Research Article
 Nonlinear Integral Inequalities in Two Independent Variables and Their Applications

Kelong Zheng, Yu Wu, and Shengfu Deng

Received 10 June 2007; Accepted 27 July 2007
Recommended by Wing-Sum Cheung

This paper generalizes results of Cheung and Ma (2005) to more general inequalities with more than one distinct nonlinear term. From our results, some results of Cheung and Ma (2005) can be deduced as some special cases. Our results are also applied to show the boundedness of the solutions of a partial differential equation.

Copyright © 2007 Kelong Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The integral inequalities play a fundamental role in the study of existence, uniqueness, boundedness, stability, invariant manifolds, and other qualitative properties of solutions of the theory of differential and integral equations. There are a lot of papers investigating them such as [1-8]. In particular, Pachpatte [2] discovered some new integral inequalities involving functions of two variables. These inequalities are applied to study the boundedness and uniqueness of the solutions of the following terminal value problem for the hyperbolic partial differential equation (1.1) with conditions (1.2):

$$
\begin{gather*}
D_{1} D_{2} u(x, y)=h(x, y, u(x, y))+r(x, y), \tag{1.1}\\
u(x, \infty)=\sigma_{\infty}(x), \quad u(\infty, y)=\tau_{\infty}(y), \quad u(\infty, \infty)=k . \tag{1.2}
\end{gather*}
$$

Cheung [9], and Dragomir and Kim [10, 11] established additional Gronwall-Ou-Iang type integral inequalities involving functions of two independent variables. Meng and Li [12] generalized the results of Pachpatte [2] to certain new integrals. Recently, Cheung
and Ma [13] discussed the following inequalities

$$
\begin{align*}
& u(x, y) \leq a(x, y)+c(x, y) \int_{0}^{x} \int_{y}^{\infty} d(s, t) w(u(s, t)) d t d s \\
& u(x, y) \leq a(x, y)+c(x, y) \int_{x}^{\infty} \int_{y}^{\infty} d(s, t) w(u(s, t)) d t d s \tag{1.3}
\end{align*}
$$

where $a(x, y)$ and $c(x, y)$ have certain monotonicity.
Our main aim here, motivated by the work of Cheung and Ma [13], is to discuss more general integral inequalities with n nonlinear terms:

$$
\begin{align*}
& u(x, y) \leq a(x, y)+\sum_{i=1}^{n} \int_{0}^{x} \int_{y}^{\infty} d_{i}(x, y, s, t) w_{i}(u(s, t)) d t d s \tag{1.4}\\
& u(x, y) \leq a(x, y)+\sum_{i=1}^{n} \int_{x}^{\infty} \int_{y}^{\infty} d_{i}(x, y, s, t) w_{i}(u(s, t)) d t d s \tag{1.5}
\end{align*}
$$

where we do not require the monotonicity of $a(x, y)$ and $d_{i}(x, y, s, t)$. Furthermore, we also show that some results of Cheung and Ma [13] can be deduced from our results as some special cases. Our results are also applied to show the boundedness of the solutions of a partial differential equation.

2. Main results

Let $\mathbb{R}=(-\infty, \infty)$ and $\mathbb{R}_{+}=[0, \infty) . D_{1} z(x, y)$ and $D_{2} z(x, y)$ denote the first-order partial derivatives of $z(x, y)$ with respect to x and y, respectively.

As in $[1,5,6]$, we define $w_{1} \propto w_{2}$ for $w_{1}, w_{2}: A \subset \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$ if w_{2} / w_{1} is nondecreasing on A. This concept helps us compare monotonicity of different functions. Suppose that
$\left(\mathrm{C}_{1}\right) w_{i}(u)(i=1, \ldots, n)$ is a nonnegative, nondecreasing, and continuous function for $u \in \mathbb{R}_{+}$with $w_{i}(u)>0$ for $u>0$ such that $w_{1} \propto w_{2} \propto \cdots \propto w_{n} ;$
$\left(\mathrm{C}_{2}\right) a(x, y)$ is a nonnegative and continuous function for $x, y \in \mathbb{R}_{+}$;
$\left(\mathrm{C}_{3}\right) d_{i}(x, y, s, t)(i=1, \ldots, n)$ is a continuous and nonnegative function for $x, y, s, t \in$ \mathbb{R}_{+}.
Take the notation $W_{i}(u):=\int_{u_{i}}^{u}\left(d z / w_{i}(z)\right)$, for $u \geq u_{i}$, where $u_{i}>0$ is a given constant. Clearly, W_{i} is strictly increasing, so its inverse W_{i}^{-1} is well defined, continuous, and increasing in its corresponding domain.

Theorem 2.1. In addition to the assumptions $\left(C_{1}\right),\left(C_{2}\right)$, and $\left(C_{3}\right)$, suppose that a (x, y) and $d_{i}(x, y, s, t)$ are bounded in $y \in \mathbb{R}_{+}$for each fixed $x, s, t \in \mathbb{R}_{+}$. If $u(x, y)$ is a continuous and nonnegative function satisfying (1.4) for $x, y \in \mathbb{R}_{+}$, then

$$
\begin{equation*}
u(x, y) \leq W_{n}^{-1}\left[W_{n}\left(b_{n}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{n}(x, y, s, t) d t d s\right] \tag{2.1}
\end{equation*}
$$

for all $0 \leq x \leq x_{1}, y_{1} \leq y<\infty$, where $b_{n}(x, y)$ is determined recursively by

$$
\begin{gather*}
b_{1}(x, y)=\tilde{a}(x, y), \\
b_{i+1}(x, y)=W_{i}^{-1}\left[W_{i}\left(b_{i}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}(x, y, s, t) d t d s\right], \tag{2.2}\\
\tilde{a}(x, y)=\sup _{0 \leq \tau \leq x} \sup _{y \leq \mu<\infty} a(\tau, \mu), \quad \tilde{d}_{i}(x, y, s, t)=\sup _{0 \leq \tau \leq x} \sup _{y \leq \mu<\infty} d_{i}(\tau, \mu, s, t),
\end{gather*}
$$

$W_{1}(0):=0$, and $x_{1}, y_{1} \in \mathbb{R}_{+}$are chosen such that

$$
\begin{equation*}
W_{i}\left(b_{i}\left(x_{1}, y_{1}\right)\right)+\int_{0}^{x_{1}} \int_{y_{1}}^{\infty} \tilde{d}_{i}(x, y, s, t) d t d s \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}(z)} \tag{2.3}
\end{equation*}
$$

for $i=1, \ldots, n$.
Remark 2.2. x_{1} and y_{1} are confined by (2.3). In particular, (2.1) is true for all $x, y \in \mathbb{R}_{+}$ when all $w_{i}(i=1, \ldots, n)$ satisfy $\int_{u_{i}}^{\infty}\left(d z / w_{i}(z)\right)=\infty$.

Remark 2.3. As in $[6,5,1]$, different choices of u_{i} in W_{i} do not affect our results.
Proof of Theorem 2.1. From the assumptions, we know that $\tilde{a}(x, y)$ and $\tilde{d}_{i}(x, y, s, t)$ are well defined. Moreover, $\tilde{a}(x, y)$ and $\tilde{d_{i}}(x, y, s, t)$ are nonnegative, nondecreasing in x, nonincreasing in y; and satisfy $\tilde{a}(x, y) \geq a(x, y)$ and $\tilde{d}_{i}(x, y, s, t) \geq d_{i}(x, y, s, t)$ for each $i=$ $1, \ldots, n$.

We first discuss the case that $a(x, y)>0$ for all $x, y \in \mathbb{R}_{+}$. Thus, $b_{1}(x, y)$ is positive, nondecreasing in x, nonincreasing in y; and satisfies $b_{1}(x, y) \geq a(x, y)$ for all $x, y \in \mathbb{R}_{+}$. From (1.4), we have

$$
\begin{equation*}
u(x, y) \leq b_{1}(x, y)+\sum_{i=1}^{n} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}(x, y, s, t) w_{i}(u(s, t)) d t d s \tag{2.4}
\end{equation*}
$$

Choose arbitrary $\tilde{x}_{1}, \tilde{y}_{1}$ such that $0 \leq \tilde{x}_{1} \leq x_{1}, y_{1} \leq \tilde{y}_{1}<\infty$. From (2.4), we obtain

$$
\begin{equation*}
u(x, y) \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+\sum_{i=1}^{n} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) w_{i}(u(s, t)) d t d s \tag{2.5}
\end{equation*}
$$

for all $0 \leq x \leq \tilde{x}_{1} \leq x_{1}, y_{1} \leq \tilde{y}_{1} \leq y<\infty$.
Having (2.5), we claim

$$
\begin{equation*}
u(x, y) \leq W_{n}^{-1}\left[W_{n}\left(\tilde{b}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.6}
\end{equation*}
$$

for all $0 \leq x \leq \min \left\{\tilde{x}_{1}, x_{2}\right\}, \max \left\{\tilde{y}_{1}, y_{2}\right\} \leq y<\infty$, where

$$
\begin{gather*}
\tilde{b}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)=b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right) \\
\tilde{b}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)=W_{i}^{-1}\left[W_{i}\left(\tilde{b}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.7}
\end{gather*}
$$

for $i=1, \ldots, n-1$ and $x_{2}, y_{2} \in \mathbb{R}_{+}$are chosen such that

$$
\begin{equation*}
W_{i}\left(\tilde{b}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x_{2}, y_{2}\right)\right)+\int_{0}^{x_{2}} \int_{y_{2}}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}(z)} \tag{2.8}
\end{equation*}
$$

for $i=1, \ldots, n$.
Note that we may take $x_{2}=x_{1}$ and $y_{2}=y_{1}$. In fact, $\tilde{b}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)$ and $\tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)$ are nondecreasing in \tilde{x}_{1}, nonincreasing in \tilde{y}_{1} for fixed x, y. Furthermore, it is easy to check that $\tilde{b}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, \tilde{x}_{1}, \tilde{y}_{1}\right)=b_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)$ for $i=1, \ldots, n$. If x_{2}, y_{2} are replaced by x_{1}, y_{1} on the left side of (2.8), we have from (2.3)

$$
\begin{align*}
& W_{i}\left(\tilde{b}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x_{1}, y_{1}\right)\right)+\int_{0}^{x_{1}} \int_{y_{1}}^{\infty} \widetilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \\
& \quad \leq W_{i}\left(\tilde{b}_{i}\left(x_{1}, y_{1}, x_{1}, y_{1}\right)\right)+\int_{0}^{x_{1}} \int_{y_{1}}^{\infty} \tilde{d}_{i}\left(x_{1}, y_{1}, s, t\right) d t d s \tag{2.9}\\
& \quad=W_{i}\left(b_{i}\left(x_{1}, y_{1}\right)\right)+\int_{0}^{x_{1}} \int_{y_{1}}^{\infty} \tilde{d}_{i}\left(x_{1}, y_{1}, s, t\right) d t d s \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}(z)} .
\end{align*}
$$

Thus, it means that we can take $x_{2}=x_{1}, y_{2}=y_{1}$.
In the following, we will use mathematical induction to prove (2.6).
For $n=1$, let

$$
\begin{equation*}
z(x, y)=\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) w_{1}(u(s, t)) d t d s . \tag{2.10}
\end{equation*}
$$

Then $z(x, y)$ is differentiable, nonnegative, nondecreasing for $x \in\left[0, \tilde{x}_{1}\right]$, and nonincreasing for $y \in\left[\tilde{y}_{1}, \infty\right)$ and $z(0, y)=z(x, \infty)=0$. From (2.5), we have the following:

$$
\begin{align*}
& u(x, y) \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y) \\
& D_{1} z(x, y)= \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) w_{1}(u(x, t)) d t \\
& \leq \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, t)\right) d t \tag{2.11}\\
& \leq w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right) \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) d t .
\end{align*}
$$

Since w_{1} is nondecreasing and $b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)>0$, we get

$$
\begin{align*}
\frac{D_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} & =\frac{D_{1} z(x, y)}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} \\
& \leq \frac{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right) \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) d t}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} \tag{2.12}\\
& =\int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) d t .
\end{align*}
$$

Integrating both sides of the above inequality from 0 to x, we obtain

$$
\begin{align*}
W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right) & \leq W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(0, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \\
& =W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \tag{2.13}
\end{align*}
$$

Thus the monotonicity of W_{1}^{-1} implies

$$
\begin{equation*}
u(x, y) \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y) \leq W_{1}^{-1}\left[W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.14}
\end{equation*}
$$

that is, (2.6) is true for $n=1$.
Assume that (2.6) is true for $n=m$. Consider

$$
\begin{equation*}
u(x, y) \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+\sum_{i=1}^{m+1} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) w_{i}(u(s, t)) d t d s \tag{2.15}
\end{equation*}
$$

for all $0 \leq x \leq \tilde{x}_{1}, \tilde{y}_{1} \leq y<\infty$. Let

$$
\begin{equation*}
z(x, y)=\sum_{i=1}^{m+1} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) w_{i}(u(s, t)) d t d s \tag{2.16}
\end{equation*}
$$

Then $z(x, y)$ is differentiable, nonnegative, nondecreasing for $x \in\left[0, \tilde{x}_{1}\right]$, and nonincreasing for $y \in\left[\tilde{y}_{1}, \infty\right)$. Obviously, $z(0, y)=z(x, \infty)=0$ and $u(x, y) \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)$. Since w_{1} is nondecreasing and $b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)>0$, we have

$$
\begin{align*}
& \frac{D_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} \\
& \quad \leq \frac{\sum_{i=1}^{m+1} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) w_{i}(u(x, t)) d t}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} \\
& \quad \leq \frac{\sum_{i=1}^{m+1} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) w_{i}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, t)\right) d t}{w_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right)} \\
& \quad \leq \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) d t+\sum_{i=2}^{m+1} \int_{y}^{\infty} \tilde{d}_{i}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) \phi_{i}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, t)\right) d t \\
& \quad \leq \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) d t+\sum_{i=1}^{m} \int_{y}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, t\right) \phi_{i+1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, t)\right) d t \tag{2.17}
\end{align*}
$$

where $\phi_{i+1}(u)=w_{i+1}(u) / w_{1}(u), i=1, \ldots, m$. Integrating the above inequality from 0 to x, we obtain

$$
\begin{align*}
W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)\right) \leq & W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \\
& +\sum_{i=1}^{m} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) \phi_{i+1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(s, t)\right) d t d s, \tag{2.18}
\end{align*}
$$

or

$$
\begin{equation*}
\xi(x, y) \leq c_{1}(x, y)+\sum_{i=1}^{m} \int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) \phi_{i+1}\left(W_{1}^{-1}(\xi(s, t))\right) d t d s \tag{2.19}
\end{equation*}
$$

for $0 \leq x \leq \tilde{x}_{1}$ and $\tilde{y}_{1} \leq y<\infty$, the same as (2.6) for $n=m$, where $\xi(x, y)=W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+\right.$ $z(x, y))$ and $c_{1}(x, y)=W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s$.

From the assumption $\left(C_{1}\right)$, each $\phi_{i+1}\left(W_{1}^{-1}(u)\right), i=1, \ldots, m$, is continuous and nondecreasing for u. Moreover, $\phi_{2}\left(W_{1}^{-1}\right) \propto \phi_{3}\left(W_{1}^{-1}\right) \propto \cdots \propto \phi_{m+1}\left(W_{1}^{-1}\right)$. By the inductive assumption, we have

$$
\begin{equation*}
\xi(x, y) \leq \Phi_{m+1}^{-1}\left[\Phi_{m+1}\left(c_{m}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.20}
\end{equation*}
$$

for all $0 \leq x \leq \min \left\{\tilde{x}_{1}, x_{3}\right\}, \max \left\{\tilde{y}_{1}, y_{3}\right\} \leq y<\infty$, where $\Phi_{i+1}(u)=\int_{\tilde{u}_{i+1}}^{u}\left(d z / \phi_{i+1}\left(W_{1}^{-1}(z)\right)\right)$, $u>0, \tilde{u}_{i+1}=W_{1}\left(u_{i+1}\right), \Phi_{i+1}^{-1}$ is the inverse of $\Phi_{i+1}, i=1, \ldots, m$,

$$
\begin{equation*}
c_{i+1}(x, y)=\Phi_{i+1}^{-1}\left[\Phi_{i+1}\left(c_{i}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right], \quad i=1, \ldots, m \tag{2.21}
\end{equation*}
$$

and $x_{3}, y_{3} \in \mathbb{R}_{+}$are chosen such that

$$
\begin{equation*}
\Phi_{i+1}\left(c_{i}\left(x_{3}, y_{3}\right)\right)+\int_{0}^{x_{3}} \int_{y_{3}}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \leq \int_{\tilde{u}_{i+1}}^{W_{1}(\infty)} \frac{d z}{\phi_{i+1}\left(W_{1}^{-1}(z)\right)} \tag{2.22}
\end{equation*}
$$

for $i=1, \ldots, m$.
Note that

$$
\begin{align*}
\Phi_{i}(u) & =\int_{\tilde{u}_{i}}^{u} \frac{d z}{\phi_{i}\left(W_{1}^{-1}(z)\right)}=\int_{W_{1}\left(u_{i}\right)}^{u} \frac{w_{1}\left(W_{1}^{-1}(z)\right) d z}{w_{i}\left(W_{1}^{-1}(z)\right)} \\
& =\int_{u_{i}}^{W_{1}^{-1}(u)} \frac{d z}{w_{i}(z)}=W_{i} \circ W_{1}^{-1}(u), \quad i=2, \ldots, m+1 . \tag{2.23}
\end{align*}
$$

From (2.20), we have

$$
\begin{align*}
u(x, y) & \leq b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)+z(x, y)=W_{1}^{-1}(\xi(x, y)) \\
& \leq W_{m+1}^{-1}\left[W_{m+1}\left(W_{1}^{-1}\left(c_{m}(x, y)\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.24}
\end{align*}
$$

for all $0 \leq x \leq \min \left\{\tilde{x}_{1}, x_{3}\right\}, \max \left\{\tilde{y}_{1}, y_{3}\right\} \leq y<\infty$. Let $\tilde{c}_{i}(x, y)=W_{1}^{-1}\left(c_{i}(x, y)\right)$. Then,

$$
\begin{align*}
\tilde{c}_{1}(x, y) & =W_{1}^{-1}\left(c_{1}(x, y)\right) \\
& =W_{1}^{-1}\left[W_{1}\left(b_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.25}\\
& =\tilde{b}_{2}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right) .
\end{align*}
$$

Moreover, with the assumption that $\tilde{c}_{m}(x, y)=\tilde{b}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)$, we have

$$
\begin{align*}
\tilde{c}_{m+1}(x, y) & =W_{1}^{-1}\left[\Phi_{m+1}^{-1}\left(\Phi_{m+1}\left(c_{m}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right)\right] \\
& =W_{m+1}^{-1}\left[W_{m+1}\left(W_{1}^{-1}\left(c_{m}(x, y)\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \\
& =W_{m+1}^{-1}\left[W_{m+1}\left(\tilde{c}_{m}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.26}\\
& =W_{m+1}^{-1}\left[W_{m+1}\left(\tilde{b}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \\
& =\tilde{b}_{m+2}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)
\end{align*}
$$

This proves that

$$
\begin{equation*}
\tilde{c}_{i}(x, y)=\tilde{b}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right), \quad i=1, \ldots, m \tag{2.27}
\end{equation*}
$$

Therefore, (2.22) becomes

$$
\begin{align*}
& W_{i+1}\left(\tilde{b}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x_{3}, y_{3}\right)\right)+\int_{0}^{x_{3}} \int_{y_{3}}^{\infty} \tilde{d}_{i+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s \\
& \quad \leq \int_{\tilde{u}_{i+1}}^{W_{1}(\infty)} \frac{d z}{\phi_{i+1}\left(W_{1}^{-1}(z)\right)}=\int_{u_{i+1}}^{\infty} \frac{d z}{w_{i+1}(z)}, \quad i=1, \ldots, m \tag{2.28}
\end{align*}
$$

The above inequalities and (2.8) imply that we may take $x_{2}=x_{3}, y_{2}=y_{3}$. From (2.24), we get

$$
\begin{equation*}
u(x, y) \leq W_{m+1}^{-1}\left[W_{m+1}\left(\tilde{b}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, x, y\right)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{m+1}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.29}
\end{equation*}
$$

for all $0 \leq x \leq \tilde{x}_{1} \leq x_{2}, y_{2} \leq \tilde{y}_{1} \leq y<\infty$. This proves (2.6) by mathematical induction.
Taking $x=\tilde{x}_{1}, y=\tilde{y}_{1}, x_{2}=x_{1}$, and $y_{2}=y_{1}$, we have

$$
\begin{equation*}
u\left(\tilde{x}_{1}, \tilde{y}_{1}\right) \leq W_{n}^{-1}\left[W_{n}\left(\tilde{b}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, \tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{\tilde{x}_{1}} \int_{\tilde{y}_{1}}^{\infty} \tilde{d}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] \tag{2.30}
\end{equation*}
$$

for $0 \leq \tilde{x}_{1} \leq x_{1}, y_{1} \leq \tilde{y}_{1}<\infty$. It is easy to verify $\tilde{b}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, \tilde{x}_{1}, \tilde{y}_{1}\right)=b_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)$. Thus, (2.30) can be written as

$$
\begin{equation*}
u\left(\tilde{x}_{1}, \tilde{y}_{1}\right) \leq W_{n}^{-1}\left[W_{n}\left(b_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}\right)\right)+\int_{0}^{\tilde{x}_{1}} \int_{\tilde{y}_{1}}^{\infty} \tilde{d}_{n}\left(\tilde{x}_{1}, \tilde{y}_{1}, s, t\right) d t d s\right] . \tag{2.31}
\end{equation*}
$$

Since $\tilde{x}_{1}, \tilde{y}_{1}$ are arbitrary, replace \tilde{x}_{1} and \tilde{y}_{1} by x and y respectively and we have

$$
\begin{equation*}
u(x, y) \leq W_{n}^{-1}\left[W_{n}\left(b_{n}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{n}(x, y, s, t) d t d s\right] \tag{2.32}
\end{equation*}
$$

for all $0 \leq x \leq x_{1}, y_{1} \leq y<\infty$.
In case $a(x, y)=0$ for some $x, y \in \mathbb{R}_{+}$. Let $b_{1, \epsilon}(x, y):=b_{1}(x, y)+\epsilon$ for all $x, y \in \mathbb{R}_{+}$, where $\epsilon>0$ is arbitrary, and then $b_{1, \epsilon}(x, y)>0$. Using the same arguments as above, where $b_{1}(x, y)$ is replaced with $b_{1, \epsilon}(x, y)>0$, we get

$$
\begin{equation*}
u(x, y) \leq W_{n}^{-1}\left[W_{n}\left(b_{n, \epsilon}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{n}(x, y, s, t) d t d s\right] . \tag{2.33}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0^{+}$, we obtain (2.1) by the continuity of $b_{1, \epsilon}$ in ϵ and the continuity of W_{i} and W_{i}^{-1} under the notation $W_{1}(0):=0$.

Theorem 2.4. In addition to the assumptions $\left(C_{1}\right),\left(C_{2}\right)$, and $\left(C_{3}\right)$, suppose that $a(x, y)$ and $d_{i}(x, y, s, t)$ are bounded in $x, y \in \mathbb{R}_{+}$for each fixed $s, t \in \mathbb{R}_{+}$. If $u(x, y)$ is a continuous and nonnegative function satisfying (1.5) for $x, y \in \mathbb{R}_{+}$, then

$$
\begin{equation*}
u(x, y) \leq W_{n}^{-1}\left[W_{n}\left(b_{n}(x, y)\right)+\int_{x}^{\infty} \int_{y}^{\infty} \hat{d}_{n}(x, y, s, t) d t d s\right] \tag{2.34}
\end{equation*}
$$

for all $x_{4} \leq x<\infty, y_{4} \leq y<\infty$, where $b_{n}(x, y)$ is determined recursively by

$$
\begin{align*}
b_{1}(x, y) & =\hat{a}(x, y), \\
b_{i+1}(x, y) & =W_{i}^{-1}\left[W_{i}\left(b_{i}(x, y)\right)+\int_{x}^{\infty} \int_{y}^{\infty} \hat{d}_{i}(x, y, s, t) d t d s\right], \tag{2.35}\\
\hat{a}(x, y) & =\sup _{x \leq \tau<\infty} \sup _{y \leq \mu<\infty} a(\tau, \mu), \\
\hat{d}_{i}(x, y, s, t) & =\sup _{x \leq \tau<\infty} \sup _{y \leq \mu<\infty} d_{i}(\tau, \mu, s, t), \tag{2.36}
\end{align*}
$$

$W_{1}(0):=0$, and $x_{4}, y_{4} \in \mathbb{R}_{+}$are chosen such that

$$
\begin{equation*}
W_{i}\left(b_{i}\left(x_{4}, y_{4}\right)\right)+\int_{x_{4}}^{\infty} \int_{y_{4}}^{\infty} \hat{d}_{i}(x, y, s, t) d t d s \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}(z)} \tag{2.37}
\end{equation*}
$$

for $i=1, \ldots, n$.
The proof is similar to the argument in the proof of Theorem 2.1 with suitable modification. We omit the details here.

Remark 2.5. Take $d_{1}(x, y, s, t)=c(x, y) d(s, t)$ and $n=1$ in (1.4). Suppose that $a(x, y)$ and $c(x, y)$ are continuous, nonnegative, nondecreasing in x and nonincreasing in y; and $d(s, t)$ is nonnegative and continuous. We note that

$$
\begin{equation*}
b_{1}(x, y)=a(x, y), \quad \tilde{d}_{1}(x, y, s, t)=c(x, y) d(s, t) . \tag{2.38}
\end{equation*}
$$

From Theorem 2.1, we get

$$
\begin{equation*}
u(x, y) \leq W_{1}^{-1}\left[W_{1}(a(x, y))+c(x, y) \int_{0}^{x} \int_{y}^{\infty} d(s, t) d t d s\right] \tag{2.39}
\end{equation*}
$$

which is exactly (2.6) of Lemma 2.2 in [13].
Remark 2.6. Take $d_{1}(x, y, s, t)=c(x, y) d(s, t)$ and $n=1$ in (1.5). Suppose that $a(x, y)$ and $c(x, y)$ are continuous, nonnegative, nonincreasing in x, y; and $d(s, t)$ is nonnegative and continuous. It is easy to check that

$$
\begin{equation*}
b_{1}(x, y)=a(x, y), \quad \hat{d}_{1}(x, y, s, t)=c(x, y) d(s, t) . \tag{2.40}
\end{equation*}
$$

From Theorem 2.4, we get

$$
\begin{equation*}
u(x, y) \leq W_{1}^{-1}\left[W_{1}(a(x, y))+c(x, y) \int_{x}^{\infty} \int_{y}^{\infty} d(s, t) d t d s\right] \tag{2.41}
\end{equation*}
$$

which is (2.10) of Lemma 2.2 in [13].

3. Applications

Consider the partial differential equation

$$
\begin{align*}
D_{1} D_{2} v(x, y)= & \frac{1}{(x+1)^{2}(y+1)^{2}}+\exp (-x) \exp (-y) \sqrt{|v(x, y)|+1} \tag{3.1}\\
& +x \exp (-x) \exp (-y) \mathfrak{T} v(x, y), \\
v(x, \infty)= & \sigma(x), v(0, y)=\tau(y), v(0, \infty)=k \tag{3.2}
\end{align*}
$$

for $x, y \in \mathbb{R}_{+}$, where $\sigma, \tau \in C\left(\mathbb{R}_{+}, \mathbb{R}\right), \sigma(x)$ is nondecreasing in $x, \tau(y)$ is nonincreasing in y, k is a real constant, and \mathfrak{T} is a continuous operator on $C\left(\mathbb{R}_{+} \times \mathbb{R}_{+}, \mathbb{R}\right)$ such that $|\mathfrak{T} v| \leq c_{0}|v|$ for a constant $c_{0}>0$. Integrating (3.1) with respect to x and y and using the initial conditions (3.2), we get

$$
\begin{align*}
v(x, y)= & \sigma(x)+\tau(y)-k-\frac{x}{(x+1)(y+1)} \\
& -\int_{0}^{x} \int_{y}^{\infty} \exp (-s) \exp (-t) \sqrt{|v(s, t)|+1} d t d s \tag{3.3}\\
& -\int_{0}^{x} \int_{y}^{\infty} s \exp (-s) \exp (-t) \mathfrak{T} v(s, t) d t d s .
\end{align*}
$$

Thus,

$$
\begin{align*}
|v(x, y)| \leq & |\sigma(x)+\tau(y)-k|+\frac{x}{(x+1)(y+1)} \\
& +\int_{0}^{x} \int_{y}^{\infty} \exp (-s) \exp (-t) \sqrt{|v(s, t)|+1} d t d s \tag{3.4}\\
& +\int_{0}^{x} \int_{y}^{\infty} s \exp (-s) \exp (-t) c_{0}|v(s, t)| d t d s .
\end{align*}
$$

Letting $u(x, y)=|v(x, y)|$, we have

$$
\begin{equation*}
u(x, y) \leq a(x, y)+\int_{0}^{x} \int_{y}^{\infty} d_{1}(x, y, s, t) w_{1}(u) d t d s+\int_{0}^{x} \int_{y}^{\infty} d_{2}(x, y, s, t) w_{2}(u) d t d s \tag{3.5}
\end{equation*}
$$

where $a(x, y)=|\sigma(x)+\tau(y)-k|+x /(x+1)(y+1), w_{1}(u)=\sqrt{u+1}, w_{2}(u)=c_{0} u, d_{1}(x, y$, $s, t)=\exp (-s) \exp (-t), d_{2}(x, y, s, t)=s \exp (-s) \exp (-t)$. Clearly, $w_{2}(u) / w_{1}(u)=c_{0}(u /$ $\sqrt{u+1})$ is nondecreasing for $u>0$, that is, $w_{1} \propto w_{2}$. Then for $u_{1}, u_{2}>0$,

$$
\begin{align*}
b_{1}(x, y) & =a(x, y), \quad \tilde{d}_{1}(x, y, s, t)=d_{1}(x, y, s, t), \quad \tilde{d}_{2}(x, y, s, t)=d_{2}(x, y, s, t), \\
W_{1}(u) & =\int_{u_{1}}^{u} \frac{d z}{\sqrt{z+1}}=2\left(\sqrt{u+1}-\sqrt{u_{1}+1}\right), \quad W_{1}^{-1}(u)=\left(\frac{u}{2}+\sqrt{u_{1}+1}\right)^{2}-1, \\
W_{2}(u) & =\int_{u_{2}}^{u} \frac{d z}{c_{0} z}=\frac{1}{c_{0}} \ln \frac{u}{u_{2}}, \quad W_{2}^{-1}(u)=u_{2} \exp \left(c_{0} u\right), \tag{3.6}\\
b_{2}(x, y) & =W_{1}^{-1}\left[W_{1}\left(b_{1}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{1}(x, y, s, t) d t d s\right] \\
& =W_{1}^{-1}\left[2\left(\sqrt{b_{1}(x, y)+1}-\sqrt{u_{1}+1}\right)+(1-\exp (-x)) \exp (-y)\right] \\
& =\left[\sqrt{b_{1}(x, y)+1}+\frac{1-\exp (-x)}{2} \exp (-y)\right]^{2}-1 .
\end{align*}
$$

By Theorem 2.1, we have

$$
\begin{align*}
|v(x, y)| \leq & W_{2}^{-1}\left[W_{2}\left(b_{2}(x, y)\right)+\int_{0}^{x} \int_{y}^{\infty} \tilde{d}_{2}(x, y, s, t) d t d s\right] \\
= & W_{2}^{-1}\left[\frac{1}{c_{0}} \ln \frac{b_{2}(x, y)}{u_{2}}+(1-(x+1) \exp (-x)) \exp (-y)\right] \\
= & u_{2} \exp \left[c_{0}\left(\frac{1}{c_{0}} \ln \frac{b_{2}(x, y)}{u_{2}}+(1-(x+1) \exp (-x)) \exp (-y)\right)\right] \\
= & b_{2}(x, y) \exp \left[c_{0}(1-(x+1) \exp (-x)) \exp (-y)\right] \\
= & {\left[\left(\sqrt{|\sigma(x)+\tau(y)-k|+\frac{x}{(x+1)(y+1)}+1}+\frac{1-\exp (-x)}{2} \exp (-y)\right)^{2}-1\right] } \\
& \times \exp \left[c_{0}(1-(x+1) \exp (-x)) \exp (-y)\right] . \tag{3.7}
\end{align*}
$$

This implies that the solution of (3.1) is bounded for $x, y \in \mathbb{R}_{+}$provided that $\sigma(x)+$ $\tau(y)-k$ is bounded for all $x, y \in \mathbb{R}_{+}$.

References

[1] M. Pinto, "Integral inequalities of Bihari-type and applications," Funkcialaj Ekvacioj, vol. 33, no. 3, pp. 387-403, 1990.
[2] B. G. Pachpatte, "On some fundamental integral inequalities and their discrete analogues," Journal of Inequalities in Pure and Applied Mathematics, vol. 2, no. 2, article 15, pp. 1-13, 2001.
[3] B. G. Pachpatte, "On some new inequalities related to certain inequalities in the theory of differential equations," Journal of Mathematical Analysis and Applications, vol. 189, no. 1, pp. 128-144, 1995.
[4] O. Lipovan, "A retarded integral inequality and its applications," Journal of Mathematical Analysis and Applications, vol. 285, no. 2, pp. 436-443, 2003.
[5] S. K. Choi, S. Deng, N. J. Koo, and W. Zhang, "Nonlinear integral inequalities of Bihari-type without class H," Mathematical Inequalities \& Applications, vol. 8, no. 4, pp. 643-654, 2005.
[6] R. P. Agarwal, S. Deng, and W. Zhang, "Generalization of a retarded Gronwall-like inequality and Its applications," Applied Mathematics and Computation, vol. 165, no. 3, pp. 599-612, 2005.
[7] S. G. Hristova, "Nonlinear delay integral inequalities for piecewise continuous functions and applications," Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 4, article 88, pp. 1-14, 2004.
[8] W. Zhang and S. Deng, "Projected Gronwall-Bellman's inequality for integrable functions," Mathematical and Computer Modelling, vol. 34, no. 3-4, pp. 393-402, 2001.
[9] W.-S. Cheung, "Some retarded Gronwall-Bellman-Ou-Iang-type inequalities and applications to initial boundary value problems," in preparation.
[10] S. S. Dragomir and Y.-H. Kim, "On certain new integral inequalities and their applications," Journal of Inequalities in Pure and Applied Mathematics, vol. 3, no. 4, article 65, pp. 1-8, 2002.
[11] S. S. Dragomir and Y.-H. Kim, "Some integral inequalities for functions of two variables," Electronic Journal of Differential Equations, vol. 2003, no. 10, pp. 1-13, 2003.
[12] F. W. Meng and W. N. Li, "On some new integral inequalities and their applications," Applied Mathematics and Computation, vol. 148, no. 2, pp. 381-392, 2004.
[13] W.-S. Cheung and Q.-H. Ma, "On certain new Gronwall-Ou-Iang type integral inequalities in two variables and their applications," Journal of Inequalities and Applications, vol. 2005, no. 4, pp. 347-361, 2005.

Kelong Zheng: College of Science, Southwest University of Science and Technology,
Mianyang, Sichuan 621010, China
Email address: zhengkelong@swust.edu.cn
Yu Wu: Yibin University, Yibin, Sichuan 644007, China
Email address: wuyu003@yahoo.com.cn
Shengfu Deng: Department of Mathematics, Virginia Polytechnical Institute and State University, Blacksburg, VA 24061, USA
Email address: sfdeng@vt.edu

