
100

CHAPTER 7

COMPUTATIONAL RESULTS

In this section, we test the performance of our algorithm for solving the time-

dependent label-constrained shortest path problem (as specified in Figure 5) and the

heuristic methods of Section 6. We use the C++ programming language to conduct our

implementation. The test runs were made on a 450 MHz Pentium II with 128 MB of RAM,

4.02 GB of hard drive capacity computer. The transportation network used is called the

Bignet network. This network is a part of TRANSIMS’s test network, and was created to

model a portion of the transportation system in Portland, Oregon (TRANSIMS, version 1.1,

2000). The network contains approximately 25,000 households, 3,853 nodes, 7,441 links

within an area of 18× 18 square kilometers. Because of computational limitation, we were

able to use at most 1,000 nodes, 1,900 links within the same region. The travel modes

considered within this network are walk, bus, rail-transit, and car. The various problem

instances generated are transportation trips within the network, and are specified by their

starting locations, destination locations, starting times, maximum finish times, and travel

modes. These instances were obtained from the Portland, Oregon, Activity and Travel

Survey of 1994/95. The portion of the survey we used is comprised of 1,000 households for

a total of 2,258 individuals, resulting in 4,516 transportation activities. Therefore, we have

4,516 time-dependent label-constrained shortest path problems to be solved.

Below, we provide a description of the test network and our assumptions, along with

a discussion on design objectives, design evaluations, and design parameters. We then

101

provide computational results and analyses for the aforementioned procedures, and compare

the performance of the exact approach versus the various heuristic methods.

7.1 Test Network Description and Necessary Assumptions

Figure 26 shows the overall layout of the network, which is partitioned into nine

zones based on land-use information. The network is comprised of five types of land-use

areas, namely, the Heavy Commercial (downtown area), the Light Commercial, the Heavy

Industrial, the Residential, and the Mixed Residential/Commercial areas. There are four

bridges across the river that are located centrally within the network. Surrounding the

downtown area (Zone 7) is a light-rail route, which extends over the northern area and along

the northern side of the river. A freeway parallels the light rail route in the northern area.

There is one heavy industrial area (Zone 9). This area has no homes, but is the

workplace for a significant fraction of the population. The downtown zone, similar to the

heavy industrial zone, has no homes, but is the workplace for much of the population. In

addition, there is a shopping and recreational destination that is used by a great segment of

the population. Surrounding the downtown area at the northern and southern side of the

river are two light commercial zones (Zones 3 and 6). These have the same features as the

downtown area, except that the activities performed in these zones are far fewer. Covering

most of the land areas are residential zones including the mixed residential/commercial

zones (Zones 1, 2, 4, 5, and 8). Also, within the mixed residential/commercial zones (Zones

2, 4, 5, and 8) lie most of the schools in the network.

102

Figure 26: Land Use in the Bignet Network (not to scale).

The various notation used for describing the time-dependent label constrained

shortest path problem (TDLSP) have the following connotation within the context of the

above transportation test network.

Node : This is a physical location in the transportation network, such as a street intersection,

activity location (identified as either a starting node or terminal node), household location,

school location, work place, shopping mall, bus stop, rail stop, car parking, etc. The starting

node and terminal node for each trip are obtained from the Activity and Travel Survey.

Each node is ascribed a unique ID and (x, y)-coordinate. The coordinate is given in meters

ZONE 1: Residential

ZONE 2: Mixed
Res./Comm.

ZONE 3:
Light

Commercial

ZONE 4:Mixed
Res./Comm.

ZONE 7:
Heavy

Commercial

 ZONE 8:
Mixed Res./Comm.

 ZONE 6:
Light Commercial

 ZONE 5:
Mixed Res./Comm.

ZONE 9:
Heavy Industrial

Light Rail

Free Way

Bridge

River

Zone Boundary

103

measured from the (0, 0)-coordinate, which is the southwest-most node in the network.

Information on nodes’ IDs and their coordinates are provided in a Node Table.

Arc : This is a (unidirectional) connection between a pair of nodes. It has an associated

travel mode, which can be walk, bus, rail transit, or car. Each arc is ascribed a unique ID,

along with the ID of the node at the beginning of the arc (NODEA), the ID of the node at

the end of the arc (NODEB), its length (measured in meters), the speed limit (in meters per

second) on the arc, and the travel mode (as described earlier). This information for each arc

is provided in a Link Table. Each non-walk mode arc has a time-dependent travel time

which, for the sake of simplicity, is specified in closed-form in terms of the arrival time at

the tail node i (wi), the length of the arc, its speed limit, and the zonal land-use data in which

the arc lies. The assumed time-dependent travel time function cij(wi) is provided below for

the arc connecting nodes i and j.

cij(wi) = a(wi)× wi + ×

limit speed

arctheoflength
daily time index(wi) × zonal index (1)

where

a(wi) is a positive or negative rate (slope) that is varied within ranges, depending on the

arrival time wi. The particular relationship used is shown in Figure 27. (This pattern is used

for all arcs in the network.) We partition the 24-hour interval into eight intervals, given by

[10 PM-4 AM), [4 AM-7:30 AM), [7:30 AM-8:30 AM), [8:30 AM-9:15 AM), [9:15 AM-

3:30 PM), [3:30 PM-4 PM), [4 PM-4:30 PM), and [4:30 PM-10 PM). Each interval has the

corresponding slope as shown in the figure.

104

The daily time index(wi) is a function (≥ 1) of the arrival time whose values vary within

ranges as specified in Figure 27. During rush hour, for example in the interval [7:30 AM-

8:30 AM), there is a higher daily time index than during non-rush hour. During the late

night interval [10 PM-4 AM), we take the daily time index-parameter equal to 1, and also

let a(wi) = 0, so that the travel time is then simply based on the arc’s length, its speed limit,

and the zonal index only.

Figure 27: Pattern of Travel Time Function for Every Arc in the Network.

The zonal index is an index (≥ 1) which is used to inflate the travel time when the arc lies in

a heavy commercial zone, as opposed to a residential zone, for instance. The zonal index for

each land use zone is provided in Table 6.

Starting time

Travel time

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

a = 0.2267

a = 1.4063 a = -0.8617

a = 0

a = 1.2168 a = -0.8354

a = -0.2482

a = 0

Daily Time
Index = 1

Daily Time Index
= 1.75

 Daily Time
 Index =1.5

Daily Time
Index = 2

 Daily Time
Index =1.5

Daily Time
Index = 2

105

Table 6: Zonal Index for each Land-Use Zone.

Zone Zonal Index
Zone 1: Residential 1.0
Zones 2, 4, 5, and 8: Mixed Res./Comm. 1.2
Zones 3 and 6: Light Commercial 1.5
Zone 7: Heavy Commercial 2.0
Zone 9: Heavy Industrial 1.0

For an arc in the walk network, the travel time does not vary with the arrival time.

In this case, the travel time is computed as the arc’s length divided by the walking speed,

which is set at 1 meter per second for all individuals in the population.

To scan the forward-star FS(i) for any node i, we use the Lane Connectivity Table,

which provides the IDs of the outgoing arcs from each node (OUTLINK), and the incoming

arcs to the node (INLINK). Furthermore, the Car Parking and the Transit Stop Tables

provide information regarding changes in travel mode, by specifying which nodes are a car

parking, bus stop, or light rail stop node. The current version of TRANSIMS does not

specify the car-parking location for each household. Hence, we assume that the closest such

location to the household is its car-parking location. Because every node in the network, is

defined in terms of its (x, y)-coordinate in meters, including those for household and car

parking locations, we can calculate the distance between any pair of household location and

car-parking location to determine the nearest parking. This data on the (x, y)-coordinates for

every node is also useful in implementing the heuristic methods of Section 6. In this latter

case, for the heuristic methods (i) - (iii), we assume that the average estimated velocity of

travel v used in Equation (6.2) is 20 meters per second, based on the specified average speed

for cars.

106

The upper bound T on an acceptable total travel time for each trip is obtained from

the output of the Activity Generator Module, which is originally determined from the

Activity and Travel Survey.

7.2 Design Objectives

The design objectives of the C++ code are to accomplish the following.

1) To find an optimal solution for each TDLSP problem using the exact TDLSP

algorithm.

2) To find a solution using each of the heuristic methods in order to curtail the

search, and to compare their relative performance with respect to quality of

solution and speed.

3) To prescribe a strategy for implementing either an exact or a heuristic method

depending on the problem size and structure based the experiments conducted in

2) above.

4) To conduct sensitivity analysis experiments using different values of the various

parameters as prescribed in Section 7.4 below.

107

7.3 Design Evaluations

The indicators that are used to evaluate the performance of the exact algorithm and

the heuristic methods include the following.

1) Quality of solution obtained (numerically evaluated by comparing the total travel

time with the travel time obtained for the optimal solution).

2) Computational CPU processing time (in seconds on a 450 MHz Pentium II with

128 MB of RAM, 4.02 GB of hard drive capacity computer).

3) Ease of implementation.

4) Extensibility of the algorithm and methods for solving other variants of the

shortest path problem.

108

7.4 Design Parameters

In order to conduct an empirical study on the selection of the various parameters

used in the heuristic methods, we considered the parameter values as specified in Table 7.

Table 7: Parameter Values for the Heuristic Methods.

Parameter Value

Heuristic method (i) β 1.00

0.10
0.25
0.50
1.00

Heuristic method (ii) θ

2.00
0.10
0.25
0.50
0.75

Heuristic method (iii) α

1.00
(1.10, 0.75)
(1.10, 0.85)
(1.25, 0.50)
(1.25, 0.75)
(1.25, 0.85)
(1.50, 0.50)
(1.50, 0.75)
(1.50, 0.85)
(1.75, 0.25)
(1.75, 0.50)
(1.75, 0.75)

Heuristic method (iv) (γ ,ψ)

(1.75, 0.85)

Moreover, we designed the program to record information when it curtails a search

at any node i, i.e., when iw′ + iβ d(i, t) ≥ T (obtained from (6.1b)). Note that this curtailment

needs to be tracked only for the heuristic methods (i) - (iii) because for method (iv), the

curtailment is done a priori based on the defined ellipsoidal regions and freeway as stated in

(6.10).

109

7.5 Computational Results and Analysis

The TDLSP algorithm and the heuristic methods were tested for 4,516 time-

dependent label-constrained shortest path problems obtained as specified above from the

1994/95 Activity and Travel Survey of Portland, Oregon. The CPU processing time (in

seconds on a 450 MHz Pentium II with 128 MB of RAM, 4.02 GB of hard drive capacity

computer) and the quality of the solution (calculated as the solution value divided by the

optimal solution’s travel time) were tabulated for each problem instance and parameter

value. For the sake of illustration, the 4,516 problems are classified into three types of the

trips, based on whether the trips are between HOME and WORK, between HOME and

SCHOOL, and OTHER trips. Furthermore, each type of trip is classified into groups

depending on the zone interchanges as specified in Table 8. Accordingly, there are 23

classes of problems. In addition, based on the assumed admissible mode strings for these

4,516 transportation activities, there are nine major mode strings as shown in Table 9.

Furthermore, Table 5 presents the particular admissible mode strings implemented for each

of the 23 classes of problems.

110

Table 8: Types of Travel Activities Classified into Crossing Zones.

Trip Type I:
Trips between

HOME and WORK

Trip Type II:
Trips between

HOME and SCHOOL*

Trip Type III:
OTHER Trips

Problem Class 1 :
Trip between Zones 1 and 9

Problem Class 11:
Trip between Zones 1 and 2

Problem Class 16:
Trip between Zones 1 and 9

Problem Class 2 :
Trip between Zones 1 and 7

Problem Class 12:
Trip between Zones 1 and 4

Problem Class 17:
Trip between Zones 1 and 7

Problem Class 3 :
Trip between Zones 1 and 3

Problem Class 13:
Trip between Zones 1 and 5

Problem Class 18:
Trip between Zones 1 and Light
Comm. zones (Zones 3, and 6)

Problem Class 4 :
Trip between Zones 1 and 6

Problem Class 14:
Trip between Zones 1 and 8

Problem Class 19:
Trip between Zone 1 and Mixed zones

Problem Class 5 : Trip between
Zone 1 and Mixed Res./Comm.
zones (Zones 2, 4, 5, and 8)

Problem Class 15:
Trip within Mixed zones

Problem Class 20:
Trip between Mixed zones and 9

Problem Class 6 :
Trip between Mixed zones and 9

Problem Class 21:
Trip between Mixed zones and 7

Problem Class 7 :
Trip between Mixed zones and 7

Problem Class 22: Trip between
Mixed Zones and Light Comm. zones

Problem Class 8 :
Trip between Mixed zones and 3

Problem Class23:
Trip within Mixed zones

Problem Class 9 :
Trip between Mixed Zones and 6
Problem Class 10:
Trip within Mixed zones
* Note: we assume that Mixed Res./Comm. zones (Zones 2, 4, 5, and 8) are the only zones containing schools

in the network.

111

Table 9: Admissible Mode Strings Implemented in the Network and Their Notations.

Admissible Mode String Notation

1
wcw-mode

2
wbw-mode

3
wrw-mode

4
wcrw-mode

5
wrcw-mode

6
wbrw-mode

7
wrbw-mode

8
wcbw-mode

9
wbcw-mode

walk car walk

walkwalk bus

walkwalk rail

railwalk car walk

carwalk bus walk

buswalk car walk

buswalk rail walk

railwalk bus walk

carwalk rail walk

112

Table 10: Admissible Mode Strings for each Class of Problems.
Problem Class Admissible mode strings

1 and 16 (Trip between Zones 1 and 9) wcw, wbw, wcbw, wbcw *
2 and 17 (Trip between Zones 1 and 7) (all nine mode strings)

3, 4, and 18
(Trip between Zones 1 and Light Comm. zones) (all nine mode strings)

5 and 19
(Trip between Zone 1 and Mixed zones) (all nine mode strings)

6 and 20 (Trip between Mixed zones and 9) wcw, wbw, wcbw, wbcw *
7 and 21 (Trip between Mixed zones and 7) (all nine mode strings)

8, 9, and 22
(Trip between Mixed Zones and Light Comm. zones) (all nine mode strings)

10, 15, and 23 (Trip within Mixed zones) (all nine mode strings)
11 (Trip between Zones 1 and 2) (all nine mode strings)
12 (Trip between Zones 1 and 4) (all nine mode strings)
13 (Trip between Zones 1 and 5) (all nine mode strings)
14 (Trip between Zones 1 and 8) (all nine mode strings)

* Note that for any trip associated with Zone 9, there is no rail mode because there is
no rail route through this region.

7.5.1 Computational Results

Table 11 presents the test results obtained from the TDLSP algorithm of Chapter 4,

versus the four heuristic methods which were assigned suitable parameter values as stated in

the table. An examination of these results reveals that at an average, the heuristic methods

yield optimal solutions 27% of the time, with the overall average quality solution being

about 1.078 (within 7.8% of optimality). The reason that the heuristic methods do not

always yield optimal solutions is that the curtailment of search for a node to be added to the

set NEXT sometimes cuts off nodes that might have led to an optimal solution. The CPU

times are decreased dramatically by 30%. The proportions for the mode strings used by the

heuristic method solutions, and the level of the terminal node, have roughly the same values

as those for the exact algorithm. These results and comparisons therefore provide a

reasonable validation of the heuristic methods. The interesting thing is that the average level

113

or depth away from any starting nodes is 241 for the exact algorithm, and 242 for the

heuristic methods, which is approximately only 25% of the total number of nodes in the

network (1,000 nodes).

114

Table 11: Overall Results.
Exact algorithm Heuristic Methods*

Trip
Type

Problem
Class

Total
no. of
trips

Avg.
CPU
time

(s/trip)

Avg. no.
iterations or

the level of the
terminal node,

l(t)

Avg. % of mode
strings used

Avg.
CPU
time

(s/trip)

Avg. no.
iterations,

l(t)

Avg. % of mode
strings used

Avg. % of
heuristic
methods

that yielded
opt. solns.

Avg.
soln.

quality**

I 1 379 52.718 315 wcw56%, wbw39% 39.031 325 wcw57%, wbw40% 23 1.092

2 316 39.267 229 wcw44%, wrw37%,
wbw15% 27.888 214 wcw44%, wrw35%,

wbw17% 25 1.084

3 208 27.190 149 wcw49%, wrw35%,
wbw11%

19.511 156 wcw48%, wrw32%,
wbw14%

30 1.042

4 284 42.081 251
wcw41%, wrw39%,

wbw12%
31.198 258

wcw44%, wrw37%,
wbw11%

26 1.055

5 311 40.497 219
wcw48%, wbw36%,

wbrw14%
29.913 203

wcw49%, wbw35%,
wbrw14%

27 1.085

6 298 44.891 279 wcw55%, wbw44% 33.949 266 wcw54%, wbw45% 25 1.061

7 293 37.564 211 wcw38%, wrw38%,
wbw14%, wbrw10% 27.205 224 wcw40%, wrw37%,

wbw12%, wbrw11% 28 1.082

8 176 39.691 226 wcw42%, wrw28%,
wbw19%, wbrw10%

29.287 237 wcw43%, wrw25%,
wbw20%, wbrw11%

28 1.099

9 185 38.002 219
wcw43%, wrw30%,
wbw15%, wbrw10%

27.100 209
wcw44%, wrw30%,
wbw13%, wbrw11%

26 1.090

10 108 40.257 278
wcw38%, wbw29%,
wrw18%, wbrw14%

29.631 271
wcw39%, wbw27%,
wrw19%, wbrw14%

25 1.088

II 11 217 26.583 158 wcw45%, wbw41% 16.513 172 wcw43%, wbw43% 31 1.077

12 226 29.106 262 wcw42%, wbw40%,
wrw17%

18.253 280 wcw44%, wbw41%,
wrw15%

32 1.088

13 220 43.097 294 wcw46%, wbw45% 32.377 297 wcw49%, wbw45% 27 1.084
14 153 49.027 287 wcw44%, wbw46% 36.021 271 wcw44%, wbw47% 27 1.083

15 135 40.097 271
wcw37%, wbw30%,
wrw18%, wbrw13%

28.594 284
wcw38%, wbw29%,
wrw18%, wbrw12%

26 1.093

III 16 149 53.245 327 wcw54%, wbw40% 37.829 328 wcw55%, wbw42% 23 1.087

17 217 39.891 211
wcw43%, wrw36%,

wbw17%
25.114 217

wcw41%, wrw36%,
wbw18%

26 1.068

18 117 31.081 206
wcw47%, wrw40%,

wbw10%
20.239 210

wcw47%, wrw40%,
wbw10%

28 1.065

19 113 40.992 224 wcw49%, wbw34%,
wbrw15%

26.803 236 wcw50%, wbw35%,
wbrw14%

27 1.072

20 104 41.037 188 wcw57%, wbw42% 27.143 178 wcw59%, wbw40% 25 1.065

21 131 38.510 222
wcw37%, wrw38%,
wbw13%, wbrw12%

23.766 231
wcw38%, wrw35%,
wbw13%, wbrw13%

26 1.067

22 95 38.159 225
wcw42%, wrw29%,
wbw17%, wbrw11%

23.220 228
wcw45%, wrw27%,
wbw12%, wbrw10%

27 1.088

23 81 40.197 282 wcw38%, wbw28%,
wrw19%, wbrw14% 24.942 280 wcw40%, wbw28%,

wrw17%, wbrw15% 25 1.086

Total=4516 trips Avg.=
 39.703 s.

 241 Avg.=
 27.632 s.

 242 Average= 27% 1.078

STD 6.794 46 5.931 46 2.21% 0.014

* For the heuristic method (ii) we used θ = 0.25, for method (iii) we used α = 0.25, and for method
(iv) we used γ = 1.25 and ψ = 0.75. These parameter values were selected based on the results in
Section 7.5.3, where these values yielded the best solutions in the most effective CPU time . The
descriptions on how to select these values are provided in the corresponding sections for each of the
methods.

** Avg. soln. quality is given by the average value of the ratios of the heuristic solutions to the optimal
solutions for each problem number.

115

7.5.2 Comparison of Each Heuristic Method and the Exact Algorithm

Table 12a presents results for each heuristic method based on the parameter values

that yielded the best heuristic performance with respect to the solution quality and the CPU

time. Specifically, for method (ii) we used θ = 0.25, for method (iii) we used α = 0.25, and

for method (iv) we used γ = 1.25 and ψ = 0.75.

Table 12a: Comparison of the Solution Quality for the Various Heuristic Methods.

Avg. % of runs that yielded opt. solns. Avg. soln. qualityTrip
Type

Problem
Class Method

(i)
Method

(ii)
Method
(iii)-1*

Method
 (iii)-2**

Method
(iv)

Method
(i)

Method
(ii)

Method
(iii)-1

Method
(iii)-2

Method
(iv)

I 1 24 12 21 17 26 1.085 1.097 1.087 1.099 1.092

2 28 12 22 16 22 1.090 1.099 1.091 1.098 1.041
3 29 14 25 13 19 1.012 1.048 1.055 1.052 1.045
4 27 15 24 13 21 1.034 1.078 1.049 1.063 1.053
5 27 13 24 14 22 1.091 1.099 1.094 1.093 1.047
6 26 9 25 16 24 1.029 1.113 1.038 1.039 1.084
7 25 11 23 16 25 1.065 1.104 1.071 1.118 1.050
8 26 11 22 15 26 1.098 1.119 1.098 1.096 1.083
9 26 11 24 15 24 1.093 1.097 1.096 1.098 1.064
10 25 10 24 16 25 1.068 1.101 1.058 1.148 1.065

II 11 27 12 27 13 21 1.034 1.080 1.052 1.043 1.176
12 27 13 23 14 23 1.048 1.117 1.050 1.091 1.134
13 26 13 24 14 23 1.055 1.125 1.084 1.106 1.050

14 26 14 25 13 22 1.092 1.092 1.056 1.118 1.055
15 25 10 26 16 23 1.094 1.108 1.099 1.106 1.057

III 16 26 13 22 15 24 1.012 1.075 1.069 1.178 1.102
17 28 13 21 16 22 1.071 1.112 1.081 1.047 1.031
18 26 11 24 15 24 1.034 1.092 1.045 1.082 1.070
19 28 13 23 13 23 1.070 1.103 1.019 1.104 1.066
20 26 10 26 14 24 1.013 1.108 1.018 1.085 1.100
21 25 10 24 16 25 1.033 1.106 1.015 1.158 1.025
22 27 13 22 15 23 1.090 1.094 1.092 1.098 1.066
23 25 9 27 15 24 1.081 1.104 1.086 1.097 1.060

Average 26 12 24 15 23 1.061 1.099 1.065 1.096 1.070
STD 1.22 1.67 1.72 1.24 1.68 0.030 0.017 0.027 0.035 0.034

* Method (iii)-1 is the heuristic method (iii) using Equation (6.7a).

** Method (iii)-2 is the heuristic method (iii) using Equation (6.7b).

The results reveal that the heuristic method (i) yields the best solutions (based on the

average values of the solution quality) followed in order by methods (iii)-1, (iv), (iii)-2, and

116

(ii). Method (i) consistently adopts the minimum value of β , which is 1. Hence, the term

),(tidiβ in Equation (6.1b), is always lowest for this method as compared with that for the

other heuristic methods. Consequently, method (i) curtails the least, and therefore, its CPU

time is greater than that for the other methods as seen in Table 12b. The other heuristic

methods curtail more of the nodes to be added to the set NEXT, and hence yield smaller

CPU times, while sacrificing solution quality (in the same order as for decreasing solution

times). It is interesting to note that method (iii)-1 which starts off with a value of β = 1.4 >

1, and rapidly reduces it via an exponential decay function to 1 comes closet to method (i)

in solution quality, and results in somewhat decreased solution times. As a point of interest,

we provide in Table 12c results for method (i) (average solution quality and CPU time) for

the case of β = 0.9. The results are not competitive enough to recommend this strategy

because the case when β = 0.9 yields larger CPU times than for the case β =1.0 which

turn out to be almost equal to that for the exact algorithm, while the quality of solutions are

only slightly better (4.3% of optimality) than that of the case when β = 1.0 (6.1% of

optimality).

117

Table 12b: Comparison of Heuristic Methods in Computational Time.

Avg. CPU time (s/trip)

Heuristic MethodsTrip
Type

Problem
Class

Total no.
of trips Exact

algorithm Method (i) Method (ii) Method (iii)-1 Method (iii)-2 Method (iv)

I 1 379 52.718 51.903 28.902 44.903 41.904 27.541
2 316 39.267 37.157 20.049 32.208 24.084 25.941
3 208 27.190 23.841 12.494 20.781 17.491 22.947
4 284 42.081 39.883 19.092 33.837 27.149 36.028
5 311 40.497 39.557 23.483 29.469 26.106 30.948
6 298 44.891 44.160 31.044 34.495 31.673 28.371
7 293 37.564 37.549 20.123 29.340 25.106 23.907
8 176 39.691 31.178 25.690 33.686 29.398 26.483
9 185 38.002 32.167 21.605 31.216 28.015 22.496
10 108 40.257 36.037 23.933 33.316 28.371 26.496

II 11 217 26.583 22.180 11.471 15.707 13.156 20.049
12 226 29.106 21.718 14.639 18.214 16.127 20.567
13 220 43.097 41.289 23.979 35.207 30.124 31.284
14 153 49.027 36.371 26.838 41.617 36.332 38.948
15 135 40.097 36.587 21.487 30.547 25.214 29.134

III 16 149 53.245 50.647 27.537 43.129 41.841 25.989
17 217 39.891 30.023 18.244 29.143 24.594 23.567
18 117 31.081 23.207 11.639 21.634 18.257 26.456
19 113 40.992 31.754 23.958 30.818 24.031 23.456
20 104 41.037 29.274 21.266 29.951 27.441 27.784
21 131 38.510 29.451 15.574 26.474 24.182 23.147
22 95 38.159 30.321 16.591 25.129 21.493 22.567
23 81 40.197 33.341 20.184 25.155 23.561 22.469

Average 39.703 34.330 20.862 30.260 26.333 26.373
STD 6.794 8.134 5.429 7.327 7.126 4.646

118

Table 12c: Results for method (i) for the case of β = 0.9.

Avg. CPU time (s/trip) Avg. soln. quality
Trip
Type

Problem
Class Exact

algorithm
Method (i) when

β = 1.0
Method (i) when

β = 0.9
Method (i) when

β = 1.0
Method (i) when

β = 0.9

I 1 52.718 51.903 52.899 1.085 1.058
2 39.267 37.157 40.127 1.090 1.065
3 27.190 23.841 27.161 1.012 1.013
4 42.081 39.883 42.007 1.034 1.024
5 40.497 39.557 40.553 1.091 1.064
6 44.891 44.160 44.817 1.029 1.065
7 37.564 37.549 37.571 1.065 1.038
8 39.691 31.178 39.019 1.098 1.071
9 38.002 32.167 36.633 1.093 1.066
10 40.257 36.037 39.094 1.068 1.041

II 11 26.583 22.180 24.451 1.034 1.015
12 29.106 21.718 27.890 1.048 1.021
13 43.097 41.289 42.285 1.055 1.032
14 49.027 36.371 46.072 1.092 1.065
15 40.097 36.587 39.851 1.094 1.064

III 16 53.245 50.647 51.643 1.012 1.012
17 39.891 30.023 38.981 1.071 1.044
18 31.081 23.207 28.917 1.034 1.021
19 40.992 31.754 38.015 1.070 1.043
20 41.037 29.274 38.713 1.013 1.013
21 38.510 29.451 37.803 1.033 1.032
22 38.159 30.321 36.617 1.090 1.063
23 40.197 33.341 37.701 1.081 1.054

Average 39.703 34.330 38.644 1.061 1.043
STD 6.794 8.134 6.917 0.030 0.021

7.5.3 Experiments on Selecting Parameter Values for the Different Heuristic

Methods

In this section, we provide detailed experimental results on the performance of the

various heuristic techniques using different parameter values.

For the heuristic method (i), which is the Standard Based Case, there is no further

experimentation because the value of β is fixed at unity. The corresponding results are as

119

given in Tables 12a and 12b. For the other methods, we conducted experiments to study the

variation in performance with respect to different parameter values as described in Table 7.

Table 13 presents results on using different values of θ for the heuristic method (ii),

which is the Network Sectioning Technique . Recall that here, we partition the given

network between the starting and terminal nodes into three sections. Each node in the

network is assigned different β -value depending on the section in which it lies. The

minimum weight of 1 is assigned to nodes that lie in the section that defines the relative

vicinity of the terminal node. The other sections inherit β -values dependent on the choice

of the parameter θ .

The results reveal that the values θ = 0.1 or 0.25 yield the best solutions (as seen

from the average values reported in Table 13. Actually, these two θ values yield roughly

the same values of “% opt” and “ASQ” but the CPU times are substantially different.

Hence, it is a good compromise to choose θ = 0.25.

120

Table 13: Results Based on Various Values of the Parameter θ for the Heuristic Method

(ii): Network Sectioning Technique.

θ = 0.10 θ = 0.25 θ = 0.50 θ = 1.00 θ = 2.00Trip
Type

Problem
Class % opt* ASQ** % opt ASQ % opt ASQ % opt ASQ % opt ASQ

I 1 38 1.058 37 1.097 25 1.158 0 1.168 0 1.173
2 43 1.119 42 1.099 15 1.148 0 1.159 0 1.176
3 45 1.077 44 1.048 11 1.091 0 1.121 0 1.082
4 41 1.047 41 1.078 18 1.114 0 1.134 0 1.205
5 43 1.119 38 1.099 19 1.139 0 1.166 0 1.176
6 50 1.104 42 1.113 8 1.159 0 1.178 0 1.208
7 43 1.082 43 1.104 14 1.149 0 1.173 0 1.209
8 46 1.064 45 1.119 9 1.166 0 1.194 0 1.249
9 44 1.095 43 1.097 13 1.147 0 1.161 0 1.193
10 43 1.099 43 1.101 14 1.148 0 1.166 0 1.181

II 11 47 1.073 35 1.08 18 1.122 0 1.137 0 1.148
12 44 1.083 40 1.117 16 1.162 0 1.192 0 1.226
13 47 1.059 40 1.125 13 1.181 0 1.228 0 1.293
14 38 1.079 37 1.092 25 1.145 0 1.152 0 1.201
15 49 1.145 44 1.108 7 1.153 0 1.172 0 1.144

III 16 46 1.082 41 1.075 13 1.123 0 1.138 0 1.127
17 42 1.075 40 1.112 18 1.163 0 1.177 0 1.215
18 47 1.112 46 1.092 7 1.132 0 1.158 0 1.144
19 47 1.131 42 1.103 11 1.155 0 1.162 0 1.136
20 43 1.122 43 1.108 14 1.147 0 1.174 0 1.193
21 48 1.066 47 1.106 5 1.148 0 1.175 0 1.221
22 44 1.045 40 1.094 16 1.142 0 1.164 0 1.199
23 46 1.137 46 1.104 8 1.152 0 1.168 0 1.168

Average 44 1.090 42 1.099 14 1.145 0 1.166 0 1.186
STD 3.09 0.029 3.08 0.017 5.31 0.019 0 0.022 0 0.044

Average CPU time 24.165 20.862 18.049 17.416 16.852
STD 5.672 5.429 5.306 5.273 5.201

* % opt represents “Avg. % of runs that yielded optimal solutions.”

** ASQ represents “Average Solution Quality.”

For the heuristic method (iii), we assign β -values for each node in the network

based on its level or depth away from the starting node. Note that we have proposed two

relationships for prescribing the values of β as a function of the level in this method. One

is an exponential decay function (with a limiting minimum value of 1), and other is a linear

relationship. We explore these sub-methods separately, but use the same of the parameter α

values equal to 0.10, 0.25, 0.50, 0.75, and 1.00.

121

For method (iii)-1, we use Equation (6.7a) which is redisplayed below:

iβ = max{ })(5.09.0,1 ile λ−+ ∈∀ i N, where
nα

λ
)2.0ln(−

= . (6.7a)

The corresponding results are shown in Table 14a. For method (iii)-2 we use

Equation (6.7b) which is redisplayed below:

iβ = max

−)(

4.0
4.1,1 il

nα
 ∈∀ i N. (6.7b)

The corresponding results are shown in Table 14b.

Table 14a: Results for Different α Parameter Values for the Heuristic Method (iii)-1:

Level-Based Technique using equation (6.7a).

α = 0.10 α = 0.25 α = 0.50 α = 0.75 α = 1.00Trip
Type

Problem
Class % opt ASQ % opt ASQ % opt ASQ % opt ASQ % opt ASQ

I 1 36 1.077 32 1.087 20 1.119 8 1.133 4 1.135
2 36 1.064 29 1.091 23 1.125 9 1.143 3 1.181
3 37 1.061 37 1.055 21 1.087 5 1.098 0 1.106
4 37 1.043 36 1.049 18 1.084 8 1.086 1 1.095
5 40 1.033 37 1.094 18 1.131 5 1.154 0 1.227
6 38 1.029 35 1.038 20 1.067 4 1.074 3 1.106
7 40 1.048 32 1.071 20 1.102 5 1.113 3 1.168
8 42 1.072 32 1.098 19 1.136 5 1.147 2 1.206
9 40 1.113 33 1.096 19 1.126 5 1.147 3 1.132
10 36 1.035 32 1.058 24 1.094 6 1.099 2 1.143

II 11 37 1.072 33 1.052 25 1.089 5 1.093 0 1.098
12 35 1.064 33 1.05 23 1.086 8 1.092 1 1.095
13 36 1.043 30 1.084 26 1.113 6 1.133 2 1.192
14 36 1.064 36 1.056 19 1.093 8 1.099 1 1.094
15 36 1.073 36 1.099 19 1.138 7 1.151 2 1.179

III 16 36 1.047 32 1.069 20 1.101 8 1.112 4 1.131
17 39 1.042 37 1.081 19 1.123 5 1.131 0 1.188
18 33 1.035 33 1.045 22 1.075 8 1.083 4 1.115
19 37 1.037 37 1.019 18 1.049 7 1.052 1 1.057
20 37 1.038 37 1.018 18 1.048 6 1.048 2 1.046
21 35 1.042 33 1.015 20 1.044 8 1.046 4 1.044
22 36 1.049 34 1.092 22 1.134 6 1.146 2 1.198
23 37 1.058 33 1.086 22 1.124 7 1.132 1 1.154

Average 37 1.054 34 1.065 21 1.099 6 1.109 2 1.134
STD 2.01 0.019 2.38 0.027 2.33 0.029 1.44 0.034 1.36 0.052

Average CPU time 34.903 30.260 27.096 25.857 24.012
STD 7.562 7.327 7.206 7.196 7.092

122

For this case1 of method (iii), the results reveal that when α = 0.1 or 0.25, we obtain

the best quality solutions. The solutions for these two values of α are not significantly

different in the sense of “% opt” and the average solution quality (ASQ), but the CPU times

(see Table 14a) are substantially different. Hence, it is a good compromise to select α =

0.25.

The results for method (iii)-2 are given in Table 14b. The results reveal the same

pattern in the proportion “% opt” as for the previous method (exponential relationship), but

the exponential relationship yields much better solution quality (as seen from the average

solution quality values) for all values of α . The exponential relationship (6.7a) always

yields a smaller value of β for each node, and especially so for the intermediate nodes in

the origin-destination path before the level α n. Due to the ascribed values of β , this case

has a lesser chance of cutting off a node to be added to the set NEXT, and hence is more

likely to preserve an optimal path. On the other hand, for the same reason, the exponential

relationship consumes greater CPU time.

123

Table 14b: Results for Different α Parameter Values for the Heuristic Method (iii)-2:

Level-Based Technique using equation (6.7b).

α = 0.10 α = 0.25 α = 0.50 α = 0.75 α = 1.00Trip
Type

Problem
Class % opt ASQ % opt ASQ % opt ASQ % opt ASQ % opt ASQ

I 1 36 1.046 35 1.099 20 1.153 6 1.162 3 1.223
2 38 1.062 35 1.098 19 1.153 5 1.162 3 1.227
3 36 1.044 35 1.052 21 1.093 6 1.101 2 1.159
4 36 1.084 34 1.063 18 1.111 9 1.117 3 1.118
5 37 1.087 36 1.093 19 1.136 6 1.154 2 1.158
6 35 1.059 34 1.039 20 1.079 7 1.087 4 1.087
7 36 1.144 34 1.118 21 1.167 5 1.188 4 1.174
8 36 1.131 35 1.096 20 1.136 6 1.153 3 1.143
9 37 1.128 36 1.098 19 1.152 5 1.163 3 1.112
10 35 1.157 33 1.148 21 1.202 7 1.217 4 1.257

II 11 36 1.071 36 1.043 17 1.088 8 1.093 3 1.098
12 34 1.072 33 1.091 21 1.139 8 1.152 4 1.205
13 34 1.073 33 1.106 21 1.161 8 1.166 4 1.182
14 36 1.093 35 1.118 19 1.162 7 1.192 3 1.205
15 35 1.111 34 1.106 19 1.151 9 1.172 3 1.207

III 16 33 1.118 32 1.178 21 1.229 9 1.259 5 1.314
17 37 1.062 36 1.047 19 1.093 6 1.129 2 1.111
18 34 1.068 34 1.082 21 1.133 6 1.143 5 1.187
19 36 1.121 36 1.104 17 1.154 8 1.169 3 1.155
20 36 1.09 35 1.085 19 1.127 7 1.146 3 1.159
21 33 1.062 33 1.158 21 1.224 8 1.238 5 1.345
22 35 1.064 34 1.098 20 1.146 8 1.165 3 1.232
23 36 1.132 35 1.097 19 1.144 7 1.156 3 1.161

Average 36 1.090 34 1.096 20 1.145 7 1.160 3 1.183
STD 1.28 0.033 1.16 0.035 1.27 0.039 1.28 0.042 0.89 0.065

 Average CPU
 time

29.671 26.333 23.586 22.376 21.707

STD 7.274 7.126 7.089 7.041 7.003

Next, we experimented with the parameters γ and ψ for the Ellipsoidal Region

Technique of method (iv). For the sake of presentation and illustration, we show the results

of “% opt” and the average solution quality (ASQ) separately. Note that the results are

obtained from the average of all the 4,516 problems , which means that the results for each

cell in the following tables is averaged over all the 4,516 problems used for our

computational experiments.

Table 15a presents the results for “% opt.” The results indicate that, for an

ellipsoidal region having too short a major axis a (as expressed by γ ≤ 1.10), or too short a

124

minor axis b (as expressed by ψ ≤ 0.50), we obtain a significant loss of optimality. Both

results are obtained for the cases when γ ≥ 1.25 and ψ ≥ 0.75. The same logic is reflected in

Table 15b related to the solution quality. Table 15c displays the corresponding average CPU

times for the (γ ,ψ) combinations. These results indicate that when γ =1.25 and ψ =0.75,

we obtain good quality solutions (not too different from the solutions obtained for greater γ

and ψ values), while consuming a much lesser CPU time. Hence, we select γ =1.25 and

ψ =0.75 as the parameter values for the heuristic method (iv).

Based on the foregoing analysis, it is interesting to compare the solution quality and

the CPU effort for method (iv) when we use (ψγ ,) = (1.25, 0.75) to define rectangular

regions for the nodes between the starting node and its nearest freeway entrance, and that

for nodes between the terminal node and its nearest freeway exit, instead of ellipsoidal

regions. The results are shown in Table 15d.

125

Table 15a: Avg. % Opt for Various Parameter Values γ and ψ for the Heuristic Method

(iv): Ellipsoidal Region Technique.
γ

1.10 1.25 1.50 1.75

0.25 1% opt 1% opt 1% opt 3% opt

0.50 1% opt 16% opt 19% opt 20% opt

0.75 14% opt 23% opt 24% opt 25% opt

ψ

0.85 16% opt 23% opt 24% opt 25% opt

Table 15b: Average Solution Quality (ASQ) for Various Parameter Values γ and ψ for the

Heuristic Method (iv): Ellipsoidal Region Technique.

γ

1.10 1.25 1.50 1.75

0.25 1.483 1.408 1.230 1.207

0.50 1.369 1.169 1.121 1.116

0.75 1.235 1.070 1.063 1.059
ψ

0.85 1.148 1.068 1.060 1.059

Table 15c: Average CPU times (s/trip) for Various Parameter Values γ and ψ for the

Heuristic Method (iv): Ellipsoidal Region Technique.

γ

1.10 1.25 1.50 1.75

0.25 24.223 24.102 25.348 26.305

0.50 24.317 24.769 26.127 27.501

0.75 25.099 26.373 30.671 32.673
ψ

0.85 25.613 29.873 32.128 35.057

126

Table 15d: Detailed Results for the Alternative Method (iv) with Rectangular Accesses

versus the Regular Method (iv) and the Exact Algorithm.

Avg. CPU time (s/trip) Avg. soln. qualityTrip
Type

Problem
Class Exact

algorithm
Regular Method

(iv)
Alternative
Method (iv)

Regular Method
(iv)

Alternative
Method (iv)

I 1 52.718 27.541 30.451 1.092 1.088
2 39.267 25.941 28.450 1.041 1.040
3 27.190 22.947 26.038 1.045 1.043
4 42.081 36.028 39.206 1.053 1.049
5 40.497 30.948 33.485 1.047 1.044
6 44.891 28.371 30.284 1.084 1.082
7 37.564 23.907 26.789 1.050 1.049
8 39.691 26.483 28.456 1.083 1.078
9 38.002 22.496 24.356 1.064 1.063
10 40.257 26.496 28.687 1.065 1.064

II 11 26.583 20.049 22.401 1.176 1.170
12 29.106 20.567 22.978 1.134 1.128
13 43.097 31.284 33.567 1.050 1.046
14 49.027 38.948 41.670 1.055 1.051
15 40.097 29.134 31.859 1.057 1.053

III 16 53.245 25.989 28.867 1.102 1.097
17 39.891 23.567 25.672 1.031 1.031
18 31.081 26.456 28.691 1.070 1.068
19 40.992 23.456 25.782 1.066 1.062
20 41.037 27.784 28.963 1.100 1.098
21 38.510 23.147 25.671 1.025 1.025
22 38.159 22.567 24.785 1.066 1.063
23 40.197 22.469 24.698 1.060 1.055

Average 39.703 26.373 28.774 1.070 1.067
STD 6.794 4.646 4.772 0.034 0.033

Finally, we provide results on tracking the curtailment for each of the relevant

heuristic methods (i) - (iii). According to the previous results, we choose the (best) parameter

values for each method. For method (i) β was fixed at unity, for method (ii) we used θ =

0.25, and for methods (iii)-1 and (iii)-2 we used α = 0.25. The results of tracking the

curtailments are shown in Tables 16 to 18b.

For method (i), define the following:

Recall the statements (6.1a) and (6.1b):

if ≡′iw (wk + cki) < wi (6.1a)

and if iw′ + iβ d(i, t) < T. (6.1b)

127

N1 = number of times that the statement (6.1a) holds,

N2 = number of times that the statements (6.1a) and (6.1b) hold (which is equal to the

number of updates performed by the heuristic),

(N1 - N2) = number of curtailments,

% curtailments =

Table 16 displays the % curtailments for method (i). Observed that at an average,

14% of nodes were curtailed (under the case β = 1), that would otherwise have been added

to the list NEXT.

Table 16: Tracking Curtailment Results for Heuristic Method (i).

Trip
Type

Problem
Class % of curtailments

I 1 14
2 17
3 13
4 12
5 15
6 14
7 12
8 16
9 15
10 13

II 11 15
12 13
13 14
14 13
15 14

III 16 15
17 17
18 13
19 14
20 13
21 12
22 16
23 14

Average 14
STD 1.47

(N1 - N2) ⋅ 100%.
N1

128

For the Network Sectioning Technique (method (ii)), as shown in Table 17, in

accordance to what we might expect, the curtailments occur mostly within the first section.

Surprisingly, there is still some percentage of curtailments occurring within the final (the

third) section.

Table 17: Tracking Curtailment Results for Heuristic Method (ii).

% of curtailments occurring in section rTrip
Type

Problem
Class r = 1 r = 2 r = 3

I 1 63 29 8
2 67 27 6
3 68 28 4
4 64 29 7
5 67 28 5
6 63 30 7
7 68 27 5
8 66 28 6
9 69 27 4
10 67 28 5

II 11 69 26 5
12 68 27 5
13 64 29 7
14 62 30 8
15 67 27 6

III 16 64 29 7
17 69 26 5
18 69 26 5
19 67 27 6
20 65 28 7
21 67 28 5
22 69 27 4
23 68 27 5

Average 66 28 6
STD 2.21 1.18 1.21

For the heuristics (iii)-1 and (iii)-2, as shown in Tables 18a and 18b, respectively, the

curtailments occur mostly within the first 250 steps away from any starting node. The results

make sense because we specified α = 0.25, hence, after the level 250, the weight iβ is equal

to 1, resulting in a lesser chance of curtailment. Comparing the results of Tables 18a and 18b,

we see that method (iii)-2 has a higher percentage of curtailments for each interval of level.

129

This can be explained along the same lines as the analysis corresponding to Tables 12a and

12b.

Table 18a: Tracking Curtailment Results for Heuristic Method (iii)-1.

% of the curtailments occurring within level:Trip
Type

Problem
Class 0≤ l(i)<100 100 ≤ l(i)<250 250 ≤ l(i)<500 500 ≤ l(i)<750 750 ≤ l(i) ≤ 1000

I 1 55 36 5 2 2
2 57 37 3 2 1
3 58 39 2 1 0
4 56 37 4 2 1
5 57 36 4 2 1
6 56 35 5 2 2
7 57 37 3 2 1
8 57 36 4 2 1
9 57 38 3 1 1
10 56 36 5 2 1

II 11 58 40 2 0 0
12 58 39 2 1 0
13 56 36 4 2 2
14 55 36 5 2 2
15 56 38 4 1 1

III 16 54 37 5 2 2
17 57 36 5 1 1
18 58 37 3 1 1
19 56 37 4 2 1
20 55 38 4 2 1
21 57 38 3 1 1
22 56 39 3 1 1
23 57 36 4 2 1

Average 56 37 4 2 1
STD 1.08 1.29 1.01 0.59 0.60

130

Table 18b: Tracking Curtailment Results for Heuristic Method (iii)-2.

% of the curtailments occurring within level:Trip
Type

Problem
Class 0≤ l(i)<100 100 ≤ l(i)<250 250 ≤ l(i)<500 500 ≤ l(i)<750 750 ≤ l(i) ≤ 1000

I 1 58 37 3 1 1
2 60 39 0 1 0
3 60 39 1 0 0
4 59 38 2 1 0
5 61 37 1 1 0
6 59 37 2 1 1
7 59 40 1 0 0
8 60 38 1 1 0
9 59 40 1 0 0
10 60 36 3 1 0

II 11 59 40 1 0 0
12 59 40 1 0 0
13 60 38 2 0 0
14 59 37 2 1 1
15 59 39 2 0 0

III 16 60 38 2 1 0
17 59 39 2 0 0
18 60 39 1 0 0
19 61 38 1 0 0
20 59 39 1 1 0
21 59 40 1 0 0
22 59 40 1 0 0
23 59 38 1 1 1

Average 59.4 38.5 1.4 0.5 0.2
STD 0.73 1.20 0.73 0.51 0.39

