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Abstract -- The problem of minimizing the execution completion time of a given total load,
to be partitioned into interacting tasks and allocated to run on a generalized model of a
heterogenous centralized or distributed multiprocessing system, is examined. The problem is
formulated as a nonlinear, nonconvex, nonseparable, minimax, resource-allocation, continuous,
mathematical programming problem. 1t is assumed that the quantitative functional dependence of
the individual processor execution time on the partitioned load allocation js known and specified
in analytical or graphical formats of g fairly general nature with no a priori restrictions of
differentiability, monotonicity, convexity, and unimodality commonly imposed in previous
Investigations of the problem. A Theorem stating the necessary and sufficient condition for
minimum concurrent processing completion time is derived, The new result represents an analytical
breakthrough applicable to a wide class of hitherto analytically unsolved optimization problems in
_various application disciplines. The derivation starts from a precise representation of the parallel
execution time and proceeds through an exact analysis that does not resort to the simplifying
assumptions or analytical approximations found in analogous previous investigations. The load
partitioning is considered to vary over a continuum, thus allowing the achievement of ideal
optimization through one-stép repartitioning of the given load. The optimization procedure
determines the set of all global minimum points of the completion time function as well as all its
local minima, thus allowing further lexicographic optimization and suboptimal trade-offs, The
. conditions of the Theorem admit a straightforward graphical interpretation which facilitates its
; implementation and readily extends its applicability to empirically or simulationally determined

models of the system.

Index Terms: multiprocessing performance, optimal load allocation, parallel program
execution, muitiprocessor/distributed system modeling, ideal partitioning, local minimization,
minimax resource allocation, graphical optimization methods, nonconvex mathematical

programming.



Introduction and Backeround
s=====elon and Background

The problems of performance analysis and optimization for paratle} ang distributed processing
have received a good deal of attention over the past decade. One such problem is the minimization
of the execution completion time of a given workload running on a system comprising a number
of interconnected processing elements or stations, organized into a localized multiprocessor or

distributed network configuration (Figure 1).
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Figure 1. Basic System Organization



minimization of performance measures over such a complex domain, are notoriously difficult

problems.

Recent investigations of these modeling and optimization problems have involved simulational
studies (1], [2] as well as analytical ones. The analytical results are based on simplifying
assumptions and restrictions which reduce the complexity and size of the problem. Early efforts
have used graph-theoretic methods to obtain criteria for serially partitioned workloads [3], [4], [5].
The computational effort of these methods grows exponentially with the dimensions of the problem
(numbers of processors and tasks). More recent graph-theoretic results are applicable to
concurrently partitioned workloads (parallel algorithms), which also seek to reduce the computa-
‘tional complexity required by imposing a Ppriori restrictions on the structure of the partitioning

allowed [6], [7].

A different approach is used in [8], [9], [15], which is not based on graph-theoretic
optimization algorithms. Instead, the partitioning and assignment are quantified in a discrete
fashion by subtasking the total workload into a fixed number of modules M, and quantifying the
magnitude of each individual load assignment by the product k,R of the number of modules k,
assigned to processor P, times the mean value R of the module size. These parameters, together
with the mean value C of interprocessor communication overhead between pairs of non-resident
modules, are used to construct approximate (estimate) expressions .for the parallel execution time
of the total load. The approximate nature of thege expressions results, in each case, from various
simplifying assumptions made about the communication overhead and its overlap with the module
run-time. Minimization criteria for parallel execution time are derived based on these expressions,
The minimization process is exact only in the case of tWo-processor systems, but resorts to further

approximations in the general case of N heterogenous processors. The optimal assignments thus



obtained are expressed in terms of the number of modules k, assigned to each processor P; such

that ©k; = M. Thus the mathematical optimization is modeled as an integer programming problem,

This paper adopts a simjlar approach in quantifying the Partitioning of the total load I into
subtasks x;, x,, . . ., x_ assigned to P, P,, . . ., P, such that

Lttt o4+ x+ . 4x =L (1)
where x; is a continuous measure of the load size assigned to P, , which is comparable to the
discrete measure k, used in [8] and [9]. We assume that the functional dépendences of the
individual execution completion time T; of processor P, on the load assignment x = &y X .. 0 x)
are known (e.g,, from simulational studies of the given system), i.e., we assume the functions Ti(x)
are given. We use {Ty(x)} to represent the exact parallel execution completion time T for the tota]
load as the time it takes the last running processor to finish its run, ie, T = max, {Ti(x)}, and we
seek the exact global minimum value T of T:

T = min, max; {Ti(x)} )
The existing analytical tools, currently available from the discipline of mathematical programming,
are not applicable to the optimization problem expressed in (2) in its most general form. We derive
a new theoretical criterion in the form of a necessary and sufficient condition addressing the
defim'tive solution of the optimization problem in (2). The criterion admits a straightforward

graphical interpretation, and is readily applicable whether the system characterization is given by

analytical expressions or empirical /simulational data. The criterion is immediately usable in solvin g

optimization problems of other application disciplines which can be modeled in formats similar to

the multiproceséing problem at hand,



Problem Formulation

characteristics and size of local memories, etc.

Each processor P, is allocated a portion of the total load L. répresented by a task of size X,

according to some adopted scheme of load-size measurement (metric), such that

E:q=x1+x2+...+xn=L 3

processor P; is denoted by Ty(x):



T = + T O
The job completion-time, denoted by T(x), is marked by the latest completion time among all
processors {P}:

Job Completion Time = T(x) = max; {T(x)} (5)
The explicit dependence of T op X means that, in general, different allocations x will produce
different values of T(x). We are interested in determining the particular assignment(s) x* which
minimize T(x):

T = T(&") = min, T(x) = min, max, {T,x)} (6)
Note that 7, in (4) should be considered an independent variable determined by availability and
scheduling considerations, and therefore one should represent T, as Ti(x, r,). But because we are
seeking to minimize T(x), we shall assume that 7; is a given value representing the earliest time

instant processor P, is available to start execution.

Modeling Considerations

context. Nevertheless, we shall point out in what follows those modeling aspects that impact directly

the optimization process at hand and are immediately related to the results presented in this paper.



functions f(x) and g(®):
Ti®) = £(x) + g(x) 7)

where the function fi(x;) encompasses all the Separable terms in the expression of T,(x) that depend

only on the processor resident load x,,

adopted in previous results reported in [8], [9]. [15), where discrete quantification of load allocation

* is used. Following the general modeling approach of these references, assume the total workload




In the discrete model, one has 7. = Const kR. The component 7, represents the increase in the

execution time due to the overloading or saturation of P’s local resources, whose effect becomes

Processor tasks combined (I - X), which is zero if % =0o0rx = L In the discrete model, the
tomponent 7, is expressable as |
Const (1/2)Ck, Ziz:K = Const Ck(M - k) = Const Clx/R)(L/R) - (x/R)]

= Const (C/R%) x(L - x) '

e
"

of r, may be more significant than 7 Moreover, the previous results in the literature indicate that



the optimal load allocation strategy tends to be "extremal," ie, either distributing the load as evenly
as possible among all the availabje processors or assigning the entire load to one or a few
Processors. One may argue, therefore, that taking the effect of 7. into consideration might, under
certain conditions, switch the optimal allocation from one extreme assignment to another, even
though the magnitude of 7. might be relatively small. The magnitude of r, in the discrete model
is expressable as |

7e = Const (1/2)Ck; (k, ~ 1) = Const C (k* - k) = Const (C/R}H/R) -x] x; >R
which is represented by the parabolic curve in Figure 2. The superposition of the components
described above results in the curve f(x,) shown:

fi(xi)-'-—ri-i-ro+rr+rs+rt+rc
The variation and features of £(x) as a function of X; depend on the relative magnitude and

variation of its components r,,.

The term g(x) in (7) reflects the increase in the Processing time T, due to the distribution
of the tasks over the processors {P;}, and would include the effects of synchronization and queuing

delays. The latter component, denoted by Ty IS an increasing function of the level of loading, or

/ The corresponding expression in the continuous model is
S = Const (L? - 5x?)/BR? = K(L? - £x?)/B (8)
When the value of § is small, as when L2/B is small, the shared structure js said to be lightly-loaded



situations, it is found desirable to restrict the domain of x, to an interval [a, , b]
OfaifxifbifL )

The upper limit by may, for example, be set by the need to restrict the loading of P, from getting

to assume only a finite set of discrete values, and the optimization is thus reduced to the problem
of seeking the optimal combination (x,, x,, . . ., X,) from among an enumerable (finite) set of
possible combinations. In the present approach, we allow the partitioning to vary over a continuum
and the variables x, to be continuous. The optimal solution we seek is therefore the "ideal”

minimum achievable over the infinite set of q/l possible partitionings of the workload, The practical

to be distributed over three processors Py, Py, P, Suppose that the ideal optimal partitioning is

found by the methods of this Papertobex; = 17,x, = 21, and X; = 22. No assignment of the given

10



and 2, we obtain the repartitioned workload { 10,11,12,13,8,4,2}, and the idea] optimal assignment

can be achieved as follows:

M=B44=17 , x=10411=01 X3 =12+8+2=7

The foregoing remarks on some aspects of the modeling problem have necessarily been
rather general, since the modeling of T,(x) is not the principal concern of this paper. They have
been included and elaborated only to the extent of thejr relevance to the optimization problem,

which is the focal issue at hand.

The Optimization Problem

* The formulation of the optimization problem can now be stated as follows: determine the

assignment(s) x* which satisfy conditions (3), (6), (9) repeated below

T = T&) = min, Tx) = min, max, {T,(x)} (10)
e, =L (11)
a <x; <b (12)

C={x Zx =L, xef,b]) (13)
7 The optimization problem becomes:

T" = T(&) = min, T(x) = min, max, {T,(c)} (14)

XeC (15)

for Ty(x) in (7) can be ignored or not.

11



(a) Lightly-Loaded Shared Structure: This represents situations where the ratio of the

total interprocessor communication volume to the shared structure bandwidth is relatively low and
the synchronization delays are not significant, in which case the term g(x) may be dropped. With
Ti(x) = f(x,), one has from (14)
T = T(&') = min, T(0) = min, max, {£(x)} (16)
X eC (17)
For this case, we shall develop straightforward techniques for determining the optimal assignment

x

X.

(b) Heavily-Loaded Shared Structure: The conditions in (2) above are not met such that

&(x) is not negligible:
T = T&) = min,T(x) = minmax{f(x) + g(x)} (18)
xX'eC (19)
In this case, we shall adopt an iterative procedure based on the solution of ( 16) for the lightly-
loaded case to solve for x" in (18). The procedure is aimed at producing a convergent sequence of
successively better approximations to the true optimal assignment x, which is outlined as follows:
1. Start by assigning to x an initial numerical value x' € C, say x! = (L/n,L/n,... L/n).
2. Replace the function g(X) in (18) by the first approximation constant g{x"), and denote
the term inside the braces by £1(x):
TO) = minma, {£,0x) + g(x')} = min max, {£1(x)) (20)
where x! denotes the first approximation to x".
3. Solve (20), which now has the form of (16), for x™ by the techniques of the lightly-
loaded case (to be described later).

4 Gotostep2 using g(x™) as the new approximization constant:

T(x™) = min,max,{£(x)+ g(x")} = min, max {£(x)) (1)

12



5. Repeat the procedure k times to obtain X', where k is commensurate with the desired
degree of accuracy.

The convergence of the sequence x™* to X" cannot be investigated in the general case where f(x;) and

g(x) are arbitrary functions. For any given case, where f, and g, are specified, convergence can be

analyzed. We shall later illustrate this by a specific example. We now proceed to present a solution

for the optimization problem represented by (16) and (17).

Solution of the Optimization Problem

The optimization problem is restated as follows: find the set of optimal assignments x such

that
T' = T() = min, T(x) = min, max, {£(x)} (22)
ix =L (23)
0<a <x <b <L | (24)

This problem has been studied in the discipline of nonlinear mathematical programming.
It is commonly referred to as the "Separable Minimax Resource Allocation Problem with
Continuous Variables" [10]. The discrete version of the same problem restricts the variables x, to
integer values. These problems arise in a wide class of application disciplines, of which the parallel
processing problem at hand is only one instance. The analytical tools and results currently available
# for its solution have three principal drawbacks:
1. The set of functions {fi(x)} are restricted to be either all nondecreasing or all

noﬁincréasing for the case of continuous variables x; [10], [11]. In the integer variable

case, the functions are restricted to be either all quasi-convex or all quasi-concave

(unimodal) [12]. Examples of functions with these restrictions are shown in Figure 3.

13




2. The general theoretical results are sufficient, not necessary, conditions for optimality
which therefore may not be helpful in determining all the optimal solutions that a
given problem might have.

3. The expressions for Ty{x) are restricted to be separable with g(x) = 0, which
corresponds to our lightly loaded case. No general solutions are available otherwise,

ie, for the heavily-loaded case.

£(x)
nondecreasing f, nonincreasing f, quasi-conves, quasi-concave,
continuous x, connnuous X integer x, integer x,

X

—

Figure 3. Restrictions on fi(x;) Imposed by Existing Criteria

In our problem of minimizing parallel processing time, the functions f. i(X) may not satisfy the
restrictions of monotonicity or unimodality and may typically exhibit the multimodal variation

illustrated in Figure 2, in which case the currently available analytical tools cannot be applied.

In this paper we present the definitive solution of the optimization problem expressed in
(22), (23), and (24): the necessary and sufficient condition for an assignment x to be optimal, with
1o curvature restrictions imposed on the functions f i(x), which may therefore exhibit nonmonotone,
}_,:"nonconvex, multxmodal variation. We only require that the functions f{x) be continuous over
[ai, b]. We also require that the functions be "locally monomodal,” a mild condition we define in

the subsequent. sectlon We also extend the solutions to the heavily-loaded case.
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Our approach in determining the global minimum value of T(x) is first to determine the set
of all local minimum points of T(x). A pointx € C is a local minimum point of T(x) if there exists
a é > 0 such that

T(x + Ax) >T(x) for all (x + ax) € C, | ax| <5 (25)
where Ax = (Ax,, Ax,, . . |, Ax,) and [Ax| is the Euclidean norm of Ax. Let

X = the set of all local minimum points of T(x) (26)

entire set C:

T" = min, T(x) = min, ¢  T(x) = T(x) @7)
The validity of (27) follows from the continuity of the function T(x) = max, {f(x)} éuaranteed by
the continuity of f(x,).

Before proceeding to present the main results, we should point out further implications of
finding the set X of all local minimum points of T(x) as indicated in (26) and (27). Determining
X may have pragmatic implications other than being simply an intermediate step towards finding
the optimum solution. Here are some benefits that might be quite significant in a given situation:

1. The knowledge of all the local minima of T(x) helps in understanding the variation and

"topology" of the completion tirné T(x) and its dependence on the allocation x.
2. The set X may include a subset of points X" all of whose elements are optimal points:
T = T(x) forallxe X’
In this case further optimization may be possible according to some additional objective
or criterion other than minimizing the completion time (lexicographic opfinﬁzation).

3. Examination of the points in X might lead to the adoption of an acceptable suboptimal

load allocation that is preferable to the optimal solution by virtue of some important

consideration. Consider, for instance, two local minimum points in X:

15



X =(009eX , ¥=0234)eX
TE)=T =100 , T() =101

We might choose X’ over x* as the more desirable load allocation, trading off a one

percent increase in completion time for a more even load distribution over the three

Processors,

We shall state and prove a theorem that gives the necessary and sufficient condition for a

point x to be a local minimum point of T(x), i.e, for x € X. This will enable us to determine the

entire set X, from which we can obtain the global minimum value T" and the global minimum

point(s) X" as in (27). But first we present a number of definitions and preliminary results that are

needed in the remaining sections of the paper.

Definitions and Preliminaries

Given the set of n functions {fi(x)} where each f(x,) is a real-valued function of the real

variable x; defined and continuous at every point in the nonnegative interval [a;, b]. Consider the

real-valued function T(x) of the n variables x = (Rp Xy oo X )0
T(x) = max; {f(x)}

with x restricted to the set C
C={x Zix =L, x€[a , b}}

" Fora § > 0, define the S-neighborhood of a point x as:

N(xé) = {(x + Ax) € C: | ax| <6)

where Ax = (Ax, Ax, .., Ax,) and | Ax | is the Euclidean norm of Ax:

lax] = (3 (ax)?)* <5

The inequality in (31) implies that

16
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lax, | <5, <6 foralli. (32)
From (30) and (32) it follows that every N(x,6) induces on each x, a §-neighborhood:

Nix8) = {(x + ax) € [3;, b] : |ax, | <5, <6} (33)
Let Afy(x;) be the change of f(x,) due to a perturbation Ax;
Afix) = f(x, + Ax) - f(x) (34)

So far the only condition imposed on the functions f(x) is that of continuity. We now
introduce a further condition on f; which relates to the modes of variation that the function exhibits
in a §;-neighborhood of a point X. 'The condition is formalized in the following definition. The

phrase "locally monomodal” is coined to describe the subject property.

Definition: A continuous function f(-) over [a, b] is said to be locally monomodal at point
x€{a,b]if
(i)  there exists a 5(x) > 0 such that f(*}) is strictly increasing or strictly decreasing or
constant on [x , X + §] and strictly increasing or strictly decreasing or constant on
[x - &, x] wheneverx € (a, b)
(if) there exists a 6(x) > 0 such that f() is strictly increasing or strictly decreasing or
constanton [x , x + §) ifx = a
(iif) there exists a §(x) > 0 such that f(*) is strictly increasing or strictly decreasing or
constanton [x —§,x]ifx = b
' The above definition describes a local characteristic of the function f() in the sense that if the
condition is satisfied for a certain 8,(x), it is also satisfied for every 8,(x) < §,(x), and therefore one
should examine a sufficiently smail neighborhood to verify local monomodality at point x. Figure
4 shows all the 15 possible modes of variational change that might be exhibited by a locally

monomodal f(x;) at x. Each distinct mode represents a unique combination of monotone or

17



constant behavior on each side of the given point x; if it is an internal point of [a, , b] or on one
side if x; is an end point. Modes 1, 2, 3,4, 9, 10, 12, 13, and 15 for internal X; correspond to
condition (i) of the definition, while modes 5, 6, and 14 for x, = a, and 7, 8, and 11 for x; = b,

correspond respectively to conditions (ii) and (iii) of the definition,

f(x) f(x}
M @ @ @ & ® (o (8) (12) (13 (1)
T 7 Y =TSN -~ &
X X X % x=a x=a xab xab X % x=a
(@ X = {x&[a,b]:af(x) >0 forall |ax | <4) af{x) 20 for all ax, <0
(c))?::{x,e[a,.bi]: }
af(x) <0 for all ax, >0
f(x) : .
9 (o (1'1) f(x)
— / A (15)
! H ! /T\
X x  x=b i
- af(x) >0 for all Ax, >0 5
®) % = {’“E[“""J M) <0 for all ax <0 (d) X = (x€(a.b):af(x) <0 forall ax #0)

Figure 4. The 15 Possible Variation Modes of a Locally Monomodal f(x,) at X; e@i , bj

It should be noted that the condition of local monomodality is a fairly mild restriction of no
practical consequence since it is always satisfied in "real world" situations. The function x sin (1/x)
is continuous but not monomodal at the p;oint X = 0 where it exhibits an infinite number of local
minima and maxima clustered on each side of that point. Its behavior atx = 0 cannot be identified

as one of the 15 modes in Figure 4.

The 15 modes of Figure 4 are grouped into four distinct categories as defined and
represented in parts (a), (b), (c), and (d) of the Figure. At a point X € {a;, b exhibiting modes
(1) through (8), the function f; has a local minimum. In modes (9) through (11), f, is nondecreasing

and does not exhibit a local minimum at X In modes (12) through (14), £ is nonincreasing and
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does not exhibit a local minimum at X In mode (15), f, exhibits a strict local maximum atx. The
points x; € [a,, b that exhibit the mode groups represented in parts (a), (b), (c), and (d) of Figure
4 are respectively denoted by the sets ii, 5(:, ‘)_(i, and Xl Since any point in {a, , b must belong to
one of these subsets, we have

X,uXUXUX =[a),b] (35)

Evidently, the four subsets are pairwise mutually exclusive.

We now examine the components of the vector x & C, viewed as the set {x;}, and partition
its points into a number of subsets X, x4 %, 2, &, and x defined below. We shall use the symbol

X to denote the set {x} , viz. x = {x}:

¥ = {5 €x:f(x) = max, f(x) = T(x)} #¢ (36)
X =x- ¥ = {hex:f(x) < max f(x) = T(x)} (37)
We now partition the nonempty set x° into four subsets corresponding to )_(i, )-Ei, ﬁi, }.(l :
X ={xexnX) (38)
¥ ={xexnX) (39)
£={xexrnX} (40)
X=(xexrnX} (41)
Xudufux=xP (42)

Figure § illustrates the various sets just defined.

f; fz fa f’ fc fi fl'

S S W N SN .
':“ :R . ’:r-}if,?\ £ «Tﬂ'ﬂ‘(ﬁ(«o}
NEARERILE

4 . . i A

hEEOX % X% X% X% X X X X,=b,

A=(XXy ... X) FalX, Xy X, %y Xy Xy Xio}
= o k) Ry xoh Trin, ), Fuix, ), X=ix)

Figure 5. Ilustration of the Sets x*, x%, %, ¥ , £, x

19




We now present the necessary and sufficient condition for a given point x € C to be a local
minimum point of T(x) = max,{fi(x;)} where each f,(x,) is assumed to be locally monomodal over
fa; , b)]. The criterion is expressed in terms of the sets x*, x4 %, ?, and ?, corresponding to the

given point x.
Theorem

A point x € C is a local minimum point of T(x) = max,{f(x,)} if and only if one of the

following mutually exclusive conditions is satisfied:

(C) X is nonempty (43)
(C) ¥ =% and x =b, forall X, € x? (44)
(C) ¥ =% and x =2 for all x, € x4 (45)

The proof of the Theorem is given in the Appendix.

Graphical Interpretation

We now give a simple explanation of the conditions of the Theorem with emphasis on their
graphlcal interpretation. Examine the components {x;} of the given point x = (Xp %5, . . ., X,} and
separate them into the two groups x” and x%. Subset x? comprises all the points %, for which
fi(x) = max, {f(x)} = T(x), as shown in Figure 5, while x? comprises all the other points for which
" the value of the functions f(x,) is less than T(x). Note that ¥’ must have at least one point x;, while
x? may be empty. Next we classify the points of x° according to the mode of variation of each point
and its belonging to one of the groupings shown in Figure 4. This separates x? into X, %, %, and
X as shown in Figure 5. Some of these subsets might be empty. Condition C, says if X is not

empty then the g1ven point x is a local minimum point of the execution time T(x). In Figure 5, x

20



has two points x, and x,,, at which the corresponding functions f, and f,, exhibit variation modes (4)
and (8) of Figure 4. Note that determining which mode of variation a function fi(x) exhibits at
every point x; can be easily done by inspection of the graph of f(x). Thus the determination of X,
X, X, x for any given point X is straightforward. Condition C, means that all the points of xP belong
to ¥, i.e., all points of x° exhibit variation modes (9), (10), and (11) of Figure 4. Condition C, also
requires all the points of x9 to be at the upper boundary b, of the interval [a;, b]. Thus condition
G, is also easily verified by inspection of the graphs of fi(x,) at the given points X Condition C, is
similarly interpreted: all the points of X exhibit variation modes (12), ( 13), (14), and all points of

x? must be at the lower boundary a, of [a,, b].

Hlustrative Example

We now address the interpretation of the conditions of the Theorem and illustrate their
application by means of a specific example. The criterion presented by the Theorem admits a
straightforward graphical interpretation that extends its applicability to problems where the
functions T(x) and f,(x;) are specified by their graphs or tabulated values, as might be obtained from

empirical or simulation data. Given the functions T,(x), Ty(x), Ty(x), with L=5 and a,=0, b;=L=5:

Tl(x)=0.048x13-0.93x12+5.14x1+3+3(L2—x3-x22-x32) /B (46)
T,(0)=0.033%, - 0.75%,>+ 5%, + 1+ 2(L>-x*~x,2 - x,2) /B (47)
- T3(x)=0.013%,.- 0.36x,% + 3.2%+2+(L*-x~x,2~x,})/B (48)

" The first four terms of each expression represent respectively f,(x,), f,(%,), and f,(x,), which are

plotted in Figure 6; the last terms represent the functions g,(x), g,(x), and g(x).
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Figure 6. Tlustrative Example

(5,0,0) satisfies Cywithx? = {x = 5}, x4 = X=0,%=0}, ¥ = {x; = 5} #4. Hence (5,0,0)
is 2 local minimum point of T(x) and T(5,0,0) = £,(5) = 11.42. Candidates for condition G, are
assignments x = (X1, %, , X;) with f{x) = constant and X € }-(hI - This can be determined graphically

by sliding a horizontal line vertically along the increasing portions of f; to locate points X; such that
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Next we consider the heavily-loaded case, i.e., the general case where the &(x) terms are
retained in Ty(x). Let B = 25 Substituting the optimal assignment x" found in the lightly-loaded
case as our first approximation x* = x*, we obtain g (x") = 1.85, &(x') = 1.23, g(x") = 0.615. Using
these values as approximations for g(X), we plot the new expressions fl(x) = f(x) + g(x"), which
are easily obtained by vertically shifting the original curves in Figure 6 by the amounts 1.85, 1.23,
0.615 respectively. From the New curves we obtain, by the same procedure used in the lightly-
loaded case, the second approximation x? = (0.8,1.5,2.7). Repeating the iteration, we find the
improved approximations:

2(x) = 1.78 | () = 1.18 , g = 0.59

X = (0.85,1.55,2.60)

The procedure converges rapidly, producing differential values in the second decimal place after

few iterations.

Next, consider the same problem with L = 14 and the Same expressions for T,(x) given in

(46)-(48). It should be noted here that, in general, the expressions for f,(x,} in a multiprocessor or

C;, we find the assignment (9 , X » X3), which captures the local minimum of f, , is a loca]
minimum of T(x) if:

% +%=14-9=5, f)(x,) <f,(9) =8.78; fi(x,) <f;(9)=8.78 (49)
" The requirements in (49) are satisfied for a noncountable infinjte set of assignments (9 , X, 5 Xy)
each of which produces the same local minimum value of T(x), namely, T(9, %, %) = £,(9) = 8.78,
The same is true for the assignments (x, , 10 , X3) and (x, , %, , 12), which capture the minimum
points of f, and f, respectively, with corresponding minimum values for T(x) of £,(10) = 9.33 and

£(12) = 10.31. There are no assignments x that satisfy condition C, of the Theorem. Condition
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G, is satisfied by only one assignment, x = (6.4,7.6,0), shown by the horizontal dotted line in Figure
6, with a local minimum value for T(x) of T(6.4,7.6,0) = £(64) = ,(7.6) = 104. Having
determined all the local minimum values of T(x), the global minimum js 8.78, attained with any

assignment (9, x, , x,) satisfying (49).

Conclusions and Further Research

We shall conclude the presentation by pointing out the significant features and contributions
of this paper. We shall also summarize the important differences between the approach and results
presented here and the approaches and results of previous investigations, particularly those that
employ an analytical approach based op mathematica] programming optimization techniques.

Finally, we point out some areas of continuing research on the same problem.

Here are the main points that characterize the approach and results of this investigation.

1. Generality. The analysis and the results are applicable to any given modeling of the
completion time Ty(x) as a function of the load allocation vector x. Thus the obtained
criteria are not tied to specific expressions of the functions Ty(x) or specific
characteristics or architecture of the parallel/distributed system such as is the case in
the investigations of [8], [9], [15], which are applicable to bus-oriented organization of
the shared communication struéture. The generality of the formulation for T(x) allows
the - investigation of any properly modeled factor that may influence the time
peifp_rmance of the system, such as the intraprocessor communication component 7, or
the saturation component 7, which have been neglected in most previous investigations.

2. Exactness. This refers to preciseness in two respects: modeling and mathematical

analysis. For given functions {Ti(x)} the precise job completion time is modeled as
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T(x) = maxT(x). Previous investigations resorted to approximate expressions of the
execution time based on various assumed models of the overlap between Fun-time and

communication time (see [9] for example), Furthermore, the mathematical analysis

total load. Straightforward one-step repartitioning of the given load modules can be
used to achieve the jdeal assignment. Previous criteria, by contrast, model the load
allocation as an integer variable k; and seek optimization over the given partitioning
only, which leads to allocations that are suboptimal to the idea] assignment, Although
repartitioning and iteration would still be possible in this case, it is likely to be costly
and haphazard in the absence of knowledge of the targeted ideal assignment,
Applicability. The formulation of the analytical model in terms of the well-known
"resource allocation problem” makes the results ithediately applicable to other problem
areas in optimization theory, mathematical Programming, and operations research.
Completeness. The Theorem presents a necessary and sufficient condition of optimality
and therefore constitutes the complete solution of the problem at hand, i.e,, determining
all the optimum solutions that might exist in a given situation. Previous efforts have
tended either to produce criteria that are only sufficient conditions of optimality or to
impose enough restrictions on the problem formulation such that the resulting model
admits only one optimal solution, Knowledge of the set of all optimal solutions permits
further "lexicographic" optimization.

Local Minimization. The Theorem provides a means for determining all the locaj

minima of the objective function as weil as its absolute minima. This might be
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practically' useful in determining suboptimal solutions that are found to be more
acceptable than the optimal solution according to some other criteria of desirability.
Graphicality. The straightforward graphical interpretability of the results has two
noteworthy implications: ease of implementation and applicability to system models
that are represented by graphs obtained from empirical and simulation data.
Analytical Novelty. The main Theorem Tépresents an analytical breakthrough in
nonlinear mathematical programming. The analysis of the lightly-loaded case seems
to be the first known definitive solution of a class of mini-max optimization problems
that does not impose any conditions of differentiability, monotonicity, convexity, or
unimodality on the objective functions fi(x,). Furthermore, the iterative procedure for
solving the heavily-loaded case seems to be the first known attempt at a general solution
for the class of resource allocation problems with nonseparable mini-max objective

function.

Further research is currently underway to enhance and extend the results of this effort in

several directions, with pending publications in the following areas:

1.

Modeling the components of the completion-time functions Ti(x) for specific classes of
multiprocessor and distributed systems.

Systematic procedures and general algorithms for the computer implementation of the
criteria of the main Theorem for determining the set of all local minima in a given
situation.

Investigations of the conditions that govern the convergence of the iterative procedure

for the heavily-loaded case.
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Appendix

Proof of Theorem

Sufficiency. Given a point x € C for which one of the conditions C, or G, or C, is satisfied,
we prove that x is a local minimum point of T(x). Consider an N(x,5) with sufficiently small 5 >
0 such that the conditions represented in Figure 4 exist for Cvery component x; of x. We shall prove
that for any point (x + Ax) € N(x,6) one has

T(x + Ax) >T(x) (50)

Assume condition C, is satisfied, ie, ¥ is nonempty. There exists at least one X € X

¥ n X, . From the definition of X, in Figure 4a, one has for every (x + Ax) € N X,8):
5 j gu ry

M) = £(5 + A9 - £(5) >0 , xex (5

55 + A%) 26(5) , xex (52)
Since x; € x* one has

6 = T® , f(x + Ax) >T(x) (53)

T(x + Ax) = max; {f(x, + ax)} 2% + Ax) (54)

Combining (54) with (53), we obtain (50). Hence x is a local minimum point of T(x).

From the definitions of N(x,6) and C in (29) and (30), one has for all points (x + Ax) €
© Nx,8):

L=21"(xi-l-mr,)=‘L“l"xi+)‘J‘l‘Axi=L+E’I‘Axi (55)
T3 A%, = 0 (56)
Since {x;} = x* + 39, we write (56) as

Lo AX + ZqAx, = 0 for all (x + Ax) € N(x,6) (57)
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Assume condition G, is satistied. For any (x + Ax) € N(x,6) one has:

%=b , A% <0 forallx ey (58)

Ta Ax <0 ' (59)
Combining (57) with (59), and using x* = ¥ from C,

Lo AX; = Tp AX; >0 (60)

This implies that there is at least one j such that

ax, >0 forsornexjexp=i’=xpn)-(:. (61)
From the definition of 5(’,- in Figure 4b, (61) implies |

af(x) >0  for some X, € xP (62)
Since (62) is identical to (51), the remainder of the proof from this point on is identical to the

proof for condition C,.

Assume condition C,, For any (X + Ax) € N(x,6), one has

=23, A5 >0 forallx,ex? (63)

La Axy >0 (64)
Combining (64) with (57) and using ¥ = ¥ from G,

Lp AX; = D¢ Ax, <0
This implies that there is at least one j such that

Ax <0 forsomexjexp=§=xl’m§j (65)
- From the definition of ()_(j in Figure 4c, (65) implies
| af(x) >0  for some xex? (66)
Again, (66) is identical to (51), and the remainder of the proof from this point on is identical to

the proof for condition C;- This completes the sufficiency part of the proof.
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Necessity. Given point x € C is a local minimum point of T(x), we prove that one of the
mutually exclusive conditions C, or C, or C, must be true, ie., we prove that Gy is true:

G =C + G+ G : (67)
where the plus operator represents the logical OR. Note that each of C, and C, is the logical AND

of two conditions. Let Cop Cyy Cyy, C,, represent these conditions

C214i>x"=11*‘;anxi:bi for all x; € x9 (68)
Ci# =% ;C, % x =2 for all x, e x4 (69)
Co = G + CuCy + GGy, (70)

To prove the truth of C, by the method of contradiction, we assume G, is not satisfied and arrive
at a contradiction: x is not a local minimum point of T(x). Equivalently, we assume NOT C, is

satisfied and arrive at a contradiction, By the familiar manipulation of Boolean algebra, we have

Co=C + CuCyp + CyCy, = CI(CZICZZ)(CSIC32)

= C,CyCy, + C.CuGCy, + C,CuCy + C,CC, (71)
We show that any of the four alternative conditions in (71) leads to a contradiction. Note that each
of these four conditions consists of three simultaneous conditions as stated below:

A) C,C (—33 is equivalent to the three ANDed conditions
121y q

X is empty (72)

® 4P (73)

2 #% (74)
(B) 61621(_332 is equivalent to the three ANDed conditions

X is empty (75)

b (76)

X; #a, for some X € x (77)

(© 61622631 is equivalent to the following ANDed conditions

X is empty (78)
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P #% (79)
X; #b; for some X, €x? (80)

(D) 61622632 is equivalent to the following ANDed conditions

X is empty (81)
X #b;  for some x, € x4 (82)
x, #a, for some x, € x9 (83)

Consider any neighborhood N(x,6). We now show that it is possible to choose a Ax such that
the point (x + Ax) € N(x,6) and T(x + Ax) < T(x), which proves that x is not a loca] minimum
point of T(x). We shall choose Ax = (Ax;, Ax,, .. ., Ax) by showing how to specify its components
AX; to satisfy the following requirements:

R, : Choose all |ax| sufficiently small so that | Ax | <6

R, : Choose Ax; such that TAx; =0

R, : Choose Ax; such that Tx + Ax) < T(x)

R, and R, will guarantee that (x + Ax) € N(x,5), and R; proves x is not a local minimum point of
T(x). For R, to be satisfied, we must choose Ax; such that

T(x + Ax) < T(x)

max; {fi(x; + Ax)} < T(x)

fi(x, + Ax) < T(x) for all x,

f0s) + AR(R) < T(®) for all x,

Af(x;) < T(x) - f(x) = d; forallx e (x + x%)

From (36) and (37), it follows that d; is zero for x, € x? and positive for x, € x4 Requirement R,
may be stated as
Ry: Af(x) <0 forxex®=%+2+% +% (84)
Ryt af(x) < d, , 4 >0 forxext (85)
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R, is satisfied by choosing |Ax| sufficiently small since fi(x)) is continuous. Thus R, and R,, are
satisfied by choosing [Ax;| sufficiently small. Note that under each of the alternative conditions
(A), (B}, (C), and (D), x is empty; hence X can be dropped from the statement of R, Referring
to the conditions in Figure 4 patts (b), (c), and (d) to deterinine how to cﬁoose Ax; to obtain Afi(x,)
< 0, Ry, can be rewritten as

Ryt Ax; < 0 for xe ¥ Ax; > 0 for xe %; Ax, #£0 for xex (86)
We next turn our attention to R,. Note that x = x + XI=X+ T+ % +%+x%. With 5 empty,
one has

I, AX; = Dy AX, + D¢ AX, + Ly AX; + Dq Ax, = 0 (87)
For convenience, we choose |Ax;] to have the same value within each of the first three summations
of (87): .
Y £ 6d + 50 4% = 0, 350, §>0 d>g (88)
where &, §, n represent the number of elements in the respective sets, and 3, 3, d are the
common values of |Ax;|. The signs of the terms in (88) reflect the requirements of Ry in (86).
We now show that, under each of the conditions (A), (B), (C), and (D), the values- of d , 3, d can
be chosen to satisfy (88).
(A) *=X+¥+%+x=2+% +Xx#3 hence

£ +x#4 (89)
=R+ % +x#%, hence
R+ % #4 (90)
" Conditions (89) and (90) imply either
(A1) x #4, 1 #0, or (91)
(A2) R #¢ and € #¢, % #0 and § #0 (92)

If (A1) is true, then (88) can be written as:

d=x(1/m§d -2d + zoax) >0
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which can always be satisfied by choosing arbitrarily small values of 3, 3, and |Ax;] and the
appropriate + or - sign.
(B) x* #X implies ¥ + X #¢, hence either
(B1) x #¢,n #0 , which is the same as (A1), or
(B2) X #¢, % #0, in which case we have

d = (1/f)#d + nd - £q4x) > 0 (93)
This can always be satisfied as follows: if either & or n is not zero, choose Ax, = 0; but if both &
and n are zero, then choose one value AX; to be negative and all the other values of Ax; = 0. This
is always possible as a result of the condition x; #a, for some X; € x% stated in (77).
(C) The proof is identical to the proof in (B), with ¥ replacing ¥ and b; replacing a .
(D) The condition in (88) is rewritten as

fd - %5d * nd = T4 Ax
which can always be satisfied as follows: if the left side is positive, choose all Ax; = 0 except for
Ax > 0, which is feasible by condition (82); if the left side is negative, choose all Ax, = 0 except for

Ax, < 0, which is feasible by condition (83).

We have proven that under any of the conditions (A), (B), (C), or (D), we could produce a
point (X + Ax) € N(x,6) such that T(x + Ax) < T(x), which contradicts the starting assumption of
X being a local minimum point. Hence, if x is a local minimum point, one of the conditions C, or

G, or C, must be true. This completes the necessity part of the Theorem.
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