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Enhancing GNU Radio for Run-Time Assembly of FPGA-Based
Accelerators

Richard H. L. Stroop

(ABSTRACT)

Software defined radios (SDRs) have changed the paradigm of slowly designing custom ra-
dios, instead allowing designers to quickly iterate designs with a large range of functionality.
With the help of environments like the open-source project, GNU Radio, a designer can
prototype radios with greatly improved productivity. Unfortunately, due to software per-
formance limitations, there is no way to achieve the range of radio designs made possible
with actual physical radio hardware. In order for SDRs to become more prevalent in radio
prototyping and development, accelerators must be added to high-throughput and computa-
tionally intensive portions. Custom DSPs, GPUs, and FPGAs have all been added to SDRs
to try and expand their computational capabilities. One difficulty in this is that by adding
these accelerators, the “instant gratification” dynamic of the GNU Radio is lost.

In this thesis, an enhanced GNU Radio flow is presented that seamlessly augments the
GNU Radio software-only model with FPGAs, yet preserves the GNU Radio dynamics by
providing full-custom radio hardware/software structures in seconds. By delegating portions
of a GNU Radio flow graph to networked FPGAs, a larger class of software-defined radios
can be implemented. Assembly of the signal processing structures within the FPGAs is
accomplished using an enhanced flow where modules are customized, placed, and routed in
a fraction of the time required by the vendor tools. With rapid FPGA assembly, a GNU
Radio designer retains the ability to perform “what-if” experiments, which in turn greatly
enhances productivity.

Due to the modular nature of GNU Radio and of the FPGA designs, a modular assembly
of the FPGA hardware is used. In the flow presented here, optimized hardware library
components are designed by a domain expert, and stored as compact placed-and-routed
modules. When a designer requests the assembly of one or more components within a given
FPGA via a GNU Radio Python script, the necessary library components are accessed and
translated to an appropriate location within the chip. Then the ports of the modules are
stitched together using a custom FPGA router. This process reduces the large compile times
of hardware for an FPGA to reasonable software-like times.

To the radio designer, the complexity of the underlying hardware is abstracted away, making
it appear as if everything compiles and runs in software, allowing many iterations to be
realized quickly. Radio design can continue at the speeds that GNU Radio designers are
accustomed to but with the range of possible waveforms and general functionality extended.

This work received support from sponsors of the CCM Lab who wish to remain unnamed.
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Chapter 1

Introduction

Wireless technologies are growing and evolving rapidly, driven by the increasing desire by
people for continuous connectivity. More and more antennas and protocols have been added
to devices that need to be completely connected. People cannot afford to have countless
gadgets in order to talk to all of the other devices and services available, but everyone wants
their devices to be small and cheap. This is seemingly impossible since every time a new
protocol or standard is introduced another specialized chip has to be added to a device. The
need for reconfigurable signal processing chips is quickly becoming unavoidable.

As processors have become more powerful, they have gained the ability to implement a
variety of signal processing functions. This ability has fostered the field of software-defined
radios (SDRs), which circumvents specialized signal processing chips by implementing them
as software subroutines. The elimination of the need for specialized hardware not only
increases the flexibility of systems to implement current radio protocols but also allows for
the rapid prototyping of new designs. Not having to design for multiple pieces of hardware
or to wait for them to be built dramatically decreases the time it takes radio designers
to iterate through ideas. The inherent reconfigurability of CPUs makes them useful tools
for realizing this rapid development but their inability to process large amounts of data at
once has always limited their use for high-throughput signal processing [40]. Even the most
sophisticated processor can only achieve limited data rates and it becomes difficult to meet
latency requirements as more processes are added.

Processing limitations of contemporary CPUs restrict the number of protocols that can
be implemented and the prototypes that can be rapidly designed for SDRs. To speed up
processor intensive protocols, specialized hardware must be used by software radios that
accelerates the signal processing back to a tolerable speed. Unfortunately adding hardware
back into a flow designed for only software brings prototyping back to a crawl. The basics of
setting up a physical link that allows an SDR to communicate with specialized hardware at
reasonable speeds can be too complex [13]. SDR designers are also required to have a deep
knowledge of the hardware they are trying to add and this is considered too difficult for basic

1
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radio researchers [23]. This makes adding hardware acceleration for real-time performance
unrealistic for prototyped systems.

A welcome advance for radio designers would be the ability to incorporate hardware accel-
eration with their designs to allow for easy prototyping of complex waveforms. It would be
useful to add this ability to an environment that SDR designers are already used to. The
environment would also need to retain the ability to quickly iterate through prototypes even
with the added hardware. Maintaining the flexibility and reconfigurability of current SDR
systems would also be a high priority.

1.1 Contribution

This thesis presents work done to enhance the GNU Radio development environment by
delivering an easy method for adding hardware acceleration to a software radio. GNU Radio
operates by piecing together software modules, either graphically or via a Python script,
that call different functions on data as it streams through a flow graph. Field Programmable
Gate Arrays (FPGAs) are used for the hardware acceleration because they offer the ability
to write completely customizable hardware for high-throughput signal processing. Despite
their powerful processing capabilities, FPGAs normally slow design time down. They require
knowledge of a hardware description language that is no where near as abstract as the soft-
ware languages radio designers are used to and their compile times are orders of magnitude
greater than software. Both of these limitations are addressed in this thesis. The communi-
cation interfaces are implemented for the FPGA so that radio hardware designers do not have
to develop their own system. The data are abstracted to types that GNU Radio software
blocks use and presented in a standard way to the designer, regardless of the interface used
to receive the data. In this way only the basic signal processing blocks must be designed in
order to see them work within the framework of GNU Radio. The signal processing blocks
that are used often can be added to a community-based library for easy reuse. And the slow
compile times are overcome with off-the-clock pre-processing and modular based assembly.
The project is titled GReasy, GNU Radio easy, because now implementing signal processing
with an FPGA accelerator is as easy and fast as creating a normal flow graph in GNU Radio.
Radio designers can now continue to rapidly prototype in an environment that they are used
to but with the added functionality of hardware acceleration that does not slow them down.

In GNU Radio, the signal processing sections of the flow graph are broken down into blocks
specified by an underlying C/C++ model. In this thesis, the GNU Radio framework has been
extended to include the concept of hardware blocks, which are designed to run on FPGAs
alongside blocks running on a processor. These blocks are added to GNU Radio as easily as
adding a software block is already. To a GNU Radio user, these blocks simply describe ports
and how the data should be moved around; all of the processing is left to the hardware. The
FPGA designer is not left out of this process but their role is limited to building a library of
components for radio designers to use. Custom blocks can still be written by wireless domain
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experts and added to the flow. The actual processing must be designed in some hardware
description language, but an entire system does not need to be designed to run it. As long
as the block follows a standard format used for passing signal data in GNU Radio, it will fit
in with any other block.

All of the communication between hardware blocks and GNU Radio is handled for the
designer already with the use of a static region on the FPGA containing common interface
logic. This lets hardware designers focus on getting their specific problems solved without
having to worry about an entire system. They also do not have to redesign blocks that are
already available with a standard structure. The radio designers can then easily use these
blocks in GNU Radio without having to worry about the hardware designers. The set of
blocks that go on the FPGA are built at run-time and maintain flexibility within GNU Radio.
The normally slow compile times of FPGAs are overcome with a back-end accelerator called
qFlow [16] that fits the block model of piecing together a radio nicely. With these additions,
the instant gratification of GNU Radio is preserved while greatly increasing the number of
possible radios that can be designed.

The specific contributions of this work include:

• Creating a class of block in GNU Radio that is recognized as operating on hardware,

• Writing a program that converts GNU Radio block connections into the Electronic
Design Interchange Format (EDIF) for building hardware,

• Creating a static region for an FPGA that communicates with GNU Radio,

• Connecting GNU Radio with qFlow to maintain software-like compile times for the
sections that assemble hardware,

• Scripting the synthesis process for adding hardware blocks to GNU Radio, and

• Extending the hardware blocks to the graphical front-end for GNU Radio the GNU
Radio Companion (GRC) [8].

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the field of software-defined
radios and includes some of the current development systems and paradigms used. Hardware
acceleration with these systems is explored and a focus on FPGAs is given to support the
work done for this thesis. Previous methods of hardware assembly are presented to compare
to the use of qFlow. Finally related work with respect to accelerating GNU Radio that was
used to motivate this project is given. Chapter 3 discusses the improvements made to GNU
Radio from the work presented here and from previous work. This chapter describes how
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and why GNU Radio is used. Chapter 4 explains the development done in hardware to
facilitate the ease of use for designers in the future. It also outlines the standard that was
decided upon for use in all of the modular systems. Chapter 5 gives an overview of qFlow
and a similar system tFlow that allow for rapid assembly of modular designs and allow for
even more productivity and flexibility in adding hardware acceleration. Chapter 6 provides
details on the specific work that was done to implement and test the improvements to GNU
Radio. A comparison of implementation choices is done and used to justify the final results.
Chapter 7 concludes the thesis and presents ideas for future work.



Chapter 2

Background

This chapter discusses the field of software-defined radios and the tools that are used to
implement them in both software-only and hardware-accelerated models. Common hardware
is discussed as well as projects that relate to their use. A focus on FPGAs and methods for
their development is presented to give more information on the problems addressed in this
thesis. Finally related works that drove this project are detailed.

2.1 SDR Software

Software Defined Radio and its benefits are already clearly documented [14] [34]. This
section will review related issues regarding the software being used to develop them. Any
radio system developed to run on a General Purpose Processor (GPP) will require some sort
of hardware front-end to receive or transmit actual data. If a front-end is not available,
test data can be read from a file or created with certain functions to implement the system
before using it in a real-world application. This allows for the design and prototyping of
a software-defined radio system without any additional hardware. In order to do this, two
popular open-source design tools are available: GNU Radio and OSSIE. Simulink is another
popular design tool but must be purchased from MathWorks.

2.1.1 GNU Radio

GNU Radio is an extensive framework that enables many complex designs to be prototyped
and built with only a GPP and off-the-self radio hardware. It is open source and commonly
used due to its wide range of available radio blocks [7] and simple user interface. All of the
signal processing is done in C++, a common language for software development, so that
adding another custom block to GNU Radio is simple [1]. GNU Radio builds SDRs as flow

5
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graphs that can either be coded together in a Python script (Figure 2.1) or graphically wired
together (Figure 2.2) with a tool called GNU Radio Companion (GRC) [8].

Figure 2.1: GNU Radio Python Flow Graph
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Figure 2.2: GNU Radio Companion Flow Graph

Each block runs a signal-processing task in a dedicated thread that passes data to other
threads through shared memory buffers. The GNU Radio scheduler handles the threads and
data with little overhead, but requires the blocks to be written in their format and only
for GPPs. Currently the only supported off-loading of the signal in the flow graph is for
transmission and reception of analog signals with a radio front-end. No other processing
hardware can be added easily but GNU Radio does allow for rapid software-only prototypes.

2.1.2 OSSIE

The Open-Source SCA Implementation Embedded (OSSIE) platform was developed by
Wireless@Virginia Tech in order to create an environment that allowed for the rapid de-
velopment of SDRs [39]. It is available for free to anyone who wants to design SDRs and
simplifies the experience of creating systems that approximate the Department of Defense’s
Software Communications Architecture (SCA). OSSIE is still being developed and used by
Virginia Tech, the Office of Naval Research, Science Applications International Corporation,
Tektronix, and Texas Instruments.

The underlying processing is written in C++ and new code can be added easily in Eclipse
(Figure 2.3) to build custom SDRs because the communication standards are abstracted
away from the designer. This abstraction occurs because SCA uses the Common Object
Request Broker Architecture (CORBA) to manage data passing and type checking between
components written in any language for any hardware. This allows OSSIE to design heteroge-
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neous systems but the overhead from CORBA can quickly take over the available processing
power. This has not stopped developers and the ability to provide rapid prototyping of SDR
designs has made OSSIE a useful tool in the field.

Figure 2.3: OSSIE Flow Graph in Eclipse

2.1.3 Simulink & System Generator

Simulink is a tool produced by MathWorks that provides a graphical environment for design-
ing a large range of time-varying systems, which includes SDRs [26]. It is useful for many
processing tasks because it is integrated directly with MATLAB, a widely used numerical
computing environment. Simulink can be used with System Generator for DSP to build Xil-
inx FPGA modules for SDR processing. System Generator for DSP can build a completely
hardware based system, or a software/hardware co-processor system [42]. This makes these
tools effective for prototyping and building complete designs, but both of them must have a
purchased license every year to be used. They are both designed for so much more than SDR
as well, so a radio designer must navigate through a complex system to produce a desired
radio. These tools are also still limited by the lengthy compile times of FPGAs because they
use the conventional Xilinx compilation processes. They are shown together in Figure 2.4.
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Figure 2.4: Simulink Flow Graph [26]

2.2 SDR Hardware

Despite being called software-defined radios, a real radio can never be completely built with
only a processor. There must be an antenna and front-end capable of receiving a signal with
an Analog to Digital Converter (ADC) and possibly doing some filtering to transform that
signal into a format usable by a software processor. A Digital to Analog Converter (DAC)
must be used in order to transmit a signal from an SDR. Work is being done to improve the
bandwidth of these front-ends so that new hardware does not have to be added for every
specific frequency range [19]. The more general antennas are more expensive and require
major processing to extract usable data out of the received signals. A common way to handle
this processing requirement is by adding a small amount of appropriate hardware back into
the flow.

2.2.1 USRPs

One common hardware device for SDRs is a Universal Software Radio Peripheral (USRP).
There are different iterations designed by Ettus Research [12] based on what a user needs.
All of them are relatively inexpensive as far as hardware goes so they are common in research
and among SDR hobbyists. With the use of replaceable daughter cards the hardware can be
quickly changed to handle different frequencies for transmitting and receiving. They are well
supported in the popular GNU Radio community and can be connected either by USB or
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Gigabit Ethernet for more bandwidth. When used as receivers, the USRPs convert analog
signals to digital signals and decimate them to appropriate sample rates before passing the
signal to a host computer for additional signal processing. When used as transmitters, the
USRPs perform the inverse of the functions described for reception.

The USRP is an example of a required hardware accelerator to provide an RF front-end.
It contains a motherboard, multiple ADCs and DACs, and a million gate FPGA [6]. High-
speed general-purpose operations are done on the embedded FPGA such as decimation,
interpolation, and digital conversions [10]. By moving some processing to hardware, GNU
Radio has already enabled many real-time radio prototypes [29].

2.2.2 DSPs and GPUs

Today many different signal processing fields are used to build different types of radios in
different application settings. Many types of hardware exist that can be used to process
signals but two of the most common ones are DSPs and GPUs.

Digital Signal Processors (DSPs) are a set of specific microprocessors that perform signal
processing tasks well but are limited due to their specialization. They are optimized hardware
designed for an explicit task. They enable low-power real-time signal processing in phones,
modems, and audio systems [33].

Graphics Processing Units (GPUs) are relatively new to the field of radio signal processing.
Their usefulness in processing large amounts of repetitive data for visual systems is now seen
as applicable to other signal processing. They are composed of hundreds of processing cores
[30] that make them perfect for implementing parallel pieces of radio protocols.

2.2.3 FPGAs

Although there are many powerful options in the field of signal processing, FPGAs pro-
vide a reconfigurable means of handling intense processing tasks. Field Programmable Gate
Arrays (FPGAs) consist of a large set of hierarchically connected logic blocks that are re-
programmable to any implementation that can be created with a hardware description lan-
guage. Their near infinite possibilities of use make them as advantageous as General Purpose
Processors when it comes to creating multiple radios with only one piece of hardware; how-
ever, they take much longer to design for because hardware languages are not as abstract
as software languages. Their compile times are also orders of magnitude larger than those
of software. Where GPPs do everything in sequence, FPGAs can implement large parallel
operations on all of their logic blocks at once. This presents another limitation as the amount
of space on any given FPGA is always fixed. It cannot implement designs that require more
logic than it has available, and any logic that is not used in a design is effectively wasted
space. Despite these few limitations, FPGAs are huge players in the SDR field [11].
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Major players in the field of FPGAs with SDR development are SORA and WARP. SORA
is a Microsoft Research project that built their own specialized hardware system to support
rapid development of SDRs [38]. Their in-house physical layer communication allows for
high-throughput radio design with FPGAs and GPPs. The Wireless Open-Access Research
Platform (WARP) developed at Rice University provides a configurable design platform for
prototyping radios using FPGAs as one layer of their system [3]. Their system uses a library
of pre-designed hardware and scales easily with the use of more boards; however, a method
for developing new blocks for this system is not presented. Theoretically OSSIE could be
used with any hardware, including FPGAs, which implemented CORBA; however, this is
not common. These designs make use of the computational power of FPGAs but are still
limited by the slow nature of their assembly tools.

2.3 Hardware Assembly

When FPGAs are used, a hardware description must be assembled into a bitstream that
actually programs a chip. This is a multi-stage process that has been implemented many
different ways, but all of which take a large amount of time.

2.3.1 Xilinx & Altera

Xilinx produces a set of FPGA families from high-end Virtex to low-end Spartan boards.
They are the current leading seller of FPGAs [41]. Their flow involves moving from a generic
hardware description language, to the EDIF format as the design becomes family specific,
to XDL as the design is placed and routed for a specific board, and finally to a bitstream
before being programmed on the chip. Each of these steps produces a file that is exposed to
the designer and can be modified before the next step is run.

Altera produces the Cyclone, Arria, and Stratix family of FPGAs (from [2]). Their flow
involves the same basic steps as Xilinx but is not open to the designer to modify along the
way. Altera does have a toolkit called QUIP that allows for some customization of the flow,
but this tool is not effective. Instead a project is created and any adjustments must be done
at the beginning with their set of options. Custom tools cannot interact with Altera FPGAs
at this time.

Both FPGA assembly methods are time consuming but are effective in optimizing a design for
user constraints. Xilinx and Altera are moving towards System-C and C/C++ environment
tools that allow for even more abstract description languages as input for designs. Currently
their tools still take orders of magnitude longer than software to compile.
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Figure 2.5: Xilinx Tool Chain Flow

2.3.2 Partial Reconfiguration

Hardware is often not assembled based on what has changed in a design; the whole system
is rebuilt and optimized from start to finish. This is a major reason designs take so long to
iterate through. A method that attempts to solve this major problem in slow assembly times
is partial reconfiguration. Partial reconfiguration partitions the FPGA into two regions: a
persistent region and a sandbox region. The persistent region cannot change and holds pieces
of the hardware that will remain between designs. The sandbox region can be reprogrammed
with a new partial bitstream without affecting the persistent region [22].

Unfortunately the sandbox does not have any flexibility, it must be completely programmed
every time and still has to go through the slow process of optimization before it can be used.
The only added value is that it programs the chip faster and while it is still running. This
is useful for SDRs that want to change from one demodulation scheme to another quickly
and without turning a radio off, but the design time still remains too high. The process of
building a partial bitstream is also still complex as both Xilinx and Altera are only beginning
to come out with useful tools for the job.

2.3.3 TORC

The Tools for Open-source Reconfigurable Computing (TORC) are useful for user manip-
ulation of EDIF and XDL files as well as bitstream packets [36]. This software tool suite
provides a C++ library for abstracting the process of editing the Xilinx flow in Figure 2.5.
Although this is not technically a method of assembly, an intricate knowledge of the Xilinx
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flow allows the custom tools discussed in Chapter 5 to use TORC to assemble a working
bitstream. If Altera follows suit and opens their flow, TORC could be used to do the same
thing for their FPGAs.

2.4 Related Work

GNU Radio has seen many iterations and enhancements throughout its development. As
a community there are constantly software processing blocks that are being produced and
new methods of implementing radios faster are being shared. Developments more concerned
with this thesis are those that have attempted to add hardware to a largely software based
design environment.

2.4.1 GRGPU

GRGPU is a system that adds GPUs to the GNU Radio environment [32]. The work shows
one way that hardware accelerators can be used to enhance the rapid prototyping of GNU
Radio. It successfully implements blocks that run on a CUDA-based Nvidia card alongside
GPP blocks in the same flow graph. This is accomplished by creating a separate scheduler
that runs with the GNU Radio scheduler to handle data transfer between the two devices.
This limits the speed at which the GPU can run but does show improvements in speed
with large samples that overcome a fixed latency penalty. The GRGPU project is a good
first step in the direction of adding much needed hardware functionality to the GNU Radio
framework.

2.4.2 FPGA-Based Accelerators

Many projects have been developed to make use of FPGAs for software-defined radio acceler-
ation. These projects include the Kansas University Agile Radio [27], the Japanese National
Institute of Information and Communications Technology SDR Platform [18], and the Berke-
ley Cognitive Radio Platform [28] to name a few. These implementations all required using
special boards and software for communication rather than augmenting an already available
system. They were also limited by the slow compile times of FPGAs, although their gains
in performance were seen as worth this cost.

FPGAs have not been added to stock GNU Radio yet as “hardware is strictly not part of GNU
Radio” [7]. There is an FPGA on the USRP devices that can be modified [9] for custom
applications though. With the recent increase in FPGA size on the newer devices these
customizations have become more popular. Unfortunately the changes made are permanently
left on the board and run before every flow graph receiving data from the USRP. All flexibility
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is lost and their operation is not presented to the user in the flow graph.

2.4.3 Enhancing GNU Radio for Hardware Accelerated Radio De-
sign

Previous work at Virginia Tech by Charles Irick [21] was done to develop a block in GNU
Radio that could communicate with an FPGA. This work allowed a designer to add hardware
to an external FPGA that was not on a USRP and still receive data from the device in
a GNU Radio flow graph. The same raw networking techniques used by a USRP were
implemented so that GNU Radio could interface with the FPGA without a custom controller.
The USRP code was modified slightly so that data could be sent directly to the FPGA
without originating from the host machine. This lowered the requirements of the network
bandwidth but meant a new bitstream had to be placed on the USRP before it was usable
in the system. Also the FPGA could not be programmed from GNU Radio, although this
was planned. This meant that designers could still not see what was being placed on the
external FPGA and the only benefit over using the USRP’s FPGA was that the designer had
complete control over the chip being used. A new class for the auxiliary FPGA was created
as a controller for input and output to GNU Radio. This class was labeled afpga and was
designed to work with AgileHW [4] to allow for quicker FPGA designs and thus continue
the rapid prototyping of GNU Radio.



Chapter 3

GNU Radio Enhancements

This chapter discusses the changes made to GNU Radio and how additional software is
integrated into it to facilitate the building of attached hardware. GNU Radio maintains
all of its previous functionality but slight changes to the system are outlined to show how
different sections interact. The design decisions are also presented so that future work can
build upon the direction these enhancements intended.

3.1 GNU Radio FPGA Extension Class

GNU Radio organizes their software blocks into classes. There are separate classes for filters,
operators, input/output, converters, and more. The entire structure is set up to allow for the
easy addition of new processing blocks simply by adding another class. The classes inherit all
of the necessary block information from GNU Radio and thus never create new dependencies
within the rest of the system. This same model was used to develop a hardware class that
would fit alongside all of the other blocks.

As mentioned in Chapter 2, prior work was done to develop an auxiliary FPGA (afpga) class
for GNU Radio [21]. This class contained an afpga source and afpga sink that mimicked the
behavior of a USRP2 source and sink using raw Ethernet frames. The only difference was
that an afpga sink sent a packet to a connected USRP2 that redirected the stream of data
to the FPGA.

This paradigm was changed because it did not allow for the user to have control over how
hardware was added to the FPGA. The prior work assumed that the only source of data
was a USRP2 streaming to an FPGA. It also assumed that data would always be handled
sequentially by the FPGA and then returned to the GNU Radio host as decoded ASCII.

These legacy blocks evolved into the new afpga in and afpga out blocks of the current system.
The afpga in block replaced the afpga sink block. Instead of presenting data as disappearing

15
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Figure 3.1: Previous vs. Current afpga Model

into a sink, data is now presented as entering an FPGA. The new block enables GNU Radio
data from the computer to be sent to the FPGA as well as from the USRP2 and even from
other FPGAs.

The afpga out block has replaced the afpga source block. The data are now represented as
the output of a controllable system rather than some unknown source. The ability to pipe
the ASCII data to a readable file has been added to the block. Also the standard GNU
Radio complex I/Q data format is included as an output type so that further processing can
occur on the host if desired.

The real shift in how hardware is represented in GNU Radio comes with the addition of some
signal processing afpga blocks. Instead of having an uncontrollable or single path hardware
setup, each module gets its own block that must be placed and connected within GNU
Radio. By separating these blocks from a forced sequential flow the designer is free to build
hardware in any way that can be imagined. Multiple paths can now exist and modules can
talk to one or more other blocks that may be connected to it. This new scheme lends itself to
improved prototyping because it now has hardware blocks that are free to operate the same
way GNU Radio already treats software blocks. Presenting the hardware to radio designers
in a familiar and flexible fashion is only the first step to enhancing this SDR environment.
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3.2 GNU Radio Companion

GNU Radio can be run with additional software known as GNU Radio Companion (GRC)
(Figure 3.2) that uses XML descriptions of blocks (Figure 3.3) to create a visual represen-
tation of a flow graph [8]. These XML blocks must be created by the user to represent
their C++ counterparts. GRC uses a flow graph built with its visual interface to create a
Python script that runs GNU Radio. Since GRC is not actually running GNU Radio, some
manipulation can be done in the XML code in order to represent multiple blocks and all
of their parameters with only one visual block. GRC does not change any of the original
functionality but represents the available blocks in an organized way and includes graph
checking to make sure that there are no empty connections or sinks with multiple sources.
XML descriptions have now been made for all of the afpga hardware blocks as well.

Figure 3.2: Sample GRC Flow Graph with Hardware

Since the afpga in block is not a sink anymore, it does not terminate but presents a connection
that should be tied to the blocks that are going to be placed on an FPGA. In the same way,
afpga out now has an input connection that expects an FPGA block. FPGA processing
blocks have input ports and output ports that match what is seen in a Verilog module.
The clock and reset ports are excluded and automatically connected later. With GRC a
completely visual representation of the software and hardware can be built. By enabling
a visual component, prototypes can be presented for the designers in a clearer way. If a
designer does not want to use GRC, they can continue using the GNU Radio Python scripts
without losing any functionality of this work.
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Figure 3.3: Sample XML Block
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3.3 Core Code Changes

The changes to afpga in and afpga out for GRC are purely visual. Those modules are
still sources and sinks within the core of GNU Radio. The FPGA processing blocks are
not executed on the host machine so the data does enter a blackbox as far as the pro-
cessor is concerned. In order to make this work the GNU Radio scheduler is ignored for
these blocks. When two blocks are connected from a GNU Radio script, the function
gr flowgraph::connect(source, destination) is run. This function is part of ‘gr flowgraph.cc’
that has been modified as seen in Listing 3.1.

Listing 3.1: Connect Function of gr flowgraph

1 void

2 gr_flowgraph : : connect ( const gr_endpoint &src , const gr_endpoint &dst ) {
3 if ( src . block ( )−>name ( ) . compare (0 , 5 , "usrp2" ) == 0 && dst . block ( )−>name

( ) . compare (0 , 5 , "afpga" ) == 0) {
4 // Do not connect the usrp2 block to afpga b locks ( f o r c i n g both not

to run past the con s t ruc to r )
5 }
6 else if ( src . block ( )−>name ( ) . compare (0 , 5 , "afpga" ) == 0 && dst . block ( )

−>name ( ) . compare (0 , 5 , "afpga" ) == 0) {
7 // Do not connect afpga b locks to afpga b locks ( t h e i r connect i ons are

handled l a t e r in g r t op b l o ck imp l )
8 }
9 else{
10 check_valid_port ( src . block ( )−>output_signature ( ) , src . port ( ) ) ;
11 check_valid_port ( dst . block ( )−>input_signature ( ) , dst . port ( ) ) ;
12 check_dst_not_used ( dst ) ;
13 check_type_match (src , dst ) ;
14

15 // Al l i s t k lar , Herr Kommisar
16 d_edges . push_back ( gr_edge (src , dst ) ) ;
17 }
18

19 // I f an afpga block i s the source or de s t i na t i on , l og the connect ion
in fpga connec t i on s . txt

20 if ( src . block ( )−>name ( ) . compare (0 , 5 , "afpga" ) == 0 | | dst . block ( )−>name
( ) . compare (0 , 5 , "afpga" ) == 0) {

21 std : : ofstream myfile ;
22 myfile . open ("fpga_connections.txt" , std : : ios : : app ) ;
23 myfile << src << "," << dst << "\n" ;
24 myfile . close ( ) ;
25 }
26 }
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This does a check to make sure the modules have the same type and are not already con-
nected. Once this is done the modules are added to the scheduler to be run later. Since
no data is being sent through the hardware blocks, they are not scheduled. The process for
ignoring the FPGA blocks is currently rudimentary: if both the source and the sink contain
afpga in the name, then they are not scheduled. Also if a USRP2 block is connected to an
afpga block, neither are scheduled. The USRP2 was modified to send directly to an FPGA,
which clears an overload of traffic to the host machine. This means that the block on the
host is no longer doing any processing, which is why it too is no longer scheduled.

Work with GNU Radio developers is currently underway to improve this system. The idea
is that, instead of inheriting a basic block, FPGA blocks will inherit a hardware type block
that is then not scheduled. The principle is still the same but the implementation will be
more robust and no longer require all of the FPGA blocks to have afpga in front of their
name. It will also allow blocks that may run on other hardware to also avoid being scheduled
without needing a specific name.

If an FPGA block connects to another FPGA block, since GNU Radio is no longer recognizing
this connection, it is logged in ‘fpga connections.txt’. These connections will be used to build
a netlist and eventually a bitstream for every FPGA in the flow graph.

Figure 3.4: Sample fpga connections.txt

3.4 Runtime Built Netlist

GNU Radio does not run the unscheduled hardware blocks, but it does call their constructor
functions. Each block’s constructor opens a file called ‘edif.dat’ and appends one line of
information to it (Listing 3.2). This line is a condensed description of the ports available
to the Verilog module (Listing 3.3). The file is used by the program EdifWriter, shown in
Appendix A, to build a completely Xilinx compatible EDIF file (Listing 3.4). EdifWriter is
part of the qFlow package that will be discussed further in Chapter 5. The information that
is written by each block contains a unique name for that block as well as all of the port
information. The ports that are buses are described as Arrays with a certain direction,
name, and size. The ports that are only one bit are described as Ports with just a
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direction and name. This means that most data lines are described as Arrays and the
clock/reset lines are usually Ports.

Listing 3.2: Sample Module edif.dat Line

1 Cell ; zb_radio ; ZB3 ; Array ; output ; out ; 3 3 ; Array ; input ; in ; 3 3 ; Port ; input ; rst ;
Port ; input ; clk ;

Listing 3.3: Verilog of Sample Module

1 module zb_radio (
2 output reg [ 3 2 : 0 ] out ,
3 input [ 3 2 : 0 ] in ,
4 input rst ,
5 input clk

6 ) ;

Listing 3.4: Compiled EDIF of Sample Module

1 ( cell zb_radio

2 ( cellType GENERIC )
3 ( view view_1

4 ( viewType NETLIST )
5 ( interface
6 ( port
7 ( array ( rename out "out<32:0>" ) 33 )
8 ( direction OUTPUT )
9 )
10 ( port
11 ( array ( rename in "in<32:0>" ) 33 )
12 ( direction INPUT )
13 )
14 ( port rst

15 ( direction INPUT )
16 )
17 ( port clk

18 ( direction INPUT )
19 )
20 )
21 )
22 )
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Within the framework of GNU Radio, all of the blocks are created, then connected, and then
run. Their creation yields ‘edif.dat’ and their connections generate ‘fpga connections.txt’.
After all of this is done, the flow graph is started. This normally calls the start function on all
of the blocks that have been scheduled, but code was inserted just before this step to assemble
and program the necessary FPGAs first. The code was placed into a separate C++ file called
‘edif connector.h’ so that modifications could be made to it without disrupting more of the
GNU Radio core.

Listing 3.5: Excerpt of gr top block impl.cc with a Two Line Change to Call connect edif()

1 void

2 gr_top_block_impl : : start ( )
3 {
4

5 . . .
6

7 if ( ! connect_edif ( ) )
8 throw std : : runtime_error ("gr_top_block_impl: The AFPGA section of

the flow graph could not be connected!" ) ;
9

10 . . .
11

12 }

This connect edif() function shown completely in Appendix B starts by cleaning up ‘fpga
connections.txt’. This means clearing duplicates and moving valid information to a file called
‘connections.txt’. Since ‘fpga connections.txt’ is appended to, it has to be deleted after each
run or the next run will contain all of the information from both runs. The ‘connections.txt’
file stays between runs so it can be used for debugging purposes. The information contained
in it is already in memory, so it can be removed if it is no longer desired.

Using this connection information, the function builds a netlist for each FPGA. The different
FPGAs are identified by different base MAC addresses associated with the afpga in and
afpga out blocks. The format of the MAC address can be seen in Figure 3.5. The last two
bytes of the MAC address are used for routing between paths inside of one FPGA and are
not used once the path information is extracted. Once the ends of the FPGAs are discovered,
their connections are followed to determine what is placed on each FPGA. As each new block
going on the FPGA is found, its cell information from ‘edif.dat’ is retrieved and placed into
a new FPGA-specific file. The new file is simply called ‘edifMAC.dat’, where MAC is the
hexadecimal value of the base MAC address for a given FPGA (e.g. ’edif000a350001.dat’).

After all of the block’s cell information is added to the file, the connection information is
added. The connections are denoted as either net or loop. A net is a one bit connection
that declares a name for itself and then points to the bits that it is connecting. The bits
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Figure 3.5: MAC Address Example

are identified by pointing to a cell with a certain instance and then to the desired port.
If the single bit being connected is part of an array of wires, then the index is also given.
Otherwise a negative one index tells that code that the port is only one bit and should be
treated as such. If more than one bit should be connected, a loop is used instead. A loop
also starts by declaring a name but includes a size to make sure that everything connecting
to it has the same width. After that, all of the wires are identified by pointing to a cell
with a certain instance and then to the desired array.

Figure 3.6: Sample edifMAC.dat with Highlighted Structure
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Every cell is automatically given a net that connects the clock and a net that connects
the reset to a global clock and reset respectively. If a net or loop has the same name
as another net or loop on a different line, they will be automatically concatenated by
EdifWriter. This allows for multiple lines containing the same clock and reset information,
but can be used to connect a complicated wire set in the future.

It is necessary to know that these ‘edifMAC.dat’ files contain all of the same information as an
EDIF file but are presented in an easily writable, readable, and compact format. EdifWriter
parses this information and uses TORC to build the more complex netlist. Although these
files are automatically generated and run, they can be modified or written from scratch by
any user who wishes to describe a netlist in a simpler format before running the Xilinx or
qFlow tools, which require an EDIF.

3.5 Fast Bitstream Creation

Once a connections list is built, one or more bitstreams must be generated in order to
actually program any of the FPGAs. The remainder of the code mostly calls external scripts
to accomplish this goal. Scripts were used for two reasons. The first is that the tools
being used are still in active development as a separate project. It would be impossible to
incorporate them into the core of GNU Radio. The second reason is that these scripts are
easily modifiable and can be run outside of the GNU Radio framework to interface with the
tools. This allows any user or program to take an ‘edif.dat’ file and run through the process
of putting a bitstream on an FPGA. Also if GNU Radio fails, the process can be picked back
up from the scripts without running everything again.

Figure 3.7: File Order and Operations

The first script is called ‘edif’, which is shown in Appendix C. The script takes one input:
the base MAC address of the FPGA it is building. This calls EdifWriter on the respective
‘edifMAC.dat’. Once a true EDIF is created, a checksum is generated with crc32 [25] to
represent the contents of the FPGA. This checksum is stored on the FPGA so that it can
be requested later to determine if anything has changed. If the FPGA has never been
programmed, then there is no checksum on it and the next script will be called. If it has
been programmed before with the exact same netlist, in the case where GNU Radio is run
twice with only software changes occurring, then the rest of the scripts are not run for this
FPGA.
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The second script is called ‘qflow’, which is shown in Appendix D. This script actually builds
a bitstream using a rapid modular based assembler called qFlow [16]. The same script can be
modified to call tFlow [24], which does bitstream manipulation instead and yields the same
result much faster. There are limitations to both systems, which will be discussed in Chapter
5. The script could also run the original Xilinx tools commonly used today to produce an
optimal bitstream at the cost of a long run time. No matter which process is run, the final
output of the ‘qflow’ script is a bitstream for an FPGA.

Figure 3.8: File Structure of GNU Radio with afpga Additions

The final script called ‘program’, which is shown in Appendix E, places the bitstream that
was just built onto the appropriate FPGA. Currently this is accomplished using a tool called
Impact provided by Xilinx from the command line. There is code set up to program the
FPGA over an Ethernet connection instead but this has not been integrated or tested yet.

Once every script has been run, the code moves on to another FPGA if one exists. All of the
scripts are run again for each FPGA. The final step is sending control data to the FPGAs
to tell them where they should direct data. This control data, along with the checksum
data from earlier, is sent using raw Ethernet packets using the code in ‘PacketCreator.h’ and
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‘RawEthernet.h’, which are included in Appendices F and G respectively. Most commonly
the data is sent back to the host machine but it can be directed to another FPGA or USRP2
or any other system that is listening on the network. When all of the operations in the
connect edif() function are completed successfully, it returns a true value allowing the rest
of the program to start the software blocks. If the program detects errors it will stop the
flow graph and throw a runtime error. The function can also determine that there are no
appropriate FPGA blocks to run and allow GNU Radio to run normally with only software
blocks.



Chapter 4

Hardware Developments

To facilitate the easy integration of hardware with GNU Radio, certain steps are taken on the
hardware end to manage communication. By organizing the hardware in a certain way, the
time it takes to assemble is significantly reduced. These steps are discussed in this chapter.
The most beneficial modification to the hardware is the segregation of static and dynamic
regions on the FPGA.

4.1 Static Region

There are a few core modules that are necessary for every design to communicate with GNU
Radio. These make up the static region, which never changes and thus do not have to be
rebuilt every time. This saves a large amount of time and is similar to the concept of partial
reconfiguration where only a section of the FPGA is reprogrammed. The difference in this
system is that a whole bitstream is still built and programmed, but it is done faster with a
custom assembler that integrates the static and dynamic regions.

27
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Figure 4.1: Static with I/O buffers, Ethernet and Dynamic Region

The static region interfaces with I/O buffers that cannot be accessed by the custom assem-
bler. If part of the dynamic region needs access to an LED or communication peripheral, it
has to pass through the static region. This requires that the static region decode data from
the Ethernet or Multi-gigabit Transceivers (MGTs) and present them to the dynamic region
as usable data.

The first interface that is managed this way is the Ethernet. The Ethernet is used to pass
data as well as control many of the functions on the FPGA. The majority of the interfacing
is done by Xilinx CoreGen modules, and the decoding is a modification of the work done
by Charles Irick [21]. The improvements include the ability to filter data based on MAC
address and the addition of control packets. The filtering works by looking at the last two
bytes of the MAC address and then sending the data out on a separate line for each MAC
address. Currently only 00 and 01 are implemented but adding more would be as simple
as declaring another wire in Verilog. Packets that are not destined for either of these MAC
addresses are thrown away saving some processing time.
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Figure 4.2: Data Packet Being Received by GNU Radio from the First Path on the First
FPGA

The data coming out of the dynamic region is formed in the same way. Data from the first
path is sent from a MAC address ending in 00 and data from the second is sent from one
ending in 01. This is expandable up to 256 paths on one FPGA.

Figure 4.3: Data Packet Being Sent by GNU Radio to the First Path on the First FPGA
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The control packets are sent with a completely different packet type. Instead of using a
different MAC address their type is changed from 0xBEEF to 0xDEAD. This type is arbitrary
and 0xDEAD was only used because it was easily distinguishable in a set of packets from a
network dump. The control packets are used most commonly to direct where the output data
will go. They can also be used to save or present a checksum of the currently loaded EDIF
with the host computer (Figure 4.4). The control packets can also be used to store values
in known registers that can be accessed from the dynamic region. These known registers
can contain parameters for blocks that just need a value assigned to them. This is not used
with any blocks yet but could allow for simple changes on the hardware without requiring
any new programming. The control packets are also set up to allow for reprogramming the
FPGA using the flash memory. As mentioned before this is not implemented yet but the
pieces are available on hardware to be used as soon as the software is added to GNU Radio.

Figure 4.4: FPGA Responding to Checksum Request Using a Control Packet

The MGTs operate in a similar fashion to the Ethernet except that for now they only decode
data and present it to the dynamic region in the standard data format. Because there can
only be 256 paths in the dynamic region, some of them have to be dedicated to the Ethernet,
and some to other interfaces. The current design assigns all Ethernet input data to the first
path, and all MGT data to the second path. Both paths output to the Ethernet for now.
More interfaces could be added as well as more paths, but they currently have to be hard
coded in the static region. These interfaces cannot be changed and must be known by the
user in order to piece together the flow graph properly.
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4.2 Dynamic Region

Synthesis black boxes are used in ISE to provide the ability to separate modules from the
static region and dynamic design. The top of the dynamic region is a black box that is
named ‘blacktop’ because as a black box it appears to be the top of all of the modules
being placed on the FPGA. All of the signal processing modules are also black boxed so that
‘blacktop’ only has to see the connections between them. This means that after synthesis
there is an EDIF of the static top layer, an EDIF of all the modules, and an EDIF of just
the connections in ‘blacktop’. This connection-only EDIF is created using TORC with the
modifications made to the GNU Radio Core discussed in the previous chapter. ISE is able
to use these EDIFs while qFlow/tFlow are being developed in order to continue testing the
functionality of the blocks and their integration with GNU Radio.

Figure 4.5: Blacktop Configuration

The current ‘blacktop’, as mentioned before, only has two paths so the interfaces with it are
simple. There is a clock and reset port that gets tied to every module. Then there are in0,
in1, out0, and out1. The In ports are for receive data and the Out ports are for transmit
data. Their numbers denote the path they belong to and thus the MAC address they are
assigned. The lengths of these ports are all 33 bits. For complex signals the first 16 bits
contain I data, the second 16 bits contain Q data, and the last bit is used as a valid flag. The
reason this data is presented as one bus instead of three separate buses is so that less things



Richard H. L. Stroop Chapter 4. Hardware Developments 32

have to be wired up by the user and custom assembler later. In hardware it is often necessary
to present every piece of data to the designer so that it can be manipulated properly. Radio
designers are only interested in moving around signal data. Instead of forcing radio designers
to connect two data wires and a valid line, they can simply connect one block to another
and everything is handled for them.

The dynamic region is what ‘edif.dat’ from Chapter 3 represents. The static region is hard
coded and only signal processing modules are placed inside of the dynamic region. The outer
layer of the dynamic region is represented by the cell called ‘blacktop’ with instance name
BT0. Each path is represented by an in and out array. The clock is provided by a PLL in
the static region, and the reset is tied through the static region to a button on the FPGA.

Listing 4.1: Blacktop Description Line from edifMAC.dat

1 Cell ; blacktop ; BT0 ; Array ; input ; in0 ; 3 3 ; Array ; input ; in1 ; 3 3 ; Array ; output ;
out0 ; 3 3 ; Array ; output ; out1 ; 3 3 ; Port ; input ; rst ; Port ; input ; clk ;

4.3 Hardware Library

To make this flow more desirable, there is a library of hardware components in development
currently. The community can also contribute to the hardware library development since
they understand the blocks that are necessary to make their radios run. A set of standards
are being used to ensure that all of the blocks can work properly together on the targeted
hardware.

4.3.1 Standard Interfaces

The biggest problem in developing a heterogeneous system is the communication. This is
why SCA was developed. GNU Radio uses a different method because it was not originally
designed for use with hardware, other than the USRPs. The current method for sending data
to and from USRP hardware is to transfer I/Q data at baseband over Ethernet. Baseband
means that the signal appears to originate at 0 Hz. I and Q are real and imaginary parts
that describe the instantaneous amplitude and phase of a wave in rectangular notation (see
Figure 4.6). The I and Q parts are 16 bits each for a total of 32 bits per sample of the wave.
This is a common format for signal processing so it is used in all of the FPGA hardware as
well. The only difference is that a valid flag is added for flow control.

The 33 bit standard is not enforced by any of the code. It is recommended to keep designs
simple and interchangeable. The current width of the data lines lends itself to holding
integers, four characters at a time, or the standard complex data type. There is no type
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Figure 4.6: Mathematical Representation of a Sine Wave as I/Q Data [20]

checking implemented for hardware blocks yet; it is up to the radio designer to only connect
one type of output to the same type of input. The hardware will assemble any connection
as long as the ports are the same size. The blocks that are built make it clear what output
is produced so, just as in hardware, modules must be wired together carefully. The ability
to type check has been identified as important and is explained as Future Work in Chapter
7.

Figure 4.7: Multiple Encoding for a 33 Bit Bus

If a custom block uses a different size port than the 33 bit standard, then it can only be
connected to other blocks with a port of matching size. This can be useful if there are a
small subset of blocks that should only ever be connected to each other, but in this case it is
generally recommended to combine these into one block that can work with everything else.
Having specific blocks can be great for one project but does not benefit the community or
lend itself to reuse.

The argument can be made that different sized ports would allow for type checking but that
severely limits the output of any design. Due to the unchanging nature of the static design,
the output of blacktop must be 33 bits. This means that if 9 bits are used for ASCII coded
characters, 8 for data plus a valid flag, then ASCII could never be piped out of blacktop
without compressing it first. Instead of wasting the designers’ time by forcing them to use
a conversion block and wire up yet another connection that only clutters their flow graph,
a standard 33 bit line is always used. Standardizing everything makes the prototyping of
radios simpler and quicker.
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4.3.2 Registered Ports

The custom assembler does not have the ability to check timing yet. To alleviate this
problem, every input and output port is registered. This means that for every clock-cycle,
data only has to go through one block OR travel to one block. In this way, if every block
meets timing requirements on its own, the whole design will meet timing requirements. This
does introduce an eight nanosecond delay for every block and every connection when the
clock is running at 125 MHz, which is the standard clock to run Ethernet at full speed. For
prototyping and for streaming data in one direction, this latency is perfectly acceptable.

4.4 High-Bandwidth Channelizer

To show the true flexibility of the GNU Radio enhancements a channelizer has been built
and seamlessly added to GNU Radio as a configurable and high-bandwidth input. The
channelizer consists of a 3.6 Gsps ADC connected over LVDS to a Virtex 6 FPGA that filters
and splits the signal into down-sampled channels that can be processed or transmitted. In
the current system the channels are hard coded to be sent over SATA connections to a stack
of four Virtex 5 FPGAs, but these channels are easily selectable from the receiver. The
data is decoded from the MGTs into the 33 bit format and then directed into ‘blacktop’.
The dynamic region sees no difference in the data coming from any source, except that the
valid flag will be high more often because there is more bandwidth from the channelizer.
This gives the FPGAs a way of getting 225 MHz of data instead of the current 25 MHz
from a USRP2. FPGAs shine in high-bandwidth applications and are often limited by the
connections to them rather than by their own processing power. The channelizer addition
shows that it is possible to add high-bandwidth signal processing to GNU Radio instead of
limiting designers to only adding FPGAs to the already available low-bandwidth applications.
Even higher bandwidths can be achieved if a custom board with more connections is built
for offloading the signal from the Virtex 6 FPGA.
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Figure 4.8: Channelizer Hardware Setup
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Figure 4.9: Complete Channelizer Platform



Chapter 5

qFlow/tFlow

This chapter discusses the usefulness and purpose of the custom assembler tools qFlow and
tFlow. They are a completely separate project that can be researched here [16] [17]. The
specific details of their operation are not discussed here, yet the details can be found in [15].
Instead, the how and why they are used is explained.

5.1 Operation

A custom bitstream assembly process is used to provide quick compile times for the hardware
that is placed in a GNU Radio flow graph. To maintain rapid iterations of designs, traditional
hardware compile times are untenable. GNU Radio is a system that has a quick turn
around time, this means that the hardware needs to compile as quickly as the software so
that prototyping is not hindered. The commercially available Xilinx tools offer the most
optimized, and often only, way of compiling a hardware design for their FPGAs. The price
for this optimization is a long build time, which on large systems can take over a day to
complete [31]. By relaxing the placement optimization, qFlow is able to build a basic radio
design in around two minutes. By removing the routing optimization, tFlow is able to build
a basic radio in around twenty seconds.

5.1.1 Registering Static

To speed up the process even more, the static region (Figure 4.1) of the FPGA is prepared
by the custom assemblers in advance. This means that all of the modules that are in every
design are placed and routed before any flow graph is run. This saves time by isolating the
hardest part of the design: the communication interfaces. The communication needs to meet
strict timing requirements that cannot be easily met by qFlow or tFlow. Most importantly
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the static region isolates the infrastructure modules from afpga blocks. This makes the GNU
Radio flow graph only require signal processing blocks.

5.1.2 Registering Modules

The modules are also registered in advance with the tools. They are registered after synthesis
as EDIFs. This tells the tools exactly what has to be placed or routed in advance. By having
a library of all of the processing blocks, the connection EDIF generated by GNU Radio does
not need to contain any information except the connections and the names of the blocks.
The tools can then pull the appropriate blocks from the library based on their names.

5.1.3 Off-Clock Processing

Registering the modules in advance gives the tools a chance to build them in different sizes
and shapes. Instead of finding the optimal shape for a block at runtime, the tools just pick a
block that will fit well with the other blocks. The placer effectively only has to play a quick
game of Tetris instead of weaving together a perfect masterpiece. The block shaping takes
place before runtime so, although it does take some time to process, this is never seen by
the radio designer.

5.2 Integration

The qFlow tools fit nicely with the GNU Radio paradigm of having a library of blocks that
can be added and removed easily from a flow graph. Both qFlow and tFlow already treat
hardware the same way that GNU Radio treats software. Having them work together gives
the designers the best of both worlds.

5.2.1 Modules

The modular based assembly of qFlow is what makes it so suited for GNU Radio. GNU Radio
has the ability to drop any block into a flow graph and see it run instantly with everything
that is already set up. It does not require the designer to re-plan their whole design to make
it work, so the hardware should not either. By treating the blocks as modules that can be
placed anywhere, rather than a whole design that needs to be implemented, the tools work
quickly and effectively together.
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Table 5.1: Resource Usage Comparison for BPSK on FPGA

Slice Registers Slice LUTs Block RAM/FIFO DSP48Es
ISE 3927 4357 11 11

qFlow 4026 4538 11 11
tFlow 4178 4931 11 11

5.2.2 Speed Over Optimization

GNU Radio designers are used to running designs in a matter of seconds. Although it has
become acceptable in the hardware realm to wait on designs, this slows productivity and
can be overcome one way by trading some optimization. During the prototyping phase, a
designer is not interested in how perfect the design is but rather in how quickly the design
iterates until a working one is found. By placing modules without optimizing their resource
utilization, the build times are significantly reduced. This means that multiple blocks on
the FPGA take up more resources than they would normally. For example if Module 1
uses resources A and B, while Module 2 uses resources B and C, the whole design would
take resources A, B, B, and C. An optimized design would share Resource B between the
two blocks instead of replicating it. None of the blocks use more resources than they have
to, but as a whole system there are wasted overlaps. The resource usage for the BPSK
implementation discussed in Chapter 6 can be seen in Table 5.1. The overhead for the
custom tools on this small design is less than one percent of the available resources.

5.3 Trade-Offs

Other than losing resource optimization on the FPGA there are a few trade-offs that designers
have to deal with to get software like compile times with hardware.

5.3.1 Hard Drive Space

Registering multiple shapes for every block in advance quickly takes up a large amount
of space. Any library is expected to take some amount of space and today Gigabytes are
practically free for computers; however, this is a trade off that the designer has to be aware
of. The hardware libraries will consume a large amount of space and could take a long
time to download for a first run. This is a price that is easily traded away for near instant
prototyping with hardware. It should also be noted that the size is directly proportional to
the number of blocks saved. There is no combining of blocks to pre-build a bitstream like
partial reconfiguration does, there is only shaping on a per block basis.
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5.3.2 Timing/Latency

As mentioned before, the qFlow tools are not able to correct timing issues although they do
alert the user if timing is not met. This means that all of the blocks have to meet timing on
their own and no optimization can happen here either. In order to protect the entire design,
each block has registers on all of its inputs and outputs. This ensures that the clock does
not cycle before data is ready at any register but quickly adds a large amount of latency to
any complex design.

5.3.3 qFlow Versus tFlow

Although qFlow and tFlow both yield a working bitstream as an output, they operate under
slightly different principles. qFlow implements a custom placer that quickly decides where
to place pre-synthesized modules on any FPGA. It then makes use of Xilinx’s router to wire
everything up. This routing is still optimized and thus takes around two minutes to complete
with the shortest paths.

tFlow has a little bit more information about the organization of the Virtex 5 family, so it is
able to do bit manipulation to place already routed versions of the modules on the FPGA. It
then does a small amount of routing at the bit level to connect the modules that were placed.
This process is currently the fastest of the custom tools for building a working bitstream. It
requires that all of the pieces be compiled to the bitstream level in advance but all of the
blocks in the current library have been registered with tFlow to make this possible.

The only downside to tFlow is that it requires an intimate knowledge of the FPGA family
that is being worked on. This knowledge currently only exists for the Virtex 5 boards, so
any work on another family will have to use qFlow. There is still a large time saving from
Xilinx tools to qFlow, but as more work is done on tFlow it should find its way onto more
FPGAs. None of these tools work with Altera boards yet, but should Altera open up their
flow it could be possible to add their boards to the library as well.



Chapter 6

Implementations & Results

This chapter discusses the methods for using the enhancements to GNU Radio. It outlines
two cases that were developed to use GReasy and discusses the settings used for correct
performance. The results are described and compared to the vendor tools for assessment.

6.1 Library

The enhancements to GNU Radio allow for FPGA blocks to be dragged and dropped into
flow graphs and still keep the ability to perform ‘what-if’ experiments. The rapid iteration
of designs with hardware makes the prototyping of more complex radios feasible. But in
order to build the hardware a library has to exist.

6.1.1 Available Blocks

Using a library of pre-built and pre-registered hardware blocks, a radio can be stitched
together for an FPGA just like software designers are used to doing. When this library has
grown into the size that GNU Radio software blocks are at now, then any designer can pick
up the system and prototype applicable radios. The currently available blocks are limited
to the ones built for demonstrating proofs of concept. More are being worked on at Virginia
Tech to increase the basic available block library.

6.1.2 Adding Custom Blocks

As with any open source project, the community builds what is needed and shares it with
everyone. The process of adding custom hardware blocks to the library has been described
in a separate document [37]. The designer is only required to write one hardware block
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in order to see it working on an FPGA. The static region already on the FPGA handles
communication between hardware and GNU Radio. The static region also manages flow
control between new blocks if they follow the outlined standard. Once a block is coded,
there are scripts that will automatically build and register it with qFlow/tFlow. Then the
block will be automatically built for GNU Radio and added to the GRC library as well. All
of these steps are documented in detail so that any designer can build a hardware block for
GNU Radio.

6.2 Proofs Of Concept

The signal processing blocks used to test this project were either already available or devel-
oped by The Mobile and Portable Radio Research Group (MPRG) at Virginia Tech. The
purpose of this section is to discuss the usability of GReasy not the development of the in-
dividual blocks. The proofs used in this section were chosen because the radio functionality
already existed or was simple to create on an FPGA. Each one shows how the hardware and
software can be set up to achieve a working radio.

Both demonstrations run in a virtual machine on a MacBook Pro with a 2.3 GHz Core i7
processor, 8 MB shared level 3 cache, 8 GB of 1333 MHz DDR3 SDRAM, and a 251 GB
Apple SSD. All of the components are in a repository that is working on multiple computers.
The software is not limited to one specialized computer, any computer that can run GNU
Radio can run GReasy. The laptop is used because it offers portability and easy access to
the attached hardware.

6.2.1 ZigBee

A ZigBee demonstration was done for the original work [21] on this project because it is
a complex standard that can benefit from hardware acceleration. The extent to which
it was done before was limited to building it in Xilinx’s ISE tool and placing it on the
FPGA manually. A ZigBee signal from an XBee transmitter was received by a USRP2 and
redirected to an FPGA by GNU Radio. The FPGA sent the decoded ASCII data back to
the host computer for interpretation. The hardware setup is shown in Figure 6.1 with the
only physical addition being multiple networked FPGAs to handle processing.
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Figure 6.1: Improved ZigBee Hardware Setup
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The addition of individual hardware blocks to GReasy lets the designer view what is being
placed on the FPGA and control how it is connected. In Figure 6.2 the USRP2 now connects
to the afpga in block, which connects to the ZigBee demodulator, which connects to the
afpga out block, which pipes the decoded ASCII to a file. The USRP2 is set to run at a center
frequency of 2.41 GHz with a decimation of 10 and unity gain. The USRP2’s constructor
sends these settings over Ethernet and the host computer is set up as the receiver for data.
GReasy needs a USRP2 MAC address in order to redirect network traffic from the USRP2
to an FPGA instead.

Figure 6.2: ZigBee Flow Graph in GRC

The afpga in block is set to run FPGA-0 on eth2, this means that it tries to program a board
that has a base MAC address of 00:0A:35:00:00:00 using the second Ethernet interface on
the computer. The ’Blacktop Path’ is set to 0 so that qFlow/tFlow can connect blocks to
the first path, which outputs on the Ethernet. The only option for the ZigBee demodulator
(afpga zb radio) is to set the instance name. This name is simply a way of identifying which
blocks are which in the final EDIF created by GNU Radio; it is not necessary to set these
names for proper operation. The afpga out block is also running on FPGA-0 across the
second Ethernet interface. Its output is green in GRC because it is decoding the data as an
integer containing four characters. In GRC the software types have to match, so the file sink
is green as well for the demo. A file sink can also be used to capture complex data (blue),
but this assumes every 16 bits of I/Q data is a scaled value between -1 and 1. GNU Radio
handles the conversion of the data to the proper type before exposing it to the software
blocks.

6.2.2 BPSK

Due to the limited bandwidth of the USRP2 a channelizer was used to enable processing
multiple signals at once with one GNU Radio flow graph. This required building the custom
receiver discussed in Chapter 4. The channelizer highlights GNU Radio’s new ability to
interface with multiple pieces of processing hardware. With their own development platform,
radio designers are no longer limited by a USRP in order to receive real signals.
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BPSK was chosen because it is simple to implement but requires multiple blocks that could
test the routing capabilities of the custom assembly tools. The different blocks are used to
show how GNU Radio can connect more than one module inside of the dynamic region on
the FPGA. All of the following examples start with a Virtex 6 source. The Virtex 6 is not
yet supported with these tools so this block is just a null source functioning as a placeholder
for a complete flow graph to exist. The connection to the Virtex 5 is hardwired so the Virtex
6 is constantly streaming data to the second path on the dynamic region. [The afpga in
block in every example represents this change as ‘Blacktop Path’ is now set to 1, instead of
0 for Ethernet traffic.] It is worth noting that eth2 is set because control packets are still
being sent to the FPGA over Ethernet. For all of the following flow graphs different FPGAs
will be chosen and can be seen in the FPGA select parameter of the afpga in and afpga out
blocks. It does not matter which FPGA the processing occurs in, as long as afpga in and
afpga out match. Data cannot be sent onto one FPGA and then received from a completely
separate one without first connecting those two FPGAs.

In Figure 6.3 a simple decimation is performed to reduce the bandwidth of the wide channel
before piping it back over Ethernet for the host to do an FFT shown in Figure 6.4. The
BPSK waveform can be seen in this way to make sure that the transmitter is working. The
current transmitter is set up using another GNU Radio flow graph (Figure 6.5) on a separate
computer that is running software-only blocks and transmitting two data channels with two
USRP2s that are being wired directly into the ADC to lower noise.

Figure 6.3: GRC Flow Graph of Signal Decimation
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Figure 6.4: FFT of Signal Decimation

Figure 6.5: GRC Flow Graph of BPSK Transmission
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Figure 6.6 shows a tuner block that can be used to move the center frequency if the signal
is not already aligned. The signal is already aligned but this block is worth showing because
it is the first parameterizable block. The amount and direction of tuning can be changed
from a drop down menu within the graphical block. The current settings are a negative 10%
shift. All this does is call a different hardware block to put on the FPGA, but this has been
abstracted to the graphical user as only one block. The shift can be seen in Figure 6.7.

Figure 6.6: GRC Flow Graph of Signal Tuning

Figure 6.7: FFT of Signal Tuning
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The next flow graph in Figure 6.8 is made up of a decimate block that brings the signal to
a manageable sample rate, the actual BPSK demodulation that converts the signal into its
binary encoding, and finally a data recovery block that identifies a specific preamble before
selecting 8 bit characters to send as ASCII data. The types of all these wires appears to be
complex to GNU Radio so that any FPGA block can be connected together, and although
all of these connections are 33 bits wide, they are each carrying completely different data
types. Any of these types can be sent over Ethernet to another appropriate block, but type
checking is not currently available so it is up to the user to connect modules properly.

Figure 6.8: GRC Flow Graph of BPSK Demodulation

There are four FPGAs in the current stack so the Virtex 6 can offload up to four different
channels. For Figure 6.9 there are only two channels being sent because there are only two
USRP2s transmitting. A channel at 900 MHz is sent to the first two boards, and a channel
at 1150 MHz is sent to the second two boards. This allows a designer to see an FFT of the
data being received and decode the same data on another FPGA in parallel. This is being
done for two 250 MHz channels at the same time, and can be easily increased to do more.
Given multiple paths on the FPGA and enough network bandwidth, all of the processing
shown can be done on one board. The use of multiple boards shows their ability to work
together.

The last flow graph, Figure 6.10 shows a signal starting on the Virtex 6, being decimated on
one FPGA, being tuned on another FPGA, and finally being tuned again and sent back to
the host from a final Virtex 5. A shift of 10% on two boards can be seen as a total of 20%
in the FFT of Figure 6.11.
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Figure 6.9: GRC Flow Graph of Decimation/Demodulation on Four Separate FPGAs

Figure 6.10: GRC Flow Graph of FPGAs in Series
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Figure 6.11: FFT of Two Positive Shifts

6.3 Results

Except for changing the different receivers, these implementations can be switched between
one another with ease on any computer. Although both of these setups do not show off the
true processing power of an FPGA, they do display the new ease-of-use for programming a
hardware block that runs in sync with software.

6.3.1 Design Process

The design process now consists of placing a desired processing block for hardware in a GNU
Radio script and having it just work at software like speeds. The process is enhanced even
further with the use of GRC, which gives a designer a list of blocks that can be dragged and
dropped until a desired flow graph is built. This visual graph shows software and hardware
blocks working together, all represented in one space as a complete heterogeneous radio.

6.3.2 Abstraction

The hardware is compartmentalized into block-level processing so that the hardware design
process is easier. More generalized blocks can now be created without the need to understand
all of the hardware. This abstracts hardware to a usable level for SDR designers. Developers
that want to design hardware do not have to worry about building a communication interface
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or recreating blocks that are already available to the community. The designers that want
to focus on building radios and not getting into hardware can now select an FPGA block
from the same library of software blocks they are used to.

6.3.3 Compile Times

The compile times for FPGA hardware in a prototyped radio have satisfied the instant
gratification requirements of GNU Radio. The addition of hardware does not slow down
the design process and only enhances the number of radios which can be successfully imple-
mented. Synthesis takes the same amount of time for a new hardware block, but this happens
well before the radio designer is ready to start prototyping. The off-clock processing is a
huge benefit to the design time and is something that current Xilinx tools cannot offer. If
the design requires a re-implementation of any logical components, instead of just structural
re-organization, then synthesis must be run for the custom tools. This is not common for
prototyping, but is required when changes are made to the hardware description or if a new
block is introduced.

Tables 6.1 and 6.2 are comparisons of the time it takes to assemble the ZigBee and BPSK
radios using the Xilinx tool ISE against the custom tools qFlow and tFlow. ISE still runs
Synthesis and Map even when no changes are made to the design logic. Though BPSK
has less logic than ZigBee, the custom tools take longer to run BPSK because it has more
connections. The custom tools are only concerned with placing and routing as long as there
is still room on the FPGA. ISE implements the entire design, so the more resources used
the longer assembly takes. Other tools are not discussed here because their speed does not
matter. The custom tools used have performed at more than reasonable speeds and this
comparison is meant to show where the accelerations occur in relation to the tools designed
for the FPGA.
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Table 6.1: Average ZigBee Assembly Times in Seconds

Synthesis Map/Place Route Bit Generate Total
ISE 198 89 46 33 366

qFlow 0 35 46 39 120
tFlow 0 10 5 0 15

Table 6.2: Average BPSK Assembly Times in Seconds

Synthesis Map/Place Route Bit Generate Total
ISE 94 109 47 34 284

qFlow 0 43 49 42 134
tFlow 0 11 6 0 17



Chapter 7

Conclusion

This chapter reiterates the improvements made to the design process of GNU Radio when
using hardware. It also describes areas of future work that will be useful to the community
and this system.

7.1 Conclusion

Enhancements to GNU Radio were presented that allowed for the use of FPGAs in pro-
totyping SDRs without introducing normal hardware compile times. The standard FPGA
compile times were orders-of-magnitude larger than what GNU Radio users expected. The
nature of the prototypes allowed for the use of modular assembly tools qFlow and tFlow to
achieve the significant increases in build speeds over vendor tools. The FPGA modules were
organized in a library of hardware signal processing blocks as the new afpga class.

Software was written to place the GNU Radio hardware blocks directly on an FPGA by
building the connections in EDIF format and passing them to qFlow/tFlow. A static region
was built for the FPGA that handles communication so that signal processing designers do
not have to. The synthesis process was scripted so that new blocks could be added to GNU
Radio easily. The graphical front-end GRC was used to present the hardware library in a
compact and organized way.

From the perspective of a radio designer, library-based assembly is more natural than low-
level hardware description languages and hides the complexity of FPGAs. In the flow pre-
sented here, chains of computation were specified for FPGA implementation within the GNU
Radio framework just as if they were original radio blocks in the flow. Once standard ra-
dios and filters have been written in hardware by one designer they can be passed around
in the form of blocks, which anyone can drop into their design without the tedious step of
developing for FPGAs.
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The enhanced GNU Radio flow was demonstrated using USRP2s, a 3.6 Gsps ADC connected
to a Virtex 6, and a stack of four Virtex 5 FPGAs, all networked to a host computer with
gigabit Ethernet. One clear benefit of this flow was that the FPGAs could be added or taken
away just like any other module, and were not a forced part of the design. Any number of
FPGAs could be added, and all of the communication and interconnects would be handled
implicitly. The radio designer could pick the composition of a radio using parameterized
components, and chose where they go in the flow.

These enhancements to GNU Radio showed how an FPGA system can be built in near real-
time for an SDR environment. GNU Radio was used as a test bench for qFlow and tFlow
because of its open nature and current lack of FPGA integration. These tools could easily
make their way into other faster systems as designers balance software like compile times for
hardware over complete optimization.

7.2 Future Work

There are still many limitations that will be addressed in future versions of GReasy. Some for
the assembly tools, and some for the GNU Radio presentation and management of hardware.

7.2.1 Improvements

The first improvement could be to come up with a method for type checking the signals on
the FPGA. The standard GNU Radio types could be used to describe each block’s input
and output and then GNU Radio would handle the type checking automatically. This would
require a change in the way modules are automatically registered to include a type option,
as currently everything is registered with the complex type.

Another improvement could be to add more paths to the dynamic region. GReasy is already
designed to understand up to 256 paths but the static region would have to increase in size
and complexity to actually implement them. Also there is currently not a good method
for denoting which paths are designated for Ethernet and which are for MGTs. If another
interface were added, it would also just get assigned to the next available path. Unless the
designer knows exactly how many paths exist and which ones are tied to which interfaces,
they cannot currently set up an effective radio. Perhaps a range could be established where
all paths between 0-15 are dedicated to Ethernet, whether they are used or not, and all paths
between 16-31 are dedicated to MGTs. This way, as more paths are added, the range will
still always use the same interface but with a fixed cap on the number of paths per interface.
This should be acceptable, as the number of paths will eventually be limited by the space
on the FPGA long before it takes up the address space.

A second improvement to the hardware could be the addition of a control bus within the
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dynamic region. Currently, only data moves through the signal processing blocks that are
added; but with control data these could be become run-time parameterized. Also with a
separate bus running through the dynamic region, debug information could be output to
another channel for reading while the radio is in operation. A bus running through the
dynamic region and requiring control logic on each module would quickly take up resources
on the FPGA; however, research is being done to use the FPGA’s unused configuration
circuitry to build a network on chip that would work for this project without requiring more
resources [35].

Many improvements are still being made to the hardware assembly tools as well. qFlow
is only designed to assemble for the Virtex 5 family of FPGAs, but will have Virtex 6
functionality soon. tFlow is being actively developed to increase the speed and effectiveness
of the TORC router. With these improvements the GReasy project could produce on-the-
fly hardware building so that new modules do not have to be registered in advance. The
bitstream manipulation improvements could yield parameterization of modules without any
assembly time and possibly without programming the entire chip to reflect a change in only
one module. All of these improvements would decrease the time designers waste waiting for
hardware.

In order for this project to be fully integrated with GNU Radio, the changes have to be
checked into the GNU Radio repository. This would require updating many of the current
files to work with the newest version of GNU Radio first. The version used for GReasy was
3.3 and as of this writing version 3.6 is available. Modifying the core files and adding the
afpga class to the newest version would be simple. The problem would be upgrading the
networking on the FPGA. GNU Radio has abandoned the use of RAW packets for data
transfer to the USRPs. This also means that the USRP2 image would have to be modified
and recompiled with a new command to send data to the FPGA. This would make some
major changes to the way GReasy operates but would then allow for it to be used by a larger
community.

7.2.2 Completely Heterogeneous Systems

The enhancements to GNU Radio were made with the paradigm of adding other hardware
accelerators in the future. It should be possible to use the same settings and enable DSPs
or GPUs to run alongside software blocks with GReasy. The idea of a system where CPUs,
FPGAs, GPUs, and DSPs all work together to easily build the most efficient radio hardware
for a given design is starting to become a reality.

Work was done at Virginia Tech to try and create a measure for how a completely heteroge-
neous system could choose among the best hardware available to create a software-defined
radio [5]. The work done in the GReasy project for this thesis has enabled FPGAs and CPUs
to interact in a simple and effective way. The current system still forces the designer to
decide what blocks to put on what hardware, but soon perhaps the radios will be able to
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choose for themselves what to put where for a useful design.
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Appendix A

EdifWriter.cpp

Listing A.1: /qflow/applications/EdifWriter.cpp

1 // Torc − Copyright 2011 Un ive r s i ty o f Southern Ca l i f o r n i a . Al l Rights
Reserved .

2 // This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the

3 // GNU General Publ ic L i cense as pub l i shed by the Free Software
Foundation , e i t h e r v e r s i on 3 o f the

4 // License , or ( at your opt ion ) any l a t e r v e r s i on .
5 //
6 // This program i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but

WITHOUT ANY WARRANTY;
7 // without even the impl i ed warranty o f MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See
8 // the GNU General Publ ic L i cense f o r more d e t a i l s .
9 //
10 // You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense

along with t h i s program . I f
11 // not , s e e <http ://www. gnu . org / l i c e n s e s />.
12

13 /// \ b r i e f Program to read in an e d i f . dat f i l e and convert i t to an
EDIF f i l e .

14

15 #include "torc/Generic.hpp"

16 #include "torc/Common.hpp"

17 #include <fstream>
18 #include <boost / regex . hpp>
19 #include <iostream>
20

61
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21 using namespace std ;
22 using namespace torc : : generic ;
23

24 //Removes l e ad ing z e ro s from a number in a s t r i n g ”0033” = ”33”
25 string removePaddedZeroes ( string num ) {
26 int count = 0 ;
27 for ( unsigned int iter = 0 ; iter < num . length ( ) ; iter++) {
28 if ( num . at ( iter ) == '0' )
29 count++;
30 else break ; }
31 num . erase (0 , count ) ;
32 return num ;
33 }
34

35 // Subtract s 1 from a number in a s t r i n g ”33” = ”32”
36 string SM1_2 ( string num ) {
37 unsigned int iter = num . length ( ) −1;
38 while ( iter >= 0) {
39 if ( num . at ( iter ) > 57 | | num . at ( iter ) < 48)
40 return "error" ;
41 else if ( num . at ( iter ) != '0' ) {
42 num . at ( iter ) = ( num . at ( iter ) − 1) ;
43 return num ;
44 }
45 else num . at ( iter ) = '9' ;
46 iter−−;
47 }
48 return num ;
49 }
50

51

52 int main ( int argc , char∗ argv [ ] ) {
53

54 //Generate Objects to bu i ld e d i f
55 boost : : shared_ptr<ObjectFactory> factoryPtr ( new ObjectFactory ( ) ) ;
56 boost : : shared_ptr<Root> rootPtr ;
57 factoryPtr−>create ( rootPtr ) ;
58 rootPtr−>setName ("blacktop" ) ;
59

60 torc : : generic : : PortDirection input = ePortDirectionIn ;
61 torc : : generic : : PortDirection output = ePortDirectionOut ;
62 torc : : generic : : View : : Type netlist = View : : eTypeNetlist ;
63

64 boost : : shared_ptr<Library> lib ;
65 boost : : shared_ptr<Cell> cell ;
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66 boost : : shared_ptr<View> view ;
67 boost : : shared_ptr<Property> property ;
68 boost : : shared_ptr<ScalarPort> port ;
69 boost : : shared_ptr<VectorPort> port_array ;
70 boost : : shared_ptr<VectorPortReference> vectorRef ;
71 boost : : shared_ptr<ScalarPortReference> scalarRef ;
72 boost : : shared_ptr<SingleInstance> instance ;
73 vector< boost : : shared_ptr<SingleInstance> > instances ;
74 boost : : shared_ptr<ScalarNet> net ;
75 boost : : shared_ptr<Design> design ;
76

77 //Add UNISIM l i b r a r y ( qFlow no longe r needs th i s , but may again in
the fu tu r e )

78 /∗ f ac toryPtr−>c r e a t e ( l i b ) ;
79 l i b−>setName (”UNISIMS”) ;
80 l i b−>s e t I sExte rn ( t rue ) ;
81 f ac toryPtr−>c r e a t e ( c e l l ) ;
82 c e l l−>setName (”GND”) ;
83 f ac toryPtr−>c r e a t e ( view ) ;
84 view−>setName (” view 1 ”) ;
85 view−>setType ( n e t l i s t ) ;
86 f ac toryPtr−>c r e a t e ( port ) ;
87 port−>setName (”G”) ;
88 port−>s e tD i r e c t i o n ( output ) ;
89 view−>addPort ( port ) ;
90 f ac toryPtr−>c r e a t e ( i n s t anc e ) ;
91 in s tance−>setName (”XST GND”) ;
92 in s tance−>bindToMasterView ( view ) ;
93 i n s t an c e s . push back ( i n s t anc e ) ;
94 c e l l−>addView ( view ) ;
95 l i b−>addCel l ( c e l l ) ;
96 f ac toryPtr−>c r e a t e ( c e l l ) ;
97 c e l l−>setName (”VCC”) ;
98 f ac toryPtr−>c r e a t e ( view ) ;
99 view−>setName (” view 1 ”) ;

100 view−>setType ( n e t l i s t ) ;
101 f ac toryPtr−>c r e a t e ( port ) ;
102 port−>setName (”P”) ;
103 port−>s e tD i r e c t i o n ( output ) ;
104 view−>addPort ( port ) ;
105 f ac toryPtr−>c r e a t e ( i n s t anc e ) ;
106 in s tance−>setName (”XST VCC”) ;
107 in s tance−>bindToMasterView ( view ) ;
108 i n s t an c e s . push back ( i n s t anc e ) ;
109 c e l l−>addView ( view ) ;
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110 l i b−>addCel l ( c e l l ) ;
111 rootPtr−>addLibrary ( l i b ) ;
112 ∗/
113

114 //Create Blacktop l i b r a r y ! ! !
115 factoryPtr−>create ( lib ) ;
116

117 vector<string> lines ;
118 string line ;
119 if ( argc > 1)
120 {
121 ifstream myfile ( argv [ 1 ] ) ;
122 if ( myfile . is_open ( ) )
123 {
124 while ( myfile . good ( ) )
125 {
126 getline ( myfile , line ) ;
127 if ( line . find ("Cell" ) != string : : npos ) lines . push_back ( line ) ;
128 if ( line . find ("Net" ) != string : : npos ) lines . push_back ( line ) ;
129 if ( line . find ("Loop" ) != string : : npos ) lines . push_back ( line ) ;
130 // cout << l i n e << endl ;
131 }
132 myfile . close ( ) ;
133 }
134 }
135 else

136 {
137 ifstream myfile ("edif.dat" ) ;
138 if ( myfile . is_open ( ) )
139 {
140 while ( myfile . good ( ) )
141 {
142 getline ( myfile , line ) ;
143 if ( line . find ("Cell" ) != string : : npos ) lines . push_back ( line ) ;
144 if ( line . find ("Net" ) != string : : npos ) lines . push_back ( line ) ;
145 if ( line . find ("Loop" ) != string : : npos ) lines . push_back ( line ) ;
146 // cout << l i n e << endl ;
147 }
148 myfile . close ( ) ;
149 }
150 }
151 size_t pos ;
152 unsigned int i ;
153 unsigned int iter=0;
154 bool allClear = true ;
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155 vector<vector<string> > result ( lines . size ( ) ) ;
156 while (iter<lines . size ( ) )
157 {
158 line = lines . at ( iter ) ;
159

160 // Sp l i t up the in fo rmat ion to handle as we go
161 pos = 0 ;
162 while ( true ) {
163 size_t nextPos = line . find ( ';' , pos ) ;
164 if ( nextPos == line . npos )
165 break ;
166 result [ iter ] . push_back ( string ( line . substr ( pos , nextPos − pos )

) ) ;
167 pos = nextPos + 1 ;
168 }
169

170 i=0;
171 while (i<result [ iter ] . size ( ) )
172 {
173 allClear = true ;
174 // Star t by f i nd i n g Ce l l s
175 if ( result [ iter ] . at (i ) . compare ("Cell" )==0)
176 {
177 if (lib−>findCell ( result [ iter ] . at (i+1) )==NULL )
178 {
179 factoryPtr−>create ( cell ) ;
180 cell−>setName ( result [ iter ] . at (i+1) ) ;
181 factoryPtr−>create ( view ) ;
182 view−>setName ("view_1" ) ;
183 view−>setType ( netlist ) ;
184

185 //Create In s tance s
186 factoryPtr−>create ( instance ) ;
187 instance−>setName ( result [ iter ] . at (i+2) ) ;
188 instance−>bindToMasterView ( view ) ;
189 instances . push_back ( instance ) ;
190

191 i=i+3;
192 }
193 else

194 {
195 //Create In s tance s
196 factoryPtr−>create ( instance ) ;
197 instance−>setName ( result [ iter ] . at (i+2) ) ;
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198 instance−>bindToMasterView (lib−>findCell ( result [ iter ] . at (i+1)
)−>findView ("view_1" ) ) ;

199 instances . push_back ( instance ) ;
200

201 i=result [ iter ] . size ( ) ;
202 allClear=false ;
203 }
204 }
205 //Find Ports
206 else if ( result [ iter ] . at (i ) . compare ("Port" )==0)
207 {
208 factoryPtr−>create ( port ) ;
209 port−>setName ( result [ iter ] . at (i+2) ) ;
210 if ( result [ iter ] . at (i+1) . compare ("input" )==0) port−>setDirection

( input ) ;
211 if ( result [ iter ] . at (i+1) . compare ("output" )==0) port−>

setDirection ( output ) ;
212 view−>addPort ( port ) ;
213 i=i+3;
214

215 }
216 //Find Arrays
217 else if ( result [ iter ] . at (i ) . compare ("Array" )==0)
218 {
219 factoryPtr−>create ( port_array ) ;
220 port_array−>setName ( result [ iter ] . at (i+2) ) ;
221 // the f o l l ow i ng block decrements the s t r i n g ” t e s t ” by 1 , va l i d

f o r a l l numbers 1−>999
222 std : : string arrLen = result [ iter ] . at (i+3) ;
223 arrLen = SM1_2 ( removePaddedZeroes ( arrLen ) ) ;
224 if ( arrLen == "error" )
225 cerr << "Error: string contained characters that are not

numbers.\n" ;
226 port_array−>setOriginalName ( result [ iter ] . at (i+2)+"<"+arrLen+"

:0>" ) ;
227 std : : vector<size_t> limits ;
228 limits . push_back ( atoi ( result [ iter ] . at (i+3) . c_str ( ) ) ) ;
229 port_array−>constructChildren ( factoryPtr , limits ) ;
230 if ( result [ iter ] . at (i+1) . compare ("input" )==0) port_array−>

setDirection ( input ) ;
231 if ( result [ iter ] . at (i+1) . compare ("output" )==0) port_array−>

setDirection ( output ) ;
232 view−>addPort ( port_array ) ;
233 i=i+4;
234 }
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235 //This combines nets that have the same input source
236 else if ( result [ iter ] . at (i ) . compare ("Net" )==0)
237 {
238 /∗ compare to a l l other net s c r ea ted ∗/
239 for ( unsigned int checker=0; checker<iter ; checker++){
240 if ( result [ checker ] . at (0 ) . compare ("Net" )==0 && result [ checker ] . at (3 )

. compare ( result [ iter ] . at (3 ) )==0 && result [ checker ] . at (4 ) . compare
( result [ iter ] . at (4 ) )==0){

241 for ( unsigned int appender=6; appender<result [ iter ] . size ( ) ;
appender++){

242 result [ checker ] . push_back ( result [ iter ] . at ( appender ) ) ;
243 }
244 result . erase ( result . begin ( )+iter ) ;
245 lines . erase ( lines . begin ( )+iter ) ;
246 iter−−;
247 break ;
248 }
249 }
250 i=result [ iter ] . size ( ) ;
251 allClear=false ;
252 }
253 // This combines loops that have the same input source
254 else if ( result [ iter ] . at (i ) . compare ("Loop" )==0)
255 {
256 /∗ compare to a l l other l oops c rea ted ∗/
257 for ( unsigned int checker=0; checker<iter ; checker++){
258 if ( result [ checker ] . at (0 ) . compare ("Loop" )==0 && result [ checker ] . at

(4 ) . compare ( result [ iter ] . at (4 ) )==0 && result [ checker ] . at (5 ) .
compare ( result [ iter ] . at (5 ) )==0){

259 for ( unsigned int appender=10; appender<result [ iter ] . size ( ) ;
appender++){

260 result [ checker ] . push_back ( result [ iter ] . at ( appender ) ) ;
261 }
262 result . erase ( result . begin ( )+iter ) ;
263 lines . erase ( lines . begin ( )+iter ) ;
264 iter−−;
265 break ;
266 }
267 }
268 i=result [ iter ] . size ( ) ;
269 allClear=false ;
270 }
271 else

272 {
273 cerr << "Invalid line of input: " << line << endl ;
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274 return 0 ;
275 }
276 }
277 if ( allClear )
278 {
279 cell−>addView ( view ) ;
280 lib−>addCell ( cell ) ;
281 }
282 iter++;
283 }
284

285

286 //Add in s t an c e s ( a l l o f them should go here )
287 for ( unsigned int it=0; it<instances . size ( ) −1; it++)
288 {
289 // cout << i t << ” o f ” << i n s t an c e s . s i z e ( ) << endl ;
290 view−>addInstance ( instances . at (it ) ) ;
291 }
292

293 //Create Nets
294 int loopLength ;
295 char numstr [ 2 1 ] ; // enough to hold a l l numbers up to 64−b i t s
296 VectorPortBit : : List list ;
297 VectorPortBitReference : : List listRef ;
298 std : : vector<size_t> limits ;
299 iter=0;
300 while (iter<lines . size ( ) )
301 {
302 line = lines . at ( iter ) ; // j u s t used f o r output i f the re i s an e r r o r
303

304 i=0;
305 while (i<result [ iter ] . size ( ) )
306 {
307 // Star t with Nets
308 if ( result [ iter ] . at (i ) . compare ("Net" )==0)
309 {
310 factoryPtr−>create ( net ) ;
311 net−>setName ( result [ iter ] . at (i+1) ) ;
312 i=i+2;
313 while (i<result [ iter ] . size ( ) )
314 {
315 //Connections to the s t a t i c are handled f i r s t
316 if ( result [ iter ] . at (i ) . compare ("blacktop" )==0)
317 {
318 if ( atoi ( result [ iter ] . at (i+3) . c_str ( ) )==−1)
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319 {
320 view−>findPort ( result [ iter ] . at (i+2) )−>connect ( net ) ;
321 }
322 else

323 {
324 list . clear ( ) ;
325 view−>findPort ( result [ iter ] . at (i+2) )−>getChildren ( list ) ;
326 list . at ( atoi ( result [ iter ] . at (i+3) . c_str ( ) ) )−>connect ( net )

;
327 }
328 }
329 //Unisim Connections
330 else if ( result [ iter ] . at (i ) . compare ("VCC" )==0)
331 {
332 factoryPtr−>create ( scalarRef ) ;
333 scalarRef−>bindToMasterPort ( rootPtr−>findLibrary ("UNISIMS" )

−>findCell ( result [ iter ] . at (i ) )−>findView ("view_1" )−>
findPort ("P" ) ) ;

334 view−>findInstance ("XST_VCC" )−>addPortReference ( scalarRef ) ;
335 scalarRef−>connect ( net ) ;
336 }
337 else if ( result [ iter ] . at (i ) . compare ("GND" )==0)
338 {
339 factoryPtr−>create ( scalarRef ) ;
340 scalarRef−>bindToMasterPort ( rootPtr−>findLibrary ("UNISIMS" )

−>findCell ( result [ iter ] . at (i ) )−>findView ("view_1" )−>
findPort ("G" ) ) ;

341 view−>findInstance ("XST_GND" )−>addPortReference ( scalarRef ) ;
342 scalarRef−>connect ( net ) ;
343 }
344 // Al l other Nets to each other i n s i d e o f the sandbox
345 else

346 {
347 //This w i l l be the case most o f the time
348 //−1 means i t i s a c t u a l l y j u s t a Port
349 if ( atoi ( result [ iter ] . at (i+3) . c_str ( ) )==−1)
350 {
351 factoryPtr−>create ( scalarRef ) ;
352 scalarRef−>bindToMasterPort (lib−>findCell ( result [ iter ] . at

(i ) )−>findView ("view_1" )−>findPort ( result [ iter ] . at (i
+2) ) ) ;

353 view−>findInstance ( result [ iter ] . at (i+1) )−>
addPortReference ( scalarRef ) ;

354 scalarRef−>connect ( net ) ;
355 }
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356 //However i f you want to connect j u s t one net from an array
357 // j u s t put the b i t number you would l i k e to connect
358 else

359 {
360 list . clear ( ) ;
361 lib−>findCell ( result [ iter ] . at (i ) )−>findView ("view_1" )−>

findPort ( result [ iter ] . at (i+2) )−>getChildren ( list ) ;
362 list . at ( atoi ( result [ iter ] . at (i+3) . c_str ( ) ) )−>setParent (

lib−>findCell ( result [ iter ] . at (i ) )−>findView ("view_1" ) )
;

363 if (view−>findInstance ( result [ iter ] . at (i+1) )−>
findPortReference ( result [ iter ] . at (i+2) )==NULL )

364 {
365 factoryPtr−>create ( vectorRef ) ;
366 vectorRef−>bindToMasterPort (lib−>findCell ( result [ iter ] .

at (i ) )−>findView ("view_1" )−>findPort ( result [ iter ] . at
(i+2) ) ) ;

367 limits . push_back ( list . size ( ) ) ;
368 vectorRef−>constructChildren ( factoryPtr , limits ) ;
369 limits . pop_back ( ) ;
370 listRef . clear ( ) ;
371 vectorRef−>getChildren ( listRef ) ;
372 view−>findInstance ( result [ iter ] . at (i+1) )−>

addPortReference ( vectorRef ) ;
373 listRef . at ( atoi ( result [ iter ] . at (i+3) . c_str ( ) ) )−>connect

( net ) ;
374 }
375 else

376 {
377 listRef . clear ( ) ;
378 view−>findInstance ( result [ iter ] . at (i+1) )−>

findPortReference ( result [ iter ] . at (i+2) )−>getChildren
( listRef ) ;

379 listRef . at ( atoi ( result [ iter ] . at (i+3) . c_str ( ) ) )−>connect
( net ) ;

380 }
381 }
382 }
383 i=i+4;
384 }
385 view−>addNet ( net ) ;
386 }
387 //Connect the loops l a s t
388 else if ( result [ iter ] . at (i ) . compare ("Loop" )==0)
389 {
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390 loopLength = atoi ( result [ iter ] . at (i+2) . c_str ( ) ) ;
391 //ISE does t h i s exac t l y backwards count ing from ( length −1) down

to 0
392 for ( int loop=0; loop<loopLength ; loop++)
393 {
394 factoryPtr−>create ( net ) ;
395 sprintf ( numstr , "%d" , loop ) ;
396 net−>setName ( result [ iter ] . at (1 )+"_"+numstr+"_" ) ;
397 net−>setOriginalName ( result [ iter ] . at (1 )+"<"+numstr+">" ) ;
398

399 i=3;
400 while (i<result [ iter ] . size ( ) )
401 {
402 // connect i ons to the s t a t i c r eg i on are handled f i r s t
403 if ( result [ iter ] . at (i ) . compare ("blacktop" )==0)
404 {
405 list . clear ( ) ;
406 view−>findPort ( result [ iter ] . at (i+2) )−>getChildren ( list ) ;
407 list . at ( loop )−>connect ( net ) ;
408 }
409 //Then a l l other loops , the re should not be unis ims here
410 else

411 {
412 list . clear ( ) ;
413 lib−>findCell ( result [ iter ] . at (i ) )−>findView ("view_1" )−>

findPort ( result [ iter ] . at (i+2) )−>getChildren ( list ) ;
414 list . at ( loop )−>setParent (lib−>findCell ( result [ iter ] . at (i )

)−>findView ("view_1" ) ) ;
415 if (view−>findInstance ( result [ iter ] . at (i+1) )−>

findPortReference ( result [ iter ] . at (i+2) )==NULL )
416 {
417 factoryPtr−>create ( vectorRef ) ;
418 vectorRef−>bindToMasterPort (lib−>findCell ( result [ iter ] .

at (i ) )−>findView ("view_1" )−>findPort ( result [ iter ] . at
(i+2) ) ) ;

419 limits . push_back ( list . size ( ) ) ;
420 vectorRef−>constructChildren ( factoryPtr , limits ) ;
421 limits . pop_back ( ) ;
422 view−>findInstance ( result [ iter ] . at (i+1) )−>

addPortReference ( vectorRef ) ;
423 listRef . clear ( ) ;
424 vectorRef−>getChildren ( listRef ) ;
425 listRef . at ( loop )−>connect ( net ) ;
426 }
427 else
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428 {
429 listRef . clear ( ) ;
430 view−>findInstance ( result [ iter ] . at (i+1) )−>

findPortReference ( result [ iter ] . at (i+2) )−>getChildren
( listRef ) ;

431 listRef . at ( loop )−>connect ( net ) ;
432 }
433 }
434 i=i+3;
435 }
436 view−>addNet ( net ) ;
437 }
438

439 }
440 // Ignore Ce l l s now
441 else if ( result [ iter ] . at (i ) . compare ("Cell" )==0)
442 {
443 i=result [ iter ] . size ( ) ;
444 }
445 else

446 {
447 cerr << "Invalid line of input: " << line << endl ;
448 return 0 ;
449 }
450 }
451 iter++;
452 }
453

454 /∗ Uncomment to output Port l i s t f o r Debugging
455 vector<PortSharedPtr> po r tL i s t ;
456 view−>getPort s ( po r tL i s t ) ;
457 f o r ( unsigned i n t i t =0; i t<po r tL i s t . s i z e ( ) ; i t++)
458 {
459 cout << po r tL i s t . at ( i t )−>getName ( ) << endl ;
460 }
461 ∗/
462

463

464 lib−>setName ("blacktop_lib" ) ;
465 rootPtr−>addLibrary ( lib ) ;
466

467 factoryPtr−>create ( design ) ;
468 design−>setName ("blacktop" ) ;
469 design−>setCellRefName ("blacktop" ) ;
470 design−>setLibraryRefName ("blacktop_lib" ) ;
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471

472

473 factoryPtr−>create ( property ) ;
474 Value value ;
475 value . setType ( Value : : eValueTypeString ) ;
476 //FIXME
477 //The board type i s hard−coded in to t h i s EdifWriter , t h i s should

even tua l l y be an input
478 value . set<Value : : String>("xc5vlx110t -1-ff1136" ) ;
479 value . setIsSet ( true ) ;
480

481 property−>setOwner ("Xilinx" ) ;
482 property−>setValue ( value ) ;
483 property−>setName ("PART" ) ;
484 design−>setProperty ("PART" , property ) ;
485

486 rootPtr−>addDesign ( design ) ;
487

488 // export the EDIF des ign
489 string outFileName = "blacktop.ndf" ;
490 fstream edifExport ( outFileName . c_str ( ) , ios_base : : out ) ;
491 EdifExporter exporter ( edifExport ) ;
492 exporter ( rootPtr ) ;
493

494 return 0 ;
495 }



Appendix B

edif connector.h

Listing B.1: /gnuradio/gnuradio-core/src/lib/runtime/edif connector.h

1 /∗
2 Connects e d i f f i l e s toge the r and handles networking
3 ∗/
4

5

6 #ifndef INCLUDED EDIF CONNECTOR H
7 #define INCLUDED EDIF CONNECTOR H
8

9

10 #include <stdexcept>
11 #include <iostream>
12 #include <s t r i n g . h>
13 #include <uni s td . h>
14 #include <s t d l i b . h>
15 #include <fstream>
16 #include <vector>
17

18 #include "PacketCreator.h"

19

20 int status ; // f o r system c a l l s
21

22 //Used f o r sending con t r o l data between mul t ip l e FPGAs
23 std : : vector<std : : string> dest_macs ;
24 std : : vector<std : : string> src_macs ;
25 std : : vector<std : : string> valid_macs ;
26

27 //Converts s t r i n g i n t e g e r s to ac tua l i n t e g e r s f o r math purposes

74
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28 int convertInt ( std : : string number )
29 {
30 int temp = 0 ;
31 for ( unsigned int i=0; i<number . size ( ) ; i++){
32 temp ∗= 10 ;
33 temp += int ( number . at (i ) )−48;
34 }
35

36 return temp ;
37 }
38

39 //Read the e d i f c o nn e c t i o n s l i s t to f i nd the port name a s s o c i a t ed with
a port number in GRC

40 std : : vector<std : : vector<std : : string> > edif_connections ;
41 bool getConn ( std : : string cell , std : : string type , std : : string direction ,

int port_number , std : : string &size , std : : string &name , int &
cell_number ) {

42 for ( unsigned int connPos=0; connPos<edif_connections . size ( ) ; connPos

++){
43 // i f ( strcmp ( ed i f c o nn e c t i o n s [ connPos ] . at (0 ) . c s t r ( ) , c e l l . c s t r ( ) )

== 0) {
44 if ( edif_connections [ connPos ] . at (0 ) == cell ) {
45 int count=−1;
46 for ( unsigned int index=1; index<edif_connections [ connPos ] . size ( ) ;

index++){
47 if ( edif_connections [ connPos ] . at ( index−1) == type &&

edif_connections [ connPos ] . at ( index ) == direction ) {
48 count++;
49 if ( count==port_number ) {
50 // s i z e
51 if ( strcmp ( type . c_str ( ) ,"Array" )==0) size =

edif_connections [ connPos ] . at ( index+2) ;
52 else size = "-1" ;
53 //name
54 name = edif_connections [ connPos ] . at (1 ) + ";" +

edif_connections [ connPos ] . at (2 ) + ";" +
edif_connections [ connPos ] . at ( index+1) + ";" ;

55 cell_number = connPos ;
56 return true ;
57 }
58 }
59 }
60 break ;
61 }
62 }
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63 return false ;
64 }
65

66

67

68 bool connect_edif ( ) {
69

70 int size=0;/∗{{{∗/
71 std : : string cell ;
72 std : : ifstream myfile ("/tmp/fpga_connections.txt" ) ;
73 //Read in the o r i g i n a l f i l e c r ea ted by the GRC cons t ruc to r b locks to

get the number o f connect i ons
74 if ( myfile . is_open ( ) ) {
75 while ( myfile . good ( ) ) {
76 size++;
77 std : : getline ( myfile , cell ) ;
78 }
79 myfile . close ( ) ;
80 }
81 else{
82 //no connec t i ons f i l e , thus no afpga connect i ons
83 // l e t GNU Radio cont inue going
84 return true ;
85 }
86 // fpga connec t i on s . txt conta in s GNURadios connect i ons but f o r some

reason conta in s double cop i e s . After t h i s b i t o f code , l i n e [
v a l i d c onn e c t i on s ] conta in s only one ve r s i on o f each connect ion
which i s pr in ted to connec t i ons . txt .

87 //Read in the f i l e again to get only one copy o f each connect ion
88 std : : ifstream myfile2 ("/tmp/fpga_connections.txt" ) ;
89 std : : string ∗ line ;
90 line = new std : : string [ size ] ;
91 int valid_connections=0;
92 if ( myfile2 . is_open ( ) ) {
93 while ( myfile2 . good ( ) ) {
94 std : : getline ( myfile2 , line [ valid_connections ] ) ;
95 //Check to make sure the l i n e does not e x i s t a l r eady
96 if(&line [ valid_connections]==std : : find (line ,&line [ size ] , line [

valid_connections ] ) )
97 {
98 valid_connections++;
99 }

100 }
101 myfile2 . close ( ) ;
102 status = system ("sudo rm /tmp/fpga_connections.txt" ) ;
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103 status = system ("sudo rm /tmp/connections.txt" ) ;
104 }
105

106

107 bool contains_afpga = false ;
108 std : : ofstream connections ;
109 connections . open ("/tmp/connections.txt" , std : : ios : : app ) ;
110 for ( int valid_connection=0; valid_connection<valid_connections−1;

valid_connection++){
111 connections << line [ valid_connection ] << "\n" ;
112 if ( line [ valid_connection ] . find ("afpga" ) != std : : string : : npos )

contains_afpga = true ;
113 }
114 connections . close ( ) ;
115

116 //No need to cont inue i f the re i s no afpga modules connected
117 if ( ! contains_afpga ) {
118 //There was a connect i ons f i l e but no b locks were meant f o r the

fpga dev i ce
119 // l e t GNU Radio cont inue going
120 return true ;
121 }
122

123

124 std : : vector<std : : vector<std : : string> > interfaces ;
125 std : : ifstream edifReader ("/tmp/edif.dat" ) ;
126 unsigned int connPos = −1;
127 int macsPos = −1;
128 bool addedBT = false ;
129 // std : : cout << ” g e t t i n g Ce l l s ” << std : : endl ;
130 //Populate the e d i f c o nn e c t i o n s l i s t with Ce l l s p e c i f i c in fo rmat ion
131 if ( edifReader . is_open ( ) ) {
132 while ( edifReader . good ( ) | | ! addedBT ) {
133 //On the f i r s t c a l l , the blacktop i n t e r f a c e s need to be s e t .

This should be i d e n t i c a l between boards so i t i s hard−coded
here . I t could be made to be customizab le based on the s t a t i c
be ing used on any given board .

134 if ( edifReader . good ( ) ) std : : getline ( edifReader , cell ) ;
135 else{
136 cell = "Cell;blacktop;BT;0;Array;input;in0;33;Array;input;in1

;33;Array;output;out0;33;Array;output;out1;33;Port;input;rst

;Port;input;clk;" ;
137 addedBT = true ;
138 }
139 if ( cell . find ("Cell" ) != std : : string : : npos ) {
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140 size_t pos = 0 ;
141 edif_connections . push_back ( std : : vector<std : : string>() ) ;
142 connPos++;
143 while ( true ) {
144 size_t nextPos = cell . find ( ';' , pos ) ;
145 if ( nextPos == cell . npos )
146 break ;
147 edif_connections [ connPos ] . push_back ( std : : string ( cell . substr

( pos , nextPos − pos ) ) ) ;
148 pos = nextPos + 1 ;
149 }
150 edif_connections [ connPos ] . erase ( edif_connections [ connPos ] . begin

( ) ) ;
151 edif_connections [ connPos ] . insert ( edif_connections [ connPos ] .

begin ( ) ,"afpga_"+edif_connections [ connPos ] . at (0 ) + "_" +
edif_connections [ connPos ] . at (1 ) + "(" + edif_connections [
connPos ] . at (2 ) + ")" ) ;

152

153 // Combines the in s t anc e name with the unique id f o r a unique
in s t anc e name amoug c e l l s

154 edif_connections [ connPos ] . insert ( edif_connections [ connPos ] .
begin ( ) +2, edif_connections [ connPos ] . at (2 )+edif_connections [
connPos ] . at (3 ) ) ;

155 // Delete the o r i g i n a l i n s t ance name , moving the id to the
th i rd po s i t i o n

156 edif_connections [ connPos ] . erase ( edif_connections [ connPos ] . begin
( )+3) ;

157 // Now remove the id
158 edif_connections [ connPos ] . erase ( edif_connections [ connPos ] . begin

( )+3) ;
159 }
160 //used to get Ethernet i n t e r f a c e in fo rmat ion f o r each FPGA
161 if ( cell . find ("PARAM" ) != std : : string : : npos ) {
162 size_t pos = 0 ;
163 interfaces . push_back ( std : : vector<std : : string>() ) ;
164 macsPos++;
165 while ( true ) {
166 size_t nextPos = cell . find ( ';' , pos ) ;
167 if ( nextPos == cell . npos )
168 break ;
169 interfaces [ macsPos ] . push_back ( std : : string ( cell . substr ( pos ,

nextPos − pos ) ) ) ;
170 pos = nextPos + 1 ;
171 }
172 }
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173 }
174 edifReader . close ( ) ;
175 }
176 else{
177 // I f the re were connect ions , the re should be an e d i f . dat f i l e , so

i f cannot be opened there i s a f i l e pe rmi s s i ons problem !
178 std : : cout << "could not open edif.dat" << std : : endl ;
179 return false ;
180 }
181

182 // std : : cout << ” g e t t i n g connect i ons ” << std : : endl ;
183 std : : ifstream connReader ("/tmp/connections.txt" ) ;
184 std : : vector<std : : string > searches ;
185 std : : vector<std : : string > numbers ;
186 // Read GNU Radio ' s connect ion l i s t , based on names and port numbers

only
187 if ( connReader . is_open ( ) ) {
188 while ( connReader . good ( ) ) {
189 // I f you ever dec ide to get r i d o f connect i ons . txt , j u s t r ep l a c e

t h i s whi l e loop with a f o r loop o f s i z e l i n e s , and put each
l i n e [ v a l i d c onn e c t i on s ] i n to the s t r i n g c e l l i n s t ead o f the
f o l l ow i n g g e t l i n e .

190 std : : getline ( connReader , cell ) ;
191 if ( cell . find ("afpga" ) != std : : string : : npos ) {
192 std : : string input ;
193 std : : string output ;
194 std : : string input_search ;
195 std : : string output_search ;
196 std : : string input_number ;
197 std : : string output_number ;
198 size_t splitPos = cell . find ( ',' , 0 ) ;
199 input = std : : string ( cell . substr ( 0 , splitPos ) ) ;
200 output = std : : string ( cell . substr ( splitPos+1, cell . npos−

splitPos ) ) ;
201 splitPos = input . find ("):" , 0 ) ;
202 splitPos++;
203 input_search = std : : string ( input . substr ( 0 , splitPos ) ) ;
204 input_number = std : : string ( input . substr ( splitPos+1, input .

npos−splitPos ) ) ;
205 splitPos = output . find ("):" , 0 ) ;
206 splitPos++;
207 output_search = std : : string ( output . substr ( 0 , splitPos ) ) ;
208 output_number = std : : string ( output . substr ( splitPos+1, output .

npos−splitPos ) ) ;
209
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210 // Dont add i f the input i s a fpga out , t h i s i s handled by the
host

211 // Same i f the output i s a fpga in
212 if ( input_search . find ("afpga_out" , 0 )==std : : string : : npos &&

output_search . find ("afpga_in" , 0 )==std : : string : : npos ) {
213 searches . push_back ( input_search ) ;
214 searches . push_back ( output_search ) ;
215 numbers . push_back ( input_number ) ;
216 numbers . push_back ( output_number ) ;
217 }
218 if ( input_search . find ("afpga_out" , 0 ) !=std : : string : : npos &&

output_search . find ("afpga_in" , 0 ) !=std : : string : : npos ) {
219 dest_macs . push_back ( std : : string ( output_search . substr ( 9 , 17 ) ) )

;
220 src_macs . push_back ( std : : string ( input_search . substr ( 10 , 17 ) ) ) ;
221 }
222

223 // std : : cout << i nput s ea r ch << ”+” << input number << ” <−> ”
<< output search << ”+” << output number << std : : endl ;

224 }
225 }
226 }
227 else{
228 //This r e a l l y i s not po s s i b l e , i f we were ab le to wr i t e i t , we

be t t e r be ab le to read i t . Good luck s o l v i n g t h i s e r r o r i f i t
ever breaks here :−)

229 std : : cout << "could not open connections.txt" << std : : endl ;
230 return false ;
231 }
232

233

234 //Create our connect i ons data s t r u c tu r e
235 std : : vector<std : : vector<std : : string> > loops_nets ;
236 std : : vector<std : : string > extras ;
237 std : : vector<std : : vector<int> > cell_tracker ;
238 //While we haven ' t checked everyth ing
239 while ( searches . size ( ) !=0){
240 //Go through based on each a fpga in path , which should have a

l o g i c a l end .
241 loops_nets . push_back ( std : : vector<std : : string>() ) ;
242 cell_tracker . push_back ( std : : vector<int>(edif_connections . size ( ) , 0 ) )

;
243 std : : string search ;
244 search = "afpga_in" ;
245 unsigned int i=0;
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246 std : : string mac_check ;
247 mac_check = "" ;
248 int port_number ;
249 std : : string port_string ;
250 std : : string input_size , input_name , output_size , output_name ;
251 bool not_found=true ;
252 int cell_number=−1;
253 while (i<searches . size ( ) ) {
254 // std : : cout << i << ” < ” << s ea r che s . s i z e ( ) << std : : endl ;
255 if ( searches . at (i ) . find ( search ) != std : : string : : npos ) {
256 std : : cout << searches . at (i ) << " -> " ;
257 if ( mac_check . size ( )==0){
258 // only check 14 cha ra c t e r s o f the 17 , the co lon and the l a s t

2 only matter f o r por t s
259 mac_check = std : : string ( searches . at (i ) . substr ( 9 , 14 ) ) ;
260 // Store the MAC check at the very f i r s t arguement f o r use in

gene ra t ing a unique f i l ename
261 loops_nets [ loops_nets . size ( ) −1]. push_back ( mac_check ) ;
262 port_string = std : : string ( searches . at (i ) . substr ( 9+14+1, 2)

) ;
263 port_number = convertInt ( port_string ) ;
264 // Erase the l a s t co lon and 2 d i g i t s o f MAC plus the unique−

id so that the ex t ra s search only l ook s f o r other
a f pga i n s that have the same beg inning mac

265 searches . at (i ) . erase ( 9+14 , 6) ;
266 // std : : cout << mac check << ” ” << port number << std : : endl ;
267 std : : string insert = "Loop;BT_in_" ;
268 insert += port_string ;
269 insert += ";" ;
270 // Check BT port s
271 if ( ! getConn ("afpga_blacktop_BT(0)" ,"Array" ,"input" ,

port_number , input_size , input_name , cell_number ) ) {
272 std : : cerr << "Could not find input port " << port_number <<

" of blacktop" << std : : endl ;
273 return false ;
274 }
275 cell_tracker [ cell_tracker . size ( ) −1].at ( cell_number ) = 1 ;
276 if ( searches . at (i+1) . find ("afpga_out" ) != std : : string : : npos ) {
277 // Check BT port s and s i z e
278 port_number = convertInt ( std : : string ( searches . at (i+1) .

substr ( 10+14+1, 2) ) ) ;
279 if ( ! getConn ("afpga_blacktop_BT(0)" ,"Array" ,"output" ,

port_number , output_size , output_name , cell_number ) ) {
280 std : : cerr << "Could not find output port " <<

port_number << " of blacktop" << std : : endl ;
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281 return false ;
282 }
283 }
284 else {
285 // Check output por t s and s i z e
286 if ( ! getConn ( searches . at (i+1) ,"Array" ,"input" , convertInt (

numbers . at (i+1) ) , output_size , output_name , cell_number )
) {

287 std : : cerr << "Could not find port " << convertInt ( numbers
. at (i+1) ) << " of " << searches . at (i+1) << std : : endl ;

288 return false ;
289 }
290 }
291 cell_tracker [ cell_tracker . size ( ) −1].at ( cell_number ) = 1 ;
292 // Check s i z e al ignment
293 if ( input_size == output_size ) {
294 // I n s e r t i n to the l o op s n e t s
295 insert += input_size ;
296 insert += ";" ;
297 insert += input_name ;
298 insert += output_name ; // t h i s i s Ce l l ; In s tance ;Name not

j u s t name
299 }
300 else{
301 std : : cerr << "Size of " <<input_name<< " and " <<

output_name<< " do NOT match" << std : : endl ;
302 return false ;
303 }
304 // Actua l ly i n s e r t the loop
305 loops_nets [ loops_nets . size ( ) −1]. push_back ( insert . c_str ( ) ) ;
306 //and do t h i s f o r the common case and end case
307 }
308 else {
309 // std : : cout << ” i n s e r t i n g loop ” << std : : endl ;
310 std : : string insert = "Loop;" ;
311 if ( searches . at (i ) . find ("afpga_in" ) != std : : string : : npos ) {
312 // Check BT port s and s i z e
313 port_string = std : : string ( searches . at (i ) . substr ( 9+14+1,

2) ) ;
314 port_number = convertInt ( port_string ) ;
315 if ( ! getConn ("afpga_blacktop_BT(0)" ,"Array" ,"input" ,

port_number , output_size , output_name , cell_number ) ) {
316 std : : cerr << "Could not find input port " << port_number

<< " of blacktop" << std : : endl ;
317 return false ;
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318 }
319 insert += "BT_in_" ;
320 insert += port_string ;
321 insert += ";" ;
322 }
323 else{
324 //block name ( id ) => block name id
325 search . replace ( search . find ( '(' ) ,1 , "_" ) ;
326 search . replace ( search . find ( ')' ) ,1 , "_wire" ) ;
327 insert += search ;
328 insert += "_" ;
329 insert += numbers . at (i ) ;
330 insert += ";" ;
331 // Check output por t s
332 if ( ! getConn ( searches . at (i ) ,"Array" ,"output" , convertInt (

numbers . at (i ) ) , output_size , output_name , cell_number ) ) {
333 std : : cerr << "Could not find port " << convertInt ( numbers

. at (i ) ) << " of " << searches . at (i ) << std : : endl ;
334 return false ;
335 }
336 }
337 cell_tracker [ cell_tracker . size ( ) −1].at ( cell_number ) = 1 ;
338 if ( searches . at (i+1) . find ("afpga_out" ) != std : : string : : npos ) {
339 // Check BT port s and s i z e
340 port_number = convertInt ( std : : string ( searches . at (i+1) .

substr ( 10+14+1, 2) ) ) ;
341 if ( ! getConn ("afpga_blacktop_BT(0)" ,"Array" ,"output" ,

port_number , input_size , input_name , cell_number ) ) {
342 std : : cerr << "Could not find output port " <<

port_number << " of blacktop" << std : : endl ;
343 return false ;
344 }
345 }
346 else {
347 // Check input por t s and s i z e
348 if ( ! getConn ( searches . at (i+1) ,"Array" ,"input" , convertInt (

numbers . at (i+1) ) , input_size , input_name , cell_number ) ) {
349 std : : cerr << "Could not find port " << convertInt ( numbers

. at (i+1) ) << " of " << searches . at (i+1) << std : : endl ;
350 return false ;
351 }
352 }
353 cell_tracker [ cell_tracker . size ( ) −1].at ( cell_number ) = 1 ;
354 // Check s i z e al ignment
355 if ( input_size == output_size ) {



Richard H. L. Stroop 84

356 // I n s e r t i n to the l o op s n e t s
357 insert += output_size ;
358 insert += ";" ;
359 insert += output_name ;
360 insert += input_name ; // t h i s i s Ce l l ; In s tance ;Name not j u s t

name
361 }
362 else{
363 std : : cerr << "Size of " <<output_name<< " and " <<

input_name<< " do NOT match" << std : : endl ;
364 return false ;
365 }
366 // Actua l ly i n s e r t the loop
367 loops_nets [ loops_nets . size ( ) −1]. push_back ( insert . c_str ( ) ) ;
368

369 }
370

371 search = searches . at (i+1) ;
372

373 if ( search . find ("afpga_out" ) != std : : string : : npos ) {
374 if ( mac_check . compare ( std : : string ( search . substr ( 10 , 14 ) ) )

!=0){
375 std : : cerr << std : : endl << "The MAC address of the input and

output path do not match!" << std : : endl ;
376 return false ;
377 }
378 not_found = false ; // end case
379 std : : cout << search << std : : endl ;
380 // t e l l the se va l i d mac addre s s e s to send data to the computer
381 valid_macs . push_back ( search . substr ( 10 , 17 ) ) ;
382 }
383 else{
384 // This s e c t i o n checks to see i f the output block i s a l r eady

in the f low so that i t does not have to keep sea r ch ing f o r
an end

385 //block name ( id ) => block name id
386 searches . at (i+1) . replace ( searches . at (i+1) . find ( '(' ) ,1 , "_" ) ;
387 searches . at (i+1) . replace ( searches . at (i+1) . find ( ')' ) ,1 , "_wire"

) ;
388 for ( unsigned int ii=0; ii<loops_nets [ loops_nets . size ( ) −1].

size ( ) ; ii++){
389 if ( loops_nets [ loops_nets . size ( ) −1].at (ii ) . find ( searches . at (

i+1) ) != std : : string : : npos ) {
390 not_found = false ; // end case
391 }
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392 }
393 }
394

395 // This i s des igned to account f o r s i n g l e source , mu l t ip l e
s i nk s .

396 // Just check ing again and c r e a t i n g the same loop name w i l l
combine the loop in Edi fWriter

397 for ( unsigned int ii=i+2;ii<searches . size ( ) ; ii=ii+2){
398 // std : : cout << ” sea r ch ing f o r : ” << s ea r che s . at ( i i ) << std : :

endl ;
399 // std : : cout << ” aga in s t : ” << i i << ” ” << s ea r che s . at ( i )

<< std : : endl ;
400 if ( searches . at (ii ) . find ( searches . at (i ) ) != std : : string : : npos )

{
401 extras . push_back ( searches . at (ii ) ) ;
402 }
403 }
404

405 searches . erase ( searches . begin ( )+i ) ;
406 searches . erase ( searches . begin ( )+i ) ; // p lus 1
407 numbers . erase ( numbers . begin ( )+i ) ;
408 numbers . erase ( numbers . begin ( )+i ) ; // p lus 1
409

410 // i f s earch was found , s t a r t at the top o f the l i s t again
l ook ing f o r the next item

411 i=−2;
412

413 // un l e s s we are done
414 if ( ! not_found ) {
415 i=searches . size ( ) −2;
416 }
417 }// End i f s earch was found
418 i=i+2;
419 // std : : cout << ” Search ing f o r : ” << search << ” at po s i t i o n : ” <<

i << ” o f ” << s ea r che s . s i z e ( ) << std : : endl ;
420 if (i==searches . size ( ) ) {
421 // i f we have checked every connect ion f o r a fpga in
422 if ( search . find ("afpga_in" ) != std : : string : : npos ) {
423 // even tua l l y t h i s w i l l mean you need to f i nd a non−a fpga in

source
424 // f o r now , j u s t end !
425 loops_nets . pop_back ( ) ;
426 while ( searches . size ( ) !=0){
427 searches . erase ( searches . begin ( ) ) ;
428 numbers . erase ( numbers . begin ( ) ) ;
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429 //This w i l l l e t the out t e r most WHILE loop end .
430 }
431 }
432 // e l s e we have checked every po s i t i o n and i t s t i l l did not f i nd

an end case
433 else if ( not_found ) {
434 std : : cerr << std : : endl << "The block " << search << "

appears to be a sink, only complete paths from afpga_in

to afpga_out are allowed currently" << std : : endl ;
435 return false ;
436 }
437 // otherwi se we reached the end and there are no ex t ra s to

search f o r
438 else if ( extras . size ( ) !=0){
439 // std : : cout << ” running ex t ra s ” << std : : endl ;
440 search = ∗extras . begin ( ) ;
441 extras . erase ( extras . begin ( ) ) ;
442 i=0;
443 not_found = true ;
444 }
445 }
446 // std : : cout << ”one cy c l e ” << std : : endl ;
447 }
448 // std : : cout << ”done” << std : : endl ;
449 }
450

451 // std : : cout << ” wr i t i ng e d i f ” << std : : endl ;
452

453

454 std : : string edif_number = "" ;
455 std : : string this_mac = "" ;
456 for ( unsigned int ii=0; ii<loops_nets . size ( ) ; ii++){
457 std : : string edif_name = "/tmp/edif" ;
458 std : : string fpga_check = loops_nets [ ii ] . at (0 ) ;
459 edif_number = "" ;
460 edif_number += loops_nets [ ii ] . at (0 ) . at (0 ) ;
461 edif_number += loops_nets [ ii ] . at (0 ) . at (1 ) ;
462 edif_number += loops_nets [ ii ] . at (0 ) . at (3 ) ;
463 edif_number += loops_nets [ ii ] . at (0 ) . at (4 ) ;
464 edif_number += loops_nets [ ii ] . at (0 ) . at (6 ) ;
465 edif_number += loops_nets [ ii ] . at (0 ) . at (7 ) ;
466 edif_number += loops_nets [ ii ] . at (0 ) . at (9 ) ;
467 edif_number += loops_nets [ ii ] . at (0 ) . at (10) ;
468 edif_number += loops_nets [ ii ] . at (0 ) . at (12) ;
469 edif_number += loops_nets [ ii ] . at (0 ) . at (13) ;
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470 edif_name += edif_number ;
471 edif_name += ".dat" ;
472 std : : ofstream myfile ;
473 myfile . open ( edif_name . c_str ( ) ) ; // , s td : : i o s : : app ) ;
474 for ( connPos=0; connPos<edif_connections . size ( ) ; connPos++){
475 // I f a c e l l i s used f o r t h i s e d i f f low , then c e l l t r a cke r w i l l

be 1 f o r that vec to r s e t
476 if ( cell_tracker [ ii ] . at ( connPos )==1){
477 myfile << "Cell;" ;
478 for ( unsigned int i=1; i<edif_connections [ connPos ] . size ( ) ; i++){
479 myfile << edif_connections [ connPos ] . at (i ) << ";" ;
480 }
481 myfile << std : : endl ;
482 //After adding the Cel l , we add the r s t and c l k f o r the module

as long as i t i s not the l a s t one which w i l l always be
Blacktop

483 if ( connPos != edif_connections . size ( )−1){
484 myfile << "Net;rst;blacktop;BT0;rst;-1;" << edif_connections [

connPos ] . at (1 ) <<";"<< edif_connections [ connPos ] . at (2 ) <<"
;"<< edif_connections [ connPos ] . at ( edif_connections [ connPos
] . size ( )−4) << ";-1;" << std : : endl ;

485 // std : : cout << ”Net ; r s t ; b lacktop ;BT0 ; r s t ;−1;” <<
e d i f c o nn e c t i o n s [ connPos ] . at (1 ) <<”;”<< e d i f c o nn e c t i o n s [
connPos ] . at (2 ) <<”;” << e d i f c o nn e c t i o n s [ connPos ] . at (
e d i f c o nn e c t i o n s [ connPos ] . s i z e ( )−4) << ”;−1;” << std : : endl ;

486 myfile << "Net;clk;blacktop;BT0;clk;-1;" << edif_connections [
connPos ] . at (1 ) <<";"<< edif_connections [ connPos ] . at (2 ) <<"
;"<< edif_connections [ connPos ] . at ( edif_connections [ connPos
] . size ( )−1) << ";-1;" << std : : endl ;

487 }
488 }
489 }
490 for ( unsigned int i=1; i<loops_nets [ ii ] . size ( ) ; i++){
491 myfile << loops_nets [ ii ] . at (i ) << std : : endl ;
492 }
493 myfile . close ( ) ;
494

495 std : : string eth_inter = "" ; // d e f au l t e the rne t i n t e r f a c e
496 for ( unsigned int i=0; i<interfaces . size ( ) ; i++){
497 // std : : cout << ” found mac : ” << i n t e r f a c e s [ i ] . at (1 ) << std : : endl ;
498 if ( interfaces [ i ] . at (1 ) . find ( fpga_check ) != std : : string : : npos ) {
499 // std : : cout << ” us ing i n t e r f a c e : ” << i n t e r f a c e s [ i ] . at (2 ) <<

std : : endl ;
500 eth_inter = interfaces [ i ] . at (2 ) ; // s e t i n t e r f a c e based on

s e t t i n g s in GRC
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501 break ;
502 }
503 }
504

505 //Create e d i f
506 std : : string edif = "./edif " ; // even tua l l y the se s c r i p t s should

have a permanent l o c a t i o n
507 edif += edif_number ;
508 edif += " " ;
509 edif += eth_inter ;
510 status = system ( edif . c_str ( ) ) ;
511 std : : string this_checksum = "/tmp/checksum." ; // t h i s s t r i n g i s used

f o r opening the f i l e and then s t o r i n g the checksum f o r t h i s
e d i f

512 this_checksum += edif_number ;
513 std : : ifstream checksum_file ;
514 checksum_file . open ( this_checksum . c_str ( ) ) ;
515 std : : getline ( checksum_file , this_checksum ) ;
516 std : : getline ( checksum_file , this_mac ) ;
517 checksum_file . close ( ) ;
518 std : : string fpga_mac = fpga_check + ":00" ;
519

520 //Now we can read the fpga checksum from the fpga with fpga mac and
compare i t to the th is checksum on this mac :−)

521 std : : cout << "this checksum: " << this_checksum << std : : endl ;
522 std : : cout << "fpga mac: " << fpga_mac << std : : endl ;
523 std : : cout << "this mac: " << this_mac << std : : endl ;
524

525 char ∗ETH = NULL ;
526 ETH = ( char ∗) eth_inter . c_str ( ) ;
527 // I f the re are va l i d mac address va lue s and a checksum ( so the

paths are s e t up r i gh t )
528 if ( this_mac . size ( )>0 && fpga_mac . size ( )>0 && this_checksum . size ( )

>0){
529 // Star t by t e l l i n g the fpga where to send s t u f f
530 PacketCreator∗ pc = new PacketCreator ( ETH ) ;
531 // s e t de s t mac addr e s s usage ( s r c computer mac , fpga cur rent mac ,

newdest inat ion )
532 pc −> set_dest_mac_address ( this_mac , fpga_mac , this_mac ) ;
533 //Then get the Checksum
534 std : : string fpga_checksum = "" ;
535 fpga_checksum = pc −> get_checksum ( this_mac , fpga_mac ) ;
536

537 std : : cout << "the checksum on the board is: " << fpga_checksum <<
" and the flow-graph checksum is: " << this_checksum << std : :



Richard H. L. Stroop 89

endl ;
538 //The board i s a l r eady programmed with the r i g h t mac , dont do

anything !
539 if ( fpga_checksum == this_checksum ) {
540 std : : cout << "Skipping blacktop" << edif_number << " because

the board appears to already have the right bitstream on it.

" << std : : endl ;
541 }
542 else{
543 //RUN qFlow
544

545 std : : string qflow = "./qflow " ;
546 qflow += edif_number ;
547 status = system ( qflow . c_str ( ) ) ;
548 std : : string program = "./program blacktop" ;
549 program += edif_number ;
550 status = system ( program . c_str ( ) ) ;
551

552 //Then we have to s e t the checksum
553 pc −> set_checksum ( this_checksum , this_mac , fpga_mac ) ;
554 }
555

556 unsigned int i ;
557 for (i = 0 ; i < valid_macs . size ( ) ; i++){
558 if ( valid_macs [ i ] . substr ( 0 , 14 ) . compare ( fpga_check ) == 0) {
559 //Now we have to t e l l the board to send to us again because

we reprogrammed i t
560 pc −> set_dest_mac_address ( this_mac , valid_macs [ i ] ,

this_mac ) ;
561 valid_macs . erase ( valid_macs . begin ( )+i ) ;
562 break ;
563 }
564 }
565

566 //IF THERE IS AN FPGA TO FPGA se t DEST HERE
567

568 for (i = 0 ; i < src_macs . size ( ) ; i++){
569 if ( src_macs [ i ] . substr ( 0 , 14) . compare ( fpga_check ) == 0) {
570 pc −> set_dest_mac_address ( this_mac , src_macs [ i ] , dest_macs

[ i ] ) ;
571 src_macs . erase ( src_macs . begin ( )+i ) ;
572 dest_macs . erase ( dest_macs . begin ( )+i ) ;
573 break ;
574 }
575 }
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576

577 }
578

579 }//end o f fpga loop
580

581

582 //remove the o r i g i n a l c on s t ruc to r data
583 status = system ("sudo rm /tmp/edif.dat" ) ;
584

585 /∗}}}∗/
586 return true ;
587

588 }
589

590

591 #endif /∗ INCLUDED EDIF CONNECTOR H ∗/



Appendix C

edif

Figure C.1: Bash Script: edif

91



Appendix D

qflow

Figure D.1: Bash Script: qflow
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Appendix E

program

Figure E.1: Bash Script: program
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Appendix F

PacketCreator.h

Listing F.1: /gnuradio/gnuradio-core/src/lib/runtime/PacketCreator.h

1 // PacketCreator . h
2

3 #ifndef PACKETCREATORH
4 #define PACKETCREATORH
5

6 #include "RawEthernet.h"

7 #include <iostream>
8 #include <ctype . h>
9 #include <s t d i o . h>
10 #include <s t d l i b . h>
11 #include <uni s td . h>
12 #include <s t r i n g . h>
13 #include <sstream>
14

15 typedef unsigned char byte ;
16

17 class PacketCreator

18 {
19

20 private :
21 RawEthernet ∗enet ;
22 public :
23 PacketCreator ( char ∗ETH ) ;
24 ˜PacketCreator ( ) ;
25

26 void set_checksum ( byte data [ ] , int len , unsigned short protocol ,
byte byteSRC [ ] , byte byteDST [ ] ) ;

94
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27 void set_checksum ( std : : string checksum , std : : string SRC , std : : string
DST ) ;

28 void char_array_to_byte_array ( char∗ array1 , byte∗ data , int n ) ;
29 std : : string get_checksum ( std : : string SRC , std : : string DST ) ;
30

31 void set_dest_mac_address ( byte dst_mac_address_of_FPGA [ ] , int len ,
unsigned short protocol , byte byteSRC [ ] , byte byteDST [ ] ) ;

32 void set_dest_mac_address ( std : : string SRC , std : : string DST , std : :
string newDST ) ;

33 } ;
34

35

36 PacketCreator : : PacketCreator ( char ∗ETH )
37 {
38 this−> enet = new RawEthernet ( ETH ) ;
39 }
40

41

42 PacketCreator : : ˜ PacketCreator ( )
43 {
44 delete this−>enet ;
45 }
46

47 // takes a s t r i n g and adds co l ons between va lue s f o r checksum , to send
the checksum to the fpga

48 void PacketCreator : : set_checksum ( std : : string checksum , std : : string SRC

, std : : string DST ) {
49

50 char ∗tempSRC=new char [ SRC . size ( ) +1] ;
51 tempSRC [ SRC . size ( ) ]=0;
52 memcpy ( tempSRC , SRC . c_str ( ) , SRC . size ( ) ) ;
53 char ∗tempDST=new char [ DST . size ( ) +1] ;
54 tempDST [ DST . size ( ) ]=0;
55 memcpy ( tempDST , DST . c_str ( ) , DST . size ( ) ) ;
56 byte byteDST [ 6 ] ;
57 byte byteSRC [ 6 ] ;
58 char_array_to_byte_array ( tempSRC , byteSRC , 6) ;
59 char_array_to_byte_array ( tempDST , byteDST , 6) ;
60 unsigned short protocol = ( unsigned short ) 0xDEAD ;
61

62 int len = 4 ;
63 checksum . insert (2 , ":" ) ;
64 checksum . insert (5 , ":" ) ;
65 checksum . insert (8 , ":" ) ;
66 char ∗array1=new char [ checksum . size ( ) +1] ;
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67 array1 [ checksum . size ( ) ]=0;
68 memcpy ( array1 , checksum . c_str ( ) , checksum . size ( ) ) ;
69 byte checksum_p [ 4 ] ;
70 char_array_to_byte_array ( array1 , checksum_p , len ) ;
71 set_checksum ( checksum_p , len , protocol , byteSRC , byteDST ) ;
72 }
73

74

75 // takes a byte array conta in ing checksum and sends that checksum to the
fpga

76 void PacketCreator : : set_checksum ( byte checksum [ ] , int len , unsigned

short protocol , byte byteSRC [ ] , byte byteDST [ ] )
77 {
78 enet−>connect ( byteDST ) ;
79 byte command_pkt [ len + 2 ] ;
80 command_pkt [ 0 ] = 0 ;
81 command_pkt [ 1 ] = 5 ;
82 for ( int i = 2 ; i < len + 2 ; i++){
83 command_pkt [ i ] = checksum [ i−2] ;
84 }
85 enet −> sendData ( command_pkt , len + 2 , protocol , byteSRC ) ;
86 }
87

88 std : : string PacketCreator : : get_checksum ( std : : string SRC , std : : string
DST )

89 {
90 char ∗tempSRC=new char [ SRC . size ( ) +1] ;
91 tempSRC [ SRC . size ( ) ]=0;
92 memcpy ( tempSRC , SRC . c_str ( ) , SRC . size ( ) ) ;
93 char ∗tempDST=new char [ DST . size ( ) +1] ;
94 tempDST [ DST . size ( ) ]=0;
95 memcpy ( tempDST , DST . c_str ( ) , DST . size ( ) ) ;
96 byte byteDST [ 6 ] ;
97 byte byteSRC [ 6 ] ;
98 char_array_to_byte_array ( tempSRC , byteSRC , 6) ;
99 char_array_to_byte_array ( tempDST , byteDST , 6) ;

100

101 int len = 4 ;
102 enet−>connect ( byteDST ) ;
103 byte command_pkt [ 6 ] ;
104 command_pkt [ 0 ] = 64 ;
105 command_pkt [ 1 ] = 0 ;
106 enet−> sendData ( command_pkt , 2 , ( unsigned short ) 0xDEAD , byteSRC ) ;
107 byte data [ 4 ] ;
108
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109 enet−>requestData (len , data , byteSRC ) ;
110

111 char ∗ checksum = new char [ 8 ] ;
112 sprintf ( checksum , "%.2x%.2x%.2x%.2x" , data [ 0 ] , data [ 1 ] , data [ 2 ] , data

[ 3 ] ) ;
113 return ( std : : string ) checksum ;
114

115 }
116

117 // sends a packet to the fpga to s e t the d e s t i n a t i on o f packets sent
from the fpga

118 //byteDST i s d e s t i n a t i on o f packet sent from the host
119 // byte dst mac address of FPGA i s the d e s t i n a t i on being s e t on the fpga
120 // takes a byte array and sends that d e s t i n a t i o n add r e s s to the fpga
121 void PacketCreator : : set_dest_mac_address ( byte dst_mac_address_of_FPGA

[ ] , int len , unsigned short protocol , byte byteSRC [ ] , byte byteDST

[ ] )
122 {
123 enet−>connect ( byteDST ) ;
124 byte command_pkt [ len + 2 ] ;
125 command_pkt [ 0 ] = 0 ;
126 command_pkt [ 1 ] = 4 ;
127

128 for ( int i = 2 ; i < len + 2 ; i++){
129 command_pkt [ i ] = dst_mac_address_of_FPGA [ i−2] ;
130 }
131 enet −> sendData ( command_pkt , len + 2 , protocol , byteSRC ) ;
132

133

134 }
135

136 void PacketCreator : : set_dest_mac_address ( std : : string SRC , std : : string
DST , std : : string newDST )

137 {
138 char ∗tempSRC=new char [ SRC . size ( ) +1] ;
139 tempSRC [ SRC . size ( ) ]=0;
140 memcpy ( tempSRC , SRC . c_str ( ) , SRC . size ( ) ) ;
141 char ∗tempDST=new char [ DST . size ( ) +1] ;
142 tempDST [ DST . size ( ) ]=0;
143 memcpy ( tempDST , DST . c_str ( ) , DST . size ( ) ) ;
144 char ∗tempnewDST=new char [ newDST . size ( ) +1] ;
145 tempnewDST [ newDST . size ( ) ]=0;
146 memcpy ( tempnewDST , newDST . c_str ( ) , newDST . size ( ) ) ;
147 byte byteDST [ 6 ] ;
148 byte byteSRC [ 6 ] ;
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149 byte bytenewDST [ 6 ] ;
150 char_array_to_byte_array ( tempnewDST , bytenewDST , 6) ;
151 char_array_to_byte_array ( tempSRC , byteSRC , 6) ;
152 char_array_to_byte_array ( tempDST , byteDST , 6) ;
153 unsigned short protocol = ( unsigned short ) 0xDEAD ;
154

155 set_dest_mac_address ( bytenewDST , 6 , protocol , byteSRC , byteDST ) ;
156

157 }
158

159 // par s e s char array on co lon and takes f i r s t n va lue s and a s s i g n s them
to the f i r s t n bytes o f a byte array .

160 void PacketCreator : : char_array_to_byte_array ( char∗ array1 , byte∗ data ,
int n ) {

161 char∗ pch ;
162 int index = 0 ;
163 pch = strtok ( array1 , ":" ) ;
164 while ( pch != NULL && index < n )
165 {
166 int val = 0 ;
167 sscanf (pch , "%x" , &val ) ;
168 // p r i n t f (” pch = %s −> %u\n” , pch , va l ) ;
169 data [ index ] = ( unsigned char ) val ;
170 // p r i n t f (” checksum = %u\n” , data [ index ] ) ;
171 index++;
172 pch = strtok (NULL , ":" ) ;
173 }
174 }
175

176 #endif



Appendix G

RawEthernet.h

Listing G.1: /gnuradio/gnuradio-core/src/lib/runtime/RawEthernet.h

1 // RawEthernet . h
2

3 #ifndef RAWETHERNETH
4 #define RAWETHERNETH
5

6 #include <sys / socket . h>
7 #include <netpacket / packet . h>
8 #include <net / e the rne t . h>
9

10 #include <netpacket / packet . h>
11 #include <net / e the rne t . h>
12 #include <net /if . h>
13 #include <arpa/ i n e t . h>
14 #include <c s td io>
15 #include <iostream>
16 #include <c s t r i ng>
17 #include <errno . h>
18

19 #include <sys / types . h>
20 #include <sys / socket . h>
21

22 typedef unsigned char byte ;
23

24 class RawEthernet

25 {
26 private :
27 byte buffer [ 1 5 1 4 ] ;

99
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28 int socketid ;
29 struct sockaddr_ll socket_address ;
30

31 public :
32 RawEthernet ( char ∗ETH ) ;
33 ˜RawEthernet ( ) ;
34 bool connect ( byte addr [ ] ) ;
35 bool connect ( struct sockaddr_ll ∗socket_address ) ;
36 void disconnect ( void ) ;
37 bool sendData ( byte data [ ] , int len , unsigned short protocol , byte

src_mac [ ] ) ;
38 bool requestData ( int len , byte∗ data , byte∗ byteSRC ) ;
39 unsigned short protocol ;
40 char ∗ETH ;
41

42 } ;
43

44 using namespace std ;
45

46 RawEthernet : : RawEthernet ( char ∗ETH )
47 {
48 this−>protocol = 0xDEAD ;
49 this−>ETH = ETH ;
50 }
51

52 RawEthernet : : ˜ RawEthernet ( )
53 {
54

55 }
56

57 bool RawEthernet : : connect ( byte addr [ ] )
58 {
59

60 struct sockaddr_ll socket_address ;
61 socket_address . sll_family = AF_PACKET ;
62 socket_address . sll_protocol = 0 ; // htons (ETH P IP) ;
63 socket_address . sll_ifindex = if_nametoindex (this−>ETH ) ; // s e t to

e the rne t connect ion being used
64 socket_address . sll_hatype = 0 ; //ARPHRDETHER;
65 socket_address . sll_pkttype = 0 ; //PACKETOTHERHOST;
66 socket_address . sll_halen = ETH_ALEN ;
67

68 /∗MAC − begin ∗/
69 socket_address . sll_addr [ 0 ] = addr [ 0 ] ;
70 socket_address . sll_addr [ 1 ] = addr [ 1 ] ;
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71 socket_address . sll_addr [ 2 ] = addr [ 2 ] ;
72 socket_address . sll_addr [ 3 ] = addr [ 3 ] ;
73 socket_address . sll_addr [ 4 ] = addr [ 4 ] ;
74 socket_address . sll_addr [ 5 ] = addr [ 5 ] ;
75 /∗MAC − end∗/
76 socket_address . sll_addr [ 6 ] = 0x00 ; /∗not used ∗/
77 socket_address . sll_addr [ 7 ] = 0x00 ; /∗not used ∗/
78

79 return this−>connect(&socket_address ) ;
80 }
81

82 bool RawEthernet : : connect ( struct sockaddr_ll ∗socket_address )
83 {
84 this−>socketid = socket ( AF_PACKET , SOCK_RAW , htons ( ETH_P_ALL ) ) ;
85

86 if (this−>socketid < 0)
87 {
88 cout << "Socket Error!" << endl ;
89 perror ("socket" ) ;
90 return false ;
91 }
92 memcpy ( ( void ∗)&(this−>socket_address ) , socket_address , sizeof ( struct

sockaddr_ll ) ) ;
93 if ( bind (this−>socketid , ( struct sockaddr ∗) socket_address , sizeof (

struct sockaddr_ll ) )<0)
94 {
95 cout << "Binding Error!" << endl ;
96 perror ("bind" ) ;
97 return false ;
98 }
99 // cout << ”raw ethe rne t connected ” ;

100 return true ;
101 }
102

103 void RawEthernet : : disconnect ( )
104 {
105

106 }
107

108 bool RawEthernet : : sendData ( byte data [ ] , int len , unsigned short

protocol , byte src_mac [ ] )
109 {
110

111 memcpy ( ( void ∗)this−>buffer , ( void ∗) (this−>socket_address . sll_addr ) ,
ETH_ALEN ) ;
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112

113

114 memcpy ( ( void ∗) (this−>buffer+ETH_ALEN ) , ( void ∗) ( src_mac ) , ETH_ALEN ) ;
115

116 ∗ ( ( short ∗)&(this−>buffer [ ETH_ALEN+ETH_ALEN ] ) ) = htons ( protocol ) ;
117

118 memcpy ( ( void ∗) (this−>buffer+ETH_HLEN ) , ( void ∗)data , len ) ;
119

120 if ( len < ETH_DATA_LEN )
121 {
122 memset ( ( void ∗) (this−>buffer+ETH_HLEN+len ) , 0 , ETH_DATA_LEN−len ) ;
123 }
124

125 int send_result = sendto (this−>socketid , this−>buffer , ETH_FRAME_LEN ,
0 ,

126 ( struct sockaddr ∗)&(this−>socket_address ) , sizeof ( struct
sockaddr_ll ) ) ;

127

128 // cout << ” errno i s ” << errno ;
129 // cout << ” s e nd r e s u l t i s : ” ;
130 // cout << s e nd r e s u l t << ”\ t ” ;
131 if ( send_result == −1)
132 {
133 cout << "Send Errer!" << endl ;
134 perror ("sendto" ) ;
135 return false ;
136 }
137 return true ;
138 }
139

140 bool RawEthernet : : requestData ( int len , byte∗ data , byte∗ byteSRC )
141 {
142

143 struct timeval stTimeOut ;
144 // Timeout o f one second
145 stTimeOut . tv_sec = 3 ;
146 stTimeOut . tv_usec = 0 ;
147

148 fd_set stReadFDS ;
149

150 FD_ZERO(&stReadFDS ) ; // i n i t i a l i z e s s e t o f read so cke t s
151 FD_SET (this−>socketid , &stReadFDS ) ; // adds socke t to s e t o f read

so cke t s
152

153
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154

155 int t = select ( sizeof ( stReadFDS ) ∗8 , &stReadFDS , 0 , 0 , &stTimeOut ) ; //
checks s e t o f read so cke t s f o r data un t i l t imeout

156 if (t == −1) {
157 fprintf ( stderr , "Call to select() failed" ) ;
158 return false ;
159 }
160 else if (t == 0) {
161 printf ("Timeout occurred\n" ) ;
162 return false ;
163

164 }
165 else {
166 int length = recvfrom (this−>socketid , this−>buffer , ETH_FRAME_LEN

, 0 , NULL , NULL ) ;
167 if ( length == −1)
168 {
169 cout << "Receive Error!" << endl ;
170 return false ;
171 }
172

173 if ( ntohs (∗ ( ( short ∗)(&this−>buffer [ 1 2 ] ) ) ) != this−>protocol )
return false ;

174 if ( memcmp (this−> buffer , byteSRC , 6) != 0) return false ;
175 // cout << ”passed p ro to co l check\n ” ;
176 memcpy ( ( void ∗)data , ( void ∗) (this−>buffer+14) , len ) ;
177 return true ;
178 }
179

180

181 }
182

183 #endif
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