Scheduling of Load Balancing Across Single-
Channel Broadcast Networks

Emile Haddad

TR 93-37

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 20, 1993

Scheduling of Load Balancing
Across Single-Channel Broadcast Networks

Emile Haddad
Department of Computer Science
Virginia Polytechnic Institute and State University
2990 Telestar Court, Falls Church, VA 22042
E-mail: haddad@vtopus.cs.vt.edu Tel. (703) 698-6023.

Abstract

The problem of optimizing the balancing of processing load originating at the various sites of g
networked set of heterogeneous processors is examined. The interconnection and communication
architecture is non-specific, and the network is characterized only by is overall communication
capacity . The distributed load is assumed to be arbirrarily divisible with no particular affinity to
individual processors. The heterogeneous processors are characterized by their load execution
speeds. The objective of load redistribution is to minimize processing completion time using the
least allocation of communication bandwidsh for load transfer. The optimal amounts of load
exchange among the sending and receiving processors are derived. Front-end communication
sub-processors implement load transfer across the network concurrently with load execution by
the main processors. The load ransfer schedule is represented in terms of the time-varying load
transfer rates pertaining to each sending and receiving site. Absolute optimality can be
achieved only if synchronization delay of receiving processors is eliminated through proper real-
time scheduling of communicated load. The necessary and sufficient condition for the absence of
synchronization delay is derived. The minimum communication capacity needed for the optimal
load exchange is determined. The allocated minimum communication capacity of the network is
dynamically partitioned among the individual load transfer rates which are specified as piece-
wise constant functions of time that must be precisely adjusted at specific time instants to ensure
the desired optimality. Although not unique, the specified optimal load transfer schedule is
amenable to simple implementation. Practical implementation of the specified bandwidth
bartitioning may employ any appropriate scheme of communication multiplexing available on
the given network . An example with specific problem parameters is used to illustrate the
determination and implementation of the optimal load transfer schedule.

Key words: load balancing, divisible load, load redistribution, dynamic scheduling, execution
time minimization, communication delay, synchronization delay, resource allocation, bandwidth
partitioning, bandwidth minimization.

1. Introduction

The problem of load distribution and scheduling for performance enhancement in a
parallel processing environment has been an important area of active research over the past 15
years. In its most general formulation, this multifaceted problem is highly complex, presenting a
large number of modeling, analytical and computational aspects. One dominant issue is the
interplay of processing and communication, a persistently recurrent theme of parallel processing.
A significant modeling consideration is whether the load is discretely or continuously divisible
and the resulting implications on the analytical and computational techniques that can be used.
Several key aspects of the problem relate to the architecture of the parallel environment:
homogeneous versus heterogeneous processors, shared-memory versus message-passing
communication, the topology and protocols of the interconnection subsystem, etc. Other
relevant questions pertain to the relationship of the load to the system: do load entities have
special affinities to system entities, or where does the load originate in the multiple processor
system. The other key issues of the problem are usually formulated by the "problem solver”,
particularly in relationship to objectives and strategy. What aspects of performance is one
seeking to optimize through load distribution and scheduling: processing time, communication
cost, system utilization, or combinations thereof. And what approach or scheme is one to allow
in implementing the said optimization: is the optimal distribution to be carried out statically, i.e.
before processing starts, or dynamically, during load execution.

This paper deals with the problem of optimizing the scheduling of load redistribution for
a system of heterogeneous processors linked by an interconnection or communication network.
The load is assumed to be homogeneous, arbitrarily divisible, and generated in different amounts
at the various processing sites. This formulation is typical of many distributed real-time systems
that collect large amounts of repetitive physical data which have no specialized processing
requirements. The model can also be used in batch-systems where the load consists of massive

data files with small processable elements. The site-generated loads can be processed locally by

the host computer or transmitted across the network to be processed by other processors, It is
assumed that the communication capacity (bandwidth) of the network is a scarce or costly
resource that needs to be conserved. The limited communication bandwidth allocated for load
exchange incurs a deterministic transmission delay . Each site has a front-end communication
subprocessor that allows the main processor to execute concurrently with load migration across
the network. The available communication bandwidth can be dynamically partitioned among the
various communication sites. The objective is to minimize the overall processing time by
determining the amounts, sources, destinations, bandwidth partitioning, and exact timing of the
load redistribution schedule.

Analogous and related types of problems have been investigated in the literature. The
earlier research efforts were concerned with discrete or indivisible loads [6]-[13]. More recent
investigations have dealt with arbitrarily divisible loads which consist of large amounts of
homogeneous data whose elements require identical processing needs. Loads of this nature
typically arise in real time applications, such as radar tracking, image processing, and many types
of other sensor-driven systems. In [1], a linear set of processors daisy-chained by dedicated
communication links share a divisible total load originating at one end for execution in minimum
time. In {2], the same problem is examined for a load originating at the root of a tree network of
processors with or without front-ends. In [3], homogeneous processors share a load transmitted
from one site across a single-channel network. Similar considerations are examined in [4] within
the context of the problem of fusion of data from distributed sensors, which has been receiving
increasing attention. In [5], static optimization of job execution time is examined for batched

divisible loads where the system processors exhibit arbitrary execution time-load characteristics.

2. Problem Formulation

Given a system comprising a set of heterogeneous processor interconnected by a

communication network , as shown in the Figure 1. A subset {P,} of the processors, indexed by

i=1,2,...n, is engaged in the generation and processing of shared load:

{P}={Py, Pp..., P}
Each processor P; is interfaced with the network via a front-end communication processor C;.
The generated load at each site is accumulated and stored. Periodically, or at certain specified
time instants, the processing of theaccumulated load is initiated by pre-empting the processors
{P;} for that purpose. Figure 1 shows the status at one such instant t = Q. The load existing at P;
is represented by the quantity x; measured in some convenient unit, which we shall refer to
henceforth as load unit. Let X denote the total load existing at time t =0 on all processors:
X=x1+x+ ... Xp

We assume that the load is homogeneous and arbitrarily divisible, such that any fraction of the
total load X can be transferred and executed on any member of the processors { P;}. We assume
that the execution time of x; on any processor is dircctly proportional to its magnitude, and the
proportionality constant is indicative of the processor speed. Accordingly, we shall characterize
Xi as a continuous variable. This modeling assumption would, for example, be adequate for
cases where the load is generated by a distributed real-time process and consists of large amounts
of the same type of data, such as sensor data, collected at the various sites for processing by the
system. Each processor P; is characterized by its speed s;> measured in load units per second ,
representing the rate with which it can process any amount of load assigned to it for execution. If
the load assigned to P; is L load units, the execution time would be L/s; seconds. If each
processor P; executes the entire load it holds at t = 0 locally, such that no load is exchanged
across the network, then the execution time of P; would be Xyfs;:

x/s; = T; = execution time of processor P; (no load transfer) (1)

For convenience, and for reasons that will become apparent later, we shall assume that the
processors {P;} are indexed (or re-indexed) such that corresponding values of {T;} form a
nondecreasing sequence:

T; €T, - ST,)
On the other hand, if we allow load exchange (balancing) across the network, then each front-end

C; may send or transmit some of the load, existing at its site at t = 0, to be executed by

Communication Network

Front-end
Site i
P o Processor 9 P
X Xj

Speed of processor at sitei = s, load units/second , Load originating at sitei = x; load units

Total load to be executed = X =X;+ X+ ...+ Xp

Figure 1. The distributed load at time t = 0

Allocated communication bandwidth = B load units/second
Receiving Processors : {pg > B p Sending Processors : { P}
i

M T
Z =B X, 50=B
lrl(f) l’k(‘) A Trm(t) Trjm Trna)
d, dx dn dm+1 d; dy

X;+d, %= Xyt dy Xpt dn Xne1” At X3= xJ - dJ *n" dy
L T. n
d = D .= . .=
é « a=f road j=§+1d" D

Figure 2. The run-time load transfer for 0< t <T,

processors of other sites, or may receive additional load from other sites to be executed by its
local processor. The communication of the load transfer over the network takes place
concurrently with load execution at the various sites, and incurs an amount of communication
delay proportional to the amount of transferred load (transmission time). This exchange is
represented in Figure 2, where the receiving sites are indexed by k=1,2,.. m; and the sending
sites are indexed by j = m+, m+2, .. n. Each Py receives an additional load of dy for a total
load to be executed of x'y = x; +dy . Each P; executes a total load of x'; = x; - dj, with the
excess load of d; sent by its front-end across the network to { Pr}. The total load transferred
across the network is denoted by D:
D=d1+d2+...+dm=dm+1+dm+2+...+dn 3)
In order to service this load transfer, a certain amount of communication capacity (bandwidth) of
the network must be allocated to the processors {P;} starting at t = 0 until the transfer is
completed. Let W denote the total communication capacity (or transfer rate) of the network
measured in load units per second. Let B < W represent the portion of the communication
bandwidth allocated at t = 0 to the processors {P;} for the purpose of servicing the balancing
load transfer:
Communication bandwidth allocated for load balancing = B load units per second
Thus, the time needed to complete the transfer of the D load uni_ts from processors { Pj} to
Processors {Pk} across the network , i.e. the communication completion time , is given by
Communication completion time = T.=D/B (5)
where we assume that the allocated communication bandwidth B is fully utilized for load transfer
during the communication interval [0, T¢], i.e. the network is carrying load transfer from
processors {P;} to processors {Py} at the rate of B load units per second for the entire period.
Figure 2 shows the variables rj(t) and r, (t) which represent the load transfer rates (measured in
load units per second) corresponding to real-time load flow from the sites of processors {Pj}

and into the sites of processors {Py} respectively. It is important to note that these parameters

are represented as functions of time . We shall demonstrate in the next section that the optimal

load balancing is achieved by specifying the precise real-time scheduling of the load flow
from/into the various system sites, i.e. by specifying the exact expressions of rj(t) and 1, (1) as
functions of time over the communication interval [0, T,] . We shall require that
rj(t) 20, 20 forall te [0, Tc]

This requirement implies that each P; will be designated as either a sending or a receiving
processor for the entire duration of load transfer. Allowing the same processor to both send and
receive loads would obviously be counterproductive since our problem formulation models the
load as being arbitrarily divisible and homogeneous, with no special affinity to any particular
processor. The scheduling of load communication is controlled and executed by the front-end
processors, and proceeds concurrently with load execution by the host processors at the various
system sites. As a preview of the nature of the functions 1, (t), the reader is referred to Figure 3,
which depicts the time variation of these functions for a specific example to be discussed later. In
effect, these functions represent the dynamic algorithm for optimizing load migration in real-

time, concurrently with execution. For the time being, note that Figure 2 indicates that the
summation of load flow rates from the sites of {P;} must be equal to the summation of load flow
rates into the sites of {Py }, and both these summations are equal to B, the load transfer rate
(bandwidth) on the network allocated for the process of load balancing:

() + () +- -+ 1 () = Tnet(+ T (0 +- o+ r() =B (6)
We shall show later that this general formulation of the multiplexing of transmitted load rates
and de-multiplexing of received load rates is necessary if absolute optimality of load execution is
to be achieved. The partitioning of the total communication bandwidth B allocated for load

transfer among the individual transfer rates {51} can be implemented using any appropriate

scheme available for the system, such as time-division or frequency-division multiplexing.

Note also that the definite integral of r;(t) over the time interval [0, T.] of load transfer

represents the total amount of load dj transferred form/to the corresponding processor' site:
T,
d; = J o Tt @

We shall use the notation d;(t) to represent the total amount of load transferred from/to

processor P up to time t, viz. over the interval [0,] :
40 = | ‘s a . telTd @)

Note that in the time modeling of the load balancing process as presented above, we have
ignored any consideration of propagation delay. We assume that propagation time across the
network is negligible compared to load transmission time and to the duration of communication
completion time T,.

The remainder of the paper is organized as follows: Section 3 examines the problem of
synchronization delay of a receiving processor Py and derives the necessary and sufficient
condition for its existence in terms of X, S¢ , and 1 (t). Section 4 derives the optimal
redistribution of the given load to minimize Job completion time under the assumption that the
receiving processors experience no synchronization idleness. The sending and the receiving
processors are identified and the corresponding amounts of exchanged load are determined. In
Section 5, a time schedule for implementing the optimal redistribution across the network, using
minimum communication bandwidth, is specified in terms of piece-wise constant load transfer
rate functions. Section 6 presents an example to illustrate the application of the various results.
The paper concludes with a discussion of the basic issues related to implementing the optimal

load balancing scheme under specific network communication architectures.

3. Synchronization Delay

An important aspect of the real-time modeling of load transfer, as described above, is the
possibility that any member of the receiving processors { Py} might experience synchronization
delay or forced idleness due to a temporary depletion of load. Note that the sending processors
{Pj} do not experience synchronization delay. Such a processor starts executing its new load

allocation x'; attimet=0 and continues executing without interruption until completion time

T'j =x'/ s;, constantly executing load at its nominal (maximum) speed sj. Let x;(t) denote the
total remaining load existing on processor P, attimet:
Un-executed load on P, attime v = x() = x'j -5t te [0, T'J-]

Note that x;(t) does not include any amount of the excess load d; = X; - x; which is being
concurrently transmitted across the network by the front-end processor at the rate specified by
1j(t). Note that x;(t) > 0 for all t during the execution interval except at the completion instant T'j
where xj(T'j) = 0. Things are not so simple when we examine the corresponding considerations
for a receiving processor Py. Again, Let xi(t) denote the total load existing on processor P, at
timet :

Un-executed load on Py attime t = xp(t) 2 0 te [0, T]
where T'k is the execution completion time. The expression for xy(t) in terms of the given
parameters is

X® = x + d(t) - e (t) = x; + ,f Ot n(dt - e D, te [0,Ty] (9)

where

ey (t) = rotal load executed by Py during the interval [0, t] (10)
This simply states that the net load Xg(t) existing on Py at time t is equal to the initial load Xi plus
the extra load dy (V) received during the time interval {0, t] minus the total load €, (t) executed by
the processor during the same interval. The difficulty arises when we attempt to determine an
expression for e (t). We are tempted to write, as before,

g lt) = st ? (11)
which would be true only if the processor has been continuously executing for the entire period
[0, 1] at its nominal speed Sx. This would be the case if the processor was not idled or slowed
down for any length of time due to total depletion of existing load xi(t) coupled with a temporary
shortage of replenishment from incoming flow of extra load intended for the processor, in which
case e,(t) would be less than St . Thus

e () = sit, i xp(a) = xp+ dfa) - g (@) >0 forall e [0,1)

In general, when the above condition is not satisfied, the equality of €, (t) to st is not
guaranteed, and we should write

elt) < syt forall te [0, T}] (12)
To account for the fact that ex(t) may be less than sit, we introduce the parameter Ty(t) 20

defined as

T (t) t - e (t)sy = Effective total idle time of Py during [0, t]

&) = st - () = st - (0], %20 (13)
The last equality states that during the time period [0, t] the processor has, in effect, been
executing for an aggregate time equal to t - k(1) and idle for an aggregate time equal to Ti(D).
If the physical operation of the processor is such that its execution speed sy remains constant,
then the value of T, (t) would represent the actual total of the time periods it was experiencing
synchronization delay during [0,] . In practical implementations, this behavior might occur in
load transfer schemes where the load is packetized and the receiving processor is allowed to
process a packet only after its reception is completed. If the processor runs out of existing load
(ie. x(t) =0) and the packet inflow rate is less than the execution rate (i.e. n(t) < s), then
the processor will alternate between periods of packet execution and periods of idleness awaiting
the completion of the next packet transfer. Alternatively, we may equivalently model the same
effects by introducing the parameter sk(t) < s, which measures the effecrive average speed of
the processor over the interval [0, t]:

k() = e (Dt = Effective average execution speed of Py during [0, t]

e(t) = st , 5 () < s (14)
Equating the expressions for ey {t) from the two representations in (13) and (14), we have the
following relationship between the parameters Ty(t) and sy (t) :

si(t) =si [1 - 7 (/)
Returning to the expression of Xk(t) in (9) and substituting for €, (t) from (13), we obtain;
(M) = x + I Ot n(de - et) = xp + j Ot R dt - s ft - ()]

xg(t) = Xk + J.Otl'k(t) dt - Skt + sTR() (15)

For a given processor Py , the magnitude of cumulative effective idle time Tk(t) 2 0 at any given t
depends on the relative magnitudes of three parameters: the amount of initial load X - the speed
of load execution s, , and the time schedule of load delivery over [0, t], as specified by the load
transfer rate function ry(t). The following Assertion states a nécessary and sufficient condition
for a receiving processor P, not to experience any synchronization delay during the
communication interval [0, T¢]. The absence of synchronization delay is essential for achieving
optimal load transfer schedules which minimize the processing completion time of the given
load, as we demonstrate in a subsequent section. The characterization of the absence of
synchronization delay, expressed in the Assertion in terms of the parameters X, S, and n(t),
will be used to verify that a specified load transfer schedule entails no such delays for all the
receiving processors, viz. T, (t) = 0 for all t and all k.
Assertion 1: The necessary and sufficient condition Jor a receiving processor Py to
experience no synchronization delay during the communication interval [0, Tclis thar
&t = x + jot n®de - st 2 0 Jorall te [0, T,] (16)

Proof: Sufficiency : Given (16) is satisfied, we prove that T (t) = O forallte [0, T,]. Note
that since T(t) represents the cumulative idleness from time O to time t, we have T () =0 and
Tx(t) is a nondecreasing function of t for all t > 0. This implies that either 7 (t) =0forallt>0
which proves the sufficiency of the condition, or that there exists a t; 2 0 such that

w(®) =0 - foralite [0, t;]

w(® >0 forallt>t;
This implies that Py experienced cumulative synchronization delay over the interval (11, t]
equal to T(t) > 0. This in turn implies that there must have been at least one instant the(ty, t]
at which the processor load x;(t), as expressed in (15) was totally depleted:

xk(tp) =ge(t) + slty) = 0
But this is impossible since by hypothesis 8k(t2) 2 0 and T (t) > 0. Hence, the only valid

possibility is T(t) =0 forall t 2 0.

10

Necessity : given Ty(t) =0 for all t 2 0, we prove that g, (t) 2 Oforallte [0, T,). Assume , to
the contrary, that gi(t) <0 for some t' € [0, T,.). Since Ti(t") = 0, we obtain
X(t) = g (t) + sehet) = gt) < 0

which is absurd since x(t') is the un-executed load on Py at time t', which can not be negative.

The condition stated in (16) will be used to verify that the optimal load transfer schedule,
discussed in a subsequent section, does not entail synchronization delay for any of the receiving

processors {P,}.
4. Optimal Load Redistribution

Consider that the total initial load X = X;x; existing on all processors at t = 0 is to be
redistributed in order to minimize execution time, such that processor P, would execute a new
value x'; of total load instead of the load x; initially available at its site. We must have

zix'i= Xp+Xy +o-0#xj+ o +x, = X (17
The load migration implied by this redistribution is to be carried across the communication
network starting at time t=0. If x; >x; , then processor P; would receive an additional load
of xj -x =d;.If X} <x;, then processor P; would send the excess load of x; -x; =d;. Let

T'i denote new value of completion time for processor P; executing the new value of load X',

which can be expressed as

Completion timeof P; = T;(x},%) = xi/s; + T (18)
Executiontime of P; = x/s (19)
Effective total idle time of P; during [0,Ti] = 1, = 1(T}) 20 (20)

For a sending processor P, , 7;=0. Fora receiving processor P, , 7, might have a nonzero

positive value which depends on the function r (t) specifying the rate of load transfer to P, as

elaborated in the preceding section. We define the job completion time, denoted by T’ as the

completion time of the processor which finishes execution last, i.e.

11

Job completionime = T = max; { T} = max; {(x/s;) + 7;} (21)
The optimization objective is to minimize T by choosing an optimal load redistribution,
represented by the set of load values x' = {x}; and specifying a real-time load transfer
schedule, represented by the set of transfer rate functions r = [ri(t)}. Expressing the dependence
of T on x' andr by writing T (x', 1), the minimization is stated as:

Tmin = ming T (x, 1)
The following assertion establishes an absolute lower bound T on the value of T .
Assertion 2 : For any load redistribution x' = {x;} with X x';, = X, the job

completion time T cannot be less than T = X/S:

T 2T=X/S
S = Zisi =sj+sp+ -+ +5,
Proof: Assume, to the contrary, that T < X/S and réach a contradiction. From (21) we have
T = max; { Tj} = max, {(x/5)+ 1} <X/S (22)
This implies
X'i/sp)+ 1 <X/S, for all i

From (20) the synchronization delay is non-negative, 1; = 0, hence
(x'i/s;) < X/§, for all i
x < sX/S, for all i
Taking the summation of both sides over all i, we obtain
Tixj < ZisX/S= (X/S)Zisi =SX/S = X

X < X, a contradiction.

The minimum value of T', namely T min’ Must therefore be no less than the lower bound T:
Tmin 2 T= X/S (23)
The following assertion indicates how the load redistribution x' can be specified to achieve a job

completion time equal to T-

12

Assertion 3: If the load is redistributed such that
Xj = sT= sX/S, foralli (24)

i
and the load transfer schedule r= {5(t)} can be specified such that no processor
experiences synchronization delay, then the redistribution is optimal , with all processors
exhibiting identical completion times

T=T and T;=T foralli | (25)
Proof: First verify that the summation of values of load redistribution specified in (24) is X:
Xy = $X/8, foralli
Zx =2 5X/8 =8X/S =X
Next verify that if t; =0 forall i, then all processors have the same completion time:
T = &/s)+1 = xifs; = 5, X/Ss; =X/S =T» foralli
Hence, T = max,{T;} =T
It should be emphasized that the attainment of the optimal completion time T through the
load redistribution x'; = 5;X/S , as specified by the assertion, is contingent upon the precise
determination of the load transfer rate functions {ri(v)} that would deliver the exact amounts of
migrating loads from the sending processors {P;} to the receiving processors {Py} with no
synchronization delays experienced by the latter. Before explaining how this can be achieved,
we must identify the sets of sending processors {P;} and receiving processors {Py) and the
corresponding exact amounts of load that must be transferred from the first set to the second.
This is presented in the following assertion. Recall from (1) and (2) that the given processors
{P;} are indexed, for convenience, according to the nondecreasing values of the parameters T;
T; = x;fs; (26)

T <T,£---<T @n

n

The identification of {P;} and {Py} is obtained by simply comparing each T; to T.

Assertion 4: If T, >T then X; > Xy and excess load is sent by Pjin the amount of
di = x; - X = % - (5X/S) (28)

13

If T,<T then x;<x'| and additional load is received by P, in the amount of

4 = x; - x = (sX/5) - x, (29)
The sets {Py} and {P,} correspond to k=1,2,--m and j=m+,m+2, - - - n such that
Ty ST, S €Ty € - STuST< Ty STy ST € - < T, (30)
where m=max {i:T;< T}

The total amount of load D transferred across the network is
D=d +dy+... +dp = dms1 + dms2 +... + dp (31D
The communication completion time , viz. the load transfer completion time, is
T. = D/B (32)
Note thatif T; =T then x'; =x; andd; =0, in which case we qualify P; as a "receiving"

processor with “zero load transfer”.

5. Optimal Scheduling of Load Transfer

Having specified how the load should be optimally redistributed, we turn our attention to
the task of specifying how the load transfer should be scheduled in real-time in order to ensure

the requirements mandated by Assertions 2 - 4 above. We do this by specifying the set of time

functions r = {r,(t)} representing the rates of load transfer for each processor over the
communication interval {0, T.]. These requirements for optimal redistribution and scheduling
are expressed as conditions on the time functions {r;(t)} as follows:
Condition 1 : A given load transfer schedule r = {r;(} must exhibit a finite
communication completion time T, beyond which all load transfer rates 1;(t) are zero:
r{t) =0 forall t >T, all i (33)
T, =min {t,: r(t)=0 forallt >t all i}
Condition 2 : At all times during the communication interval [0, T.], the aggregate
rate of load transfer (sending or receiving) must be equal to the communication

bandwidth B allocated on the network for servicing the load transfer :

14

Zj () = B = 2 n® , forall te[0, Tl (34)
Condition 3 : The total amount of load dj transmitted from a sending processor and the
total amount of load d; delivered to a receiving processor during the communication
interval [0, T,], as expressed in (7), must be equal to the optimal values stated in (28)
and (29):
[o = x - sxm | e var - G X/S) - %, (35)
0]] J 0
Condition 4 : Non of the receiving processors should experience synchronization
idleness at any time during the communication interval [0, T.], which is equivalent to the
necessary and sufficient condition stated in (16) of Assertion 1:
I Ot Mdt = st -xp forall te [0, T} (36)
Any given r* = {r,(t)} that satisfies the above conditions is said to be an optimal dynamic
load transfer schedule , and results in the minimum job execution time T = X/S, as stated in
Assertions 2 - 4. The characterization of such schedules as "dynamic" is to reflect the fact that
load transfer across the network takes place concurrently with load execution by the processors.
We shall shortly show how such schedules can be specified with concrete simple expressions for
the functions r;(t). We first demonstrate that the above requirements for an optimal load transfer
schedule imply that the bandwidth B, allocated on the network for load transfer, should not be
less than a certain minimum value R to be specified. In other words, an optimal schedule r* is
not feasible or realizable unless B 2 R.
Assertion 5: For an optimal schedule r* = {t,(0)} 10 be feasible, the communication
bandwidth B allocated for load transfer must be greater or equal to R;
B2R = (I2Zls - (8/X)x;! (37)
B=R , when T, =T=X/§ (38)
Proof: Given an optimal load transfer schedule r* = {r;(t)} which satisfies conditions 1-4
above, we prove that the inequality in (37) must be true. From (34) in condition 2, we have
2B = Zj I + Zyn@® , forall te[0,T,]

Integrating both sides with respect to t over the interval [0, T.], we obtain

15

] OTczB dt = X, J oTcrj(t) dt + zk,f OTcrk(t) dt
Substituting, from (35) in condition 3, the expressions for the integrals, we obtain
BT, = X x;- (sX/S) + Iy (5. X/S)-x = S 1(sX/S)-x1 (39)
From (36) in condition 4 witht = T, we have
IOT"rk(x) dt 2 5T, -x
Substituting, from (35) in condition 3, the expression for the integral, we obtain
() X/8) - xy 2 5T, - %
T, < X/S (40)
This inequality states that, in an optimal schedule r*, the load transfer (communication)
completion time T should not exceed the minimum job completion time T = X/S , which is
intuitively expected if no synchronization delay is to occur. Substituting the last inequality into
(39), we obtain the required inequality in (37)
2BX/S =z E; 1 (sX/8) - x;l
B 2 (12)Z1s - (/%) x;1 =R (41)
Note that the equality in (41) holds when the equality in (40) holds:
B = (2)Zls - (SX)x;l =R, when T, = X/S (42)
In applications where the network communication capacity is a scarce or costly resource, it
would be advantageous to achieve bandwidth conservation by seeking optimal load transfer
schedules r" that use the minimum bandwidth allocation , namely B = R. Let r**= {r;®}
denote such a schedule, which satisfies conditions 1-4 with the additional constraint of B=Ror
equivalently T, = X/S =T. We refer to such a schedule as a minimal-bandwidth optimal load

transfer schedule. The following Theorem formulates a simple specification for such a schedule

in terms of the various given problem parameters. For each sending processor P,, r(H is

specified as a constant function over the interval [0, T]. For each receiving processor P,, r(0

is specified as a piece-wise constant function over the interval [0, T], asillustrated in Figure 3,

with its values changing in a step-wise fashion at certain time instants {tp} whose values are

16

computed by a simple recursive relationship. The parameters used in the statement of the

Theorem are recapitulated below for the convenience of the reader.

x; = initial load of i-th processor, X = Z, x, = total load to be processed

2, s, = aggregate speed of processors

s; = speed of i-th processor, S

1

X;/s; = completion time of i-th processor if no load transfer is invoked

T

T = X/S = lower bound on job completion time = optimal job completion time
R = (/X1 - (8/X)x;| = minimal bandwidth allocated for optimal load transfer
k

= index of receiving processors = 1,2, ..., m. m=max {i: T, < T}
j = index of sending processors = m+1, m+2, ..., n. n = number of processors
Theorem

The following specification of the load transfer rate functions {ri(t)} over the
communication interval [0, T.]1,withB=Ragnd T. =T =X/S, represents a minimal-

bandwidth optimal load transfer schedule consisting of piece-wise constant functions .
Forall i, we require t(ty=0 forall t >T, and

1. For a sending processor P,, with j= m+l, m+2,..., n, :

(M = §/X) X; - 8 forall t € [0, T] (43)
2. For areceiving processor P,withk=12,..., m:
Let o} ={1u=01,.. .ty 44)
tp+1=tp+(Tp+1-Tp)Sp/R, p=12,...,m. (45)
where Sp = S|+ sy +rct sy,

and Ty =xp/s, except for Ty, which is locally re-defined in (45) as
Ty = T (46)
then =0 forall te (tp, tp+1), p=12,...,k-1. an
= (5x/SpR forall te (4, ty1), p=kk+l,..., m. (48)

17

Proof: We now demonstrate the optimality of the schedule r specified in the Theorem by
verifying that its functions {ri(t)} satisfy conditions 1 - 4 stated in (33) - (36), with B =R and
T, =T =X/S, representing the requirement of minimal bandwidth allocation for load transfer.
Condition I : Since foralli, r{) =0 forall t > T, the condition is satisfied.
Condition 2 : For the sending processors we have, forall te [G,T],
Ej 5 = Zj (8/X) Xj-§ = (X/S)Z',j x;-5; X/S
Recalling from (28), (31), and (32) that x;-5;X/S = g, Zj dj =D, and D/T =B, we obtain
Z}- 1) = (I/T)Zj dj = D/T =B=R
For the sending processors we have, foranyt e (tp» tpe1)s Dy substituting the expressions for
1(t) from (47) and (48) and noting that () =0 forall k>p:
T = 10 + 1) +-- -+ () = 51/SpR + (sp/SpR +- - + (sp/SpR
=R(sy +5s90 +:--+ sp)Sp = RSp/§, = R

Condition 3 : For a sending processor, we have |

j: r(dt = j; [(S/X) x; - sldt = TUS/X)x; - 5]

i

XN BX)x; - 8] = x;- (s;X/8)
For a receiving processor, since 1 (1) is piece-wise constant over the intervals (tp+1 - §p), the
integral may be expressed as a ciiscrete summation:

[nwa = ,,% 1 Ltpy1 -]
Substituting the expressions for 1 (t) and | tpe1 - Ip | from (47) , (48) and (45), and noting that

1, (t) = 0 for p <k, we obtain

T m m
IO nHde = pgf: sk(Tp+1-Tp) = s¢ p§k (Tps1-Tp) =8¢ (T)y To

Substituting from (46) Tp,,; = T, we obtain the required result
T
jo ROdt = s(T-Tp) = (5X/S) - %

Condlition 4 : This condition pertains only to the receiving processors. We need to verify that
[ndt > st-x forall te[0,T]

The validity of this condition for the functions 1,(t) of the Theorem is given in the Appendix.

18

6. Example

Consider the example with the numerical values shown in Table 1 below. The calculated
value of the minimum job completion time, T = 50, lies between T4 and Ts, which implies m=4.
Thus the receiving processors are the first four and the sending processors are the remaining two,
as indicated in Table 2. The minimal communication bandwidth that should be allocated on the
network to service the optimal redistribution is

R=1/2)% 1 s - (8/X)x 1 = 121X, ITs; - x; 1 = (12DZ; x| - x;1= (12T d; =200/100 =2
The minimal-bandwidth optimal load transfer schedule for the receiving processors is shown in

Table 3 and also in Figure 3. For the sending processors, we have r5(t) = 1.1 and rg(t) = 0.9,

TABLE 1. Parameters of the example

P; Py P, P, P, P; Pg Sum

X 14 36 30 20 80 70 X =250

8 1.0 1.5 1.0 0.5 0.5 0.5 $=5.0
T, = x/s; 14 24 30 40 160 140 T=X/8=50

TABLE 2. Optimal load redistribution

X 14 36 30 20 80 70
Xi=5T 50 75 50 25 25 25
di=ix;-xd 36 39 20 5 55 45
(P} Py Py Ps Py
{P} Ps Pg

19

TABLE 3. Optimal load transfer schedule for the receiving processors

tp t;=0 th=35 t3=125 t4=30 t=T=50 JOTrg(t)dt d;
[tpste] (0,51 [5,12.5] [125,30] [30,50]
it 2 4/5 417 1/2 36 36
ra(t) 0 6/5 6/7 3/4 39 39
r3(t) 0 0 a1 12 20 20
14(t) 0 0 0 1/4 5 5
Sum R=2 R=2 R=2 R=2 D=100 D=100

6. Implementation Issues

We now examine the basic issues involved in implementing the general result we have
derived for the optimal scheduling of divisible load redistribution, which can be recapitulated as
follows: given the initial vatues of distributed loads {x;} and the values of processor speeds { 81,
one can specify an optimal runtime schedule {r;(t)} of concurrent piece-wise constant load
transfer rates that minimizes job completion time while using the least amount of communication
capacity. Thus, there are two obvious aspects to the optimality of the prescribed schedule: its
minimization of completion time and communication bandwidth. There is yet a third aspect that
needs further elaboration: its simplicity of speciﬁcatioh and implementation in terms of piece-
wise constant transfer rates {r;(t)}. We should emphasize that such an optimal schedule is not
unique, in the sense that there are other ways of specifying {r;(t)} for achieving minimum time
and bandwidth. This can be easily verified with specific examples. Refer again to the example
of the previous section, and instead of the constant functions r5(t) = 1.1 and rg(t) = 0.9 over the
communication interval [0, 501, we can verify that the following linear transfer rate functions

for the sending processors satisfy conditions 1-3, and are therefore also optimal:

20

t1=0

I'I(t) t2=5 t|3= 12.5 [:‘1= 30 te=T=50
Load : 1 :
tranfer
rate i Zrk(t) = R=2 forallt i

. i 1
f,ﬁagegﬁ;ﬁ) ! shaded area = total load delivered |
:] to processor P I
l i
1 1 i
i]
- 1
1/2 .
5 01 15 20 . 0
L® 4 . , ! .
1 I 1 1
1 6!'5 |] :
! !
' |

|
L®) :‘
|
1
1. :
:
]
]
L]
1
0o . O
: 1 1 1
1 i H 1
1 1] :
LM} ! ! | :
: : | :
1 : : : :
i | : |
1 I 1 I
1] 1]
1
i : : 1/4 .
o' o0 | 0
t1=0 t2=5 t3=12.5

Figure 3. Minimal-bandwidth optimal load transfer schedule of the example

s)=06 + t/50 , ret)=14 - t/50 t €0, 50]

rs®)+ =2 , Jlrswde=55 , [rgdt = 45
One can plausibly assume that, in general, using constant rates over specified time intervals
results in simpler implementations of the communication protocol.

Recall that in our formulation of the problem at hand we have characterized the communication
network only by its transmission capacity or bandwidth. The optimal load balancing scheme we
have derived is therefore applicable to any communication architecture and is independent of the
topology or protocols of the underlying network. We only require that the network provide the
minimal transfer rate R, with the capability of multiplexing the specified transmission rates from
the sending processors into R, and de-multiplexing R into the specified rates for the receiving
processors, as implied by the requirement of our scheme:

Zj rj(t) =R = X, ()
Note also that, since the divisible load is homogeneous, its elements have no distinct affinity to
any particular processor, and there is no need to control the routing of the transfer from any
specific source-processor to any specific destination-processor. In networks with communication
architectures that provide frequency-division-multiplexing (FDM) protocols, the load transfer

rates r;(t) can be directly implemented as frequency bandwidths of data channels. In networks

with communication architectures that provide packet switching with time-division-multiplexing
(TDM) protocols, the load transfer rates ri(t) can simulated by allocating to each processor a
time-division channel corresponding to a nonuniform (but cyclic) pattern of packet time-slots
on the medium. This is illustrated in Figure 4 for the receiving load transfer schedule of the
example, in which we have assumed, for convenience, that each load unit is transmitted as one
packet. Such a scheme can be efficiently implemented as a distributed control protocol
(algorithm) with little overhead. At the time of invoking the load balancing algorithm, each
processor informs all other processors of the value of its initial load x; , which enables each
processor to compute the optimal load transfer schedule and determine its status as a sending or

receiving processor and the identity of the exact packets (by packet sequence number) it should

21

one packet = one load unit == === cyclic time-division pattern
packet time-slot = 0.5 seconds
Time 0 5 12.5

Packet number | 1,23 1 4,5,6,7,8,9,10{11,12,13, 14/15 16 17 18,19,20,21,22,23, 24,25}
I 1 1 1 i 1 T

) [} I I i 1 1 I I | 1 I § 1 1 I I |] 1

:ﬁfgggf I 1 11 1 111 1 1'1 21 221212212712 »s¢
Cycle Cycle

Tl s =2 §O =45, 50 =65

Time 12.'5 3'0
Packet number i_26127| 28,29,30,31| 32, 33, 34135f36137138,39|40f41 142,43 ,44 45 46 | 601

.. L L L L L N B S ey e s ey R LR
Receiving 12 31 2231 23 12 23 12312 3 3 '

Cycle

(PamRbeekate ww=47 . =67 , L =477

Time 30 50
L] 3
Packetnumberi6]|62|63|64| 65|66|67168| 69,70.71|72[73’74|75[76 I IlOO'I
..] [T T 1 1 I l I I I ' I I] "l--II.I-IIIIII--IIIII
Recelvmg '1 2 3 4 1 2 23 1 2 3 41 2 2 3 !
processor NN S SN m ED M EE S EE ks A A W B
Cycle
Transfer rate = = = =
(packets/sec) =12, rz(t) 3 o =172, L(H =174
Time 30 50
] 1
PacketnumberLl12|3|4|5|6|7|8|9,10,11,12.13,14|15|16,17"18'19.20,21]22. I100i
Sendi 15 6 & gl T T T T T T T il s |
ending !5656565655565556565656 '
Cycle

'([‘;gé:fgg/gggf 1‘5(t) =11/10, rﬁ(t) =9/10

Figure 4. Implementing the example load transfer schedule in packet switching
networks with time-division-multiplexing protocols

be sending or receiving. The total number of messages needed initially for information exchange

is (n -1)2, and the time complexity of computing the optimal schedule, as specified in the

Theorem, is O(n2), since computing each of the n functions ry(t) requires at most n steps.

Appendix
To establish the validity of Condition 4 for the functions ry (t) , we need to verify that
g() = xp + j{; n®dt - st 2 0 forall te[0,T] (A1)
Consider a value of t in the interval (tg> tq+1) , and since 1, (t) is piece-wise constant, we have
t i
jo r (@) do = P{;l f® [tpe1 1] + R [t 1, te (g, tgs1)

Substituting the expressions for r(t) and [the1 - bp] from (47} , (48) and(45) and noting that

(1) = 0 for p <k, we obtain
q-1

[n®dt = 3 s¢Tpi-Ty) + RSl t - tg]

p=l

sTq-Tw + R(s/Splt -]
Substituting into (A1) and noting that s, Ty = x; , we obtain
g(® =T - skt +R(8/Sg) [t - tg]
Applying the recurrence relationship in (45) repeatedly results in the following expression for tg

g-1
tg = (R) [TgSq1 -);} %]

Substituting in the expression for g, (t), we obtain
g® = (1S9 [TSq - Sqt + Rt - TSy + :ii X]
Noting that TéSq - TgqSq-1=Tgsq =%y we obtain
g = (s/Sg [Rt - Sgt + é X]

Recall that T, = T, and from (31), (32) and (35) we have
T, =DR = (I/R) li d=(R Y [5X/S) - x] = (R(TSp- 3 %) =T
= k=1

k=1

[NgE

TSm- ¥ % =TR

k=1

Returning to the expression of g, (t) and using the above equation to substitute for R, we obtain

22

8= (SgD [TRt =TSt +T 3 x. 1= (568D [1T5,-¢ 3 x, - (T84 +T 3, x,]
k=1 k=1 k=1

m m q
GWSD [t T x -13 5+ TY x]
k=q+] k=l k=l

ST % -t 3 x 1= /DT %) [T -]
: k=1 k=1 k=
Since te [0, T], the last expression is non-negative, hence g, (t) > 0.

i

References

[1] T. G. Robertazzi, "Processor equivalence for daisy chain load sharing processors", IEEE
Trans. Aerosp. Electron. Syst. vol. 29, no. 4, pp. 1216-1221. Oct. 1993.
[2] Y. C. Cheng and T. G. Robertazzi, "Distributed computation for a tree network with
communication delays", IEEE Trans. Aerosp. Electron. Syst. vol. 26, May 1990,
(31 S. Bataineh and T. G. Robertazzi, "Network-oriented load sharing for a network of sensor
driven processors ", IEEE Trans. Syst. Man Cybernet. vol. 21, no. 5, Oct. 1991.
[4] Z. Chair and P. K. Varshney, "Optimum data fusion in multiple sensor detection systems”,
IEEE Trans. Aerosp. Electron. Syst. vol. AES-22, pp. 98-101. Jan. 1986.
[5] E. Haddad, "Partitioned load allocation for minimum parallel processing execution time"
Proc. 19th International Conference on Parallel Processing, Aug. 1989, St. Charles, 111
[6] R.Mirchandaney, D. Towsley, and J. A. Stankovic, "Analysis of the effects of delays on
load sharing", IEEE Trans. Comp. vol. C- 38, pp.1513-1525. Non 1989.
{71 H. 8. Stone, "Multiprocessor shceduling with aid of network flow algorithms," /EEE Trans.
Software Eng., vol. SE-3, Jan. 1977, pp. 85-93.
[8] B. Indurkhya, H. S. Stone, and 1. Xi-Cheng, " Optimal partitioning of randomly generated
distributed programs," IEEE Trans. Software Eng., vol. SE-12, March 1986, pp. 483-495.
[9] S. H. Bokhari, Assignment Problems in Parallel and Distributed Computing, Kluwer
Acadmic Publishers, Boston, 1987,
[10] V. M. LO, " Heuristic algorithms for task assignment in distributed systems"”, IEEE Trans.
on Computers, vol C-37, no. 11, pp. 1384 - 1397, Nov. 1988.
[11] E. Haddad, "Optimizing the parallel execution time of homogeneous random workloads"
Proc. 21st International Conference on Parallel Processing, Aug. 1991, St. Charles, IlL.
[12] E. Haddad "Load distribution optimization in heterogeneous multiple processor systems”,
Seventh Int. Parallel Processing Symposium (WHP 93) April 1993, pp 42-47, April 1993.
[13] E. Haddad "Optimal distribution of random workloads over heterogeneous processors with
loading constraints". Proc. 1992 Int. Conf. Parallel Processing, Aug. 1992, St. Charles, 111

23

