Lxeneration of Orthogonal Projections from Sparse

Camera Arrays

Ryan E. Silva

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Computer Science and Applications

Roger Ehrich, Chairman

James Arthur Denis Gracanin

Francis Quek

May 17, 2007

Blacksburg, Virginia

Copyright 2007, Ryan E. Silva

Generation of Orthogonal Projections from Sparse Camera

Arrays

by
Ryan E. Silva

Committee Chairman: Roger Ehrich

Computer Science

(ABSTRACT)

In the emerging arena of face-to-face collaboration using large, wall-size screens, a good videocon-
ferencing system would be useful for two locations which both have a large screen. But as screens
get bigger, a single camera becomes less than adequate to drive a videoconferencing system for the
entire screen. Even if a wide-angle camera is placed in the center of the screen, it’s possible for peo-
ple standing at the sides to be hidden. We can fix this problem by placing several cameras evenly
distributed in a grid pattern (what we call a sparse camera array) and merging the photos into one
image. With a single camera, people standing near the sides of the screen are viewing an image with
a viewpoint at the middle of the screen. Any perspective projection used in this system will look
distorted when standing at a different viewpoint. If an orthogonal projection is used, there will be
no perspective distortion, and the image will look correct no matter where the viewer stands. As a
first step in creating this videoconferencing system, we use stereo matching to find the real world

coordinates of objects in the scene, from which an orthogonal projection can be generated.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Ehrich, for the initial idea for this project and for giving me
the tools I needed to dive into a completely new area of computer science. Thank you for listening to
my ideas, and for providing help when I hit roadblocks. I also appreciate the use of your equipment,
which helped me collect data for the project. Finally, the thesis edits you’ve given me have been

crucial to creating a good document.

Thank you, Dr. Quek, for your valuable advice in the field of computer vision. I appreciate your
interest in my project, and your willingness to listen to my questions and problems. Thank you also
for pulling me into the VIS Lab, where I met people who became not just valuable resources but

also friends.

Thank you to the VIS Lab, for making my last months at Virginia Tech much more fun. It’s not
enjoyable to research solo, and it makes a big difference when there are people with whom to share
research and results. Thanks specifically to Bing and Fran, for being receptive to my questions and
making an effort to help solve my problems. Thanks to everyone for providing a great community

within the department. I only wish I joined the lab sooner!

Of course, I don’t know where I'd be without my fiancée Anna-Laura. You’'ve given me so much
moral support, and done everything you could to make my work easier. Thank you for all the ways

you’ve helped me.

Finally, I'd like to thank my parents, Marcos and Nancie, for instilling in me a strong value on

education. I wouldn’t have gotten this far without their help.

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Motivation L e 1

1.2 Gathering Data L 2
1.3 Overview of Algorithms L 6

2 Literature Review 7
2.1 Light Fields o 7
2.2 Stereo Matching 8
2.2.1 Constraints 8

2.2.2 Problems 12

3 Current Work 15
3.1 Edge Detection e 16
3.2 Imterest Operator e 16
3.3 Camera Calibration 17
3.4 Stereo Matching L 21
3.4.1 Stereo Correspondence L 21

3.4.2 Finding the Match L o 23

3.4.3 BuildingaDepth Map 26
3.5 Orthogonal Projection L 28
3.5.1 Algorithm A 29
3.5.2 Algorithm Bo 38
3.5.3 Problems 39
3.6 Improvements e e 43
3.6.1 Algorithm A e 43
3.6.2 Alignment 44
Results 47
4.1 Parameters Affecting Orthogonal Projection 48
4.1.1 Which camera pairstouse 48
4.1.2 Which camera of the pair to use when grabbing the pixel 48
4.1.3 Window size e 49
4.1.4 Using one or two window sizes oL o1
4.1.5 Interest window size Lo 52
4.1.6 Interest threshold L 53
4.1.7 Correlation threshold o 54
4.2 Optimal Configuration 55
Future Work 59
5.1 Stereo Matching L 59
5.2 Calibration e 60
5.3 Optimizations oL e e 61

LIST OF FIGURES

1.1

1.2

1.3

2.1

3.1

3.2

3.3

3.4

3.5

3.6

In the perspective projection, the projection of the closer circle is larger than the
projection of the far circle, because the projectors (arrows) all intersect at the center
of the camera. In the orthogonal projection, all of the projectors are orthogonal to
the image plane, resulting in no perspective distortion. Both circles project as the

same size, independent of their depth. 0oL 3
The aluminum stand I built to take the pictures for the camera array 4

Our setup for gathering data includes the copy stand in the foreground and PVC
pipes with photos of faces taped on top. 5

The ordering constraint can fail for objects of different depth. A matches A’, B
matches B’, and A is to the left of B in image 1. But B’ is to the left of A’ in image 2. 12

The results of a simple gradient-based edge detection algorithm 17
The result of applying an interest operator to an image 18
Two cameras set up for stereo matching L. 23
Given a point M in the left camera, we can find that point in the right camera by

searching along the epipolar line between N, and Nppgz- - - - o o o 0 o o o 0 oo L 25
Depth map from 250 X 375 image 28

Depth map for the large image compared to the depth map created from a small

image and resized L 29

vi

3.7 Camera pair regions in a 4 x 3 camera grid 30

3.8 Projection of (z,y, zmin) and (z,y, Zmaz) onto the image plane and the corresponding

epipolar lines L 32

3.9 Two stereo images are shown with their epipolar lines. The best match with a large

correlation window is shown as a white square. 33
3.10 Orthogonal projection from a 4 x 3 camera grid, created with correlation matching . 34
3.11 Orthogonal projection from a 4 x 3 camera grid, created with sum-of-difference matching 34

3.12 A stereo pair used to match a region: the green line is the epipolar line, the blue
squares bound the region where the algorithm will search using a small window, and
the black X is the best match. The red X shows where it should have found a match
if the ball wasn’t occluded in the left image. 40

3.13 The orthogonal projection of a ball that was partially occluded by one of the cameras 40

3.14 An example of replication: the intersection of object D with the bold line should
be the point which is projected onto the orthogonal projection. But because of the
locations of symmetrical objects A and B, the algorithm thinks there is an object C

infront of D. e e e e e e e 41

3.15 A stereo pair exhibiting error due to replication: the green lines are the epipolar lines,
and the blue square is the point where the algorithm made an incorrect match. The

red X shows where the match should have been made. 42

3.16 An example of replication errors: half of the woman’s face is missing because the

white wall was matched instead. 43

3.17 The result of Algorithm A when only stereo camera pairs with a vertical translation

were USed 44

4.1 Four orthogonal projections from the same camera array using different camera pairs

to do stereo matching L 49

4.2 The epipolars line and the best match for two cameras attempting to perform three

different vertical stereo matches 50

vii

4.3 Four orthogonal projections created with different window sizes 51
4.4 When a large window is used, depth discontinuities contain errors. Note especially

the edge between the two men’s heads. 52
4.5 Two orthogonal projections, one created with one window and another with two . . 52
4.6 The interest image for an image, given different interest window sizes 53
4.7 The results of changes in interest threshold 54
4.8 The results of changes in correlation threshold per pixel 56
4.9 The input images for the orthogonal projection 57
4.10 The final orthogonal projection with three different sampling resolutions 58

viii

Chapter 1

Introduction

1.1 Motivation

Videoconferencing provides a way for two physically distant parties to communicate in a way that
imitates face-to-face communication. But the effectiveness of videoconferencing as a communication
tool varies based on the type of video. If the video image is too small to record anything but the
head and shoulders, communication is limited because the gestures and body movement captured by
a large screen convey crucial information. Even when using a graphical model of a person, embodied
representations which communicate using gestures are much more effective than their non-embodied
counterparts [CBVY00]. Thus, a videoconference with a large screen will be more effective than a
small single webcam setup. If we made it even larger and used a wall-sized screen, there would be
plenty of room for high resolution video of the full bodies of all conference participants. Furthermore,
there would be plenty of space for collaboration using other software applications at the same time,

which is difficult to do on a small screen [SS97].

The end goal of having a real-time videoconferencing system on a large screen display has implications
on the type of video we can use. The video isn’t limited to the small area in front of a computer—it
now captures the whole room. People are free to walk around the room and as close to the screen as
they like. With that in mind, one camera at the center of the display is insufficient. The focal length

of the lens would never be wide enough to capture people standing near the side of the screen, and

people near the sides who are captured would be viewed from the side instead of from the front.

Also, people watching the video from the sides would be viewing from the wrong viewpoint.

Since one camera is not enough to support a videoconference on a wall-sized screen, my solution is
to mount an array of cameras on the screen and create an orthogonal projection from the resulting
images. Since the large display here at Virginia Tech is made from individual monitors paneled
together, my cameras may be mounted on the bezels between the monitors. We start by considering
the problem of creating the orthogonal projection and hope that it can be optimized and multi-

threaded in the future with the end goal of creating a wall-sized orthogonal projection in real time.

To better visualize an orthogonal projection, imagine a white wall in front of a scene. To color a
single point on that wall, start at that point and move along a line orthogonal to the wall. Eventually
that line will intersect an object in the scene. Color the original point on the wall the same color as

the point on the object that was hit.

In an orthogonal projection, there is no perspective distortion. That means that objects do not
shrink with distance from the camera (see Figure 1.1). If we were photographing a scene with a
large depth range, an orthogonal projection would look strange, because objects very far away would
be expanded, and nearby objects would seem compressed [RGLO04]. But since our setting is an indoor
room, the maximum depth of the scene is limited, and we believe that an orthogonal projection will

still be useful.

The goal of the work reported here is to locate videoconference participants at different spatial
positions and to determine orthogonal projections of them using a camera array. Accuracy of depth
measurements is only a secondary consideration, since different subjects are rarely at close spatial

positions.

1.2 Gathering Data

To simulate a scenario of people in front of a large display containing an array of cameras, we
needed to do some improvising. We decided against using a real camera array; we’d have to find
many cameras, and we’d have to worry about camera calibration and slight variations in the images

from different cameras. In our first attempt, we used a copy stand to hold a single camera. The

-_--mememem
-~ -
~ -
-~ -
-
L
-
- -
-~ -
-

--
il T T T R p—

-.I’_
X
L.
<
s

-~ -
S~ ma
~ o

-
-
-

Y VYV ¥
=

€

(a) Perspective projection (b) Orthogonal projection

Figure 1.1: In the perspective projection, the projection of the closer circle is larger than the
projection of the far circle, because the projectors (arrows) all intersect at the center of the camera.
In the orthogonal projection, all of the projectors are orthogonal to the image plane, resulting in no

perspective distortion. Both circles project as the same size, independent of their depth.

copy stand allowed vertical camera translation to specific measured points. To move horizontally,
we translated the entire copy stand along a measured board. With this setup we are able to simulate

the kind of camera array that would be used in our large display.

Later, I discovered that the vertical translation of the copy stand wasn’t very precise. Vertically
translating the camera resulted in a slight horizontal pixel shift, which was enough to cause errors
in the results. To help solve this problem, I built a wide aluminum stand on which to mount the
camera (Figure 1.2). The stand had three rigid parallel horizontal bars, 10 inches apart above each
other. Using a tripod base connected to a clamp, a camera can be positioned at a precise location on
one of the bars. Then the clamp can slide along the bar horizontally and move to a precise location
on a lower or higher bar for vertical translation. As long as the camera is initially aligned to point

perpendicular to the bars, the camera will maintain the same alignment for all camera positions.

Figure 1.2: The aluminum stand I built to take the pictures for the camera array

The most difficult problem with using the aluminum stand was aligning the camera. In this attempt,
I took much more care to make sure the camera was pointing perpendicular to the translation axis,
because if it wasn’t, it would change the assumed location of objects relative to the camera. To align
the camera, I first aligned the stand itself to be parallel to the rear wall. I did this by moving each
side of the stand the same distance from the wall. Then, I projected a vertical laser beam toward
the wall and used a carpenter’s square to make sure it was perpendicular to the wall. I moved the
camera so that the beam ran through the center of the camera and then rotated the camera about
the vertical (y) axis until the beam on the wall was in the center of the image. The camera didn’t
need to be rotated about the z-axis (running left to right) because the camera’s mount was already

flat.

Since only one camera was being used for all of the images, we couldn’t photograph anything that
might move, precluding the use of people as subjects for our photos. Instead, we bought pieces of
PVC piping and placed them upright in the scene. The PVC piping provided good pedestals on
which we could place objects to photograph and allowed us to position the objects at different depths

and heights. In our first several experiments, we photographed various balls on top of the pipes.
The balls in a sense imitate a person’s head. In a later experiment, we taped photos of peoples’
faces to the pipes. This provided less reflective surfaces and better stereo matching points. It also
more closely modeled an actual person in the scene. Figure 1.2 shows the copy stand and the heads

on PVC pipes.

Figure 1.3: Our setup for gathering data includes the copy stand in the foreground and PVC pipes

with photos of faces taped on top.

1.3 Overview of Algorithms

To create an orthogonal projection, I started by creating a stereo matching algorithm. By finding
corresponding points in adjacent photographs, I can determine the real location of that point in
the scene (the x, y, and z coordinates). In theory I can find the real location of any point which
appears in more than one image in the camera array. Then for each point with the same (z,y) model

coordinates, I would use the point with the smallest z-value in the orthogonal projection.

Another way to solve the problem is to think about it in reverse: for each point in the orthogonal
projection, find the color. I created an algorithm which does this. It relies on finding good matches

of corresponding points in stereo images and on the scene being void of duplicated objects.

In reality, not every point in our scene can be unambiguously located in multiple images. Some
surface points are difficult to match because the surface is specular or lacks distinctive features.
Other points lie on borders between objects of different depths, so those points appear different
from different cameras in the array. I implemented a simple area-based matching algorithm to

determine which model points have good matches and which don’t.

I also implemented a simple edge detection algorithm which helps locate good matching points. A
plain, featureless surface would be a poor place to do stereo matching, but places with a very large
luminance differential are great for matching because they have a unique structure that can be found

in another image. Edge detection finds those areas with a large luminance differential.

Finally, I implemented an algorithm which computes a depth map for each camera image and
attempts to stitch together a single orthogonal projection from those depth maps. It takes advantage

of the camera array by using information from several images to create each depth map.

Chapter 2

Literature Review

After thorough review of published literature, we could not find any previous research that created
an orthogonal projection from a sparse camera array. However, stereo imaging is extremely well
researched, and we focus on those techniques. The area of light field imaging was very intriguing,

but unfortunately that method required dense camera arrays.

2.1 Light Fields

We originally thought that light field imaging might help solve our problems. Informally, a light
field is “radiance along rays in empty space” [Lev06]. To create a light field, we would use multiple
images of a scene. Each pixel in each image is essentially a ray of light passing from the camera’s
eye to an object point in the world. By finding these rays for all images from the camera array, we
would have a large set of light rays. Then we could create an arbitrary perspective projection using
those light rays. This method is attractive because no information about the 3D scene model is
needed and no matching needs to be done to create a 3D model. The final image is simply a result

of linearly resampling the rays in the light field [LH96].

Once we further researched light field imaging, we realized that it would not solve our problem.
We're trying to create an orthogonal projection, and only one light ray from each camera is an

orthogonal ray—the rest are at an angle less than 90°to the image plane. In order to reconstruct

an orthogonal projection, we would need an extremely dense array of cameras. We would use the
center pixel, and interpolate the rest of the pixels. The denser the camera array, the more trivial the
task; but without a very dense array, quality will suffer because most of the pixels in the orthogonal

projection would be interpolated.

2.2 Stereo Matching

When we decided that light field imaging wouldn’t be useful, we decided to research stereo matching.
Stereo matching is the process of finding points in two images which are both projections of the same
point in the scene. The depth of that point determines the disparity between the points of projection
on the two image planes [Sun02]. Most methods were fairly complicated, including neural stereo
matching [Rui04], Walsh attributes [ACR96], and dynamic programming [GY05]. Roy and Cox
improve on the traditional line-by-line stereo matching by finding an accurate depth map in the case
of N cameras, but our focus is on finding the color of the closest (z,y) point and not necessarily on

finding the best depth [RC98].

2.2.1 Constraints

To make the complex problem of stereo matching easier to digest, we will consider several constraints
as suggested by Sun [Sun02]. Those constraints are similarity, uniqueness, continuity, ordering, and

epipolar.

Similarity

Perhaps the most obvious constraint is the similarity constraint. It simply says that the matching
points must be similar. Barnard breaks the similarity problem into two simple types of matching:
area matching and feature matching [BF82]. Area matching is good for images with good texture,
but can have problems in situations with large depth disparities [CM92, Fua93]. Feature-based
matching provides more precise and reliable results, but requires the extra step of feature detection

[Sun02, Fua93].

In area matching, two points are matched by comparing a window around those points. It is

successful in domains where the model’s surface varies smoothly and continuously [CM92]. Area
matching is based on the continuity constraint: that close pixels usually represent spatially close,
contiguous points on an object [BF82, HIG02]. Some kind of correlation measure is used to decide
if two groups of pixels correspond to the same point in space. When a match is found, the disparity
between the two matching pixels in the two stereo cameras can be used to find the real world location

of the point in space.

The results of the correlation depend heavily on how the similarity between two points in two images
is calculated. Obviously, two pixels by themselves can not be compared because there would be too
many matches in both images. So a window or region of pixels is centered at the target pixel in
both images. Then one of several methods is used to compare the pixels in the two regions. Cross
correlation or sum of absolute or squared differences are the most common methods [HIG02], but
other methods include the non-parametric rank and census measures [ZW94]. In the rank and census
measures, correlation depends on the relative ordering of intensities in the window, and not on the
intensity values themselves, making them less susceptible to noise and outliers. All of these previous
methods use intensity (grayscale level) instead of color because of the complexity of color. However,
Chambon and Crouzil present three color correlation methods which always improve the results

compared to using grayscale images [CC]. The three methods presented are:

1. Compute the correlation with each color component and merge the results
2. Process a principal component analysis and compute the correlation with the first component

3. Compute the correlation directly with the colors

It makes sense that color would outperform grayscale because it’s possible to have two uniform
surfaces with similar luminance but with completely different colors. Color correlation would be able
to detect the difference, but traditional grayscale correlation would not. Regardless of the correlation
method used, different correlation methods can be substituted for each other fairly easily, making it

simple to determine how the correlation method directly affects the outcome.

Another difficulty in area-based matching is choosing a window size with which to calculate corre-
lation. Since area matching rests on the continuity assumption, we want to avoid placing the match

windows at points where they contain pixels of object points at different depths. A change in depth

means there is a change in disparity, so only some of the pixels will correspond. But it’s difficult to
prevent this from happening, and thus object borders can be blurred and small details can be re-
moved [HIG02]. The smaller the window size, the less likely it is to cross a depth discontinuity, but a
smaller window is more likely to find many matches, increasing the possibility of an incorrect match
[KO94]. Kanade and Okutomi change the size of the window after evaluating the local variation
of the intensity and the disparity [KO94], but this comes at a cost and can no longer be real-time
[BVZ97]. In [HIGO2], the correlation is calculated by summing some of the best matches from a
sequence of surrounding “supporting” windows to reduce depth disparity error. Other methods use
the same window size on different levels of image resolution, which somewhat replicates the method

used by Kanade and Okutomi but is more efficient [Fua93].

Besides correlation alone, there are other methods to verify a match. When comparing one window
in a left stereo image to several windows in a right stereo image, we can create a correlation graph
with the location of the right image’s window on the x-axis, and the correlation on the y-axis.
Assuming that a high correlation value indicates a good match, we could choose the maximum point
on the graph as the best match. However, if there are several local maxima, the absolute maximum
point may not be the best match [HIG02]. The left/right consistency check in [Fua93] can help solve
this problem. It then would fix the right window at the location of the supposed best match, and
compare it to several windows in the left stereo image. If the match was correct, it should find that
the best match is the same left point used previously. If not, one of the other local maxima can be

used.

In feature matching, features are selected from the image, and the matching strategy is applied to
those features. It matches more abstract features rather than texture regions which are susceptible
to noise. Points along the edges of intensity discontinuities (dubbed “edgels” for edge elements) are
usually the best features because they often are matches made with high confidence [CM92]. Other
methods extract straight lines as features [HS89]. We can’t create a dense depth map from feature
matching alone; instead it is usually combined with area matching [XWZ96, Fua93], an interpolation
step [Sun02], or a model-based interpretation step [BF82]. When feature matching is combined with
area matching, it is usually superior to area matching by itself [BF82]. However, it requires the

extra step of detecting features [Sun02], an extra calculation that may or may not be worthwhile.

10

Uniqueness

The uniqueness constraint states that each item in each image is assigned at most one disparity
value, or in other words, is only matched to one specific real-world object [MP77, CHRM96]. This
constraint is fairly obvious, but it does imply that everything in the image corresponds to a physical
world object and is not something that doesn’t exist in the scene being photographed (such as a lens
artifact or noise). Also, Cox shows that sometimes it is too strict to initially limit an algorithm to

only one match [Cox94].

Continuity

According to the continuity (or smoothness) constraint, most of the model contains continuous
surfaces and thus pixels which are close to each other usually represent adjacent, contiguous points on
a single object [BF82, HIG02]. This also means that disparity usually varies smoothly [MP77, HS89].
The continuity constraint is the fundamental principle on which area matching is based. It’s based
on the assumption that most match windows consist of pixels from a single object that has no depth
discontinuity. When the continuity constraint doesn’t hold, it’s difficult to reliably make a match.
Objects at different depths have different disparities in the two stereo images, so several objects at
different depths appearing in close proximity in one image will not appear close in the other image.
Since stereo matching is founded on the ablility to find the same object in two images, we need to
be able to inspect small regions of contiguous objects or else we will not be able to find the region

in the other stereo image.

Ordering

The ordering constraint states that ordering is preserved across matches [CHRM96, Bak82, BI99].
Suppose A and B are in image 1 and A’ and B’ are in image 2. If we match A to A’ and B to B’
and A is to the left of B in image 1, then A’ should be to the left of B’ in image 2. This holds true
if A and B are on a contiguous object, but can fail if A and B are on different objects. Suppose A
and B are between the two stereo cameras, and B is close and A is very far away. In image 1, A
will be to the left of B, but in image 2, B’ will be to the left of A’ (see figure 2.1). The ordering

constraint is not often violated in the real world [BI99], but like most of the constraints, it’s not a

11

4N

A B B'A'

Picture 1 Picture 2

Figure 2.1: The ordering constraint can fail for objects of different depth. A matches A’, B matches
B’, and A is to the left of B in image 1. But B’ is to the left of A’ in image 2.

steadfast rule.

Epipolar

Perhaps the most useful constraint, the epipolar constraint reduces the search for a matching pixel
from two dimensions to one [BF82]. It is based on the geometric constraints of a camera. It helps us
find a match because, given a point in one image plane, the corresponding point in another image
plane is consrtained to lie along a straight line (see Figure 3.4) [Sch89, HS89]. We can further

constrain that line by specifying a minimum and maximum depth for all points in the scene.

2.2.2 Problems

Cochran and Medioni cite four specific problems that occur when doing stereo matching: photometric
variation, occlusion, repetitive texture, and lack of texture [CM92]. All of these problems pose serious

hurdles for stereo matching algorithms, but fortunately there are many good solutions to these issues.

12

Photometric Variation

Cochran and Medioni [CM92] and also Ivanov, et al. [IBL0O] describe photometric variation as
the change of intensities caused by a change in the camera’s viewpoint. This happens because the
amount of light reflected on the scene and the amount of noise in the image are dependent on the
location of the camera. Furthermore, nonlinearities in the camera geometry can cause slight changes
when the camera is moved. By performing normalization with respect to the mean and/or the
standard deviation, most effects of a change in brightness or contrast between two stereo images can

be eliminated [Sun02].

Occlusion

Occlusion occurs when one camera sees a point in space that another camera can not see due to
a change in viewpoint [CM92]. Occlusion is a mark of a depth discontinuity and a result of the
violation of the continuity constraint [BI99]. If an area is occluded, then it doesn’t appear in both
stereo images and thus triangulation can’t be used to find that area’s depth. Bobick and Intille use
high-confidence matches to eliminate sensitivity to occlusion and accurately extract large occlusion
regions [BI99]. Cox, et al. show that when using more camera views of a scene, occluded regions
are reduced or eliminated [CHRM96]. This is obvious because adding another viewpoint can only
remove occlusions if it can see areas that one of the other cameras can’t see. We plan to take

advantage of the fact that we have an array of cameras to help elminate occlusion regions.

Repetitive Texture

Repetitive texture is a problem because it can cause too many good matches. The classic example
is a brick wall. It is very difficult for the stereo matching algorithm to tell one brick from another.
The problem is compounded when photometric variation alters the two stereo images in such a way
that an incorrect match seems like a better match than the correct match [CM92]. Using a large
window can help alleviate this problem if the window is large enough to cover an area outside the
repetitive texture. In our situation, it may not be a serious problem if we match the wrong part of

the same repetitive texture because our objective is not to find the best depth map.

13

Lack of Texture

If a section of a scene has no distinguishable texture, then an area-based match is not possible
[CM92]. For example, a photo of a white wall has no texture, and therefore every point looks the
same. It is impossible for even humans to find a specific match, much less a computer. In the real
world, it’s uncommon to have objects with no texture. In our application, we attempt to minimize

this occurrence as much as possible.

14

Chapter 3

Current Work

The first step was to create a static scene to use as our experimental testbed. In our first experiments,
we placed balls on pieces of 6-inch PVC piping on a table. To mimic a sparse camera array, we
mounted a camera on a copy stand and took images 10 inches apart to create a 4 by 3 array of
photographs of the scene. Using a single camera provided good consistency in the look of the
images, reducing or elminating the need for normalization of the photographs. We also wanted the
camera axes for each image to be parallel, and we hoped that could be accomplished by using the
copy stand setup. Thus, it was easy to do perspective division since the camera location was known.
Since the same camera with the same settings was used for all of the images, the perspective division

coefficients were equal for each photo so we only had to calibrate one camera.

While taking the images, we paid close attention to the camera settings. We used a 17mm lens
(27mm with respect to a 35mm camera), the widest angle possible on our camera, to maximize the
depth of field. Using a wide-angle lens also best duplicated the fixed lens in a cheaper camera which
might be used for the videoconferencing system. We also set the camera to ISO 400 instead of ISO
100 or 200 to increase the depth of field. We manually focused the camera to about 1 meter distance
so that everything was in focus. By using manual focus instead of auto-focus, we guaranteed that

all of the images were in the same focus.

I then started by creating basic edge detection and stereo matching algorithms. I used some of those

techniques to create an orthogonal projection.

15

3.1 Edge Detection

Edge detection is simply a threshold applied to a gradient mapping of an image. The gradient for
a pixel in the image is the first derivative of image luminance. The luminance, the black-white
equivalent of a color, is a linear combination of the color’s RGB (red, green, and blue) values. More

specifically, a working measure of luminance is the Y component in the YUV color system:

Y =03%R+0.59%G +0.11 x B [BB82] (3.1)

Vertical and horizontal gradients are estimated for each pixel. If I(p) is the intensity of pixel p, I, (p)
is the x-gradient of that pixel, and I{/ (p) is the y-gradient of that pixel. To find the x-gradient, we
find the average of the difference between pixel p; (the pixel to the left of p) and p, and the difference
between pixel p and p, (the pixel to the right of p):

I;(p) — I(p) —2](]?[) +

Thus,
I(p) =

The y-gradient is found similarily. To find the overall gradient for pixel p, we take the square root

(3.2)

of the sum of their squares:

I'(p) = /1, (p)* + I (p)? (3:3)
Finally, all pixels with a gradient above the threshold are turned black. All others are turned white.
Figures 3.1(a) and 3.1(b) show the results of this edge-detection algorithm with a threshold of 15.

3.2 Interest Operator

Another benefit of the gradient map is to find how “interesting” a point is. Areas with a high gradient
are easily identified in other images because the gradient signifies that the area has a unique structure
that is unlikely to be found more than once (except for cases of repeating patterns). It is useful
to have a way to judge the interest level of a point, because if the point has a low interest level,
stereo match candidates might not be trustworthy. Thus, I defined the interest level of a point as

the number of edge pixels occurring in a window around that point. The size of that window is

16

(a) Original image (b) After edge detection

Figure 3.1: The results of a simple gradient-based edge detection algorithm

empirically adjusted based on the scene. To create the edges, I used the Canny edge detector from
the OpenCV library [Can83]. I empirically adjusted the parameters for the edge detection algorithm
so that the input images had just the right number of edges pixels, and the wall had no edges. Then
I created an interest map, where the value for each pixel was the total number of edge pixels in a
window surrounding the pixel. I used the same window size used in the area matching algorithm.
The resulting interest map looked like a blurry edge detector: the walls were empty (no interest),
and the faces were gray and white. Figure 3.2 shows the interest operator applied to one of the
input images. Since every pixel that should be matched had a positive interest value, each pixel’s
interest could be tested before attempting to make a match. If the interest level is zero or below a

threshold, the algorithm wouldn’t attempt to match it.

3.3 Camera Calibration

The goal of camera calibration in this application is to know where each point in space would project
onto the image plane of each camera. This projection is done using the perspective equations. Let
(Ze,Ye, ze) be a point in space relative to the center of the camera (the eye). (x,y) is the point on
the image where (Z¢, e, ze) projects. An important point to note is that (z,y) is expressed relative

to the center of the image with the positive axes pointing up and to the right. So, (0,0) would be

17

(a) Before applying interest operator (b) After applying interest operator

Figure 3.2: The result of applying an interest operator to an image

the center of the image, (1, 1) would be one pixel above and to the right of the center pixel, etc. The

perspective equations follow:

Le

Xr = kxz (34)
Ye

y=ky— (3.5)

e

To use these equations, k,; and &k, must be known. They can be found by measuring the depth of
a known point in the scene and finding it manually in two of the images. Let the point in space be
(x,y,), the coordinates of the first camera S be (53, .5y, 0), and the coordinates of a second camera
T be (T;,Ty,0). (x,y,%) is first manually found in S and T. Let (M, M,) and (N, N,) be the

locations of (x,y, 2) in cameras S and T, respectively. Finally, let Az and Ay be the x-distance and

18

y-distance, respectively, between the two cameras. More specifically,

Ar =5, - T,
Ay=S8,-T,
Then there are two sets of equations:
-8,
M, = 5%
z
y— S
M, = ky . Y
and
s = kg i
z
y—T
y = ky > .
First, we use what we know to deduce:
ky(x — Sy)
z A
ky(x — T, — Ax)
M,
x x _ A
M, (ki I)
ky [Npz+ Axk,
Nyz + Axk,
M,
Nz n Azk,
B Nz Azk,
T, M,
1N
z A
; M, — N,
M,
; M, Azk,
M;E - N;E M;E
Thus,
P
M, — N,

19

)

(3.10)

(3.11)

(3.12)

The same can be done for y using the same steps. Since z, Az, M,, and N, are known, it is true

that:
(M, — N,)
o =——xg (3.13)
z(My - Ny)
=37y " Y/ 14
ky 5 (3.14)

However, a problem with this method is that it is difficult to measure the depth z manually. If the
manual measurement of z is incorrect by even a small €, the £, and k, produced will cause incorrect
calculations of future z’s with an error potentially greater than e. Suppose the correct depth of a

point is z, but it is measured to be at depth z 4+ €. Then the incorrect k., denoted k;_, is:

(z+€e)(M, — N)

ki = Ax
 2(My — N,) n e(M, — N,)
- Ax Az
B e(M, — N,)
= kot Az

Thus, when computing z for other corresponding points (P, P,) and (Q,Q,) in the same two

images, the incorrect depth z; will be:

- A.ﬁk‘“
L Px - Qm
_ Az kot e(M, — N,)
Px - Qac Ax

+ Mr*Nr
z €|\ ——————
Pz_Qm

If the depth of the new point is very small, then P, — @, will be large, and the depth error due to
finding an incorrect k, will be small. But if the depth of the new point is very large, then P, — Q.

will be small and will result in z; being more incorrect.

If we want an accurate depth measurement, we could measure to a known depth and calculate the
distance of the center of the camera from that depth. This is not difficult to do using the aluminum
stand I built. It’s easy to measure the depth of an object relative to the horizontal bars in the stand.
I measured a depth z; and z; from two points to the horizontal bar, and assumed the center of the
camera was a distance of § from the bar. The true depth of the points relative to the camera would

be z; — d and zo — J, respectively. I also had to find those two points in two cameras, resulting in

20

two equations:

(21 —0)(My — Ng)

ha = Az
(Z2 - 5)(Px - Qac)
ke = Az
Thus,
(21 = 0)(My = No) = (22— 0) (P — Qa)
Zl(Ma:_N)_5(M Nw) = ZQ(PI_QI)_é(Pw_QLE)
6(MI_NI) (P:r Qz) = Zl(Ma:_Nx)_ZQ(Pw_Qa:)
My — Nz +Qz — Pp) =

Thus, we can find §:

5 zl(ﬂﬁ__%)lz(%;%) (3.15)

Once 6 is known, it’s easy to find the depth of an object in the scene, and thus the computation of

ks and k, is much more accurate.

3.4 Stereo Matching

To do stereo matching, I created a basic area-based matching algorithm. Given a pixel in one image
(the source pixel), it attempts to find a match for that pixel in another image (the target image).
First we must solve the correspondence problem, and then we can use some of the stereo constraints

to limit the total area we need to search to find the match.

3.4.1 Stereo Correspondence

The correspondence problem is to find for each pixel in one image its best match in a second image.
The correspondence function returns an estimate of match quality. First, windows are centered
around the candidate points in both images, and then compared using a match measure. The

window size is determined empirically. Two measures we used were sum of absolute differences

21

(SAD) and cross correlation. To compute the sum of absolute differences, we find a value d by
summing the absolute values of the differences between the intensities of the pixels in the two
windows and dividing by the number of pixels in the window to find the average difference per
pixel. Let A and B be matrices containing the pixel intensities of the first and second windows,

respectively. The sum of absolute differences d between two m x n windows is:

d= Zm Zn |Amn — an|

mn

Since we’re comparing values of d for equal-sized windows, m and n are always the same, so there
is no need to divide by mn. Furthermore, we would want to normalize A,,, and B,,, by the means
of the intensities (A and B) of the windows if we used different cameras to take the two images.
In images from two different cameras, it’s possible for one to be brighter or darker than the other.
If we subtract the means of the window from the A,,, and B,,,, then that should account for any

error that occurs if either A or B is uniformly brighter than the other. Therefore:

d=>">"|(Apn — A) = (Byn — B)| (3.16)

m n
Since the goal is to find a match in a second image, we would compare the point in the original
image with several points in the second image. The point in the second image with the smallest
difference value d is the match. Additionally, we could say that if the minimum d is greater than a

threshold, then there is no good match.

We can also measure correspondence by finding the cross correlation. Cross correlation measures
similarity between two points. I implemented Matlab’s corr2 function to find the correlation value

C:

. 2o 2o (Amn = A)(Biun — B) [Inc] (3.17)

V(Z Zn A = D2) (2, 2 (B — B)2)

The value of the correlation function ranges between —1 and 1, with values close to 1 indicating a

good match. With this function, the point with the maximum cross correlation is the best match.

Until now, we have been performing only one search for each pixel, using only one window size. But
how large should the window be? If the window is too large, the windows around matching pixels
may not have a high correlation because of different point of views between the stereo cameras. If
the window contains two objects at different depths, the corresponding window in the other image

could look completely different. However, if the window is too small, we may lose the context of

22

»
v S
S
S
[y ~
) .
1 ~
) N
1 N
) N
) .
) N
' ~ N
' «

\ 4
4
4

’

—

-
-
-

- =

RCam

LCam

Figure 3.3: Two cameras set up for stereo matching

the point and find too many good matches—especially if the object being matched has a repeating

pattern.

A solution is to search with two window sizes. We first find the best match with a large window.
This reduces the likelihood we will match the wrong point due to a repeating pattern in the image.

Once we find a match, we search around that match with a smaller window so we can drill down to

the best matching point.

3.4.2 Finding the Match

For each source pixel, we could search every pixel in the target image. But since we know the

location of each camera, we can greatly narrow the area we need to search. Let
M = (M,,M,)
be the coordinates of the source pixel relative to the center of the image. Let

S =(Sy,8y) and T = (T, Ty,)

23

be the location of the source and target cameras. Let Ax and Ay be the x-distance and y-distance,

respectively, between the two cameras. More specifically,

Ar =5, - T,

Ay=S8,-T,
The basic arrangement for stereo matching is shown in Figure 3.3. We want to find where M would
appear in the target image. If we know the depth of the point in space (x,y, z) projected onto M,
then we can find where it projects in the target image. We don’t know the depth, but we can bound

the depth based on the depth of the scene we are photographing. First, we start with the basic

perspective equations:

M = (My, M,) = (hola — 52)/2,ky(y — 5,)/2)

N = (N, V) = (ke — T) /2, ky(y — T,)/2)

Now we can express IV in terms of M by manipulating the equation:

ky(x — (Sy — Ax))

N, =
z
ke(x —S;) kzAx
= +
z z
kz A
— M, + 22T
z
The result is similar for n,, giving us:
N = (Mg + k,Ax/z, My, + k,Ay/z) (3.18)

Since z is now the only unknown, we can find N given a minimum z (Nyp), and a maximum z

(Npmaz)- The real location of N will be somewhere along a line drawn between N,,;, and Ny,

Nmam = (Maz + kxAx/Zmama My + kyAy/Zmaz)
The line between the minimum point and the maximum point is called the epipolar line, and the
target pixel should fall along this line [BF82]. We also test several pixels above and below this line

to allow for geometric nonlinearities in the camera and/or slight miscalculations. This is illustrated

in Figure 3.4.

24

ax

RCam

LCam

Figure 3.4: Given a point M in the left camera, we can find that point in the right camera by

searching along the epipolar line between N,,;, and Nyqz-

Once we find the target point N, we can find the absolute world coordinates (z,y, z) of that point.

Ax
z =k, (Mx — Nx>

x—S8, = Myz/k,

From Equation 3.12 in §3.3, we know:

We also know:

x = Sp+ M,z/k,
We can find y similarily. Now we know (z,vy, z), where:

k:Ax/(M, — N,) if my # ng,
L) (3.19)
kyAy/(My, — Ny) else.
=85, 4+ zM,/k, (3.20)
y=295,+zM,/k, (3.21)

While doing matching in this way worked for very distinguishable points, there were several problems.

Specular objects, such as a shiny soccer ball, were difficult to match correctly; often the algorithm

25

would match the wrong point on the ball. While in doing so it still matched the correct object,
matching the wrong point on the correct object causes the depth to be calculated incorrectly. We
also had problems with matching borders between balls. In one image, a soccer ball might share a
border with a basketball. But in another image, that border might be with the white wall. Finally,

it’s difficult to match balls with few features or with repeating patches.

3.4.3 Building a Depth Map

By performing stereo matching on every point in an image, we can create a detailed depth map
for that image. I developed an algorithm that takes advantage of the many cameras, producing
a good depth map for nonzero interest points in all of the images in the camera array. To create
the depth map, the algorithm scans through every pixel p in every image in the array. First, that
pixel’s interest value is determined. If the interest value is zero, no depth is calculated. For pixels
of nonzero interest, the algorithm attempts to find that pixel in adjacent cameras. Up to 8 cameras
are considered adjacent to any camera: the four cameras above, below, left, and right of the current
camera, and the four cameras diagonally above to the left, above to the right, below to the left, and
below to the right. There are at least three cameras adjacent to each camera because a camera still

has three neighboring cameras if it is in a corner of the camera array.

To find the point p in adjacent cameras, the epipolar line is calculated based on the minimum
and maximum depth. The algorithm then uses the sum of absolute differences method to find the
point best matching the source point. To accommodate slight errors in camera positioning, the area
around the epipolar line is also searched. Once a supposed best match ¢ is found, the left-right
consistency check is used [Fua93]. It uses ¢ as the new source point, and searches for a match in
the original image. If the match is equal to p within a small error, then it is assumed that ¢ and p

correspond to the same point.

Once each neighboring camera is searched, there will be from 0 to 8 matches (0 or 1 match for each
neighboring camera) for the source point p. Let the number of matches be n. Using the stereo
matching equations, it is then straightforward to find a depth value for each of the n matches.
However, some of these matches may be incorrect. Because the matches were confirmed with the

left /right consistency check, we assume that most of them are correct. We also assume that the

26

correct matches will have similar depth values. To decide which matches to keep, a basic clustering
algorithm is used. Assuming there are at least two matches, the two points with the closest depth
are found. If the difference between those two matches’ depths is below a depth threshold, they are
kept and a target depth is set to the average of the two closest depths. Then the match with depth
closest to the new target depth is found. If the difference between the two depths is less than the
depth threshold, then the third match is kept and the new target depth is set to the average of the
three depths. The process is repeated until the difference between the target depth and the next
closest depth is greater than the depth threshold. The rest of the matches are discarded.

Of the matches that are kept, the depth for all of them is set to their average depth. Then the depth
for p and all of its matches is set to the new depth. This process is repeated for each pixel in each
camera. If a pixel already has a depth as a result of being previously matched, it is skipped. After

all of the images are finished being matched, we will have a depth map for each camera.

This algorithm is extremely slow. It takes several hours to complete using a window of size 21 and
images of size 500 x 750. However, we can increase the speed by skipping every third pixel. We
can assume that in a 500 x 750 image, a 3 x 3 block of pixels represent the same point. Thus, for
each point that we match, we set the depth of the surrounding 3 x 3 window to the same depth
as the matched point. Then, each row only needs to search for the depth of every third pixel, and
only every third row needs to be checked. This cuts the run time by 9. The same effect can be
produced by reducing the size of the images used to create the depth map, and searching every
pixel. This method proved to be more straightforward and resulted in better depth maps (Figure
3.5). First, I created depth maps from 250 x 375 images. Then, the program was able to save the
depth map image and load it for use in a later run. To create orthogonal projections from images
with a different size than those used to create the depth maps, the depth maps are first loaded into
the program, Gaussian smoothed, and resized to match the new size. Figure 3.6 compares a depth
map created from a 500 x 750 image to a depth map created from a 250 x 375 image but smoothed

and resized for matching with 500 x 750 images.

Another problem is that even though we average depths for matches found in multiple cameras,
different cameras can still record slightly different depths for the same object. This happens mainly
because the cameras’ alignment is not exactly accurate. We assume that each camera is at a specific

position, but if it is not at exactly that position, pointing in that exact direction, the depth will be

27

Figure 3.5: Depth map from 250 x 375 image

calculated slightly incorrectly.

3.5 Orthogonal Projection

I have written two algorithms that create an orthogonal projection from a sparse camera array. The
area we will try to project orthographically is the area inside our 4 x 3 grid, bounded by the outside
cameras. Since the centermost pixel of each image is an orthogonal projection of that point in space,
it makes sense that the top-left-most pixel in our orthogonal projection is the center pixel of the
top-left camera. The same can be said for all of the corner pixels and cameras. For simplicity, we

let the center of the bottom-left camera be the origin (0,0, 0).

Before searching, we have to decide how many pixels per inch (ppi) we would like to sample. The
greater the resolution, the slower the run-time, and the larger the orthogonal projection. If our
resolution is lower than the resolution of an object in one of the images, our orthogonal projection
will become blurry. In our orthogonal projection, the sampling resolution is uniform throughout the
image, but that is not the case in perspective images. Since equal-sized objects become smaller as
they get farther away in a perspective projection, they are represented by fewer and fewer pixels.
Therefore we have to be careful not to make our desired sampling rate lower than the most distant

objects in our perspective images or they will be blurry.

28

y

4

(a) Depth map from 500 x 750 image (b) Depth map from 250 x 375 image, smoothed

and resized for matching with 500 x 750 images

Figure 3.6: Depth map for the large image compared to the depth map created from a small image

and resized
3.5.1 Algorithm A

In Algorithm A, instead of matching given pixels in a source image with ones in a destination image
to create a 3D model, the algorithm starts with an (x,y) point in space and tries to find the object
in the scene at (x,y) with the smallest 2. The color of that point is projected to a pixel in the
orthogonal projection. For example, suppose we are sampling at 10ppi and we find an object at
(25,10.5,20) and there is nothing at (25,10.5) closer than 20 inches away. Then that point will
be projected onto the pixel (in image coordinates) (250, h — 105) in the orthogonal projection. (h
represents the height, in pixels, of the orthogonal projection, since the origin of an image is the
top-left corner and x and y are always positive). The algorithm does this search for every pixel in

the orthogonal projection.

29

f P F T

Region Region | egion

I 1-2 2-3 3-4 I

== e = = == = = = — |
‘§'7Rf_-g|un Regmn Reglun v
[5]°¢[6]®

. I

- |

) i S g

I_Region Region Regmn

7 910 10-11 7 11-12
9 }-=-={10}---[11}--- 12

Figure 3.7: Camera pair regions in a 4 x 3 camera grid

The algorithm is based on the idea that given any point in space and a camera with known parame-
ters, we can find out where an object at that point in space would project onto that camera’s image.
We can find this by doing simple perspective division. Furthermore, let the function ®;(z,y, z) be
coordinates of the projection of (x,y, z) in camera i’s image. If there are two cameras photographing
the point p in space, we assume an object is at p if ®1(p) and P2(p) have a high correlation. Since
this algorithm includes the stereo matching step, it doesn’t depend on the prior creation of depth

maps.

Depending on which point we are trying to sample, the algorithm will choose only two cameras
from which to match. It is possible that there are points that one of these cameras doesn’t see, but
we’re currently limiting each point to two cameras for simplicity’s sake. Because of this, the output
orthogonal projection can be divided into camera pair regions. All of the pixels in each camera pair

region are matched using the same camera pair. Figure 3.7 shows the regions in a 4 x 3 camera grid.

Let ortholi][j] be the pixel at the ith row and jth column in the orthogonal projection. Then the

orthogonal projection algorithm is roughly given below:

rows:=number of rows of cameras
cols:=number of columns of cameras
dx:=distance between columns

dy:=distance between rows

30

ppi:=ppi of orthogonal projection

p:=(0,0)

for i:=rows*dy*ppi-1:0
for j:=0:cols*dx*ppi
ortho[i] [j]:=color of closest object at p
p:=(p.x+1/ppi, p.y)
end for
p:=(0, p.y+1/ppi)

end for

We still need to know how to find the color of the closest object at p. We could just loop through
from (z,y, Zmin) t0 (Z,Y, Zmaz) and stop when we find a good match. But that requires computing
@4 (p) and P2(p) each time we increase z. Instead, we varied our approach slightly. We consider the
pixels ®1(x, y, zmin) and @1 (x, Y, Zmaz) in image 1, and Po(x, Y, 2min) and Po(x, Y, Zmae) in image 2.
Figure 3.8 shows (x,y, Zmin) pProjecting to Ly, and Ry, in the left and right images, respectively,
and (z,Y, Zmaz) projecting to Lyqq, and Ry,q, in the left and right images, respectively. An epipolar
line runs between L,,,;, and L;,,, in the left image, and between R,,;, and R4, in the right image.
Then, we run a window along each epiline, calculating the correlation and then moving the window
along the line by a distance proportional to the length of that window’s epipolar line. This is done
once with a large window, and then a second time with a small window in the region of the best
match with the large window. The pixel at the center of the small window with the best match is
the pixel that is used to sample our target point. Figure 3.9 shows epipolar lines for two images.

The white box in the image is the location of the best match using a large window 21 pixels wide.

The algorithm can use two window sizes in an attempt to fix the problem we had with repeating
patterns on the soccer balls. The result is much better than the original attempt, although it is not
perfect. I also tried changing the correspondence function to use the correlation value instead of the
difference value. I was surprised to find out that the correspondence function was not necessarily
better, and it might be worse. Figure 3.10 shows an orthogonal projection from a 4 x 3 camera grid

using correlation to find correspondence, and Figure 3.11 shows the same image created using the

31

(x,y,z_max)
NS

RCam

LCam

Figure 3.8: Projection of (x,y, zmin) and (z,¥, Zmas) onto the image plane and the corresponding

epipolar lines

SAD method.

Algorithm Runtime

This algorithm is by no means real-time in its current state. It takes a long time to run, and
optimization will be discussed later. There are many variables that affect the algorithm’s run-time.

These are detailed below:

e Rows (R) - The number of rows of cameras in the grid

Columns (C) - The number of columns of cameras in the grid

Az - The distance between columns

Ay - The distance between rows

e PPI - The number of pixels per inch in the orthogonal projection

32

(a) Left stereo image (b) Right stereo image

Figure 3.9: Two stereo images are shown with their epipolar lines. The best match with a large

correlation window is shown as a white square.

e Depth Resolution (d) - The number of iterations for each inch of z-depth—for example, if the
depth resolution is 5, the algorithm will test depths of Min Z, Min Z+1/5, Min Z+2/5, etc.

o Max Z (2min) - The largest Z value to test

e Min Z (2m4z) - The smallest Z value to test

Large window size (m) - The dimension of the large window

Small window size (n) - The dimension of the small window

Since the algorithm loops over every pixel in the output orthogonal projection, the run-time is

#pizels * time per pixel. The number of pixels are:

(R+ Ay * PPI)(C % Az x PPI)

33

Figure 3.10: Orthogonal projection from a 4 x 3 camera grid, created with correlation matching

Figure 3.11: Orthogonal projection from a 4 x 3 camera grid, created with sum-of-difference matching

34

For each pixel, the algorithm then searches within a large window and a small window. When it
searches with a large window, it iterates and finds a correspondence value (zin —2Zmaz)d times. When
it searches with a small window, it actually finds a correspondence value m times, because it searches
with a small window in the vicinity of the large window’s best match. Finding the correspondence
value is an O(n?) operation, because it has to loop through all of the pixels in the square window.
The actual run-time is 2m? and 2n? for the large window and the small window, respectively, because
it has to loop through the window to find the mean, and then loop again to either calculate the
difference or the correlation. Putting it all together, we have #pizels* (#iterations*2m? +mx2n?),
or:

Run-time = (R * Ay * PPI)(C % Az * PPI)((2min — Zmaz)d * 2m* + 2mn?)

Optimization

Since the run-time of this algorithm is so long, efficiency is crucial. The fewer tasks that are
performed in the correspondence function, for example, the better because it’s the most called
function. In the original implementation of this algorithm, I opened and closed the stereo images
each time the correspondence function was called. This really caused a slowdown because of the
overhead of loading the files. Now, the images are opened early on and the image file handles are

passed as pointers.

The algorithm also used to loop through pixels in the orthogonal projection row by row. In other
words, it would find the first pixel in the first row, the second pixel in the first row, etc. The problem
is that doing so would require opening and closing different pairs of cameras for each row of pixels.
If there are three camera pair regions on each row, and 200 rows, then images are opened and closed
600 times. We could open all of the images into memory, but a very large camera array would use
too much memory. Instead, the algorithm finds all of the pixels in each camera pair region before
moving on to the next region. Thus, in a 3 x 4 camera grid with 9 regions, camera pair images are

only opened and closed 9 times.

Because of the specific application and the relatively small size of the images, I eventually decided
that it would be best to load all of the images into memory at once. That allows nearly instant
access to information about any of the 12 cameras, and allows more complicated multiple-camera

matching.

35

Dropping Calibration Requirement

After developing this algorithm for a while, I realized that it’s possible to achieve the same results
without calibrating the cameras and finding k, and k, from the perspective equations. Recall the

perspective equations 3.4 and 3.5 in §3.3:

x = k:g,;E
Ze

Ye

= k —_

Y v

We want to find the epipolar line from ®(z.,ye, 2min) t0 P(Te,Ye, Zmaz). As z — 00, x and y
approach 0. Therefore, the epipolar line is a segment of a ray pointing from the center of the
image out in one direction. Furthermore, in photographs, k, should equal &, or else there would be
distortion. For example, if k; # k,, then a 5-inch horizontal line would be represented by a different
size in the image than a 5-inch vertical line (assuming equal depth and foreshortening). So, we can
refer to k; and k, as simply k. Then, ®(ze, Ye, 2e) = (kxe/%e, kye/ze). Since k is constant, and z. is
applied equally to both z. and y., the slope of the epipolar line is determined by x. and y. alone.
This makes sense: a point located at (5,5, z) will be projected somewhere in the image along the
line x = y with z,y > 0, regardless of the camera parameters such as focal length, which determine
k. The position along that line depends on z and k. Thus, we can find the epipolar line with (z., y.)

alone.

While we don’t know where along the line (¢, Ye, Zmin) and (e, Ye, zmax) fall without knowing &,
all that matters is that the beginning and ending of the epipolar lines in the two images are at the
same z. We always set the end of the line at z = oo, which is always (0,0,0). So, we must make the
beginning of the lines correspond to the same z-value. To do this, start by creating the epipolar line
for the camera farther from the point in the scene, because it will have a longer epipolar line. The
closer a point is to the center of the camera (assuming a fixed z), the smaller the epipolar line will
be, because (z,y, Zmin) Will be closer to (0,0). If the epipolar line for the farther camera is created

first, the epipolar line for the second camera will be completely inside the image plane.

Since (x.,y.) alone determines the slope of the epipolar line, it’s easy to calculate it. We will let
the epipolar line run from the center of the image to the border. Then, it will either intersect
with either the top/bottom border or the side border. Let w and h be the width and height of

the images, respectively. If |z./y.| > w/h, then the epipolar line will intersect with the side of the

36

image. If |z./y.| < w/h, then the epipolar line will intersect with the top or bottom of the image.
If |zo/ye| = w/h, then the line will intersect with the corner of the image. The beginning of the

epipolar line is chosen as follows:

if |x_e/y_el > w/h
if x_.e > 0
X_min = w

else

X_min -w

end if

y_min = x_min(y_e/x_e)

else
if y_.e >0
y_min = h
else
y_min = -h

end if

x_min = y_min(x_e/y_e)

end if

The epipolar line runs from (Zmin, Ymin) to (0,0). To make the epipolar line in the other image start
at the same z-depth as the epipolar line in the first image, recall that a camera translation along
an axis only moves pixels along that same axis. So, if the two images only differ by a horizontal
translation, then the minimum point on the epipolar line in the second image will have a y-value
of Ymin. Then the z-value can be calculated based on the ratio of z. to y. for the new camera.
Likewise, if the images differ by a vertical translation, the minimum point on epipolar line in the
second image will have the same z-value as the minimum point on the epipolar line in the first

image.

Once the two epipolar lines are set, they are used just in the same way in the algorithm. The only

37

difference is that k£ no longer needs to be known. As long as the cameras are properly aligned, no

calibration needs to take place.

3.5.2 Algorithm B

Because of problems described in §3.5.3, I decided to investigate an alternative algorithm to create
the orthogonal projection. It is simpler, but requires creating a good depth map of all the images
in the array—a time-consuming process. The idea is that with an accurate depth map for all of the
images, we know the locations in the scene represented by any pixel assigned a depth. This would

create a 3D model of the scene, and then an orthogonal projection could be created.

Algorithm B loops through every pixel in each image. If the depth is known, it calculates the
coordinates for the point in the scene which the pixel represents. This is done using a form of the
perspective equations. Recall that M is the location of a pixel in the images S representing the

point (z,y, z) in space (from Equations 3.4 and 3.5 from §3.3):
M = (Mg, My) = (ks(x — S2)/2, ky(y — Sy)/2)
And recall Equations 3.20 and 3.21 in §3.4.2, where given M and z, we can find (x,y, 2):

x = Myz/k:+ S,

y = Myz/ky;+ S,

Once we know the coordinates (x,y, z) of a point, we can calculate its coordinates in the orthogonal
projection. Let O = (O, 0,) be the point on the orthogonal projection corresponding to (x,v, z),
and let h be the height (in pixels) of the orthogonal projection. Let r be the sampling resolution
(pixels per inch). Assuming that the leftmost column of the orthogonal projection contains points
at x = 0 in the scene, and the bottom row contains points at y = 0 in the scene, we can find O in
terms of x, y, h, and 7:

(04,0y) = (zr,h —yr) (3.22)

O, is expressed as h — yr because O is in image coordinates, where pixel (0,0) is at the top-left of
the image and the positive y axis points downward. We multiply the coordinates by r because x

inches * r pixels/inch = zr pixels.

38

Once we calculate O, we check the depth of the current point projected to the same pixel O. We
color O the same as M in S if and only if O hasn’t yet been colored or it is colored but its depth is

greater than z. This process is repeated for every pixel in every image.

3.5.3 Problems

After implementing the algorithms, several problems arose that made it difficult to create a high-
quality orthogonal projection. First, occlusion, a problem common in stereo matching, caused areas
in the orthogonal projection to be missing. Another problem, repetition in the images, can cause
errors in the orthogonal projection. Finally, slight errors in camera alignment can prevent the

orthogonal projection from looking good at all.

Occlusion

The problem of occlusion was a big issue in Algorithm A. We made the assumption that every point
in the ideal orthogonal projection is visible from at least two cameras in the array, but that doesn’t
mean that every point is visible by the same two cameras. To save computation time, the algorithm
can be made to use only two cameras for each pixel in the orthogonal projection. But when the
point in the scene that should project onto the orthogonal projection isn’t visible from both of the

chosen cameras, the pixel is colored incorrectly.

An example of this is shown in Figures 3.12 and 3.13. Figures 3.12(a) and 3.12(b) show the left
and right images used for stereo matching in the current region. The epipolar lines are green, and
the black X shows the match that the algorithm found. The actual point that should be matched
is marked with a red X. But in the left image, that point is occluded by the white pipe. The result
is that the best match only has a correlation of about 0.3 (using the correlation coefficient) on a
scale from -1 to 1, with 1 meaning the two points are equal. Figure 3.13 shows a section of the
resulting orthogonal projection. The white blob in the middle of the ball is the area that could not
be matched well because of occlusion. If the right camera was used in conjunction with the camera

above it to do the matching for this area, it would have found the correct match.

39

(a) Left stereo image (b) Right stereo image

Figure 3.12: A stereo pair used to match a region: the green line is the epipolar line, the blue squares
bound the region where the algorithm will search using a small window, and the black X is the best
match. The red X shows where it should have found a match if the ball wasn’t occluded in the left

image.
Repetition

Another problem specific to Algorithm A is that it is prone to errors if there is any replication in the
scene. Replication here is defined as any surface in the scene which is duplicated somewhere else in
the scene. It specifically becomes a problem in this algorithm when the epipolar lines from the two
stereo images cross a replicated area. Figure 3.14 illustrates this problem. Two similar things on

either side of an object appear to be in front of that object. When using more complicated objects

1,
A

Figure 3.13: The orthogonal projection of a ball that was partially occluded by one of the cameras

40

4

RCam

-

LCam

Figure 3.14: An example of replication: the intersection of object D with the bold line should be the

point which is projected onto the orthogonal projection. But because of the locations of symmetrical

objects A and B, the algorithm thinks there is an object C in front of D.

such as faces, there is less of a problem with replication. While faces are symmetric, the objects
on the face which are replicated are small enough that they usually are not a problem, and we just
need to use a large enough window size to rule out most cases of symmetry. The background poses a
much bigger problem. Since the background is uniform, it is easy for the background to be matched

by mistake. Figure 3.15 shows a real example of how replication caused half of the face to be missing
in Figure 3.16.

Camera Alignment

Perhaps the biggest obstacle in the way of creating the orthogonal projection is error in camera
alignment. It is extremely difficult to keep all of the cameras precisely in known positions and pointed
exactly perpendicular to the orthogonal projection plane. In most stereo matching applications,
slight errors in alignment are forgiveable because the algorithm searches above and below the epipolar

line. However, Algorithm A doesn’t search for a target point given a fixed source point. It searches

41

(a) Left stereo image (b) Right stereo image

Figure 3.15: A stereo pair exhibiting error due to replication: the green lines are the epipolar lines,
and the blue square is the point where the algorithm made an incorrect match. The red X shows

where the match should have been made.

two lines in two images in hopes that the lines intersect exactly one point in the scene. If the camera
alignment is slightly incorrect, they might intersect at the wrong point, or they might not intersect
at all. In our experiment, it turned out that cameras that were supposed to be above each other were
slightly misaligned. Most points were shifted to the side by a significant number of pixels (often 12
or more) when translating the camera up and down on a supposed vertical line. However, cameras
to the left and right of each other had had good matches because when translating the camera from

left to right, points did not shift up and down on the image very much.

In Algorithm B, I attempted to avoid the alignment problem by first creating a depth map. Stereo
correlation is less sensitive to alignment problems because matching points in two images can be

found without knowing camera geometry. Camera geometry is still used to find epipolar lines, but

42

Figure 3.16: An example of replication errors: half of the woman’s face is missing because the white

wall was matched instead.

the algorithm searches around the epipolar line to compensate in slight alignment errors. However,
the problem lies in computing the depth. Camera geometry is needed to compute the depth, and
again, slight errors in alignment can cause depth inconsistencies for the same object in different depth
maps. It would be straightforward if the goal was to find a 3D model from two stereo cameras. Even
if the two cameras weren’t perfectly aligned, the depth errors would be consistent throughout the
image, and there would be no other camera pairs to “disagree” with the calculated depth. But this
algorithm uses images from almost all of the cameras, so it becomes crucial for the depth maps to

be consistent across all cameras.

3.6 Improvements

3.6.1 Algorithm A

Problems of occlusion and repetition in Algorithm A can be solved using more than two cameras
to find each point in the orthogonal projection. While there are some points in the orthogonal
projection which would be occluded in some cameras, I believe that every point is visible in at least
two of the cameras in the array. So, I improved the code to search in several camera pairs for each

point in the orthogonal projection.

Four cameras surround each point. A natural sequence of camera pairs to use for stereo matching

for that point would be top-left and top-right, bottom-left and bottom-right, top-left and bottom-

43

§r

i) f

Figure 3.17: The result of Algorithm A when only stereo camera pairs with a vertical translation

were used

left, and top-right and bottom-right. Of course, there are (3) = 6 possible combinations if the two

diagonal pairs are added, but four pairs should be enough.

For each camera, the best match is found. With each match comes a depth, so it is possible to have
the four camera pairs “vote” on which match to use. If at least two of the matches agree that the
object is at a certain depth, then that is the depth used. Once the depth for a point is known, pixel
can be projected from any of the images that agreed on that depth.

3.6.2 Alignment

While there were decent results using Algorithm A, problems of repetition and occlusion prevented
the creation of an acceptable orthogonal projection. I should be able to avoid these problems by
matching each point with several cameras and using the result from the camera with the best match,
but errors in camera alignment prevented any accurate vertical stereo matches. Figure 3.17 shows
the result of Algorithm A when only vertical camera pairs were used. The poor quality of this result

means that vertical matches are useless to augment the horizontal matches.

The need for properly aligned images of the scene became apparent. One of the biggest problems
with our setup was that the vertical shaft of the copy stand did not correctly translate the camera

vertically. Objects in the images shifted to the left or right by as many as 12 pixels when only raising

44

or lowering the camera on the copy stand. A vertical translation shouldn’t cause any horizontal pixel
shifts, just as a horizontal translation shouldn’t cause any vertical pixel shifts. This problem was
unique to vertical translation: pixels in the images didn’t shift vertically when the camera was
translated horizontally. This fact explains why using Algorithm A created reasonable results only
when performing left-right stereo matches. The same error has also been demonstrated with other

cameras, making it unlikely that the error was due to that particular camera.

To attempt a properly aligned camera array, I bought a piece of foam-core board the size of the
orthogonal projection (20” x 30”). I created a square grid on it, with 12 points at grid intersection
points. I then mounted it on the background wall using a level to ensure that the grid lines were
exactly horizontal and vertical. The goal was to have the camera at the exact (x,y) location as the
points in the wall grid, and pointing straight at the dots so that the dots were in the exact center
of the image. I attached the camera to the copy stand, and used a laser level to align it. I used a
vertical line on the laser level to project a line along the first grid point, and then I could translate
the camera horizontally until the vertical laser ran directly through the center of the camera. Of
course, I had to use a large carpenter’s square to make sure that the vertical laser was perpendicular
to the wall. T used the horizontal laser to make sure the camera was at the correct height from the
floor. I also measured the height with a ruler to double-check that the height of the first grid point

matched the height of the camera.

With the camera at the correct (z,y) location, if the grid point was not at the center of the image,
then the error was due to rotation about the vertical or horizontal axis. So, I took an image of the
scene, and with the camera still attached to the copy stand, I plugged in the cable and downloaded
the image. By inspecting the image I knew whether I should rotatate the table about the vertical
axis (moving the camera center horizontally), or rotate the camera about the horizontal axis (moving
the camera center vertically). By repeating this process several times, I was able to properly align
the camera so that it was pointing perpendicular to the wall, and at the same (x,y) location as the

target grid point.

I assumed that once the camera was initially aligned, that it would be trivial to take the remaining
images. However, when I cranked the copy stand up 10 inches to the next spot and downloaded a
new image, I noticed that the center of the camera was several pixels to the right of the next grid

intersection point. If pixels shift horizontally with a vertical translation of the camera, it means

45

that either the camera was either translated horizontally, rotated about the vertical axis, or both.
By using the vertical laser, I could tell that the camera had not been translated horizontally when
I cranked the camera vertically. But just to make sure, I shifted the camera horizontally until the
center of the image was correct. It took a horizontal shift of over an inch to compensate for the
center of the image moving several pixels to the right. I would have been able to detect a horizontal
shift of this magnitude using the vertical laser. Therefore, the error must have been due to a rotation

about the vertical axis.

I could compensate for error due to a vertical axis rotation by rotating the table on which the copy
stand sits, but it would be impossible to measure this movement, and it would be very difficult to
continually rotate the table to different but precise locations based on the copy stand crank height

to compensate for the rotation error.

I realized a different tool would be needed to take correctly aligned images, so I built the aluminum
stand described in the introduction in §1.2. This seemed to fix the alignment problem, but the

resulting orthogonal projection wasn’t great. These results are described in Chapter 4

46

Chapter 4

Results

Using the aluminum stand did not fix vertical stereo matching problems. While the images were
aligned, vertical matching still did not work properly. Furthermore, with almost every set of images
we’ve taken, it is possible to get good results, but usually with different parameters. Some of the

parameters that I've been changing include:

e Which camera pair to use to match a point

e Which camera of the pair use when grabbing the pixel
e Window size

e Using one or two window sizes

e Interest window size

e Interest threshold

e Correlation threshold

47

4.1 Parameters Affecting Orthogonal Projection

4.1.1 Which camera pairs to use

For each scene photographed, different parameters resulted in better images. The most difficult
parameter to set is which camera pair to use. I intended to make use of four camera pairs to find
a good match for each point. If one camera pair couldn’t find the match, then surely one of the
other three camera pairs would have a good match. I tried creating four orthogonal projections
for each run, one for each camera pair used. For example, the first orthogonal projection uses the
cameras above (left and right) each point to do the match, the second projection uses the cameras
below (left and right) each point, and so on. The problem was, however, that usually only one or
two of the orthogonal projections looked good. I couldn’t reliably switch between different camera
pairs to supply a good match. If each of the projections looked equally distorted, then there might
be a chance of combining them and taking the best match for each pixel. Usually one camera pair
provided really good matches, and two or three are very bad. Figure 4.1 shows an example of four
orthogonal projections of two heads. Furthermore, usually the vertical matches were bad, as shown
in the figure. I was not able to discover why the vertical matches were so poor, even after drawing
the epipolar lines from the stereo pair. The epipolar lines don’t seem to be in the correct place
for them to intersect at the right point, but after doing manual calculations, the lines are at the

mathematically correct coordinates. Figure 4.2 shows this comparison.

Another problem with using alternating between different camera pairs is that each individual camera
pair produces an orthogonal projection in a slightly different place. If one camera pair thinks that
the point projecting to (3,4) is the eye, and another camera pair thinks that point should contain
a nose, then the algorithm can’t alternate between using using different camera pairs for the same
orthogonal projection, even if both have good matches, because they could all have good matches

for different points.

4.1.2 Which camera of the pair to use when grabbing the pixel

Another choice to make is which camera in a pair to use when grabbing a pixel. When a camera

pair returns a match, it has a left camera match and a right camera match. Then the pixel can

48

(a) Cameras above (left and right) (b) Cameras below (left and right)

(c) Cameras to the left (top and bottom) (d) Cameras to the right (top and bottom)

Figure 4.1: Four orthogonal projections from the same camera array using different camera pairs to

do stereo matching

be grabbed from either camera. Ideally, if the camera is a true match, it shouldn’t matter which
camera to use. But the match isn’t always correct. However, it’s an arbitrary decision to choose one
camera over another. I thought the results might be better if I grabbed the pixel from the camera

closer to the pixel, but the results didn’t generally improve or get worse.

4.1.3 Window size

The size of the match window has a big effect on the orthogonal projection quality. A large window
size usually produces more accurate matches, except in the case of a depth discontinuity. Figure
4.3 shows an orthogonal projection created using window sizes of 11, 21, 31, and 41. In this case,

it appears that a window size of 31 is the best. As the window size decreases, there is more noise

49

Figure 4.2: The epipolars line and the best match for two cameras attempting to perform three

different vertical stereo matches

50

(a) Window size 41

(c) Window size 21 (d) Window size 11

Figure 4.3: Four orthogonal projections created with different window sizes

in the image. A window size here of 21 still has acceptable results, and finally a window size
of 11 produces bad matches because it is too small. Large window sizes also increase computation
time significantly, since correlation (the most called function) is done on the window. Large windows
generally produced better results, but when there are edges with depth discontinuities, it can prevent

good matches near those edges (Figure 4.4).

4.1.4 Using one or two window sizes

Two window sizes can be used to increase accuracy around the borders of depth discontinuities,
with a tradeoff of increased noise. However, if the scene doesn’t have any depth discontinuities, then

there is little gain in using two window sizes (Figure 4.5).

o1

Figure 4.4: When a large window is used, depth discontinuities contain errors. Note especially the

edge between the two men’s heads.

(a) Only one window, size 31 (b) Two windows, sizes 31 and 11

Figure 4.5: Two orthogonal projections, one created with one window and another with two

4.1.5 Interest window size

For each point, the number of edge pixels in a window around that point are summed to create the
interest value of a point. The size of that window is the interest window size. Figure 4.6 shows the
resulting interest image based on different interest window sizes. I chose an interest window of size
21. If the interest window is too large, it will cause too much of the surrounding background to have
a high interest value, leading to poor matches and poor orthogonal projections. The interest value
should be the lowest possible value while also giving each point that should be matched an interest

value above the interest threshold.

52

) Interest window size 41) Interest window size 31
(c) Interest window size 21 (d) Interest window size 11

Figure 4.6: The interest image for an image, given different interest window sizes

4.1.6 Interest threshold

Points in the images which have an interest value below the interest threshold are ignored and not
matched. The interest threshold needs to be empirically adjusted to a good value for the input
images. Figure 4.7 shows the result of adjusting the interest threshold for an orthogonal projection.
The interest window size used is 21. The results are intuitive: the higher the interest threshold, the
fewer low-interest points are matched. However, if the interest threshold is too high, then part of
the image is not matched that should be matched. If the interest threshold is too low, then the wall
starts appearing in the scene. We don’t want to match the wall because it is difficult to get good
matches on the wall, producing errors in the orthogonal projection. When no interest threshold is
used, the interest feature is effectively turned off and a match is attempted for every point. This
results in the wall being matched almost everywhere and the scene nearly being erased. The interest

threshold should be as high as possible without cutting off important parts of the images, because

53

the algorithm runs much faster when it can quickly decide to ignore a point due to a low interest

value.

(a) Interest threshold 100 (b) Interest threshold 60

(c) Interest threshold 30 (d) Interest threshold 0

(e) No interest threshold

Figure 4.7: The results of changes in interest threshold

4.1.7 Correlation threshold

The correlation threshold specifies that the correlation value should be either at most or at least a
certain value, or else it is not a good match. If SAD is used, then a high correlation value means

that the difference between the two points is large. If cross correlation is used, a high correlation

54

value indicates a good match. For example, using SAD correlation, if the best match for a particular
point in the orthogonal projection has a difference value of 50, and the threshold is 60, the match is
accepted. If the best match had a difference value greater than the threshold, then no match would

be accepted for that point on the projection.

Instead of pre-defining a correlation threshold, I define a correlation threshold per pixel. If the
window size changes, the correlation threshold needs to change in proportion to the number of
pixels in the window. Obviously, a correlation value of 50 in a window of size 11 has a different
meaning than a correlation value of 50 in a window of size 51. By setting the correlation threshold
per pixel, the correlation value returned for a point is compared to the correlation threshold per
pixel multiplied by the number of pixels in the window. Figure 4.8 shows an orthogonal projection

created using different correlation thresholds.

4.2 Optimal Configuration

The optimal configuration changes depending on the input images. For a final run, I took images
of two heads separated to eliminate occlusion problems. The input images were 600x399, using the
same previously discussed camera settings. I used the orthogonal projection created by the above-left
and above-right cameras, sampling from the left camera. I found that matching with one window
of size 31, an interest window of size 21, an interest threshold of 50, and a correlation threshold per

pixel of 31 produced the best results.

The sampling resolution, or pixels per inch of the orthogonal projection, doesn’t have a large affect
on the quality of the orthogonal projection. We want a large resolution, but the size is limited by the
size of the input images. Figure 4.9 shows the input images, and Figure 4.10 shows the orthogonal

projection with the aforementioned configuration with three different sampling resolutions.

95

(a) No correlation threshold (b) Correlation threshold per pixel 60

(c¢) Correlation threshold per pixel 31 (d) Correlation threshold per pixel 20

(e) Correlation threshold per pixel 10

Figure 4.8: The results of changes in correlation threshold per pixel

56

Figure 4.9: The input images for the orthogonal projection

57

(a) 5ppi (b) 10ppi

(c) 20ppi

Figure 4.10: The final orthogonal projection with three different sampling resolutions

o8

Chapter 5

Future Work

To develop these algorithms into a working large-screen videoconferencing system, this project will
need future work in the areas of stereo matching, calibration, and optimizations towards real-time

speed.

5.1 Stereo Matching

While area-based matching usually found good matches, depth discontinuities continually posed
problems. The final orthogonal projection was a good result because there was no overlap between
the two faces used in the scene. Using multiple window sizes for area-based matching should improve
results around depth discontinuities, but it didn’t help much, possibly because a large window was
initially used. As long as a large window is used at all, large depth discontinuities will continue to

pose a big problem.

One way the algorithm might be improved is by taking advantage of known information about the
scene. If a very good match is found in two images, it’s likely that the areas around that point will
also match and be at the same depth. This kind of information could allow matches that aren’t as

strong, but strong enough when combined with the high likelihood of neighboring matches.

Likewise, a region growing algorithm could be implemented. It would use confident matches to

99

create contiguous regions of similar depth. The regions then grow on the basis of adjacent pixels of
similar color and depth, partitioning the scene into distinct objects with known depths. A region
growing algorithm would allow the system to use fewer matches, leaning more heavily on only the

best matches.

The use of multiple cameras will introduce new problems. Since our setup uses the same camera, all of
the images are consistent in their white balance, color, and exposure. Switching to multiple cameras

would introduce new matching problems and necessitate normalization before area matching.

Other constraints might be used in the future as well, such as the ordering constraint. Certain
matches could be thrown out or made stronger based on the ordering constraint for an object,
leading to a more confident depth map and orthogonal projection. The similarity constraint could
be improved through the use of Chambon and Crouzil’s color correlation methods. Sometimes two
grayscale regions will be incorrectly matched if they have a similar structure but different colors.
Color correlation can help eliminate potential false matches by forcing correct matches to have the

same color.

Matching could also be improved if the background was accurately removed. The interest operator
helped to eliminate most of the background, but the background immediately surrounding the objects
in the scene still qualified for matching. A “green screen” type of background removal would work,
but would be impractical for the application of a large-screen videoconference. However, in the event
that this project changes from still-image to video, the background could be detected and removed

by sensing which objects in the scene move.

5.2 Calibration

Alignment was the biggest problem with the orthogonal projections. While some of the alignment
problems were overcome by building the aluminum stand, the assumption that all cameras are
precisely positioned and aligned will need to be dropped in any practical application. If small
cameras are placed at the intersections of the monitors on a large display, the location of the camera
could be positioned precisely. But it would be impossible to align their rotation to be exactly the
same. Points in space will need to undergo a transformation to find their location relative to each

camera. The problem won’t be finding k& in the perspective equations, but it will be finding the

60

location relative to each camera. Relative points change as the camera rotates, because the points
at (0,0) are along the line coming straight out of the camera’s lens. Consequently, camera calibration

will be a key problem.

5.3 Optimizations

For videoconferencing to work, the algorithm needs to run faster. Parallel computation would
probably be mandatory for this to happen. If one computer or processor was dedicated to processing
each rectangular region between four cameras, the each image could be generated quickly. It’s also
possible that the program could be optimized to take advantage of continuity between video frames.
The scene doesn’t change much from frame-to-frame, so matches made in the previous frame could

be used to help find the orthogonal projection for the current frame quickly.

61

REFERENCES

[ACR96]

[Bak82]

[BB82)]
[BF82]

[BI99]

[BVZ97]

[Can&3]

[CBVY00]

[CC]

[CHRMOY6]

[CM92]

[Cox94]

M. Adjouadi, F. Candocia, and J. Riley. Exploiting Walsh-based attributes to stereo
vision. IEEFE Transactions on Signal Processing, 44:409-420, February 1996.

H. Baker. Depth from edge and intensity based stereo. Technical report, Stanford
University, September 1982.

D. Ballard and C. Brown. Computer Vision. Prentice-Hall, Inc., 1982.

S. Barnard and M. Fischler. Computational stereo. ACM Comput. Surv., 14(4):553-572,
1982.

A. Bobick and S. Intille. Large occlusion stereo. Int. J. Comput. Vision, 33(3):181-200,
1999.

Y. Boykov, O. Veksler, and R. Zabih. A variable window approach to early vision.
Technical report, Cornell University, Ithaca, NY, USA, 1997.

J. Canny. Finding edges and lines in images. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1983.

J. Cassell, T. Bickmore, H. Vilhjalmsson, and H. Yan. More than just a pretty face:
affordances of embodiment. In IUI ’00: Proceedings of the 5th international conference
on Intelligent user interfaces, pages 52-59, New York, NY, USA, 2000. ACM Press.

S. Chambon and A. Crouzil. Color stereo matching using correlation measures.
http://www.irit.fr/ Sylvie.Chambon/PUBLICATIONS/csimta2004.ps.gz. Last accessed
17 May 2007.

I. Cox, S. Hingorani, S. Rao, and B. Maggs. A maximum likelihood stereo algorithm.
Comput. Vis. Image Underst., 63(3):542-567, 1996.

S. Cochran and G. Medioni. 3-D surface description from binocular stereo. IEEE Trans.
Pattern Anal. Mach. Intell., 14(10):981-994, 1992.

I. Cox. A maximum likelihood n-camera stereo algorithm. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 773-779, 1994.

62

[Fua93|

[GY05]

[HIGO02]

[HS89)]

[IBLOO]

[Inc]

[KO94]

[Lev06]

[LH96]

[MP77]

[RCOS]

[RGLO4]

[Rui04]

[Sch89]

[9S97]

[Sun02]

P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves image
features. Machine Vision and Applications, 6:35—49, 1993.

M. Gong and Y. Yang. Fast unambiguous stereo matching using reliability-based dy-
namic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27:998-1003, June 2005.

H. Hirschmiiller, P. Innocent, and J. Garibaldi. Real-time correlation-based stereo vision
with reduced border errors. Int. J. Comput. Vision, 47(1-3):229-246, 2002.

R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal
cliques. IEEE Trans. Pattern Anal. Mach. Intell., 11(11):1168-1180, 1989.

Y. Ivanov, A. Bobick, and J. Liu. Fast lighting independent background subtraction.
Int. J. Comput. Vision, 37(2):199-207, 2000.

The Mathworks Inc. http://www.mathworks.com/access/helpdesk/help/toolbox/
images/corr2.html¥%. Last accessed 17 May 2007.

T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window:
Theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell., 16(9):920-932, 1994.

M. Levoy. Light fields and computational imaging. Computer, 39:46-55, August 2006.

M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pages 31-42,
New York, NY, USA, 1996. ACM Press.

D. Marr and T. Poggio. A theory of human stereo vision. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1977.

S. Roy and I. Cox. A maximum flow formulation for the n-camera stereo correspondence
problem. Computer Vision, 27:492—-499, January 1998.

A. Roman, G. Garg, and M. Levoy. Interactive design of multi-perspective images for
visualizing urban landscapes. In VIS ’04: Proceedings of the conference on Visualization
04, pages 537-544, Washington, DC, USA, 2004. IEEE Computer Society.

Y. Ruichek. A hierarchical neural stereo matching approach for real-time obstacle de-
tection using linear cameras. In IEEE ’03: Proceedings of Intelligent Transportation
Systems, volume 1, pages 299-304, 2004.

R. Schalkoff. Digital Image Processing and Computer Vision. John Wiley & Sons, Inc.,
1989.

K. Swaminathan and S. Sato. Interaction design for large displays. Interactions, 4(1):15—
24, 1997.

C. Sun. Fast stereo matching using rectangular subregioning and 3d maximum-surface
techniques. Int. J. Comput. Vision, 47(1-3):99-117, 2002.

63

[XWZ96]

[ZW94]

Y. Xiong, D. Wang, and G. Zhang. Integrated method of stereo matching for com-
puter vision. In Andrew G. Tescher, editor, SPIE Proc. Applications of Digital Image
Processing XIX, volume 2847, pages 665—676, 1996.

R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual cor-

responence. In Proceedings of the Furopean Conference of Computer Vision 94, pages
151-158, 1994.

64

VITA

RyAN EDWARD SILVA
300 McDonald Street
Apartment 24B
Blacksburg, VA 24060

Education

Mr. Silva graduated in spring 2006 from Virginia Tech with a bachelor’s degree in computer science,
and a double major in mathematics (applied discrete concentration). From fall 2005 to spring 2006,
he was a 5-year B.S./M.S. student in computer science, taking four graduate courses while finishing
his bachelor’s degree. After finishing his undergraduate work, he spent his final year as a student
working on his thesis and finishing the rest of his required graduate courses.

Honors and Activites

Mr. Silva was a member of Intervarsity Christian Fellowship for five years and served as their web
administrator for four. He is a member of Upsilon Pi Epsilon, where he served as president in spring
2007. He also spent three years as a member of Computer Science Community Service. After four
years as an undergraduate, he received nine scholarships, was on the dean’s list every semester,
and graduated summa cum laude. At graduation, he received the Department of Computer Science
service award. He is an Eagle Scout in the Boy Scouts of America, and a member of the National
Eagle Scout Association. He enjoys playing soccer, hiking, camping, and cooking.

Personal

Mr. Silva was born in Yonkers, New York on December 6, 1983. He lived in Yonkers for five years
before his family moved to Virginia. He spent most of his youth at his home in Midlothian, Virginia.
There, he was homeschooled from fourth through eighth grade and afterwards attended Midlothian
High School. In fall 2002, he began his undergraduate career at Virginia Tech, where he was a
student until 2007. He is currently employed by IBM and will be moving to Boston, Massachusetts.
He is marrying Anna-Laura Kroesen on June 22, 2007.

65

