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Abstract

The feasibility of utilizing a neural network to solve the constrained flight control
allocation problem is investigated for the purposes of developing guidelines for the
selection of a neural network structure as a function of the control allocation problem
parameters. The control allocation problem of finding the combination of several flight
controls that generate a desired body axis moment without violating any control constraint
is considered. Since the number of controls, which are assumed to be individually linear
and constrained to specified ranges, is in general greater than the number of moments
being controlled, the problem is nontrivial. Parallel investigations in direct and generalized
inverse solutions have yielded a software tool (namely CAT, for Control Allocation
Toolbox) to provide neural network training, testing, and comparison data. A modified
backpropagation neural network architecture is utilized to train a neural network to
emulate the direct allocation scheme implemented in CAT, which is optimal in terms of
having the ability to attain all possible moments with respect to a given control surface
configuration. Experimentally verified heuristic arguments are employed to develop
guidelines for the selection of neural network configuration and parameters with respect to

a general control allocation problem. The control allocation problem is shown to be well



suited for a neural network solution. Specifically, a six hidden neuron neural network is
shown to have the ability to train efficiently, form an effective neural network
representation of the subset of attainable moments, and independently discover the internal
relationships between moments and controls. The performance of the neural network
control allocator, trained on the basis of the developed guidelines, is examined for the
reallocation of a seven control surface configuration representative of the F/A-18 HARV
in a test maneuver flown using the original control laws of an existing flight simulator.
The trained neural network is found to have good overall generalization performance,
although limitations arise from the ability to obtain the resolution of the direct allocation
scheme at low moment requirements. Lastly, recommendations offered include:
(1) a proposed application to other unwieldy control allocation algorithms, with possible
accounting for control actuator rate limitations, so that the computational superiority of
the neural network could be fully realized; and (2) the exploitation of the adaptive aspects

of neural network computing.
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1.0 Introduction

1.1 Flight Control Allocation Background

Ailerons, elevators, and rudders first come to mind when one thinks of controlling the
rotational motion of an aircraft. More specifically, we usually think of pitching moments
as generated by elevators, yawing moments by a rudder, and rolling moments by ailerons.
The problem of finding three control deflections to provide the three required moments is
solved by a simple matrix inversion. For the next generation of super maneuverable
tactical aircraft, that are projected to have as many as twenty primary flight control
effectors, the problem becomes nontrivial. An example of such an aircraft is the F/A-18
HARV (High Angle of Attack Research Vehicle) which employs such nontraditional
moment controllers as: independent left and right horizontal tails and rudders, leading and

trailing edge flaps, spoilers, and three thrust vectoring moment generators.

The controls of the problem to be described are assumed to be strictly moment generators
and are all constrained to given limits based upon physical geometry and aerodynamic
considerations. The allocation, or blending, of these controls to achieve a specific

aerodynamic moment requirement is the control allocation problem.

Traditionally, the generalized inverse (of which the popular pseudo-inverse is a special
case) solution has been employed. It can be shown that no single generalized inverse can,
for arbitrary moment demands, yield solutions that attain the maximum available moment
without violating some control constraint [1]. Another method is a technique called daisy

chaining. It can be shown that daisy chaining also cannot everywhere yield maximum
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attainable moments, and additionally tends to demand higher control actuator rates than

other methods [1].

An algorithm for a direct nonlinear solution has been developed in a series of papers (see
references [1], [2], and [3]) and implemented in software named CAT, for Control
Allocation Toolbox [4]. The "direct method" of solution consists of the following steps:
(1) determination of the subset of attainable moments, which yields a description of the
boundary containing the necessary information for control allocation, (2) identification of
the point of intersection of a line in the direction of the desired moment with the bounding
surface of the attainable moments, and (3) calculation of the controls that generate that
intersection, with possible scaling of the controls if the desired moment is interior to the

attainable moment subset (AMS).

A glossary of specific flight control terms that may be uncommon to some readers is

supplied in Appendix A.
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1.2 Neural Network Background

The architecture of the neural network has been derived from research on mammalian
brains, specifically the biological functions of the cerebral cortex [5]. Researchers in the
field of neural computing have been inspired to model human learning with computers in a
manner that is analogous to the elementary functions of the biological neuron. In this
artificial adaptation of the human brain three basic characteristics have been preserved by
the artificial neural network. Neural networks: learn from experience, generalize from

learned responses, and abstract essential patterns from inputs [6].

In the beginning neural networks were of the single layer type composed of linear neurons
called perceptrons. These perceptron networks showed great promise until it was
discovered the basic linearly non-separable XOR function could not be represented. The
linear non-separability issue and the XOR function will be described in detail in Chapter 4

Section 4.2.2 of this thesis.

In the mid 1950's the father of perceptrons, Frank Rosenblatt, proved that if and only if a
set of weighted interconnections between perceptrons exist for a problem solution there
exists a perceptron training method guaranteed to converge [7]. In other words, if a
particular function could be represented by perceptrons, a perceptron could be trained to

learn that representation.

The landmark book, Perceptrons, by Minsky and Papert, published in 1969, proved
several geometric theorems showing that the set of weighted interconnections between
perceptrons exists only if the input set is linearly separable and labeled the perceptron as
limited and uninteresting [7]. The team of Minsky and Papert additionally mentioned

multiple layers might be used to overcome the limitations of perceptrons, but since no
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techniques for training multi-layered perceptron networks existed, neural network research

declined [6].

Neural networks emerged from obscurity in the mid 1980's when the three independent
research efforts of Werbos; Parker; and Rummelhart, Hinton, and Williams developed
techniques for training multi-layered neural networks [6]. One such technique is called
backpropagation, which continues to be one of the most successful and widely understood
neural network training algorithms. Since the rebirth of neural networks many neural
network algorithms and structures have been developed. Each neural network type has

advantages and limitations associated with specific applications.

Neural networks have been successfully used in a wide variety of fields. Some example
applications are: power conversion, medical ultrasound imaging, noise filtering, terrain
mapping, character recognition, the effect of solar activity on orbit prediction, image and
data compression, stock market prediction, and the determination of satellite orientation
by star identification. Neurobiologists and neuropsychologists were the first to attempt to
develop a model of human brain learning [6], but it was only a matter of time for the
engineers to realize their potential. Only recently have neural networks gained attention in
the area of aerospace guidance, navigation, and control. Of particular interest, neural
network theory has been used for selecting optimal gain schedules for flight control [8],
feedback linearization in aircraft control [9], and identification and control of aircraft

dynamics [10].

A glossary of neural network terminology is supplied in Appendix B.
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1.3 Goals and Intentions

The goal of this research is to apply neural network computing to the solution of the
constrained flight control allocation problem. Considering that much of the available
literature on neural network development is very implementation oriented, the selection of
the neural network structure, parameters, and learning rule is usually based entirely on trial
and error experience. The first objective of this investigation is to replace the trial and
error approach and provide guidelines for the intelligent selection of the defining neural
network descriptors. The scope of this selection is limited to a modified backpropagation
learning rule, based on its popularity and accessibility. Secondly, based on the guidelines,
a neural network will be created and trained to emulate the direct method of control
allocation. Lastly, the trained neural network will be installed into a module, that could be
installed in an existing flight simulator, and performance will be evaluated on the
reallocation of seven control surfaces of the F/A-18 HARV in a simulation of a series of

two-roll-reversals test maneuver.
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2.0 Problem Statement

An m-dimensional control space is considered, u e R™. The controls are constrained to

minimum and maximum values, defined by the subset Q:

Q= {u eR™ | Uy S u; < uiM‘x} cR™ (2.1)
The subset of controls which lie on the boundary of Q, 5(Q2), are denoted by u”.

TR (9) (2.2)

These controls generate moments through a mapping B onto n-dimensional moment space

through a linear matrix multiplication of u,
B:R” > R" (2.3)
Bu=M (2.4)

where m > n. B is the control effectiveness matrix with respect to the moments. A

requirement that the controls be independent is met if every n x n partition of B is non-
singular.

Denote by @ the image of Q in R?) &< R". The subset @ therefore represents all the

moments that are attainable within the constraints of the controls.
Moments which lie on the boundary of ®@, o(®), are denoted by an asterisk:

M* e 6(®) (2.5)
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A unit vector in the direction of M will be denoted by M,
=M (2.6)

The control allocation problem is defined as follows: given B, , and some desired
moment My, determine the controls u € Q that generate that moment for the largest
possible magnitude of m in the direction Md. That is, we desire a rule for allocating the
controls that generates the maximum moment in a given ratio (direction) without

exceeding the constraints on the controls.
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3.0 Neural Network Description and
Theoretical Development

The biological influence is evident in the terminology used for the various elements of
neural networks. Since neural network computing is a relatively new and emerging field,
much of the terminology and notation is non-standard. For the purposes of this work, the
most common and correct terms are used. The NeuralWorks [7] commercial software

package is utilized for neural network development, training, and testing.

3.1 Fundamentals of Neural Network Computing

3.1.1 The Neuron

Neural networks are composed of highly interconnected processing elements or neurons.
The structure of every neuron in a neural network is exactly alike and has three essential

characteristics. Each neuron in a neural network has:

(1) Multiple inputs and one output signal with a central processing unit.
(2) Decision making capability due to its logic with threshold firing.

(3) Self stabilization capability due to inhibitory response.

The basic structure of a neuron is quite simple as illustrated in Figure 3.1.1.1.
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Figure 3.1.1.1: Neuron Model

The model for a neuron is given by the equation

n
I, = ijxi

i=0 (3.1.1.1)
y= f(Ij)

where each input signal, x;, to the neuron has a weight, Wj, 80 that the total input is the
weighted sum of all input signals from connecting neurons. In vector notation, the total

weighted input signal is the dot product of the weight and input vectors or I = w-x

where
w=[w0 W, W, .. wn]

T
x=[x, x, x, .. x,] (3.1.1.2)

The dot product is equivalent to the projection of the weight vector onto the input vector
given by w - x =|w| |x| cosa, where a is the angle between the input and weight vectors as

shown in Figure 3.1.1.2.
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w-x = |w| |x] cosa

Figure 3.1.1.2: Weight and Input Signal Dot Product

This projection will be greatest in magnitude when the two vectors are most closely
aligned [5]. Therefore, neurons having weight vectors nearest in direction to a given input
signal will fire and produce a larger output than neurons whose weight vectors are not in
the direction of the input vector. The squashing function is then applied resulting in the

neuron output.

The squashing function (f) operates on the weighted summation of inputs of each neuron
(Ij) and provides the necessary nonlinearity in the system. It can be shown that without
this nonlinear squashing function a two layer neural network is exactly equivalent to a
single layer network having a weight matrix equal to the product of the two weight
matrices [6]. Thus, the squashing function is necessary to extend the capability of the
neural network to map nonlinear functions. The squashing function can be a threshold
function or a continuous function of the input. Some common choices for the squashing
function include the: sigmoid, sine, linear, ramp, Gaussian, step, and hyperbolic tangent
functions. The output from the nonlinear squashing function is the output (y) from the
neuron. In a multi-layer neural network this output becomes the weighted input to the

next layer of neurons.

Chapter 3: Neural Network Description and Theoretical Development 10



3.1.2 Multi-layer Neural Networks

The basic neuron itself is not exciting, but the power of neural networks stems from the
manner in which neurons are interconnected into networks. Neurons are grouped into

layers, and each layer is interconnected to the adjacent layer by connection weights.

There is some confusion over the convention of how many layers a neural network
possesses. For example, some refer to a neural network with an input, one hidden, and an
output layer as a three layer network, others refer to the same neural network as a two
layer network since it has two layers of weights. Adopting the later convention, the neural
network used in this study has two layers (see Figure 3.1.2.1), that is, one layer of weights
connecting the input and the one hidden layer and one layer of weights connecting the one
hidden layer and the output layer. It has been shown that only one hidden layer is
necessary to map any arbitrary nonlinear relationship [7].

Ompml """"
Layer ' v
Hidden{

ﬁ
%

Weight
Layer 2
Layer
Weight
Layer 1

Input
Buffer | E.

Layer

Figure 3.1.2.1: The Multi-Layer Neural Network Architecture
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The input buffer layer is where data is presented to the network. The neurons in the input
layer act as distribution nodes and have no summing or squashing function. The next layer
of neurons is referred to as the hidden layer. The output of the input buffer layer becomes
the weighted input to each neuron in the hidden layer. The squashing function is applied
to the weighted sum of inputs at each hidden neuron producing an output that becomes
the weighted input to each neuron in the output layer. The weighted sum of inputs to

each output neuron is passed through a squashing function producing the network output.

Each neuron in the multi-layered neural network has the equation:

xj[” _ f{z(wﬁ[e] x )} (3.1.2.1)

X 1 =f{1.[!]}

J J

where
¢ =1,2,..,L
i =1, 2, .., N

N = number of neurons in layer ¢
L = number of layers in the neural network

x ‘! = current output of the jth neuron in layer ¢

wji[” = weight joining the ith neuron in layer [£- 1] to the jth neuron in layer ¢

Ij[” = weighted sum of inputs to the jth neuron in layer ¢

3.1.3 Neural Network Phases of Operation

A neural network is trained to discover relationships by learning from examples. If no
desired output is specified, training is called unsupervised. During unsupervised learning a

neural network organizes to respond to certain inputs. Supervised training requires a
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group of input and desired output pairs. Each input-output pair is a training pattern and
the collection of all training patterns is a training set. If the desired output presented to
the neural network is different from the input, the neural network is called hetero-
associative. An auto-associative neural network has equal input-output pairs. In the
training phase, the neural network learns by adjusting the weights in the layers to minimize
an error function to achieve the desired input to output mapping. Training is an iterative
process requiring the presentation of many training patterns The learning rule determines
how the weights adapt in response to a training pattern. Leaming rules typically have
parameters that govern how leaming progresses. These parameters may or may not

change during training depending on the specific learning rule.

The neural network used in this text is of the multi-layer feed-forward hetero-associative
type. Training is supervised and controlled by the backpropagation leaming rule. In
addition, an extension to backpropagation, called extended delta-bar-delta, that features

time varying learning parameters is used.

During the test phase, previously unseen inputs, along with the corresponding desired
outputs, are presented to the neural network. Unlike the training phase, weights are not
adjusted, but the network output is compared with the desired output for the evaluation of
the performance of the trained neural network. Testing patterns in the test set are
typically different from the training patterns, in order to evaluate the generalization

performance of the neural network and not the ability to memorize the training data.

The recall phase of operation is similar to the testing phase except the desired output is
unknown. This is the phase a neural network operates in during implementation. A
trained neural network is presented with an input and determines the output based upon

the learned relationship.

Chapter 3: Neural Network Description and Theoretical Development 13



3.2 The Backpropagation Learning Rule

The backpropagation leaming rule is an iterative training procedure that involves the
minimization of the total squared error between the actual and desired outputs of a
training set, with respect to the neural network weights. This minimization is

accomplished by means of the method of steepest descent.

ET is the error function defined as the sum of squared error over all training patterns and

is given by
1 NP NO

= —ZZ{(dkp —okp)z}

2 p=1 k=1

(3.2.1)

where diy, is the desired output and okp, is the actual output for the kth output neuron and
the pth training pattern, NO is the number of output neurons, and NP is the number of
training patterns in the training set. Note that Et is the total error over all training
patterns. In this investigation, weights are updated once every training epoch, where one
epoch is one full pass through all training patterns in the training set. This method of
accumulating weight changes over an entire epoch is called cumulative backpropagation.
In cumulative backpropagation a composite error function, defined as the sum of all of the

individual error functions, is minimized.

According to the method of steepest descent, the update of the weights is proportional to

the negative gradient of the error function with respect to the weights and is defined as:

OE ..
AWl = — aw[f]] v j,i,¢
i (3.2.2)
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where Aw! is the change in the weight connecting neuron i to neuron j in layer £, 1 is the
learning rate, and £ =1, 2, ... , L, where L is the number of layers and in this investigation

L=2.
Weights are adjusted to reduce the error by the equation:

NP
AWt +D) =02 o B rodwil(D) Vil

P

p=l (3.2.3)

where
f’(I.p)(djp —ojp) if j is an output neuron (£ =L =2)
NO
o f'(ij )Z:w,qﬁkp ifj is a hidden neuron (£ =1)
k=1 (3.2.4)

where f'(L;,) is the derivative of the squashing function associated with neuron j.

For the hyperbolic tangent squashing function, the selection of which will be detailed later,

the above equation becomes:

" (djp - ojp)ojp(ic—) ojp) if j is an output neuron (£ = L = 2)
o ojp(l—ojp)ZwkjSkp if j is a hidden neuron (¢ = 1)
k=1 (3.2.5)
Additionally, o is the output of neuron i, 8J is the local error associated with neuron j, dj is
the desired output of neuron j, and t is the training epoch. WEI(O), the initial network
weights, are usually chosen to be small random numbers. o is the momentum learning
parameter. This term, which is proportional to the amount of the previous weight change,

is included to add stability by limiting large oscillations in weight updates and to avoid

local minima in the error surface [11].
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The backpropagation neural network is trained according to the following steps:
1. A training vector is selected from the training set and is applied as the network input.

ii. The output of each neuron in the output and hidden layers is calculated using

equation (3.1.2.1).

iii. The local errors given by equation (3.2.4) are calculated and stored for each neuron in

the output and hidden layers and accumulated over the entire training set.

iv. Delta weights are found according to equation (3.2.3) to minimize the error according

to the method of steepest descent.

v. Weights are updated by adding delta weights to the corresponding weights of the

previous update.

vi. RMS (root-mean-square) error between the network output and desired output is

calculated.

vii. The above process is repeated for a specified number of training epochs or until

convergence to a specified RMS error for the entire training set.

3.3 Extended Delta-Bar-Delta Backpropagation

The extended delta-bar-delta (EDBD) was proposed to compensate for some of the short
comings of the backpropagation algorithm. Specifically, this technique applies a heuristic
approach to improve the rate of convergence of the steepest descent procedure. This
heuristic technique accounts for varations in the error surface by assigning individual time

varying leaming and momentum rates to each weighted connection in the neural network.
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The heuristic approach is taken to automatically adjust the learning and momentum rates
for each weight connection and are updated along with the weights for each training

epoch.

Instead of performing a steepest descent search, weights are updated on the basis of the
gradient of the error with respect to the weight itself, and on an estimate of the curvature

of the local error surface [7].

A fully detailed discussion of the EDBD algorithm and supporting equation derivations
can be located in Reference [7]. The following notation is used in the amending equations

to the standard backpropagation algorithm:
E(t) local error of a particular neuron
w(t) value of a connecting weight
Aw(t) weight update
n(t) connection learning rate
An(t) connection leaming rate update
a(t) connection momentum rate
Ao(t) connection momentum rate update
B(t) gradient component of weight change
B*(t) weighted, exponential average of previous gradient components

and are all evaluated at training epoch, t.
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The constant learning parameters used in the EDBD algorithm are:
0 convex weighting factor

Ky  constant learning rate scale factor

Ky  constant momentum rate scale factor

Gy constant learning rate exponential factor
Gy  constant momentum rate exponential factor
I constant leaming rate decrement factor

Ja constant momentum rate decrement factor

Nmax leaming rate upper bound
Omax mMmomentum rate upper bound

A recovery tolerance parameter

The contribution of the error associated with a particular weight is given by:

OE(t)

B =50 (3.3.1)

The standard backpropagation learning rule for the update of weights is of the form:
Aw(t+1) =nB(t)+oAw(t) (3.3.2)

where 1 and o are the specified fixed constant learning and momentum rates, respectively.

This rule is modified in the EDBD approach and becomes:

Aw(t+1) =n(t)B(t)+alt)Aw(t) (3.3.3)
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The heuristics for updating the learning and momentum rates employ a weighted average

of the error gradient components governed by

B*(t) = (1-6)[B(t) +6B(t - 1)] (3.3.4)

The update rules for the learning and momentum rates are defined by the following
equations:
K O if i (e-1B(t) >0

An(t) =94 -I,n(t) if B"(t-1)B(t) <0
0 otherwise

K e %P0 ifp (t-1)B(t) > 0

sa()={-Lo(t)  ifp(t-Dp(t) <0

0 otherwise
(3.3.5)

Further measures are taken to prevent large oscillations in weight updates. These include
limits placed on the leaming parameters according to:

n(t) <m,,
at) <o, (3.3.6)

and the use of a best weight recovery feature, such that, if the current error is less than the
minimum error, weights are saved as the current best. The tolerance parameter (1) is used
to control recovery such that, if the current error is greater than the recovery tolerance
times the minimum error, learning parameters are decremented and weights revert to the

saved best according to:

E[t] > Emin A (3.3.7)
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4.0 Relationships Through Experiment

Various neural network configurations were explored in order to gain understanding of
the relationship between the control allocation problem and the neural network structure.
The goal of the following experiments is to provide an implementor with reasonable

guidelines for the development of a neural network control allocator.

It is tempting to say that the so-called optimal neural network configuration was sought
with regard to the control allocation problem at hand but, this would be inaccurate. The
current theoretical foundation on which neural networks were built does not provide any
rationale behind the selection of many of the neural network parameters. Experimental

techniques were used to attempt to determine the cause and effect relationships that exist.

By no means will this investigation exhaust the many choices in selecting neural network
configurations, but will address the parameters with the largest impact on performance
with regard to control allocation. Additionally, most of the experimental procedures may
be used in the determination of neural network configurations for generic neural network

applications.

4.1 Consistency and Neural Network Parameter Selection

Consistency and repeatability must be addressed for an experiment to be representative of
any arbitrary combination of controls, the effectiveness of those controls, and their limits.
Thus, allocation problems, training data, and neural network parameters were chosen
carefully. Much care was taken to ensure that while the parameter in question was varied

in a controlled manner all other independent variables remained fixed.
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4.1.1 Learning Rule Selection

There was great difficulty in determining a set of learning coefficients to use, so that,
training remained consistent with the addition of controls. The set of learning coefficients
that provided a smoothly converging RMS error for one allocation problem were generally
not the same for all allocation problems. To alleviate this dilemma, this investigation uses
the extended delta-bar-delta (EDBD) learning rule. As described in Chapter 3, this
learning rule features individual time varying leamning coefficients for each connection in
the network. The leamning coefficients are updated based on the curvature of the local
error surface [7]. Since this method relied on an algorithm that was common to all
experiments there was consistency for all allocation problems. Additionally, EDBD
increases the convergence rate of the backpropagation steepest descent error
minimization. This was particularly desirable when experiments involved the training of

hundreds of different neural network configurations.

The EDBD leamning rule used various constant coefficients, listed in Table 4.1.1.1, to
specify how the learning coefficients were adjusted during training. An upper bound was
specified to be nyax=2 on the learning rate and op,= 1 on the momentum rate. A
tolerance parameter of A = 1.5 was used to control recovery such that, if the current error
was greater than the recovery tolerance times the minimum error, weights reverted to the
saved best and the learning parameters were decremented. These coefficients were used
throughout the entire investigation. There was little to guide the selection of learning
coefficients but, unlike the selection of constant learning and momentum rates in standard
backpropagation, convergence was fairly insensitive to changes, on the order of 50%, in
the EDBD parameters. This choice of constant coefficients provided efficient and

smoothly converging training for up to a fifteen control allocation problem. This training
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was characterized by a fairly rapid and smooth decrease in the RMS error, the avoidance
of wild jumps in weight space, and even distributions of relatively small network weights

during training. The exact function of each coefficient is described in detail in Chapter 3.

Table 4.1.1.1: EDBD Leaming Coefficients

EDBD Coefficient Constant Value
Learning Rate Scale Factor KTI 0.02
Momentum Rate Scale Factor K 0.01
Learning Rate Exponential Factor GT] 1.0
Momentum Rate Exponential Factor G 1.0
Learning Rate Decrement Factor Jﬂ 0.02
Momentum Rate Decrement Factor  J, 0.01
Convex Weighting Factor 0 0.7

The smooth convergence provided by these constant coefficients is demonstrated in Figure
4.1.1.1 and Figure 4.1.1.2. Small bumps of the RMS error occurred as thresholds were
met which determined whether the learning parameters were incremented or decremented.
The figures depict the reduction in the RMS error of the output layer for allocation

problems from three to fifteen controls.
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Six hidden neurons were used for each neural network, for reasons to be detailed later.
Before training, all weights in the network were randomized using the same random
number seed, providing a normal weight distribution between +0.1 and -0.1. This method
of consistent weight randomization was used throughout the entire investigation before
each training phase and upon the addition of a new output or hidden neuron. The control
deflection limits were set to -1 to +1 for each allocation problem. The control
effectiveness B matrices were filled with random numbers. The training sets consisted of
the vertices of the AMS. Table 4.1.1.2 contains the length of each training set or number

of vertices for each allocation problem.

Table 4.1.1.2: Length of Training Sets

Number of Controls | Length of Training Set | Iterations for 350 Epochs

3 8 2800

5 22 7700

7 44 15400
9 74 25900
11 112 39200
13 158 55300
15 212 74200
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4.1.2 Training Set Selection

A representative feature of any control allocation problem is the number of nodes of its
attainable moment subset. Nodes are the points generated by placing all m controls at one
or the other of their constraining values, and are viewed as the vertices on the bounding
surface of the AMS. The number of vertices is a feature that is independent of control
effectiveness, relies solely on the number of controls, and is given by the equation
m(m-1)+2. The vertices were chosen to be the points where training data was generated.
Therefore, the number of vertices was equivalent to the number of training patterns
included in a training set for each allocation problem. The control deflection limits were

set to -1 to +1 for each random allocation problem.

The training set was presented to the EDBD neural network sequentially. Weights and
learning parameters were updated every epoch, which was one pass through all patterns in
the training set. In terms of the control allocation problem this means that weights and
leaming parameters were updated only after the network had seen the entire training set or
AMS. This selection of sequential presentation and epoch was particularly useful to

maintain consistency for all allocation problems and for analysis.

4.1.3 Test Set Selection

A test set was selected which would challenge the ability of a neural network to
generalize. For this reason, the test set contained the centers of each facet of the AMS.
The test phase consisted of presenting the moment vectors to each facet center along with
the desired controls, calculated by CAT, and evaluating the performance of the trained
neural network. A facet is any face that lies on the boundary of the AMS, where a face is

generated in control space by placing all but two of the m controls at either of the
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constraints and allowing the two to vary [2]. Faces in the AMS are the images of the
facets in control space and the facets are the faces that lie on the boundary. As illustrated
in Figure 4.1.3.1, facets are uniquely described by four vertices. An AMS has m(m-1)

facets where each facet center is calculated from two of the describing vertex moment

vectors on opposite comers as:

Vertex

Figure 4.1.3.1: Facet Center Ilustration

4.1.4 Choice of Squashing Function

The squashing function chosen for this investigation was the hyperbolic tangent. The

hyperbolic tangent function is defined as

-2x

l1-e
1+ e

f(x) = tanh(x) =

and is shown in Figure 4.1.4.1.
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f(x) = tanh(x)

Figure 4.1.4.1: Hyperbolic Tangent Squashing Function

The hyperbolic tangent function was chosen from both intuitive and theoretical
viewpoints.  Intuitively, since the controls for almost every allocation problem
| encountered will have bipolar deflection limits, which may or may not be symmetric about
zero, lends itself to the hyperbolic tangent function having an output range of -1 to +1.
Giving equivalent weighting to high and low end outputs eliminates the bias, in training,
experienced by squashing functions with output ranges of 0 to 1 [7]. This is particularly
important in control allocation since it is desirable to use the least amount of control
possible without sacrificing performance. A bias toward higher outputs would result in
larger control deflections which, in turn, results in more control effort and higher actuator

rates.

A more theoretical justification for the use of a hyperbolic tangent squashing function can
be found in Reference [12]. Since it is believed the choice of squashing function does not
significantly effect the test performance of a trained neural network, the impact on training
performance is of more concern. The hyperbolic tangent squashing function is shown to

have properties which result in more efficient neural network training.
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4.1.5 Scaling

The neural networks used both in the experimental and implementation phases of this
investigation used the MinMax Table feature of the NeuralWorks software to scale both
the input and output to the neural network. This software facility scans the data sets and
records the highs and lows of each data field enabling the input and output to be scaled for
presentation to the neural network and the results to be de-scaled for output. For every
training and testing procedure all data was scaled to a range of -1 to +1. This scaling was

appropriate to prevent the saturation of the hyperbolic tangent activation function.

4.2 Quest for the Magic Number

4.2.1 Importance of the Investigation

There is no other neural network feature that effects the aspects of multi-layered neural
network development and implementation as the choice of hidden neurons. The number
of hidden neurons determines the number of weights and equations that ultimately will
represent the nonlinear functional relationship desired. Thus, the focus shifts on how
many hidden neurons were necessary to provide an adequate nonlinear map for control

allocation.

Not only do the number of hidden neurons effect the nonlinear mapping performance of a
neural network, but the additional weights and equations of each hidden neuron impact

training time.  More important is the increase of computations required for
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implementation. This is of great concern in a system such as an aircraft where controls

must be allocated in real time.

The best choice of hidden neurons should provide acceptable performance for any number
of controls with the minimum number of hidden neurons. Therefore, the number of hidden
neurons selected for the hidden layer will from this point on be referred to as the Magic

Number.

4.2.2 Background

The notion of including a hidden layer of neurons developed out of a need for an
additional feature space to solve problems that could not be separated linearly. This linear
separability issue arose when the pioneers of neural networks attempted to solve the
exclusive OR or XOR problem. In fact, neural networks were all but abandoned for two
decades after it was proven that the single layer perceptron neural network could solve
only those problems that were linearly separable. Discovering exactly why a single layer
neural network has this limitation will allow insight into how neural networks and hidden

layers function.

A problem can be linearly separated into categories if all given outputs in one category lie
on one side of a hyperplane in input space and all those outputs in another category lie on
the other side [7]. For the two inputs of the XOR function, shown in Table 4.2.2.1, the

hyperplane is a line.
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Table 4.2.2.1: The XOR Function

Point Input X1 | Input X, Output
A 0 0 =?
B 1 0 1
C 0 1 1
D 1 1 0

The equation of this line for two inputs is given by the dot product of the weight vector

with the input vector.
WX =W, +wWX +wW,X,=0

This line defines the decision boundary in the two dimensional input space, as shown in

Figure 4.2.2.3, for the XOR function.

X2/\ W, + WX, +W,X, =0

/ AN
% A (0,0) B(,00 ’“xi1
y=0 y=1
Figure 4.2.2.1: Plane Representation of XOR Function
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On one side of the decision boundary the output is one and on the other side it is zero.
Therefore, to represent the XOR function given in Table 4.2.2.1, points A and D must be
separated from points B and C by this decision boundary. The XOR function is not
linearly separable since no straight line can be drawn to separate the points in this manner.
Therefore, one layer perceptron neural networks cannot represent linearly non-separable

functions such as the XOR.

The linear separability limitation can be overcome by the addition of an additional layer of
neurons, the so-called hidden layer. A two layer neural network can represent nonlinear
mappings in convex open or closed regions [6]. A region is convex if and only if any two
points in that region can be connected by a straight line not leaving that region. A
boundary encloses all points in a closed region. This is important since it is well known
that the AMS for any aircraft will always be both closed and convex, if all of the controls

are independent.

In Reference [6], it is shown that a convex polygon of any desired shape can be created by
adding hidden neurons to a neural network with two inputs. Thus, a neural network with
a layer of hidden neurons can be used to solve the XOR problem. Figure 4.2.2.2
illustrates the use of four hidden neurons to form a rectangular decision boundary that
separates points B and C from points A and D, separating the one outputs from the zero
outputs, respectively. Each hidden neuron provides a straight line decision boundary

given by the equation:
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L is the vector of decision boundary lines
X is the input vector

Figure 4.2.2.2: Two Input Decision Boundaries

Extending this notion into three dimensional input moment space each hidden neuron can
be thought of creating a plane decision boundary. Thus, the ultimate goal is to determine
how many hidden neurons are needed to enclose the three dimensional convex and closed

region called the attainable moment subset.

A theorem proved by Russian mathematician Andrei Kolmogorow and applied in the field
of neural networks by Robert Hecht-Nielsen guarantees the two layer neural network can

solve all linearly non-separable problems [S5]. The theorem states that any n dimensional
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vector may be exactly mapped to another m dimensional vector by a network with n
neurons in the input layer, m neurons in the output layer, and 2n+1 neurons in the hidden
layer [5]. This means the number of neurons to include in the hidden layer is independent
of the number of controls. Moreover, since the number of inputs will always be the three
components of the desired moment vector an upper limit of 2(3)+1 = 7 may be set on the
number of neurons in the hidden layer. This two layer, seven hidden neuron neural
network can theoretically map any three dimensional moment vector to m dimensional

control space.

A minimum number of hidden neurons is not addressed in this theorem. There may exist a
smaller more efficient network that also may perform the desired mapping. Furthermore,

the actual training and structure of the neural network are not provided.

It is conjectured [13] that the number of hidden neurons may be reduced to six. As
previously shown, each hidden neuron provides a plane decision boundary in moment
space. Therefore any AMS may be encased by a six sided prism, each neuron in the
hidden layer creating one side. One may also purport that a prism of four or five sides
may enclose an AMS, but it is thought that this may leave large peaks in the error surface,

thus increasing the likelihood of becoming trapped in a local minimum [13].

The next section endeavors to experimentally demonstrate that six hidden neurons are
indeed sufficient to solve any control allocation problem and is the magic number of

hidden neurons.
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4.2.3 Experimental Results

In order to verify that the magic number of hidden neurons for any general control
allocation problem is six, three distinct experiments were performed. The three

experiments were designed to:
1. measure the ability of the neural network to train efficiently using six hidden neurons.

2. test the theory that decision boundaries form an effective neural network

representation of the AMS.

3. test the ability of the neural network to generalize the internal relationship between

moments and controls.

Upon completion of the experiments, controlled tests were performed to verify that the
results would hold for a general control allocation problem. This verification procedure
was followed since the experiments used randomly generated data for the control
effectiveness data and control limits of +1. It was particularly important that the results
would hold for the real F/A-18 HARV data that was used in the implementation phase of

the investigation.

4.2.3.1 Efficient Training

Neural networks were trained and tested on the vertices of the AMS for three, four, and
five control allocation problems. For each allocation problem the number of training
iterations was fixed and the RMS error achieved for that number of iterations and neurons

in the hidden layer was noted. For a given number of controls a neural network that can
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train efficiently for a chosen number of hidden neurons was denoted by a range of

minimum RMS error, provided that the neural network was adequately trained.

It was not entirely clear when a neural network graduated from the undertrained stage to
the stage when a stable range of minimum RMS error developed and conclusions could be
drawn. The effects of weight randomization before training can account for this dilemma.
The effects of weight randomization were even more gross as neurons and therefore more
weights were added to the network. The addition of neurons occurred both when neurons

were added to the hidden layer and output neurons were included for additional controls.

An attempt was made to limit weight randomization effects so that results describing the
relationship between the neural network structure and control allocation problem would
not be corrupted. The effect of initial weight randomization on undertraining is shown in
Figure 4.2.3.1.1. This neural network was trained using the aircraft data for the F/A-18
HARY with five controls. The six lines represent the RMS error achieved for three initial
weight randomizations trained for 90 epochs and the same three initial weight
randomizations trained for 136 epochs for three to nine hidden neurons. As expected, no
significant increase in performance was found for more than six hidden neurons when the
neural network was adequately trained at 136 epochs and a stable range of minimum RMS
error was allowed to develop. Note, that for the neural networks trained for 90 epochs,
no conclusions could be drawn since the neural network was undertrained and a stable
range of minimum RMS error had not formed. The effect was exaggerated as neurons
were added. Note the greater deviations for using eight and nine hidden neurons. Beyond
nine hidden neurons the neural network trained for 136 epochs began to lose the stable
range of minimum RMS error. This loss was irrelevant since a stable range of minimum

RMS error was seen for fewer hidden neurons and specifically for six hidden neurons.
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Figure 4.2.3.1.1: Weight Randomization and Undertraining Effects

Figures 4.2.3.1.2, 3, and 4 illustrate the ability of the neural network to train efficiently
using six or more hidden neurons for the three, four, and five control allocation problems
using various initial weight randomizations. The initial weight randomization of each
neural network is located in the legend of each figure. Each neural network for each
choice of hidden neurons was trained for 136 epochs. Figure 4.2.3.1.5 provides the above
results combined on one chart for comparison. The stable range of minimum RMS error
achieved for 136 epochs was both consistent and repeatable using six, seven, and eight
hidden neurons for various initial weight randomizations and numbers of controls. Neural
networks possessing four or five hidden neurons had, indeed, become trapped in local
minimums during training for certain initial weight randomizations, and could not attain
the same repeatable performance as neural networks possessing six or more hidden

nceurons.
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Figure 4.2.3.1.2: RMS Error vs. Number of Hidden Neurons for Three Controls
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Figure 4.2.3.1.3: RMS Error vs. Number of Hidden Neurons for Four Controls
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Figure 4.2.3.1.5: RMS Error vs. Number of Hidden Neurons
Three, Four, and Five Controls Comparison
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4232 The Neural Network Attainable Moment Subset

This experiment was designed to test the generalization ability of a neural network with
six hidden neurons and the premise that this generalization occurs in a manner that
emulates the facets of a three control AMS or generically forms a six sided prism (one side

for each hidden neuron) near the bounds of any AMS.

Mathematically, the three control allocation problem has a closed form solution and is
solved by the simple inversion of the control effectiveness matrix. However, with the
exception of the number of output neurons, the neural network solution to the three
control problem is not fundamentally different from problems with many more controls.
Thus, because of the simplicity and easy visualization, while retaining the basic concept

behind neural network control allocation, the three control problem was chosen.

A Mathematica [14] routine was developed which accepted the vertices of the three
control AMS as input and created a wireframe illustration. The eight vertices of the AMS
were found by placing the three controls at their eight combinations of minimum and
maximum deflections in control space. Because the three control problem can be solved
directly, the vertices in control space remain vertices in moment space. Therefore, the
vertices of the AMS were found by pre-multiplying the vertices of control space with the
imverted control effectiveness matrix. The vertices were then connected by straight lines

to form the wireframe AMS.

Additional inputs to the Mathematica routine included the points that generated the neural
network representation of the AMS or the NN-AMS. The points forming the NN-AMS

were output from a neural network trained on the eight vertices of the AMS and tested on
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the six facet centers, twelve points along the edges, and again on the eight vertices of the

AMS.

A neural network with six hidden neurons was trained on only the eight vertices of the
three control allocation problem AMS. To assess the performance of the neural network
it was desirable to train to the point of maximum generalization based on the test set. This
point was located by training the neural network for a number of epochs and comparing
the RMS error of the output layer for the test and training sets and then repeating this
procedure until test performance began to deteriorate. Although the RMS error for the
training set continually decreased with training, the RMS error of the test sets increased
when the neural network lost its generalization capability and began to memorize the
training set data. The neural network is said to be overtrained if memorization occurs.
Figure 4.2.3.2.1 depicts the point of maximum generalization for the three control
allocation problem. The point of maximum generalization was selected to be the point
where the RMS error of the training set intersected the RMS error of the test set at 16

epochs.
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Figure 4.2.3.2.1: Neural Network Generalization for Three Controls

Figure 4.2.3.2.2, 3, 4, and 5 were generated using the Mathematica routine. The routine
reads four data files containing the eight vertices of the AMS, the eight vertices of the
NN-AMS, the six facet centers of the NN-AMS, and a point along each of the twelve
edges of the NN-AMS. The figures depict the NN-AMS inside the AMS for various
points of view and the points to which the edge points were mapped. Polygons were
formed by connecting the eight vertices of the NN-AMS and the six facet centers to create
the facets of the NN-AMS. As demonstrated from the locations of points along the edges,
all of the points from a vertex along an edge to another vertex did not necessarily fall in a

straight line but, did lie in the vicinity of the facets of the NN-AMS.
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Figure 4.2.3.2.2: The Three Control AMS and NN-AMS Comparison
(Viewpoint #1)

Figure 4.2.3.2.3: The Three Control AMS and NN-AMS Comparison
(Viewpoint #2)
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The Three Control AMS and NN-AMS Comparison

(Viewpoint #3)

The Three Control AMS and NN-AMS Comparison

(Viewpoint #4)

Figure 4.2.3.2.4
Figure 4.2.3.2.5:
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4.2.3.3 Generalization Ability

As previously discussed, the number of training epochs had a serious consequence on the
test performance of a neural network. Thus, it was imperative to discover what affects the
generalization ability of the neural network. The effects of initial weight randomization,
number of hidden neurons, and training set selection for a five control allocation problem

are found in Figures 4.2.3.3.1, 2, and 3, respectively.

The choice of initial weight randomization and number of hidden neurons (if greater than
or equal to six) had a negligible effect on the generalization performance of the neural
network. However, Figure 4.2.3.3.3 shows that the test performance was affected by the
choice of training data. Although both neural networks were tested on the facet center
test set, a neural network trained on a grid rather than the vertices of the AMS did not

overtrain so abruptly.
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Figure 4.2.3.3.1: Effect of Initial Weight Randomization on
Neural Network Generalization for Five Controls
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Figure 4.2.3.3.2: Effect of Number of Hidden Neurons on
Neural Network Generalization for Five Controls

Vertices Train 6hn-IWR #1

————— Facet Centers Test 6hn-IWR #1

.................. Facet Centers Test 6hn Grid

--------- Vertices Train 6hn Grid

where IWR = Inital Weight Randomization
hn = Hidden Neurons

RMS Error

o] 10 20 30 40 50 60 70 80
Epochs

Figure 4.2.3.3.3: Effect of Training Set on
Neural Network Generalization for Five Controls
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4.3 Questions of Repeatability

As a consequence of the above results, no common point of overtraining could be found
for all control allocation problems. Similar experiments must be run to determine the
point of maximum generalization. Although, once one experiment is complete, it does not
have to be repeated for different initial weight randomizations or additional hidden

neurons.

The results relating to the magic number of hidden neurons were certainly repeatable and
hold for any control allocation problem. For example, Figures 4.3.1 and 2 contain the
attainable moment subsets for two different five control allocation problems. Figure 4.3.3
illustrates that six remains the best number of hidden neurons, although the attainable
moment subsets have very different appearances. Additionally, the choice of initial weight

randomization had little effect on network training efficiency or test performance.

Thus, it is concluded that a neural network trained using backpropagation, for a control
allocation problem, can be efficiently trained using six neurons in the hidden layer.
Furthermore, the initial neural network weights have little effect on the results obtained.
The only requirement upon the outset of a new control allocation problem is to find the

point of maximum generalization.
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Five Control AMS for the F/A-18 HARV

Figure 4.3.1

Five Control AMS for Random B Matrix

Figure 4.3.2
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5.0 Simulation Implementation

For the implementation phase of this investigation an allocation problem with seven
controls has been selected. The perspective of a flight control engineer who has been
presented with the challenge of designing a real time control allocator for an aircraft
digital flight control system or a real time aircraft simulation is taken. The engineer is

expected to have the following tools available:

e A basic knowledge of control allocation and an allocation scheme available to generate

neural network training sets.
¢ A familiarity with neural networks and software for neural network development.
e Software to generate training grids.
In this implementation the following tools corresponding to the above were utilized:

e The direct allocation method implemented in CAT (Control Allocation Toolbox)
developed by Dr. W. C. Durham at the Virginia Polytechnic Institute and State
University [4] and modified to extract neural network training and testing data in the

preferred format.

e NeuralWorks [7] neural network development software distributed by NeuralWare,

Inc., Pittsburgh, PA.

e A FORTRAN subroutine developed by the author for the generation of three

dimensional symmetric rectangular grids of given size and density.
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The ultimate goal is to create a subroutine that accepts the control surface deflections of
an existing flight control system as input and reallocates the control surface deflections
using a trained neural network that emulates the direct allocation scheme implemented in
CAT. This stand-alone subroutine (termed a NeuroAllocator) may then be installed as a

module in an existing flight simulator.

The methods contained in this chapter may be extended for the development of a flight
control NeuroAllocator for any generic aircraft using any type of control allocation

scheme.
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5.1 Overview of Approach

The general procedure taken to realize the neural network control allocator in preparation

for real time flight simulation implementation was as follows:

| F/A 18 HARV Database J lGrid Generator I

[Maneuver Generator) Control L
Effectiveness Control Limits A 4
Matrix (B) [Moment Space Grid ]
(CASTLE Simulatia
E:ontrol Allocation Toolbox (CAT)
N N N

| Control History (Ud) J (Optimized Controls J (Attained Moments J
l |

_(Moment History (Md=BUd))
N

4[ Reallocated Control History (Unn) J

Neural Network
Training

Intelligent
Neural Network

Parameter Selection

(Neural Network
Weights & Equations
\_

[Moment History (Mnn=BUn@ & Subroutine
W N
Output Output

Figure 5.1.1: General Approach Overview

5.2 Nominal Aircraft Model

The nominal aircraft model is that of the F/A-18 HARYV at an angle of attack of 28.5°.
This model was chosen in anticipation of future implementation in the Controls and

Simulation Test Loop Environment (CASTLE) modular flight simulator developed by the

Chapter 5: Simulation Implementation 51



Naval Air Warfare Center (NAWC). Version 1.4 of CASTLE supporting the simulation
of the F/A-18A was used to generate the test maneuver in a prior investigation (see
Reference [15]). The control effectiveness or B matrix containing the partial derivatives
of the three moments with respect to the seven control surfaces, provided in Table 5.2.1,

at an angle of attack of 28.5° is:

647¢e—4 —647¢e—4 600e—4 -600e—4 583e-5 106e—3 -—106e-3
=| —735¢-3 -735¢-3 -600e—4 —-600e—4 000e+0 480e—4 480e-4
—-100e—7 100e—7 -150e—4 150e—4 —667¢e—4 000e+0 000e+0

BF18 HARV w/ Flaps

Table 5.2.1: F/A-18 HARYV Control Deflection Limits

Control Surface Minimum Limit Maximum Limit
U; Right Horizontal Tail 24° trailing edge up | 10.5° trailing edge down
Uz Left Horizontal Tail 24° trailing edge up | 10.5° trailing edge down
U3 Right Aileron 25° trailing edge up | 25° trailing edge down
Uy Left Aileron 25° trailing edge up 25° trailing edge down
Us Combined Rudders 30° trailing edge left | 30° trailing edge right
Us Right Trailing Edge Flap | 10° trailing edgeup | 40° trailing edge down
U7 Left Trailing Edge Flap 10° leading edgeup | 40° leading edge down
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A futile attempt was made to extract the control effectiveness parameters from the
CASTLE simulation for the F/A-18A in the prior investigation. The data from the HARV
database has been shown to produce good results [15]. Since the F/A-18 HARYV data for
the leading edge flaps were not availabie, these surfaces will be left as scheduled by the
original CASTLE control laws. Additionally, the left and right rudder of the CASTLE
simulation were treated as a single combined rudder control by the neural network control

allocator.

5.3 Training Set Generation

A neural network trained on points of a grid on and within the AMS has been shown, in
Section 4.2.3.3, to provide superior generalization performance to a neural network
trained on the vertices of the same AMS. This superior performance was characterized by
allowing a lower RMS error to be achieved at an extended number of training epochs, as
shown in Figure 4.2.3.3.3. Additionally, grid training is necessary for sufficient
performance of general test maneuvers having desired moment vectors that may occur

within the bounds of the AMS.

The choice of a training grid for the neural network control allocator had the following

characteristics. The training grid:

(1) spanned the three dimensional attainable moment subset.

(2) had sufficient density to provide adequate test performance.
(3) was limited to those points on the bounds and within the AMS.

(4) contained the defining feature of the AMS, namely the vertices.
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A grid generation program was developed to create a three dimensional rectangular grid
of given size and density. Once generated this grid was input to CAT which provided the
control deflections corresponding to each point in the input moment space grid. Each
input moment space grid vector and corresponding output control vector is referred to as
a training pattern and the collection of all training patterns of the grid is the training set.
To determine the dimensions of the grid, the AMS for the F/A-18 HARV using seven
controls was visualized using CAT, as illustrated in Figure 5.3.1. The minimum and

maximum moment coefficients in each direction are given in Table 5.3.1.

Figure 5.3.1: Seven Control F/A-18 HARV Attainable Moment Subset
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Table 5.3.1: Moment Coefficient Limits

Moment Coefficient | Minimum | Maximum

m—
p—

Cl -0.107 0.107
Cm -0.194 0.421
Cn -0.028 0.028

Note that the AMS was unsymmetric in the pitching moment coefficient direction. Since
the grid generator was only capable of creating rectangular symmetric grids, the initial grid
of the AMS, depicted in Figure 5.3.2, was not satisfactory.

Figure 5.3.2: Initial Input Moment Space Training Grid
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Fortunately, as CAT allocated the controls corresponding to the grid points it also
calculated the moments actually attained, thereby scaling back unattainable moments
outside the boundary of the AMS. A consequence of having many points outside the
AMS being scaled back to its boundary was a clustering of training points on the boundary
of the AMS. Finally, the vertices and corresponding controls were appended to each
training grid to ensure their existence. An example of a complete training grid having 270

training points is shown in Figure 5.3.3.

Figure 5.3.3: Final Input Moment Space Training Grid

The only desired characteristic of the training set that is not certified is its density. It is

advisable to start with a grid of nominal density based on reasonable training times, such
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as the grid shown, and adjust for the desired test precision. The nominal grid used in this
case contained 270 points, using a spacing between grid points of 0.05 in the CI direction,
0.1 in the Cm direction, and 0.015 in the Cn direction. By starting with a grid of nominal
density and finding its point of maximum generalization during training, the continued
reproduction of the experiment for each subsequent grid density may be avoided since the
number of training epochs required to attain maximum generalization was found to be

fairly insensitive to adjustments in grid density, as shown in Section 4.2.3.3.

5.4 Intelligent Neural Network Configuration
and Parameter Selection

As opposed to the trial and error approach commonly taken to develop a neural network,
the neural network structure and parameters were selected intelligently based upon the
experiments of Chapter 4. The EDBD backpropagation learning rule used in the
experiments was used for training the neural network to be implemented. The same
learning coefficients used in the experiments and listed in Table 4.1.1.1 were used. In
addition, the hyperbolic tangent squashing function and the scaling method described in

Sections 4.1.4 and 4.1.5, respectively, were selected.

In the quest for the magic number, it was demonstrated that a six hidden neuron neural
network can train efficiently, form an effective neural network representation of the AMS,
and retain good generalization performance. The point of maximum generalization will be
found by again testing on the facet centers. Finally, any initial weight randomization may

be employed since it was shown not to affect generalization ability.
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Using the above rationale the neural network structure used to solve the seven control

allocation problem is illustrated in Figure 5.4.1.

Outputs:  u1 u2 u3 u4 ud ué u7

6 Hidden
Neurons

Inputs: Cl Cm Cn

Figure 5.4.1: Seven Control NeuroAllocator Structure

5.5 Test Maneuver Selection

Neural network performance will be evaluated on a high angle of attack roll from wings
level to 60° of bank, to -60° of bank, and back to wings level. Figure 5.5.1 shows the
time history of moment vectors required to produce this maneuver inside of the wireframe

F/A-18 HARV AMS.
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Figure 5.5.1: Desired Moments for Test Maneuver in the F/A-18 HARV AMS

The rational behind the selection of this maneuver, given in Reference [15], was to

generate a maneuver that would:

(1) saturate at least one control using the original control law, since the optimal control

allocator could be shown to eliminate this saturation.

(2) fall into the low dynamic pressure (high alpha) flight regime, to again saturate the

controls and also maximize control actuator rates.

(3) have a relatively small departure from the initial angle of attack since the control
effectiveness matrix was derived at the initial condition and changes considerably with

angle of attack.
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The maneuver was performed using the maneuver generator in the CASTLE simulation.
The control augmentation system (CAS) of the F/A-18A is a fly-by-wire redundant, full
authority digital flight control system. The Auto Flap Up configuration for up and away
flight was used during the maneuver simulation [15]. The CAS of the F/A-18A uses gain
scheduling, cross axis interconnection, and closed loop control for the original allocating

of the ten control surface deflections for the maneuver.

5.6 Training Analysis

As stated in the previous chapter, the only requirement upon the outset of a new control
allocation problem is to find the point of maximum generalization. The neural network
described in the previous section was trained using grids ranging from 270 points to 2800
points. The characteristics of the two grids used in the performance analysis are provided

in Table 5.6.1.

Table 5.6.1: Grid Characteristics

- Characteristic Grid A | Grid B
Number of Points: 270 280021
Maximum Limit in Direction: Cl 0.1 0.1
Cm 0.4 0.4

Cn 0.03 0.03
Interval Between Points in Direction: Cl 0.05 0.015
Cm 0.1 0.015
Cn | 0015 0.015

After every epoch, which in this case was one pass through a training grid, a reading of the
RMS error achieved by testing the facet centers of the AMS was recorded. Figure 5.6.1
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demonstrates that the point of maximum generalization for this particular network and

grid A was achieved at 61 epochs.

09 —

0.7 + """" Facet Centers Test Grid A

Train Grid A
0.6 —+

05 -+

0.4 4

RMS Error

Point of Maximum
Generalization

0.2 —+

0.1 —+

Figure 5.6.1: Neural Network Generalization Performance for Training Grid A

The neural network trained for 61 epochs on grid A was tested on the selected maneuver
which had desired moments well within the bounds of the AMS and unsatisfactory results,
discussed in detail in the following section, were found. Large deviations from the desired

performance demanded a reevaluation of grid density, training epochs, and the testing set.

Grid B achieved a lower RMS error for the training and facet center test sets using fewer
training epochs than grid A. The neural network trained on grid B was then subjected to a
test using points interior to the bounding surface of the AMS, in addition to the facet
centers. The RMS error achieved by the training set, the facet center test set, and the

interior points test set was recorded every training epoch, as illustrated in Figure 5.6.2.
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Although the facet center test RMS error continued to decrease after 20 training epochs
and did not predict overtraining for many training epochs, the interior points test

demonstrated that the neural network had become overtrained at only 13 epochs.

04 —

—®— Train Grid B

—0— Facet Centers Test Grid B

| —* Interior Points + Facet Centers
Test Grid B

RMS Error

0.2 ~L

Point of Maximum
Generalization

0.1 — + t } f ; t t t f
o 2 4 6 8 10 12 14 16 18 20
Epochs

Figure 5.6.2: Neural Network Generalization Performance for Training Grid B

Therefore, for general test maneuvers it is very important to choose testing data that is
representative of the entire input moment space. If not, the point of maximum
generalization may be greatly overestimated resulting in inferior performance.
Furthermore, a substantial number of training grid points is necessary to provide an
acceptable RMS error. The need for a dense training grid is discussed in detail in

Section 5.8.
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Inspection of a weight histogram during training revealed an even distribution of relatively
small weights throughout the network, as expected. This signifies the neural network had

an adequate number of weights to represent the nonlinear functional relationship between

the moments and controls [7].

This neural network was trained in total isolation of the knowledge of the maneuver to be
performed. Thus, no bias was given to any octant of the AMS or spacing of grid points in

any direction.
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5.7 Neural Network Deployment Module

During the training analysis the point of maximum generalization for training grid B was
found to occur at 13 epochs. Once this point was found the neural network was
reinitialized and trained the specified number of epochs. At this point the weights of the
fully trained neural network were extracted and used as the weight matrices in the

following set of equations.

( 3 T ] 3
thl
Xin2 1
9 Xins ¢r = Tanh Wl C
th4 Cm
leS Cn
LthGJ \L ] J
/ 7 \
(ul F [ 1
u, X pat
u, Xz
<114}=Ta.ﬂh W2 ‘le3?
u, X i
U, ths
Lu7, \L _ LthGJ )

where W, is 6x4 (#of HN) x (# of Inputs + Bias)
where W, is 7x7 (#of Outputs) x (# HN + Bias)

These were the equations that were translated into FORTRAN and deployed in the
subroutine NeuroAllocator block. The equations are quite simple and consist of a matrix-

vector multiplication, a pass through the squashing function, another matrix-vector
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multiplication, and another pass through the squashing function. An example of the

subroutine module is located in Appendix C.

The subroutine accepts a vector of control deflections from an existing flight simulator
control law. The desired moment the pilot wishes to achieve associated with the original
control deflections was found and input to the NeuroAllocator. By employing the above
equations the controls were reallocated according to the direct control allocation scheme
the neural network was emulating. The original desired moment, reallocated controls, and
moment achieved by the reallocated controls were output from the subroutine for

comparison.

5.8 Maneuver Performance

A driver program was created to call the NeuroAllocator in order to simulate the real time
operation of the CASTLE flight simulator. The program called the NeuroAllocator
module at each time step (0.02 sec) for the duration of the series of the two-roll-reversals
test maneuver. The user determined if the trailing edge flaps were to be scheduled by the
NeuroAllocator during the first pass of the subroutine. Additionally, the user may choose
to use neural networks trained on grids of various density for the remainder of the

simulation.

Each time the driver program called the NeuroAllocator module, the subroutine read the
next sequence of ten control surface deflections from a user defined input file containing
the time history of control deflections for a desired test maneuver. Leading edge flaps
were not reallocated and were left as scheduled by the CASTLE CAS. The left and right
rudder control deflections were treated as a single combined rudder. This leaves either

five (or seven, if the trailing edge flaps are to be rescheduled) of the ten original controls
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to be reallocated by the NeuroAllocator. The results presented in this chapter are for

reallocated trailing edge flaps.

Figures 5.8.1, 2, and 3 illustrate the rolling, pitching, and yawing moment coefficients,
respectively, for the 20 seconds of the test maneuver. Results are presented for the
desired moment coefficients obtained using the CASTLE CAS, and the moments obtained
using the reallocated controls from the direct allocation scheme (from CAT), and from the
NeuroAllocator trained on grids A and B. Note, that since the direct allocation scheme
could perfectly reproduce the desired moments, the time history from CAT is

indistinguishable from the desired moment coefficients using the CASTLE CAS.
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Figure 5.8.1: Rolling Moment Coefficient Time History for Test Maneuver
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Figure 5.8.3: Yawing Moment Coefficient Time History for Test Maneuver
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The performance of the NeuroAllocator to reproduce the desired moments was
substantially improved with the density of grid A (270 points) to grid B (2800 points).
For grids of density between grid A and B the same trends were found and gradually
approached the results of grid B with increasing density. Grid B nearly obtained the
desired moments but fell short of perfectly matching the desired time history as was
achieved by CAT, the control allocation scheme the neural network was attempting to
emulate. Since 2800 training patterns is a sizable number of grid points for a training set,
on the basis of training times of up to 30 minutes on a 486DX33 machine, density was not

increased beyond that amount.

As shown if Figures 5.8.1, 2, and 3, although the resulting moments produced by the
NeuroAllocator control deflections match phase with the desired moments, there was an
error in magnitude. This error, specifically a magnitude error greater than that desired,
can be attributed to the fact that the training grids had a greater density of points on the
bounding surface of the AMS and were sparse in the interior. It is thought that this
created a bias to extend the moment vector that ultimately commanded larger control

deflections resuliing in larger moments.

Although it is thought that continued increases in grid density will gradually drive the
resulting moments of the NeuroAllocator to those desired, it is advantageous to discover
why such great numbers of training grid points are necessary rather than using brute force

by creating increasing large unwieldy training grids to achieve better performance.

Observing the time histories of control deflections that create the moments to produce the
test maneuver lends insight into the limitations of the neural network ability to emulate

CAT. Figures 5.8.4, 5,6, 7, 8, 9, and 10 illustrate a comparison of the original CASTLE
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CAS, the reallocated CAT, and the reallocated NeuroAllocator control deflection time

histories for the test maneuver.

The NeuroAllocator should ideally follow the reallocated control deflections of CAT, but
it is clearly demonstrated by the horizontal tail and aileron deflections that the
NeuroAllocator cannot achieve the resolution of CAT. The NeuroAllocator had, in effect,
smoothed out the swiftly varying control deflection demands of CAT by generalizing the
relationship between moments and controls between grid points. A consequence of this
type of nonlinear curve fit to the CAT control deflections was the reduction of actuator

rate demands.

Each time history of control deflections shows that the reallocated controls were quite
different from the original CASTLE CAS control deflections with the exception of the
rudder. The direct allocation scheme that the NeuroAllocator was emulating, by design,
takes full advantage of all available controls without saturation unless the desired moment
lies on the bounding surface of the AMS. This effect was most evident in the reallocation

of the trailing edge flaps which were barely utilized by the original control law.

Since the test maneuver occurred well within the bounds of the AMS, the resulting
reallocation did not saturate any control surface at any time. In fact, the saturation of the
rudder during the maneuver by the original control law was eliminated in the reallocation

of the controls.
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Figure 5.8.10: Left Trailing Edge Flap Deflection

The ability of the NeuroAllocator to obtain the same resolution of CAT was limited by the
grid density interior to the surface of the AMS. Figure 5.8.11 illustrates a cross section of
an AMS spanned by a two dimensional training grid. A desired moment is shown at three
different magnitudes in the same direction. CAT determines the direction of any desired
moment and finds the corresponding control associated with the intersection of the desired
moment with the bounding surface of the AMS. In other words, interior to the surface of
the AMS are miniature scaled representations of the bounding surface. The facets on the
bounding surface, which are defined by at least 4 training points at the vertices, become
smaller and smaller with decreasing distance to the origin. Thus, facets on a smaller
surface on a miniature AMS near the origin are not well defined by this type of grid and

more than one facet will lie between two grid points. The resolution limits were
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particularly apparent for the test maneuver since the desired moments were well interior to

the bounding surface of the AMS.

Figure 5.8.11: Grid Density Resolution Limits
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6.0 Summary and Recommendations

The described extended delta-bar-delta backpropagation neural network has been
successfully applied to the stated flight control allocation problem. The control allocation
problem has been shown to be well suited for a neural network solution, since the input
space is described by a closed and convex attainable moment subset, if the controls are

independent.

Guidelines have been developed by heuristic arguments, which were experimentally
verified, for the selection of neural network configurations and parameters. Specifically, a
six hidden neuron neural network has been shown to have the ability to train efficiently,
form an effective neural network representation of the AMS, and independently discover
the internal relationships between moments and controls. These general guidelines may be
extended to emulate any control allocation scheme for the solution of any flight control

allocation problem having any number of flight control surfaces.

On the basis of the guidelines, a subroutine module has been created to implement the
developed flight control NeuroAllocator in an existing flight simulator.  The
NeuroAllocator subroutine, that was used to demonstrate the advantages and
disadvantages of the neural network, reallocated seven of the control surfaces in a real

time test maneuver of the F/A-18 HARYV.

The neural network, trained to emulate the direct allocation scheme implemented in CAT,
has been found to have limitations arising from the ability of the training grid to achieve
the resolution of CAT at low moment requirements. Computationally speaking, it is
feasible to implement the direct method in real time. Since the neural network cannot

attain the same performance, the direct method is not in danger of being replaced.

Chapter 6: Summary and Recommendations 75



However, the direct method has been shown to have flaws associated with high actuator

rate demands.

The most obvious recommendation to increase the performance of the neural network,
pertaining to the emulation of the direct allocation scheme, is the development of a more
sophisticated training grid generator. More resolution has been shown to be needed in
the region of low moment demands near the origin of the AMS. Points could be
distributed along vectors to the vertices and facet centers. This would guarantee all facets
on the surface and miniature facets within the AMS are clearly defined. The spacing of
the grid points along each vector would have to be addressed. Additionally, this would
eliminate the clustering of training points on the bounding surface of the AMS.

A less obvious modification would be an increase in the slope of the hyperbolic tangent
squashing function to increase the performance of the NeuroAllocator. It has been
suggested [13] that this increase in slope would partially correct the magnitude error seen
in the moment coefficient time histories since the neural network has matched the correct

phase.

The increased resolution needed by the direct allocation scheme was accompanied by a
high demand on actuator rates. Although, the neural network could not exactly attain the
desired moments for the test maneuver, the nature of the neural network to generalize
tended to limit rate demands. A parallel investigation has led to a blended solution using
the pseudo-inverse for low moment demands and the direct method for high moment
demands that the pseudo-inverse cannot attain [16]. In the investigation, low actuator rate
requirements have been found to occur at low moment demands for the pseudo-inverse

and at high moment demands for the direct method.
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Large dense training grids would not be necessary to learn the pseudo-inverse relationship
between moments and controls, and a neural network has been shown to attain the
necessary resolution for high moment demands near the bounding surface of the AMS.
The elegance of the neural network to condense complex algorithms into simple equations
would be useful for the emulation of variations on the direct method that are

computationally cumbersome and difficult to realize in real time, such as the above.

Future investigations should explore the adaptive nature of neural networks. In practice,
the effectiveness of the controls (the B matrix) is not constant, but varies with flight
condition. This problem could be addressed by additional inputs corresponding to the
major contributors in this variation, such as airspeed and angle of attack. The direct
method would have to use a look-up table to find the moment coefficient derivatives and
recalculate the AMS for each flight condition. To recalculate the AMS on the fly would
be difficult in real time. Thus, a neural network could be trained off-line on attainable
moment subsets at strategic locations throughout the flight envelope. In essence, this
would require more dimensions to be incorporated into the training grid to account for the
entire flight envelope. Perhaps, configurations that feature breaking the neural network
into a set of parallel networks, one for the moments, which could utilize the previous

results and one for the flight condition, should be examined.

Another feature of the adaptability of the neural network that may be exploited may
account for arising uncertainties in control effectiveness data. A neural network could be
trained off-line on existing control effectiveness data. A second neural network could be
linked in parallel to the first and trained on-line to compensate for modeling errors and
parameter drift in real time, similar to a method that has been used for feedback

linearization in aircraft control [9]. Conversely, the neural network trained on-line could
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be used to extract more accurate estimates of control effectiveness data for

implementation in other allocation schemes.

The performance of alternative neural network types should be addressed, such as the
Radial Basis Function (RBF) and Self-Organizing Map (SOM) architecture. The RBF
neural network features an internal representation of hidden processing elements that are
radially symmetric and has recently gained popularity in applications in which
backpropagation is typically employed. RBF neural networks have been shown to have
properties that offer many advantages over backpropagation [7]. Among these
advantages include: faster training, superior learning of decision boundaries, especially in
bounded regions, and improved extrapolation in regions of sparse training data. SOM can
be used as a front end to a backpropagation neural network [7]. The SOM neural

network offers advantages beyond the scope of this thesis.

Other issues of note include: stability and robustness, control failure accommodation, the
number of computations required as compared to other allocation schemes, and

adaptability to the requirements of various flight phases and aircraft classifications.

In closing, it is the author's opinion that neural networks have enormous potential in the
field of aircraft control. Research in this area is in its infancy. Future advanced aircraft
may feature intelligent flight control systems entirely composed of neural networks. It is
hoped that this work has accomplished the goal of providing future researchers with a
guide that may serve as the foundation for the development of a more advanced and
realistic NeuroAllocator that may become a part of large neural network flight control

system.
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Appendix A. Glossary of Flight Control Terminology

AMS Attainable Moment Subset, @
B Matrix of control effectiveness
CAS Control Augmentation System

CASTLE Controls and Simulation Test Loop Environment

CAT Control Allocation Toolbox: Application Software for the Solution and

Visualization of Constrained Flight Control Allocation Problems

C Rolling Moment Coefficient

Cm Pitching Moment Coefficient

Cn Yawing Moment Coefficient

Face A geometric feature of the constrained control and attainable moment

subsets. Faces are generated in m-space by placing all but two of the m controls at either
of their two constraint and allowing two to vary. Faces in the attainable moment subset

are the images of the faces in the constrained control subset.

Facet Any face that lies on the boundary of the constrained control or attainable
moment subsets. All faces in the constrained control subset are facets, but a face in the

attainable moment subset may or may not be a facet.

HARV F/A-18 High Angle of Attack Research Vehicle

LAIL Left Aileron Control Surface Deflection
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LHT

LTEF

Node

Left Horizontal Tail Control Surface Deflection
Left Trailing Edge Flap Control Surface Deflection
Number of controls

Vector of moments

Dimension of moment space, 3

A geometric feature of the constrained control and attainable moment

subsets. Nodes are generated in m-space by placing each of the m controls at either of its

two constraints, yielding 2™ nodes in the subset of constrained controls. Nodes in the

attainable moment subset are the images of the nodes in the constrained control subset.

Q

RAIL

RHT

RTEF

RUD

Vertex

Constrained Control Subset

Right Aileron Control Surface Deflection

Right Horizontal Tail Control Surface Deflection
Right Trailing Edge Flap Control Surface Deflection
Rudder Control Surface Deflection

Vector of controls

Any node that lies on the boundary of the constrained control or attainable

moment subsets. All nodes in the constrained control subset are vertices, but a node in the

attainable moment subset may or may not be a vertex.
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Appendix B. Glossary of Neural Network Terminology

Adaptability The ability to self-adjust in response to external stimuli.

Backpropagation  An iterative training procedure that involves the minimization of the
total squared error between the actual and desired outputs of a training set, with respect to

the neural network weights.

Cumulative Backpropagation Backpropagation training procedure where weight

updates are accumulated over an entire training epoch.

Decision Boundary Boundaries by which output decisions are made by separating

regions of an input space.
Delta Weight Weight update.

EDBD Extended Delta-Bar-Delta: a modified backpropagation learning

rule using individual time varying learning coefficients for each neural network weight.
Epoch One full pass through all training pattemns in a training set.

Generalization The ability of a neural network produce an output from a

previously unseen input on the basis of leamned input-output examples.
Hidden Layer Any layer in a neural network that is not an input or output layer.
Hidden Neuron A neuron in the hidden layer.

Learning Rule Algorithm determining how weights adapt in response to a learning

example.
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NeuroAllocator Flight control allocator module using a neural network, trained to

emulate a desired control allocation scheme.

Neuron The basic building block of a neural network, analogous to the

biological neuron nerve cell. Neural networks are composed of highly interconnected

neurons.
NN-AMS Neural network representation of the attainable moment subset
Perceptrons The original artificial neural network, similar to a neuron with the

exception of a predetermined threshold replacing the squashing function, usually organized

into a single layer neural network.

RBF Radial Basis Function neural network architecture
RMS Root-Mean-Square
SOM Self-Organizing Map neural network architecture

Squashing Function A threshold function or a continuous function operating on the

weighted sum of the input to a neuron.

Supervised Learning Training such that a neural network adapts to create a

specified input-output mapping.
Threshold Constant used as a comparison level by a variable.
Training Pattern  An input-output example for training a neural network.

Training Set The collection of all training patterns used to train a neural

network.
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Unsupervised Learning Training such that a neural network organizes to respond to

certain inputs.
Weight Interconnection between two neurons.
Weight Layer Matrix of weights connecting two neural network layers.
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Appendix C. Sample NeuroAllocator Subroutine

Enclosed in Appendix C is the FORTRAN code for the NeuroAllocator subroutine
module described in detail in Chapter 5. The subroutine accepts a vector ef control
deflections from the original CASTLE CAS control law as input and reallocates the
control surface deflections using a trained neural network that emulates the direct
allocation scheme implemented in CAT. Each time the driver program calls the
NeuroAllocator module, the subroutine reads the next sequence of ten control surface
deflections from a user defined input file containing the time history of control deflections
for a desired test maneuver. The desired moment associated with the original control
deflections is calculated and input to the NeuroAllocator. Because of space limitations the
equations included here are only for the neural network trained on Grid B for 13 epochs
that was used to obtain the results presented in Section 5.8. The original desired moment,
reallocated controls, and moment achieved by the reallocated controls are output from the

subroutine for comparison.
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subroutine neural(dihtd,drhtd,dlad,drad,drudd,dtefl dteft, dlefl, dlefr,drudl, drudr,
$ nnlhtd nnrhtd,nnlad,nnrad,nnrudd,nntefl, nnteft,
$ yin,nnmom,ilshot, flaps,time)
implicit none
real*4 dlhtd,drhtd,dlad,drad,drudd,dtefl, dtefr
real*4 dlefl dlefr,drudl,drudr
real*4 nnlhtd nnrhtd, nnlad, nnrad, nnrudd,nntefl nntefr
real*4 yin(3),yout(7),nnmomy(3),uin(7),xout(38),time
integer*4 flaps,ilshot,grid

The following are the control deflections from the original CASTLE CAS control laws
dlhtd = left horizontal tail deflection

drhtd = right horizontal tail deflection

dlad = left aileron deflection

drad = right aileron deflection

drudl = left rudder deflection

drudr = right rudder deflection

drudd = combined rudder deflection

dtefl = left trailing edge flap deflection

dtefr = right trailing edge flap deflection

The following are the allocated control deflections output from the neural network
nnlhtd = left horizontal tail deflection

nnrhtd = right horizontal tail deflection

nnlad = left aileron deflection

nnrad = right aileron deflection

nnrudd = combined rudder deflection

nntefl = left trailing edge flap deflection

nntefr = right trailing edge flap deflection

subroutine input:

dlhtd,drhtd, etc. are the controls for a maneuver read from file bull.dat
subroutine asks user if trailing edge flaps are being used

flap information is input by user on first pass

QOO0 0060060060000 0O06O00O06O0CO06O060CO0O06CO00O6 O

subroutine output:

nnlhtd nnrhtd,etc. are the neuro-allocated controls, also in yout array

yin are the moments gotten from multiplying the appropriate B matrix
with the mput control - the CASTLE moments

nnmom are the moments gotten from multiplying the appropriate B matrix
with the neural-allocated controls - the NN moments

Q O O 06 0 0 0
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if (ilshot.eq.0) then

open (99,file='control.dat',status="unknown')
write(*,*) 'use trailing edge flaps? (1=yes,0=no)'
read(5,*) flaps

write(*,*) 'pick a grid'

read(5,*) grid

endif

read (99,*) time,dlefl, dlefr,dtefl, dtefr,dlad,
$drad,dlhtd,drhtd,drudL drudr

drudd=(drudi+drudr)*0.5
uin(1)=dlhtd
uin(2)=drhtd
uin(3)=dlad

uin(4)=drad
uin(5)=drudd
uin(6)=dtefl

uin(7)=dtefr

¢

¢ pre-multiply input control deflections with B to get the

¢ moments required for desired maneuver for input to neural network
call bwack(uin,yin,flaps)

(%
if (flaps.eq.0) then
c 5u NN code goes here

else

¢ 7u NN code goes here
if{grid.eq. 1 )then
¢ These equations are for the neural network trained on Grid B for 13 epochs
c and used to obtain the results presented in Chapter 5
¢ Read and scale input into network
Xout(2) = Yin(1) * (10.25641) + (0.025641039)
Xout(3) = Yin(2) * (3.4188034) + (-0.35042737)
Xout(4) = Yin(3) * (36.346455)

¢ Code for NEURON 1 in hidden layer
Xout(5) = (-0.031317133) + (-0.32951489) * Xout(2) +
/  (-0.93620998) * Xout(3) + (0.12593168) * Xout(4)
Xout(5) = tanh( Xout(5) )
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¢ Code for NEURON 2 in hidden layer
Xout(6) = (0.0023961561) + (0.79035228) * Xout(2) +
/  (-0.44962245) * Xout(3) + (0.24002163) * Xout(4)
Xout(6) = tanh( Xout(6) )

¢ Code for NEURON 3 in hidden layer
Xout(7) =(0.067462869) + (-0.12598433) * Xout(2) +
/ (-0.32188138) * Xout(3) + (0.3785848) * Xout(4)
Xout(7) = tanh( Xout(7) )

¢ Code for NEURON 4 in hidden layer
Xout(9) = (0.031298164) + (-0.87158149) * Xout(2) +
/ (0.468503) * Xout(3) + (0.79977751) * Xout(4)
Xout(9) = tanh( Xout(9) )

¢ Code for NEURON 5 in hidden layer
Xout(10) =(-0.021355228) + (-0.86691993) * Xout(2) +
!/ (-0.59443933) * Xout(3) + (-0.26715013) * Xout(4)
Xout(10) = tanh( Xout(10) )

¢ Code for NEURON 6 in hidden layer
Xout(11) = (-0.0051007429) + (0.54082954) * Xout(2) +
/  (-0.26232728) * Xout(3) + (0.79318631) * Xout(4)
Xout(11) = tanh( Xout(11))

¢ Code for NEURON 1 in output layer
Xout(35) = (0.043324705) + (0.46323586) * Xout(5) +
/ (0.46617343) * Xout(6) + (0.07843034) * Xout(7) +
/  (-0.56374753) * Xout(9) + (0.16793905) * Xout(10) + (0.26864043) * Xout(11)
Xout(35) = tanh( Xout(35) )

¢ Code for NEURON 2 in output layer
Xout(36) = (0.069513872) + (0.74444646) * Xout(5) +
/ (0.058761761) * Xout(6) + (0.3167201) * Xout(7) +
/ (-0.05283942) * Xout(9) + (0.65420818) * Xout(10) + (0.05478288) * Xout(11)
Xout(36) = tanh( Xout(36) )

o

Code for NEURON 3 in output layer
Xout(37) = (-0.0057014348) + (0.10217991) * Xout(5) +
/' (0.26666474) * Xout(6) + (-0.12476267) * Xout(7) +
! (-0.99169153) * Xout(9) + (0.0897654) * Xout(10) + (-0.0867637) * Xout(11)
Xout(37) = tanh( Xout(37) )
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¢ Code for NEURON 4 in output layer
Xout(8) = (-0.010617553) + (0.53805619) * Xout(5) +
/ (0.024169981) * Xout(6) + (0.36718798) * Xout(7) +
/ (0.69565201) * Xout(9) + (0.45057669) * Xout(10) + (0.35412234) * Xout(11)
Xout(8) = tanh( Xout(8) )

¢ Code for NEURON 5 in output layer
Xout(14) =(0.034770161) + (-0.033673961) * Xout(5) +
/ (-0.24017468) * Xout(6) + (-0.19916892) * Xout(7) +
/  (-0.60106784) * Xout(9) + (0.27526799) * Xout(10) + (-0.7800905) * Xout(11)
Xout(14) = tanh( Xout(14) )

¢ Code for NEURON 6 in output layer
Xout(17) = (-0.12954383) + (-0.31490016) * Xout(5) +
/ (0.36128873) * Xout(6) + (0.036798634) * Xout(7) +
/  (-0.18624724) * Xout(9) + (-0.7580961) * Xout(10) + (0.52218318) * Xout(11)
Xout(17) = tanh( Xout(17) )

¢ Code for NEURON 7 in output layer
Xout(16) =(-0.039411657) + (-0.039239563) * Xout(5) +
!/ (-0.65613067) * Xout(6) + (-0.1111136) * Xout(7) +
/ (0.29073375) * Xout(9) + (0.4273434) * Xout(10) + (-0.51065058) * Xout(11)
Xout(16) = tanh( Xout(16) )

¢ De-scale and write output from network
Yout(1) = Xout(35) * (21.5625) + (-6.75)
Yout(2) = Xout(36) * (21.5625) + (-6.75)
Yout(3) = Xout(37) * (31.25)
Yout(4) = Xout(8) * (31.25)
Yout(5) = Xout(14) * (37.499999)
Yout(6) = Xout(17) * (31.25) + (15)
Yout(7) = Xout(16) * (31.25) + (15)
endif

endif

c save neural allocated controls output from neural network
nnlhtd = yout(1)
nnrhtd = yout(2)
nnlad = yout(3)
nnrad = yout(4)
nnrudd = yout(5)
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if (flaps.eq.1) then
nntefl = yout(6)
nntefr = yout(7)
endif

C
¢ pre-multiply neural network output control deflections with B to get the
¢ moments attained for desired maneuver for output

call bwack(yout,nnmom,flaps)

return
end

subroutine bwack(u,m,flaps)
implicit none

real*4 u(7),m(3),b(3,7)
integer*4 flaps

¢ subroutine to multiply matrix B with vector u to get vector m
¢ m=Bu

c the B matrix for f/a-18 HARV with trailing edge flaps
b(1,1)=6.47¢-4
b(1,2)=-6.47¢-4
b(1,3)=6.00e-4
b(1,4)=6.00e-4
b(1,5)=5.83e-5
b(1,6)=1.06e-3
b(1,7)=-1.06e-3
b(2,1)=-7.35¢-3
b(2,2)=7.35¢-3
b(2,3)=-6.00e-4
b(2,4)=-6.00e-4
b(2,5)=0.00e+0
b(2,6)=4.80e-4
b(2,7)=4.80e-4
b(3,1)=-1.00e-7
b(3,2)=1.00e-7
b(3,3)=1.50e-4
b(3,4)=1.50e-4
b(3,5)=6.67e-4
b(3,6)=0.00e+0
b(3,7)=0.00e+0
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m(1)=b(1,1)*u(1)+b(1,2)*u(2)+b(1,3)*u(3)+b(1,4)*u(4)+b(1,5)*u(5)
m(2)=b(2,1)*u(1)+b(2,2)*u(2)+b(2,3)*u(3)+b(2,4)*u(4)+b(2,5)*u(5)
m(3)=b(3,1)*u(1)+b(3,2)*u(2)+b(3,3)*u(3)+b(3,4)*u(4)+b(3,5)*u(5)

if (flaps.eq.1) then
m(1)=m(1)+b(1,6)*u(6)+b(1,7)*u(7)
m(2)=m(2)+b(2,6)*u(6)+b(2,7)*u(7)
m(3)=m(3)+b(3,6)*u(6)+b(3,7)*u(7)
endif

return
end
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