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(ABSTRACT) 

In this thesis, several heuristics that aim to improve the performance of parallel 

fault simulation for synchronous sequential circuits have been investigated. Three 

heuristics were incorporated into a well known parallel fault simulator called PROOFS and 

the efficiency of the heuristics were measured in terms of the number of faults simulated in 

parallel, the number of gate evaluations, and the CPU time. The three heuristics are critical 

path tracing, dynamic area reduction and a new heuristic called two level simulation. 

Critical path tracing and dynamic area reduction which have been previously proposed for 

combinational circuits are extended for synchronous sequential circuits in this thesis. The 

two level simulation that was investigated in this thesis is designed for sequential circuits. 

Experimental results show that critical path tracing is the most effective of the three 

heuristics. In addition to the three heuristics, new fault injection and fault ordering 

methods were suggested to improve the speed of an efficient fault simulator called HOPE. 

HOPE, which was developed at Virginia Tech is, an improved version of PROOFS. 

HOPE_NEW, which incorporates the two heuristics performs better than HOPE in the 

number of gate evaluations and the CPU time. HOPE_NEW is about 1.13 times faster 

than HOPE for the ISCAS89 benchmark circuits. For the largest circuit, the speedup is 

about 40 percent.
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1. INTRODUCTION 

As the complexity of VLSI circuits increases, the testing of VLSI circuits becomes a 

challenging problem. Fault simulation is an important part of testing. It is used to measure 

the quality of a given set of test patterns. The quality of a set of test patterns is represented 

as the ratio of the number of faults detected to the total number of faults, often called fault 

coverage. A fault simulator is also used to construct an automatic test pattern generator 

(ATPG). When a test pattern is generated by a test pattern generator, a fault simulator 

identifies all other faults that are detected by the same test pattern. 

To process highly complex VLSI circuits, the development of efficient fault 

simulation algorithms becomes important. Several conceptually different fault simulation 

methods have been proposed in the recent past [1-7]. In general, Parallel Pattern Single 

Fault Propagation (PPSFP) proposed by Waicukauski is known to be the most efficient for 

combinational circuits [1]. In PPSFP, multiple patterns are processed simultaneously 

under the injection of a single fault. Owing to several later advances in PPSFP [2-6], fault 

simulation of combinational circuits no longer poses a serious problem. Intensive research 

has been diverted into efficient fault simulation of sequential circuits. 
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The concurrent fault simulation method has been widely used for sequential circuits 

in industry because of its efficiency and versatility [7]. In concurrent fault simulation, the 

good circuit and all the faulty circuits are processed simultaneously. The disadvantage of 

concurrent fault simulation is a large memory requirement. 

Several methods for efficient fault simulation of sequential circuits have been 

proposed [8-14]. Cheng and Yu proposed the differential fault simulation (DSIM) method 

[8]. DSIM is based on single fault propagation in which one fault is simulated at a time for 

a given test pattern. The key idea of DSIM is to simulate the differences between the next 

faulty circuit and the previous faulty circuit to avoid restoration of good circuit status. 

According to the experimental results of [8], DSIM performs better than a concurrent fault 

simulator in both speed and memory required. 

Niermann et al. developed a fault simulator for synchronous sequential circuit, 

called PROOFS [9]. PROOFS is highly efficient in speed and memory. This is owing to 

the fact that PROOFS combines features of single fault propagation, differential fault 

simulation, and parallel fault simulation. In PROOFS, a static fault grouping strategy is 

employed to increase the utilization of bits in a word. In addition, faults are injected by 

modifying the circuit to reflect the faulty circuit, rather than the commonly used faulty-bit- 

masking method. The experimental results of [9] show that PROOFS is 6 to 67 times 

faster than a traditional concurrent fault simulator and reduces the memory requirement by 

an average factor of five for the ISCAS89 benchmark sequential circuits [23]. 

Several attempts were made to improve the speed of PROOFS by employing 

various heuristics [10, 12]. The original developers of PROOFS incorporated the so called 

star algorithm in PROOFS [12]. An average improvement of 2 percent has been achieved 

through the star algorithm. Recently, Lee and Ha introduced a fault simulator called HOPE 

that is an improvement of PROOFS [10]. HOPE employs two key heuristics: 
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1) simulate only fanout stem faults, and 

2) screen out faults with short propagation paths. 

According to the experimental results of [10], HOPE is about two times faster than 

PROOFS. 

Although the heuristics employed in HOPE are efficient, there are several other 

heuristics that may be applicable to PROOFS. In this research, we experimented with three 

heuristics for PROOFS and compared the results with the heuristics employed in HOPE. 

The three heuristics are: 

1) critical path tracing within fanout free regions [13-14], 

2) dynamic area reduction [4], and 

3) two level simulation. 

The first two heuristics were proposed in [13-14] and [4] for combinational circuits. The 

last heuristic is designed for sequential circuits, and is proposed in this thesis. In addition 

to evaluating the three heuristics, we also improved the speed of HOPE through a new fault 

injection method and a new dynamic fault ordering strategy. 

The organization of this thesis is as follows. In Chapter 2, various relevant fault 

simulators and two heuristics that were used for our experiments are briefly reviewed. 

Advantages of these fault simulators and some implementation issues of the two heuristics 

are discussed. In Chapter 3, a new heuristic for PROOFS is proposed. Some 

implementation detail for the new heuristic are also described. Two new heuristics that 

may improve HOPE are also presented in this chapter. In Chapter 4, experimental results 

for the heuristics for PROOFS and HOPE are presented. Chapter 5 concludes the thesis. 
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2. BACKGROUND 

PROOFS is a synchronous sequential circuit fault simulator that uses the zero gate 

delay model. PROOFS employs a parallel version of the single fault propagation technique 

and simulates a packet of 32 faults at a ime. PROOFS is a notable fault simulator in many 

aspects. That is, it is the first parallel fault simulator for sequential circuits. In the technical 

community, PROOFS also serves as a benchmark fault simulator. The performance of a 

newly developed fault simulator is often compared with that of PROOFS[9]. 

Several attempts have been made to improve the speed of PROOFS by 

incorporating various heuristics [10, 12]. In this thesis, we are also interested in 

improving the speed of PROOFS by incorporating two known heuristics and one new 

heuristic proposed by us. Two known heuristics that were intended for combinational 

circuits were considered in this thesis. We measure the performance of the three heuristics, 

including the one proposed by us, in terms of the CPU time, the number of gate 

evaluations and the number of faults processed for fault simulation. 

Section 2.1 provides a general overview of fault simulation. Section 2.2 defines 

the terminology used in this thesis. Section 2.3 reviews important previous work and 

presents their shortcomings. Section 2.4 presents two known heuristics, critical path 
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tracing and dynamic area reduction. Finally, Section 2.5 describes the scope of the 

proposed research. 

2.1 OVERVIEW OF FAULT SIMULATION 

Fault simulation is used to grade the quality of a given test set. The quality of a test 

set is usually represented as fault coverage, the ratio of the number of faults detected to the 

total number of faults for a specified fault model. 

The oldest, yet most important, fault simulation method is single fault propagation 

[15-16]. In single fault propagation, one fault is injected at a time and the faulty circuit is 

simulated for the given sequence of test patterns. The method is simple, straightforward, 

but slow. Three other early and prevailing fault simulation methods are parallel fault 

simulation [17], deductive fault simulation [18] and concurrent fault simulation [7]. 

Parallel fault simulation injects multiple faults simultaneously and simulates the multiple 

faults in parallel. The number of faults simulated in parallel is usually, but not necessarily 

equal to the word size of the host computer. Deductive fault simulation explicitly simulates 

the behavior of the good circuit and determines all the detected faults from the good circuit 

simulation [18]. Deductive fault simulation requires more memory than parallel fault 

simulation, but less than concurrent fault simulation. Concurrent fault simulation has been 

widely used in industry for a long time. The success of concurrent fault simulation is due 

to its efficiency, flexibility, and versatility [7]. Concurrent fault simulation simulates the 

good circuit and all the faulty circuits simultaneously. For the simulation of a faulty circuit, 

only portions that are affected by the fault are explicitly simulated concurrently with the 
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good circuit. Although concurrent fault simulation is the most prevalent fault simulation 

method, it has the disadvantages of a large memory requirement, since the status of the 

good circuit and all the faulty circuits must be maintained simultaneously, and the 

performance overhead resulting from the manipulation of long fault lists. 

In 1985, a different fault simulation method called parallel pattern single fault 

propagation (PPSFP) was proposed by Waicukauski [1]. In the PPSFP technique, a fault 

is injected and the faulty circuit is simulated for multiple test patterns in parallel. The 

PPSFP technique is suitable for combinational circuits. Recently, the PPSFP technique 

has also been applied to sequential circuits [11]. 

Automatic test pattern generation (ATPG) for sequential circuits, which was 

considered impractical a decade ago is now pervasive owing to the development of new test 

generation methods and the availability of high-performance workstations. Fault 

simulators for sequential circuit ATPGs have stringent requirements; they require both 

small memory size and high speed. A series of fault simulators that aim to be used for 

sequential circuit ATPGs have been presented. These fault simulators include DSIM 

(differential fault simulation) in 1989 [8], PROOFS in 1990 [9], and HOPE in 1992 [10]. 

The three fault simulators employ the zero gate delay model. All the three fault simulators 

require smaller memory and are faster, partly owing to the employment of the zero gate 

delay model, than concurrent fault simulators or deductive fault simulators. However, 

these fault simulators are not suitable for asynchronous circuits due to the employment of 

the zero gate delay model. The three fault simulators are discussed in detail in Section 2.3 

after the introduction of necessary terms. 
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2.2 TERMINOLOGY 

A sequential circuit consists of two parts: a combinational logic block and a memory 

block. In this thesis, we consider synchronous sequential circuits without any feedback 

loops in combinational logic blocks. We assume that all the flip-flops are driven by a 

global clock. The single stuck-at fault model is adopted in this thesis. We consider single 

stuck-at faults inside combinational logic blocks and assume that global clock signals and 

memory blocks are fault-free. A signal line may assume one of the signal values, logic 0, 

logic 1, or X (unknown state). Under the above paradigm, we define necessary 

terminologies below. 

2.2.1 SYNCHRONOUS SEQUENTIAL CIRCUITS 

A synchronous sequential circuit is modeled as an iterative logic array [19], as 

shown in Figure 1. Each combinational logic block C[i], is identical to the original circuit. 

Flip-flops of the original circuits are represented as simple delay elements. In Figure 1b, 

X[i] and Z[i] are the primary input (PI) and primary output (PO) of the combinational logic 

block C[i] for time frame i. y[i] is called the pseudo-primary input (PPI), as it is also an 

input to the combinational logic block. Similarly, Y[1i] is called the pseudo-primary output 

(PPO). 

Any combinational block can be decomposed into fanout free regions (FFRs) by 

eliminating the fanout stems (FOSs) [20]. Each FFR can be uniquely identified by its 

output, which can be a PO, a PPO, or a FOS. In this thesis, we treat POs and PPOs as 
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stems and denote FFR(s) be the FFR whose output is s. The inputs of a FFR are Pls, 

PPIs, and/or fanout branches (FOBs). An example circuit which is given in [10] and its 

partition into FFRs is shown in Figure 2. 

Dominators of a signal line are the lines through which all paths from the line to 

POs or PPOs of the circuit must pass [21]. For all lines inside FFR(s), the stem s is a 

dominator of the lines. However, there exists such a case that a stem may or may not have 

a dominator. For example, consider the circuit given in Figure 2b. All the paths from stem 

i pass through lines n and p. Hence, n and p are dominators of the stem i. However, there 

is no dominator for stem p. 

2.2.2 FAULTS 

Let Z(t) be the good circuit output at a time t, and Z(t) be the faulty circuit output 

under the presence of a fault f. Then the fault f is said to be strongly detected, or 

detected, if Z(t), Zg(t) € {0, 1} and ZG(t) + Zp(t). The fault f is said to be potentially 

detected if Zc(t) e {0, 1} and Zp(t) = {X}. Ifa fault is potentially detected, it means that 

the fault may or may not be detected depending on the initial condition. 

Under the application of a test pattern, a fault f at a ime frame belongs to one of the 

following two categories depending on the effect of the fault. The first case is that the 

effect of the fault originates only at the original fault site as shown in Figure 3a. We call 

the fault f a single event fault in this thesis. The second case is that the effect of the fault 

originates at some PPI(s) as well as the faulty site as shown in Figure 3b. We call the fault 

fa multiple event fault. The effect of a multiple event fault is the same as the 

occurrence of multiple stuck-at faults at the time frame. A multiple event fault occurs when 

the effect of the fault has propagated to some PPO(s) under the application of the previous 
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test pattern. It should be noted that a fault f can be a single event fault at one time frame 

and a multiple event fault at another time frame. 

A multiple event fault affects at least one pseudo-primary input of the current time 

frame. If the number of affected PPIs is n, the fault is called a multiple event fault 

with degree n. For example, the multiple event fault shown in Figure 3b is a multiple 

event fault with degree two. 

Let x/a* denote a stuck-at-a* fault on a line x, where a* € {0, 1}. Suppose that the 

fault x/a* propagates to another signal line y whose fault-free value is b, and suppose that 

the faulty value of y (after the propagation of the fault x/a*) is b*. Then we can consider a 

pseudo-fault y/b* which appears on the line y, where b* € {0, 1, X}. If the faulty value 

b* is equal to b (i.e., the fault x/a* does not propagate to y), then the pseudo-fault y/b* is 

called an insensitive fault. Otherwise, the fault y/b* is called a sensitive fault. The 

propagation of a fault x/a* at a line x to y can be viewed as a mapping of the fault x/a* to a 

pseudo-fault y/b*. 

Two faults f and g are said to be equivalent at a time frame if they produce the same 

logic values at all the POs and PPOs. Then the fault g instead of f can be injected to the 

circuit at the time frame. 

Statement: If line y is a dominator of line x, then the two faults x/a* and y/b* are 

equivalent. 

Hence, the fault y/b* instead of the original fault x/a* can be injected into the circuit and 

simulated. 
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2.2.3 CRITICALITY AND SENSITIVITY 

Under the application of a test pattern, an input of a gate is sensitive if the change 

of the input value changes the value of the gate output. For example, consider the circuit 

shown in Figure 4. Line d is sensitive as changing the value of line d from 1 to 0 changes 

the value of line f from 1 to 0. However, line c is non sensitive, as changing the value of 

line c from 0 to 1 does not alter the value of line f. The sensitive gate inputs are marked by 

dots in the figure. 

A line s is critical with respect to a line t if a change of the value of line s is 

observable at line t under the application of a test pattern tj. For the example circuit in 

Figure 4, changing the value of line a from 0 to 1 changes the value of the stem line i from 

0 to 1; thus, line a is said to be critical with respect to line 1. 

Under the application of a test pattern, if the output of a gate is critical, sensitive 

inputs of the gate, if any, are also critical. With this fact and all the sensitive inputs being 

marked, the critical paths inside a fanout free region can be determined in the backtracing 

process. The process simply traces from the stem line of a FFR by recursively marking the 

sensitive input(s) of a gate as critical if its output is critical. The tracing stops at the 

unmarked inputs or inputs of the FFR. For the circuit in Figure 4, all the critical paths are 

shown as heavy lines. 

For a three-valued logic, at most two critical paths exist on a line rather than one as 

in a two-valued logic. Suppose that a line s has a value of 0 and suppose that the criticality 

of this line s with respect to line t is of interest. Then, line s is called a 1-critical-path if 

changing the value of line s from 0 to 1 changes the value of line t. Similarly, line s is 

called an X-critical-path if changing the value of line s from 0 to X changes the value of 

line t. Thus, line s is a 1- and X- critical path. A 0-critical-path is similarly defined. 
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For the circuit shown in Figure 4, if a three-valued logic is used, then line h is a 0- and X- 

critical paths with respect to line i. Similarly, lines a, b, and c are 1- and X-critical paths 

with respect to line 1. 

2.3 REVIEW OF PREVIOUS WORK 

2.3.1 SINGLE FAULT PROPAGATION 

Roth [15] proposed TestDetect which later was called single fault 

propagation [16]. Single fault propagation is straightforward for combinational circuits 

and easily extended to sequential circuits. In single fault propagation, a test pattern is 

applied to the circuit under test and the good circuit is simulated first. Then all the faulty 

circuits are simulated based on the good circuit simulation. The same procedure repeats for 

the rest of test patterns. 

The processing order of an example circuit is given in Table 1. In the table, tj isa 

test pattern and fj is a fault in the circuit. Before the simulation of a faulty circuit, the logic 

values of the good circuit for the current test pattern and the state, 1.e., the contents of the 

flip-flops, of the faulty circuit for the previous test pattern should be restored. For 

example, to simulate f3 under t2 for the example circuit in Table 1, the logic values of the 

good circuit under t2 should be restored (they are destroyed during the simulation of the 

previous faulty circuit, fj), The status of the faulty circuit under tj should also be restored. 
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Table 1. Processing Order of Single Fault Propagation Method 

t] 12 13 

l 

3 

10 

5 15 

Note: '*' denotes that the fault is detected by the test pattern. 
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Single fault propagation has several advantages such as small memory requirement 

and small number of fault injections, but the restoration of good circuit values and faulty 

status is time consuming. 

2.3.2 PROOFS 

DSIM is an improved version of single fault propagation whose good circuit values 

are restored from the faulty circuit rather than the good circuit. PROOFS adopted the 

essential features of DSIM except that PROOFS is more efficient in speed and memory. 

PROOFS simulates 32 faults at a time and employs various heuristics to improve 

performance. An important outcome of the heuristics is the reduction of the number of 

faults simulated. A single event fault is not simulated if: 

1) the faulty value and the good value at the faulty site are 

identical, or 

2) the fault fails to propagate up to the second level of the 

following gates. 

It was reported in [9], that the above heuristics reduce the number of gate evaluations by 55 

percent and the CPU time by 45 percent. 

In PROOFS, a new technique for fault injection was introduced to avoid the 

computational overhead of the faulty gate evaluations. Instead of using the traditional bit 

masking method, PROOFS modifies the circuit to reflect the faulty circuit. 

In PROOFS, to inject a stuck-at-1 fault, a two-input OR gate is inserted at the fault 

site with the faulty line becoming one of the inputs to the gate. The other input of the OR 

gate is set to the value of all 0's except for a 1 in the bit position of the injected fault. In 
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this way, the output of the gate is always forced to a value 1 at the bit position of the fault, 

Similarly, to inject a stuck-at-0 fault, a two-input AND gate is inserted at the fault site with 

the gate input word set to all 1's except for a 0 at the bit position of the injected fault. 

Figure 5 shows the injection of a s-a-O fault on the second bit of the word and the good 

value of the faulty line is abcd. 

The proper grouping of faults into a packet of 32 faults is crucial to take advantage 

of parallel fault simulation. The processing time of a group of faults is dictated by the fault 

that has the longest propagation path. To reduce the overall processing time, faults with 

overlapping propagation paths should be grouped together, if possible. In PROOFS, faults 

are ordered by a depth-first search of the circuit starting at the primary outputs. Then a 

group of 32 faults are selected from the ordered list by scanning from top to bottom. 

Although the proposed method reduces the number of events by 50 percent compared with 

random ordering [9], there is still room for improvement as shown in this thesis. 

2.3.3 HOPE: ANOTHER IMPROVEMENT OF PROOFS 

Recently, Lee and Ha introduced a parallel fault simulator called HOPE which is an 

improvement of PROOFS. According to the experimental results of [10], HOPE is about 

two times faster than PROOFS. The key idea incorporated in HOPE is to reduce the total 

number of faults to be simulated in parallel for the entire circuit. This is achieved by 

screening out faults with short propagation paths. 

In HOPE, faults with short propagation paths are screened out in two phases. In 

the first phase, each single event fault inside a fanout free region (FFR), i.e., the non-stem 

faults, is simulated to its stem line by using single fault propagation. Let fs be the pseudo- 

stem fault mapped from a fault f inside a FFR. If the pseudo-stem fault fs is insensitive, 
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Figure 5. Fault Injection Method Proposed in PROOFS 
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the fault f is dropped from further simulation. Otherwise, the simulation of the fault fs is 

decided in the second phase of the screening process. 

To illustrate the efficiency of the first phase, consider the circuit shown in Figure 6. 

Suppose that there are eight single event faults within the FFR, and suppose that the fault- 

free value of the stem is 0. Each of these faults is simulated into one of the three pseudo- 

stem faults, i s-a-0, i s-a-1, or i s-a-X using single fault propagation. Among the three 

faults, i s-a-O fault is insensitive. Therefore, only two faults, i s-a-1 and i s-a-X, are 

considered for the second phase of screening. Hence, at most two faults, i s-a-1 and i s-a- 

X, are simulated for the entire circuit rather than the original eight faults. 

In the second phase, the stem fault fs is further examined by a process called a 

candidacy test. A candidacy test attempts to propagate a pseudo-stem fault to a certain 

node, depending on whether the stem has a dominator or not. If the stem has a dominator, 

the stem fault fs is propagated to line d using single fault propagation. After the stem fault 

fs is simulated into the equivalent pseudo fault fg, the fault fg is simulated in parallel 

simulation for the entire circuit if the following conditions are met: 

1) line d is neither a PO nor a PPO, 

2) fault fq is sensitive, and 

3) fault fq has not been simulated in the previous pass. 

If the stem does not have a dominator, the stem fault fs is propagated to the next level of the 

following gates of the stem. If the fault fs successfully propagates through any one of the 

gates, the fault fs is simulated in parallel. 
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2.4 OTHER HEURISTICS FOR PROOFS 

In this section, two heuristics that were considered to improve PROOFS in this 

thesis are reviewed. The two heuristics were initially developed for combinational circuits, 

but can be extended to sequential circuits. 

2.4.1 CRITICAL PATH TRACING (HEURISTIC 1) 

Hong introduced the concept of the partition of combinational circuits into fanout 

free regions (FFRs) [20]. He proposed the explicit fault simulation of only stem faults, 

while the detectability of non-stem faults in FFRs is determined by simulating the faults 

locally. Following Hong's approach, Abramovici, et al. [14] replaced the local simulation 

of non-stem faults by critical path tracing, performed in reverse level order inside a fanout 

free region. Critical path tracing stops tracing when it encounters a non-critical line. 

Antreich and Schulz [2] further improved the efficiency of Hong's approach by performing 

critical path tracing first, then explicitly simulating stem faults later only if the non-stem 

faults propagated to the stem lines, noting that critical path tracing is less expensive in terms 

of CPU time than the explicit simulation. 

The critical path tracing method can be readily extended to single event faults for 

sequential circuits but with increased complexity. The procedure can be divided into two 

steps. In the first step, critical path tracing is performed for each FFR. Due to the three- 

valued logic system, two critical paths, rather than the one in combinational circuits, are 

identified. Each segment of a critical path may sensitize one stuck-at fault or two stuck-at 
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faults as described in Section 2.2.3. Only the sensitized fault(s) on the critical paths can 

propagate to the stem. In the second step, the faulty values of those faults that propagate to 

the stem are identified. Then the necessary faults are injected at the stem and simulated in 

parallel. Suppose that there are three faults, d s-a-1, f s-a-1 and h s-a-O in the circuit 

shown in Figure 7. The three faults are propagated to the stem. One pseudo-stem fault 

with faulty values of 1 is injected at the stem and simulated in parallel. 

2.4.22 DYNAMIC AREA REDUCTION (HEURISTIC 2) 

The objective of dynamic area reduction is to reduce the area required for explicit 

fault simulation. The key idea of dynamic area reduction is to determine whether a segment 

of a zone needs explicit fault simulation by examining propagation zones of fault free 

simulation and/or of fault simulation for two (or possible many) consecutive test patterns. 

In this thesis, we consider a simple method for dynamic area reduction as described below. 

For sophisticated dynamic area reduction methods, refer to [4]. 

An area of a circuit which does not require explicit fault simulation for single event 

faults is called "inactive" area. We propose a method of identifying inactive area as in the 

following. The method is simply to incur small processing overhead, but the inactive area 

is somewhat smaller than that of sophisticated methods. 

The procedure to determine the active area during the fault free simulation is: 

1. Under the application of a test pattern tj, mark all the gates 

whose outputs are changed from the previous test pattern tj-1 "propagated." 

2. Mark a gate whose input is connected to a propagated gate "effected." Identify 

all the gates that can reach the newly marked affected gate through backward 

processing. 
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The active region is defined as the union of the propagated region and the effected region. 

Clearly, an area that is not active is inactive. An example showing propagated and effected 

areas is given in Figure 8. For any faults that reside inside the inactive region, fault 

simulation is not necessary for the current test pattern as it has already been fault simulated 

by the previous test pattern. A formal proof is given below. 

Theorem: Any fault in the inactive region is either detected by an earlier test pattern or not 

detected by the current test pattern. 

Proof 

Under the application of a test pattern tj, the propagation zone of a fault f in the inactive 

region never overlaps with the active region (otherwise, the fault f should belong to the 

active region). Since the fault is in the inactive region, the propagation zone of the fault is 

identical to the previous test pattern tj-], as there is no overlapping path that would extend 

the propagation zone of the fault into the active region. Hence, if f is detected by tj-1, it 

should be also detected by tj. 

Suppose that there are three faults in the circuit shown in Figure 9. At the previous 

test pattern tj-1, the faults are not detected and the propagation zones of the three faults are 

shown in Figure 9a. For the current test pattern tj, the active region is shown in Figure 9b, 

where faults f] and f2 reside inside the active region. Only faults f1 and f2 are explicitly 

simulated while fault f3 is not simulated since the fault has already been simulated in the 

previous test pattern tj-1. 
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2.5 THE RESEARCH 

A parallel fault simulator achieves substantial speedup compared to the traditional 

concurrent fault simulation method. However, we are interested in evaluating the 

performance of the two heuristics described earlier when employed in PROOFS. In 

addition to the two known heuristics developed for combinational circuits, we propose a 

new heuristic in Chapter 3 which is specific to sequential circuits. The heuristic is called 

two level simulation. We have implemented all three heuristics and compared the 

performance of the three heuristics. The performance of the three heuristics is also 

compared with that of the heuristics employed in HOPE. 

In addition to the evaluation of the three heuristics, we also investigated two 

areas to further enhance the performance of HOPE. The areas which we investigated are: 

1) the method for fault injection, and 

2) the dynamic fault ordering. 

To reduce the computational overhead of fault injection, PROOFS and HOPE insert 

extra gates at faulty lines as previously described. We found that the overhead associated 

with insertion and removal of the extra gates is higher than the traditional bit masking 

method for most types of faults. To reduce the overall overhead of fault injection, we 

propose the use of both methods, insertion of extra gates and bit masking. A proper 

method is selected depending on the site of a fault. 

The second scheme is the grouping of faults to increase the utilization of bits in a 

word. In PROOFS, faults are ordered based on a depth-first search of the circuit starting at 

the primary outputs. Once the faults are ordered during the preprocessing stage, the order 
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remains the same for the entire simulation. Through experiments, we noticed that the 

activity of some faults is much higher than other faults during fault simulation. Hence, it is 

a good idea to group high activity faults together to increase the utilization of bits. We 

investigated a method which groups faults dynamically according to the activity of the 

faults. 

To conduct the research, we implement three different versions of PROOFS, three 

different versions of HOPE and an enhanced version of HOPE. The names of the faults 

simulators are given in Figure 10, and all the shaded fault simulators were implemented by 

us for the research. 
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3. PROPOSED HEURISTICS FOR 
SYNCHRONOUS SEQUENTIAL CIRCUIT 
FAULT SIMULATION 

3.1 INTRODUCTION 

Two major objectives of the research conducted in this thesis are to measure the 

efficiency of three heuristics and to improve the speed of an earlier fault simulator HOPE. 

For the first objective, we considered two heuristics described in Chapter 2 and a new 

heuristic called two level simulation which is described in this chapter. The three heuristics 

are: 

1) critical path tracing, 

2) dynamic area reduction, and 

3) two level simulation. 

The first two heuristics were proposed for combinational circuits [4, 14], and the third one 

is proposed in this thesis. The second objective of the research is to improve the speed of 

HOPE by incorporating new methods for fault injection and for fault grouping. We 
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describe an efficient method of injecting faults into circuits and a new method of grouping 

faults. The new method of grouping faults increases the utilization of bits for computer 

words. Section 3.2 describes the new heuristic in this thesis in detail. Section 3.3 

describes the shortcomings of the fault injection method proposed in PROOFS and a new 

method to address the drawback. Section 3.4 describes a method to increase the utilization 

of all the bits of computer words. 

3.2 PROPOSED HEURISTIC: TWO LEVEL SIMULATION 

Since the introduction of PROOFS, several heuristics intended to improve the 

performance of PROOFS have been proposed [10, 12]. The key idea of these heuristics is 

to reduce the number of single event faults simulated in parallel. Although these heuristics 

achieve substantial speedup, all the multiple event faults are simulated in parallel for the 

heuristics. In this thesis, we consider reduction of multiple event faults to be simulated in 

parallel. Multiple event faults with degree one are considered for the proposed research. 

The method can be extended to multiple event faults with higher order, but rearranging the 

multiple event faults with higher order is too complex to defeat the purpose. 

Since a multiple event fault with degree one has its faulty value at the PPI as well as 

at the faulty site, heuristics described in [10, 12] cannot be applied, due to the effect of 

multiple faults. In order to solve the problem, we present a new method called two level 

simulation. The key idea of two level logic simulation is to convert multiple event faults 

effectively into single event faults and then to apply heuristics developed for single event 

faults. To convert multiple event faults into single event faults, we propose two layers of 
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logic simulation. The first layer of logic simulation is the usual fault free simulation for the 

applied test patterns. On top of the first layer logic simulation, the second layer of the logic 

simulation is performed for the faulty value at the PPI (to which the effect of the multiple 

event fault under consideration has propagated). The second layer of the logic simulation is 

called pseudo fault free simulation in this thesis. It should be noted that the multiple 

event faults has degree one, so only one PPI has been affected. As the faulty value of the 

PPI has been taken care of at the second layer of logic simulation, the fault at the faulty site 

is equivalent to a single event fault. In actual implementation, all multiple event faults 

which affect the same PPI with the same faulty value are considered at the same time. After 

the pseudo fault free simulation, i.e., the second layer of logic simulation for the PPI, all 

multiple event faults inside fanout free regions are simulated to their stem lines using single 

fault propagation. Only stem faults are considered in the parallel fault simulation. The two 

level simulation is illustrated in detail in the following. 

For illustration of the two level simulation, consider the case shown in Figure 11. 

Suppose that three faults inside a FFR, f1, 2, and f3, are multiple event faults with degree 

one. Let PPIj be the pseudo-primary input affected by the three faults. Suppose that the 

fault-free value of PPIj is 1 and the faulty value is 0. The first step of the two level 

simulation is to perform logic simulation of the circuit for the current test pattern. After the 

logic simulation, the faulty value at PPIj is processed next. This can be done by 

performing logic simulation in which the value of PPIj is changed to the faulty value 0 

(from the fault free value 1). The process called pseudo fault free simulation is to 

propagate the effect of the fault at PPIj to the circuit. As the effect of the fault at PPIj is 

considered at this stage, the only remaining task is to propagate the fault at the faulty site. 

Hence, the faults have been essentially converted into single event faults (to which the fault 

effects only originate at the fault sites). The three faults, f1, f2, and £3, can be treated as 

single event faults and hence heuristics developed for single event faults can be directly 
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applied. In this thesis, we considered the heuristic employed in HOPE which is described 

in Section 2.3.3. For the sake of completeness, we describe the heuristic briefly using the 

same example. The heuristic is that all three faults are propagated to the stem s, one ata 

time, using single fault propagation. If the pseudo-stem fault fs is insensitive, the fault is 

dropped from further simulation provided that its effect at the PPIj failed to propagate to 

any PO or PPO. If the effect at the PPIj propagates to some PO(s) and the logic value at 

the PO(s) is different, then the fault is said to be detected or potentially detected (depending 

on the condition) and the fault is dropped. If the faulty value at the PP]j propagates to 

some PPO(s) and the faulty value at PPO(s) is different from the good value, then the 

faulty value is stored for next test pattern and the fault is dropped. If the pseudo-stem fault 

fy is sensitive, then the fault fs is injected into the circuit for parallel simulation. 

Since the two level simulation method involves two layers of logic simulation, the 

fault detection is slightly more complex than that of single event faults. Let the values of a 

primary output PO; for the three simulations, fault free, pseudo fault free, and fault 

simulation, be denoted as follows, 

PO; : the good value 

PO;t : the pseudo fault free value 

PO;* : the faulty value. 

The fault is detected at POj output if PO; # PO;*- It can be classified into four groups as 

described below. Figure 12 shows different groups of POs under the presence of a 

multiple event fault. 

case 1 : POj = POj+ = PO;* (Region I in Figure 12) 

The fault is not detected at PO}. 
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case 2 : POj # PO;* and PO} = PO;+ (Region II in Figure 12) 

The fault is detected at PO}. 

case 3 : POj # POjt and POj* # PO;* (region III in Figure 12) 

It may or may not be POj = PO" 

Hence, the fault is detected (not detected) at PO} if 

PO; # PO;* (POj = PO;") 

case 4 : POj # POjt, PO|t = PO;* (region IV of Figure 12) 

The fault is detected at PO}. 

It should be noted that a fault is detected if there is at least one POj which detects the fault. 

As can be seen above, fault detection for multiple event faults with degree one is 

certainly more difficult than that of single event faults. However, the associated overhead 

is not as Severe as it looks, because the majority of the faults fall into case 1. 

The advantages of the two level simulation method are: 

1) only a small portion of multiple event fault with degree one are 

simulated in parallel, and 

2) pseudo fault free simulation is performed only once for each set 

of multiple event faults ( with degree one) which have the same 

faulty value at the same PPI. 

The associate overhead of the two level simulation are: 

1) the need to rearrange multiple event faults with degree one 

according to the faulty value and the PPI, and 

2) complex fault detection mechanism as was discussed above. 
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3.3 FAULT INJECTION 

In this section, the shortcomings of the fault injection method employed in 

PROOFS is described first and then a new fault injection method is proposed. 

Two bits (Vo,V1) are used to encode the three logic values: 0 1s coded as (1,0), 1 

as (0,1), and X as (0,0). The formulae for the gate evaluations of the primitive gates are 

shown in Table 2. To avoid the repeated evaluations of the gates that receive multiple input 

events, all the gates of the circuit are levelized in the preprocessing stage and simulated in 

the levelized order. 

3.3.1 DRAWBACK OF THE FAULT INJECTION METHOD 

PROPOSED IN PROOFS 

In PROOFS, a new fault injection technique has been introduced to avoid the 

computational overhead of the faulty gate evaluations. Instead of using the traditional bit 

masking technique, PROOFS modifies the original circuit at the faulty site to reflect the 

effect of the fault. As described in Section 2.3.2, in order to inject a stuck-at-O fault, a 

two-input AND gate is inserted at the fault site with the faulty line becoming one of the 

inputs to the gate (refer to Figure 5). The other input of the AND gate is set to the value of 

all 1's except for a 0 in the position of the injected fault. Similarly, to inject a stuck-at-1, an 

OR gate is inserted at the fault site with the gate input value set to all 0's except for a 1 at 

the bit position of the injected fault. 
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Table 2. Formulae for Gate Evaluations of The Primitive Gates 

  

Note: A and B are the inputs, V is the output. 

+ : bitwise OR & : bitwise AND 
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The processing of a fault requires three steps: fault insertion, evaluation of the 

faulty circuit and restoration. Using the example circuit shown in Figure 13a, we describe 

the three steps for the fault injection employed in PROOFS. For simplicity, the word 

length is assumed to be 4. The line stuck-at-1 fault in the circuit is injected to the second bit 

of the 4-bit word. 

Step 1 (Fault Injection): 

In PROOFS, two extra gates, a two-input OR gate F and a dummy gate D which consists 

of a constant value, are added to the faulty line as shown in Figure 13b. The good and 

faulty values of F are set to (0000) and (0010), respectively. 

This method avoids the requirement of checking every gate to determine if it is 

faulty or not. However, it incurs a burden for circuit modification for injecting faults. 

Step 2 (Faulty Circuit Evaluation): 

Since the circuit has been modified, the evaluation of the faulty circuit is straightforward. 

In PROOFS, 32 faults are simulated in parallel. Hence, 64 extra gates are evaluated. 

Step 3 (Fault Removal): 

The two extra gates inserted during step 1 should be removed to restore the fault free 

circuit. It requires the processing of 64 gates for each path in PROOFS, as 32 faults are 

evaluated in parallel. 

The above method also causes a minor problem in levelized fault simulation. Under 

zero gate delay, a level is assigned to each gate by traversing from PPIs and PIs to PPOs 

and POs during preprocessing time. Gates are evaluated in the levelized order to reduce the 

number of events. The gates at the same level can be evaluated in an arbitrary order. 
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Suppose that the level of gate A is 2, and the level of gates B and C is 3 before the injection 

of a fault. Suppose that the three fault, line c s-a-1, line c s-a-O and line g s-a-1 faults are 

injected into the circuit as shown in Figure 14. Since the levels of gates A and B are 2 and 

3, the levels of the extra gates Fl, F2 and F3 should be 2 or 3, depending on the 

implementation. Suppose that all the three gates are assigned to level 2. The levels of the 

four gates A, Fl, F2 and F3 are the same, but the gates should be evaluated in the order of 

A, Fl, F2 and F3 in the sequence. Hence, the gates should be carefully put into the 

evaluation stack so as to evaluate the gates in the sequence. The same problem occurs no 

matter how the levels of the three extra gates are assigned. The requirement of putting the 

extra gates in the specific sequence causes extra overhead in the implementation. 

Although Niermann et al. claims that this fault injection technique 1s efficient [9], 

inserting and removing the extra gates before and after the fault simulation incurs 

significant overhead. 

3.3.2 THE PROPOSED FAULT INJECTION METHOD 

In this section, we present a new fault injection technique that addresses the 

drawback of the above method employed in PROOFS. Our approach take advantage of the 

traditional bit masking technique and the method proposed in PROOFS. 

In the following, we describe the necessary data structure of our technique. Then, 

the process of setting up the faults prior to the fault simulation pass is discussed. Finally, 

the procedure responsible for inserting the faults during the fault simulation is described. 
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Unlike the traditional bit masking technique which constructs the fault table prior to 

a fault simulation pass [22], the new fault injection method allocates a small stack to every 

gate of the circuit in the preprocessing stage. The size of the stack is equal to the number of 

the faults associated with the gate. A fault of a signal line is associated with a gate which 

drives the faulty line except fanout branches. A fault on a fanout branch is associated with 

a gate which is driven by the faulty line. Each entry of a stack holds a pointer of a 

corresponding fault record. A fault record consists of three fields: (1) fault type (-1 for the 

output fault, a positive integer for an input fault); (2) fault value; and (3) bit position in the 

word. Besides having a small stack, the gate also has a flag to indicate whether it is fault 

free or faulty under the application of a given test pattern. An example of the data structure 

is given in Figure 15. Suppose that three faults, line c s-a-0, line c s-a-1, and line e s-a-1 

faults are injected into the circuit as shown in Figure 15a and are assigned bit positions of 

1, 2 and 3. The data structures of the three faults would be as shown in Figure 15b. The 

fault type of line c s-a-O and line c s-a-1 faults is -1 since they are output faults. The fault 

type of line e s-a-1 fault is 0 because it is an input fault at the input line 0 of gate G4. 

Suppose that a fault is selected for processing. The stuck-at value and the type 

(input or output fault) of the fault are copied into the corresponding record. The flag of the 

gate is set to indicate the existence of the fault at the gate. The pointer associated with the 

fault record is then pushed into the stack of the gate. 

During the fault simulation, if the flag of a gate is set, the control is turned over to a 

special procedure which is responsible for evaluation of the faults associated with the gate. 

The pointers of the fault records are popped from the stacks of the gate to obtain the 

information necessary to insert the faults. A stuck-at-1 fault on a line is injected by ORing 

a word containing 1 in the bit position of the injected fault and 0's elsewhere, to the word 

representing the signal values of the line. Similarly, a stuck-at-0 fault can be injected by 

ANDing a word with 0 in the faulty value position and 1's elsewhere. 
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The proposed fault injection method described above is illustrated using the 

previous example circuit and faults shown in Figure 13. It is assumed that all the fault 

records are empty initially and the bit positions for each fault record have been assigned. 

Step 1 (Fault Injection) : 

At the beginning of a fault simulation pass, the fault type and the fault value of each fault 

are assigned to the fault record. The flag of the affected gate is set. For example, the 

highlighted record of Figure 16a shows a stuck-at-1 at the line e for position 2. Then the 

pointer of the fault record is pushed into the stack of gate G1, and the flag of the gate is set, 

as shown in Figure 16b. This routine is repeated for all the 32 faults to be processed for 

the pass. 

Step 2 (Faulty Circuit Evaluation) : 

During the fault simulation, if the flag of a gate is set, the control is turned over to the 

special procedure (which is responsible for evaluation of the faults associated with the gate) 

described earlier. For example, when the gate G1 is evaluated, the pointer of the fault 

record is popped from the stack of the gate Gl. The information in the fault record is 

retrieved, and the stuck-at-1 fault at the line e is inserted by ORing the value of line e 0000 

and a mask of 0010. 

Step 3 (Fault Removal) : 

The proposed method does not require any special processing to restore to the fault free 

circuit, as all the stacks have been emptied during the fault simulation. 

The major difference between the proposed method and the PROOFS method lies in 

the insertion of the extra gates into the circuit. Although our method requires checking 

flags for every gate, our experiment shows that the overhead of examining flags is less than 
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b) Insertion of Fault Data Into The Gate 

Figure 16. The Proposed Fault Injection Method 
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that of inserting and removing extra gates in PROOFS. The reason for this is that insertion 

and removal of a gate require a significant processing time such as connecting and 

disconnecting the signal lines and maintaining the data structures of all the affected gates. 

Although the above bit masking method is efficient for insertion of faults for most 

types, it causes some problem in levelized fault simulation for the following faults: 

1) faults at the output lines of flip flops, and 

2) faults at the input lines of flip flops. 

Let us consider the example circuit shown in Figure 17a. Suppose that the level of gate G6 

is 5, the level of gates G7 and G8 is 6, and the level of flip flop G9 is 7 (All the flip flops 

are assigned the highest level of the circuit to simplify the processing). Suppose that line c 

stuck-at-1 fault is to be injected at the second bit of a 3-bit word. When the bit masking 

technique is employed, there are two cases that cause some problems. 

case 1: 

Suppose that the fault s-a-1 is inserted at level 6 as shown in Figure 17b. Since the level of 

gates G7, G8 and the fault s-a-1 is 6, the gates should be evaluated in the order of G7 and 

G8, and then the fault s-a-1. Hence, the gates should be carefully put into the evaluation 

stack so as to evaluate the gates in the sequence. 

case 2: 

Suppose that the fault s-a-1 is inserted at level 7. The only way of injecting the fault into 

the circuit is during the storing of the faulty values at flip flops. This incurs significant 

overhead since every flip flop needs to be checked even though they are not faulty. 
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Figure 17. Problem of Injecting a fault at the input line (fanout branch) of a flip flop 
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For faults occurred on the two types of signal lines, the fault injection method 

employed in PROOFS is used for our method. The use of the two fault injection methods 

aims to take advantage of the two methods: bit masking and extra gate insertion. 

3.4 FAULT ORDERING 

In this section, the static fault ordering method proposed in PROOFS is described 

as well as its shortcoming. A new fault ordering technique which alleviates the problem is 

proposed. 

3.4.1 DRAWBACK OF THE FAULT ORDERING METHOD 

PROPOSED IN PROOFS 

In PROOFS, the fault list is constructed through the depth-first search starting at the 

primary outputs toward primary inputs. The ordering strategy increases the chances that 

the faults on the same sensitized path are packed in the same word and processed 

simultaneously. For example, consider the circuit given in Figure 18a. The fault list after 

equivalent fault collapsing is shown in Figure 18b. Suppose that only four faults can be 

packed and injected at the same time and the sensitized path is highlighted as shown in 

Figure 18a. If the fault list is searched from top to bottom, the first four selected faults are i 

s-a-1, g s-a-O, e s-a-1 and a s-a-0. As can be seen from the figure, the four faults are on 

the same sensitized path; thus, the number of events can be significantly reduced. After a 
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a) An Example Circuit 

Fault list = { i s-a-0, i s-a-1, g s-a-0, 
e s-a-1, a s-a-0, b s-a-0, 
f s-a-1, c s-a-O, d s-a-0, 
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b) Equivalent Fault Collapsing 

Figure 18. Fault Ordering Using Depth-First Search Method 
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fault list has been constructed during the preprocessing time, the ordering of the faults in 

the fault list remains the same during the entire fault simulation period except dropping 

detected faults from the list. For each simulation pass, 32 faults are selected by scanning 

the fault list from top to bottom (or bottom to top) and grouped together into a packet. The 

static nature of the fault does not take advantage of some information such as activity of 

faults which may become available during the fault simulation. If high activity faults are 

grouped together, the bits of each packet are better utilized to result in high performance. 

We propose a dynamic fault ordering which reorders the sequence of faults in the fault list 

during the fault simulation. 

3.4.2 THE PROPOSED FAULT ORDERING METHOD 

In this section, we investigate a dynamic fault ordering strategy to address the 

drawback of PROOFS described above. In our method, faults are ordered according to the 

activity of faults. However, measurement of the exact activity of faults is complex. The 

employment of a sophisticated algorithm defeats the purpose of reducing the overall 

processing time. We employ a simple, yet effective method of identifying high activity 

faults as described below, the results of which are illustrated in Chapter 4. 

As explained in Section 2.2.2, a fault may be detected strongly or potentially. A 

strongly detected fault is dropped from the fault list, but potentially detected fault is usually 

kept for further processing. 

In the fault simulation, the states of all flip flops are initially set to X. As the 

simulation progresses, for most of them, the existence of some faults may prevent some 

flip flops from being set to logic 1 or 0, i.e., the flip flops remain at X. For a potentially 

detected fault, there is a flip flop for which the X value propagates to a PO. This means 
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that the activity of the potentially detected fault is high compared to other faults as the value 

X propagates all the way from a PPI to the PO. As the value X propagates to a PO, there is 

a fairly high chance that the value X also propagates to a PPO. This implies that the 

potentially detected faults may remain so in the following time frame. The above 

arguments can be summarized as potentially detected faults are, in general, highly active. 

The original fault list obtained through the static fault grouping is divided into two 

groups, A and B, as shown in Figure 19. Group A contains faults which have not been 

potentially detected so far, and group B contains faults which have been potentially detected 

at least once. A fault in group A is moved to group B whenever it is potentially detected 

after the fault simulation of the fault. When a packet of faults are selected from left to right 

of the fault list, group B faults (which are likely to be highly active) are simulated together 

except for faults at the boundary. The above method reallocates each fault from group A to 

group B at most once during the entire fault simulation. Hence, the performance overhead 

incurred by the dynamic fault ordering is minimal. Our experimental results show that the 

dynamic ordering is effective in reducing the number of gate evaluations for large circuits. 
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4. EXPERIMENTAL RESULTS 

In this section, experimental results on the performance of the heuristics are 

reported and compared with other fault simulators. Section 4.1 describes the objectives of 

the experiments. Section 4.2 evaluates the effectiveness of the heuristics when 

incorporated into PROOFS. Section 4.3 measures the effectiveness of the three heuristics 

when incorporated into HOPE. Finally, Section 4.4 measures the performance of the new 

fault injection and fault ordering methods for HOPE. 

4.1 OBJECTIVES OF THE EXPERIMENTS 

As described earlier, there are two major objectives in this thesis. The first 

objective is to investigate the effectiveness of three heuristics, critical path tracing, dynamic 

area reduction, and two level simulation. The first two heuristics originally designed for 

combinational circuits are extended for sequential circuits and the third one is proposed in 
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this thesis. The second objective is to improve the speed of HOPE through the new fault 

injection method and the new dynamic fault ordering method described in Chapter 3. 

To achieve the first objective, we have incorporated the three heuristics into 

PROOFS and measured the efficiency in several aspects. For the second objective, we 

have incorporated the two methods into HOPE, and measured the processing time. 

PROOFS and HOPE used in the experiments were written by Lee and Ha [10]. All the 

fault simulators are written in the C language, and run on Sun workstation. ISCAS89 

benchmark sequential circuits [23] and test patterns generated by a commercial automatic 

test pattern generator, GENTEST of AT&T, were used in the experiments. All the flip 

flops were initialized to unknown state X. The CPU time were measured on SUN Sparc 2 

workstation. The profile of the ISCAS89 benchmark circuits and fault coverages of the 

patterns is given in Table 3. 

4.2 EFFECTIVENESS OF THE HEURISTICS FOR PROOFS 

In this section, we present the effectiveness of the three heuristics: critical path 

tracing, dynamic area reduction, and two level simulation. Three fault simulators which 

incorporated the three heuristics into PROOFS were implemented to measure the 

effectiveness of the heuristics. The three fault simulators are: 

1. PROOFS_C: PROOFS which incorporated critical path tracing, 

2. PROOFS_D: PROOFS which incorporates dynamic area 

reduction, and 

3. PROOFS_T: PROOFS which incorporates two level simulation. 
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Table 3. Circuits Description and Test Patterns 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

name no. of no. of no. of no. of fc 
ates FFs tests faults Jo 

s298 136 14 162 308 85.71 

s344 184 15 91 342 96.20 

$382 182 21 2463 399 90.98 

s444 205 21 1881 474 89.45 

8526 217 21 754 555 75.32 

s641 433 19 133 467 86.30 

s713 447 19 107 581 80.90 

s820 312 5 411 850 81.88 

s832 310 5 377 870 81.38 

s953 440 29 16 1079 7.78 

$1238 540 18 349 1355 94.69 

$1423 748 74 36 1515 24.42 

51488 667 6 590 1486 92.60 

s1494 661 6 469 1506 91.10 

$5378 2993 179 408 4603 74.02 

§35932 17828 1728 86 39094 87.99     
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The effectiveness of the three heuristics was measured in terms of the number of faults 

simulated in parallel, the number of gate evaluations, and the CPU time. 

4.2.1 NUMBER OF FAULTS SIMULATED IN PARALLEL 

As described earlier, the key idea of the three heuristics, critical path tracing, 

dynamic area reduction, and two level simulation, is to reduce the number of faults 

simulated in parallel. Since the effectiveness of the three heuristics is based on reducing the 

number of faults simulated in parallel, we measure the number of faults simulated in 

parallel. The experimental results are reported in Table 4. For comparison, the number of 

faults simulated in parallel for PROOFS is also given in the table. 

As can be seen in the table, all the three heuristics significantly reduce the number 

of faults simulated in parallel. The average reduction ratio for the critical path tracing 

(PROOFS_C) is 4.86, 1.88 for the dynamic area reduction (PROOFS_D) and 1.96 for the 

two level simulation (PROOFS_T). The high reduction ratio indeed speed up the three 

fault simulators as can be seen later. Among the three heuristics, the critical path tracing is 

the most effective. This is essentially owing to the local simulation of faults within fanout 

free regions. By simulating the non-stem faults (which are in majority) to their stem lines, 

faults with short propagation paths can be identified and prevented from being explicitly 

simulated in parallel (this is essentially the idea employed in HOPE). In this way, none of 

the non-stem faults are simulated at all, and only stem faults are simulated in parallel. 
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Table 4. Number of Faults Simulated in Parallel 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

No. of Faults Simulated in Parallel Reduction Ratio 
name PROOFS | PROOFS_C | PROOFS _D | PROOFS _T | PROOFS_C | PROOFS D | PROOFS_T 

s298 6131 2767 3627 3210 2.22 1.69 1.91 

s344 2864 1391 2060 1773 2.06 1.39 1.62 

$382 83556 59997 62381 56489 1.39 1.34 1.48 

5444 106587 78498 81652 72075 1.36 1.31 1.48 

$526 91694 42430 47067 49283 2.16 1.95 1.86 

s641 7032 1780 3379 3376 4.00 2.08 2.08 

$713 7986 2369 4275 4479 3.37 1.87 1.78 

$820 51512 4428 20344 20209 11.63 2.53 2.55 

$832 48851 3948 18917 18717 12.37 2.58 2.61 

s9§3 12132 5742 7487 7544 2.11 1.62 1.61 

$1238 53633 12044 23636 22231 4.45 2.27 2.41 

81423 30091 19527 23824 16123 1.54 1.26 1.87 

51488 59701 4578 24579 24298 13.04 2.43 2.46 

51494 56227 4678 24102 23820 12.02 2.33 2.36 

$5378 307550 126238 146736 174780 2.44 2.10 1.76 

§35932 553870 345691 441669 380842 1.60 1.25 1.45 

Ave. 92464 44757 58483 54953 4.86 1.88 1.96     
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4.2.2 NUMBER OF GATE EVALUATIONS 

The number of gate evaluations is a good metric for the effectiveness of fault 

simulators (and hence heuristics for fault simulation). It is independent of the 

programming style and the efficiency. However, some overhead such as checking flags 

and comparing values are not accounted for, and it may distort the results. 

The number of gate evaluations for the three heuristics are presented in Table 5. As 

shown in the table, all three fault simulations significantly reduce the number of gate 

evaluations compared with PROOFS. Among the three heuristics, PROOFS_C has the 

highest reduction ratio on the average. The result is expected from the earlier experiment 

which showed that PROOFS_C achieves the highest reduction on the number of faults 

simulated in parallel. It is easily conceived that there exists a correlation between the 

reduction ratio on the number of faults simulated in parallel and the reduction ratio for the 

number of gate evaluations. It is illustrated for circuits 51494 and s832 that PROOFS_C 

achieves the highest reduction ratio both for the number of faults simulated in parallel and 

for the number of gate evaluations for the two circuits. In contrast, PROOFS_C achieves 

the lowest reduction ratio for the number of faults simulated in parallel and for the number 

of gate evaluations for circuits s382 and s444. 

Finally, the number of gate evaluations is reduced for dynamic area reduction by 

simulating only active regions. The smaller the active region (which is the union of the 

propagated region and affected region), the higher the reduction ratio. Our experimental 

results show that on the average only 68 percent of the region is active for the ISCAS89 

benchmark circuits. The detail information on the experiment is given in Appendix A. 
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Table 5. Number of Gate Evaluations 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      
  

        

[ No. of Gate Evaluations Reduction Ratio 
name PROOFS | PROOFS_C | PROOFS_D | PROOFS_T } PROOFS_C | PROOFS_D | PROOFS_T 

s298 27981 22156 23805 22838 1.26 1.18 1.23 

$344 20562 18051 19090 18183 1.14 1.08 1.13 

$382 531381 486272 507726 480978 1.09 1.05 1.10 

$444 674373 619905 608091 554821 1.09 1.11 1.22 

$526 524782 328506 313753 323214 1.60 1.67 1.62 

s641 38734 26815 30639 29922 1.44 1.26 1.29 

s713 43099 28831 33524 32882 1.49 1.29 1.31 

s820 304426 110966 173635 167671 2.74 1.75 1.82 

$832 297954 103177 184701 176557 2.89 1.61 1.69 

s953 62517 41149 46760 48932 1.52 1.34 1.28 

$1238 135060 54611 86030 81996 2.47 1.57 1.65 

$1423 121923 102517 109259 92709 1.19 1.12 1.32 

$1488 913256 375598 554839 540326 2.43 1.65 1.69 

$1494 843638 303285 468989 449418 2.78 1.80 1.88 

$5378 2143188 1722059 1765732 1844723 1.24 1.21 1.16 

§35932 § 5936523 5695447 5709018 5459046 1.04 1.04 1.09 

Ave. 788712 589959 664724 645263 1.71 1.36 1.41       
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4.2.3 SPEED 

The speed is the most important factor for fault simulators. Although it is 

significantly affected by both the programming style and proficiency, the speed remains the 

most useful metric for efficiency of fault simulators. 

The CPU time of PROOFS and the three fault simulators: PROOFS_C, 

PROOFS_D, and PROOFS_T, were measured on a SUN Sparc 2 workstation and are 

reported in Table 6. 

As can be seen in the table, the three heuristics improve the speed of PROOFS. 

The average speedup of PROOFS_C is 1.97, PROOFS_D is 1.65, and PROOFS_T is 

1.76. PROOFS_C achieves the highest speedup among the three. This is expected since it 

also reduced the largest number of gate evaluations. 

An interesting relation can be made between the reduction ratio on the CPU time 

and the reduction ratio on the number of gate evaluations. The scatter diagrams of the 

relationships for the three heuristics are shown in Figures 20-22. From the figure, it is 

easy to conceive that the speedup ratio is only slightly dependent on the reduction ratio for 

PROOFS_C, but not for PROOFS_D and PROOFS_T. This is because the heuristics 

employed in PROOFS_D and PROOFS_T require extra processing such as finding active 

regions and rearranging multiple event faults with degree one. Thus, other factors such as 

the nature of the heuristic itself and the circuit structure must be taken into consideration to 

study this relationship. 
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Table 6. CPU Time (Sec) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

CPU Time (Sec) Speedup Ratio 
Name { PROOFS | PROOFS_C | PROOFS_D [ PROOFS_T [ PROOFS_C | PROOFS_D [ PROOFS_T 

5298 1.11 0.48 0.58 0.55 2.31 1.91 2.02 

$344 0.82 0.37 0.42 0.40 2.22 1.95 2.05 

$382 17.22 8.52 9.62 9.60 2.02 1.79 1.79 

s444 10.84 9.67 10.68 10.13 2.16 1.95 2.06 

5526 11.00 5.93 6.13 6.35 1.85 1.79 1.73 

s641 1.45 0.62 0.75 0.68 2.34 1.93 2.13 

$713 1.41 0.68 0.77 0.72 2.07 1.83 1.96 

$820 5.16 2.33 3.33 3.08 2.21 1.55 1.68 

$832 4.82 2.17 3.28 3.05 2.22 1.47 1.58 

s953 0.54 0.80 0.78 0.88 0.68 0.69 0.61 

$1238 4.92 2.25 2.93 2.28 2.19 1.68 2.16 

§1423 3.81 2.10 2.02 2.20 1.81 1.89 1.73 

51488 12.74 6.45 9.60) 8.32 1.98 1.33 1.53 

51494 10.75 5.48 8.25 7.32 1.96 1.30 1.47 

55378 $1.52 27.41 29.85 26.15 1.88 1.73 1.97 

§35932 173.11 104.38 107.68 100.78 1.66 1.61 1.72 

Ave. 20.08 11.23 12.29 11.47 1.97 1.65 1.76 
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Figure 20. The Scatter Diagram of The relationship Between Speedup Ratio on CPU Time 

and Reduction Ratio on The Number of Gate Evaluations for PROOFS_C 

4, EXPERIMENTAL RESULTS 64



3.0 

on 

2.0 —— D 

Speedup Bp, D 
Ratio D D 

D 
1.5 WU D 

D 
D 

1.0— 

D 

0.5 ——     
I I I T | I > 

05 10 #15 20 25 30 

Reduction Ratio 
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Figure 22. The Scatter Diagram of The Relationship Between Speedup Ratio on CPU Time 

and Reduction Ratio on The Number of Gate Evaluations for PROOFS_T 
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4.2.4 CONCLUDING REMARKS 

Among the three heuristics, critical path tracing is the most effective in the number 

of gate evaluations and in CPU time. This would be true for any fault simulator without 

heuristics. However, for a parallel fault simulator in which some heuristics have been 

incorporated such as HOPE, critical path tracing may not be the most efficient. This is 

because the simulation of faults inside fanout free regions (which is the major attribute for 

the speedup of the critical path tracing) is already incorporated in HOPE. In the following 

section, we present experimental results on the heuristics incorporated in HOPE. 

4.3 EFFECTIVENESS OF THE HEURISTICS FOR HOPE 

In this section, we measure the effectiveness of the three heuristics when 

incorporated into HOPE. Three fault simulators which incorporated the three heuristics 

into HOPE were implemented to conduct the experiment. The three fault simulators are: 

HOPE_C : HOPE which incorporates critical path tracing, 

HOPE_D : HOPE which incorporates dynamic area reducing 

and, 

HOPE_T : HOPE which incorporates two level simulation. 

The effectiveness of the three fault simulators was measured in terms of the number of 

faults simulated in parallel, the number of gate evaluations, and the CPU time. 
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4.3.1 NUMBER OF FAULTS SIMULATED IN PARALLEL 

As the effectiveness of the three heuristics depends on the reduction of the number 

of faults simulated in parallel, we measure the number of faults simulated in parallel. The 

experimental results are given in Table 7. 

As shown in the table, the number of faults simulated in parallel is not reduced at all 

in HOPE_C. This is anticipated, since the critical path tracing simply replaces the single 

fault propagation in FFRs in HOPE_C. 

There is little or no reduction for the dynamic area reduction method. The 

effectiveness of the dynamic area reduction method is overshadowed by the efficiency of 

the heuristics employed in HOPE. Those faults (which are not simulated in the dynamic 

area reduction method) that reside in the inactive region are easily identified in HOPE. 

The average reduction ratio of HOPE_T is 1.17. The two level simulation method 

is effective because the majority of the faults simulated for HOPE are multiple event faults. 

Our experimental results show that about 78 percent of the faults simulated in parallel are 

multiple event faults. The more detail information on the experiment is given in Appendix 

B. 

4.3.2 NUMBER OF GATE EVALUATIONS 

As shown in Table 8, all the three methods do not reduce the number of gate 

evaluations. Among the three heuristics, HOPE_T achieves the highest reduction ratio. 

The average reduction ratio for HOPE_T is 1.07, while the other two heuristics are 1.0. 

The small reduction ratio would lead virtually no speedup for the heuristics as shown in the 

following. 
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Table 7. Number of Faults Simulated in Parallel 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        
            

| No. of Faults Simulated in Parallel Reduction Ratio 
name HOPE | HOPE_C | HOPE_D | HOPE _T | HOPE C | HOPE D | HOPE T 

$298 2436 2436 2432 2114 1.00 1.00 1.15 

$344 1351 1351 1351 1247 1.00 1.00 1.08 

$382 59318 59318 59213 49732 1.00 1.00 1.19 
s444 76531 76531 76428 64149 1.00 1.00 1.19 
$526 39617 39617 39519 32167 1.00 1.00 1.23 
$641 1530 1530 1530 1374 1.00 1.00 1.11 

$713 1926 1926 1926 1711 1.00 1.00 1.13 

$820 3404 3404 3397 3195 1.00 1.00 1.07 
$832 3111 3111 3111 2932 1.00 1.00 1.06 
$953 5019 5019 4968 4281 1.00 1.00 1.17 
$1238 6713 6713 6686 5672 1.00 1.00 1.18 
$1423 18208 18208 18115 11898 1.00 1.00 1.53 

$1488 4128 4128 4125 3978 1.00 1.00 1.04 
$1494 4208 4208 4205 4035 1.00 1.00 1.04 

$5378 86116 86116 82722 65379 1.00 1.04 1.32 
1835932 202627 202627 202562 160267 1.00 1.00 1.26 

Ave. 32265 32265 32018 | 25883 1.00 1.00 1.17     
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Table 8. Number of Gate Evaluations 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

Number of Gate Evaluations Reduction Ratio 

name HOPE | HOPE_C | HOPE_D | HOPE_T | HOPE_C | HOPE _D | HOPE_T 

$298 21742 21686, 21738 20828 1.00 1.00 1.04 

8344 17205 17765 17205 17036 0.97 1.00 1.01 

$382 498167 483622 498594 467400 1.03 1.00 1.07 

5444 589765 611290 589690 535376 0.96 1.00 1.10 

8526 296017 321854 295667 265635 0.92 1.00 1.11 

s641 26050 25858 26050 25244 1.01 1.00 1.03 

s713 26831 26838 26831 25727 1.00 1.00 1.04 

s820 109497 109191 109477 108807 1.00 1.00 1.01 

5832 101860 101307 101860 101241 1.01 1.00 1.01 

5953 37457 37336 37155 36810 1.00 1.01 1.02 

s1238 39838 40143 39689 38356 0.99 1.00 1.04 

§1423 97610 97311 96619 81787 1.00 1.01 1.19 

81488 376621 374233 376618 374883 1.01 1.00 1.00 

51494 302445 300992 302440 301394 1.00 1.00 1.00 

85378 1495225] 1490170] 1462062] 1254307 1.00 1.00 1.19 

35932 § 4786226| 4864154| 4785018] 4590789 0.98 1.00 1.04 

Ave. 551410| 557734] 5491701 515351 1.00 1.00 1.06 
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4.3.3 SPEED 

The execution time of the three heuristics are given in Table 9. (The execution time 

include both preprocessing time and fault simulation time.) As expected from the above 

experimental results, only a small speedup is achieved for HOPE_T. The other two 

heuristics, HOPE_C and HOPE_D, in fact, decrease the speed. This makes a good 

contrast with PROOFS in which PROOFS_C achieves the speedup of about two. 

4.3.4 CONCLUDING REMARKS 

Although the three heuristics are effective in PROOFS, it is not necessarily true for 

HOPE. The two level simulation method is the only effective one for HOPE among the 

three heuristics. However, the effectiveness of HOPE_T is insignificant in terms of the 

number of faults simulated in parallel, the number of gate evaluations, and the CPU time. 

In conclusion, the three heuristics are not worthwhile for HOPE. 

4.4 PERFORMANCE OF THE PROPOSED METHODS FOR 

HOPE 

In Chapter 3, two new methods, fault injection scheme and dynamic fault ordering, 

have been proposed to improve the speed of HOPE. In this section, we present the 
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Table 9. CPU Time (Sec) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

CPU Time (Sec) Speedup Ratio 

name HOPE | HOPE_C | HOPE_D | HOPE_T | HOPE_C | HOPE_D | HOPE_T 

s298 0.42 0.48 | 0.50 0.48 1.00 0.96 1.00 

8344 0.38 0.38 0.40 0.38 1.00 0.95 1.00 

§382 9.33 8.82 9.57 8.92 1.06 0.97 1.05 

5444 10.20 10.18 10.20 9.57 1.00 1.00 1.07 

$526 6.00 5.97 5.97 5.58 1.01 1.00 1.08 

8641 0.62 0.63 0.72 0.60 0.98 0.86 1.03 

8713 0.65 0.68 0.75 0.65 0.96 0.81 1.00 

s820 2.17 2.32 2.68 2.18 0.94 0.87 1.00 

8832 2.18 2.17 2.52 2.07 1.00 0.90 1.05 

s953 0.82 0.80 0.78 0.80 1.03 1.06 1.03 

$1238 2.07 2.22 2.72 2.00 0.93 0.76 1.04 

$1423 2.05 2.08 2.13 1.88 0.99 0.96 1.09 

51488 6.35 6.35 7.86 6.07 1.01 0.81 1.05 

51494 5.35 5.57 6.57 5.20 0.96 0.81 1.03 

85378 27.23 27.08 28.75 24.33 1.01 0.95 1.12 

835932 95.33 100.55 102.70 93.48 0.95 0.93 1.02 

Ave. 10.71 11.02 12.85 10.24 0.99 0.91 1.04 
  

  

4. EXPERIMENTAL RESULTS 72



experimental results on the two methods. In the following experiments, HOPE_f is a fault 

simulator that incorporated only the new fault injection method, and HOPE_d is a fault 

simulator incorporating the dynamic fault ordering method. HOPE_NEW incorporates 

both the fault injection and the dynamic fault ordering methods. 

4.4.1 NUMBER OF GATE EVALUATIONS 

The new fault injection method aims to speed up the fault simulation by mainly 

reducing the overhead associated with fault injection. As extra gates are not introduced for 

most faults for the new fault injection method, the number of gate evaluations will be 

reduced. The dynamic area reduction method speeds up fault simulation by reducing the 

number of gate evaluations. Experimental results on the two heuristics are shown in Table 

10. 

The experimental results in Table 10 show that, on the average, the number of gate 

evaluations for the fault injection method (HOPE_f) is reduced by 7 percent and that for the 

dynamic area reduction method by 4 percent. In addition, HOPE_NEW which 

incorporated both methods achieves on the average a reduction of 12 percent. For the 

largest circuits, s5378 and s35932, the average reduction is about 25 percent. It is 

important to note that the reduction ratio of HOPE_NEW is close to the sum of the 

reduction of that of HOPE_f and HOPE_d. This implies that the effectiveness of the two 

heuristics is independent of each other. 
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Table 10. Number of Gate Evaluations 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              
        

No. of Gate Evaluations Reduction Ratio 

name HOPE HOPE f | HOPE_d | HOPE NEW | HOPE f | HOPE d | HOPE NEW 

$298 21742 19845 | 21916 20022 1.10 0.99 1.09 

8344 17205 15985 17613 16376 1.08 0.98 1.05 

$382 498167 450069 469152 421209 1.11 1.06 1.18 

5444 589765 524622 497184 432999 1.12 1.19 1.36 

5526 296019 262932 283559 250872 1.13 1.04 1.18 

s641 26050 25192 26197 25349 1.03 0.99 1.03 

s713 26831 25564 26710 25450 1.05 1.00 1.05 

8820 109497 107301 109676 107479 1.02 1.00 1.02 

8832 101860 99755 101905 99796 1.02 1.00 1.02 

s953 37457 33495 36598 32632 1.12 1.02 1.15 

$1238 39838 37100 39988 37250 1.07 1.00 1.07 

$1423 97610 85601 98607 86943 1.14 0.99 1.12 

$1488 376621 372866 375801 372072 1.01 1.00 1.01 

81494 302445 298506 301267 297362 1.01 1.00 1.02 

$5378 1495225] 1451021] 1279258 1238932 1.03 1.17 1.21 

835932 | 4786226] 4653238] 3842317 3712338 1.03 1.25 1.29) 

Ave. 551410 528942 470484 448568 | 1.07 1.04 1.12 
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4.4.2 SPEED 

The CPU time of the three fault simulators, HOPE_f, HOPE_d and HOPE_NEW, 

are given in Table 11. The CPU times were measured on a SUN Sparc 2 workstation. As 

shown in the table, HOPE_f performs better for all the circuits. For some circuits 

including the largest one, s35932, the reduction ratio is as large as 22 percent. HOPE_d is 

also effective in reducing CPU time for most of the circuits. As is for the case of gate 

evaluations, the reduction ratio of HOPE_NEW is close to the sum of that of HOPE_f and 

HOPE_d. The speed of HOPE_NEW is truly remarkable for the largest circuit, 535932. 

HOPE_NEW is about 40 percent faster than HOPE for the circuit. 

4.4.3 INCORPORATION OF HEURISTIC INTO HOPE_NEW 

The proposed heuristic, two level simulation, improves the speed of HOPE as 

shown in Section 4.3. In this section, we were interested in the efficiency of the heuristic 

for HOPE_NEW which is described in the above section. A fault simulator, 

HOPE_NEW_T (which resulted from the incorporation of the two level simulation method 

into HOPE_NEW) was implemented to measure the efficiency of the heuristic. 

Experimental results of HOPE_NEW_T are shown in Table 12. 

As shown in the table, the two level simulation method is not effective for 

HOPE_NEW at all. In fact, it slows down the speed. This is probably due to the fact that 

the fault list has to be rearranged according to the potentially detected faults and multiple 

event faults with degree one. In other words, the length of the original fault list becomes a 

lot longer when incorporating the dynamic fault ordering and the two level simulation 

methods together. 
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Table 11. CPU Time (Sec) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

CPU Time (Sec) Speedup Ratio 

name HOPE | HOPE f | HOPE d | HOPE_NEW | HOPE f | HOPE d | HOPE NEW 

5298 0.48 0.45 0.47 0.45 1.07 1.02 1.07 

8344 0.38 0.35 0.35 0.33 1.09 1.09 1.15 

$382 9.33 7.95 8.57 7.70 1.17 1.09 1.21 

5444 10.20 8.53 9.15 7.80 1.20 1.11 1.31 

$526 6.00 4.92 5.50 4.87 1.22 1.09 1.23 

s641 0.62 0.58 0.62 0.58 1.07 1.00 1.07 

s713 0.65 0.62 0.65 0.63 1.05 1.00 1.03 

$820 2.17 2.08 2.28 2.13 1.04 0.95 1.02 

§832 2.18 1.98 2.10 2.02 1.10 1.04 1.08 

$953 0.82 0.73 0.82 0.72 1.12 1.00 1.14 

$1238 2.07 2.05 2.10 2.10 1.01 1.00 1.01 

81423 2.05 1.80 2.08 1.83 1.14 0.99 1.12 

$1488 6.35 6.20 6.28 6.18 1.02 1.01 1.03 

$1494 5.35 5.18 5.37 5.22 1.03 1.00 1.02 

§5378 27.23 25.55 25.02 23.60 1.07 1.09 1.15 

835932 95.33 78.22 86.38 68.25 1.22 1.10 1.40 

Ave. 10.71 9.20 9.86 8.38 1.10 1.04 1.13   
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Table 12. CPU Time (Sec) 

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

CPU Times (sec) Speedup Ratio 

name HOPE | HOPE_NEW | HOPE NEW_T | HOPE NEW | HOPE NEW_T 

$298 0.48 0.45 0.50 1.07 0.96 

8344 0.38 0.33 0.37 1.15 1.03 

$382 9.33 7.70 8.40 1.21 1.11 

8444 10.20 7.80 9.38 1,31 1.09 

$526 6.00 4.87 5.55 1.23 1.08 

s641 0.62 0.58 0.67 1.07 0.93 

s713 0.65 0.63 0.70 1.03 0.93 

8820 2.17 2.13 2.48 1.02 0.88 

$832 2.18 2.02 2.28 1.08 0.96 

s953 0.82 0.72 0.82 1.14 1.00 

$1238 2.07 2.10 2.10 1.01 0.99 

$1423 2.05 1.83 2.17 1.12 0.94 

$1488 6.35 6.18 7.02 1.03 0.90 

$1494 5.35 5.22 6.10 1.02 0.88 

$5378 27.23 23.60 25.23 1.15 1.08 

835932 95.33 68.25 84.34 1.40 1.13     
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4.4.44 CONCLUDING REMARKS 

The two methods, fault injection and dynamic fault ordering, are efficient in 

reducing the number of gate evaluations as well as speeding up the fault simulator, HOPE. 

An interesting observation is that the effect of both methods is accumulative as shown in 

HOPE_NEW. HOPE_NEW achieves substantial speedup over HOPE. However, the two 

level simulation when incorporated in HOPE_NEW does not improve the speed of 

HOPE_NEW atall. We believe that HOPE_NEW is not likely to be improved significantly 

by any other heuristics. The efficiency of HOPE_NEW is near the limit of the parallel fault 

simulation method. 
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5. SUMMARY 

In this thesis, we were interested in measuring the performance of some known 

heuristics and a newly proposed one presented by us for a sequential circuit fault simulator, 

PROOFS. The two heuristics, critical path tracing and dynamic area reduction, designed 

for combinational circuits were extended to handle sequential circuits. The proposed 

heuristic called two level simulation was designed specifically for sequential circuits. In 

addition to the evaluation of the three heuristics, we also presented a new fault injection 

method and a new fault ordering strategy to improve the speed of a fault simulator 

developed at Virginia Tech, HOPE. 

The key idea of the three heuristics is to reduce faults from being simulated in 

parallel. For each test pattern, critical path tracing is applied inside fanout free regions. 

Only the non-stem faults which propagate to their stem lines are explicitly simulated in 

parallel. In the dynamic area reduction method, the area involved in explicit fault 

simulation is reduced. A procedure of identifying the area called “inactive region" (in 

which faults inside inactive region do not need to be simulated) is presented. For the 

proposed heuristic, multiple event faults with degree one are converted into single event 

faults by simulating the effect at the PPI on top of the logic simulation layer, and then are 
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attempted to simulate the equivalent single event faults inside fanout free regions to their 

stem lines using single fault propagation. 

To speed up HOPE, we proposed new fault injection and fault ordering methods. 

The new fault injection method utilizes both the bit masking and extra gate insertion 

techniques to reduce the overhead involved in faulty gate evaluations. The selection of the 

proper method depends on the site of a fault. In the new fault ordering method, we arrange 

faults according to the activity of faults as it becomes available during the fault simulation. 

By ordering high activity faults (potentially detected faults), the bits of each packet can be 

utilized more efficiently to result in high performance. 

Experimental results of the three heuristics, critical path tracing, dynamic area 

reduction and two level simulation, when incorporated into PROOFS showed significant 

reduction in the number of faults simulated in parallel to achieve substantial speedup. 

Among the three heuristics, critical path tracing is the most effective. This is owing to the 

local simulation of non-stem faults inside fanout free regions. When the three heuristics 

were incorporated into HOPE, only the two level simulation method is effective. This is 

because the two level simulation method attempts to reduce the multiple event faults with 

degree one while the other two methods attempt to reduce single event faults (which are 

already effectively reduced by the heuristics employed in HOPE). 

The experimental results of HOPE_NEW which employed the new fault injection 

and fault ordering methods perform better than that of HOPE for the ISCAS89 benchmark 

sequential circuits. However, incorporating the two level simulation method into 

HOPE_NEW does not improve the speed at all. This is due to the excessive overhead of 

the heuristic. 

In conclusion, heuristics effective for PROOFS is not necessarily effective for 

HOPE. This is particularly true for HOPE_NEW. The newly proposed fault injection 

method and the dynamic fault ordering method achieve substantial speedup for the already 
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efficient HOPE. The speed of HOPE_NEW may be close to the limit which can be 

achieved by the parallel fault simulation. Significant improvement of HOPE_NEW is 

unlikely to happen. 
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APPENDIX A. MEASUREMENTS OF THE 
ACTIVE REGION AND THE TOTAL AREA 

The effectiveness of the dynamic area reduction method depends on reducing the 

area involved in explicit fault simulation. To evaluate the effectiveness, we measured the 

active region and the total area during the entire fault simulation of each circuit. The 

measurement is measured in terms of the number of gates that reside in the area. The 

experimental results are reported in Table 13. 

As can be seen in the table, on average 68 percent of the area is active. This implies 

that only 68 percent of the area required explicit fault simulation. 
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Table 13. Measurement of The Active Region and The Total Area 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
  

name no. of no. of no. of total active reduction 
gates FFs tests area region ratio 

$298 136 14 162 24300 15058 0.62 

$344 184 15 91 18200 13411 0.74 

$382 182 21 2463 499989 129739 0.26 

s444 205 21 1881 425106 123219 0.29 

$526 217 21 754 179452 70027 0.39 

s641 433 19 133 60116 43371 0.72 

$713 447 19 107 49862 36048 0.72 

$820 312 5 411 130287 116889 0.90 

$832 310 5 377 118755 106550 0.90 

s953 440 29 16 7504 5092 0.68 

$1238 540 18 349 194742 162391 0.83 

81423 748 74 36 29592 20361 0.69 

$1488 667 6 591 397743 357215 0.90 

$1494 661 6 469 312823 281938 0.90 

$5378 2993 179 408 1294176 768009 0.59 

$35932 17828 1728 86 1681816 1328901 0.79 

Pave. 1644 136 521 339029 226349 0.68               
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APPENDIX B. NUMBER OF SINGLE AND 
MULTIPLE EVENT FAULTS SIMULATED IN 
PARALLEL 

The effectiveness of the two level simulation method depends on the number of 

multiple event faults simulated in parallel. In this section, we show that the majority of the 

faults simulated in parallel are multiple event faults. The experimental results are shown in 

Table 14. The entry in the single event fault column is the number of single event faults 

and the ratio between the single event faults and the number of faults simulated in parallel 

for each circuit. The same is applied to the multiple event fault column. 

As shown in the table, on average, 78 percent of the faults simulated in parallel are 

multiple event faults in HOPE. This implies that the two level simulation method can be 

effective considering that so many of the faults simulated in parallel are indeed multiple 

event faults. 
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Table 14. Number of Single and Multiple Event Faults Simulated in Parallel 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

name no. of no. of no. of single event multiple event 
ates FFs faults fault fault 

$298 136 14 308] 168 0.07 | 2268 0.93 
s344 184 15 342] 210 0.15] 1141 0.85 
$382 182 21 399} 726 0.01] 58592 0.99 
$444 205 21 474| 873 0.01} 75658 0.99 
$526 217 21 555| 763 0.02} 38854 0.98 
$641 433 19 467| 306 0.20{ 1224 0.80 
s713 447 19 581{ 304 0.16| 1622 0.84 
$820 312 5 850] 1473 0.43; 1931 0.57 
$832 310 3 870| 1316 0.42{ 1795 0.58 
$953 440 29 1079] 1886 0.38] 3133 0.62 
$1238 540 18 1355{ 3944 0.59| 2769 0.41 
$1423 748 74 1515] 2228 0.12] 15980 0.88 
$1488 667 6 1486] 1188 0.29} 2940 0.71 
$1494 661 6 1506] 1221 0.29| 2987 0.71 
$5378 2993 179 4603; 22068 0.26] 64048 0.74 
$35932 17828 1728 39094; 23330 0.12] 179297 0.88 

Ave. 1644 136 3468] 3875 0.22] 28390 0.78]             
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