun from below a 

sufficiently thick cloud bank, the well-defined solar disk is replaced by a circular 

region of the sky in which the intensity diminishes asymptotically with viewing 
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zenith angle, as described by Eq. (8 - 1). In the extreme case of a very thick cloud 

bank, it is no longer possible to locate the sun in the uniformly radiant sky. Because 

of the forward directional bias associated with Mie scattering, solar radiation 

incident to the top of the cloud bank at angles beyond 0.3 deg contribute 

progressively less to the circumsolar radiance viewed from below as the incidence 

angle increases. Therefore, as a matter of convenience, our cloud radiance model 

ignores radiation incident to the top of the cloud bank at zenith angles greater than 

0.3 deg. Although compromised to the extent that cloud irradiation at zenith angles 

beyond 0.3 deg may be important from the point of view of cloud science, our 

model produces angular distributions of cloud radiance consistent with everyday 

experience on a gloomy day and in qualitative agreement with those reported in the 

literature [127, Figs. 8 and 10]. More to the point, and as subsequently 

demonstrated, our model produces a sky radiance angular distribution that is 

sensitive to cloud droplet mean size and liquid water content in cloud banks 

through which a solar aureole is visible. It is strenuously emphasized that, while the 

cloud model invoked here is intended to capture the essential elements of cloud 

optical physics, the author makes no claim as to its ability to match actual field 

observations. The goal of this contribution is not to shed new light on cloud 

science per se, but rather to establish the utility of a new measurement tool capable 

of furthering cloud science. 

Observations of the solar aureole are often interpreted assuming diffraction as the 

primary scattering mechanism [127], but property recovery accuracy is expected to 

be improved using the more realistic Mie scattering model described in Section 

8.2.1. In the current contribution, the gathering of scattered radiation by a sun-

photometer, or aureolemeter, is simulated using the Monte Carlo ray-trace (MCRT) 

method [3]. In a previous simulation of solar aureolemeter performance using the 

MCRT method [128], it was found to be necessary to trace an excessively large 

number of rays to assure the desired accuracy. The current application involves a 
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parametric study requiring many ray traces in which the aerosol properties are 

varied from one ray-trace to the next. In anticipation of the implied potential for 

overloading available computational resources, we have developed an efficient ray-

trace strategy in which far fewer rays are required to yield the same accuracy. We 

then use this cloud scattering model to produce the extensive dataset required to 

compose, train, and test an artificial neural network (ANN) capable of recovering 

H2O droplets properties from solar aureole observations. 

To demonstrate the methodology introduced here, we consider only the liquid 

H2O droplet present in mature clouds. While all water cloud droplets are formed 

by the condensation of water vapor on dry aerosol cores such as volcanic ash, fine 

sand, sea salt, and pollen, we assume here that the resulting droplets are large 

compared to their original dry cores. This allows us to consider, without 

compromising the validity of the methodology, only droplets having the refractive 

index of pure water, a constraint that can be relaxed in future applications. The 

creation of candidate H2O droplets in this scenario requires the convergence of 

concentrations of dry aerosols and a saturated air mass [119-124]. We further 

assume that mixing has progressed to the point that all of the dry aerosols have 

been consumed and local thermodynamic equilibrium has been established 

between the liquid and vapor phases. The type and concentration of available dry 

aerosols and water vapor depend on geography and season. Local relative humidity 

directly impacts the number and size distribution of water droplets in a portion of 

the sky. It follows that particulate-level metrology of the cloudy sky provides 

information of interest to weather and climate modelers. While cloud formation, 

evolution, and dissipation is a dynamic process, the observations modeled here are 

intended to simulate quasi-stationary conditions. 

A robust cloud model must include the properties that characterize cloud structure. 

For each numerical experiment we specify the size of spherical water droplets in 

terms of a mean radius 𝑎, ranging from 1 to 50 μm, and the cloud liquid water 
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content 𝐿𝑊𝐶 ranging from 0.5 to 1.5 gm-3. Here we define 𝐿𝑊𝐶 as the mass of 

water in a specified volume of dry air. The essential scattering behavior of the cloud 

can be deduced from these two properties. 

The wavelength λ used in the model is 0.55 µm, which lies near the center of the 

visible spectrum. The refractive index of water droplets at this wavelength is 𝑚 = 

1.304 –  𝑗 0.24 ×  10−6. Therefore, absorption of visible light in the cloud can 

be safely neglected compared to scattering. As demonstrated by Platt [15], this is 

not generally true in the infrared, so the applicability of the model developed here 

is limited to the visible part of the spectrum. This means that for pure water 

droplets the extinction efficiency 𝑄𝑒  is essentially equal to the scattering efficiency 

𝑄𝑠. Thus, the Mie extinction efficiency 𝑄𝑒 is  

𝑄𝑒 ≈ 𝑄𝑠 =
2

𝑥2
 ∑(2𝑛 + 1)(|𝑎𝑛|

2 + |𝑏𝑛|
2)

∞

𝑛=1

,                                          (8 − 10) 

where 𝑥 ≡ 𝑘𝑎 = 2𝜋𝑎/𝜆, the size parameter.  

The number density 𝑛 of water droplets in a cloud of volume 𝑉𝑐 is related to its 

liquid water content by 

𝑛 =  (
𝐿𝑊𝐶

𝜌

4𝜋

3
𝑎3⁄ )

𝑉𝑑𝑎
𝑉𝑐
,                                                                            (8 − 11) 

where 𝜌 is the mass density of liquid water in gm-3 and 𝑉𝑑𝑎 is the volume of dry air 

within the cloud. In the simulation carried out here we assume that the 

ratio 𝑉𝑑𝑎 𝑉𝑐⁄ ≈ 1 for all practical purposes [132].1 Given the droplet number 

density and the Mie extinction efficiency, we can find the collision cross section 𝜎𝑐, 

the mean free path 𝐿 between scattering events, and the extinction coefficient 𝜎𝑒; 

                                                 

1  𝑉𝑐 = 𝑉𝑙 + 𝑉𝑔 and if all available H2O vapor has condensed 𝑉𝑔 = 𝑉𝑑𝑎. According to Pelkowski and Frisius 

[131] (p. 2433), 𝑉𝑙 𝑉𝑔⁄ ≪ 1 in a cloud. Thus, 𝑉𝑐 𝑉𝑑𝑎⁄ = 𝑉𝑙 𝑉𝑑𝑎⁄ + 1 ≈ 1. 



 129 

𝜎𝑐 = 4𝜋𝑎2𝑄𝑠 ,                                                                                                 (8 − 12) 

𝐿 =
1

𝑛𝜎𝑐
,                                                                                                          (8 − 13) 

and 

𝜎𝑒 = 𝜎𝑠 =
1

𝐿
.                                                                                                   (8 − 14) 

The cloud physical depth 𝑑 can now be invoked to obtain its optical depth 𝜏 =

 𝜎𝑒𝑑. 

8.2.3. MCRT-based multiple scattering simulation 

A slab of cloudy atmosphere with a thickness 𝑑 = 500 m is assumed to be 

populated by spherical water droplets suspended in otherwise fully transparent dry 

air and having a specified size distribution 𝑛(𝑎). Their relative refractive index with 

respect to air is assumed to be 𝑚 = 𝑛 + 𝑖𝑘 = 1.304 –  𝑖 0.24 ×  10−6 

Figure 8.2. Ray-trace concept for cloud radiance and aureolemeter 

simulation (the beam diameter and detector size are not drawn to scale). 

The blue ray is successful but the red ray is unsuccessful. 
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corresponding to 𝜆 =  0.55 μm. Figure 8.2 is a schematic representation of 

individual rays traversing the simulation space. Consistent with the ideas 

introduced in Section 8.2.2, a collimated beam of sunlight with diameter 𝐷 is 

normally incident on the upper surface of the slab representing the top of a cloud 

bank. We have found that varying the incidence angle of individual rays within this 

narrow range does not influence the outcome of the numerical experiment. Due 

to the relatively small size of the aureolemeter entrance aperture, a large number of 

rays is required to adequately simulate its illumination. This runs counter to the 

need for a computationally fast simulation.  

Individual rays traced inside the cloud are deemed to be either successful or 

unsuccessful. The ray that strikes the photometer in Fig. 8.2, represented by the 

solid black arrows, is an example of a successful ray, while the ray that misses the 

photometer, represented by the dashed black arrows, is deemed unsuccessful. 

Back-scattered rays which reach the upper boundary of the simulation space are 

Figure 8.3. Ray-trace for (a) natural scattering and (b) for forced scattering in a 

vertically finite cloud for 𝑁 = 10 scattering events. 
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abandoned and a new ray is launched into the solution space. Finally, when a ray 

reaches the underside of the cloud it is assumed to either enter or miss the 

photometer; both instances are archived. 

In a scattering model, the path of a ray can be determined by 2𝑁 + 1 random 

numbers for 𝑁 scattering events. Figure 8.2 illustrates a two-dimensional model 

with only two scattering events per ray. For two successive scattering events, 

random number 𝑅1 determines the location where the ray enters the cloud, 

random numbers 𝑅2 and 𝑅4 determine the distance the ray travels inside the slab 

between scattering events using Equation (8-9), and random 

numbers 𝑅3 and 𝑅5 determine the scattered direction of the ray, using Equation 

(8-8). 

It is convenient to distinguish between natural scattering and forced scattering. By 

natural scattering we mean that rays entering the cloud from the top are scattered 

inside the cloud for up to 𝑁𝑚𝑎𝑥  scattering events. Each scattering event has two 

corresponding results: the distance the ray travels inside the cloud before 

scattering 𝑑𝑠, and the new direction 𝜃𝑠  based on the Mie scattering model. The 

number 𝑁𝑚𝑎𝑥 is a predefined value to be determined. Figure 8.3(a) shows a ray-

trace using the natural scattering model for twenty rays with 𝑁𝑚𝑎𝑥  = 10 scattering 

events. 

We observe that none of the twenty rays in Fig. 8.3(a) are incident to the small 

photometer aperture at the center of the cloud lower boundary. Traced rays can 

fail in three different manners in the natural scattering model: 

1. They can be backscattered and exit the cloud from the upper boundary. 

2. They can exit the cloud through one of the lateral boundaries. 

3. They can exit through the lower boundary without being detected. 
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Because of the small size of the photometer entrance aperture, it is very rare for a 

ray that survives the first two failure modes to intersect it. 

It is obvious that during natural scattering an inadequate number of rays will be 

counted to obtain a statistically meaningful distribution of rays on the aperture. 

Even if the number of rays reaching the photometer is statistically significant, their 

number may still be insufficient to determine a meaningful angular distribution. 

Large numbers of rays must be traced in the natural scattering model, making it 

computationally extremely expensive. The natural scattering model cannot be used 

by itself because of its high demand on computational resources due the excessive 

number of rays that must be traced. However, it is still useful in combination with 

the concept of forced scattering. In forced scattering every ray is obliged to enter 

the photometer after a number 𝑁 of scattering events, assuming it has not already 

exited the cloud. Natural scattering, but with a lesser number of rays traced, is then 

used to estimate the likelihood of the eventual occurrence of a given forced ray 

trajectory. 

In natural scattering it is recognized that if a sufficiently large number of rays are 

traced, a statistically significant number will intercept the aperture in any given 

angular bin. Therefore, if the ray at the final scattering event is forced to enter the 

aperture, a ray history is involved that would eventually have occurred in natural 

scattering. In the forced scattering model, as in the case of natural scattering, the 

number of scattering events 𝑁 is predefined. If the ray survives to the final 

scattering event, it is forced to continue to the photometer. This principle is 

illustrated in Figure 3(b), which shows forced scattering in a vertically finite, 

laterally infinite cloud with twenty rays and 𝑁 = 10 scattering events. 

Figure 8.3(b) shows that 18 of the 20 rays are successful in that they are incident to 

the small entrance aperture in the center of the lower cloud boundary. It is obvious 

that forced scattering in a vertically finite cloud significantly increases the number 

of successful rays compared to natural scattering. The likelihood of occurrence, or 
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weight 𝑤𝑖, of a forced-scattered ray trajectory is determined by counting successful 

rays in natural scattering experiments; that is, 

𝑤𝑖 =
𝑠𝑖

∑ 𝑠𝑗
𝑁𝑚𝑎𝑥
𝑗=1

, 𝑖 = 1,2, … ,𝑁𝑚𝑎𝑥 ,                                                     (8 − 15) 

where 𝑤𝑖 is the probability that a ray is collected by the photometer after the 𝑖th 

scattering event, 𝑠𝑖 is the number of successful rays in natural scattering after 𝑖 

scattering events, and 𝑁𝑚𝑎𝑥  is the maximum number of scattering events. 

Figure 8.4 shows the values of the natural scattering weights as a function of the 

number of rays traced. It is based on 49 MCRT experiments, each involving 25 

million rays traced and together requiring a total of 20 hours of execution time on 

an 806-GFlops/s system. 

The average probability 𝑝𝐾,𝑗 that the ray will enter angle bin 𝑗 of the photometer 

after a given maximum number of scattering events 𝑁𝑚𝑎𝑥 = 𝐾, is  

Figure 8.4. Weights determined from 49 natural scattering experiments, 

involving 25M rays per experiment, as a function of the number of 

scattering events, computed using Equation (8-15). 
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𝑝𝐾,𝑗 = ∑ 𝑤𝑖𝑝𝑖,𝑗 ,

𝑁𝑚𝑎𝑥=𝐾

𝑖=1

                                                                                    (8 − 16) 

where 𝑝𝑖,𝑗 is the probability that a ray strikes the photometer at 

angle 𝑗 after 𝑖 scattering events, and 𝑁𝑚𝑎𝑥  is maximum number of scattering 

events.  

Figure 8.5 is a probability density function computed using Equation (8-16) for a 

range of values of the maximum number of scattering events, 𝐾 = 𝑁𝑚𝑎𝑥, and 

Figure 8.6 is a plot of the mean relative difference between the average of two 

consecutive curves in Figure 8.5, defined 

Mean Relative Differene = 〈100(𝑝𝐾,𝑗 − 𝑝𝐾−1,𝑗)/𝑝𝐾,𝑗  〉  (%)           (8 − 17) 

Arbitrarily using a 5% Mean Relative Difference as a convergence criterion, we 

obtain 𝑁𝑚𝑎𝑥 = 39. Figure 7 is the PDF corresponding to Equation (8-16) 

with 𝐾 = 𝑁𝑚𝑎𝑥 = 39 for a water droplet mean size of 25.6 µm and cloud liquid 

water content of 1.0165 gm-3, yielding a scattering coefficient of 𝜎𝑒 = 0.2212 m-1. 

Figure 8.5. Average probability density functions (PDFs) 

corresponding to 𝑁𝑚𝑎𝑥 = 𝐾 scattering events. 
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Figure 8.6. Convergence of the Mean Relative Difference with the 

number of maximum scattering events. 

Figure 8.7. Probability distribution function (PDF) for a water droplet mean size 

of 𝑎 = 25.6 μm and a cloud liquid water content 𝐿𝑊𝐶 = 1.0165 gm-3 (𝜆 = 0.55 μm). 
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8.2.4. Parameterization of the PDF profile 

Fig. 8.8 shows the PDF profiles for the incident zenith angle at the photometer for 

combinations of water droplet mean size and liquid water content selected because 

they produce distinctively different profiles. The profiles in the left-hand column 

are plotted on a linear scale, while those in the right-hand column are the same data 

plotted on a semi-log scale. The PDF profiles in the linear plots can be divided into 

three segments. Segment 1 lies to the left of the first vertical line, where the profile 

is relatively flat; segment 2 is the steeply sloped segment between the two vertical 

lines, and segment 3 is the more gently sloped segment lying to the right of the 

second vertical line. The first vertical line is drawn at the incident angle where the 

local slope goes above a predetermined threshold, and the second vertical line is 

drawn where the local slope drops back below the same threshold. The three 

segments can be characterized using five parameters. The first parameter 𝑐1 is the 

average of the probability in segment 1, the second parameter 𝑐2 is the probability 

at the intersection point of the profile with the first vertical line, and the third 

parameter 𝑐3 is the probability at the intersection of the profile with the second 

vertical line. A first-order power-law curve, 

 𝑓(𝜗) = 𝑐4𝜗
𝑐5 ,                                                                                                (8 − 18) 

is fitted to the logarithm of the PDF profile in segment 3. The five parameters and 

the corresponding cloud properties are listed in Table 8.1 for the two cases 

represented by Fig. 8.8. The similarity between the incident angle profiles revealed 

in this figure and those found in the literature; e.g., Figs. 8 and 10 in Devore et al. 

[127] is gratifying. 
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Table. 8.1. Characterization numbers for two different pairs of cloud 

properties. 

𝑎 (μm) 𝐿𝑊𝐶 (gm-3) 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

6.2663 1.1255 0.0472 0.0424 0.0089 -3.5152 0.6979 

17.0005 0.9290 0.0416 0.0393 0.0129 -4.9301 0.2663 

Figure 8.8. Probability distribution function of incident angle on the 

photometer aperture for two different pairs of cloud properties. 
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8.3. Property recovery using an Artificial Neural Network (ANN) 

In this section a novel approach similar to that described in Chapter 7, is presented 

for recovering water cloud properties from the incident zenith angle PDF profiles 

recovered from sun photometer observations. The first step is to simulate the 

physical measurement. Simulation is necessary because of the current lack of an 

adequately voluminous database containing both sun-photometer angular 

incidence data and the corresponding water cloud properties. As described in 

Section 8.2, a Mie-scattering-based Monte Carlo ray-trace model is used to create 

a large population of PDF profiles corresponding to randomly selected values for 

the droplet mean size 𝑎 and cloud liquid water content 𝐿𝑊𝐶. For each 

Figure 8.9. Logic flow in creating and using an ANN to recover cloud 

properties. 
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combination of cloud properties, the parameters listed in Table 8.1 are recovered 

as described in Section 8.2.4. These parameters then become the input to an 

Artificial Neural Network (ANN) whose output is the recovered water cloud 

properties. Ninety percent of the population of simulated sun-photometer 

measurements is randomly selected to train the ANN and the remaining ten 

percent is used to test it. Once validated, the ANN may then be used to recover 

the water cloud properties for any subsequently measured incident angle 

distribution. The logic flow diagram of the approach appears in Fig. 8.9. 

8.3.1. Creation and training of the ANN 

Step 1. Create a population of cloud property/PDF profile parameter pairs 

Block 1 in Fig. 8.9 represents a pool of random-valued water cloud properties. 

Random water droplet mean sizes are distributed between 1 to 50 μm, and random 

values of cloud liquid water content are distributed between 0.5 to 1.5. These values 

are introduced into the MCRT simulation described in Section 8.2 and represented 

by Block 2. The PDF profile of the zenith angles of rays collected by the sun-

photometer are formed in Block 3, and in Block 4 the PDF profile is interpreted 

in terms of the five parameters discussed in Section 8.2.4. During Step 1, 1000 sets 

of random-valued water cloud properties are created and passed to the MCRT 

simulation, producing 1000 corresponding incident zenith angle distributions on 

the sun photometer. These are in turn converted to 1000 sets of PDF profile 

parameters. 

Step 2. Training the ANN 

A random selection of 90 percent of the 1000 pairs of cloud properties and 

corresponding PDF profile parameters are used to train the ANN represented by 

Block 5. In each case, the five PDF profile parameters are introduced to the ANN, 

which then produces a corresponding set of cloud parameters. Synaptic weights of 

the ANN are adjusted in an iterative process, described in Section 8.3.2, which 
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minimizes the difference between the cloud properties produced by the ANN, 

represented by Block 6, and the corresponding target cloud properties in Block 1. 

Step 3. Testing the ANN 

The 10 percent of the PDF profiles created in Step 1 that were not used to train 

the ANN in Step 2 are converted to profile parameters and then introduced into 

the trained ANN as test data. The resulting water cloud properties (Block 6) in 

each case is compared to the target cloud properties (Block 1) used to create them. 

The differences between corresponding ANN output and target properties provide 

a measure of the success of the proposed neural network scheme. 

Step 4. Prediction of unknown water cloud properties from sun-photometer 

measurements. 

Availability of a properly trained and tested ANN model renders further MCRT-

based simulation unnecessary. From this point forward, the trained ANN model 

can be reliably used to recover the water cloud properties from sun-photometer 

measurements by following the path Block 3→Block 4→Block 5→Block 6. Of 

course, this supposes that the cloud radiance model used to train the ANN 

represents actual cloud physics. Implied is the need for a campaign in which actual 

sun photometer observations, backed up by simultaneous independent cloud 

property measurements, are used to improve the MCRT-based cloud radiance 

model. 

8.3.2. ANN implementation 

An RMS-prop optimization algorithm is used here to converge the ANN output 

during the training process. RMS-prop uses a moving average of squared gradients 

to normalize the gradient itself. That has the effect of balancing the step size; it 

decreases the step size for large gradients to avoid exploding, and increases the step 

size for small gradients to avoid vanishing. This optimization method has several 
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advantages; for one, it is a very robust optimizer which preserves pseudo curvature 

information. Additionally, it effectively deals with stochastic objectives. 

The training, validation, and test loss functions are all mean-squared errors (MSE). 

The learning rate was ultimately set to 0.005 and 30,000 iterations were found to 

produce good results. 

The relative error of predicted output 𝑖 is defined 

𝑅𝐸𝑖 =
|𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖|

𝑡𝑎𝑟𝑔𝑒𝑡𝑖
,                                                                       (8 − 19) 

where 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 can be either of the two water cloud properties predicted by the 

ANN, and 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 is the corresponding known cloud property. 

8.4. Results 

A population of 1000 random combinations of water droplet mean size and cloud 

liquid water content was created. Each combination of cloud properties was then 

introduced into the MCRT simulation to produce a set of 1000 simulated incident 

angle distributions, as described in Section 8.2.3. The resulting PDF profiles were 

then parameterized, as described in Section 8.2.4. A randomized subset of 900 of 

the 1000 PDF profile parameters/cloud property pairs was used to train the ANN. 

Each PDF profile parameter set is introduced into the ANN with the goal of 

recovering the two related water cloud properties. The training process uses the 

optimization algorithm described in Section 8.3.4 to automatically adjust the 

synaptic weights of the ANN to minimize the global difference between the target 

water cloud properties and those returned by the ANN. The target water cloud 

properties are those used in the MCRT simulation to produce the PDF profile 

parameters. It is emphasized that the ANN is used to solve the inverse problem 

directly based on the data obtained from the MCRT simulation of the forward 

problem. After training the ANN, it is tested (i.e., its accuracy is established) by 

introducing the 100 remaining sets of PDF profile parameter not already used for 
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training into the trained ANN. In a final step, the recovered cloud properties 

created by the ANN are compared with the corresponding target cloud properties. 

The ability of the trained ANN to recover the target droplet size from 

corresponding sets of PDF profile parameters for both the training and the test 

data is illustrated in Fig. 8.11. The corresponding percentage errors, 

Percentage Size Error =
|𝑎𝐴𝑁𝑁 − 𝑎𝑇𝑎𝑟𝑔𝑒𝑡|

𝑎𝑇𝑎𝑟𝑔𝑒𝑡
× 100%,                          (8 − 20) 

are plotted in Fig. 8.12. While acceptably small for droplet sizes exceeding about 

10 µm, size error expressed as a percentage becomes large for small droplet size. 

This is because of the small target water droplet size in the denominator and the 

more or less fixed absolute error in the numerator in Eq. (8-20). The apparent 

contradiction between Figures 8.11 and 8.12 at small droplet sizes is an artifact of 

the definition of absolute and relative errors. To put this result in perspective, less 

Figure 8.10. Comparison of ANN recovered droplet mean radius with 

target mean radii used in the MCRT-based cloud radiance model. 
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than ten percent of the droplets making up cumulus clouds have sizes of 10 µm or 

less. These results clearly reveal the potential of the ANN approach for recovering 

the water droplet mean size within a cloud bank. The mean error associated with 

the ANN-recovered droplet mean size relative to the true droplet mean size is 

3.22% for the training cases and 4.81% for the test cases. The relative error is even 

less when only droplet mean sizes of larger than 10 µm are considered. The relative 

error in the ANN prediction of the small (and statistically unlikely) droplet mean 

sizes can approach 70%, as indicated in Fig. 8.12. 

Training and test dataset results for the cloud liquid water content are shown in 

Figs. 8.13 and 8.14. The ANN-recovered values are once again in excellent 

agreement with the target values. Essentially all of the recovered results in Fig. 8.13 

fall within ±10% of the target values, with a mean training error of 2.20% and a 

mean test error of 2.68%. Figure 8.14 shows the variation of relative error in the 

prediction of cloud liquid water content with the target value for both the training 

and test data. 

Figure 8.11. Variation of ANN droplet mean radius recovery error with 

droplet mean radius. 
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Figure 8.12. Comparison of ANN recovered liquid water content with 

target liquid water content used in the MCRT-based cloud radiance model. 

Figure 8.13. Variation of ANN liquid water content recovery error with 

liquid water content. 
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The results for water droplet mean size and cloud liquid water content show that 

the ANN recovery accuracy for both training and test data is very high. These 

results demonstrate the potential of using the ANN model as an alternate approach 

to the recovery of cloud properties from sun-photometer measurements. 

8.5. Discussion 

A cardinal rule of ANN modeling is that the input and output parameters must be 

causally independent. The ANN formulation presented here supposes that water 

droplet size and cloud liquid water content are independent cloud properties but, 

strictly speaking, this is not the case. Ming et al. [119], Christensen et al. [123], 

Deaconu et al. [122], Diem and Brown [120], Rosenfeld et al. [121], and Toll et al. 

[124], all explore the role of dry aerosols such as sea salt, pollen, desert sand, and 

volcanic ash in determining the size, number, and survival time of liquid water 

droplets formed in air masses having more or less the same cloud-forming 

potential. The apparent success of the ANN developed and demonstrated here is 

due to the fact that, while a causal relationship probably does exist between cloud 

droplet size and liquid water content, it is of second-order importance compared 

to other influences, and so any correlation that may exist between them is 

sufficiently weak that the independence requirement is not violated. 

 We have already pointed out that a first-principle MCRT model based on Mie 

scattering is the source of both the training and the test datasets used to compose 

our ANN model. This is necessitated by the sheer volume of data required. It might 

be argued that, even though the model produces angular distribution profiles 

having the same features and general shape as those reported in the literature, they 

are not based on real cloud sun-photometry and thus are of limited utility to the 

community. Our response to this legitimate concern is that the ANN approach 

presented here could be part of an iterative scheme in which the MCRT cloud 

radiance model is informed, and thereby improved, by an ever-growing population 
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of experimental measurements in which the ANN approach introduced here plays 

an increasingly important role. 

The MCRT model used to build the database which is in turn used to train and test 

the ANN model can also be criticized on theoretical grounds. Rather than tracing 

rays through a cloud composed of droplets having a realistic size distribution 𝑛(𝑎), 

from which a mean size could be determined, we chose to trace rays through a 

cloud composed of liquid water droplet having a uniform size distribution. This 

approach does not address the reality that water droplet at the cloud tops and 

bottoms might be smaller than those in the cloud center, which could be important 

in determining the angular radiance distribution under the cloud. 

Furthermore, the Mie single-scattering theory at the heart of the MCRT model 

does not consider the near-field effect that arises when scattering particles are 

densely packed [131], as would undoubtedly be the case in a mature water cloud. 

When Eqs. (8-10) – (8-14) are used to compute the ray mean free path for the range 

of droplet sizes and liquid water content explored here, values on the order of a 

few meters are obtained (for example, for 𝑎 = 25.6 µm and 𝐿𝑊𝐶 = 1.0165 gm-3, a 

mean free path of 4.52 m is found). This mean free path, when used in Eq. (8-9), 

produces path lengths between scattering events on the order of few tens of 

meters, depending on the value of the random number used in Eq. (8-9). 

Therefore, the model is at least internally consistent since the scattering centers are 

typically separated by thousands of wavelengths. Indeed, Fig. 8.6 establishes that 

39 scattering events could account for the distance needed for a ray to traverse the 

500-m thick cloud bank. Still, the relatively long ray paths do not address the fact 

that the electric fields of Mie scattering centers are perturbed by those of near 

neighbors which otherwise do not directly participate in the scattering event. It 

should be emphasized that ANN theory is not physics based, but rather is based 

on observed input-output relationships. Therefore, as the cloud radiance theory 



 147 

improves under the influence of actual measurements, so will the corresponding 

ANN model, but this does not necessarily mean that its accuracy will improve. 

Finally, the approach suggested here does not address the altitude of the cloud or 

its vertical position relative to the sun-photometer. This latter distance would be 

relevant only in a situation in which the distance between the underside of the 

cloud bank and the measurement station is large compared to the lateral extent of 

the cloud bank. 

8.6. Conclusions and Recommendations 

An artificial neural network is presented that successfully predicts the water droplet 

mean radius 𝑎 and the cloud liquid water content 𝐿𝑊𝐶 from five parameters 

describing the radiance angular distribution profile obtained using simulated sun-

photometry. Cloud radiance is simulated using a Monte Carlo ray-trace cloud 

scattering model based on Mie single-scattering theory. We conclude that a 

properly trained ANN model holds promise as an alternative method of 

interpreting sun-photometry measurements in terms of cloud properties. 

Advantages are that the ANN directly solves what is naturally an inverse problem, 

and that it does so in real time. A campaign is recommended in which field 

measurements, either those already available in the literature or new results 

obtained with this purpose in mind, are used to converge the MCRT cloud radiance 

model. 
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