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Towards Comprehensive Side-channel Resistant Embedded Systems
Yuan Yao

(ABSTRACT)

Side-channel leakage, which reveals the secret information from the physical effects of com-

puting secret variables, has become a serious vulnerability in secure hardware and software

implementations. In side-channel attacks, adversaries passively exploit variations such as

power consumption, timing, and electromagnetic emission during the computation with se-

cret variables to retrieve sensitive information. The side-channel attack poses a practical

threat to embedded devices, an embedded device’s cryptosystem without adequate protec-

tion against side-channel leakage can be easily broken by the side-channel attack.

In this dissertation, we investigate methodologies to build up comprehensive side-channel

resistant embedded systems. However, this is challenging because of the complexity of the

embedded system. First, an embedded system integrates a large number of components.

Even if the designer can make sure that each component is protected within the system,

the integration of the components will possibly introduce new vulnerabilities. Second, the

existing side-channel leakage evaluation of embedded system design happens post-silicon

and utilizes the measurement on the prototype of the taped-out chip. This is too late for

mitigating the vulnerability in the design. Third, due to the complexity of the embedded

system, even though the side-channel leakage is detected, it is very hard to precisely locate

the root cause within the design. Existing side-channel attack countermeasures are very

costly in terms of design overhead. Without a method that can precisely identify the side-

channel leakage source within the design, huge overhead will be introduced by blindly add

the side-channel countermeasure to the whole design. To make the challenge even harder,

the Power Distribution Network (PDN) where the hardware design locates is also vulnerable

to side-channel attacks. It has been continuously demonstrated by researchers that attackers



can place malicious circuits on a shared PDN with victim design and open the opportunities

for the attackers to inject faults or monitoring power changes of the victim circuit.

In this dissertation, we address the challenges mentioned above in designing a side-channel-

resistant embedded system. We categorize our contributions into three major aspects—first,

we investigating the effects of integration of security components and developing corre-

sponding countermeasures. We analyze the vulnerability in a widely used countermeasure -

masking, and identify that the random number transfer procedure is a weak link in the inte-

gration which can be bypassed by the attacker. We further propose a lightweight protection

scheme to protect function calls from instruction skip fault attacks. Second, we developed

a novel analysis methodology for pre-silicon side-channel leakage evaluation and root cause

analysis. The methodology we developed enables the designer to detect the side-channel

leakage at the early pre-silicon design stage, locate the leakage source in the design pre-

cisely to the individual gate and apply highly targeted countermeasure with low overhead.

Third, we developed a multipurpose on-chip side-channel and fault monitoring extension -

Programmable Ring Oscillator (PRO), to further guarantee the security of PDN. PRO can

provide on-chip side-channel resistance, power monitoring, and fault detection capabilities

to the secure design. We show that PRO as application-independent integrated primitives

can provide side-channel and fault countermeasure to the design at a low cost.
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Yuan Yao

(GENERAL AUDIENCE ABSTRACT)

Embedded devices almost involve every part of our lives, such as health condition moni-

toring, communicating with other people, traveling, financial transactions, etc. Within the

embedded devices, our private information is utilized, collected and stored. Cryptography

is the security mechanism within the embedded devices for protecting this secret informa-

tion. However, cryptography algorithms can still be analyzed and attacked by malicious

adversaries to steal secret data. There are different categories of attacks towards embedded

devices, and the side-channel attack is one of the powerful attacks. Unlike analyzing the vul-

nerabilities within the cryptography algorithm itself in traditional attacks, the side-channel

attack observes the physical effect signals while the cryptography algorithm runs on the

device. These physical effects include the power consumption of the devices, timing, elec-

tromagnetic radiations, etc., and we call these physical effects that carry secret information

side-channel leakage. By statistically analyzing these side-channel leakages, an attacker can

reconstruct the secret information.

The manifestation of side-channel leakage happens at the hardware level. Therefore, the

designer has to ensure that the hardware design of the embedded system is secure against

side-channel attacks. However, it is very arduous work. An embedded systems design in-

cluding a large number of electronic components makes it very difficult to comprehensively

capture every side-channel vulnerability, locate the root cause of the side-channel leakage,

and efficiently fix the vulnerabilities. In this dissertation, we developed methodologies that

can help designers detect and fix side-channel vulnerabilities within the embedded system

design at low cost and early design stage.



Dedication

I dedicate this to my parents, Zhihong Zhang & Runya Yao,

my beloved soulmate Yuan Liu,

and my family.

I couldn’t have made it this far without your selfless love, support and encouragement.

I specifically dedicate this to the loving memory of my grandparents. Grandma and

grandpa, I hope you are proud of me there in heaven.

v



Acknowledgments

I would like to sincerely thank my advisor Dr. Patrick Schaumont, for his support, advice,

and encouragement throughout my entire Ph.D journey. I still remember how naive in re-

search I was when I first walked into his office five years ago. Through this journey, he

teaches me lots of valuable things with patience on how to be an outstanding researcher

as well as be a kind person. His perseverance, dedication, integrity and enthusiasm signif-

icantly influence my attitude towards life and career. He has set an example of excellence

as a researcher and advisor. None of this work would be possible without his guidance and

devotion to my research.

My gratitude also goes to my committee members Prof. Daphne Yao, Prof. Leyla Nazhan-

dali, Prof. Matthew Hicks, Prof. Jeffrey Reed, for their valuable support and for offering

helpful feedback on my research.

I would like to deeply appreciate the support from my co-authors and labmates. Thank you

Tarun Kathuria, Mo Yang, Conor Patrick, Chinmay Deshpande, Daniel Dinu, Tuna Tufan,

Marjan Ghodrati, Bilgiday Yuce, Abhishek Ajey Bendre, Richa Singh, Archanaa Santhana

Krishnan, Pantea Kiaei. You let me feel like I have a nice lab family.

It’s my great honor to have the opportunities to work with extremely talented researchers

during my internships with Riscure B.V., Cryptography Research, Inc and Qualcomm.

Thank you Dr. Baris Ege, Dr. Michael Tunstall, Dr. Elke De Mulder, Anton Kochep-

asov, Gilbert Goodwill, Dr. Nazanin Takbiri and Jon Azen. I have learned a lot from every

one of you.

I would like to specifically thank my friends, Archanaa Santhana Krishnan and Pantea Kiaei.

This has been a challenging time, thank you very much for your support and care through

vi



hardness. I feel so lucky and so happy to have you being around in my life.

Thank you, Yuan Liu, you let me understand that the most long-lasting expression of love

is accompanying. I never feel lonely and timid along with this journal because you always

stand by my side.

Finally, special words go to my parents. I experienced a lot and went through a long jour-

ney to get here, you always stand behind me and give me unconditional love and support

whenever I needed. You raise me up to more than I can be.



Contents

List of Figures xv

List of Tables xxii

1 Introduction 1

1.1 Side-channel Analysis of Embedded Systems . . . . . . . . . . . . . . . . . . 4

1.1.1 Example of Side-channel Analysis . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Existing Side-channel Countermeasures . . . . . . . . . . . . . . . . . 9

1.2 Secure Embedded System Design Challenges . . . . . . . . . . . . . . . . . . 10

1.3 Contributions of this Dissertation and Outline . . . . . . . . . . . . . . . . . 12

2 Fault-assisted Side-channel Analysis of Masked Implementations 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Signal Processing Tools . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Implementation of Masking Countermeasure . . . . . . . . . . . . . . . . . . 23

2.3.1 Pseudo Random Number Generation . . . . . . . . . . . . . . . . . . 23

2.3.2 Byte-level Masked AES Implementation . . . . . . . . . . . . . . . . 24

viii



2.3.3 Disabling the Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Analyze Mask Generation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Tuning Fault Injection Parameters . . . . . . . . . . . . . . . . . . . 30

2.4.3 Fault Injection and Differential Power Analysis . . . . . . . . . . . . 31

2.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Bit-Sliced AES Implementation . . . . . . . . . . . . . . . . . . . . . 33

2.6.2 Bit-Sliced masked AES Implementation . . . . . . . . . . . . . . . . 34

2.6.3 Steps of methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Fault Injection Success Rate . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.3 Possible countermeasures . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 A Low-cost Function Call Protection Mechanism Against Instruction Skip

Fault Attacks 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Fault detection principles . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Application Binary Interfaces . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Fundamental Principles . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 ABI specific Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 Header Specific Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.5 Semantic Specific Test . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Fault Detection Performance . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Verification of Power-based Side-channel Leakage through Simulation 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Power-based Side-channel Leakage . . . . . . . . . . . . . . . . . . . . . . . 73



4.3 Side-channel Leakage Verification . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Pre-silicon Architecture Correlation Analysis (PACA): Identifying and

Mitigating the Source of Side-channel Leakage at Gate-level 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 PACA Methodology for Identifying the Leaky Cells . . . . . . . . . . . . . . 88

5.3.1 Power Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Selecting the Leakage Time Interval . . . . . . . . . . . . . . . . . . 90

5.3.3 Architecture Correlation for Computing Leakage Impact Factor . . . 92

5.4 PACA on encryption subcircuit . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 PACA on an AES hardware engine . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 PACA on PRESENT Hardware Engine . . . . . . . . . . . . . . . . . . . . . 99

5.7 PACA of an SoC Bus Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Selective Countermeasure with WDDL . . . . . . . . . . . . . . . . . . . . . 104

5.8.1 Background in Circuit-level Countermeasures . . . . . . . . . . . . . 105

5.8.2 Selective-replacement WDDL . . . . . . . . . . . . . . . . . . . . . . 106

5.8.3 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Selective Replacement Countermeasure with Decoupling Cell . . . . . . . . . 109

5.9.1 Implementation of the Decoupling Cell . . . . . . . . . . . . . . . . . 109



5.9.2 Selective Replacement Result . . . . . . . . . . . . . . . . . . . . . . 113

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Augmenting Leakage Detection with Boostrapping 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.1 Leakage Detection using Welch’s t-test. . . . . . . . . . . . . . . . . . 124

6.2.2 The Bootstrapping Method. . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.3 Kolmogorov-Smirnov Test . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Applying Bootstrapping to Leakage Detection . . . . . . . . . . . . . . . . . 127

6.3.1 Simulating Leakage Detection . . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Programmable RO (PRO): A Multipurpose Countermeasure against Side-

channel and Fault Injection Attacks 140

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



7.2.1 On-chip sensors as a countermeasure against power Side-Channel Anal-

ysis (SCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.2 On-chip sensors to detect/cause power perturbation . . . . . . . . . . 145

7.2.3 On-chip sensors to detect fault injection . . . . . . . . . . . . . . . . 146

7.2.4 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3 Programmable RO Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.2 PRO Design and Configuration . . . . . . . . . . . . . . . . . . . . . 149

7.3.3 PRO Integration and Basic Principles . . . . . . . . . . . . . . . . . 152

7.4 Side-channel Countermeasure . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.5 Power Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.5.1 PRO Power Sensing with Regard to External Power Variations . . . 160

7.5.2 PRO Power Sensing with Regard to On-die Local Power Variations . 162

7.5.3 PRO Power Sensing with Regard to Sensor Locality . . . . . . . . . . 164

7.6 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.6.1 Power Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.6.2 Electromagnetic Fault Injection (EMFI) Detection . . . . . . . . . . 170

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 Overall Conclusion 175



Bibliography 176



List of Figures

1.1 Basic Concept of Side-channel Analysis . . . . . . . . . . . . . . . . . . . . . 4

1.2 Basic Setup of Side-channel Analysis . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Basic Idea of CPA of attacking one key byte . . . . . . . . . . . . . . . . . . 7

1.4 CPA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Fault-assisted SCA methodology of masked software implementations. . . . . 19

2.2 Attacker Model adopted in this chapter. . . . . . . . . . . . . . . . . . . . . 20

2.3 (a) AES power trace and (b) its autocorrelation plot. . . . . . . . . . . . . . 22

2.4 Byte-level Masked AES Implementation: (a) Pseudocode (b) Assembly code

in RISC-V ISA. The red rectangles mark the fault injection targets. . . . . . 24

2.5 Region of similarity: (a) Autocorrelation matrix of byte-level masked AES

(b) Computed Region of Similarity (ROS). . . . . . . . . . . . . . . . . . . . 27

2.6 Region of randomness: (a) Standard deviation for byte-level masked AES

power traces with fixed plaintexts and (b) derived region of randomness. . . 29

2.7 Standard deviation σ2(t) after successful fault injection. . . . . . . . . . . . . 31

2.8 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Clock glitching parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xv



2.10 Masked Bit-sliced Processor Allocation. . . . . . . . . . . . . . . . . . . . . . 35

2.11 (a) Autocorrelation for bit-sliced masked AES power traces with fixed plain-

text. (b) Derived regions of similarity. . . . . . . . . . . . . . . . . . . . . . 37

2.12 (a) Standard deviation for bit-sliced masked AES power traces with fixed

plaintext (b) Derived regions of randomness. . . . . . . . . . . . . . . . . . . 38

2.13 Standard deviation for bit-sliced masked AES power traces with fixed plain-

text (a) before and (b) after disabling mask. . . . . . . . . . . . . . . . . . . 38

2.14 Welch’s t-test for 16_same, 8_same and 4_same. . . . . . . . . . . . . . . 39

3.1 Fundamental Principles of Proposed Countermeasure . . . . . . . . . . . . . 51

3.2 Three Levels in Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 ABI specific fault detection wrapper structure . . . . . . . . . . . . . . . . . 55

3.5 Header specific fault detection wrapper structure . . . . . . . . . . . . . . . 60

3.6 Semantic specific fault detection wrapper structure . . . . . . . . . . . . . . 61

4.1 Visual comparison of power signals (grey) and correlation graphs (blue) for

measurement, transistor-level simulation, gate-level simulation, and RTL sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Predictive quality of power simulation for side-channel leakage detection. This

plot compares the leaky points of measurements and simulations at different

levels of abstraction (X) and as a function of AES clock cycle (Y). . . . . . . 79



5.1 (a) Traditional side-channel leakage assessment flow. (b) Proposed PACA

flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 PACA flow for Identifying Leaky Cell . . . . . . . . . . . . . . . . . . . . . . 89

5.3 (a) AES sbox setup with Register Stages. (b) AES sbox setup without Reg-

isters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Leakage peak for AES sbox with register stage setup. intermediate data =

key_reg ⊕ text_in_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Leakage Time Interval for the AES hardware engine. Leakage Model: HD(AES

state bit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 LIF Distribution for the AES hardware engine. Leakage Model: HD(AES

state bit); Logarithmic Y scale. . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Leakage Time Interval for the PRESENT hardware engine. Leakage Model:

HD(PRESENT state bit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 LIF distribution for the PRESENT Hardware Engine. Leakage Model: HD(PRESENT

state bit); Logarithmic Y scale. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 SoC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.10 Leakage Time Interval for the SoC bus transfer. Leakage Model: HW(transferred

bit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 LIF distribution for the SoC bus transfer. Leakage Model: HW(transferred

bit); Logarithmic Y scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.12 Selective-replacement WDDL (a) Original Circuit (b) Transformed Circuit

(c) Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



5.13 Impact on the Pearson Correlation Peak before and after replacing the two

top-LIF cells by WDDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.14 Schematic of the decoupling unit. . . . . . . . . . . . . . . . . . . . . . . . . 110

5.15 Block diagram showing the placement of the decoupling cell. . . . . . . . . 111

5.16 Simulation results of the decoupling cell. . . . . . . . . . . . . . . . . . . . 112

5.17 Impact on Pearson Correlation Peak before and after replacing only the Top-1

LIF cell by decoupling cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.18 Correlation results for the AES Coprocessor using HD(AES state bit) ob-

tained from (a) Simulated Traces, (b) ASIC Measurement Traces. . . . . . 117

5.19 Correlation results for the SoC Bus Transfer using HW(transferred bit) ob-

tained from (a) Simulated Traces, (b) ASIC Measurement Traces. . . . . . . 118

6.1 Bootstrap Leakage Detection Enhancement . . . . . . . . . . . . . . . . . . 128

6.2 The evolution of the p-value with increasing number of traces for TVLA (left)

and with bootstrapping (right) using simulated traces . . . . . . . . . . . . . 130

6.3 The sample distribution of the p-values taken from 5000 iterations of the

bootstrapping method applied to samples where a the null hypothesis is false

(left) and true (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 The evolution of the p-value with increasing number of traces for TVLA (left)

and with bootstrapping (right) applied to an implementation of AES in software132

6.5 The evolution of the p-value with increasing number of traces for TVLA (left)

and with bootstrapping (right) applied to an unpotected implementation of

AES on an FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



6.6 The evolution of the p-value with increasing number of traces for TVLA (left)

and with bootstrapping (right) . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 The negative log of p-value returned by the TVLA test for a fixed-versus-

random t-test with 50000 traces (top left), 1000 traces with 20 iterations of

the bootstrapping method (top right), 5000 traces with 5 iterations of the

bootstrapping method (bottom left) and 50000 traces with 5 iterations of the

bootstrapping method (bottom right) . . . . . . . . . . . . . . . . . . . . . . 135

7.1 PRO based on-chip Secure Network Hardware Extension . . . . . . . . . . . 141

7.2 Propagation delay of a ring oscillator. . . . . . . . . . . . . . . . . . . . . . . 148

7.3 PRO Design. D0 donates the delay cell type-0, D1 donates the delay cell

type-1, D2 donates the delay cell type-2. . . . . . . . . . . . . . . . . . . . . 152

7.4 Basic principles for PRO fault detection . . . . . . . . . . . . . . . . . . . . 153

7.5 Experimental Setup for Evaluating RO’s performance in side-channel leakage

hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.6 AES power traces when PRO is (a) Off; (b) On; . . . . . . . . . . . . . . . 156

7.7 Power Spectrum for power traces when (a) PRO off; (b) PRO on without

driving IO pin; (c) PRO with fixed oscillation frequency and driving IO pin;

(d) PRO with random oscillation frequency and driving IO pin; . . . . . . . 157

7.8 T-value Comparison when PRO is on/off . . . . . . . . . . . . . . . . . . . 158

7.9 Experimental Setup for PRO frequency changing as a function of external

power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.10 PRO’s oscillation frequency with Regard of External Power Supply Voltage . 162



7.11 The structure of the employed RO-based power wasters. . . . . . . . . . . . 163

7.12 Experimental Setup for PRO Power Sensing with Regard to On-die Local

Power Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.13 PRO Frequency with Regard of Local Power Supply . . . . . . . . . . . . . . 164

7.14 FPGA Floorplan for Evaluating PRO Performance with Regard of Sensor

Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.15 PRO’s average Frequency Drop Ratio for each row versus the spatial proximity

of the power wasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.16 Experimental Setup for PRO Power Fault Detection . . . . . . . . . . . . . . 168

7.17 FPGA floorplan for Evaluating PRO Performance in Power Fault Detection,

power wasters simulate local power fault happens at location-1. . . . . . . . 169

7.18 PRO average frequency drop ratio for each row when power fault happens at

location-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.19 Floorplan and corresponding PRO average frequency drop ratio for each row

when power fault happens at location-2. Black blocks donate PROs in the

floorplan, red blocks donate power wasters positions in the floorplan. . . . . 170

7.20 Floorplan and the corresponding PRO average frequency drop ratio for each

row when power fault happens at location-3. Black blocks denote PROs in

the floorplan, red blocks denote power wasters positions in the floorplan. . . 171

7.21 Experimental Setup for PRO EM Fault Detection . . . . . . . . . . . . . . 173

7.22 Influence on the Frequency Distribution, X-axis is probability and Y-axis is

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



7.23 Influence on the Frequency Distribution for PRO-32 . . . . . . . . . . . . . . 174



List of Tables

2.1 Real-world Pseudo Random Number Generation Functions . . . . . . . . . . 23

2.2 Number of Power Traces Needed to Retrieve Key . . . . . . . . . . . . . . . 32

2.3 Implementation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Number of Traces Needed to Retrieve Key Bytes . . . . . . . . . . . . . . . 39

2.5 Fault Injection Success Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Unlikely Value Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Fault Detection Wrapper Response Cases . . . . . . . . . . . . . . . . . . . . 66

3.3 Test Results for RNG( ) Function Call . . . . . . . . . . . . . . . . . . . . . 66

3.4 Test Results for memmove( ) Function Call . . . . . . . . . . . . . . . . . . 67

3.5 Overhead in Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Overhead in Cycle Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Estimated Overhead of Related Work . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Abstraction Levels for Side-channel Leakage Verification . . . . . . . . . . . 77

4.2 Simulation Performance in function of Abstraction Level . . . . . . . . . . . 81

5.1 Pearson Correlation Threshold Levels as a Function Confidence . . . . . . . 92

5.2 Example of Architecture Correlation . . . . . . . . . . . . . . . . . . . . . . 93

xxii



5.3 LIF Distribution Data for AES sbox with register stage setup . . . . . . . . 96

5.4 LIF Distribution Data for AES sbox without registers stage setup . . . . . . 97

5.5 LIF Distribution Data for the AES Hardware Engine using HD (AES state

bit) as the leakage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Runtime Evaluation for AES Hardware Engine (9,585 cells) . . . . . . . . . 98

5.7 LIF Distribution Data for the PRESENT Hardware Engine using HD (PRESENT

state bit) as the leakage model . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 Runtime Evaluation for PRESENT Hardware Engine (653 cells) . . . . . . . 101

5.9 LIF Distribution Data for the SoC Bus Transfer Leakage Model: HW(transferred

bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.10 Runtime Evaluation for SoC Bus Transfer (99,904 cells) . . . . . . . . . . . . 104

5.11 Impact on the Pearson Correlation Peak under various levels of replacement 108

5.12 Power Simulation Levels Trade-offs . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Configurations for PRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Chapter 1

Introduction

An Embedded system is a computer system that has specialized functionality. It works

either as an independent system or as a part of a large system. An embedded system in-

cludes a microprocessor or microcontroller, memory, and IO peripherals. The complexity of

an embedded system ranges from a single microcontroller such as a smart card to a very

large system that integrates multiple units, peripherals, and networks, such as hybrid cars.

Embedded systems are an indispensable part of our daily lives, they are present in every-

day things including but not limited to smart cards, smartphones, and automobiles which

help achieve a convenient and modern life. Within embedded systems, private information

is collected and stored, such as social security numbers, medical histories, addresses, and

financial information. This information is used for personal communication, for financial

transactions, to monitor patient health, to control home devices, etc and could be sabotaged

by the malicious adversaries. It is has been repeatedly observed in the real world that sig-

nificant cost will be paid if there exist insecurity in the embedded system and the security

aspect has become a big concern for the user of embedded devices. For example, researchers

have demonstrated that the transponder key of a car immobilizer can be recovered by a

profiled side channel attack [151]. It is critical to guarantee the security of the embedded

system.

There are several common security requirements to be considered when designing the em-

bedded system [88]:

1



Secure Communication: While transferring the sensitive information, protecting the se-

cret data from attack’s snoop (Data Confidentiality), ensuring the data cannot be changed

in transit by an adversary (Data Integrity), avoiding sensitive data from been sent/received

by an unauthorized user (User Authentication);

User Identification: The only authorized user can have access to the embedded system;

Secure Network Access: Verify the identity of the device before granting its access to a

network or a service.

Availability: Making sure the embedded system can perform expected functionality. Pre-

venting adversaries from performing attacks that will harm the embedded system’s perfor-

mance, quality of service, etc.

Secure Storage: Protecting the secure storage(including external/internal storage devices)

and content security of the sensitive data.

Tamper Resistance: Ensuring the system won’t be maliciously probed by the adversary.

Cryptography, as security primitive is proposed to achieve security within the embedded sys-

tem. It is a security mechanism which is based on mathematics and algorithms, among which

computational hardness assumptions are of particular importance. Computational hardness

assumes that adversaries only have limited computation resources and it is computationally

infeasible to break the cryptographic primitives even though it is theoretically possible [116].

Computational security is the core idea of modern cryptography. There exists certain mech-

anisms, such as one-time pad [13], which can achieve information-theoretical security, i.e.

the mechanism is still provably unbreakable even with unlimited computations resources.

However, those mechanisms are difficult to use in practice due to their vast overhead.

Even though Crypto-systems are designed with the objectives to protect secret data they

are still subject to attacks. Adversaries exploit the encryption/decryption procedure of cryp-



tosystem to learn the secret messages or secret keys. There are several attacks that retrieve

the secret information in the crypto-systems with varying level of effectiveness. A brute force

attack is an attack where the adversary exhaustively tries all possible secret key guesses and

monitors the output of the crypto-system to check if any key guess results in a correct out-

put. Brute-Force attack is not effective to modern crypto-systems mainly because of the

computational hardness of crypto-algorithms. Computational hardness is typically achieved

by increasing key length. For example, when an adversary is attacking an AES-128 cipher

with brute force, there are 2128 key guesses which is impossible for existing general purpose

computers to break AES-128 within a reasonable amount of time. Man-in-the-Middle (MIM)

attack is another attack, which targets public key cryptosystems [104]. In MIM attack, the

adversary inserts themselves into the communication channel by masquerading as a legiti-

mate entity. The original parties believe that they are exchanging keys with each other, but

instead, they end up exchanging keys with the adversary. Public-key crypto-systems like

RSA (Rivest–Shamir–Adleman) can be used for authentication of the communicating parties

before exchanging keys. There exists other traditional attacks such as replay attack, chosen

plaintext attack, birthday attack, etc. The modern cryptographic algorithms have been de-

veloped and improved to be mathematically strong and resistant against these traditional

attacks.

In recent years, implementation attacks, which target physical implementations of cryp-

tographic algorithms, are gaining more and more attention. Implementation attacks are

powerful since they can break a cryptographic algorithm even if it is computational secure.

In implementation attacks, the adversaries have physical access to the embedded device

which allows them to monitor or tamper with the activities of the embedded devices while

running cryptographic algorithms. Side-channel attacks is one major implementation attack.

It has become a serious threat to the security of embedded systems.



Figure 1.1: Basic Concept of Side-channel Analysis

1.1 Side-channel Analysis of Embedded Systems

In this section, we provide an introduction to the side-channel attack to the embedded sys-

tem. As aforementioned, the security of embedded system’s cryptographic operations is

based on computational hardness, i.e. cryptographic algorithms are designed to be compu-

tationally infeasible to be broken. Take the 128-bit AES algorithm as an example, if an

attacker wants to break the algorithm with brute-force, it means 2128 key possibilities need

to be verified. Even if the attacker can check 1 billion AES keys per second with extremely

powerful computing resources, almost 1013 years are needed to break the AES algorithm (i.e.

10,000 times longer than the age of the universe [9]). However, computational hardness is not

able to guarantee the security of the crypto-algorithms anymore when side-channel analysis

comes into scope. An attacker can break a crypto-algorithm much faster with side-channel

analysis. Instead of looking at the whole key length as search space, the side-channel anal-

ysis uses the divide-and-conquer strategy and reveals the secret information piece by piece

(byte-by-byte). Take 128-bit AES as an example. Side-channel analysis breaks one key byte



at a time and for each key byte, the search space is 28. Thus the search space for the whole

16 key bytes is 16×28 = 212. Compares to brute force, the computation complexity to break

the key drops dramatically.

Figure 1.1 shows the basic concept of side-channel analysis. When a crypto-algorithm is

running on the embedded systems, it takes in the plaintext (PT) as input, following the

crypto-algorithm, it encrypts the plaintext with the secret key (K) stored on-chip and outputs

the ciphertext (CT). As an attacker, the goal is to reveal the value of the secret key.

During the encryption/decryption operation, there exists certain intermediate value V whose

value depends on the one byte of the secret key K and the input plaintext PT and follows:

V = f(KByte, PT ) (1.1)

This intermediate value V is not directly observable by the attacker. However, the value of

V affects the external observable physical effects of the device. The physical effects typically

include power consumption, electromagnetic (EM) emission, acoustics, optical radiation,

timing, etc. These physical effects indicate the value of V and can be used by the attacker

to infer the secret information. In a typical side-channel analysis, the attack monitoring the

physical effect and taking the corresponding measurements (traces). By applying statistical

analysis to the measurements, an adversary can derive the secret variables.

There are different side-channel analysis techniques, including Differential Power Analysis

(DPA) [87], Correlation Power Analysis (CPA) [29], and Mutual Information Analysis (MIA)

[65].



Figure 1.2: Basic Setup of Side-channel Analysis

1.1.1 Example of Side-channel Analysis

In order to explain the side-channel analysis procedure better, we take the 128-bit AES as

an example and walk through the procedures of the Correlation Power Analysis (CPA).

Collecting Measurements

Figure 1.2 shows a common structure of side-channel analysis setup. The cryptographic

algorithm is executed on the processor of the embedded device and the key is stored in

the on-chip memory. The PC is used to communicate and control the target embedded

device, e.g. starting/ending of the cryptographic program, sending in plaintext, reading

out ciphertext, etc. There will be a probe to take the side-channel measurements of the

embedded device. The probe can be a current probe for measuring the power consumption

of the chip or an EM probe for measuring the EM radiation, etc. The embedded device also

provides the trigger signal for the oscilloscope to control the starting of the trace collection.

CPA requires a number of the measurements corresponding to different (random) plaintext



Figure 1.3: Basic Idea of CPA of attacking one key byte

inputs. Therefore, the PC needs to send the plaintext to the embedded device multiple

times. After the plaintext is received by the device, the AES engine will start encryption

and at the same time send the trigger signal to the oscilloscope to start the trace collection.

After the trace collection is done, the measurements will be sent back to the PC for further

analysis.

Analysis of Measurements

After obtaining all the measurements, the attacker can start analyzing the data and retrieve

the key from it. The analysis requires a Leakage Model. The Leakage Model is a function

computed over the secret intermediate value V (as defined in Equation 1.1). The objective of

side-channel analysis is to reveal the value of V through many measurements and correlating

those observations with L(V ). Popular choices for L(V ) are the Hamming Weight or the

Hamming Distance on V ; the Hamming Weight reflects value-based power leakage in CMOS,

while the Hamming Distance reflects distance-based power leakage in CMOS.



Figure 1.3 demonstrate the basic idea of CPA for attacking one key byte. For each key byte,

there will be 28 possibilities. The attacker first calculates a set of the intermediate value V(i,j)

for ith plaintext input and jth key guess. The V is calculated based on Equation 1.1. Note

that there are plenty of intermediate values that can be used by the attacker, for example,

the intermediate value at the output of the first round’s Subbyte operation is a popular

choice by attackers. Next, for each intermediate value V(i,j), the attacker will calculate its

corresponding leakage model value L(V(i,j)). Suppose there are n plaintext inputs, we denote

the Leakage Model value set for all the plaintext inputs with jth key guess as:

L(V(:,j)) = {L(V(0,j)) , L(V(1,j)) , L(V(2,j)) · · ·L(V(n,j))} (1.2)

Next, with the measurements and the leakage model, the attacker can use correlation analysis

to distinguish the correct key guess from 256 possibilities (k0 - k255). We denote measured

trace for ith plaintext input as Pi. The attacker first selects an attacking window cross all

the measurements where the leakage may happen. Suppose the attacking window includes

m sample points. At time point t on trace Pi, the corresponding measured value (sample

point) is presented as P(i,t). We denote the measurement value set at time point t for all the

plaintext input as:

P(:,t) = {P(0,t), P(1,t), P(2,t) · · ·P(n, t)} (1.3)

For key guess Kj and the time point t, we calculate the corresponding correlation coefficient

as follows:

cor(j,t) =
cov(L(V(:,j)), P(:,t))

σL(V(:,j))σP (:,t)

(1.4)

where:



cov = the covariance

σL(V(:,j)) = the standard deviation of L(V(:,j))

σP (:,t) = the standard deviation of P(:,t)

Iterating the same calculation through all the m sample points within the time window, a

correlation coefficient trace corresponds to the key guess Kj will be generated. Then we

grab the peak correlation coefficient corj value for the key guess kj as follows:

corj =Max(cor(j,t)) (1.5)

where:

Max = the maximum value

We calculate the peak correlation coefficient (cor0 - cor255) for all the key guesses (k0 - k255)

respectively. The maximum correlation coefficient value is supposed to point to the correct

key guess. Figure 1.4 shows an example of the correlation coefficient traces. The correlation

coefficient value of the correct key guess (highlighted in red) stands out from all the other

wrong key guesses (in grey). This indicates that the attack on this key byte is successful.

The attacker will repeat the same procedure for all the 16 key bytes to reveal the value of

the secret key.

1.1.2 Existing Side-channel Countermeasures

Countermeasures against side-channel attacks eliminate or reduce the dependencies between

the aforementioned physical effects and secret information. Masking and hiding are two pop-

ular techniques for side-channel countermeasures. In masking, each secret variable is split



Figure 1.4: CPA Results

into two or more shares which are concealed by random numbers [38]. The side-channel leak-

age of each individual share does not reveal the secret variable because of the randomization

introduced by random numbers. A random source which provides fresh random variables

is significantly important in masking implementations. Threshold implementations extend

the idea of masking while paying attention to glitches [114]. However, a generic architecture

transformation technique that is low-cost and that deals with non-linear circuit effects re-

mains elusive. Threshold implementation requires extra randomness which will cause other

issues regarding how much randomness is needed, how frequent the random number needs to

be refreshed, etc. Hiding countermeasures reduce the signal-to-noise ratio (SNR) for secret

data-dependent operations. Hiding can be achieved by several techniques, such as shuffling

which executes cryptography operations in random order [141], inserting random delays [36],

and running multiple tasks in parallel [139].

1.2 Secure Embedded System Design Challenges

Side-channel attacks pose a practical threat to the security of embedded devices. As demon-

strated previously, the embedded device’s cryptosystem can be easily broken without ad-



equate protection against side-channel analysis. However, providing comprehensive side-

channel protection to the embedded system is a very challenging task. An embedded system

contains a large number of components. A modern embedded system integrates a hardware

coprocessor to perform cryptographic operations, which is the primary source of side-channel

leakage. However, even if the coprocessor implementation is protected with countermea-

sures, in the embedded system, the coprocessor is integrated together with other elements

e.g. caches, memory hierarchy, interconnect infrastructure, and peripherals that participate

in the cryptographic operation and hence can also leak side-channel information.

Even though the designer can make sure each individual component within the embedded

system doesn’t have side-channel leakage, the integration of each security component will

possibly introduce new side-channel vulnerabilities. Therefore, it is essential to understand

the effects of the integration within the embedded systems and investigating related attack

models. However, this hasn’t been well analyzed in the literature yet.

On the other hand, current research work in this field usually follows the pattern that the

researchers first find vulnerabilities through investigating new attacks and then find corre-

sponding solutions to the vulnerabilities. However, there are lots of vulnerabilities in the

design known/unknown by the designers, how can we efficiently locate them and mitigate

them? It is critical for the researchers to develop a novel side-channel leakage assessment

mechanism to give designers metrics and guidance to address the root cause of the side-

channel vulnerabilities within the design.

Furthermore, the side-channel countermeasures will generally introduce a large overhead,

when it comes to a complex embedded system, it is almost infeasible to add countermeasure

to the whole system. Therefore, precisely locating the side-channel leakage source is very

important for the designers in order to fix the side-channel leakage. Additionally, locating

the root cost of side-channel leakage in the design is also crucial for the designer to applied

localized countermeasure with minimum overhead. However, this task is hard because of



the massive complexity of the embedded system. The task of examining the architectural

elements of the embedded system for sources of side-channel leakage is precluded by the im-

mense number of cells present in the embedded system. As the complexity and the number

of IP blocks in an embedded system increases, the precise identification of the side channel

leakage sources becomes arduous.

To make the challenge of building a secure embedded system even harder, in recent years, re-

searchers have also further demonstrated that the Power Distribution Network (PDN) where

the hardware design is located also brings in side-channel and fault attack vulnerabilities to

the system. It has been demonstrated that attackers can place malicious circuits on a shared

PDN with the victim chip. This enables the attacker to intrinsically inject malicious per-

turbations or monitoring changes of the victim circuit. Therefore, in order to guarantee the

security of the PDN, a monitoring sensor network on the Power Distribution Network (PDN)

should be built to detect such ongoing attacks. The monitoring network needs to fulfill the

requirements including large spatial coverage, i.e., covering the full PDN area, and large

temporal coverage, i.e., continuously monitoring the PDN [140].

1.3 Contributions of this Dissertation and Outline

In this dissertation, we demonstrate our contributions in addressing the challenges with

regard of the integration of the security components and side-channel leakage root cause

analysis in the procedure of embedded system design. Figure 1.5 shows the organization of

this dissertation and we summarize our major contribution as follows:



Figure 1.5: Organization of Dissertation

1. Investigating the effects of integration of security components and developing

corresponding countermeasures.

Masking is an important side-channel countermeasure technique that uses random masks to

split sensitive cryptography variables into multiple shares. In masked implementation, secret

value is concealed by random number to eliminate the dependency between the side-channel

leakage and sensitive variables. In order to guarantee the resistance of the masking scheme

against side-channel analysis, the direction of state-state-of-the-art research in embedded

system security is focused on building powerful random number generators or strong masked

ciphers. But it fails to notice that when integrating these secured components together, new

vulnerabilities are introduced. In this chapter, we point out that the random number trans-

fer procedure is an unprotected weak link which can be exploited by the attacker to easily

hack the system. In the actual implementation, the random number transfer procedure is

normally achieved by a function call. This link can be bypassed by a targeted glitch distur-

bance (fault injection). We demonstrate that integration of security components, which is

largely ignored, is challenging and illustrate that techniques to the state-of-the-art masking



implementations are deceptively strong. This work will be presented in the Chapter-2.

To solve this issue, we propose a light-weight protection scheme to protect function calls

from instruction skip fault attacks. Our proposed methodology is based on a basic feature

of ABI(Application Binary Interface) which defines the calling conventions for all functions.

ABI defines that a function’s caller and callee always agree on a specific memory location or

registers to which the return values are passed. We turn this specific location into a mon-

itor to detect whether a function call was skipped or not. We demonstrate this protection

scheme on a SPARC architecture and show that we can effectively protect function calls

with low overhead when compared to existing countermeasures. This work will be presented

in Chapter-3.

2. Pre-silicon side-channel leakage evaluation and root cause analysis

In current practice, the method to evaluate side-channel security vulnerabilities occurs after

the chip tape-out. The designer always measures the prototype of the chip. However, once

even a side-channel leakage is detected, it will be too late to fix the vulnerabilities. There-

fore, building up simulation-based side-channel leakages assessment is crucial for enabling

the designer to evaluate the side-channel vulnerability of the design at the pre-silicon stage.

In this chapter, we first looked into the different circuit effects which cause the power-based

side-channel leakage and we evaluate each simulation abstract level in terms of capturing

the side-channel leakage. We will demonstrate this contribution in Chapter-4.

After investigating the side-channel leakage detection with simulation at early design stage, it

is important to precisely locate the leakage source so that the designer can provide targeted

countermeasures. In this chapter, we developed a gate-level netlist analysis methodology

- Presilicon Architecture Correlation Analysis (PACA) that enables designers to precisely



identify the source of side-channel leakage in a design at the granularity of a single cell.

PACA operates on the pre-silicon design description. Using experimental results from a

practical SoC design and multiple case studies, we show that only a small number of cells

are significantly contributing to side-channel leakage.

Based on PACA, we further propose selective replacement as a low-cost side-channel

countermeasure. By protecting only the most leaky cells in a design, the overall side-channel

leakage can be significantly reduced, and at a very low cost. We demonstrate selective

replacement on an AES Sbox, where we replace the leaky cells identified by PACA with

side-channel protected cells. We investigated the effects of two cell-level countermeasures

including WDDL [143] and the countermeasures that use internal energy buffering [68]. This

contribution will be presented in Chapter-5.

Alongside the aforementioned contributions in pre-silicon side-channel leakage assessment,

we also investigate an improvement on existing side-channel leakage assessment- Text Vector

Leakage Assessment (TVLA). In this research, we propose an extension of the current TVLA

based on the bootstrap method which improves the efficiency of data usage, or looking at

it from a different angle, significantly decrease the number of measurements needed for de-

tecting the leakage. This Bootstrap work will be shown in Chapter-6

3. Developing on-chip side-channel and fault Monitoring Extension

In order to further guarantee the security of Power Distribution Network (PDN), we devel-

oped a multipurpose ring oscillator design - Programmable Ring Oscillator (PRO). As an

integrated primitive, PRO can provide on-chip side-channel resistance, power monitoring,

and fault detection capabilities to a secure design. We present a grid of PROs monitoring the

on-chip power network to detect anomalies. Such power anomalies may be caused by exter-



nal factors such as electromagnetic fault injection and power glitches, as well as by internal

factors such as hardware Trojans. By monitoring the frequency of the ring oscillators, we are

able to detect the on-chip power anomaly in time as well as in location. Moreover, we show

that the PROs can also inject a random noise pattern into a design’s power consumption.

By randomly switching the frequency of a ring oscillator, the resulting power-noise pattern

significantly reduces the power-based side-channel leakage of a cipher. We discuss the design

of PRO and present measurement results on a Xilinx Spartan-6 FPGA prototype, and we

show that side-channel and fault vulnerabilities can be addressed at a low cost by introduc-

ing PRO to the design. We conclude that PRO can serve as an application-independent,

multipurpose countermeasure. Result of this research will be covered in Chapter-7.



Chapter 2

Fault-assisted Side-channel Analysis

of Masked Implementations

In this chapter, we will present a novel side-channel attack model against the embedded

system based on the vulnerabilities caused by the integration of the security components.

This work has been published in 2018 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST) [153].

2.1 Introduction

Side-channel leakage is a known vulnerability of secure hardware and software implementa-

tions, caused by the physical effects of computing with secret variables. Modern implemen-

tations of cryptography need side-channel countermeasures to prevent an adversary from

analyzing that leakage and from uncovering the secret variables that caused it. Among the

proposed countermeasures, masking or randomization of side-channel leakage is a popular

technique as it offers a sound and implementation-independent basis of correctness [77]. In

a masking side-channel countermeasure, each secret variable is split into (at least) two ran-

domly chosen shares. The side-channel leakage of a separate share does not reveal the secret

variable, and in theory this guarantees that a correctly masked computation is secure against

side-channel analysis. However, masking is still vulnerable against attacks that measure and

17



combine the side-channel leakage from multiple shares. This has driven recent research into

high-order side-channel countermeasures, which increase the number of shares above the

number that can be measured by the adversary [34, 70].

A sensitive variable is split into k random shares using k−1 random numbers and a masking

method. In this chapter, we use the Boolean-masking method that uses exclusive-or to

combine the sensitive variable v with a random number r1, ..., rk−1 into k shares [v ⊕ r1 ⊕

...⊕ rk−1, r1, ..., rk−1].

The masking of an entire cryptographic algorithm requires a large amount of random num-

bers, which have to be generated locally and which have to be kept secret. These masks

have to be continuously refreshed, since mask reuse is a known vulnerability. Non-linear

operations (e.g. AND or modular multiplications) require additional mask signals or mask-

dependent precomputed lookup tables. Finally, the amount of random numbers increases

with the masking order. As a result, masked implementations need to use dedicated pseudo-

random number generation algorithms, such as stream ciphers and block ciphers, to create

a sufficient amount of randomness to mask the sensitive computations.

In this chapter, we demonstrate that the random-number-generation part is a weak link in

the protection of masked algorithms. Using a well-placed fault injection, we can disable the

masks from a masked algorithm. Once the mask is disabled, the masked algorithm becomes

susceptible to a first-order side-channel attack.

2.1 summarizes the proposed attack methodology. First, we measure a set of power-based

side-channel traces T from a masked algorithm. We analyze those traces to reveal the regions-

of-similarity (ROS), the parts of the trace that most likely belong to the same algorithmic

kernel. This helps to distinguish macro-level algorithm steps such as mask generation, key-

schedule generation and encryption. Next, we also find the regions-of-randomness (ROR),
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Figure 2.1: Fault-assisted SCA methodology of masked software implementations.

the parts of the trace that most likely correspond to mask generation. We use the ROS

and ROR to tune the proper fault injection parameters. The objective is to identify the

proper combination of fault intensity and fault injection time such that the mask is disabled,

while the masked algorithm still computes. We demonstrate an adaptive algorithm that can

test when the fault injection is successful, and we show that the estimation of ROR and

ROS greatly reduce the search space of the fault injection parameters. Finally, with the

proper fault injection parameters, the masked algorithm becomes vulnerable to first-order

side-channel analysis.

The proposed methodology is independent of the masked algorithm. We apply the attack on

two different masked AES implementations mapped on a RISC-V microprocessor. The first

implementation is a first-order byte-level masked AES design. The second implementation

is a first-order bit-sliced masked AES design. In each case, we demonstrate the methodology

and achieve a successful side-channel attack.



2.2 Background

In this section we give a brief background on the underlying concepts of the proposed attack.

2.2.1 Attacker Model

Masked
Encryption

Random Number 
Generator

masks

secret
key

plaintext

ciphertext

C Program

Side-channel
Leakage

Fault
Injection

clk

vdd Microprocessor

Figure 2.2: Attacker Model adopted in this chapter.

Figure 2.2 shows the attacker model. The target is a software masked algorithm, including

encryption and a pseudo-random number generator. The software executes on a microproces-

sor. The adversary is able to monitor power-based side-channel leakage of the microprocessor,

and the adversary can apply fault injection through clock glitching or power glitching. The

adversary can control the input to the target. The adversary has no access to the internals

of the microprocessor including its program-memory and its data-memory.

2.2.2 Signal Processing Tools

We use standard deviation and autocorrelation to post-process side-channel leakage. For

completeness we define each of these metrics.



Standard deviation

For a given set of K power traces, we define the standard deviation over each time point t

across the set of power traces.

s(t) =

√∑K
i=1 (p(i, t)− p̄(t))

2

K − 1

where p(i, t) is the sample value of trace i at time t and p̄(t) is the average trace value at time

t. The standard deviation is large when there is a large variation among the traces at time

t. The analysis of standard deviation will help us to identify the presence of randomization.

Autocorrelation

Autocorrelation is the correlation between a signal and a time-shifted value of itself. Corre-

lation peaks show up when there is a maximum overlap between the two signals. Therefore,

autocorrelation can be used to identify repetitive patterns in a signal.

A convenient method to present the results of autocorrelation is a two-dimensional plot. A

single power trace p(t) is partitioned into L smaller fragments of N
L

samples each. Each of

these fragments is then correlated with every other fragment, constructing the correlation

matrix M such that Mij contains the correlation between fragment i and fragment j. Fi-

nally, the matrix M is plotted as a gray-scale diagram, where a black pixel represents good

correlation and a white pixel represents bad correlation.

In cryptographic implementations, repetitive computations (and repetitive side-channel leak-

age) are very common. For example, AES has ten encryption rounds and in each round, ex-

cept for the last, the same sequence of SubBytes, ShiftRows, MixColumn, and AddRoundKey

are executed. Each of these operations has internal repetition as well, and repeats a similar



operation for each byte of the state. The autocorrelation graph of AES can reveal these

structures. Figure 2.3a presents the power trace of 128-bit AES encryption and its auto-

correlation plot is shown in Figure 2.3b. We can recognize the key expansion, followed by

9 regular rounds and a final round with missing MixColumn. The autocorrelation matrix

reveals repetitive patterns as correlation peaks away from the main diagonal. For example,

each of the 9 regular rounds is similar, and the autocorrelation plot reveals this as a 9-by-9

block structure. It is clear that, even without insight into the details of the signal structure,

autocorrelation is a powerful tool to reveal the macro-level structure of an algorithm.
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Figure 2.3: (a) AES power trace and (b) its autocorrelation plot.



Table 2.1: Real-world Pseudo Random Number Generation Functions

Library Random Number Generation API Output Transfer
OpenSSL [6] RAND_bytes(outBuf, nBytes) memcpy(outBuf, intBuf, nBytes)
mbedTLS [5] mbedtls_ctr_drbg_random(outBuf, nBytes) memcpy(outBuf, intBuf, nBytes)
Botan [3] randomize(outBuf, nBytes) copy_mem(outBuf, intBuf, nBytes)
Libgcrypt [4] gcry_randomize (outBuf, nBytes) for (i=0; i<nBytes; i++) outBuf[i] = intBuf[i]

2.3 Implementation of Masking Countermeasure

We now turn our attention to the practical implementation of a masking scheme. We first

explain random number generation and a byte-level masked AES implementation. Next, we

clarify the principal steps of the proposed attack.

The security of the masking countermeasure relies on frequently refreshed masks. As em-

bedded systems do not have a reliable source of true random bits, the common practice is

to employ Pseudo Random Number Generators (PRNGs) to generate masks.

A PRNG uses a deterministic algorithm to generate a random number stream from a seed

of true entropy [81]. The PRNG output is unpredictable as long as the internal state of the

algorithm is kept secret. For every invocation, the PRNG generates the requested amount

of random numbers based on its internal state, and transfers the generated random numbers

to an output buffer [41]. The PRNG also updates its internal state. PRNGs use encryption

algorithms and hash functions in a repetitive fashion, and a PRNG’s execution can hence

be distinguished using autocorrelation of a power trace.

2.3.1 Pseudo Random Number Generation

Table 2.1 lists a set of example pseudo random number generators from several open-source

cryptographic libraries. The first column of the table shows the application programming

interface (API). Each PRNG in Table 2.1 takes the address (outBuf) and size (nBytes)



of an output buffer from the consuming application, generates the random numbers into

an internal buffer intBuf, and finally, transfers the values kept in intBuf to outBuf by

executing the transfer block. The intBuf isolates the internal state of the PRNG from

the PRNG user, and prevents consuming applications from directly accessing the internal

state of the PRNG. The second column of Table 2.1 shows how the PRNG transfers random

numbers from the internal buffer to the output buffer.

In this chapter, we use a T-box implementation of AES-128 in counter mode to generate

random numbers like the implementations in Table 2.1. The PRNG secret seed is the initial

counter value, and the PRNG output is the ciphertext. The transfer operation is the function

memmove().

prng(outBuf, nBytes)

{

  generate(intBuf,nBytes);

  memmove(outBuf,intBuf,nBytes)

}

byteLevelMaskedAES(PT,K)

{

  prng(outBuf,nBytes);

  keyExpansion(); 

  CT = 

maskedAES128(PT,K,outBuf);

  return CT;

}

li    a0,6       // nBytes=6

jal ra,79c     <generate>

mv a1,a0

li a2,6

addi a0,sp,16

jal ra,704     <memmove>

(a) (b)

Figure 2.4: Byte-level Masked AES Implementation: (a) Pseudocode (b) Assembly code in
RISC-V ISA. The red rectangles mark the fault injection targets.

2.3.2 Byte-level Masked AES Implementation

Figure 2.4a shows the pseudocode of our byte-level masked AES implementation. The

byteLevelMaskedAES() function takes a 128-bit plaintext PT and key K as input. Then

it produces the masks and round keys for the AES by calling prng() and keyExpansion()



functions, respectively. Our PRNG (prng()) first generates the required amount (nBytes)

of random numbers in an internal buffer intBuf, and then transfers them to an output buffer

outBuf. Finally, byteLevelMaskedAES() calls the masked AES function maskedAES128()

to compute a 128-bit ciphertext CT. The maskedAES128() function applies 10 rounds of AES

on the inputs PT, K, and masks stored in outBuf. We use a maskedAES128() based on the

work of Mangard et al. [98].

2.3.3 Disabling the Mask

The proposed attack aims at disabling the transfer operation of fresh random masks from the

PRNG to the consuming function. In software, this transfer is realized by means of a memory-

move operation between two buffers (Table 2.1). The transfer operation is characterized by

the amount of bytes nBytes being copied, the starting time S of the copy operation, and the

time period P it takes to complete that operation. Hence, we define the transfer operation

as F(nBytes,S,P). The objective of the attack is to disable the successful completion of F

by injection faults into the processor over a period [S, S+P]. While S and P are not known

to the attacker, they can be estimated through the proposed attack method.

The red marking in Figure 2.4a symbolizes a fault attack on the transfer operation. A fault

injection can cause an instruction of a microprocessor to be skipped, or to be ineffective.

Figure 2.4b is a partial assembly listing of byteLevelMasked. A fault injected during the

jump-and-link (jal) instruction skips the memmove, and disables the transfer operation. In

this chapter, we use this fault model.



Algorithm 1: Find region of similarity (ROS)
Input : Autocorrelation matrix M(1..n, 1..n)
Output: Regions of similarity ROS

1 for i = 1 to n do
2 DiagSum(i) =

∑j=i
j=1 M(j, i− j + 1)

3 end
4 Pks = Arg(LocalMax(DiagSum))
5 LeftEdge = 0
6 for j = 1 to Pks.length do
7 Width = 2 · (Pksj − LeftEdge)
8 ROSj .left = LeftEdge
9 ROSj .right = ROSj .left+Width

10 ROSj .height = DiagSum(Pks(j))
11 LeftEdge = ROSj .right

12 end

2.4 Methodology

This section explains the proposed methodology to attack masked algorithms. We illustrate

the attack on a byte-level masked AES implementation.

2.4.1 Analyze Mask Generation

The first step is to locate the random-number transfer operation. Starting from a set of

power traces, we identify portions of a power trace that are highly likely to correspond to

random-number transfer. This is done through a two-step process. First, we partition the

power trace into Regions of Similarity, which are portions that are highly likely to belong

to the same algorithmic kernel. Next, we mark some Regions of Similarity as Regions of

Randomness. These are the portions of the power trace that show a high variation from

trace to trace, even when the algorithm input is kept constant.
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Figure 2.5: Region of similarity: (a) Autocorrelation matrix of byte-level masked AES (b)
Computed Region of Similarity (ROS).

Identifying the Regions of Similarity (ROS)

The purpose of this step is to reveal the overall structure of the masked algorithm, making

use of the property that cryptographic algorithms use repetitive computations.

The Regions of Similarity (ROS) can be found from a single power trace, or from the average

of multiple noisy traces, by computing and analyzing the autocorrelation matrix. Figure 2.5a

shows the autocorrelation matrix of a byte-level masked AES algorithm. We can visually

recognize distinct portions A through G in the plot. For automatic analysis of autocorrelation



matrix, we can use Algorithm 1 which produces the plot shown in Figure 2.5b. This algorithm

first computes DiagSum(i), the sum of the elements on the anti-diagonal of a submatrix

M(i, i). DiagSum(i) reaches a maximum when the antidiagonal cuts through the center of a

region of similarity in M . Therefore, a local peak detector on DiagSum gives us the locations

of the center of each region of similarity ROSj. By growing each ROSj symmetrically around

the center, we find the ROS curve shown in Figure 2.5b. The height of each ROSj is the

local peak value of DiagSum.

Identifying the Regions of Randomness (ROR)

The second step is to identify which Region of Similarity is responsible for random number

generation. To do this, we measure a set of power traces under constant input, such as

under constant plain-text. Next, we compute the standard deviation over the resulting set

of curves. Portions of the curve with a high standard deviation indicate random number

generation activity, or masked computations that use internally generated random numbers.

Figure 2.6a shows the standard deviation trace σ1(t) for 500 power traces under fixed plain-

text. We have marked A through G on the curve, and note that some portions have a high

standard deviation while others have not. Algorithm 2 can then be used to mark what por-

tions of the standard deviation should be considered random activity. We use the empirical

rule that any standard deviation value that falls outside of two times the expected deviation

(over the deviation) should be considered random. This leads to Figure 2.6b.

Candidates for Mask Transfer Operation

The combination of ROS and ROR leads to the set of candidate regions for random number

generation. We mark regions A, D and F. Among those, we can discount F because the

internal symmetry of F in the autocorrelation matrix indicates it is likely to be 10 rounds



Algorithm 2: Find region of randomness (ROR)
Input : Standard deviation vector σ(t)
Output: Regions of randomness ROR

1 σ̂ = standard_deviation(σ(t))
2 µ̂ = average(σ(t))
3 for i ∈ {1, ..., σ.length} do
4 if σ(i) > µ̂+ 2 · σ̂ then
5 ROR(i) = 1 ▷ mark as random
6 end
7 end
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Figure 2.6: Region of randomness: (a) Standard deviation for byte-level masked AES power
traces with fixed plaintexts and (b) derived region of randomness.

of AES. Thus, the only two remaining candidates would be A and D. The fault injection

attack to disable the mask would aim at the transfer operation, which is located at the end

of region A or D. Hence, through preprocessing and analysis, we can reduce the number of

fault injection candidate locations enormously.



Algorithm 3: Tuning Glitch Position and Glitch Cycles
Input : Clock glitch parameter sets GW , GP and GC
Output: Successful clock glitch parameters gw, gp, gc

1 gw = GWfs ▷ fs: fault sensitivity
2 forall GPi in GP and GCj in GC do
3 Tfault−injection = ∅ ▷ power trace set
4 for k = 1 to N do
5 Perform fault injection at GPi with GCj and gw
6 Collect the corresponding power trace t
7 if correct ciphertext then
8 Add power trace t to Tfault−injection

9 end
10 end
11 σ2(t) = standard_deviation(Tfault−injection)
12 Φ =

∑
i

(σ1(i)− σ2(i))

13 if Φ > Φmax then
14 Φmax = Φ, gp = GPi, gc = GCj

15 end
16 end

2.4.2 Tuning Fault Injection Parameters

The next step is to fine-tune the fault injection parameters to the precise settings that will

eliminate the transfer operation of the random number generator. For the clock-glitch fault

injection method introduced earlier, the fault injection parameters include the glitch position

(GP), the glitch width (GW) and the number of glitch cycles (GC).

Initially the glitch width (GW) is adjusted to the fault sensitivity of the target system [93].

This is the lowest fault intensity needed for the system to be affected by fault injection. The

glitch width can be set by repeatedly running a test algorithm (such as sum of numbers)

while slowly decreasing the glitch width until we notice the program computes a faulty result.

We then need to find the other fault injection parameters GP and GC. We use side-channel

leakage measurement, and the computation of standard deviation over the side-channel

traces, to evaluate the success of the fault injection campaign. A successful fault injec-



tion would dramatically reduce the standard deviation without affecting the ciphertext. As

demonstrated in Algorithm 3, faults are injected over the potential positions of random

number transfer in the masked algorithm. Hence, we use the final portion of region A and D

as fault target regions. We repeat each fault injection multiple (N) times for the same fault

injection parameters, to obtain a set of fault power traces, for which the standard deviation

σ2 can be computed. Eventually, Algorithm 3 will select the fault injection parameters that

cause the biggest reduction in standard deviation. 2.7 shows the dramatic standard deviation

reduction after successful fault injection.
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Figure 2.7: Standard deviation σ2(t) after successful fault injection.

2.4.3 Fault Injection and Differential Power Analysis

Using the fault injection parameters, fault injection is applied to skip mask transfer operation,

thus disabling the mask. The power traces measured after fault injection can now by subject

to first-order differential power analysis (DPA). In our experiment, we attack the Sbox output

with a Hamming weight leakage model. Figure 2.2 shows that all key bytes are found from

less than 300 traces.



Table 2.2: Number of Power Traces Needed to Retrieve Key

Number of key bytes retrieved Number of traces
4 50

8 80

12 130

16 300
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2.5 Experimental Setup

The experimental setup in fig:setup shows a control PC, a glitch controller, an oscilloscope

and a RISC-V processor. Masked AES software runs on the 32-bit RISC-V processor [8],

configured in a Spartan-6 FPGA on a SAKURA-G board. The oscilloscope collects the power

traces of RISC-V processor during AES execution. The Riscure VC Glitcher [7] performs

fault injection through clock gliches. The control PC drives the overall configuration and



handles the post-processing of the collected power traces.

Figure 2.9 shows the effect of a glitch on the clock signal. A clock glitch temporarily shortens

the clock period from Tclk to GW, thereby causing a setup time violation. We control the

clock glitch injection with three parameters: the glitch position (GP), the glitch width

(GW) and the number of glitches (GC). Our setup uses a minimum glitch width of 4 ns and

a minimum step size of 2 ns.

2.6 Case Study

In the following case study we apply our methodology to attack a bit-sliced masked algorithm.

2.6.1 Bit-Sliced AES Implementation

Bit-sliced software design is a programming technique that treats an n-bit processor as n

single-bit processor slices. The origins of bit-sliced software design are in high-throughput

implementations of cryptographic algorithms [22, 79]. To develop a bit-sliced version of a

cipher, a cipher is first expanded into sequence of single-bit operations. By expressing this

sequence of bit-operations using bit-wise instructions, an n-bit processor will then execute

n instances of the bit-sliced cipher in parallel. The bit-sliced algorithm thus operates on

n blocks of data in parallel, and each block is processed bit by bit. Per-block input data

is converted into bit-sliced format using a transpose operation. For example, a bit-sliced

version of AES on a 32-bit processor will first transpose 32 input blocks of 128 bits each

into 128 words, compute the AES bit-sliced algorithm, and finally inverse-transpose the 128

output words back into 32 output blocks.



2.6.2 Bit-Sliced masked AES Implementation

We developed a bit-sliced masked AES, which allocates the shares of a masked bit in slices

within the same processor word. Thus, a 32-bit processor word contains 16 first-order masked

slice pairs. Figure 2.10 shows how this masking is integrated as part of the transpose op-

eration: 16 blocks of AES are converted into 128 words with masked bit-sliced data. As a

countermeasure, this representation has the advantage that it prevents side-channel leakage

from individual secret shares.

The masked version of the bit-sliced algorithm is developed as follows. First, observe that

we only need to convert bitwise operations because it is a bit-sliced algorithm. For linear

operations (such as xor, not and mov), the masked bit-sliced operations are identical to

the unmasked bit-sliced operations. The non-linear AND operation is implemented using the

secure-AND design of Ishai et al. [77]. Algorithm 4 demonstrates a secure-AND computed

with bit-sliced masked data P and Q, and a fresh random mask R. The operations ⊙ and

⊕ represent bitwise-and and bit-wise-xor respectively. The operation rot() is a slice-rotation

operator that swaps the even bits and the odd bits of a processor word. This is achieved

using an expression such as ((v<<1) & 0xAAAAAAAA) | ((v>>1) & 0x55555555).

Algorithm 4: Order-1 masked bit-sliced AND
Require: P = [p1, p0], Q = [q1, q0], R = [r, r]
Ensure: Y = sand(P,Q)

1: N1 ← P ⊙Q
2: N2 ← rot(Q)
3: N3 ← P ⊙N2

4: N4 ← R⊕N1

5: Y ← N4 ⊕N3

6: return Y

Table 2.3 compares the bit-sliced masked AES design with the byte-level masked AES design.

The bit-sliced implementation consumes higher amounts of randomness because each bit
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Table 2.3: Implementation Parameters
Masked AES Byte-level Bit-sliced Unit
Randomness 6 1, 024 bytes
Program cycle count 86, 080 7.328× 106 cycles
Program size 12, 172 15, 968 bytes

of an AES block is masked with a separate random bit, and because the S-box step is

implemented using logic expressions rather than using memory lookup tables. We found

that open-source reference implementations of masked algorithms are not easy to find. To

make our experiments verifiable, we have released the source code of our designs online 1.

2.6.3 Steps of methodology

Next, we explain how the methodology is used to attack bit- sliced masked AES.

1https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation.



Analyze Mask Generation

First, we collect 500 power traces with fixed plaintext. Then we apply autocorrelation

and standard deviation to locate the random number generation and transfer operation.

Following the methodology, we obtain the autocorrelation matrix shown in Figure 2.11a.

The ROS is found using Algorithm 1. The annotated result of Figure 2.11b identifies regions

A through F. We then compute sample-wise standard deviation on the collected traces

(Figure 2.12a). Using Algorithm 2, the resulting ROR is shown in Figure 2.12b. Finally,

by checking the intersection of ROS and ROR, the region that is related to random number

generation is narrowed down to A, C, D, E, F. However, region B has 10 repetitive patterns

in the autocorrelation matrix. Region E is highly likely to be 10 rounds of AES. Also, since

random numbers are generated before AES operation, we eliminated the region F. Therefore,

the remaining candidates for random number generation are regions A, C, and D.

Tuning Fault Injection Parameters

In this step, we apply Algorithm 3 in regions A, C and D to tune the clock glitch parameters

to skip the transfer operation without affecting the AES functionality. We successfully skip

the transfer operation when we use the glitch width of 4 ns, glitch position of 570, 600th

cycle, and a single glitch cycle. This the glitch position is located near the end of region

A. Figure 2.13 shows the dramatic standard deviation drop in the first two rounds of AES

after fault injection. The standard deviation in region A is still high since it corresponds to

random number generation.
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Fault Injection and Differential Power Analysis

With the derived clock glitch parameters, clock glitches will be inserted to perform instruc-

tion skip on transfer operation. We collect power traces with random plaintext while clock

glitch is inserted to the execution of masked implementation. Then, first-order DPA is used

to attack the masked bit-sliced AES. We attack the Sbox output using the single-bit leakage

model. The secret key can be retrieved byte by byte.
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Figure 2.12: (a) Standard deviation for bit-sliced masked AES power traces with fixed
plaintext (b) Derived regions of randomness.
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Figure 2.13: Standard deviation for bit-sliced masked AES power traces with fixed plaintext
(a) before and (b) after disabling mask.

2.6.4 Results

We demonstrated our method on a bit-sliced AES implementation, which runs 16 instances of

AES in parallel. We analyzed the efficiency of our DPA attack on three input configurations



Figure 2.14: Welch’s t-test for 16_same, 8_same and 4_same.

of the bit-sliced AES, where 16, 8 and 4 plaintexts are kept the same while the rest of

plaintexts are random. We name them as 16_same, 8_same and 4_same, respectively.

Table 2.4 lists the number of traces needed to retrieve different number of correct key bytes.

As it is seen, the number of required traces increases as the number of random bit-slices

increases. The reason behind this behavior is that more random bit-slices lead to more

algorithmic noise. In addition, we provide Welch’s t-test results for the three configurations

of the bit-sliced AES in Figure2.14. The figure shows the maximum absolute T-statistic

values calculated over 1000 power traces. Similar to the results in Table 2.4, 16_same has

the highest leakage (i.e, the highest T-statistic value) due to lowest algorithmic noise. In

addition, all T-statistic values shown in Figure 2.14 are larger than 4.5. This shows that all

configurations leaks data through power side-channel.

Table 2.4: Number of Traces Needed to Retrieve Key Bytes

Number of
key bytes retrieved

Number of traces
16_same 8_same 4_same

4 50 400 700
8 50 600 1100
12 100 900 1800
16 230 1800 4300



Table 2.5: Fault Injection Success Rate

Masked AES Number of Trials Best Fault Injection
Success Rate

Byte-level Masked AES 6 100%
Bit-sliced Masked AES 5 100%

2.7 Discussion

In this section, we elaborate on fault injection success rate, related work and possible coun-

termeasures against this attack.

2.7.1 Fault Injection Success Rate

Table 2.5 shows the number of fault injection trials and the best fault injection success rate

obtained. We achieve 100% fault injection success rate. When countermeasures such as clock

jittering would be present, the success rate may be lower. However, Algorithm 3 can filter

the power traces for a successful fault injection and a correct ciphertext output.

2.7.2 Related Work

Masked implementations are a popular countermeasure for hardware and software imple-

mentations alike. A significant effort has been devoted to the development of higher-order

masking techniques, which use multiple secret shares for each sensitive variable [77]. These

techniques require a significant amount of randomness. The best schemes for masked hard-

ware implementations with d shares (i.e. order-d implementations) use d(d + 1)/2 random

bits per data bit [70]. The best software implementations require (d+ 1) random bits [130].

In addition, random masks have to be refreshed regularly, and non-linear operations (such



as AND) require extra masks [144]. However, none of these research efforts considers the

risks introduced by requiring fresh random numbers for every iteration of a cryptographic

algorithm. We observe that higher-order countermeasures require a larger amount of ran-

domness, but otherwise they are vulnerable to our attack for the same reason as first-order

countermeasures.

Over the past decade, the interaction of fault analysis and side-channel analysis has been

investigated by multiple authors. It is known that a masking side-channel countermeasure is

not resistant against fault analysis [11, 26]. When fault injection is used to introduce a known

value (stuck-at fault), the effect of randomization can be disabled within the cryptographic

algorithm. The same fault attack principle was also demonstrated on algorithms with built-

in fault countermeasures and side-channel countermeasures [131]. All of this work, however,

builds algorithm-specific attacks. For (differential) fault attacks, this requires insight into the

fault propagation within the algorithm; for attacks on countermeasures, this requires insight

into the internal design of the countermeasure. In this chapter, we perform a macro-level

analysis of masking, and we point out the risks of generating and provisioning of random

numbers to masked algorithms.

2.7.3 Possible countermeasures

In the proposed attack, the fault injection targets the data transfer operation between the

PRNG and masked AES. The PRNG and AES themselves work correctly even if fault in-

jection is successful. Therefore, strengthening PRNG and AES with redundancy-based fault

tolerance [19, 117, 132], detection [19], and infection [117] techniques does not mitigate the

attack.

To protect the data transfer operation, a software designer can replace each instruction of



this part with a sequence of instructions such that the code works correctly even if a single

instruction is skipped [111]. Similarly, a designer can employ dedicated counters to keep track

of the control flow of the data transfer part [92]. However, these software countermeasures

bring significant performance overhead and they are not efficient against adaptive adversaries

and microarchitecture-aware fault attacks [44].

2.8 Conclusion

In this Chapter, we propose a novel methodology to attack the masking countermeasure.

The proposed methodology combines fault injection and first-order side channel analysis. In

a masking implementation, the transfer of random masks from the PRNG to the masked ci-

pher is an Achilles heel. Our methodology bypass the transfer operation with fault injection

to make the masked cipher vulnerable to first-order side-channel analysis. We experimentally

demonstrated the methodology on two masked AES implementations. Our work concludes

that a secure random number transfer mechanism is required for secure masking implemen-

tations.



Chapter 3

A Low-cost Function Call Protection

Mechanism Against Instruction Skip

Fault Attacks

In the previous chapter, we demonstrate that function call is a weak link in the masking

countermeasure; it can be easily bypassed by fault attack and remove the randomness intro-

duced by the random number generator. In this chapter, we present a lightweight solution

to protect function calls from instruction skip fault attacks. This work has been published in

Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security (ASHES)

[152]

3.1 Introduction

Fault Injection attack was introduced in 1997 when Boneh et al. [25] first implemented a fault

attack on a cryptographic microcontroller with a public-key cryptosystem. In a fault attack,

the attacker injects well-targeted faults into the execution of the program and analyzes the

response of the program to fault injection. After the attack and subsequent analysis, the

adversary can retrieve the secret data processed by the electronic devices.
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In a fault attack, the characteristic of a fault injected is defined by the fault model. In

this chapter, we consider the instruction skip fault model [112] and propose a light-weight

countermeasure scheme that can protect function calls against instruction skips. Instruction

skip is a fault model where the adversary skips the execution of one or more software instruc-

tions running on embedded processors. Some cases when these instructions are replaced by

other instructions which have the same effect as a nop instruction are also considered as a

generalized versions of instruction skip fault [113].

Fault attacks based on instruction skip are simple but powerful.The adversary can utilize

instruction skip to bypass security checks, change the control flow of the program or skip the

security sensitive instructions in crypto-algorithms to retrieve the secret data. In an attack

on RSA [83], the error-checking routine was skipped to break the fault countermeasures for

RSA with Chinese Remainder Theorem (CRT). In a similar fault attack, Schmidt et al. [133]

implemented an instruction skip attack on the square and multiply operation in RSA. They

retrieve the RSA key by analyzing the faulty output from skipping the square operation. In

the attack presented by Breier et al. [27], instruction skip is induced by laser injection on

an 8-bit Atmel ATmega328P micro-controller to skip the xor instruction of the last round

of AES, which is the Addroundkey operation. The last-round key is successfully retrieved

by xoring the faulty ciphertext output with the correct ciphertext output. In a recent fault

attack, Timmers et al. implement an instruction skip attack for privilege-escalation in the

Linux OS [142].

3.1.1 Motivation

Function calls including system calls are particularly important for the integration of security

components in a crypto-system. However, function calls are vulnerable to instruction skip



fault attacks. In the recent attack presented by Yao et al. [153], masking countermeasure

is broken by injecting a well-targeted fault to skip the random number transfer function

call, memmove(), at the end of random number generation. The paper points out that in

the implementations of random number generators in open-source cryptographic libraries,

random numbers are first generated and stored in an internal buffer and transferred to an

external buffer that can be directly accessed by the user through system function calls like

memmove() and memcpy(). In their attack, the mask is disabled by skipping the memmove()

function call.

Moreover, other cipher implementations in crypto-libraries also contain sensitive functions

calls which if skipped will destroy the security of the whole cipher-system. For example, in

the AES-CBC mode implementation of OpenSSL, memcpy() function is called to update the

vector for next block to current block’s ciphertext output. The adversary can inject a fault

and skip the memcpy() function call to avoid updating the vector for each block. When the

initial vector remains constant in AES-CBC mode, the block cipher will not be able to hide

the data pattern adequately, similar to AES-ECB mode, because of the lack of data diffusion.

Thus, a single instruction skip compromises the confidentiality of AES-CBC mode.

Function calls are important but weak links in the integration of security components to a

cryptosystem. A function call is vulnerable to instruction skips even if the function body

is already protected against fault injection. Previous work fails to address the vulnerability

and develop corresponding countermeasures. Especially, among all those functions, there

are functions the body of which cannot be modified, such as system calls. In this chapter,

we specifically focus on function call protection.

In this chapter, we propose a software countermeasure to protect function calls against

instruction skip faults. We chose software countermeasures because they are more flexible,

portable to other architectures and do not require hardware modifications. Moreover, our



countermeasure is generic to all the function calls with return values. The countermeasure

does not require the modification of the function body. Therefore, our countermeasure is able

to protect system calls as well. We are not aware of other work that proposes countermeasures

to specifically secure function calls against instruction skip fault attack.

There exists some related work on instruction skip countermeasures. Hagai Bar-el et al.

[18] proposed repeating of the algorithm in the source code level, Alessandro Barenghi et

al. [20] developed selective assembly level instruction duplication and triplication protec-

tion scheme specifically for AES. Nicolas Moro et al. [113] proposed similar assembly level

instruction duplication which can be applied to a larger scale of instructions but requires

several transformations ahead of time. However, those countermeasures introduce signifi-

cant overhead in terms of code size and execution time, and they are specific to an algorithm

or an architecture. They require source code modifications on the function body. These

disadvantages limit their scope of protection. Also, duplication of secure sensitive code will

increase side-channel leakage[35].

3.1.2 Contributions

To address these concerns, we propose a light-weight protection scheme to protect function

calls against instruction skip faults. We summarize our contribution as follows:

• We propose a light-weight software-only function call instruction skip countermeasure.

This countermeasure relies on function output arguments. Defined by the ABI, a

function’s caller and callee always agree on a specific memory location or registers

to which the return values are passed. We utilize this location information to develop

instruction skip fault detection mechanism without making any changes to the function

body.



• Our methodology is independent of the architecture, operating system, and program-

ming language. Our countermeasure can be applied to any function calls with return

values.

• We demonstrate the feasibility of our countermeasure and simulate the instruction skip

fault on a SPARC architecture.

• To the best of our knowledge, we are the first to propose an instruction skip counter-

measure to specifically protect function calls.

The remainder of the chapter is organized as follows. In the next section, we discuss the nec-

essary background for the proposed countermeasure. Section 3 provides a brief overview of

our countermeasure followed by a detailed description of our methodology. Section 4 intro-

duces our fault simulation experimental setup and experimental results. Section 5 elaborates

on discussions regarding our countermeasure and potential future work. We then conclude

the chapter.

3.2 Background

3.2.1 Fault detection principles

In this section, we introduce the fault detection techniques used in fault countermeasures.

Fault detection techniques are generally classified in two categories: timing redundancy and

information redundancy based fault detection techniques.

The idea of timing redundancy based fault detection is straightforward. It executes the same

program block twice and checks the consistency of the results from the two computations. For



example, in countermeasure proposed by Karri et al. [78], first, the input data is encrypted

followed by decryption. Then, the decrypted output is compared with the original input

data to detect faults. In Maistri et al.’s paper[97], the same data is encrypted twice in

one function block and the result is then compared to detect anomalies. However, such

timing redundancy based protection schemes either double the hardware area or double the

execution time. Also, the fault may not be detected if both computations are affected by the

fault. Several advanced variations of timing-redundancy based fault detection techniques

have been proposed. For example, invariance in cryptographic algorithm was used to cause

an imbalance in the two redundant computations[71]. Even though faults can influence

both of the computations at the same time, the results will still not match. However, this

protection scheme is algorithm specific, it is not generic to all the other functions.

In the information redundancy based fault detection, additional parity bit or variables are

used to keep track of the execution status. In the paper presented by Lalande et al.[92],

nested counters are used in every function or code block at the source code level. In their

approach, the counter was incremented after each C statement and then compared with the

expected value before the next statement is executed. These counters ensure the control

flow integrity by detecting instruction skips. However, this approach is based on insertion of

additional instructions before and after each original instruction inside the target function

or code block; it requires modification of the target function and introduces a large overhead

to fully protect all the sensitive functions in a program.

In our fault detection mechanism, we are not using redundancy to detect faults. Instead, we

directly implement fault sensing.



3.2.2 Application Binary Interfaces

Application binary interface (ABI) is a hardware dependent contract between low-level bi-

nary code and the processor hardware. The ABI defines the calling conventions for functions,

which are methods for passing function arguments and retrieving return values.

Defined by the ABI, a function’s caller and callee always agree on a specific memory location

or registers to which the return values are passed. We utilize this location information to

develop an instruction skip fault detection mechanism without making any changes to the

internal function.

We enumerate several architecture’s calling conventions for processing the return values:

1) RISC-V [147] : In the RISC-V calling convention, the integer registers a0 and a1,

and floating-point registers fa0 and fa1 are used to handle the return values. In case the

return values are smaller than two pointer words, there are two possible scenarios. First,

if the return values are integers, they are always put in the integer registers: a0 and a1.

Second, if the return values are floating-point primitives or part of a structure, the return

values are always held by the floating point registers: fa0 and fa1. In the other case, when

the return values are larger than two-pointer words, they will be passed into a pre-defined

memory region, a pointer to this memory region is passed as an implicit first parameter by

the function caller.

2) ARM [74]: In the ARM calling convention, for a fundamental data type which is

smaller than 4 bytes, the return values will be passed to the registers starting from r0. For a

data type larger than 4 bytes, similar to RISC-V calling convention, the return values will be

stored in a memory and the address will be passed as an extra argument when the function

is called.



3) LEON3[76]: LEON3, a 32 bit processor based SPARC architecture, is built upon

register window to handle the function calls. In the SPARC calling convention, 32 registers

are visible to the program and 24 of these registers are arranged in the register window

mechanism. The 24 registers are equally divided into 3 groups:out, local and in registers.

Specifically, the in and out registers are used to pass parameters to the subroutines and

receive the result. When a function is called, the caller’s out registers will become the

callee’s in registers. In this way, the arguments are passed to the function through these

registers. At the end of the function call, the callee’s in registers will become caller’s out

registers thus pass the return value from callee to the caller.

In the SPARC calling convention, the return values are handled in three cases depending

on their types: integer scalar value, floating-point value and aggregate value. In the integer

scalar case, the return values are always put in the subroutine’s in registers (which is the

caller’s out registers), starting from register %i0 (which is caller’s register %o0). In the

floating-point scalar case, the return values are always passed through the floating-point

registers, starting with the register %f0. In the case of aggregate return values, such as a

structure in C language, the function’s caller will allocate an area of memory to store the

aggregate return value and the address of this memory area is stored on a fixed location on

the stack.

In every ABI, the return value is always passed to a specific memory location or registers

defined by the ABI. In this chapter, we utilize this feature to develop a function call protection

wrapper which is generic to all function calls with return values.



Figure 3.1: Fundamental Principles of Proposed Countermeasure

3.3 Countermeasures

This section explains our methodology for a low-cost function call protection scheme against

instruction skip fault attack.

3.3.1 Fundamental Principles

In a basic function call procedure, as shown in Figure 3.1, the caller first passes the arguments

to the callee using shared memory locations or registers. After the execution of the function,

the callee writes the return value to the designated location from which the caller will read.

In this chapter, we define any registers or shared memory locations which will be affected

by the function execution as a Function Monitor (FM). Listing 3.1 shows an example of

an FM. The function sqr() updates the value of variable b, thus in this case the variable b

is the FM for the function sqr().

The fundamental idea of our proposed countermeasure is to initialize the FM to an unlikely



value before the function call and check if the FM has been updated after the function call.

It’s like putting a nut on a train rail, if the nut is broken, we know the train has passed. In

our mechanism, the train is the function and the nut is the FM.

We apply this protection mechanism to standard functions with return values and we im-

plement it as a fault detection wrapper around those functions.

There is a trade-off between fault detection rate and overhead of the detection wrapper.

There is a trade-off between the correctness of fault detection and the overhead the wrapper

will introduce to set up the FM and to detect changes to the FM. This trade-off depends

on the quantity of the information of the target function which the proposed fault detection

wrapper will use.
1 #include<stdio.h>

2 int sqr ( int x );

3 // main function

4 void main( )

5 {

6 int a, b ;

7 // function call

8 b = sqr ( a ) ;

9 }

10 // function definition

11 int sqr ( int x )

12 {

13 int s ;

14 s = x * x ;

15 return s ;

16 }

Listing 3.1: Example Code for FM

We classify our methodology in three levels, in the ascending order of the amount of the

function information that the fault detection wrapper utilizes. The three levels are: ABI

specific, header specific, and semantic specific level.

As shown in Figure 3.2, in the ABI specific level, fault detection wrapper only utilizes the ABI

information. The targeted function is treated as a black box. In the header specific level,



Figure 3.2: Three Levels in Methodology

Figure 3.3: Methodology

the wrapper utilizes the function’s header information. The header information includes

input arguments and the user- defined registers or shared memory locations which hold the

function return value. In the header specific level, the target function is treated as a gray

box. In the third level, which is the semantic specific level, the fault detection wrapper

further utilizes the invariance or the statistical properties of the function output. In this

case, the target function is treated as a white box.



Table 3.1: Unlikely Value Example
Function API Return Value Unlikely Value

void ∗memcpy (void∗dest, const void ∗src, size_t n); a pointer to dest value different from dest
void ∗malloc (size_t size); a pointer to the allocated memory from the heap top of the stack address
char ∗strcpy (char∗dest, const char ∗src); a pointer to the destination string dest value different from dest
int printf (const char ∗format, ...); the number of characters printed -1

3.3.2 Methodology

In this section, we give an overview of the protection methodology and explain the steps

involved in developing the instruction skip protection wrapper as shown in Figure 3.3.

1) Identify the FM: The first step is to analyze the FM. By analyzing the source code,

we first identify the FM of the target function.

2) Initialize the FM before the function call: After identifying the FM, the second

step is to initialize the FM to an unlikely value before the function call. The unlikely value

can be any value with a specific pattern or a constant which statistically has a low possibility

to occur based on the function. Table 3.1 shows a list of example functions and its unlikely

return value. For example, let’s take malloc() function. Based on the information from

the Linux manual page, malloc() returns a pointer to the allocated memory from the heap.

Therefore, the unlikely return value can be the address of top of the stack. The selection

of the unlikely values of the FM will influence the false positive rate of the instruction skip

detection. The false positive rate can be reduced by using unlikely value which has a low

possibility of occurrence.

3) Check the FM for updates after function call: In the third step, the fault de-

tection wrapper checks whether the FM has been updated from the initial unlikely value

after the function call. If the function call is skipped under a fault attack, the FM will be

unchanged. Therefore, the protection wrapper will compare the FM value with its initial

unlikely value after the function call. If the value is unchanged, the wrapper will raise an



Figure 3.4: ABI specific fault detection wrapper structure

alarm signal which in turn warns that a function call skip has been detected. Moreover, the

protection wrapper should be fault tolerant.

3.3.3 ABI specific Test

In the ABI specific test, the fault detection wrapper only utilizes the information about the

locations of the return values of a function call. The FM in ABI specific level is ABI defined

registers or shared memory locations which hold the return value. The fault detection

wrapper which is developed based on our methodology can be directly applied to all the

function calls with return values.

We demonstrate our methodology in the SPARC architecture using C language. The return

value is passed in two forms: return by value and return by reference (pointer).

Functions Return by Value:

At the end of a function call, the output of the function is the actual value in the register.

Using our methodology, we developed the fault detection wrapper for the function call of



our target function foo() for the SPARC architecture as shown in Figure 3.4.

1) Identify the FM: In the SPARC architecture, the return value is stored in register

%o0, which is the FM. It should be updated with the function’s return value after the

function call.

2) Initialize the FM before the function call: After identifying register %o0 as the

FM, we initialize %o0 to an unlikely value before the target function call. To directly work

with the registers from our software program, we use inline assembly to initialize register

%o0. Line 2-7 in Listing 3.2 shows the part of the wrapper code to initialize the FM. The

register %o0 is initialized to 0x12345678 before the function call.

3) Check the FM for update after function call: After function execution, the third

step is to check whether register %o0 has been updated. Lines 10-21 in Listing 3.2 show the

post-execution register check of the wrapper. The function output is compared with initial

value, if the value is the same, a fault handling exception will be stimulated. Note that the

value of register %o0 should not be modified by the wrapper since the function return value

in %o0 may be required by the proceeding code.

Furthermore, to make the fault detection wrapper fault-tolerant, we applied software instruc-

tion skip fault countermeasure proposed by Moro et al.. In their paper, it is assumed that

it is unlikely for the attacker to inject two back-to-back faults. Based on their instruction

classification, the assembly instructions in our wrapper are idempotent instructions, i.e., the

instructions have the same effect when executing once or several times [113]. Therefore,

we duplicate the assembly instructions to make them tolerant to instruction skips. The be

instruction (branch equal), in line 19-20, is not an idempotent instruction. However, under

our implementation settings, be is used to branch to the fault handling procedure. When

no fault is detected, duplicating be instruction will not influence the control flow of the



program. Usually, when a function skip fault is detected, the fault handling procedure resets

the processor and restarts the program or halts the program and raises an alarm signal. The

second duplication of be will not be executed, thus it will not influence the control flow as

well. Therefore, we can duplicate the be instruction in order to make our wrapper tolerant

to instruction skip faults.
1 asm (

2 "sethi %hi(0x12345678), %o0\n"

3 "sethi %hi(0x12345678), %o0\n"

4 "or %o0,%lo(0x12345678), %o0\n"

5 "or %o0,%lo(0x12345678), %o0\n"

6 );

7 //function call

8 foo();

9 asm (

10 "mov %o0, %g6\n"

11 "mov %o0, %g6\n"

12 "sethi %hi(0x12345678), %g5\n"

13 "sethi %hi(0x12345678), %g5\n"

14 "or %g5,%lo(0x12345678), %g5\n"

15 "or %g5,%lo(0x12345678), %g5\n"

16 "cmp %g6, %g5\n"

17 "cmp %g6, %g5\n"

18 "be fault_handle\n"

19 "be fault_handle\n"

20 );

Listing 3.2: Protection Wrapper for functions return by value

Functions Return by Reference

In this form, the function output is a pointer pointing to the memory location which stores

the actual return value. The function call will update the value of the pointer instead of

updating the actual return value in register. In the SPARC architecture, the return pointer

value is written into register %o0 and passed back to the function caller through the register

window. After a function call, the wrapper will check the pointer value for an update instead

of the update of the actual return value.

The wrapper structure is demonstrated in Figure 3.4. The wrapper first initializes the reg-



ister %o0 to an unlikely value and checks whether %o0 is updated after the function call.

This structure is the same as the function return by value case, so the protection wrapper

in Listing 3.2 can be applied directly to the return by reference case as well. This protection

wrapper is generic and can be applied to all the function calls with return value under the

same ABI.

There is one corner case when the processor utilizes exactly the same registers or mem-

ory locations to pass in the function arguments and pass out the function return values. In

this case, the protection wrapper can take the input arguments’ values as the unlikely values

and check the registers or memory locations for updates after the function call. This testing

mechanism may cause false positive in one special case when the function’s expected return

values are the same as the input arguments’ values .

3.3.4 Header Specific Test

In the header specific test, the protection wrapper employs the header information of the

target function. The header information includes the function input arguments and user

defined registers or shared memory location which holds the function return value. The

FM in this level is the user-defined registers or the shared memory locations. Based on the

number of the function return values, we divide the functions in this level into two cases:

function returning a scalar and function returning a buffer.

Functions Return a Scalar

The function returning a single value to a user-defined location. Listing 3.3 shows an example

of function returning a scalar. This program calls the function foo() (API: int foo(int



arg1, int arg2)) defined in the header file LibraryHeader.h. The function return value is

assigned to b. The protection wrapper directly tests the user-defined location.

There are two testing strategies. First, the protection wrapper utilizes the function header

information and tests the value of b. In this case, the wrapper will be developed in C or

other high level programming language. Second, protection wrapper still only uses the ABI

information which is the same wrapper developed in the ABI specific level. In this strategy,

the wrapper is developed in assembly instructions. Moreover, since after compiling, one

instruction in C can be interpreted into several assembly instructions, the protection wrapper

in C can result in a larger overhead compared to an assembly wrapper.
1 #include<stdio.h>

2 #include "LibraryHeader.h"

3 void main( )

4 {

5 int argument_1, argument_2 ;

6 // function call

7 b = foo( argument1, argument2 ) ;

8 }

Listing 3.3: Example Code for functions return a scalar

Function Returning a Buffer

When the function returns multiple values, to allocate a memory area or registers for the

return values. During the function call, the user-defined buffer is passed into the function

as an pointer. After the execution, the function fills the buffer with return values and

output the buffer. For example, in foo() function (API: void foo (uint8_t ∗buffer,

int size)), the user-defined buffer is passed into the function and will be updated by the

function with its return values. The wrapper will test the update of every value in the buffer.

Figure 3.5 demonstrates the wrapper development procedure for the header specific level.

We demonstrate the development procedure with foo() function as the target function.



Figure 3.5: Header specific fault detection wrapper structure

1) Identify the FM: The user-defined buffer will be updated after the function call.

Therefore, FM for the targeted function is the user-defined buffer.

2) Initialize the FM before the function call: In this step, we need to initialize every

value in the buffer to an unlikely value before foo() is called. As shown in the Figure

3.5, the user defines a buffer with SIZE_1 and initializes all the values to unlikely values.

Afterwards, the buffer is passed as a pointer to foo() as input.

3) Check the FM for update after the function call: After the function call, the

foo() function will update SIZE_2 number of values in the user-defined buffer. SIZE_2

can be equal to or smaller than the user-defined buffer size SIZE_1. When the SIZE_2 is

smaller than SIZE_1, it means the function only partially updated the buffer.

In this step, the protection wrapper will check the buffer for updates after the function call.

There are two testing strategies for post-function call update checking: optimistic test and

pessimistic test. For the optimistic test, the wrapper checks whether there is at least one

value different from initial value. Note that the optimistic testing strategy can cause false

negatives, i.e., a fault may cause a partial buffer update, but the wrapper does not detect it.

For the pessimistic test, the wrapper checks whether every value is updated from the initial

value. In this case, the pessimistic test strategy has a risk of false positive, i.e., the wrapper

detects the fault, but there is no real fault because the function only updated the buffer

partially.

To make the protection wrapper instruction skip fault tolerant, we applied software pro-

gramming patterns proposed in [150]. To prevent the attacker from bypassing for-loop check

or terminate the loop early by instruction skip, we added an extra check to verify if the



Figure 3.6: Semantic specific fault detection wrapper structure

current loop counter equals the loop bound after each for-loop execution. Also, based on the

assumption that it is very hard for an attacker to inject two back to back faults, instruction

duplication is applied for sensitive condition checks and sensitive instructions.

3.3.5 Semantic Specific Test

In the semantic specific level, the fault detection wrapper utilizes the statistical properties

of the return value. Based on this information, the wrapper can further improve FM’s fault

detection rate. Figure 3.6 shows the protection wrapper structure for semantic specific test.

We take random number generator function call RNG() (API: int RNG(uint8_t ∗buffer,

int size)) as an example to demonstrate our proposed semantic specific test.

For random number function call, FM is the user-defined random number buffer. Under the

semantic specific level assumption, the wrapper implements randomness tests based on the

random number’s statistical property after the function call, i.e. the randomness property

of the value in the buffer is tested after the function call.

We develop a lightweight randomness test that can be used after the random number function

call. For random numbers to be truly random, the number of ones and zeros should be

approximately the same. Thus, our test checks whether the number of ones in the buffer

is around half of the total number of bits (BIT_SIZE). If the result is within the range of

(0.3∗BIT_SIZE, 0.7∗BIT_SIZE), we accept the result as ’random’. The wrapper can widen

or shrink this range to change the strictness of the test. If the range is narrow, there is a

higher risk of false negative, and if the range is wider, then there is a higher risk of false

positive. Moreover, we implement the algorithm introduced in [12], which counts the number



of ones in parallel, to reduce the overhead in counting the number of ones.

To design a fault tolerant wrapper, we also implement sensitive condition double-checks and

loop-checks as used in [150].

3.4 Results

In this section, we cover our protection wrapper overhead and experimental result for fault

detection.

3.4.1 Experimental Setup

Target Function

We implement the ABI specific level, header specific level and semantic specific level of

fault detection wrappers respectively on two target functions: Random Number Genera-

tor (RNG()) (API: int RNG(uint8_t ∗buffer, int size))) and memmove() (API: void

∗memmove(void ∗dest, const void ∗src, size_t n)).

In the ABI specific test, as demonstrated in section 3.3, we implement the fault detection

wrapper which checks the return value in register %o0.

In the header specific test, the fault detection wrapper is developed based on an optimistic

testing strategy for which the fault detection wrapper will declare that no fault is detected

if at least one of the return values is updated after the function call. The fault detection

wrapper initializes every value in the user-defined buffer to an unlikely value before the

function call and it checks a select element in the buffer for the update.



In the semantic specific test, the fault detection wrapper varies depending on the target

function’s invariance or statistical properties. For RNG(), as demonstrated in section 3.5, we

implement the wrapper which checks the randomness of the return value after the function

call. For the memmove() function call protection, we utilize the invariance of the return

value. Since the memmove() copies n bytes from memory area src to memory area dest,

the value of the first elements in dest should be the same as the value of the first element

in src. Therefore, the fault detection wrapper compares the value dest’s first element with

src’s after the function call. There are also other invariants that can be used for memmove(),

such as the invariant that the sum of all the elements in the dest is the same as the sum of

src after the function call.

Fault Simulation

We simulate our software protection wrapper on LEON3 which is a 32-bit SPARC processor.

We use the Gaisler’s LEON3 TSIM simulator to inject faults and skip instructions. We wrote

a script to interface with TSIM simulator that automates the instruction skips. It enabled

single instruction skips in a sequence within a user-defined instruction range. We define

an instruction skip simulation window around the function call instruction. Practical fault

injection is imprecise and shows ambiguity with respect to the target instruction. During the

fault injection, the adjacent instructions around target instructions may also be influenced.

The window is a fault injection range around the target function call instruction. The size

of the window reflects the accuracy of fault injection devices. It depends on the fault target

processor’s speed and fault injection devices resolution.

In our simulation, we set the window size to 11. Therefore, the window is starting from the

5th instruction before the target function call instruction and ends at the 5th instruction

after the target function call instruction. We simulate instruction skip for each of the 11



instructions within the simulation window, and simultaneously monitor the function output

and the wrapper detection performance.

3.4.2 Fault Detection Performance

Under the instruction skip fault injection, there are three possible outputs: faulty output,

correct output, processor crash or timeout. As shown in the Table 3.2, the response of the

fault detection wrapper has 5 cases:

1. X0 - False Positive: Output is correct, the wrapper detect fault;

2. X1 - True Positive: Output is faulty, the wrapper detects fault;

3. X2 - True Negative: Output is correct, the wrapper does not detect fault;

4. X3 - False Negative: Output is faulty, the wrapper does not detect fault;

5. X4 - Time Out: If the program crashes as a result of the skip, no output is produced.

We calculate 3 metrics: Correct Response Rate (CRR), Fault Detection Rate (FDR) and

Fault Detection Quality(FDQ), to quantify the fault detection performance,i.e., the security

level of our wrapper.

CRR =
SCorrectResponse

Swindow

=
X1 +X2∑4

i=0Xi

(1)

FDR =
Fdetected

Ftotal

=
X1

X1 +X3

(2)



FDQ = CRR + FDR (3)

Equation(1) defines CRR. Referring to the cases shown in Table 3.2, SCorrectResponse is the

total number of correct responses (X1 + X2) from the wrapper, and Swindow is the window

size which makes the total number of cases. The CRR reflects the overall fault detection

performance including false positive and false negatives. Ideally CRR is 1 which means the

fault detection mechanism correctly responds to all injections.

In the Equation (2), Ftotal is the total number of faults that can be observed from output.

Fdetected is number of faults that our wrapper detects. The FDR captures how good the fault

detection techniques are able to detect true faults, and ideally FDR is 1 when all the true

faults are detected.

As defined in Equation(3), FDQ is the sum of CRR and FDR, FDQ reflects the overall

quality of the fault implementation. Ideal value for the FDQ is 2.

Table 3.3 and 3.4 show the experiment result for RNG function and memmove() function fault

detection wrapper respectively. Table 3.4 shows the fault detection result for three different

levels of protection wrapper for target function memmove(). In the ABI specific test, out

of the 11 instruction skips within the fault injection window, there are 0 cases when the

outputs were correct and the wrapper detects fault (X0), 2 cases when the outputs were

faulty and the wrapper detects fault (X0), 2 cases when the outputs are faulty and wrapper

does not detect fault (X2), 3 cases when the outputs are faulty and wrapper does not detect

fault (X3), and 4 cases when the instruction skip cause the processor crashes or program



Table 3.2: Fault Detection Wrapper Response Cases

Alarm
Output Correct Faulty Crash or

Time Out
Yes X0 X1

No X2 X3
X4

Table 3.3: Test Results for RNG( ) Function Call

Result
Test level ABI

Specific
Header
Specific

Semantic
Specific

X0 0 0 0
X1 1 1 2
X2 8 7 7
X3 1 0 0
X4 1 3 2

Correct Response Rate(CRR) 0.82 0.73 0.82
Fault Detection Rate (FDR) 0.73 1.00 1.00

Fault Detection Quality (FDQ) 1.55 1.73 1.82

execution timeout. So for the ABI specific test, CRR is the sum of X1 and X2 cases which

is 4 and divided by the window size 11. Thus the CRR value is 0.36. FDR is 2 (X1) divided

by total number of faulty cases which is 5, thus the FDR is 0.4. In total, FDQ for ABI

specific test is 0.76. The same analysis is applicable to the result for header specific test and

semantic specific test. As can be observed from FDQ shown in the last row in Table 3.4,

From the most simple ABI specific level to the complex semantic specific level, the FDQ

increases, which indicates increasing security level of the fault detection wrapper. We can

observe similar behavior for the experiment result for target function RNG() shown in the

Table 3.3.



Table 3.4: Test Results for memmove( ) Function Call

Result
Test level ABI

Specific
Header
Specific

Semantic
Specific

X0 0 0 0
X1 2 3 4
X2 2 2 2
X3 3 2 1
X4 4 4 4

Correct Response Rate(CRR) 0.36 0.46 0.55
Fault Detection Rate (FDR) 0.40 0.60 0.80

Fault Detection Quality (FDQ) 0.76 1.06 1.35

Table 3.5: Overhead in Code Size

Function
Test level ABI

Specific
(Bytes)

Header
Specific
(Bytes)

Semantic
Specific
(Bytes)

RNG( ) 100 400 1128
memmove( ) 115 208 352

Table 3.6: Overhead in Cycle Count

Function
Test level ABI

Specific
(cycles)

Header
Specific
(cycles)

Semantic
Specific
(cycles)

RNG( ) 20 99 838
memmove( ) 24 64 86



Table 3.7: Estimated Overhead of Related Work

Function
Overhead Execution

Time
(cycles)

Duplication
Overhead
(cycles)

Counter [92]
Overhead01

(cycles)
RNG( ) 7993 7993 31972
memmove( ) 133 133 N/A

3.4.3 Overhead

Table 3.5 and Table 3.6 show the overhead in code size as well as cycle count incurred by our

wrapper over the non-protected version. In the protection wrapper of RNG(), for the most

simple ABI specific level, only 100 bytes in code size and 20 cycles in performance overhead

is introduced by the wrapper. The overhead increases depending on the level of security

from ABI specific test to semantic specific test.

The result from Table 3.4- 3.6 indicate the trade-off between the security level of the fault

detection wrapper and the overhead introduced. For example, in the memmove() function

call, from ABI specific test to semantic specific test, the wrapper’s FDR increases which in-

dicates the improvement of overall fault detection performance. As a trade-off, the overhead

increases simultaneously as the fault detection performance improved. This is because more

information from the target function is used in the fault detection wrapper to make the fault

detection more comprehensive.

3.5 Discussion

In our protection mechanism, the overhead for ABI specific test is approximately stable

for different target functions since the ABI specific wrapper always checks the update of

ABI defined return registers or shared memory for updates. In the header specific test,



the overhead varies depending on the user-defined buffer size. For the semantic level test,

the overhead depending on the statistical property or the invariance of the target function

utilized by the fault detection wrapper.

There is a trade-off between the security level of the fault detection wrapper and the overhead

introduced. Depending on the security requirement of protection target security system, we

can choose which level of fault detection wrapper to implement.

Our protection mechanism specifically targets the protection of function call against an in-

struction skip fault. It is relatively a low-cost approach to protect function call fault against

instruction skips. The most common way to protect the function call is function call dupli-

cation, i.e, execute the function twice. However, the performance overhead introduced by

function call duplication is the target function execution time and it varies depending on

different target functions. Table 3.7 shows the estimated overhead for duplication counter-

measure and countermeasure introduced by Lalande et.al [92] which utilizes nested counter

as we introduce previously in section 2.1. The memmove() function call takes 133 cycles to

execute when the memmove() size is 3. If utilizing the function call duplication, the perfor-

mance overhead will be approximately 133 cycles. For the counter countermeasure which

requires modification on the function body, it is not applicable to system calls. However,

as shown in the Table 3.6, the most expensive overhead for memmove() protection which

is 86 cycles is still smaller memmove(). For large functions, the advantage of our proposed

mechanism is more obvious. In our RNG() case, the RNG() execution time is 7993 cycles, so

the performance overhead for duplication will be approximately 7993 cycles, and overhead

for the counter countermeasure is 31972 cycles (for ARM-V7). Compared to the overhead

of our proposed mechanism as shown in Table 3.6, the overhead of duplication and counter

countermeasure is much larger. By comparison, the overhead of our proposed mechanism is

lightweight.



There is one limitation in measuring the detection rate of our proposed countermeasure. In

the future work, a benchmark need to be developed to generate non-deterministic function

calls in order to get the distribution of overhead for the proposed countermeasure. Signifi-

cant amount of non-deterministic function call samples are needed to generate the overhead

distribution, CRR and FDR.

3.6 Conclusion

In this chapter, we have introduced a software fault detection mechanism to specifically pro-

tect the function call against instruction skip fault attack. Our methodology does not require

modification of internal function and is generic to all the function calls with return values.

Our proposed methodology is independent of architecture, operating system, algorithm and

programming language. We demonstrate our methodology on Gaisler’s LEON3 simulator

and we show that the performance overhead of our countermeasure is low.



Chapter 4

Verification of Power-based

Side-channel Leakage through

Simulation

Traditionally, side-channel leakage evaluation after the chip tape-out (post-silicon). Once the

leakage is detected, it is already too late to make any mitigation. In this chapter and the next

chapter, we demonstrate our contributions in pre-silicon side-channel leakage evaluation. In

this chapter, we build up simulation-based leakage detection and evaluate the trade-offs for

simulation abstract level in terms of capturing the side-channel leakage. This work has been

published in 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems

(MWSCAS) [155].

4.1 Introduction

Power-based side-channel leakage occurs when circuits handle secret data. An adversary

who can measure these data-dependent power variations can mount a side-channel attack,

which reconstructs the secret data from a collection of side-channel leakage measurements

[52]. In recent years, the risk of side-channel leakage has risen to prominence, together with

the proliferation of information technology in embedded, mobile and portable form. Success-
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ful side-channel attacks have been demonstrated on a wide range of commercial technology

ranging from FPGA bitstream protection to wireless car keys. As a result, there is a pressing

need for designers to produce designs which are free from side-channel leakage vulnerability.

In contemporary practice, side-channel leakage is tested by measuring a prototype imple-

mentation. This task, often carried out by a specialized testing lab, is time-consuming and

expensive. To reduce cost and to speed up the design cycle, we need a methodology for

side-channel leakage verification, which tests for the presence of side-channel leakage vul-

nerability from the design files, and which can be completed pre-tapeout. Hence we need

accurate modeling of side-channel leakage. We need high-resolution power estimation to

understand the time-dependent power consumption of individual components in a design.

There is a trade-off between the level of detail in time-dependent power modeling, and the ac-

curacy of side-channel leakage prediction before tape-out. Intuitively, highly detailed power

models will be better at predicting side-channel leakage, but they will be more expensive in

simulation cost.

In this contribution, we describe the process of side-channel leakage verification (SCLV). We

first distinguish traditional side-channel leakage assessment (SCLA) and SCLV. SCLA works

on physical measurements from a design prototype. SCLA tests the hypothesis whether side-

channel leakage is present or not. SCLV, on the other hand, uses the design description to

simulate power measurements before a physical prototype is available. SCLV can explain the

cause of side-channel leakage, and it can help a designer to fix the vulnerability of a design

before tape-out.

The remainder of the chapter is organized as follows. In Section II, we review known causes of

power-based side-channel leakage. In Section III, we introduce SCLV. Our main contribution

is to link the different simulation abstraction levels to specific circuit effects known for

side-channel leakage. In Section IV, we present experimental results comparing physical



measurements on a chip prototype with power simulations. We then conclude this chapter.

4.2 Power-based Side-channel Leakage

Power-based side-channel leakage is the power consumption variation caused by the process-

ing a secret value V internal to the circuit under consideration. In this section, we describe

the causes of this power consumption variation. This will provide the basis for the discussion

on side-channel leakage verification in the next section.

Sources of side-channel leakage Consider a digital design that works with a secret

value V . The best known source of power-based side-channel leakage comes from secret

state transitions caused by a secret bit V propagating on a digital net in the design. Each

secret state transition (0→ 1 or 1→ 0) causes a power spike proportional to the capacitive

load of the net. The power spike appears as side-channel leakage in the overall dynamic

power consumption of the design. The power is dissipated by the drivers of the net. A

larger net with a proportionally larger loading capacitance requires larger drivers. A larger

net will therefore contribute a higher amount of side channel leakage per transition. The

dynamic power consumption of registers is directly related to the (potentially secret) values

stored in the register. For this reason, the dynamic power consumption of registers is a

popular target for side-channel attacks. When combinational logic processes a secret value

V , the dynamic power consumption follows a more complex pattern. Combinational logic

suffers from glitches, short data-dependent transitions caused by the intermediate evaluation

of the logic. Glitches are non-linear effects that depend on the specific value of the (secret)

inputs. This property has been used to break a masking countermeasure against side-channel

leakage [100]. Nowadays, glitches are treated as a liability in secure circuit design, and



designers will generally try to minimize them or else adopt a design style that avoids glitches

altogether. A second source of power-based side-channel leakage occurs through the static

power consumption of circuits, caused by the static (constant) value of a secret value on a

net. The dependency of the static power on the input values on a gate enables a successful

side-channel attack [109]. The side-channel leakage from static power consumption is less

pronounced than the leakage from dynamic power consumption, but it cannot be ignored.

There are secondary sources of power-based side-channel leakage, as well. The circuit power

consumption is affected by parasitics including layout capacitance and cross-coupling ca-

pacitance. This leads to layout-dependent side-channel leakage [48]. Cross-coupling is a

non-linear effect that can break masking countermeasures [47]. Another secondary factor

in power-based side-channel leakage is the layout asymmetry and process manufacturing

variations from one circuit to the next. For example, the tiny delay variations caused by

structural asymmetry may cause exploitable side-channel leakage in circuits that rely on

balanced timing [55], including hiding-based side-channel countermeasures [143].

In summary, the power consumption is an undisputed source of side-channel leakage. How-

ever, there are a large number of linear and non-linear power effects that combine into the

overall power consumption. Many of these effects have been shown to contain exploitable

side-channel leakage. This makes side-channel leakage verification both interesting and rel-

evant.

Noise in side-channel leakage A side-channel attack extracts an information-carrying

signal from noise. Hence, noise plays a role in side-channel verification. Noise degrades the

quality of side-channel leakage. Therefore, from a defensive perspective, zero noise represents

a worst-case scenario. While zero noise cannot be achieved in practice, it is easy to achieve

in the simulations that support side-channel leakage verification. Previous research [54]



provides a comprehensive summary of the noise sources in a side-channel attack. Physical

noise originates from random phenomena such as thermal noise. Measurement noise is the

external noise added by measuring the power consumption signal with imperfect, practical

equipment. Algorithmic noise is the noise caused by unrelated digital activities in the design

under test, such as dynamic power variations caused by the processing of non-secret bits

or unrelated bits [49, 57]. Finally, modeling matching noise is the noise caused by the

statistical mismatch in the hypothesis test used in the side-channel attack. Regardless of

the noise source, a precise modeling of the noise is generally difficult – and perhaps from

side-channel leakage verification point-of-view, it’s not that critical as it does not represent

a worst-case scenario.

4.3 Side-channel Leakage Verification

In this section, we explain the difference between side-channel leakage verification (SCLV)

and side-channel leakage assessment (SCLA). SCLA detects side-channel leakage from mea-

surements made on a prototype, but does not explain the cause. SCLV uses simulation to

explain the cause of power-based side-channel leakage before tape-out.

Side-channel Leakage Assessment SCLA confirms the presence of side-channel leakage

in a design. Because of the complex nature of side-channel leakage, SCLA is typically

performed after tape-out, using power measurements on a physical prototype. There are

two approaches. First, the tester can evaluate side-channel leakage by implementing actual

side-channel analysis attacks (SPA, DPA, template attacks [101]). Second, the tester can use

statistical tests to confirm power-based variation that may be related to side-channel leakage

(TVLA [58, 67], χ2-test [110]). A statistic-based assessment does not perform a side-channel



attack, but aims to distinguish the power consumption distribution of a design under two

well chosen input data sets. A statistic-based assessment is therefore easier to apply, but it

may lead to false positives: suspected side-channel leakage does not imply that an attack

will succeed. In general, side-channel leakage assessment can only evaluate the presence of

the side-channel leakage.

Side-channel leakage verification Like SCLA, side-channel leakage verification (SCLV)

aims to confirm the presence of side-channel leakage in a design. But unlike SCLA, SCLV

uses the design description to simulate power measurements rather than using physical power

measurements from a prototype. This brings two advantages. First, side-channel leakage

can be tested early in the design, well before tape-out. While the simulated side-channel

leakage from a high-level design model in RTL may be less accurate compared to the actual

measurement on a prototype, the simulation result offers the benefit of early detection of

side-channel leakage design errors. It is well known and accepted in the design community

that errors are harder to fix in the later stages of a design. The second advantage of SCLV

is that it can explain the cause of side-channel leakage. Because power is simulated from the

design description, a designer can identify the design components that are at the root of the

side-channel leak. Therefore, design fixes such as the selective application of side-channel

countermeasures – which would be impossible using SCLA – are a viable strategy using

SCLV.

Abstraction levels Power simulation applies at all design abstraction levels: RTL, gates,

and transistors. Low abstraction levels simulate a design in greater detail and are therefore

capable of capturing a wider variety of power-based side-channel leakage. On the other

hand, they consume more simulation time. Table 4.1 summarizes the main properties of

three relevant abstraction levels – RTL, gates, transistors – and their ability to capture



Table 4.1: Abstraction Levels for Side-channel Leakage Verification

Abstraction Timing Power Side-channel
Level Model Model Leakage
RTL clock cycle toggle count logic transition
Gate discrete-event weighted toggle logic transition

+ glitches
+ static power

Transistor continuous time circuit analysis logic transition
+ glitches
+ static power
+ parasitics

side-channel leakage. Logic transition leakage refers to side-channel leakage that is directly

reflected in transitions of variables (signals and wires) in an HDL model. Classic DPA

attacks typically aim for logic transition leakage. Static power refers to leakage from static

power consumption, which can be computed from a technology-mapped netlist. Glitches and

parasitics refer to secondary sources of side-channel leakage, which are a concern with most

side-channel leakage countermeasures.

Related work Several recent research efforts are centered around the concept of SCLV.

RTL-PSC [72] describes an SCLA technique which is performed at RTL-level and identifies

side-channel leakage source at the module-level. RTL-PSC is oblivious to leakage effects that

require transistor-level or gate-level modeling. Architecture Correlation Analysis (ACA) uses

gate-level simulation to identify the side-channel leakage source at the level of a single cell

[59]. ACA further proposes a spot fix technique to remove side-channel leakage from such

cells. Karna [137] partitions a chip at layout-level and determines a TVLA leakage metric

for each area in order to locate the leakage source. Karna then tries to scale down the power

variations from problematic layout areas.
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Figure 4.1: Visual comparison of power signals (grey) and correlation graphs (blue) for
measurement, transistor-level simulation, gate-level simulation, and RTL simulation

4.4 Experimental Results

We demonstrate the feasibility of SCLV using simulated side-channel attacks on an SoC

called FAMEv2, implemented in TSMC 180 nm standard cells. The chip contains a 32-bit

on-chip core, 128 KB on-chip memory and several coprocessors. One of these coprocessors,

a AES-128 cryptographic accelerator with a 1 cycle-per-round parallel architecture, is the

target of the experiments. The coprocessor accepts a 128-bit key and plaintext through a

memory mapped register. We have fabricated the chip and measured the power consumption

with a current probe as well as with an EM probe while the chip performs encryption with

the AES coprocessor. In addition, we simulated the power consumption of the AES module

at RTL, gate-level and transistor-level.

Figure 4.1 is a visual comparison of the power traces (light gray) and correlation power anal-

ysis results (blue) for the measurements, transisor-level, gate-level and RTL simulation. The

power trace for each case is clearly distinct and highlights specific artifacts of the selected

level of abstraction. Measured power traces are noisy and distorted by parasitics. The mea-

surements in Figure 4.1 (left) show a ringing effect, absent from the simulation. Simulated

power traces are noiseless. In between up- and down-going clock edges, the simulated power

drops almost to zero, while there are very sharp peaks at the clock edges. The RTL power

simulation delivers only two samples per clock cycle and therefore lacks the ability to drop

to zero in between clock edges.
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Figure 4.2: Predictive quality of power simulation for side-channel leakage detection. This
plot compares the leaky points of measurements and simulations at different levels of ab-
straction (X) and as a function of AES clock cycle (Y).

We performed a power correlation analysis on the output of the AES state register. In

SCLV the power correlation is done using a known key, such that any AES round can be

selected for power analysis. In all cases from Figure 4.1, a correlation peak is found at the

upgoing clock edge of the AES round under investigation. The height of the correlation

peak of the measurements is small, about 40 times smaller than the correlation peaks found

for simulation traces. The correlation on measurements also requires far more traces: 500K

traces as opposed to 256 traces for simulation correlation plots. The correlation from the

measured power trace persists for about half a clock cycle. On simulated correlation plots,

peaks are found over several up- and down-going clock edges; we will investigate this in

further detail. Overall, Figure 4.1 reveals that, while simulations can predict the position

(AES clock cycle) of correlation peaks, the shape of simulated correlation peaks may differ,

sometimes significantly, from measured correlation peaks.

Figure 4.2 provides a systematic comparison of the ability of (RTL, gate-level, transistor-



level) power simulation to predict side-channel leakage from a physical prototype. The SCLV

is done using correlation analysis on the output of the AES MixColumns step. The Y axis

of the graph represents the (U)p and (D)own edge of the clock signal over three clock cycles

of investigated leakage. The X axis represents different measurements (EM and power)

and simulation (RTL, gate-level and transistor-level). Each dot in the graph represents the

successful recovery of a key bit, and the time instant where this happens is called the leaky

point. For the selected power model, up to 32 key bits can be detected, so up to 32 dots can

be plotted side-by-side at a leaky point. The number of traces used for the shown set of leaky

points varies across each case. Power measurements use 500K traces, EM measurements use

75K traces and all simulations use 256 traces. A false negative in SCLV happens when a

measurement picks up a leaky point that is not identified by simulation. Approximately 15%

of the measured leaky points are false negatives. A false negative can occur, for example,

when the physical artifact contains parastic elements not captured in the design model. A

false positive in SCLV happens when a simulation picks up a leaky point that is not identified

by measurement. Among false negatives and false positives, the former are more critical since

they represent a failed SCLV.

The feasibility of SCLV strongly depends on the ability to simulate power traces with suf-

ficient accuracy in a reasonable amount of time. The full FAMEv2 design contains over

120,000 cells as well as 26 SRAM arrays. Table 4.2 illustrates simulation performance as a

function of simulation abstraction level. To improve simulation performance at lower ab-

straction level, we reduced the scope of the simulation to the module of interest (AES) and to

the simulation time frame of interest (AES encryption). We replaced full analog simulation

with mixed analog-digital simulation. With these optimizations, we conclude that a 24-hour

turn-around simulation time at the most detailed level of abstraction is feasible for this case.

However, we emphasize that SCLV can be fully parallelized over the traces in a simulation.



Table 4.2: Simulation Performance in function of Abstraction Level

Abstraction Level Tool Scope Time/Trace
(min)

RTL Pre-Syn Joules Full Chip 2.5
Gate Post-Syn Voltus Full Chip 22
Transistor Post-Syn XPS AES Block 7
Transistor Post-Layout XPS AES Block 28
Transistor Post-Syn APS AES Block 100
Transistor Post-Layout APS AES Block 383

Given sufficient compute resources and, if applicable, tool licenses, the entire process can

finish in the time needed to simulate a single trace at the most detailed level of abstraction.

Conclusions

We introduced side-channel leakage verification (SCLV) as a method to address side-channel

leakage issues early in a design flow. SCLV fits in a methodology that trades off the se-

curity of a design, next to its power consumption, its area, and its performance. For the

case of an unprotected AES design, we show that every simulation abstraction level reveals

correlation-based side-channel leakage. However, we expect that the design of side-channel

countermeasures will justify the use of simulation at lower abstraction levels.



Chapter 5

Pre-silicon Architecture Correlation

Analysis (PACA): Identifying and

Mitigating the Source of Side-channel

Leakage at Gate-level

In the previous chapter, we investigate simulation-based side-channel leakage detection at

the pre-silicon stage. In this chapter, we present our work in pre-silicon root cause analysis.

We develop a methodology that enables the designer can precisely detect and mitigate the

root cause of side-channel vulnerabilities within the design. Part of the result has been

published in the 2020 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST) [154] and an extended version of HOST paper has been published in eprint

[157].

5.1 Introduction

Power-based side-channel leakage occurs when a secure chip performs operations that depend

on an internal secret value such as a cryptographic key. An adversary who observes the

chip power consumption can derive the internal secret value through differential analysis
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Figure 5.1: (a) Traditional side-channel leakage assessment flow. (b) Proposed PACA flow.

techniques that correlate a power model of the secret activity with the observed power

consumption. In recent years, side-channel vulnerabilities have risen to prominence and

successful side-channel attacks have been demonstrated on a wide range of devices from

small IoT devices to large cloud computing systems. Therefore, the evaluation of the side-

channel leakage has become a critical component in the electronic design flow of secure chips

to avoid costly post manufacturing evaluation and reiteration of the design.

As shown in Fig. 7.1(a), the conventional method to evaluate side-channel security vulnera-

bilities occurs after the chip tape-out. Designers measure the prototype of the chip to assess

the vulnerability. However, once a side-channel leak is confirmed, it may be too late to fix

it. In the worst case, a side-channel leakage-related design mistake cannot be fixed until

the next version of the chip. Another disadvantage of side-channel security evaluation by



means of a chip prototype measurement is that it is difficult to precisely locate the leakage

source, especially in a complex design. Therefore, the conventional method of applying a

side-channel countermeasure, such as power-randomization, hiding, or masking, is to proac-

tively protect the whole design. However, these techniques will introduce a large overhead,

with a cost proportional to the size of the module that must be protected. The overhead

can be reduced by limiting the countermeasures to a small section of the chip, but then the

designer must identify the precise cells which contribute to the side-channel leakage. To our

knowledge, there are no tools to identify the source of side-channel leakage in a design at

the granularity of a cell.

Motivated by the challenges of power-based side-channel leakage mitigation in modern chip

design, we describe Pre-silicon Architecture Correlation Analysis (PACA). PACA introduces

two major and novel contributions.

• PACA develops a gate-level netlist analysis methodology that enables designers to

precisely identify the source of side-channel leakage in a design at the granularity of a

single cell. PACA operates on the pre-silicon design description. Using experimental

results from a practical SoC design, we show that only a small number of cells are

significantly contributing to side-channel leakage.

• We propose selective replacement as a low-cost side-channel countermeasure. By

protecting only the most leaky cells in a design, the overall side-channel leakage can be

significantly reduced, and at a very low cost. We demonstrate selective replacement on

an AES Sbox, where we replace the leaky cells identified by PACA with side-channel

protected cells that use WDDL [143]and internal energy buffering [68] respectively.

Fig. 7.1(b) illustrates the proposed PACA methodology. Compared to the traditional side-

channel leakage assessment, all the procedures in PACA happen before the chip tape-out.



Given a target design, PACA estimates power measurements from the DUT based using

power simulation. PACA then performs side-channel leakage assessment of the design activ-

ity of interest (such as encryption). Using the side-channel assessment, PACA then ranks all

the cells in a netlist with respect to their contributions to the side-channel leakage (Section

5.3). The ranking is numerically expressed using the Leakage Impact Factor (LIF). PACA

then applies selective replacement to the high-LIF cells, thereby protecting the design while

simultaneously reducing the overhead of side-channel countermeasures.

The structure of this chapter is as follows. The next section reviews related work in

simulation-based side-channel leakage assessment. Section 5.3 describes the proposed PACA

methodology. In Section 5.4, we explain and demonstrate the effectiveness of the methodol-

ogy on a simple circuit. Next, we apply PACA to a SoC. We analyze an individual module

as well as the impact of integrating this module in a complete SoC. Section 5.5 and Sec-

tion VI discuss the PACA methodology on two encryption modules, an AES coprocessor

and a PRESENT encryption module respectively. Section 5.7 shows the result of applying

the methodology to the analysis of an SoC bus transfer. In section 5.9 and section 5.8,

we demonstrate our proposed countermeasure concept of selective replacement. We provide

several discussions about the relevant issues of PACA in section 5.10. We then conclude the

chapter.

5.2 Related Work

The structure of PACA has three stages:

• Stage-I: Power simulation and leakage detection

• Stage-II: Identification of leakage source in the design



• Stage-III: Selective replacement mitigation of leakage sources

PACA’s major contributions and novelty are at Stage-II and Stage-III. Most of the exist-

ing efforts, academic as well as industrial, center around pre-silicon side-channel emulation

and are only focusing on power simulation and leakage detection (Stage-I). However, the

problem is that even though one can detect the side-channel leakage at the pre-silicon early

design stage, it is still very hard to locate problematic elements in the design and fix them.

The leakage source identification (Stage-II) and leakage mitigation (Stage-III) are unique

contributions by PACA.

Existing Work in Power simulation and Leakage Detection (Stage-I) Many ex-

isting works have investigated simulation techniques to simulate the side-channel effects at

early design time (pre-silicon). These works present simulation methods, and exploit differ-

ent aspects in simulation techniques, such as simulation accuracy, speed, and automation,

to reproducing side-channel leakage and to test countermeasure at design time. We would

like to specifically distinguish PACA from those works. ELMO models power-based

side-channel leakage based on the instruction opcode and operand values [103] . Similarly,

MAPS creates an ISA based simulator specifically for Cortex-M3 [37]. Instruction-based

power models can capture some transition-based leakage, but they miss side-channel leakage

stemming from the (potentially unknown) processor-internal effects [135]. Other techniques

have also been proposed to simulate at lower abstraction level (gate-level, transistor level)

in order to achieve higher simulation accuracy. One representative technique is CASCADE

[136]. This work investigates power simulation at gate-level and transistor level. CASCADE

is an EDA tools-based framework to automate power simulation and side-channel leakage

evaluation at design-time. Similarly, Regazzoni et al. proposed a simulation-based method-

ology to evaluate the side-channel resistance of a cryptographic functional units [128]. This



work used transistor-level simulation (SPICE-level) to generate simulated power traces and

apply DPA and CPA attacks. Debande et al. proposed profile modeling for improving the

accuracy of simulation [40]. Recent developed commercial tools such as Virtualyzr by Secure

IC [2] and FortifyIQ [1] also only focus on providing design-time analysis services including

power simulations and side-channel evaluations on the simulated traces. Those aforemen-

tioned works targeted to build up accurate simulation models while none of these methods

investigates to identify the leakage source in the design, which is the main contribution of

PACA.

Existing Work in Identification and Mitigation of Leakage Source (Stage-II and

Stage-III) Centering around the topic of how designers can use design data to identify the

source of side-channel leakage in a design, several research works have popped up in recent

years. We categorize those efforts into different abstraction levels. At the RTL-level, RTL-

PSC [72] and PARAM [62] developed pre-silicon methods to simulate the power consumption

and identify specific state elements that contribute to side-channel leakage. However, both

works have limitations. First, the simulation accuracy is low. Since they simulate power

at the register-transfer level (RTL), the internal state of the design is fully visible, but the

combinational logic remains hidden in high-level expressions, and low-level effects such as

glitches as well as the effects of physical placement and routing are ignored. Second, both

works can only identify the leakage source to the granularity of individual design modules.

At the gate-level, Karna [137] uses structural information from the layout. Karna partitions

a chip spatially in a grid, and determines a TVLA leakage metric [21] for each grid cell.

Karna thus identifies side-channel leakage with the spatial locality. The spatial resolution of

Karna is limited by the layout area over which TVLA is computed, which may still contain

many cells. A second challenge is that TVLA is not an exact leakage metric but may lead

to false positives.



Another branch of the efforts to identify leakage sources related to information flow tracking.

Information flow tracking techniques automatically identify causal dependencies between the

different parts of a design, and therefore these techniques can analyze the dependencies be-

tween a sensitive or secret input and an observable design output. At the register-transfer

level, SecVerilog analyzes hardware information flow to detect timing-based channels [159].

At the gate-level, GLIFT similarly detects timing-dependent information leaks [115]. How-

ever, information-flow-based mechanisms cannot express power-based side-channel leakage.

PACA also focuses on identifying the specific design elements that cause side-channel leakage.

Compared to the aforementioned works, in terms of accuracy, PACA operates at the gate-

level, which offers a good trade-off between design abstraction (simulation speed) and side-

channel leakage modeling detail. In terms of leakage source granularity PACA can identify,

PACA is able to narrow down the source of side-channel leakage to individual gates. This is

considerably more precise than any related technique previously discussed. Because of the

high resolution in root-cause identification of side-channel leakage, targeted countermeasures

can be applied. As previous authors have repeatedly shown, side-channel leaks can often be

attributed to a single gate [100]. We will show that the selective replacement used in PACA

is both area-efficient and effective at mitigating the side-channel leakage.

5.3 PACA Methodology for Identifying the Leaky Cells

In this section, we describe the PACA methodology for identifying the Leaky Cells by com-

puting Leakage Impact Factor for each cell in the design. The LIF is a dimensionless number

that expresses the contribution of the cell’s power consumption to the side-channel leakage

of a design, and a higher LIF indicates a higher contribution. Fig. 5.2 demonstrates how

the Leakage Impact Factor for each gate can be derived using the existing simulation design



Figure 5.2: PACA flow for Identifying Leaky Cell

flow with additional postprocessing. PACA uses toggle traces as well as power traces, which

are extracted from gate-level logic simulation and gate-level power simulation respectively.

The power traces are combined with the selected leakage model to compute the leakage time

interval, and the leakage estimate for leakage model. Finally, the toggle traces, the leakage

time interval, and the leakage estimate are combined into the LIF per cell.

5.3.1 Power Simulation

In this preparation stage, PACA takes RTL design files and generate design netlist through

logic synthesis. PACA performs gate-level simulations with a user-defined stimuli. The

purpose of this stage is to generate toggle traces (Value Change Dump (VCD)), and sub-

sequently, simulated power traces. PACA uses gate-level power modeling on post-synthesis



or post-layout netlists. Power modeling at the gate-level abstraction level strikes a balance

between simulation efficiency and accuracy. It is applicable to the complete chip, while still

correctly characterizing sub-cycle-level power effects. In contrast, RTL power modeling or

toggle-counting misses many of the important electrical effects in side-channel leakage, and

transistor-level power modeling is too complex to achieve at chip-level over extended peri-

ods of time. Section 5.10 further elaborates on the simulation accuracy. The experimental

results shown in this chapter are made for a 180nm CMOS standard cell technology.

5.3.2 Selecting the Leakage Time Interval

The next step of PACA is to narrow down the time window over which the LIF are computed.

The rationale is that we want to determine the LIF over an interval during which the leakage

model L(V ) is valid and during which side-channel leakage may occur.

The leakage model, in the context of power-based side-channel analysis, is an estimate for

the information leakage incurred through power consumption variations. The leakage model

L is a function computed over a secret intermediate variable V . The objective of side-

channel analysis is to reveal the value of V through many observations of the measured

power consumption and correlating those observations with L(V ). Popular choices for L(V )

are the Hamming Weight or the Hamming Distance on V ; the Hamming Weight reflects

value-based power leakage in CMOS, while the Hamming Distance reflects distance-based

power leakage in CMOS. The objective of PACA is to identify, within a gate-level netlist,

those cells that realize L(V ). Naturally, there are many possible choices for the leakage

function, and PACA makes the assumption that the designer is able to provide L(V ). If the

algorithm and implementation are known, such a leakage function can always be found. For

example, a common choice for L(V ) for AES hardware implementations is the Hamming



Distance between the state of different rounds. For AES software implementations, the

Hamming Weight of one or a few bytes of the AES state is typically used. However, V does

not have to be related to a cryptographic key, and any sensitive value processed in a design

could be analyzed. For example, PACA can be used to study bus transfer operations in an

SoC. In that case, V is a sensitive value transferred over the bus, and L(V ) is the Hamming

weight of the value. The Hamming weight reflects the pre-charged nature of a shared bus

[120].

We now narrow the search window to the Leakage Time Interval using power correlation.

We use simulated system-level power traces P and correlate them with the traces from the

leakage model L(V ). We then compute the correlation ρ as

ρL(V ),t =
cov(L(V ), P (t))

σL(V )σP
(5.1)

where:

cov = the covariance

σL(V ) = the standard deviation of L(V )

σP = the standard deviation of P

The Leakage Time Interval is defined as the time window(s) for which

ρL(V ),t > ρthreshold (5.2)

The threshold level ρthreshold is based on the designer’s definition of a distinguishable corre-

lation peak. We can use the Pearson Correlation Confidence Interval to define bounds for

ρthreshold. Table 5.1 illustrates several choices for ρthreshold. Under the hypothesis that the

true ρ is zero, the table shows confidence intervals in function of the number of traces (n)



Table 5.1: Pearson Correlation Threshold Levels as a Function Confidence

Confidence Interval n=600 n=1000 n=2000
99% ±0.105 ±0.081 ±0.058
95% ±0.080 ±0.062 ±0.044
90% ±0.067 ±0.052 ±0.037

and the confidence level. Hence, if the observed ρ falls outside of the confidence interval

then we reject the hypothesis and conclude that the design shows leakage.

Because we are computing ρ in a noiseless, controlled environment with full knowledge of

the secure asset, we can find sharp correlation peaks with a limited number of traces.

5.3.3 Architecture Correlation for Computing Leakage Impact Fac-

tor

Within the Leakage Time Interval, we next perform the architecture correlation as follows.

First, we obtain a toggle trace from a gate-level simulation of the design. A toggle trace Ki

records the activity of each net i (driven by cell i) using the discrete values −1 and +1. If a

cell has multiple outputs, then we compute the architecture correlation and leakage impact

factor for each output separately. For each time stamp t in the simulation, a toggle trace for

net i has the value −1 if the net does not change value, and it has the value +1 if the net

does change value. We also obtain a toggle trace H that represents the toggle activities of

the leakage model L(V ).

Architecture Correlation: Next, we perform Architecture Correlation. For each net (or

gate driver), we compute the dot product of the toggle trace of the leakage model H with

the toggle trace of net i.



Table 5.2: Example of Architecture Correlation

Stimuli S0 S1 S2 S3 Cij

Leakage Model Toggle Activity (Hj) 1 -1 -1 1
net0 (K0 ) 1 -1 -1 1 4
net1 (K1 ) 1 1 1 1 0
net2 (K2) -1 1 -1 -1 -2

Ci = Ki ·H (5.3)

A high value in Ci has a different meaning compared to a high value in ρ. A high value in ρ

reflects a strong dependency between the overall power dissipation and the leakage model.

Therefore, a high ρ indicates side-channel leakage. On the other hand, a high value in Ci

reflects a strong dependency between activity of net i and the leakage model. A high Ci

therefore means that the assumed leakage model is realized by net i. Table 5.2 describes an

example computation for the architecture correlation factor Ci. The second row records the

toggle activities of the leakage model for different stimuli. The leakage model value toggles

for the first stimuli S0, it does not toggle for stimuli S1 and S2, and toggles for S3. At

the same time, net0 also only toggles on S0 and S3 which matches the leakage model in all

the four stimuli, therefore, the net0’s correlation score is 4. On the other hand, net1 and

net2 have a weaker correlations as 0 and -2 respectively. Overall, a more positive and larger

architecture correlation indicates that a net approximates the leakage model more closely.

Computing Leakage Impact Factors: The final step of PACA computes the Leakage

Impact Factor Fi of the driver of each net i, as the Architecture Correlation of net i, weighted

with the average power consumption Pi of the driver of net i normalize by the average power

consumption of the whole design PT , during the leakage time interval averaged over all



stimuli.

Fi = Ci
Pi

PT

(5.4)

This additional weighing factor Pi

PT
is needed because the architecture correlation factor by

itself ignores the relative contribution of a cell in the side-channel leakage power footprint.

Once the LIF Fi of all cells are determined, they are ranked from highest to lowest. The

cells with the highest LIF make the greatest contribution to side-channel leakage. This list

can then be used by a designer to efficiently optimize the netlist with countermeasures.

5.4 PACA on encryption subcircuit

This section is an explanatory walk through of PACA operations in detail on a simple design

illustrated in Fig. 5.3 including a key-addition and an AES S-box. The design combines an

8-bit secret key k and a 8-bit plaintext p stored in register key_reg and register text_in_reg

respectively. The resulting addition is stored in register sa_reg which will drive the input

of sbox logic. An additional register is placed in front of the SBOX to separate the sensitive

signal key_reg⊕text_in_reg from other combinational logic. This design uses flip-flops

with asynchronous reset, and the testbench asserts reset before every new plaintext and

every new key load. We apply PACA using a leakage power model of the output of the key

addition, which is expressed as the hamming weight of the key addition result, or hw(p⊕k).

We expect PACA to identify the register sa_reg as the major contributor of side-channel

leakage, i.e. the cells whose power consumption most closely match the power model. The

PACA procedure starts with the collection of power traces of a gate-level model of the design.

We collected power traces for 600 random inputs under a fixed key. The power traces are

used in a bitwise correlation analysis that matches the leakage model hw(p ⊕ k) to the

measurements. Fig. 5.4 shows resulting bitwise correlation peak on bit-7 (Most Significant



Figure 5.3: (a) AES sbox setup with Register Stages. (b) AES sbox setup without Registers.

Bit). Peak correlation occurs right after sa_reg is updated. Using the power traces, we then

apply the PACA methodology. PACA computes the Leakage Impact factor for each cell in

the overall design. Table 5.3 shows the distribution of resultant LIF for the cells in the whole

design (in total 406 cells). The distribution is highly skewed, indicating that only a very

small portion of the cells that actually contribute to the side-channel leakage. Among all the

cells in the design, sa_reg[7] ranks the top in LIF ranking which means PACA identifies

the register cells belonging to sa_reg[7] as the most leaky cell. This is an expected result,

since gates beyond the fan-out of sa_reg[7] become less correlated to the power model, and

hence contribute less to the side-channel correlation peak.

PACA can further be demonstrated by removing sa_reg and running the simulation again.Table

5.4 shows the distribution LIF of the design without stage registers. In this case, the most

leaky cells identified by PACA are in the first level of logic of the SBOX. This illustrates

that PACA will identify both sequential as well as combinational cells as side-channel leakage

sources.



Figure 5.4: Leakage peak for AES sbox with register stage setup. intermediate data =
key_reg ⊕ text_in_reg

Table 5.3: LIF Distribution Data for AES sbox with register stage setup

LIF Range No. of Cells
2.3 ∼ 3.0 1
1.6 ∼ 2.3 1
0.9 ∼ 1.6 4
0.2 ∼ 0.9 3
-0.5 ∼ 0.2 397

5.5 PACA on an AES hardware engine

After introducing the insight of PACA, we now apply PACA on an AES coprocessor in this

section. The AES implementation runs at one round per clock cycle. The leakage power

model used by PACA is the Hamming distance on the previous and current values of one bit

in the AES state register. We analyze the output of the first round to find the leakage time

interval. Fig. 5.5 reveals a sharp correlation peak when the SBOX output is computed, and

we use these correlation peaks to determine ρthreshold at 99% confidence level with 600 power

traces. This gives a leakage time interval of 24.6ns (for an AES running at 41.67ns clock

period). Next, we perform architecture correlation. Since there are 128 bits of state, there

are 128 different leakage models to consider using architecture correlation. In the following,



Table 5.4: LIF Distribution Data for AES sbox without registers stage setup

LIF Range No. of Cells
2.3 ∼ 3.0 2
1.6 ∼ 2.3 4
0.9 ∼ 1.6 8
0.2 ∼ 0.9 10
-0.5 ∼ 0.2 374

Figure 5.5: Leakage Time Interval for the AES hardware engine.
Leakage Model: HD(AES state bit).

we present the results for a single leaking bit. Our conclusions remain valid for the entire

AES state by repeating PACA for each state bit. PACA yields a list of cells in the descending

order of their Leakage Impact Factor (LIF) value, which signifies the individual contribution

of these cells to side channel leakage.

Table 5.5: LIF Distribution Data for the AES Hardware Engine using HD (AES state bit)
as the leakage model

LIF Range No. of Cells
1.9 ∼ 2.5 1
1.3 ∼ 1.9 1
0.7 ∼ 1.3 0
0.1 ∼ 0.7 58
-0.5 ∼ 0.1 9525

Result Analysis: We analyzed on the cell ranking list from PACA output, Fig. 5.6



Figure 5.6: LIF Distribution for the AES hardware engine.
Leakage Model: HD(AES state bit); Logarithmic Y scale.

illustrates the LIF distribution for all the cells in the AES design based on the PACA

output and Table 5.5 lists the corresponding data. The distribution is highly skewed with

only a small amount of cells have high LIF. This indicates that only a small number of

cells actively contribute to the side-channel leakage produced following the selected leakage

model. The most leaky cell, as identified by the LIF ranking, is a flip-flop of the state-

register. Furthermore, the cell ranked just below this register is a cell in the SBOX that is

directly driven by this register.

Runtime Evaluation: Table 5.6 shows the runtime overhead of the analysis. We use a

2.3GHz Intel Xeon E5-2699 design server with 128GB of main memory. The complexity of

this AES design is 9585 cells. The runtime is broken down into gate-level power simulation

(per stimuli), and PACA (per AES state bit). Hence, a full AES design can be analyzed

with 600 traces in about 2 hours.

Table 5.6: Runtime Evaluation for AES Hardware Engine (9,585 cells)

Procedure Runtime
s/stimuli

Power Simulation 12.28
Architecture Correlation Analysis (per AES bit) 0.268



Figure 5.7: Leakage Time Interval for the PRESENT hardware engine. Leakage Model:
HD(PRESENT state bit).

5.6 PACA on PRESENT Hardware Engine

We now apply PACA to PRESENT, a light-weight block cipher proposed by Bogdanov et al

[24]. Our PRESENT implementation has a 64-bit input, 80-bit key and runs at one round

per cycle with clock frequency at 100Mhz. PRESENT has 31 rounds in total for encryption.

In this case study, the target leakage model PACA analysis is the Hamming Distance of

adjacent round values (second round and third round) in the PRESENT state register. The

PRESENT design has in total 653 cells.

After gate-level simulation on PRESENT and implementing correlation analysis on the sim-

ulated power traces, we observe a sharp leakage peak (Fig. 5.7). Using a ρthreshold at

99% confidence level for 600 traces (0.105), we find a leakage time interval of 0.41ns (for

PRESENT running at 10ns clock period). Next, for this leakage time interval, PACA ap-

plies architecture correlation and generates a ranked list cells in the PRESENT design based

on the their Leakage Impact Factor value. Without loss of generality to other bits, in the

following we present the PACA result for a single leaky bit (bit-7).

Result Analysis: After analyzing the cell ranking LIF distribution for all the cells in the



Table 5.7: LIF Distribution Data for the PRESENT Hardware Engine using HD (PRESENT
state bit) as the leakage model

LIF Range No. of Cells
1.5 ∼ 2 2

1.0 ∼ 1.5 0
0.5 ∼ 1.0 0
0.0 ∼ 0.5 579
-0.5 ∼ 0.0 72

Figure 5.8: LIF distribution for the PRESENT Hardware Engine.
Leakage Model: HD(PRESENT state bit); Logarithmic Y scale.

PRESENT design, we get the LIF distribution as plot in Fig. 5.8 and its corresponding data

in Table 5.7. The highly skewed LIF distribution shows that 2 cells stand out from the 653

cells. The most leaky cell is a flip-flop in the state-register and followed by the XOR gate

connected to the output of the state-register. After these cells, there is a sharp drop-off in

LIF factors, indicating that the remaining cells only contribute marginally to the leakage.

Runtime Evaluation: Table 5.10 shows the runtime overhead of this analysis. The com-

plexity of the PRESENT cipher is 653 cells, a full design can be analyzed with 600 traces in

about 1.5 hours.



Table 5.8: Runtime Evaluation for PRESENT Hardware Engine (653 cells)

Procedure Runtime
s/stimuli

Power Simulation 4.26
Architecture Correlation Analysis (per PRESENT bit) 0.06

Figure 5.9: SoC block diagram.

5.7 PACA of an SoC Bus Transfer

PACA applies to any activity with a power leakage model. We demonstrate how to analyze

the bus interface logic of an SoC for side-channel leakage with PACA. As shown in the Fig.

5.9, the SoC includes a two-level AMBA bus with on-chip memory and several coproces-

sors, including an AES encryption engine. To perform a hardware-accelerated encryption,

the LEON3 writes secure assets (128 bits of plaintext and 128 bits of key material) to the

AES coprocessor, triggers the encryption, and waits for a completion flag. The LEON3 then

retrieves the ciphertext. A bus transfer affects a large number of components in the SoC,

including the caches, the write buffers, the AMBA AHB and APB bus bridges, and finally

the memory-mapped interface in the coprocessor. Any of these can potentially contribute

to side-channel leakage, and PACA helps to identify which components leak most. We use



Figure 5.10: Leakage Time Interval for the SoC bus transfer.
Leakage Model: HW(transferred bit).

the Hamming weight of plaintext inputs for encryption as the leakage model. The input

data (secure asset) is 128-bit wide, and therefore there are 128 different leakage models to

consider. The transfer to the AES coprocessor consists of four 32-bit transfers. Using cor-

relation analysis of the leakage model with the simulated power trace over an interval of

these four transfers, we obtain several sharp correlation peaks shown in Fig. 5.10. We use

these peaks to fix ρthreshold at 99.0% confidence level for 600 power traces. The leakage time

interval is 1.082µs, roughly 26 simulated clock cycles. As before, we present the analysis

for a single bit. Since the leakage time interval at the level of SoC covers many different

components, we limit the discussion to cells included within the LEON3 core.

Table 5.9: LIF Distribution Data for the SoC Bus Transfer
Leakage Model: HW(transferred bit)

LIF Range No. of Cells
1.9 ∼ 2.5 1
1.3 ∼ 1.9 0
0.7 ∼ 1.3 8
0.1 ∼ 0.7 332
-0.5 ∼ 0.1 99563



Figure 5.11: LIF distribution for the SoC bus transfer.
Leakage Model: HW(transferred bit); Logarithmic Y scale.

Result Analysis: From the PACA output, we obtained the cell ranking based on LIF. Fig.

5.11 illustrates the LIF distribution for all cells in the SoC and Table 5.9 shows corresponding

distribution data. Investigating the results of PACA reveals both expected and unexpected

sources of leakage. Top-LIF cells include the flip-flops from the register file, flip-flops from

the pipeline operand register of the execution stage, and flip-flops from the pipeline result

register of the memory access stage. We notice that cells in the data cache of LEON3 are

pointed out by PACA as sources of side channel leakage. This is unexpected because the data

cache is disabled by our testbench during the experiment. With the cache disabled, stores of

the secure data asset should be directly passed to the memory controller. However, PACA

reveals cell activity in the data cache correlating with the secure data asset. Investigation of

the specific cells reveals that the leakage is due to a Write Buffer which is integrated in the

data cache. The Write Buffer remains active even if the data cache is disabled and is used

by LEON3 to ensure that stores do not impede the progress of the execution pipeline by

putting pending stores in the Write Buffer. We concluded that identifying such cells would

be extremely hard without the systematic analysis offered by PACA. The cells inside the

Instruction Trace Buffer (ITB), integrated in the LEON3 core, are another unanticipated

source of leakage exposed by PACA on this time window. In our case, LEON3 contains 1



KiloByte of memory as ITB for storing executed instructions. The ITB is implemented as

a circular buffer and can hold upto 64 executed instructions. The source of side channel

leakage revealed here are the memory cells in the ITB. The ITB is a source of side-channel

leakage due to our test mechanism where the plaintext data is a part of the operands in a

few of the instructions. These retired instructions end up in the ITB after execution. The

existence of the ITB further means that the instructions carrying the secure data asset can

persist in the LEON3 core for much longer than intended.

Runtime Evaluation: Table 5.10 shows the runtime overhead of this analysis. The com-

plexity of the SoC is 99,904 cells, 10 times the size of the AES hardware engine. Thus, a full

design can be analyzed with 600 traces in about 60 hours.

Table 5.10: Runtime Evaluation for SoC Bus Transfer (99,904 cells)

Procedure Runtime
s/stimuli

Power Simulation 329.00
Architecture Correlation Analysis (per AES bit) 32.27

5.8 Selective Countermeasure with WDDL

In the previous section, we demonstrate that PACA can effectively point out the leaky cells

from a complex design. And we find that those leaky cells are only a very small portion of

cells in the design but actually significantly contribute to the side-channel leakage. In this

section, we demonstrate how PACA can be used to implement cost-effective countermeasure

by only replacing most leaky cells with its protected version.



5.8.1 Background in Circuit-level Countermeasures

Existing countermeasures against power-based side-channel attacks eliminate or reduce the

dependencies between the power consumption and secret information. Secure logic styles are

among the first countermeasures developed. Secure logic styles are special logic styles that

hide the side-channel leakage by dissipating a constant amount of power. They use balancing

techniques, and many variants of them have been developed over the years: WDDL [143],

DRSL [46], MDPL [122], LMDPL [50]. Secure logic styles are generally too expensive to be

applied across an entire circuit which will cost approximately area overhead of more than 3

times [68]. As the second category, masking countermeasures, apply logic transformations

to a design to eliminate the statistical relation between side-channel leakage and power

consumption. The masking countermeasure conceals every intermediate value in a circuit

as a random number [45, 53, 56, 77]. Such countermeasures remain vulnerable to glitches

and cross-coupling [51, 100]. Threshold implementations extend the idea of masking while

paying attention to glitches [114]. However, a generic architecture transformation technique

that is low-cost and that deals with non-linear circuit effects remains elusive. Threshold

implementation requires extra randomness which will cause other issues regarding how much

randomness is needed, how frequent the random number needs to be refreshed, etc. The

current approach for the aforementioned countermeasure techniques is to apply protection

to the entire circuit.

We propose a selective replacement which applies the countermeasure locally to the individ-

ual leaky cells identified in the previous stage. We first replace these high-LIF cells with

equivalent cells that are protected using a hiding countermeasure. The protected cells are

based on Wave Dynamic Differential Logic (WDDL), adapted such that a per-cell replace-

ment can be achieved. WDDL is a well-known dual-rail logic style which was proposed as
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Clocking.

a circuit-level countermeasure against side-channel leakage [143]. WDDL logic ensures that

each cell makes a single 0 → 1 transition per evaluation, regardless of the computed value.

WDDL cells require a dynamic clocking style with a pre-charge phase and an evaluation

phase. Although the feasibility of WDDL has been demonstrated in ASIC, it is expensive.

In comparison to unprotected single-rail logic, WDDL occupies 3 times more area and con-

sumes 4 times more power. WDDL is therefore a costly technique to apply chip-wide. When

we replace only the high-LIF cells with WDDL versions, the impact on area will be much

smaller, while still having a significant impact on the side-channel leakage. We will first

explain our countermeasure methodology to implement WDDL on a cell-replacement basis.

Next, we evaluate the cost and impact of this countermeasure on the side-channel leakage

of the AES hardware.

5.8.2 Selective-replacement WDDL

The WDDL version of a logic cell is created by adding a complementary version of that cell.

For example, the AND gate becomes an AND-OR tuple, and a single-rail circuit becomes a



dual-rail circuit with complementary outputs. At the start of every WDDL-evaluation, both

rails are precharged to logic-0. Then, the WDDL cell evaluates and a single net in every

rail pair switches 0 → 1. To integrate a WDDL cell or a cluster of connected WDDL cells

in a single-ended netlist, we add single-to-dual and dual-to-single conversions at the inputs

and outputs, respectively, of the protected WDDL region. Every internal net in the WDDL

region is protected. Figure 5.12a shows a two-gate circuit with one internal net. Figure 5.12b

is the protected version of the same two-gate circuit. As shown in the Figure, the conversion

of a single-rail flip-flop to WDDL requires special attention since a flip-flop does not support

precharge. We use a master-slave dynamic differential logic [143], which stores the precharge

value in a redundant layer of flip-flops. To insert the precharge value, we convert a flip-flop

together with its (data-input) driving cell into WDDL. Figure 5.12c illustrates the timing

signals of the original circuit and the transformed circuit. A disadvantage of the master-

slave method is that it doubles the clock frequency and quadruples every flip-flop. There

are many variations and circuit-level improvements of WDDL but these are out of scope for

our experiments, which focus on validating PACA.

Figure 5.13: Impact on the Pearson Correlation Peak before and after replacing the two
top-LIF cells by WDDL



Table 5.11: Impact on the Pearson Correlation Peak under various levels of replacement

Top-LIF cells ρmax Cells +Area
Added (+ %)

reference 0.1789 0 0
2 0.0847 282 +8.44
20 0.0586 422 +9.43
40 0.0480 577 +10.54

WDDL[143] NA NA +300

5.8.3 Validation results

Within our AES experiment, we selected top-ranking LIF cells and converted them to WDDL

versions while leaving the bulk of the design unprotected. Then, we reran the power simu-

lation and re-evaluated the Pearson correlation under the same power model to detect the

impact on the resulting correlation peak. Since the top-ranking cell gate was a flip-flop, we

converted the entire state register (128 bits) as well as an output register (128 bits) to a

dual master-slave flip-flop, so that we could use a single clock for the entire design. Figure

5.13 shows the effect of replacing just 2 top-ranking LIF cells to WDDL. The correlation is

now well below the ρthreshold selected for this confidence level. We also evaluated the effect

of replacing additional top-LIF cells. Table 5.11 demonstrates the impact of replacing 2,

20 and 40 top-LIF cell in the design on the peak correlation over the leakage time interval.

Although the impact is far less dramatic than the first substitution, a consistent drop can

be noticed. The table also indicates the area overhead for this ad-hoc countermeasure, as

well as the number of cells we added to the overall design (9,985 cells in total). At only 10%

area increase, we are able to obtain a drop of almost four times in the correlation peak. We

conclude that PACA helps to identify the cells of a design that cause side-channel leakage.



5.9 Selective Replacement Countermeasure with De-

coupling Cell

A disadvantage for the dual-rail approach in selective replacement is that for each cell re-

placement, single-rail to dual-rail and dual-rail to single-rail interface circuits are needed.

The conversion of a single-rail flip-flop to WDDL needs a master-slave dynamic differen-

tial logic [143] which doubles the clock frequency. This complicates selective replacement,

making a single-cell replacement strategy preferable.

We fuuther investigate another selective replacement countermeasure based on Gornik et.

al. It is a novel gate-level countermeasure which isolates the power consumption of secure

sensitive circuit from main power supply. The isolation is achieved by using a decoupling

cell composed of buffering capacitance [68]. The decoupling cell is placed between the main

power supply and individual cell. The main advantage of this countermeasure is that it won’t

cause any performance overhead. However, according to Gornik’s strategy, the decoupling

cell design has to be applied globally to the entire circuit. By identifying individual leaky

cells, PACA can further optimize this countermeasure with applying the countermeasure

locally.

We prefer this strategy over an earlier proposed strategy using a dual-rail logic style based

countermeasure.

5.9.1 Implementation of the Decoupling Cell

In this subsection, we explain the design of the decoupling cell.



Figure 5.14: Schematic of the decoupling unit.

Topology and Operation

The decoupling cell isolates the power node of the leaky gate from the global supply that

powers the rest of the circuitry to mask the leakage. Fig. 5.14 demonstrates the topology of

the decoupling unit. This unit is composed of five switches, S1 - S5, and a capacitor, C1.

The switches are controlled by clock signals that are adjusted to operate the circuit in three

different modes, namely charging (CH), discharging (DS), and buffering (BF) modes. In

the CH mode, switches S1 and S3 are closed to charge up the capacitor through the global

supply node, VDDGL. The rest of the switches S2, S4, and S5 are open. In the BF mode,

the previously charged capacitor powers up the leaky gate. In this mode, switches S1 and

S3 are opened, S2 and S5 are closed, and S4 is remained open. Since S1 and S3 are open

during the BF mode, the power rail of the leaky gate, VDDISO, is isolated from the global

power rail. Also, S2 is closed to further reduce the power leakage from the leaky gate by

shorting the intermediate connection to ground [68]. The capacitor C1 can supply power to

the leaky gate for a certain amount of time as it discharges over time; therefore, it needs to

be recharged. However, before recharging and establishing the connection between VDDGL,

the capacitor needs to be fully discharged to remove the power data dependency of the leaky

gate. The purpose of this action is dissipating the same amount of power in every operation

cycle of the decoupling cell to mask the real power consumption of the leaky gate. Hence,

after the BF mode, the circuit enters the DS mode to discharge the remaining charge. In this



Figure 5.15: Block diagram showing the placement of the decoupling cell.

mode, S4 is closed, and S2 remained closed (again for the enhanced isolation), S5 is opened,

S1 and S3 stay open. The aspect ratios of the switch transistors M1-M5 and M7-M8 were

adjusted to optimize the speed and power consumption of the circuit. Together with the

size of the capacitor M6, the W/L ratio of M4 determines the current capacity and current

driving capability of the decoupling circuit, respectively. Thus, we selected the sizes of M4

and M6 to be able to provide the required current to the leaky gate. Increasing the size of

the capacitor or the width of M4 may cause an unnecessarily high current driving capability,

which increases the power consumption of the circuit. In our design, the power consumption

of the decoupling cell is 19.64 nW. We set the aspect ratios of M1-M3, M5, M7, and M8

to 900µm, the highest possible width that can be set in 180 nm technology, to reduce the

resistivity of these switches and in turn to increase the speed of charging and discharging

modes. Rise and fall times during charging and discharging modes are 253.27 ps and 184.3

ps, respectively. Since the voltage drop on the capacitor (V (C1) in Fig. 5.14) decreases in

the BF mode and the current flow between the decoupling unit and the leaky gate is not

continuous due to charging and discharging, we combine three decoupling units to ensure

that the leaky gate is supplied with adequate voltage continuously in the entire operation

interval. Fig. 5.15 demonstrates the block diagram of the decoupling cell, in which the circuit



Figure 5.16: Simulation results of the decoupling cell.

structure is the same for each decoupling unit, but the clock inputs change to adjust the

timing of the modes (BF, CH, DS) for each unit.

Fig. 5.16 illustrates the clock signals (CLK1, CLK2, CLK3,) for controlling the decoupling

cell, voltages on the capacitors (V(C1), V(C2), V(C3),) for each decoupling unit, and the

output voltage of the decoupling cell (VDDISO) connected to the supply node of the leaky

gate as shown in Fig.5.15. At least one decoupling unit is in the BF mode throughout

the operation as can be seen. Also, one can observe that the output of the decoupling cell

varies between 1.25 V to 1.6 V (when the global supply voltage is equal to 1.8 V). The

output voltage changes because of the voltage decrease on the capacitors during the BF

mode and voltage drops and rises occurring in the DS and CH modes. To minimize the

voltage variation, we have modified the timing of the clock signals to have at least two of the

capacitor in the BF mode as demonstrated in Fig. 5.16. This will ensure a certain minimum

output voltage (1.25 V in our case) and avoid significant voltage drops at the output that

may cause to the dysfunction of the leaky gate.



Setup for the Transistor Level Simulations

The power consumption of the s-box, with and without decoupling cell replacement, was

analyzed in Cadence Virtuoso Design Environment [32]. The gate-level netlist of the Sbox

circuit was imported as a schematic cell view by using the built-in import tool of Virtuoso.

A functional cell view written in Verilog Hardware Description Language (HDL) generates

the digital inputs of the s-box which are namely the 2-byte plain-text and 2-byte cipher-text,

and the clock signal. We used Spectre Analog Mixed-Signal (AMS) Designer [31], to be able

to run the Verilog code which is a digital design component in terms of the signals that are

produced and observe the power trace of the s-box, an analog signal, in a single simulation

environment.

We run simulations both with and without the replacement of the decoupling cell. For the

replacement, the decoupling cell was connected to the supply node of the leaky gate in the

schematic. For both cases, the current drawn from the global supply node was measured. The

results of these measurements essentially gave the power traces, which were then exported

from Virtuoso for post-processing and correlation analysis.

5.9.2 Selective Replacement Result

We demonstrate the effectiveness of our proposed selective replacement with our AES sbox

experiment. We selected top-ranking LIF cell sa_reg[7] identified by PACA and decoupled

it while leaving the rest of the design unmodified. Then, we reran the power simulation and

re-evaluated the Pearson correlation under the same power model to detect the impact on

the resulting correlation peak. Fig.5.17 shows the effect of replacing a single top-ranking

LIF cell in the SBOX. The correlation drops dramatically and is now well below the ρthreshold



selected for this confidence level.

In terms of the overhead of PACA selective replacement countermeasure, we introduce a

single extra decoupling cell in the design but achieve significant improvement in the side-

channel security. In the originally proposed decoupling cell methodology [68], the designer

needs to decouple every cells in the design. This leads to an increase in the design area

by a factor of 10. As we demonstrated in the previous section, only a very small portion

of cells in the design actually contributes to the side-channel leakage. Therefore, selective

replacement is a highly-targeted and low-cost countermeasure. Traditional countermeasure

such as threshold implementation [114], wave dynamic differential logic (WDDL) [143], im-

proved masked dual-rail precharge logic (iMDPL) [123], et al. will at least double or triple

the design area. Finally, in terms of performance our proposed approach does not affect the

performance, in contrast to traditional countermeasures.

Figure 5.17: Impact on Pearson Correlation Peak before and after replacing only the Top-1
LIF cell by decoupling cell.



5.10 Discussion

In the final section, we elaborate on several concerns relevant to PACA including power

correlation vs TVLA, and the comparison of leakage detection by power simulation vs leakage

detection by ASIC measurement.

Selection of Leakage Model The problem addressed by PACA is the following. Given an

architecture and a known leakage model, identify what part of the architecture contributes

to the leakage. PACA is an architecture analysis tool instead of a side-channel leakage

simulation tool. The PACA methodology is generic and applies to any leakage model. By

targeting different leakage models, PACA will reveal the leakage sources corresponding to

the selected leakage model. It is up to the designer to select the right leakage model to

identify leaky gates. However, these models are commonly known. Internal and external

security testing labs estimate the strength of an implementation using state of the art side-

channel attacks either on silicon or through simulations. Such attacks typically use leakage

models and therefore the designers can obtain the knowledge of the ‘right’ leakage model as

a result of the testing effort. Applications such as AES have well-known leakage models. For

example, the Hamming Distance of the adjacent rounds outputs of AES is a typical leakage

model, which can be used by PACA. In our setup, we iterate through all leakage models

(all 65 combinations of input data and intermediate values ) of the AES application and

we choose the leakage model which gives us significant correlation peaks which can then be

used for analysis using PACA. To analyze the bus transfer procedure of a microprocessor,

the Hamming weight model is chosen because during bus transfer the power consumption

depends on the Hamming weight of the secret data [120]. PACA is developed to solve known

security vulnerabilities. Exploring unknown vulnerable leakage models for the design is not



in the scope of PACA and is not discussed in this chapter.

We acknowledge that statistical detection methods, such as TVLA, can demonstrate the

presence of sensitive variables in a power trace while avoiding the difficulty of choosing

a leakage model. However, we opted not to rely on TVLA for PACA for the following

reason. TVLA does not establish the likelihood of exploitable leakage [149]. There is no

obvious relationship between the leakage peaks detected by the TVLA and the existence of

an attack. In contrast, power correlation based on a leakage model can always be used as

a distinguisher for an attack. A power correlation peak reflects the actual difficulty of key

recovery. Furthermore, unlike TVLA, power correlation with a leakage model has a precise

interpretation in terms of the gates in a design.

Power Correlation vs TVLA Statistical based side-channel detection method, such as

TVLA, can demonstrate the presence of sensitive variables in a power trace. However, TVLA

indeed has its own short-commings. The most notorious one being the lack of an obvious

relationship between the leakage peaks detected by the TVLA and the exploitability and

efficiency of it in attack. Another problem of TVLA is the false negatives/false positives,

i.e. TVLA fails to detect the leakage while the leakage exist/detects the leakage while the

leakage does not actually exist. Therefore, it’s hard to guarantee that the designer are trying

to solve the problem that are actually exist with TVLA. Power correlation is always used

as a distinguisher for attack. Therefore, power correlation peaks reflects actual difficulty of

key recovery. Furthermore, unlike TVLA, power correlation has a precise interpretation in

terms of the gates in the netlist of a design. Therefore, we use power correlation rather than

TVLA as the side channel leakage evaluation tool.

Power simulation vs ASIC measurements PACA enables the designers, at early

design-time before chip tape-out, to the identify side channel leakage source and efficiently



Figure 5.18: Correlation results for the AES Coprocessor using HD(AES state bit) obtained
from (a) Simulated Traces, (b) ASIC Measurement Traces.

fix a side-channel leakage vulnerability.

In order to evaluate the accuracy of the design-time power estimation, we measure an ASIC

prototype of a non-remediated design [158] and we compare this to our simulated traces. We

confirm that the correlation peaks identified using PACA correspond to those identified in the

ASIC measurement. Furthermore, due to the absence of measurement noise, the correlation

peaks from PACA are sharper, and require fewer traces, compared to the correlation peaks

from ASIC measurements. The presence of noise in ASIC measurement traces make side-

channel leakage assessment difficult, while highlighting the advantages of simulated trace.

PACA allows identifying the side channel leakage source at design-time, and before chip

tape-out. PACA also efficiently fixes the identified side-channel leakage vulnerability.

Fig. 5.18 shows the leakage for the AES hardware engine in the first case study. The figure

compares the correlation peaks resulting from 500 simulated traces to the correlation peaks



Figure 5.19: Correlation results for the SoC Bus Transfer using HW(transferred bit) obtained
from (a) Simulated Traces, (b) ASIC Measurement Traces.

resulting from 500,000 measured traces from an ASIC implementation of the same design.

We can observe that both in the ASIC measurement and simulated trace leakage peaks can

be detected. The time interval during which correlation peaks appear in the simulated trace

is aligned with the time interval in the ASIC prototype measurement.

Fig. 5.19 shows the leakage for the SoC bus transfer leakage model in the second case

study. Correlation peaks of power traces with input data can be observed in both the ASIC

measurement traces and the simulated traces starting at the same period of time. However,

as compared to the simulated traces, the ASIC traces are noisy which leads to fewer and

smaller correlation peaks.

These comparisons confirm that PACA’s analysis results reflects the leakage from the ASIC

measurement. In general, simulation traces are much less noisy compared to the ASIC

measurement. Therefore, it requires a fewer number of traces to detect the leakage. Addi-



Table 5.12: Power Simulation Levels Trade-offs

Simulation Simulation Simulation Side-channel
Level Accuracy Speed Leakage can Capture
RTL low fast logic transition
Gate medium medium logic transition

+ glitches
+ static power

Transistor high slow logic transition
+ glitches
+ static power
+ parasitics

tionally,because of the absence of noise, the simulated traces can detect more leakage peaks

compared to actual ASIC measurement. Therefore, simulated traces reflect the worst-case

scenario. It will overall help the designer decrease the false-negative cases.

Table 5.12 illustrates side-channel leakage modeling at three different modeling abstrac-

tion levels: transistor-level, gate-level, register-transfer level (RTL) [155]. These modeling

abstraction levels apply varying degrees of modeling precision to time and data in order

to improve the simulation performance. At the most detailed transistor-level, behavior is

modeled using continuous-time and using (continuous-value) circuit equations. At higher

abstraction levels, behavior becomes increasingly discrete and abstract. Time is abstracted

into discrete events (gate-level), clock cycles (RTL) and data is abstracted into bits (gates,

RTL). Abstraction of time and data has a significant impact on the accuracy of power mod-

eling, and consequently on the accuracy of side-channel leakage estimation. A broad range

of power-related effects have shown to create data-dependent side-channel leakage. This

includes dynamic power consumption (net transitions), static power consumption (leakage)

[108], glitches [99], and coupling [33]. Table 5.12 observes that not every abstraction level

is able to capture every form of power-based side-channel leakage, and that lower, more



detailed abstraction levels become more comprehensive in modeling of power-based side-

channel leakage. However, the main source of side-channel leakage comes from logic transi-

tions. Second-order effects in the circuits, such as static power and parasitic effects can also

cause side-channel leakage, however, not as significant as logic transitions. Capturing these

effects requires a significant increase of the simulation detail.

To identify the source of leakage, PACA operates at the gate-level, which offers a good

trade-off between design abstraction (simulation speed) and side-channel leakage modeling

detail. It is applicable to the complete chip, while still correctly characterizing sub-cycle-

level power effects. In terms of evaluating the effectiveness of our proposed countermeasure

through simulation, we adopt transistor-level simulation which is the most accurate simula-

tion level in this work. Some low-level leakage sources, such as cross-talk of the wires, and

parasitic coupling, are known to cause masking-based countermeasures [100]. Our proposed

countermeasure is a hiding-based solution which is not vulnerable to these low-level circuit

effects.

5.11 Conclusion

PACA is a significant step towards secure design automation. The PACA methodology helps

not only to identify gate-level side-channel leakage issues in the early stages of an IC design,

but also precisely pin-point the leaky cells in a complex design. PACA further helps to

mitigate side-channel leakage with low cost by selective replacement of the highest-leaking

cells of a design. Through examples at various levels of abstraction, we demonstrated the

scalability and feasibility of PACA.



Chapter 6

Augmenting Leakage Detection with

Boostrapping

In this chapter, we will present an improvement on the existing side-channel leakage as-

sessment based on a statistical method - Bootstrapping. This work has been published

in Constructive Side-Channel Analysis and Secure Design: 11th International Workshop,

COSADE 2020 [156].

6.1 Introduction

One of the first side-channel attacks in the literature was described by Kocher [85], who noted

that the time required to compute an RSA signature could reveal the private key. Further

work [86] demonstrated the feasibility of determining cryptographic keys by analysing the

instantaneous power consumption of a cryptographic device, since individual bits of key re-

lated intermediates influence the power consumption. This type of attack is typically referred

to as Differential Power Analysis (DPA) and has evolved since to include various statistical

tools. Despite its name, the technique is not limited to the usage of power measurements but

can be applied to other measurements of physical properties of a device that is affected by

the handling of secret related data, for example, electromagnetic radiation [61, 127]. Side-

channel attacks have since been demonstrated on a wide variety of devices ranging from small
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single purpose chips [16, 43, 80] to large general purpose SoCs and CPUs [63, 107, 145].

Evaluating the first countermeasures to DPA typically involved the labor intensive task of

performing all known attacks and/or evaluating the power distribution of all sensitive inter-

mediates for data dependencies. However, this does not guarantee there is no side-channel

leakage, only that certain attacks are not possible or that certain intermediates are not

present. In 2011, Test Vector Leakage Assessment (TVLA) was proposed by Goodwill et

al. [67] as a means to detect side-channel vulnerabilities by determining if side-channel leak-

age can be detected. Goodwill et al. described using Welch’s t-test with a null hypothesis

that no leakage was present in a pointwise comparison of two sets of power consumption

traces. Any t-statistic greater than 4.5σ (corresponding to a false positive rate of 1× 10−5)

would indicate the presence of leakage and that an attack may be possible. This allowed

designers to expose side-channel leakage without conducting potentially complex key recov-

ery attacks. It has become a popular tool for the assessment of side-channel vulnerabilities

in secure devices because of its simplicity, and Balash et al. [17] later showed that these

methods allow us to determine that microprocessors leak in many, often unexpected, ways.

TVLA is widely used by research and testing facilities even though it does have several

shortcomings. One being the lack of an obvious relationship between the leakage and the

exploitability and efficiency of using the leakage in an attack. Another one is the existence

of false negatives which occur when the measurements contain side-channel information but

TVLA fails to detect it. This can happen in a couple of scenarios. First, it is possible that

two data sets have very similar means and the amount of measurements is not sufficient to

discern a difference. Second, the data sets obtained could be very noisy (low Signal-to-Noise

Ratio (SNR) [102, 160]) and again the number of measurements could not be sufficient to

discern a difference. Typically, one would try to reduce the risk of a false negative by applying

TVLA on a large number of measurements [17, 138] or using multiple input vectors for the



fixed set. One can also opt to use a fixed versus fixed test which will reduce the algorithmic

noise but has the added drawback that some leakage may not show up due to the choice of

vector [138]. Ideally, the confidence in the outcome of the evaluation can be improved by

repeating the TVLA test multiple times over new measurements. However, this increases

the total number of measurements and evaluation time. In practice, one typically only has

a limited number of measurements, or available time, so it seems opportune to extract as

much information as possible from a set of acquired traces. In this work, we seek to provide

that, without the need for more measurements. We achieve this by improving the efficiency

of the data usage or, looking at it from a different angle, one could argue that we decrease

the the number of measurements needed for detecting leakage.

Bootstrapping is a computer-based technique for statistical inference proposed by Efron [42].

It can be used to estimate the statistics of a population by repeatedly re-sampling from

the same data set. The repeated sampling provides an approach that enables repeated

testing from one set of measurements, where we only require that the measurements are

representative of the population from which they are drawn. We demonstrate that this

method, applied to side-channel leakage detection, can reduce the number of traces required

to detect leakage by one, or more, orders of magnitude, and is demonstrated with multiple

experimental setups. First, we generate simulated traces with the knowledge about the side

channel leakage and we apply bootstrapping and leakage detection on our simulated traces to

gain an understanding of the increase in efficiency. Then, we apply bootstrapping on actual

measurements from both software and hardware implementations with and without side-

channel countermeasures. Based on our experimental results, we show that bootstrapping

can significantly reduce the number of traces required to detect leakage by building a degree

of trust in the results from the leakage detection test. Our proposed method provides another

metric and gives complementary information about the leakage to the evaluator.



This chapter is organized as follows. Section 6.2 describes the preliminaries needed to follow

the story in the chapter. Section 6.3 details on how to apply bootstrapping to leakage

detection tests. Results are given in simulation and on a variety of software and hardware

implementations. The limitation and interpretation of the bootstrapping is elaborated upon

in Section 6.4. Some implementation details are given in Section 6.5.

6.2 Preliminaries

We first provide an introduction to the methods we will use throughout the text.

6.2.1 Leakage Detection using Welch’s t-test.

Welch’s t-test is a statistical test used to compare sample means of two sets with, possibly,

unequal variance but still under the assumption of normality. The output of the test provides

a test statistic which can be combined with a threshold to validate the null hypothesis H0

that both sets have equal means, or state there is no evidence supporting the null hypothesis

so the alternative hypothesis Ha holds. We consider sets A,B of size nA, nB, with means

µA, µB and standard deviation σA, σB, respectively. With these notations the null hypothesis

and the alternative hypothesis are noted as follows,

H0 : µA = µB Ha : µA ̸= µB (6.1)

and the t-statistic is calculated with the following formula:

ψ =
µA − µB√
σA

2

nA
+ σB

2

nB

(6.2)



where ψ ∼ t(0, ν) with ν degrees of freedom and t(x, y) the t-distribution with mean x and

standard deviation y. In practice, we use the result that the t-distribution is asymptotically

equivalent to the standard normal distribution as the degrees of freedom increase, i.e. we

assume ψ ∼ N(0, 1). We then transform the t-statistic into a p-value using the Cumulative

Density Function (CDF) to argue about the validity of H0.

Goodwill et al. [67] proposed to use Welch’s t-test to detect leakage in implementations

of cryptographic algorithms by comparing two sets of side-channel acquisitions. One set

would be acquired with a fixed input and the other with a random input. Welch’s t-test

can be computed point-wise on the acquisitions. A null hypothesis is formulated at each

point individually assuming independence of the points. Intuitively one can see that if the

means of those two sets (or the distributions) are not equal, the power consumption is data

dependencies and could potentially leak information.

Goodwill et al. [67] proposed a Type I error, a false positive, rate of 1 × 10−5, meaning

the two-tailed p-value p < 1 × 10−5 would stipulate there is no evidence H0 is true. This

corresponds to the absolute value of |ψ| > 4.5 indicating that there is no evidence H0 is

true, and the the alternate hypothesis may be true. In practice, Welch’s t-test is applied

point-wise across a set of acquisitions so the probability of seeing at least one Type I error

is significantly larger than 1 × 10−5. Ding et al. [160] proposed adjusting the threshold by

taking the trace length (total number of points in a measurement) into consideration. For

ease of expression, we will use the threshold defined by Goodwill et al. [67], but a different

threshold may be appropriate when applying this method.



6.2.2 The Bootstrapping Method.

The bootstrapping method is a computation-based statistical tool proposed by Efron [42] to

make inferences about a population parameter based on a sample set. It is typically used

to estimate statistical distributions and to quantify uncertainty, under the assumption that

the sample set is representative of the population.

Given a set of observations Sobs consisting of n samples, {s1, . . . , sn}, from a given population

we can apply bootstrapping by repeated sampling, with replacement, from Sobs. This process

can be repeated b times, producing b sets {S ′
1, . . . , S

′
b}, where b is chosen arbitrarily. More

explicitly, we detail this process in Algorithm 5, where we define the operation R←− as taking

a random sample from a set. Statistical tests can then be applied to each of these sets

producing a set of statistics, which can allow a better analysis than just relying on the

observed set Sorig.

Algorithm 5: Generating Bootstrapping Sets
Input: Sobs = {s1, . . . , sn} with n, b ∈>0

Output: {S ′
1, . . . , S

′
b}

1 for i = 1 to b do
2 for i = 1 to n do
3 s′j

R←− {s1, . . . , sn} ;
4 end
5 S ′

i ← {s′1, . . . , s′n} ;
6 end
7 return {S ′

1, . . . , S
′
b}

Pattengale et al. [118] recommend repeating this process 100–500 times to get a robust

description of the distribution of the population. In our work we show that far fewer iterations

are required for leakage detection.



6.2.3 Kolmogorov-Smirnov Test

In this chapter, we also apply the one-sample Kolmogorov-Smirnov test (KS test), which is

a measure of the difference between a sampled distribution and a defined distribution. The

null hypothesis of the test H0 is that the samples come from the defined distribution, with

the alternative hypothesis Ha that the samples have a different distribution.

Let (s1, s2, ..., sn) be the samples in a data-set. For any number x, the empirical distribution

function value is the fraction of the data that is smaller x:

Fn(t) =
1

n

n∑
i=1

I{
sj ≤ x

} (6.3)

Where I is the indicator function. The test statistic D exploits the maximum distance of

the empirical distribution from the sampled distribution and the defined distribution:

D = sup
x
|Fn(x)−G(x)| (6.4)

Where G computes the CDF of the defined distribution and sup is the supremum function.

After getting the D statistic for the KS-test, the corresponding p-value can be calculated

from the CDF of the one-sample Kolmogorov-Smirnov distribution.

6.3 Applying Bootstrapping to Leakage Detection

In this section, we describe how we apply bootstrapping to leakage detection. Without loss

of generality, we discuss our results using Welch’s t-test, since the same method could be

applied to any other test that produces a p-value. That is, similar improvements would be



Figure 6.1: Bootstrap Leakage Detection Enhancement

seen if one were to use other statistical tests, such as the χ2 test [110], Hoteling’s T 2-test or

Diagonal-test(D-test) [30].

Let Sobs = {s1, . . . , sn} be the set of n acquisitions to be used in a leakage detection test, as

described in Section 6.2.1. Each si, for i ∈ {1, . . . , n}, consists of an acquisition and the cor-

responding metadata indicating whether it belongs to set A or B. We apply bootstrapping,

as shown in Algorithm 5, to Sobs to provide b sample sets {S ′
1, . . . , S

′
b}, where the choice of b

is arbitrary. We then conduct Welch’s t-test on each set and compute the resulting p-value,

giving {p′1, . . . , p′b}. Each p-value represents a test with

H0 : no leakage Ha : leakage (6.5)

and we wish to combine the p-values to test this null hypothesis. Figure 6.1 demonstrates

the proposed methodology.

In general, the p-value is a measure of evidence on whether the null hypothesis is true, where

a p-value close to 0 can be taken as lack of evidence that the null hypothesis is true, and that



the alternate hypothesis may be true. By definition, if the null hypothesis is true then the

p-value is uniformly distributed over the interval [0, 1]. It has been shown that the p-value

distribution is highly skewed when the alternative hypothesis is true [75].

In this work, we use the distribution of the p-values {p′1, . . . , p′b} to evaluate whether there

is evidence that the null hypothesis is true. That is, if the null hypothesis is true then

{p′1, . . . , p′b} ∼ U(0, 1) .

We can test whether this is the case using the one-sample Kolmogorov-Smirnov test to

compare {p′1, . . . , p′b} to a uniform distribution. In the KS-test we have the null hypothesis

that the data-set is drawn from the defined distribution, and the alternate hypothesis that

it is not. That is,

H0 : {p′1, . . . , p′b} ∼ U(0, 1) and Ha : {p′1, . . . , p′b} ̸∼ U(0, 1) . (6.6)

The resultant KS test statistic reflects the similarity of the distribution of the p-values with

the uniform distribution. As proposed by Goodwill et al. [67], we shall assume the significant

level α of 1× 10−5, and reject the null hypothesis if the p-value return by the KS-test gives

p < 1× 10−5.

6.3.1 Simulating Leakage Detection

To demonstrate the effectiveness of our method we simulated a single sample, i.e. a simulated

acquisition with a trace length of one. We generated sets of data where the sample is the

Hamming weight of an 8-bit value with added Gaussian noise to achieve a signal-to-noise

ratio of 1 dB, to simulate the setup in the practical environment in which the traces are



Figure 6.2: The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) using simulated traces

noisy and multiple traces are needed for the t-test to reach the threshold.

In Figure 6.2, we show how the t-statistic produced by TVLA evolves as the number of traces

increases, compared to the evolution of the p-values produced by the KS test, as described

above. As proposed by Moradi et al. [110], we plot the negative logarithm base 10 of the

p-value in both cases. This allows for a simple comparison and the 4.5σ threshold becomes 5.

In our simulation, a straightforward implementation of TVLA will show leakage after 1600

traces. If we apply bootstrapping we can see leakage from 200 to 400 traces, depending on

the number of iterations of the bootstrapping method that are applied.

To demonstrate why this occurs we generated three sets of single-point traces: Trace-set-

A is calculated as the fixed value 5. Trace-set-B and Trace-set-C are calculated from the

Hamming weights of 8-bit random values. As above, we added Gaussian noise to achieve a

signal-to-noise ratio of 1 dB. In Figure 6.3, we can see two plots of frequency versus p-value,

where the p-values are generated from 5000 iterations of the bootstrapping method on 1000

samples. The left plot is the result of applying bootstrapping to TVLA applied to Trace-

set-A and Trace-set-B, and the right plot from applying bootstrap enhanced TVLA applied

to Trace-set-B and Trace-set-C. These tests represent the fixed-versus-random case and a



comparison case of random-versus-random. In each case the resulting p-values are grouped

into bins defined by dividing up the interval [0, 1] into 100 equally sized bins. The difference

in the observed distributions is quite striking.

Figure 6.3: The sample distribution of the p-values taken from 5000 iterations of the boot-
strapping method applied to samples where a the null hypothesis is false (left) and true
(right)

6.3.2 Experimental Results

We then performed experiments to evaluate the practical benefits of bootstrapped enhanced

TVLA on a variety of implementations and platforms.

Software AES with Boolean masking. The first experiment is an application of the

proposed test to a naïve implementation of a Boolean masked AES on an NXP

LPC2124, a 16/32 bit ARM7TDMI-S chip. The implementation was a straightfor-

ward 8-bit implementation making use of randomized masked tables for the S-box and

the xtime operations. As noted by Balash et al. [17], such implementations are unlikely

to be secure. Measurements were acquired with a Langer RF − U2, 5− 2 electromag-

netic probe over a decoupling capacitor using a PicoScope 3206D at 400 MS/s with

200 MHz bandwidth.



Figure 6.4: The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) applied to an implementation of AES in software

Figure 6.5: The evolution of the p-value with increasing number of traces for TVLA (left) and
with bootstrapping (right) applied to an unpotected implementation of AES on an FPGA

Unprotected hardware AES. Our next target was a straightforward single round per

clock cycle hardware implementation, i.e. all 16 S-boxes are computed in parallel,

on a Xilinx Kintex-7 FPGA. We used a custom FPGA prototyping board where we

measured the voltage drop across a measurement resistor using a Tektronix DPO7104C

at 1 GS/s.

Lightly protected hardware AES. Our last target was an AES implementation pro-

tected with a low-cost dual rail countermeasure implemented on the same FPGA

platform as the unprotected AES implementation, described above. AS previously,



we used a custom FPGA prototyping board where we measured the voltage drop

across a measurement resistor using a Tektronix DPO7104C at 1 GS/s.

Figure 6.6: The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right)

In the three experiments presented above, we can see that the bootstrapping method reduces

the number of traces required to detect leakage by at least one order of magnitude in all cases.

Or, were we to use all the measurements, we would get with a high certainty all the leaking

points this set could uncover. the In the first two targets presented there is some modest

variation in the required number of traces required to see leakage as we increase the number

of iterations of the bootstrapping method. However, for the third target the difference is

much larger. If bootstrapping is applied 10 times we require 450 traces to detect leakage,

whereas we only require 40 if bootstrapping is applied 100 times. Both of these numbers

stand in stark contrast to the number of traces required by a straightforward TVLA, which

is in the order of 1× 104.

6.4 Limitations

The idea of the bootstrap technique is to get an estimate of the deviation of a sample statistic

from the true value of the statistic, and relies on the independence of the samples to do so. It



does not allow one to extrapolate information from the underlying data if it is not represented

in the acquired set. What it can do is give us some assurance on the test statistic and its

variation to give more accurate picture. That is, if the collected data set is representative of

the underlying distribution, resampling will help produce a more accurate statistical analysis.

There are obviously limitations of this technique, as demonstrated in Figure 6.7. The top

left plot shows the result of a straightforward fixed-versus-random TVLA test, as described

in Section 6.2.1, on 5×105 traces, where the t-test statistic is turned into a p-value under the

null hypothesis that there is no leakage. From this picture, it is clear that some points are

already crossing the 4.5σ line (i.e. where − log10 p = 5), while other points are getting close

to the line. As has been clear from the literature, the results of a t-test are greatly affected

by the signal-to-noise ratio of the measurements, and reliably identifying false negatives

and false positives is problematic. The bottom right plot shows the bootstrapping method

applied b = 5 times to the same 5× 105 traces (we note recommendations on b vary widely

in literature). This demonstrates that we get a lot more assurance on the points that do not

provide evidence the null hypothesis is correct and all points which showed leakage in the

original figure are present. The top right plot shows the result of bootstrapping a 1000 traces

with b=20, and the bottom left plot shows the result of a bootstrapping of 5000 traces with

b=5. Neither of these figures are showing the peak around sample point 30 visible in the

top left plot indicating that the underlying data is not sufficiently representative of the full

set because we restricted the amount of traces. However, we do have peaks at other points

that are not visible in the entire set, again caused by bias in the smaller number of traces.

While bootstrapping can allow one to determine if leakage is visible on a smaller number of

traces, it is subject to bias in the acquired traces.



Figure 6.7: The negative log of p-value returned by the TVLA test for a fixed-versus-random
t-test with 50000 traces (top left), 1000 traces with 20 iterations of the bootstrapping method
(top right), 5000 traces with 5 iterations of the bootstrapping method (bottom left) and
50000 traces with 5 iterations of the bootstrapping method (bottom right)

6.5 Implementation Details

Statistical processing for side-channel analysis can be computationally intensive and, since

bootstrapping runs the statistical analysis multiple times, the process can be even more

demanding. The most straightforward approach to computing statistical tests is to store all

the data on to a hard disk, read the measurements, run the data through the algorithm of

interest and compute the results. Another approach is to use one-pass algorithms, which find

the required statistical characteristics during acquisition. This concept varies from having

all the statistics ready for the next update to updating an accumulator for each new sample

and computing results on demand [119, 129, 134, 148].



Our method requires calculating different statistical tests (i.e., Welch’s t-test and KS-test),

which use statistical moments as well as observation frequencies. Hence, we chose a histogram

approach, where the histogram contains all information about the distribution that becomes

available while acquiring traces and as such describes the sample distributions. It is then

possible to derive properties appropriate for both tests. Our statistical technique was initially

based on the work by Reparaz [129]. However, our implementation extends the method to

a coordinate space, provides an implementation algorithm, and describes how to calculate

statistics other than the t-statistic.

We assume that the leakage assessment is performed over a set of observed samples S with n

traces of m sample points with c classifications. Each sample point in the measurement has r

meaningful bits, corresponding to 2r integer values, which are used as indices of counter bins.

Each classification should have q sets of histograms, where q is the amount of bins required

to cover each possible classifier value. This approach can be represented as a 4-dimensional

set cqm2l . We shall denote an instance of this set as H. An element of H is denoted eijkl

where i ∈ {1, . . . , c}, j ∈ {1, . . . , q}, k ∈ {1, . . . ,m}, l ∈ {1, . . . , 2r}. For example, if there in

an evaluation of the non-specific fixed-versus-random test we have c = 1 and q = 2. If we

would wish to conduct a correlation power analysis [28] on an 8-bit intermediate state with

the hamming weight model we would have a separate classifier, e.g. c = 256, with q = 9.

When acquiring data one would set H to all zeros and update H after each acquisition

using Algorithm 6. At any given moment, the results of the statistical tests can be rapidly

computed from H.



Algorithm 6: Updating H
Input: H with elements eijkl where i ∈ {1, . . . , c}, j ∈ {1, . . . , q}, k ∈ {1, . . . ,m},

l ∈ {1, . . . , 2r}, a set of n traces S = {s1, . . . , sn} with ∼≈ = {st1, . . . , stm} with
a classifier value zti for each of the classifications. For ease of notation,
classifier values will be in 1, . . . , rather than the actual value.

Output: H
1 for t = 1 to n do
2 for i = 1 to c do
3 for k = 1 to m do
4 j ← ci ;
5 l← st,k ;
6 ei,j,k,l ← ei,j,k,l + 1 ;
7 end
8 end
9 end

10 return H

The first two statistical moments, µ and σ2, for Welch’s t-test:

µijk =
1

Nijk

2r∑
x=1

ei,j,k,xx

σ2
ijk =

1

Nijk − 1

2b∑
x=1

ei,j,k,x(x− µijk)
2

(6.7)

where Nij =
∑2r

x=1 ei,j,1,x. Then we can compute the t-statistic, applied to k points, as

t =
µij′k − µij′′k√

σ2
ij′k
Nij′

+
σ2
ij′′k
Nij′′

. (6.8)

.

The CDF function used to define the sampled distribution, see (6.3), used to compute the



KS test, applied to k points, becomes:

dijkx =
x∑

y=1

ei,j,k,y. (6.9)

We note (6.7) and (6.9) use the notation used in Algorithm 6, where i is a classifier index,

j is a bin, k is a trace sample point, and x is a counter bin index.

This approach was been implemented as a python module, compiled from cython code to

C code and then to a dynamically linked library. The Intel MKL library has been used to

derive the required statistics. The space H has an element type represented by a 32-bit

unsigned integer, which establishes the memory requirement for H as 4 × c × q × m · 2b

bytes. This would allow one to process up to 4 billion traces, which is typically sufficient.

It is important to note that the size of H should be small enough to fit within CPU cache,

which is typically 5, 7 or 15MB. This implementation allowed us to efficiently evaluate the

Bootstrapping method.

6.6 Conclusion

In this chapter, we describe how to use bootstrapping to augment side-channel leakage

detection tests by repeated sampling with replacement from an acquired set of traces and

combining the results of each set. Simulations and experiments show that even a small

number of iterations of the bootstrapping method present significant improvements over

straightforward TVLA [67]. The bootstrapping method presented above can be applied to

other statistical leakage detection methods [30, 110], and we would likewise expect a similar

increase in performance at the cost of extra calculation time. We also show an efficient way

of computing the necessary statistics to compensate for the extra calculation time, based on



methods described by Reparaz [129].

Recent work by Bache [15] proposed a somewhat similar approach to our work, although

without the application of bootstrapping. They describe using the confidence interval, in-

stead of a single p-value/t-statistic, to improve the assurance of the presence, or absence, of

leakage. The confidence interval provides the error-probability for a false negative. How-

ever, the confidence interval makes it harder for an evaluator to make a judgment about

leakage, when compared to the pass/fail criteria used in straightforward TVLA. In compar-

ison, applying bootstrapping to TVLA, as we describe, provides a single pass/fail parameter

from combining p-values, making the results easier to interpret than those provided by the

method presented by Bache [15]. Moreover, since applying bootstrapping extracts more

information from an existing set of acquisitions, applying bootstrapping to TVLA improves

the data-efficiency in leakage detection. That is, it can predict/detect leakage with fewer

acquisitions. In comparison, the accuracy of the method presented by Bache using the

confidence interval is highly dependent on the number of acquisitions.



Chapter 7

Programmable RO (PRO): A

Multipurpose Countermeasure against

Side-channel and Fault Injection

Attacks

In this chapter, we will present our design of a multipurpose secure primitive that can

proactively monitor and protect the security of on-chip Power Distribution Network (PDN).

7.1 Introduction

In a physical side-channel attack, an adversary learns secret information by passively mon-

itoring or else actively influencing the implementation of a secure electronic system. While

power consumption is a popular target in side-channel attacks, many other sources of physical

quantities have been identified and used as side-channel leakage. Besides passive monitoring

of circuit behavior, an additional cause of information leakage stems from targeted faults.

By analyzing the corresponding fault response, an attacker can retrieve the secret informa-

tion from a target [18]. The most common methods to inject faults include power glitches,

clock glitches, electromagnetic pulses, and laser pulses. Finally, fault injection and side-

140



Figure 7.1: PRO based on-chip Secure Network Hardware Extension

channel monitoring can also be used in a combined attack, for example, to break a masking

side-channel countermeasure [153].

Even though many existing works have demonstrated side-channel and fault attack coun-

termeasures, there are no simple circuit-level solutions to solve both side-channel and fault

attack vulnerabilities in a generic manner. Generally, even for individual side-channel or

fault countermeasures, a significant overhead will be introduced to the design. Moreover,

many of the existing countermeasure mechanisms have to be specifically adjusted for the

implemented algorithm.

In recent years, researchers have further demonstrated that the placement of the attacker and

the victim circuitry on the same chip while sharing a common PDN brings new side-channel

and fault attack opportunities. Having a common PDN intrinsically relates the perturbations

from the victim’s logic to the attacker’s logic and vice versa. Therefore, a neighboring

adversary logic can interpret information about the victim operations by monitoring the

changes on the shared PDN. On the other hand, the same physical effect exists in the

other way around; The victim logic can infer malicious operations of its neighbor circuitry



by monitoring the shared PDN. Therefore, in order to guarantee the security of the PDN,

a monitoring sensor network on the PDN should be built to detect on-going attacks. The

monitoring sensor network should fullfill the requirements including large spatial coverage,

i.e., covering the full PDN area, and large temporal coverage, i.e., continuously monitoring

the PDN [140].

Previously, Ring Oscillators (ROs) were widely used by silicon design houses as test struc-

tures or on-chip sensors to monitor the performance of their technologies and circuits [82].

But a multi-purpose design of RO-based on-chip sensors has not been investigated in adding

resistance against both side-channel and fault attacks to the circuit. In this work, we intro-

duce a new multi-purpose Ring Oscillator design - programmable RO (PRO). With a low

overhead, the proposed PRO can provide the following solutions within the same structure:

• Active Side-channel hiding countermeasure;

• On-chip power monitoring;

• Fault injection monitoring;

The proposed PRO design has multiple configurations of oscillation frequency, which are

under the control of the user (i.e., the defender). Each PRO has its own counter which can

be read to calculate the PRO’s frequency by comparing it with a reference counter. We first

demonstrate that with low overhead, an individual PRO can provide sufficient disturbance to

the power to hide the side-channel leakage of the secret information in the system. Moreover,

we further demonstrate that by combining multiple PROs into an array and by placing them

within the module under protection, a secure on-chip monitoring network can be constructed

to monitor the power fluctuations on the PDN to detect abnormalities and fault attacks.

Figure 7.1 shows the overall structure of the PRO-based on-chip secure system. The PROs



are evenly placed on the chip to form a secure on-chip network. The PRO secure network

can be controlled by the external user configuration. The user can turn on the SCA counter-

measure by configuring the PRO to oscillate at randomized oscillation frequencies. Besides,

the user can monitor the oscillation frequency of each PRO in the array by reading out its

corresponding counter value. We demonstrate that by monitoring the frequency change of

the PROs, on-chip local power attacks and EM fault injections can be detected.

The proposed design can be used on any secure module, from small hardware accelerators

to complex System-on-Chips (SoCs). To the best of our knowledge, this is the first work

to comprehensively study the potential of RO-based designs in SCA countermeasure, power

sensing, and fault detection.

Adversary Model

PRO covers adversaries with side-channel and fault attack capabilities listed in the follow-

ing:

Side-channel Attacker Model. We consider two attacker models. The first attacker

model has physical access to the device which enables the attacker to control the input data

and monitor the power dissipation by shunting the device’s power supply. The second at-

tacker model works remotely; The attacker circuit shares a PDN with the victim circuit and

can control only the attacker circuit remotely. Therefore, the attacker is able to implement

malicious logic to monitor the changes on the shared PDN and measure the power consump-

tion of the device [139, 162]. This enables the attacker to perform side-channel attacks, such

as Simple Power Analysis (SPA) [101], Differential Power Analysis (DPA) [85], and Corre-

lation Power Analysis [29], to retrieve the secret information used in the victim circuit.

Fault Attacker Model. We also assume the adversary can induce faults into the victim



circuit by stressing the electrical environment, such as injecting clock glitch, power glitch,

and EM glitch. These glitches can induce targeted transient faults which can flip bits, change

the control flow of the secure algorithm, set/reset the circuit, etc. Fault injection can be

done either by exerting disturbance to the circuit directly, which requires the adversary to

have physical access to the device, or by having remote access to the shared cloud computing

environment with the victim circuit [10, 89, 96, 126]. The exact fault effects to the circuit

highly depends on the fault injection parameters, victim circuit’s architecture and algorithm,

and fault injection technique. By monitoring the fault response of the circuit after injecting

targeted faults, the adversary can retrieve the secret information by performing Differential

Fault Analysis (DFA) [23], Statistical Fault Analysis (SFA) [60], or instruction skip attacks

[152]. PRO as a secure on-chip add-on can be integrated to the circuit to protect against

the aforementioned attackers. Adversaries may try to tamper with the PRO sensor itself to

bypass the PRO’s security mechanisms, but we don’t consider this adversary model within

this work.

The structure of this chapter is as follows. The next section reviews related work of Ring

Oscillators and highlights our contribution. section 7.3 describes our proposed PRO design.

In section 7.4, we explain and demonstrate the effectiveness of PRO as a side-channel coun-

termeasure. Next, we present the PRO’s power sensing functionality in section 7.5. We

further show that PRO can detect power fault and EM fault in section 7.6. Finally, we

conclude this chapter in section 7.7.

7.2 Related Work

When sharing the same PDN, seemingly unsuspecting parts of the implemented logic can

perform adversarial operations on the other parts. In this work, our focus is on two categories



of adversarial operations; fault injection and power side-channel analysis. In the following,

we categorize the related work into three parts: using on-chip logic as a countermeasure

against power SCA, using on-chip sensors as power sensors to detect power perturbation,

and using on-chip sensors to detect fault injection attacks.

7.2.1 On-chip sensors as a countermeasure against power SCA

Liu et al. [94] use an array of ROs, randomly switched on and off, to dynamically hide

the power consumption of AES SBox and hinder the first-order Differential Power Anal-

ysis (DPA). Similarly, Krautter et al. [90] use ROs as a power-based SCA mitigation

methodology. In their work, the part of the implementation that needs to be protected is

surrounded by a network of ROs. By switching an arbitrary number of the ROs on and

off, the Signal-to-Noise Ratio (SNR) in power traces decreases, and therefore, the number of

traces required for a Correlation Power Analysis (CPA) attack to be successful is increased.

This approach is called hiding side-channel leakage. However, the RO in both designs are

running at a fixed oscillation frequency, and thus, only a single-frequency noise is injected. In

this case, it is straightforward for an attacker to apply post-processing techniques to remove

the noise effect. To avoid this weakness, PRO uses user-controlled but random frequency

changes (section 7.4). Moreover, to further reduce the overhead, we show how a simple

modification can enhance the countermeasure efficacy.

7.2.2 On-chip sensors to detect/cause power perturbation

Zick et al. [163] use ROs to measure on-chip voltage variations. Indeed, the oscillation

frequency is proportional to the supplied voltage on the PDN. To measure the frequency



of an RO accurately, counters are required that are clocked with the output of the RO.

This limits the maximum sample rate attainable by the RO counter structure, and hence,

the bandwidth of the side-channel signal. This limitation has motivated research on other

voltage-sensitive Time-to-Digital Converter (TDC) methods. For instance, Gnad et al. [66]

use carry-chain primitives available on Xilinx FPGAs as TDCs. However, the use of carry-

chain primitives makes their approach specific to certain FPGA families. Similar TDC

structures have been explored in the context of CMOS design simulation to measure the

operating voltage of a chip [14].

Moreover, ROs have been used in offensive scenarios affecting the PDN for both passive

(power-based) and active (fault injection-based) physical attacks. As an example of power-

based SCA, Zhao et al. [162] presented on-chip power monitors with ROs. They demon-

strated that ROs can be used as a power monitor to observe the power consumption of other

modules on the FPGA or SoC. Using their power monitor, they captured power traces of

the device running the RSA algorithm and were able to successfully find the private key by

applying Simple Power Analysis (SPA). Gravellier et al. [69] perform CPA on power traces

acquired with RO-based power sensors.

To inject timing faults, Mahmoud et al. [96] employ ROs to increase the voltage drop on the

power network and lower the voltage level. Effectively, they make the victim chip slower,

causing timing faults. Similar attacks have been shown in other works [10, 89, 126].

7.2.3 On-chip sensors to detect fault injection

Next, we consider on-chip sensors for fault detection. Miura et al. [105] present a sensor

consisting of Phase-Locked Loop (PLL) and ROs. In their work, ROs are routed in a specific

way to ensure their path travels through most parts of the chip. Once an EM fault is injected,



the path delay of the ROs will be affected, resulting in changes in the RO phase. The PLL

logic can capture this phase disturbance and detect the ongoing fault injection. Similarly,

He et al. used PLL block to detect the laser disturbance on RO oscillation frequency [73].

Provelengios et al. [126] show that on-chip ROs can not only detect fault injection, but also

locate the origin of the fault injection. With a similar structure, RON [161] builds a ring

oscillator network, distributed across the entire chip, to detect hardware Trojans. Their work

confirmed that RO-based power sensors can have a sufficiently high sample rate to detect

fluctuations on the PDN.

However, the scope of their work is limited to the power fault detection, whereas, in our

work, we further investigate EM fault detection (section 7.6). Additionally, the unique

programmable design of our proposed RO structure also enables its usage for power SCA

countermeasure (section 7.4).

7.2.4 Our contribution

In general, each previous work addresses one single aspect at a time: a side-channel coun-

termeasure, a power monitor, or a fault detector. In practice, an adversary is capable of

performing a combination of attacks. Hence, it is crucial to find a security mechanism that

encapsulates protection against these attacks. Our goal in this work is therefore to design a

programmable RO structure that can provide the following functionalities within the same

structure:

1. Hiding protection against power-based SCA.

2. On-chip power monitoring of the fluctuations on the PDN.

3. Detecting fault injection.



Figure 7.2: Propagation delay of a ring oscillator.

To the best of our knowledge, this is the first work to comprehensively investigate the

RO’s potential in addressing all these three aspects. In the following sections, we introduce

our proposed design and demonstrate through experiments the capability of the proposed

system. Even though we demonstrate our experiments as an FPGA prototype, our design is

not limited to FPGAs and can be extended to other electronic chips.

7.3 Programmable RO Design

7.3.1 Background

In this section, we introduce our Programmable RO (PRO) sensor design. As shown in the

Figure 7.2, Ring Oscillator (RO)’s output oscillation frequency depends on the propagation

delay of their internal signals. In each oscillation period of a RO, the signal has to propagate

twice through the propagation path. Therefore, the oscillation period (TRO) of a RO is

TRO = 2 · Tprop and its frequency follows the following equation:

fRO =
1

2 · Tprop
(7.1)

More specifically, the propagation delay path is composed of an odd number of inverters

and each inverter contributes to the delay of the path. If t represents the delay of an

individual inverter, and n denotes the number of inverters in the chain, its frequency follows



the following equation:

fRO =
1

2n · t
(7.2)

Hence, the frequency of a RO can be controlled by adjusting the number of stages in the

inverter chain.

7.3.2 PRO Design and Configuration

In this work, we aim to have a programmable design of the RO which gives the designer the

flexibility to choose the RO oscillation frequency.

Figure 7.3 shows the basic structure of our proposed design of the programmable sensor. The

PRO consists of multiple delay cells. Each delay cell includes two delay paths; one consisting

of inverters and the other a shorting path which bypasses the inverters. The multiplexer

in the delay cell can control the delay cell’s propagation delay by selecting between the

delay path and the shorting path with the control input signal SEL. Each delay cell has its

independent control signal. Suppose there are N inverters configured in the delay cell, when

SEL = 1, the delay path is selected and when SEL = 0, the shorting path is selected. The

propagation delay of each delay cell TC is therefore:

TC = SEL · Td + (1− SEL) · Ts (7.3)

Where Td denotes the propagation delay of the delay path and Ts denotes propagation delay

of the shorting path. The propagation delay of the shorting path Ts is a very small value

compared to Td but not 0, this is because of the delay of routing and the delay of the

multiplexer. Other user control inputs include EN which controls whether PRO is enabled

(oscillating) or not, and a control signal to reset/read the PRO counter. The structure



of the PRO design gives flexibility to the designer in manifold. As shown in Table 7.1,

there are multiple initial structural configurations to be decided by the hardware designer at

design time, including the number of inverters per delay cell, as well as the number and type

of different delay cells. These parameters determine the range of the programmable RO’s

oscillation frequency and the number of frequency configurations the programmable RO can

have.

Several constraints can be used as the guidance while configuring the Initial Design Config-

urations of PRO:

1. Oscillation frequency range;

2. Number of configurations;

3. Size of frequency changing step;

4. Area;

As a starting point of PRO parameter configuration, the designer should estimate the prop-

agation delay Tprop for a single inverter. This knowledge can be obtained through the design

library, timing simulation, or measuring RO’s oscillation frequency with a single inverter

(when working on an FPGA environment). Then, based on the designated Oscillation fre-

quency range of PRO, the designer can calculate the minimum and maximum number of

inverters are needed by Equation 7.2. After deciding the number of inverters needed, the

designer can group the inverters into different types of delay cells based on the designated

frequency changing step and number of configurations that are needed. Theoretically, more

inverters result in a larger oscillation frequency range at a cost of larger PRO area. Therefore,

based on the targeted protect design area, the designer should decide the area constraint for

the PRO, so that the each PRO can have a good spatial coverage of the design while at the



Table 7.1: Configurations for PRO

Configuration Type Configurations

Initial Design Configurations
number of delay cell type,
number of delay cells,
number of stages in delay cells

User Configurations
EN,
SELs,
Counter Start/Stop

same time wouldn’t be too close to influence other PROs’ local power distribution.

Next, to better explain our proposed structure, we pick one configuration as an example.

Figure 7.3 shows the structure of the PRO with three types of delay cells. The type-0 delay

cell (D0) has 4 inverters, the type-1 delay cell (D0) has 8 inverters and type-2 delay cell (D0)

has 16 inverters. We instantiated 2 of each type of delay cells in the inverter chain. All the

delay cells have an even number of inverters, and 1 inverter is instantiated at the start of the

inverter chain to make sure that there is always an odd number of inverters in the inverter

chain. When all the inverters are configured to be used in the delay path, the propagation

delay Tprop is maximal, therefore, the overall programmable RO will oscillate at its lowest

frequency. When all the delay cells are configured to use the shorting path, the propagation

delay Tprop is minimal, therefore, the overall programmable RO will oscillate at its highest

frequency.

In our experiment setup, we implement PRO on Xilinx Spartan-6 FPGA, which is fabricated

with 45nm CMOS technology. Under the aforementioned configuration, we measured that

the lowest oscillation frequency is 22MHz and the highest oscillation frequency is 123.44MHz.

Since each delay cell’s SEL is independent, there are in total 15 frequency configurations con-

sisting of {1, 5, 9, ..., 57} inverters. Since there are six SEL signals, there are 64 configurations

in total which redundantly map into the 15 achievable configurations. Through this redun-



Figure 7.3: PRO Design. D0 donates the delay cell type-0, D1 donates the delay cell type-1,
D2 donates the delay cell type-2.

dancy, we are able to estimate the local manufacturing process variations, which is helpful

to decide when a deviation should be cause for alarm (i.e., fault detection) or not.

The designers can control the RO’s frequency by setting the input value of SEL. We are using

the same configurations for all the later experiments in this chapter. For under this PRO

configuration, each PRO can be implemented with 128 LUTs and 32 Registers, in total 160

slices. In our experimental setup, a PRO array with 36 PROs can cover the whole FPGA

(46648 LUTS and 93296 Registers, in total 139944 slices ) to provide the whole chip power

monitoring and fault detection. Therefore, only an overhead of 4.1% is introduced.

7.3.3 PRO Integration and Basic Principles

As a security resistance add-on, PRO can be integrated into the design to protect simple

designs such as hardware encryption engines as well as complex systems such as an SoC.

Control signals are needed for communicating with the PRO. The control signals set up

the user control configurations in Table 7.1. Generally, different control mechanisms can be



Figure 7.4: Basic principles for PRO fault detection

adopted by the designer. In an SoC, the designer can add PROs as a co-processor which can

be controlled by the processor through memory-mapped registers. Under this environment,

the software running on the processor can configure the PROs on the chip. Therefore, PRO-

based countermeasures can be dynamically enabled/disabled while the software is running.

Besides, a hardware-based Finite State Machine (FSM) can be used to control the PROs as

well. In our experiments, we are using the UART protocol to communicate with PRO, and

the control signals sent through the UART are generated by a python script in this chapter.

Figure 7.4 shows the high-level basic principles for the fault detection mechanism using the

PROs. The counter value will be evaluated at the end of each monitoring interval and

compared with the reference counter value to get the actual oscillation frequency of the

PRO. Under normal circumstances, each PRO oscillates at a certain constant frequency, and

thus, its counter value will increase linearly during the monitoring interval. There will be

some small variances caused by the environmental changes, jitters, process variance of the

manufacturer, etc. A characterization procedure, therefore, is needed to define the range of

normal operation [140]. However, in the occurrence of instant fault injection (e.g. power

glitch, EM pulse, time glitch, laser pulse), the counter will be disturbed. The counter value



read out at the evaluation time will deviate from the normal range, and thus, a pulse fault

injection will be detected by the PROs. Additionally, an adversary can inject timing faults

by stressing the PDN continuously (e.g.power starving). As a result, the victim circuit will

operate slower and cause timing violations to create faults. In this case, the PRO counter

value will also deviate from the normal value and capture the fault injection event. In this

chapter, we use power fault and EM fault as an illustration, but PRO’s fault detection

coverage is not only limited to these two fault types.

7.4 Side-channel Countermeasure

Masking and hiding are two popular techniques for side-channel countermeasures. In mask-

ing, each secret variable is split into two or more shares which are concealed by random

numbers. The side-channel leakage of each share alone does not reveal the secret vari-

able because of the randomization introduced by random numbers. A random source that

provides fresh random variables is significantly important in masking implementations. Hid-

ing countermeasures reduce the SNR for secret data-dependent operations. Hiding can be

achieved by several techniques, such as by reshuffling cryptographic operations in a data-

dependency consistent but random order [141], inserting random delays [36], and running

multiple tasks in parallel [139]. In this work, we utilize the proposed PRO design as a hid-

ing countermeasure by injecting noise with random frequency. Previous work has proposed

injecting noise for reducing the SNR [39] [95]. However, since only single-frequency noises

are injected, it is not tricky for an attacker to decrease the effect of noise either by using a

band-pass filter while collecting traces or by post-processing the collected power traces, such

as applying averaging, filtering, and frequency domain analysis. Thus previously proposed

noise-injection-based hiding mechanisms still have security flaws. In our proposed design,



we inject random-frequency noises with the PRO design so that it will be much harder for

an adversary to eliminate the noise.

Figure 7.5: Experimental Setup for Evaluating RO’s performance in side-channel leakage
hiding

The countermeasure circuit consists of a single PRO whose frequency can be controlled by

the SEL input signals. The PRO drives one of the IO pins on the board. As demonstrated

in previous work [95] [91], the power consumed by a single RO is not large enough to have a

significant influence on the power profile of a complete chip or a complete cipher. Instead,

hundreds of RO need to be instantiated on the chip to have a profound hiding influence. This

approach will cause significant design overhead and has the potential risk of inducing power

fault to the circuit [84]. In our proposed mechanism, by driving an I/O pin with a PRO,

the effect of a single (randomly-switched) PRO to influence the off-chip power network is

amplified. Since the load capacitance of an IO-pin is much larger than the load capacitance

of an internal FPGA net, the IO-pin requires more energy to charge and discharge and the

overall power spectrum will thus be influenced by the oscillation frequency of the RO. In

this manner, even with a single Programmable Ring Oscillator (PRO), significant additional

power is consumed to change the power consumption characteristic. In practice, an adversary

senses the on-chip power consumption using a probe, either by connecting an external probe



Figure 7.6: AES power traces when PRO is (a) Off; (b) On;

to the system via a power supply pin [146] or else using an EM probe. Both of these are

dependent on the off-chip power network, and therefore, affecting the off-chip power network

is an important factor to defeat an attacker maliciously monitoring the power profile.

The performance of our proposed hiding countermeasure design is evaluated with AES. Fig-

ure 7.5 shows our experimental setup. We put hardware AES as well as the programmable

sensor on the FPGA. The output signal of the PRO is mapped to drive the IO pin to amplify

the noise effect. For each encryption scenario, plaintext and ciphertext are provided through

the UART for AES. The communication procedure is controlled by the AES control script.

At the same time, we use the sensor control script to send in control signals through the

PRO UART. The control signals can enable/disable the RO and configure the oscillation

frequency of the RO. While AES is running, the sensor’s control script generates random

numbers for the frequency configuration so that the frequency of the PRO can change ran-

domly. Equally, an on-chip Pseudo-Random Number Generator (PRNG) can be used for

this purpose. Figure 7.6(a) shows the collected AES power trace when the programmable

sensor is off. We can clearly see the pattern of ten rounds of the AES algorithm. By com-



Figure 7.7: Power Spectrum for power traces when (a) PRO off; (b) PRO on without driving
IO pin; (c) PRO with fixed oscillation frequency and driving IO pin; (d) PRO with random
oscillation frequency and driving IO pin;

parison, the power trace changes to a repeated oscillation pattern when we turned the PRO

on, as shown in Figure 7.6(b), which indicates the strong influence of PRO on the power

profile. Under our setup, the complete AES takes 41ms, and we configure the PRO control

script such that the frequency of the PRO changes every 2ms, which means that the PRO’s

frequency will change at least 20 times while AES is running. Figure 7.7(a) shows the fre-

quency spectrum of the power traces when the PRO is off. We can observe small peaks at the

clock frequency (24MHz). We do not observe a significant influence on the power spectrum



Figure 7.8: T-value Comparison when PRO is on/off

if we only put a single PRO without driving the IO pin. Figure 7.7(c)(d) shows the power

spectrum when the PRO is on and driving the output pin. By comparing to Figure 7.7(a),

a significant influence on the frequency spectrum of the power profile can be observed while

PRO is on. Figure 7.7(c) shows a sharp peak when we fix the PRO’s oscillation frequency

to 120MHz.

Suppose one tries to protect the secure component by injecting noise with a regular RO with

a single oscillation frequency. It is easy for the attacker to implement frequency spectrum

analysis, find the injected noise frequency, and apply the corresponding filter to eliminate

the influence of the injected protection noise. As a sharp comparison, Figure 7.7(d) shows

that when random frequency noise is injected by PRO the frequency spectrum is expanded

within the PRO’s oscillation range from 22Mhz to 123.44Mhz. This makes it much harder for

the adversary to filter out the noise by post-processing. To further evaluate the effectiveness

of the proposed design on increasing side-channel resistance, we applied TVLA [67] on 50k

collected traces; As shown in Figure 7.8, a dramatic decrease of t-value can be observed when

the PRO is turned on compared to when the PRO is off. This indicates that the PRO design

can significantly reduce the side-channel leakage of the circuit. We calculate the average

power value with PRO countermeasure off is 0.4643W and with PRO countermeasure on is

0.4692W, therefore, the overhead of power consumption is 1%.

Note. Generally, even though the adversary is aware of the noise signal, since the noise



is injected by PRO at a random frequency which also changes at a fast pace, it is exceed-

ingly hard to remove its effect by normal post-processing techniques; The adversary needs

to monitor both the power consumption and the output of the PRO simultaneously with

sufficient precision and should be able to remove the part of power consumption related

to the output pad’s oscillation using noise-cancellation techniques, which requires high-end

devices. Additionally, to have sufficient information and perform a successful side-channel

analysis from the obtained side-channel traces, the sampling rate for side-channel attacks has

to be at least 2× the clock frequency (according to the Nyquist theorem). We suggest that

while choosing the initial design configurations in Table 7.1, the designers should adjust the

configurations such that the oscillation frequency range of the PRO covers at least 3× the

clock frequency. Under our experimental setup, the clock frequency is 24MHz. Therefore

we configured PRO’s oscillation frequency to 22MHz - 123.44MHz, which covers about 5×

the clock frequency. As a result, the adversary will need a higher-end device with a much

higher sampling frequency (at least 10× the clock frequency) to successfully apply the same

side-channel attack. Hence, PRO as a hiding countermeasure makes it much harder to attack

the circuit by largely elevating the technique bar for the adversaries.

7.5 Power Sensing

In this section, we demonstrate the on-die power monitoring functionality of the proposed

PRO design. Power integrity is essential to guarantee the nominal function of the circuit.

Therefore, monitoring of the fluctuations on the PDN is critical to detect abnormalities. We

first explore the PRO’s oscillation frequency with regard to the external power deviation.

Then, we look into the PRO’s performance in terms of local power sensing on the PDN of



the chip.

Electric circuits use PDNs to deliver power to the transistors in the circuit via external

voltage regulators. PDNs are still affected by sudden current consumption changes despite

these voltage regulators. Thus, the sudden change in the switching activity induces transient

voltage drops in the PDN. PDNs can be modeled using RLC networks. The transient voltage

drop seen by the PDN can be defined as follows

Vdrop = IR + Lit (7.4)

Here, the IR drop is due to the resistive components of the PDN and is dependent on the

steady-state current I. The other term, Lit, influences voltage drop due to the inductive

components of the PDN and is dependent on the changes in the current over time. Hence,

as soon as there is a high current consumption/variations due to some switching activities

of the logic circuit, the voltage drop will increase.

The propagation delay of signals is affected by the on-chip voltage level; Higher voltage levels

increase the switching speeds of transistors, whereas lower voltage levels decrease them. Since

the voltage level affects the propagation delay of signals, the immediate frequency of a ring

oscillator can indicate the level of the voltage on a chip. We take advantage of this property

in our proposed PRO sensor to monitor the integrity of the on-chip power network.

7.5.1 PRO Power Sensing with Regard to External Power Varia-

tions

We first investigate the PRO’s frequency with respect to external power variations. Figure 7.9

shows the setup for this experiment scenario. We put a single PRO sensor on the FPGA.

For the PRO’s frequency measurement, we start the PRO sensor’s counter and system clock

counter at the same time. After running for an arbitrary amount of time Tarb, we read out



Figure 7.9: Experimental Setup for PRO frequency changing as a function of external power
supply

the RO sensor’s counter value CRO and the reference system clock counter value Cclk through

UART. Then, we calculate the PRO’s frequency by:

fPRO =
CPRO

Cclk

· fclk (7.5)

Where fPRO is the PRO sensor oscillation frequency, fclk is the reference clock frequency.

We measure the value of CPRO 1000 times and take the average for better precision. The

measurement procedure is automated through a control script running on a PC.

As we mentioned in section 7.3, the PRO’s oscillation range is 22 Mhz to 123.44 Mhz. To

investigate the PRO’s power sensing sensitivity when operating under different frequencies,

we set the PRO sensor to several oscillation frequencies at the starting (highest) power

supply voltage for the main FPGA core (1.33V). The frequency configurations we pick are

153.2MHz, 100MHz, 66.8MHz, 40.5MHz, and 27.2MHz. We gradually decrease the FPGA’s

supply voltage and monitor the PRO sensor’s oscillation frequency.

Figure 7.10 shows the result of the PRO oscillation frequency with regard to the external

supply voltage. As shown in the figure, when the external supply voltage drops, the PRO’s

frequency drops steadily. The PRO’s oscillation frequency reflects the power supply voltage,

and therefore, it can sense the changes of the power supply and can be used for power



Figure 7.10: PRO’s oscillation frequency with Regard of External Power Supply Voltage

monitoring. With respect to the sensitivity of power sensing, it can be observed that the

higher the oscillation frequency is, the sharper the slope of the frequency vs. the external

supply voltage line will be. This indicates that a higher oscillation frequency can achieve

higher sensitivity in detecting power variations.

7.5.2 PRO Power Sensing with Regard to On-die Local Power

Variations

After investigating the correspondence between the PRO sensor’s oscillation frequency and

the variations of external power variations, we evaluate the power sensing performance with

regard to the on-die local power changing. Several previous works have shown that RO-

based power wasters can cause a local power supply drop [106] [125] [162]. This will cause

the local circuit’s logic to operate at a lower voltage, therefore the local power sensor should

show a decrease in the oscillation frequency when the power wasters are turned on. In this

work, we adopt the RO-based power waster shown in Figure 7.11. Each power waster has

five inverters in the delay chain with an AND gate and oscillates at 245MHz. A global enable



signal is used to turn on/off all the power wasters in the circuit.

Figure 7.11: The structure of the employed RO-based power wasters.

Figure 7.12: Experimental Setup for PRO Power Sensing with Regard to On-die Local Power
Variations

Figure 7.12 shows the experimental setup for the local power sensing evaluation. In this

setup, UART communication is used to read out PRO’s counter value. We constrain the

power waster to locate around the PRO sensor to induce the local power drop around the

sensor. By configuring the number of power wasters, we can control the amount of local

power drop. An on-board dip switch is used to enable/disable the power wasters. In a

measurement scenario, we gradually increase the number of power wasters. For each number

of power waster configuration, we measure the PRO’s oscillation frequency 1000 times and

take the average with power waster on/off, respectively. Next, we calculate the Frequency



Drop Ratio as follows:

Frequency Drop Ratio =
foff − fon
foff

(7.6)

In Equation 7.6, foff denotes the PRO sensor’s frequency when the power wasters are dis-

abled (turned off) and fon denotes its frequency when the power wasters are enabled (turned

on). The results from the experiment are shown in Figure 7.13 when different numbers of

power wasters are enabled. As more power wasters are enabled, the frequency drop ratio

increases correspondingly. We can observe a nearly linear relationship between the number

of power wasters and sensor oscillation slowdown. The linear regression which can closely

model the correlation between the number of power wasters and the frequency drop ratio

can be constructed as f(x) = 0.00031x+0.247 with an R-squared value of 0.991. Therefore,

we conclude that PRO can effectively sensing the local power variations as well.

Figure 7.13: PRO Frequency with Regard of Local Power Supply

7.5.3 PRO Power Sensing with Regard to Sensor Locality

In this experimental scenario, we evaluate the PRO sensor’s frequency change with respect

to the spatial proximity to the switch logic that consumes the power. In this experiment,



we instantiate 36 PRO sensors to get full spatial coverage of the FPGA. As shown in the

floorplan in Figure 7.14 for this experimental scenario, 36 sensors residing in 9 rows, and

each row has 4 sensors.

To remove the process variations among the PRO instances, we calculate the Frequency Drop

Ratio for each PRO instance following Equation 7.6. We first measure the Frequency Drop

Ratio for all the sensors. Then, we take the average of the frequency drop of the 4 PROs

in each row. The results are shown in Figure 7.15. We observe that as the PRO sensors

are placed closer to the power wasters (from Row 0 to Row 8), the Frequency Drop Ratio

increases. Therefore, we can see the spatial distance of the PRO sensor to the switching

logic (power wasters) indeed can be reflected in the Frequency Drop Ratio. We can further

use this feature to detect the location of injected faults on the chip (will be demonstrated in

section 7.6). Note that there is an outlier in our designed sensor, which might be attributed

to the power distribution network structure of the electronic circuits in which the power in

the center of the chip is built to be more stable [121].

7.6 Fault Detection
In this section, we focus on evaluating our proposed on-die PRO sensor’s performance in

sensing the occurrence of fault injection attacks. We show that PRO can be used to protect

the circuit from adversaries who have physical access or remote control of the device [96]

which enables them to inject power or EM faults. However, we assume that PRO itself is

protected against the manipulation of the attacker. We demonstrate that PRO can not only

detect the occurrence of a power-based fault, but also the sensor array can detect the location

of the power fault. This enables the designer (or the system administrator) to identify the

source of the fault injection or the malicious circuits and build highly targeted fault response

mechanisms accordingly. Moreover, We further demonstrate that PRO can be used for EM



Figure 7.14: FPGA Floorplan for Evaluating PRO Performance with Regard of Sensor
Locality

fault detection as well.

7.6.1 Power Fault Detection

Sharing the same PDN between a potential adversary and a victim opens the door to a new

array of attacks. An adversarial logic can impose strong changes on the voltage level to cause

timing faults in the victim circuit [10, 89, 96, 126]. Since all these attacks affect the PDN,

we aim to build sensors that are sufficiently sensitive to the voltage level and therefore can

detect such attacks. Detecting ongoing fault injection attacks will prevent resulting timing

faults to go unnoticed.

Figure 7.16 shows our experimental setup for evaluating the power fault detection perfor-

mance of our sensor. We instantiate AES as well as the PRO sensors array on the FPGA.



Figure 7.15: PRO’s average Frequency Drop Ratio for each row versus the spatial proximity
of the power wasters

Power wasters are placed locally on the chip to simulate the situation when local power faults

are induced by an adversary. An on-board dip switch can control the turning on/off of the

power wasters. AES control script is used to control starting the AES, send in plaintext, and

read out the ciphertext. The AES control script is also used to monitor the correctness of

the resulting ciphertext. We adjust the number of power wasters instantiated while AES is

running. When faulty ciphertexts are observed, we know that an effective power fault is suc-

cessfully injected. This ensures that the power fault detected by PRO are actually effective

faults. Next, we read out the PRO’s counter value through the sensor’s control script both

when the fault is injected and not injected respectively, and compare their values. Note that

as a chip-level sensor, our goal is to detect the location of the attacker instead of identifying

the fault effect within the victim algorithm/circuit.

Figure 7.17 shows the floorplan of the aforementioned setup. We placed 36 sensors on the

chip and 524 power wasters are instantiated to generate power fault. We first put the power

wasters at Row 1 and Row 2 on the left as shown in the orange blocks in Figure 7.17. While

AES is running, we read out the sensor’s counter value when the faults are injected and not

injected by power wasters respectively. Then we calculate the Frequency Drop Ratio based



Figure 7.16: Experimental Setup for PRO Power Fault Detection

on Equation 7.6. With the PRO sensor data, we are to able find the location of the power

fault. First, to locate which row has the power fault, we take the average of the 4 PRO

sensors’ frequency drop ratio in each row. Figure 7.18 shows the result of each row’s average

Frequency Drop Ratio. The maximum Frequency Drop Ratio points to a location adjacent

to Row 2. This demonstrates that our sensor array can point to the correct row that the

fault has occurred. Then, we divide the chip into two regions, left and right. To locate the

fault region, we take the average of the Frequency Drop Ratios of the 18 sensors in the left

and right two columns separately. The average Frequency Drop Ratio on the left region

is 0.2184, and the average frequency drop for the right region is 0.213. The left region is

higher than the right region, which indicates that the source of the fault is in the left region.

This demonstrates that our sensor array can point to the correct fault column. Now, after

analyzing the data of the sensor array, we can locate the power fault’s location at Row 2,

left region.

To further demonstrate the capability of the proposed PRO sensor in detecting the location

of the fault, we placed the power wasters in different locations to inject fault while AES



Figure 7.17: FPGA floorplan for Evaluating PRO Performance in Power Fault Detection,
power wasters simulate local power fault happens at location-1.

is running. We repeat the same experimental scenario to locate the faulty row and faulty

column. We first put the power wasters in the location Row 4 and Row 5 on the left region

and gets the result of locating the faulty row as demonstrated in Figure 7.19. The highest

frequency drop ratio points to Row 4, which indicates that the fault happens adjacent to

Row 4. By analyzing the faulty column, we see the left region’s average frequency drop is

0.2159 and the right region’s frequency drop is 0.2091 which indicates that the left region

has the fault. Therefore, the sensor array locates the place where the fault is injected is at

the left region Row 4 which meets our expectation. Next, we move the power wasters to

another location at Row 1 and Row 2 on the right as shown in Figure 7.20. We observe the

left region’s average frequency drop is 0.2083 and the right region’s frequency drop is 0.2204

which indicates that the right region has the fault. As shown in the result of analyzing

the faulty row in Figure 7.19, the highest frequency drop ratio points to Row 2 correctly.



Figure 7.18: PRO average frequency drop ratio for each row when power fault happens at
location-1

Therefore, we demonstrate that our proposed sensor can detect the location of the on-chip

power fault.

Figure 7.19: Floorplan and corresponding PRO average frequency drop ratio for each row
when power fault happens at location-2. Black blocks donate PROs in the floorplan, red
blocks donate power wasters positions in the floorplan.

7.6.2 Electromagnetic Fault Injection (EMFI) Detection

EMFI is a well-known active attack and describes the use of an active probe to apply an

intense and transient magnetic field to Integrated Circuits (ICs). EM pulse causes a sud-

den current flow in the circuit of the targeted IC and therefore, the local supply voltage



Figure 7.20: Floorplan and the corresponding PRO average frequency drop ratio for each
row when power fault happens at location-3. Black blocks denote PROs in the floorplan,
red blocks denote power wasters positions in the floorplan.

drops. The voltage drop reflects in the form of power consumption peaks. This produces

timing faults such as bit-flips, bit-sets, and bit-resets due to timing constraint violation and

sampling faults by disrupting the switching process of D-Flip Flops if EM perturbations are

synchronous with clock rising edges. This enables the adversary to exploit such faults to ex-

tract sensitive content from the device. Previous research has shown that EM perturbations

can cause faulty computations, alter the program flow, and cause bit-flips in the contents of

the memory. Other authors have demonstrated that EM can induce faults into the devices

[64, 124]. In the past few years, EM fault injection attack has gained increasing attention.

In this section, we investigate the performance of our proposed PRO sensor with regard to

EM fault injection.

Figure 7.21 shows the experimental setup for evaluating the EM fault injection detection

performance. In this setup, we instantiate AES and the PRO array with 36 sensors on the

FPGA. AES control script is used to control the starting of the AES, send in the plaintext,

and read out the ciphertext. While AES is running, the EM probe is placed in a fixed

position on top of the FPGA chip surface with a vertical distance of approximately 1.5mm

and generates an EM pulse to induce faults. The EM probe’s tip is 4mm in diameter and



produces a magnetic field that is perpendicular to the surface of the chip. A glitch controller

controls the time and intensity of the EM pulse. While AES is running, we adjust the

intensity of the EM pulse. When a faulty ciphertext is observed, we know that an effective

EM fault is injected. Next, in each measurement, we read out the PRO sensor’s counter value

through the sensor’s control script when the fault is injected and not injected respectively,

and compare their values.

We collect 1000 frequency measurements for all 36 PROs. For each PRO sensor, we inves-

tigate the distribution of the 1000 frequency measurements when the EM fault is injected

and not injected. We observe that the EM fault can cause variations of the PRO’s frequency

distribution. Figure 7.22 shows comparisons of the frequency distribution when the EM fault

is injected and not injected for RO-0 to RO-15. We notice that the PRO sensor’s frequency

shifts to a larger value when faults are injected. We also observe that besides frequency

shifting, there is another fault injection reaction that the PRO sensors can have. We ob-

serve that EM faults can also cause faulty counter value for RO-23 to RO-27 and RO-31 to

RO-36. When the faults are injected, the counter values are read out by the UART jump

to an extremely huge (and faulty) value of 4.08 × 107 MHz. Therefore, by monitoring the

value of the PRO counters, we can detect ongoing Electromagnetic Fault Injection (EMFI)

at run-time.

7.7 Conclusion

In this work, we proposed a multi-purpose Ring Oscillator design. We demonstrated that

it is possible, with a low cost, to have a side-channel countermeasure and fault detection



Figure 7.21: Experimental Setup for PRO EM Fault Detection

mechanism within the same design. We showed that PRO can provide an effective hiding

countermeasure to the circuit with low overhead by injecting random frequency noise. We

further demonstrated that the PRO array can form a comprehensive on-chip secure moni-

toring network. The network can potentially provide both temporal and spatial coverage

of on-chip power monitoring and fault detection. PRO has the flexibility for the user to

communicate and control its configurations, such as its oscillation frequency, in real-time.

This feature highlights its potential to be integrated into large designs, such as SoCs, as a

secure extension to build more comprehensive side-channel and fault-resistant systems. As

the future work, we will further investigate integrating PRO into an SoC and build up a

real-time side-channel countermeasure and fault detection/response system that can protect

both software and hardware applications.
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Figure 7.22: Influence on the Frequency Distribution, X-axis is probability and Y-axis is
frequency.
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Figure 7.23: Influence on the Frequency Distribution for PRO-32



Chapter 8

Overall Conclusion

In this dissertations, we propose several advances in side-channel leakage evaluation and

mitigation for the embedded system design. We first investigate the effects of integration

within the embedded system, develop a novel attack model and its corresponding counter-

measures. We demonstrate that even though each component of the embedded system is

well-protected, new vulnerabilities may be introduced by integration. Progressively, in order

to better address vulnerabilities within the embedded system, we propose novel methodolo-

gies to help designers precisely identify and mitigate the side-channel vulnerabilities at early

design stages. We first looked into the simulation-based side-channel leakage assessment

and evaluated each simulation abstract level’s trade-offs in capturing side-channel leakage at

the pre-silicon stage. Then, we develop a gate-level netlist analysis methodology- Presilicon

Architecture Correlation Analysis (PACA) that enables designers to precisely identify the

source of side-channel leakage in a design at the granularity of a single cell. Based on PACA,

we further propose selective replacement as a low-cost side-channel countermeasure, and we

show that side-channel leakage can be significantly reduced by only protecting the most

leaky cells in a design. Additionally, we develop an improvement on TVLA; we show that

the proposed bootstrap can significantly accelerate the leakage decreasing. In the last part

of this dissertation, we developed a multipurpose primitive - PRO, which can proactively

protect the design’s PDN against side-channel and fault attacks. We conclude that PRO

can serve as an application-independent multipurpose countermeasure to address on-chip

side-channel and fault vulnerabilities at a low cost.
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