

Received 18 December 2014 Accepted 22 January 2015

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; iridium; rhodium; phosphane ligands; isotypism

CCDC references: 1045021; 1045022 Supporting information: this article has supporting information at journals.iucr.org/e



OPEN d ACCESS

Crystal structures of *fac*-trichloridotris(trimethylphosphane- $\kappa P$ )rhodium(III) monohydrate and *fac*trichloridotris(trimethylphosphane- $\kappa P$ )rhodium(III) methanol hemisolvate: rhodium structures that are isotypic with their iridium analogs

CrossMark

#### Joseph S. Merola\* and Marion A. Franks

Department of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA. \*Correspondence e-mail: jmerola@vt.edu

The crystal structures of two solvates of *fac*-trichloridotris(trimethylphosphane- $\kappa P$ )rhodium(III) are reported, *i.e.* one with water in the crystal lattice, *fac*-[RhCl<sub>3</sub>(Me<sub>3</sub>P)<sub>3</sub>]·H<sub>2</sub>O, and one with methanol in the crystal lattice, *fac*-[RhCl<sub>3</sub>(Me<sub>3</sub>P)<sub>3</sub>]·0.5CH<sub>3</sub>OH. These rhodium compounds exhibit distorted octahedral coordination spheres at the metal and are isotypic with the analogous iridium compounds previously reported by us [Merola *et al.* (2013). *Polyhedron*, **54**, 67–73]. Comparison is made between the rhodium and iridium compounds, highlighting their isostructural relationships.

### 1. Chemical context

Phosphane complexes of noble metals, especially those of rhodium and iridium, have proven to be important in catalysis as well as in studying fundamental reactions at metal surfaces. Chlorido compounds of rhodium and iridium with phosphane ligands provide important starting materials for other metal complexes of that family through replacement of the chlorine. For example, we have shown that  $(Me_3P)_3IrCl_3$  can be converted into (Me<sub>3</sub>P)<sub>3</sub>IrMe<sub>3</sub> through reaction with methylmagnesiumchloride. This trimethyliridium compound can, in turn, be used to study organometallic reactions at the iridium(III) atom (Merola et al., 2013). Thus, the fundamental study of crystal structures of phosphane-chlorido complexes of iridium and rhodium is important to help understand the structures, the bonding and the stereochemistry of this class of compounds. This paper adds to the body of knowledge of rhodium complexes that complement the already published structures of the analogous iridium compounds. It contributes to the information on crystal structures of  $L_3MCl_3$  compounds, comparing the rhodium structures to the iridium structures as well as confirming the nature of solvate formation in both the iridium and rhodium structures.

....<sup>CI</sup> •H<sub>2</sub>O

RhP<sub>3</sub>Cl<sub>3</sub>water

•0.5CH<sub>3</sub>OH Me<sub>3</sub>P RhP<sub>3</sub>Cl<sub>3</sub>MeOH

## research communications



Figure 1

Displacement ellipsoid (50% probability level) rendering of the *fac*-trichloridotris(trimethylphosphane)rhodium–water compound, **RhP<sub>3</sub>Cl<sub>3</sub>water**.

### 2. Structural commentary

The title complexes *fac*-trichloridotris(trimethylphosphane- $\kappa P$ )rhodium(III) monohydrate, **RhP<sub>3</sub>Cl<sub>3</sub>water**, and *fac*-trichloridotris(trimethylphosphane- $\kappa P$ )rhodium(III) methanol hemihydrate, **RhP<sub>3</sub>Cl<sub>3</sub>MeOH**, are isotypic with their iridium counterparts (CCDC 896072, 896073; Merola *et al.*, 2013). Isotypism in rhodium and iridium complexes is not unusual,



Displacement ellipsoid (50% probability level) rendering of the *fac*trichloridotris(trimethylphosphane)rhodium–0.5(methanol) compound, **RhP<sub>3</sub>Cl<sub>3</sub>MeOH**.

largely owing to the lanthanide contraction resulting in very similar radii for both second- and third-row transition elements (Cordero *et al.*, 2008).

Fig. 1 is a displacement ellipsoid rendering of compound **RhP<sub>3</sub>Cl<sub>3</sub>water** and Fig. 2 is a displacement ellipsoid rendering of compound **RhP<sub>3</sub>Cl<sub>3</sub>MeOH**. For compounds **RhP<sub>3</sub>Cl<sub>3</sub>water** and **RhP<sub>3</sub>Cl<sub>3</sub>MeOH** reported here, the comparison with their iridium analogs can be found in Tables 1 and 2 which list the corresponding unit-cell parameters for the rhodium and iridium water solvates (Table 1) and the rhodium and iridium methanol solvate (Table 2). The iridium compounds show a

Table 1

Comparison of unit-cell dimensions (Å, °) for water solvate complexes RhP<sub>3</sub>Cl<sub>3</sub>water and IrP<sub>3</sub>Cl<sub>3</sub>water.

|                                        |             | 1                            |             |                            |                            |
|----------------------------------------|-------------|------------------------------|-------------|----------------------------|----------------------------|
| Compound                               | space group | а                            | b           | С                          | $\beta$                    |
| RhP <sub>3</sub> Cl <sub>3</sub> water | Cc<br>Cc    | 15.8650 (12)<br>15.8830 (10) | 9.0396 (3)  | 14.8223 (18)<br>14.829 (2) | 120.820 (7)<br>120 530 (8) |
| ITF 3C13water                          |             | 13.8850 (10)                 | 9.0390 (10) | 14.629 (2)                 | 120.330 (8)                |

Table 2

Comparison of unit-cell dimensions (Å, °) for methanol solvate complexes RhP<sub>3</sub>Cl<sub>3</sub>MeOH and IrP<sub>3</sub>Cl<sub>3</sub>MeOH.

| Compound                              | space group | а            | b           | С            | β            |
|---------------------------------------|-------------|--------------|-------------|--------------|--------------|
| RhP <sub>3</sub> Cl <sub>3</sub> MeOH | $P2_{1}/n$  | 16.0993 (16) | 15.5910 (9) | 16.4152 (14) | 115.084 (13) |
| IrP <sub>3</sub> Cl <sub>3</sub> MeOH | $P2_1/n$    | 16.144 (3)   | 15.631 (4)  | 16.469 (4)   | 115.400 (17) |

Table 3

Comparison of significant bond lengths (Å) for RhP<sub>3</sub>Cl<sub>3</sub>water and IrP<sub>3</sub>Cl<sub>3</sub>water.

| Compound                               | <i>M</i> -P1 | <i>M</i> -P2 | <i>M</i> -P3 | M-Cl1       | M-Cl2       | M-Cl3       |
|----------------------------------------|--------------|--------------|--------------|-------------|-------------|-------------|
| RhP <sub>3</sub> Cl <sub>3</sub> water | 2.279 (2)    | 2.295 (3)    | 2.292 (2)    | 2.450 (2)   | 2.444 (3)   | 2.436 (3)   |
| IrP <sub>3</sub> Cl <sub>3</sub> water | 2.2787 (18)  | 2.2880 (19)  | 2.2912 (17)  | 2.4320 (19) | 2.4469 (18) | 2.4451 (19) |

Table 4

Comparison of significant bond lengths (Å) for RhP<sub>3</sub>Cl<sub>3</sub>MeOH and IrP<sub>3</sub>Cl<sub>3</sub>MeOH.

| Compound                              | <i>M</i> -P1 | <i>M</i> -P2 | <i>M</i> -P3 | M-Cl1       | M-Cl2       | M-Cl3       |
|---------------------------------------|--------------|--------------|--------------|-------------|-------------|-------------|
| RhP <sub>3</sub> Cl <sub>3</sub> MeOH | 2.2824 (12)  | 2.2950 (13)  | 2.2995 (12)  | 2.4246 (11) | 2.4453 (12) | 2.4364 (12) |
| 0 0                                   | 2.2860 (13)  | 2.2954 (12)  | 2.2923 (11)  | 2.4372 (12) | 2.4476 (12) | 2.4426 (12) |
| IrP <sub>3</sub> Cl <sub>3</sub> MeOH | 2.2809 (16)  | 2.2847 (17)  | 2.2964 (15)  | 2.4245 (16) | 2.4368 (17) | 2.4394 (15) |
|                                       | 2.2932 (16)  | 2.2795 (17)  | 2.2869 (16)  | 2.4442 (16) | 2.4316 (17) | 2.4405 (17) |

## research communications



Figure 3

Packing diagram of the *fac*-trichloridotris(trimethylphosphane)rhodiumwater compound, **RhP<sub>3</sub>Cl<sub>3</sub>water**, viewed down the *c* axis, showing the alternating layers of complex and water molecules. Hydrogen atoms except for water H atoms are omitted for clarity.

very slight lengthening of the unit-cell dimensions compared to rhodium but they are clearly isotypic overall. Table 3 lists the important bond lengths for **RhP<sub>3</sub>Cl<sub>3</sub>water** and **IrP<sub>3</sub>Cl<sub>3</sub>water** while Table 4 lists these for **RhP<sub>3</sub>Cl<sub>3</sub>MeOH** and **IrP<sub>3</sub>Cl<sub>3</sub>MeOH**. Bond-length comparisons show little significant difference between the rhodium and iridium analogs.

### 3. Supramolecular features

It is not surprising that *fac*-tris(trimethylphosphane)trichloroidium(III) and -rhodium(III) complexes form lattice solvates since the shape of the individual molecules leads to packing with voids in the lattice. Thus, every structure we have determined with the iridium compounds, as well as the ones reported here, contains a solvent. In the case of the water solvate, Fig. 3 shows the packing diagram for RhP<sub>3</sub>Cl<sub>3</sub>water looking down the c axis. One can see that the packing involves alternating layers of rhodium molecules and water molecules. The water molecules show close, hydrogen-bonding interactions (Table 5) between the water and the chlorines on one layer of the rhodium compound as well as close  $C-H \cdots O$ interactions between the phosphane methyl groups and the water oxygen. One should not make much of the hydrogen positions on the water since, although they were originally found in difference maps, the O-H bond lengths and the H-O-H angle were restrained with DFIX and DANG commands (Sheldrick, 2015). Fig. 4 shows the packing diagram for **RhP<sub>3</sub>Cl<sub>3</sub>MeOH**, looking down the *c* axis, illustrating the O-H···Cl hydrogen bonding (Table 6) and the location of the methanol molecules in a channel in the crystal.

| Table 5                                                                                 |  |
|-----------------------------------------------------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ) for <b>RhP<sub>3</sub>Cl<sub>3</sub>water</b> . |  |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $O1-H1B\cdots Cl3$          | 0.97 | 2.57                    | 3.481        | 157                                  |

Table 6

Hydrogen-bond geometry (Å, °) for RhP<sub>3</sub>Cl<sub>3</sub>MeOH.

| $D - H \cdots A$                       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\underline{O1\!-\!H1\!\cdots\!Cl6^i}$ | 0.82 | 2.47                    | 3.184 (5)    | 147                                  |

Symmetry code: (i)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ .

### 4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014) surprisingly shows very few structurally characterized trichloridotrisphosphaneiridium or rhodium compounds. In the case of iridium, beside the structures we recently published (CCDC 896072-896076; Merola et al., 2013), there are only three other  $P_3IrCl_3$  compounds in the database – the mer and fac isomers with P = phenyldimethylphosphane (refcodes CTPIRA01, CTPIRC: Marsh, 1997; Robertson & Tucker, 1981) and one entry where P<sub>3</sub> is cis,cis-1,3,5-tris(diphenylphosphino)cyclohexane (refcode LEXFAV; Mayer et al., 1994). For rhodium, P<sub>3</sub>RhCl<sub>3</sub> structurally characterized compounds are also rare with one mixed-ligand complex (two tri-n-butylphosphane ligands and one trimethylphosphite ligand; refcode CBPMRH; Allen et al., 1970), a complex with 3 hydroxymethylphosphane ligands (CCDC 189926; Raghuraman et al., 2002), a complex with the



Figure 4

Packing diagram of the *fac*-trichloridotris(trimethylphosphane)rhodium-0.5(methanol) compound, **RhP<sub>3</sub>Cl<sub>3</sub>MeOH**, viewed down the *c* axis, showing the methanol-containing channel in the structure. H atoms, except for water H atoms, a omitted for clarity.

Table 7Experimental details.

|                                                                          | RhP <sub>3</sub> Cl <sub>3</sub> water                                      | RhP <sub>3</sub> Cl <sub>3</sub> MeOH                                                    |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Crystal data                                                             |                                                                             |                                                                                          |
| Chemical formula                                                         | $[RhCl_3(C_3H_9P)_3]\cdot H_2O$                                             | [RhCl <sub>3</sub> (C <sub>3</sub> H <sub>9</sub> P) <sub>3</sub> ]·0.5CH <sub>4</sub> O |
| $M_r$                                                                    | 455.49                                                                      | 453.50                                                                                   |
| Crystal system, space group                                              | Monoclinic, Cc                                                              | Monoclinic, $P2_1/n$                                                                     |
| Temperature (K)                                                          | 298                                                                         | 298                                                                                      |
| a, b, c (Å)                                                              | 15.8650 (12), 9.0396 (3), 14.8223 (18)                                      | 16.0993 (16), 15.5910 (9), 16.4152 (14)                                                  |
| $\beta$ (°)                                                              | 120.820 (7)                                                                 | 115.084 (13)                                                                             |
| $V(\dot{A}^3)$                                                           | 1825.5 (3)                                                                  | 3731.7 (5)                                                                               |
| Z                                                                        | 4                                                                           | 8                                                                                        |
| Radiation type                                                           | Μο Κα                                                                       | Μο <i>Κα</i>                                                                             |
| $\mu (\mathrm{mm}^{-1})$                                                 | 1.62                                                                        | 1.59                                                                                     |
| Crystal size (mm)                                                        | $0.4 \times 0.4 \times 0.3$                                                 | $0.6 \times 0.6 \times 0.3$                                                              |
| Data collection                                                          |                                                                             |                                                                                          |
| Diffractometer                                                           | Siemens P4                                                                  | Siemens P4                                                                               |
| Absorption correction                                                    | $\psi$ scan (North <i>et al.</i> , 1968)                                    | $\psi$ scan (North <i>et al.</i> , 1968)                                                 |
| $T_{\min}, T_{\max}$                                                     | 0.762, 0.974                                                                | 0.807, 0.915                                                                             |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 2034, 1784, 1763                                                            | 5957, 4858, 4171                                                                         |
| R <sub>int</sub>                                                         | 0.021                                                                       | 0.034                                                                                    |
| $\theta_{\max}$ (°)                                                      | 25.0                                                                        | 22.5                                                                                     |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                 | 0.595                                                                       | 0.538                                                                                    |
| Refinement                                                               |                                                                             |                                                                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.023, 0.059, 1.08                                                          | 0.029, 0.071, 1.08                                                                       |
| No. of reflections                                                       | 1784                                                                        | 4858                                                                                     |
| No. of parameters                                                        | 170                                                                         | 328                                                                                      |
| No. of restraints                                                        | 5                                                                           | 0                                                                                        |
| H-atom treatment                                                         | H atoms treated by a mixture of indepen-<br>dent and constrained refinement | H-atom parameters constrained                                                            |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$    | 0.47, -0.60                                                                 | 1.03, -0.41                                                                              |
| Absolute structure                                                       | Classical Flack (1983) method preferred<br>over Parsons because s.u. lower  | -                                                                                        |
| Absolute structure parameter                                             | -0.06(3)                                                                    | -                                                                                        |

Computer programs: XSCANS (Siemens, 1996), SHELXS87 and SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

tripodal ligand, 1,1,1-tris(dimethylphosphinomethyl)ethane (refcode NAHXID; Suzuki *et al.*, 1996), a complex with the tridentate ligand, 1,5,9-tris(2-propyl)-1,5,9-triphosphacyclo-dodecane (refcode NOLPIN; Edwards *et al.*, 1997), a *mer*-tris-dimethylphenylphosphane compound (CCDC 247871; Parsons *et al.*, 2004) and a *mer*-tris-diethylphenylphosphane compound (refcode TCPERH; Skapski & Stephens, 1973). Of those, the only directly comparable structures are the *mer* isomer complexes of rhodium and iridium with dimethylphenylphosphane ligands and those two are indeed isostructural with each other.

## 5. Synthesis and crystallization

The rhodium complexes described herein could not be characterized spectroscopically as pure materials, but were isolated as crystals from complex mixtures. In contrast to the iridium complex [IrCOD(PMe<sub>3</sub>)<sub>3</sub>]Cl (COD = cyclooctadiene) (Frazier & Merola, 1992) which is the starting material for much of our iridium work, attempts to synthesize the analogous rhodium compound met with no success. Reaction between various Rh<sup>I</sup> olefin complexes, including COD, especially in dichloromethane solvent, led to complex mixtures of Rh(PMe<sub>3</sub>)<sub>n</sub> compounds in all cases. That these compounds are compounds of Rh is clearly seen in the Rh–P chemical coupling in the complicated <sup>31</sup>P NMR spectra. Attempts at extracting a pure compound from the complex mixture with various solvents including dichloromethane, water, methanol and acetone did not yield clean materials. Following extraction, the solutions were allowed to sit in the open air for several days and, in the case of water and methanol, a few crystals suitable for X-ray crystallography were formed and used for the data collection described in this communication.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. The hydrogens on the lattice water molecule in **RhP<sub>3</sub>Cl<sub>3</sub>water** were initially assigned based on residual electron density but were then restrained with DFIX and DANG instructions in *SHELXL* (Sheldrick, 2015) during refinement.

## Acknowledgements

Financial support for this work was provided by ACS–PRF (grant No. 23961-C1) and by the National Science Foundation (CHE-902244). The open-access fee was provided by the Virginia Tech Open Access Subvention Fund.

#### References

- Allen, F. H., Chang, G., Cheung, K. K., Lai, T. F., Lee, L. M. & Pidcock, A. (1970). J. Chem. Soc. D, pp. 1297–1298.
- Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). *Dalton Trans.* pp. 2832–2838.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Edwards, P. G., Fleming, J. S., Coles, S. J. & Hursthouse, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3201–3206.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917-2927.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Marsh, R. E. (1997). Acta Cryst. B53, 317-322.
- Mayer, H. A., Otto, H., Kühbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347–354.

- Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). *Polyhedron*, **54**, 67–73.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Parsons, S., Payne, N. L., Yellowlees, L., Harris, S. & Wood, P. A. (2004). Private communication (CCDC 247871). CCDC, Cambridge, England.
- Raghuraman, K., Pillarsetty, N., Volkert, W. A., Barnes, C., Jurisson, S. & Katti, K. V. (2002). J. Am. Chem. Soc. 124, 7276–7277.
- Robertson, G. B. & Tucker, P. A. (1981). Acta Cryst. B37, 814-821.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Skapski, A. C. & Stephens, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1789–1793.
- Suzuki, T., Isobe, K., Kashiwabara, K., Fujita, J. & Kaizaki, S. (1996). J. Chem. Soc. Dalton Trans. pp. 3779–3786.

# supporting information

Acta Cryst. (2015). E71, 226-230 [doi:10.1107/S2056989015001516]

Crystal structures of *fac*-trichloridotris(trimethylphosphane-*κP*)rhodium(III) monohydrate and *fac*-trichloridotris(trimethylphosphane-*κP*)rhodium(III) methanol hemisolvate: rhodium structures that are isotypic with their iridium analogs

## Joseph S. Merola and Marion A. Franks

## **Computing details**

For both compounds, data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS* (Siemens, 1996); data reduction: *XSCANS* (Siemens, 1996). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for RhP3Cl3water; *SHELXS87* (Sheldrick, 2008) for RhP3Cl3MeOH. For both compounds, program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

## (RhP3Cl3water) fac-Trichloridotris(trimethylphosphane-*kP*)rhodium monohydrate

Crystal data [RhCl<sub>3</sub>(C<sub>3</sub>H<sub>9</sub>P)<sub>3</sub>]·H<sub>2</sub>O  $M_r = 455.49$ Monoclinic, Cc a = 15.8650 (12) Å b = 9.0396 (3) Å c = 14.8223 (18) Å  $\beta = 120.820$  (7)° V = 1825.5 (3) Å<sup>3</sup> Z = 4

## Data collection

Siemens P4 diffractometer Radiation source: Sealed X-ray tube Graphite monochromator Wyckoff scans Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{\min} = 0.762, T_{\max} = 0.974$ 2034 measured reflections F(000) = 928  $D_x = 1.657 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 35 reflections  $\theta = 3-20^{\circ}$   $\mu = 1.62 \text{ mm}^{-1}$  T = 298 KPrism, clear colourless  $0.4 \times 0.4 \times 0.3 \text{ mm}$ 

1784 independent reflections 1763 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.021$   $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.7^{\circ}$   $h = -1 \rightarrow 18$   $k = -1 \rightarrow 10$   $l = -17 \rightarrow 15$ 3 standard reflections every 300 reflections intensity decay: 0.0(2) Refinement

| 0                                                                         |                                                                |
|---------------------------------------------------------------------------|----------------------------------------------------------------|
| Refinement on $F^2$                                                       | $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2]$                        |
| Least-squares matrix: full                                                | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.023$                                           | $(\Delta/\sigma)_{\rm max} < 0.001$                            |
| $wR(F^2) = 0.059$                                                         | $\Delta  ho_{ m max} = 0.47$ e Å <sup>-3</sup>                 |
| S = 1.08                                                                  | $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$     |
| 1784 reflections                                                          | Extinction correction: SHELXL2014 (Sheldrick,                  |
| 170 parameters                                                            | 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 5 restraints                                                              | Extinction coefficient: 0.0052 (3)                             |
| Primary atom site location: structure-invariant                           | Absolute structure: Classical Flack (1983)                     |
| direct methods                                                            | method preferred over Parsons because s.u.                     |
| Hydrogen site location: mixed                                             | lower.                                                         |
| H atoms treated by a mixture of independent<br>and constrained refinement | Absolute structure parameter: -0.06 (3)                        |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | X            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| Rh1  | 0.38961 (3)  | 0.77430 (4)  | 0.26210(3)   | 0.01905 (13)                |  |
| Cl1  | 0.55310 (9)  | 0.86978 (16) | 0.31510 (10) | 0.0352 (3)                  |  |
| Cl2  | 0.46887 (10) | 0.59591 (16) | 0.40575 (10) | 0.0377 (3)                  |  |
| C13  | 0.39164 (11) | 0.94682 (18) | 0.38953 (10) | 0.0416 (3)                  |  |
| P1   | 0.41363 (10) | 0.63338 (15) | 0.14978 (10) | 0.0255 (3)                  |  |
| P2   | 0.24900 (9)  | 0.65676 (15) | 0.23097 (9)  | 0.0246 (3)                  |  |
| P3   | 0.30855 (10) | 0.95935 (15) | 0.14271 (10) | 0.0283 (3)                  |  |
| C11  | 0.3120 (5)   | 0.5348 (7)   | 0.0413 (5)   | 0.0426 (14)                 |  |
| H11A | 0.2644       | 0.6048       | -0.0062      | 0.064*                      |  |
| H11B | 0.2820       | 0.4703       | 0.0682       | 0.064*                      |  |
| H11C | 0.3362       | 0.4775       | 0.0048       | 0.064*                      |  |
| C12  | 0.4653 (6)   | 0.7274 (7)   | 0.0813 (6)   | 0.0435 (16)                 |  |
| H12A | 0.5270       | 0.7710       | 0.1315       | 0.065*                      |  |
| H12B | 0.4210       | 0.8033       | 0.0372       | 0.065*                      |  |
| H12C | 0.4753       | 0.6576       | 0.0388       | 0.065*                      |  |
| C13  | 0.5027 (5)   | 0.4886 (7)   | 0.2167 (5)   | 0.0454 (15)                 |  |
| H13A | 0.4804       | 0.4245       | 0.2518       | 0.068*                      |  |
| H13B | 0.5645       | 0.5318       | 0.2673       | 0.068*                      |  |
| H13C | 0.5107       | 0.4327       | 0.1665       | 0.068*                      |  |
| C21  | 0.2580 (5)   | 0.4567 (7)   | 0.2475 (5)   | 0.0399 (14)                 |  |
| H21A | 0.3094       | 0.4328       | 0.3175       | 0.060*                      |  |
| H21B | 0.2725       | 0.4136       | 0.1978       | 0.060*                      |  |
| H21C | 0.1968       | 0.4182       | 0.2358       | 0.060*                      |  |
|      |              |              |              |                             |  |

| C22  | 0.2117 (5) | 0.7170 (7)  | 0.3217 (5) | 0.0380 (14) |
|------|------------|-------------|------------|-------------|
| H22A | 0.1904     | 0.8181      | 0.3073     | 0.057*      |
| H22B | 0.2662     | 0.7088      | 0.3924     | 0.057*      |
| H22C | 0.1588     | 0.6559      | 0.3137     | 0.057*      |
| C23  | 0.1367 (4) | 0.6719 (8)  | 0.1054 (4) | 0.0415 (14) |
| H23A | 0.1448     | 0.6243      | 0.0524     | 0.062*      |
| H23B | 0.1212     | 0.7744      | 0.0878     | 0.062*      |
| H23C | 0.0843     | 0.6250      | 0.1091     | 0.062*      |
| C31  | 0.3893 (5) | 1.1078 (7)  | 0.1529 (5) | 0.0521 (17) |
| H31A | 0.4393     | 1.0695      | 0.1411     | 0.078*      |
| H31B | 0.4193     | 1.1509      | 0.2217     | 0.078*      |
| H31C | 0.3522     | 1.1820      | 0.1011     | 0.078*      |
| C32  | 0.2160 (5) | 1.0542 (7)  | 0.1596 (6) | 0.0531 (17) |
| H32A | 0.2457     | 1.0911      | 0.2302     | 0.080*      |
| H32B | 0.1645     | 0.9862      | 0.1466     | 0.080*      |
| H32C | 0.1892     | 1.1352      | 0.1111     | 0.080*      |
| C33  | 0.2405 (4) | 0.9229 (7)  | 0.0029 (4) | 0.0403 (13) |
| H33A | 0.1990     | 0.8382      | -0.0110    | 0.060*      |
| H33B | 0.2854     | 0.9038      | -0.0209    | 0.060*      |
| H33C | 0.2008     | 1.0073      | -0.0335    | 0.060*      |
| 01   | 0.5879 (6) | 1.1825 (10) | 0.4533 (7) | 0.102 (3)   |
| H1A  | 0.542 (2)  | 1.263 (3)   | 0.418 (7)  | 0.123*      |
| H1B  | 0.546 (2)  | 1.096 (2)   | 0.435 (7)  | 0.123*      |
|      |            |             |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | <i>U</i> <sup>11</sup> | L /22        | <i>L</i> /33 | L /12         | 1/13         | 1/23          |
|-----|------------------------|--------------|--------------|---------------|--------------|---------------|
|     | 0.01942 (19)           |              | 0.01(07.(19) | 0.00102 (18)  | 0.00854 (12) | 0.00128 (1()  |
| Khi | 0.01842 (18)           | 0.02103 (18) | 0.01697 (18) | -0.00103 (18) | 0.00854 (13) | -0.00138 (16) |
| Cl1 | 0.0244 (6)             | 0.0419 (7)   | 0.0363 (6)   | -0.0104 (5)   | 0.0135 (5)   | -0.0040(5)    |
| Cl2 | 0.0330 (7)             | 0.0425 (7)   | 0.0269 (6)   | -0.0004 (6)   | 0.0076 (5)   | 0.0103 (6)    |
| Cl3 | 0.0456 (8)             | 0.0473 (8)   | 0.0356 (7)   | -0.0046 (7)   | 0.0235 (6)   | -0.0184 (6)   |
| P1  | 0.0274 (6)             | 0.0260 (6)   | 0.0259 (6)   | 0.0006 (5)    | 0.0158 (5)   | -0.0042 (5)   |
| P2  | 0.0209 (6)             | 0.0295 (7)   | 0.0235 (6)   | -0.0014 (5)   | 0.0115 (5)   | 0.0028 (5)    |
| Р3  | 0.0306 (6)             | 0.0232 (6)   | 0.0305 (6)   | 0.0020 (5)    | 0.0153 (5)   | 0.0045 (5)    |
| C11 | 0.046 (3)              | 0.045 (3)    | 0.039 (3)    | -0.015 (3)    | 0.024 (3)    | -0.024 (3)    |
| C12 | 0.052 (4)              | 0.048 (4)    | 0.048 (4)    | 0.001 (3)     | 0.038 (4)    | 0.003 (3)     |
| C13 | 0.046 (3)              | 0.039 (3)    | 0.049 (4)    | 0.018 (3)     | 0.023 (3)    | 0.002 (3)     |
| C21 | 0.042 (3)              | 0.031 (3)    | 0.048 (3)    | -0.008 (3)    | 0.024 (3)    | 0.002 (3)     |
| C22 | 0.043 (4)              | 0.042 (3)    | 0.046 (3)    | -0.001 (3)    | 0.035 (3)    | 0.002 (2)     |
| C23 | 0.023 (3)              | 0.057 (4)    | 0.034 (3)    | -0.008 (3)    | 0.008 (2)    | 0.011 (3)     |
| C31 | 0.053 (4)              | 0.037 (3)    | 0.053 (4)    | -0.012 (3)    | 0.018 (3)    | 0.007 (3)     |
| C32 | 0.062 (4)              | 0.045 (3)    | 0.059 (4)    | 0.027 (3)     | 0.036 (4)    | 0.010 (3)     |
| C33 | 0.038 (3)              | 0.043 (3)    | 0.035 (3)    | 0.000 (3)     | 0.015 (2)    | 0.007 (3)     |
| O1  | 0.092 (5)              | 0.123 (6)    | 0.113 (6)    | -0.030 (5)    | 0.067 (5)    | -0.048 (5)    |

Geometric parameters (Å, °)

| Rh1—Cl1     | 2.4499 (13) | С13—Н13В                          | 0.9600      |
|-------------|-------------|-----------------------------------|-------------|
| Rh1—Cl2     | 2.4437 (13) | C13—H13C                          | 0.9600      |
| Rh1—Cl3     | 2.4369 (13) | C21—H21A                          | 0.9600      |
| Rh1—P1      | 2.2781 (13) | C21—H21B                          | 0.9600      |
| Rh1—P2      | 2.2942 (13) | C21—H21C                          | 0.9600      |
| Rh1—P3      | 2.2917 (13) | C22—H22A                          | 0.9600      |
| P1-C11      | 1.822 (6)   | C22—H22B                          | 0.9600      |
| P1-C12      | 1.810 (6)   | C22—H22C                          | 0.9600      |
| P1-C13      | 1.805 (6)   | С23—Н23А                          | 0.9600      |
| P2-C21      | 1.820 (6)   | C23—H23B                          | 0.9600      |
| P2-C22      | 1 809 (6)   | C23—H23C                          | 0.9600      |
| P2-C23      | 1 806 (6)   | C31—H31A                          | 0.9600      |
| P3-C31      | 1 808 (6)   | C31—H31B                          | 0.9600      |
| P3C32       | 1.825 (6)   | C31—H31C                          | 0.9600      |
| P3-C33      | 1.810 (6)   | C32—H32A                          | 0.9600      |
| C11—H11A    | 0.9600      | C32—H32B                          | 0.9600      |
| C11_H11B    | 0.9600      | $C_{32}$ H <sub>32</sub> $C_{32}$ | 0.9600      |
|             | 0.9600      | C33_H33A                          | 0.9600      |
| C12—H12A    | 0.9600      | C33—H33B                          | 0.9600      |
| C12H12B     | 0.9600      | C33_H33C                          | 0.9600      |
| C12—H12C    | 0.9600      | 01_H1A                            | 0.9000 (11) |
| C13 H13A    | 0.9600      | O1 H1B                            | 0.9700 (11) |
|             | 0.9000      | 01—IIIB                           | 0.9700 (11) |
| Cl2—Rh1—Cl1 | 88.02 (5)   | P1—C13—H13A                       | 109.5       |
| Cl3—Rh1—Cl1 | 86.25 (5)   | P1—C13—H13B                       | 109.5       |
| Cl3—Rh1—Cl2 | 87.16 (5)   | P1—C13—H13C                       | 109.5       |
| P1—Rh1—Cl1  | 83.42 (5)   | H13A—C13—H13B                     | 109.5       |
| P1—Rh1—Cl2  | 93.65 (5)   | H13A—C13—H13C                     | 109.5       |
| P1—Rh1—Cl3  | 169.60 (5)  | H13B—C13—H13C                     | 109.5       |
| P1—Rh1—P2   | 95.94 (5)   | P2—C21—H21A                       | 109.5       |
| P1—Rh1—P3   | 94.68 (5)   | P2—C21—H21B                       | 109.5       |
| P2—Rh1—Cl1  | 171.22 (5)  | P2—C21—H21C                       | 109.5       |
| P2—Rh1—Cl2  | 83.28 (5)   | H21A—C21—H21B                     | 109.5       |
| P2—Rh1—Cl3  | 94.45 (5)   | H21A—C21—H21C                     | 109.5       |
| P3—Rh1—C11  | 94.22 (5)   | H21B—C21—H21C                     | 109.5       |
| P3—Rh1—Cl2  | 171.57 (5)  | P2—C22—H22A                       | 109.5       |
| P3—Rh1—Cl3  | 84.88 (5)   | P2—C22—H22B                       | 109.5       |
| P3—Rh1—P2   | 94.57 (5)   | P2—C22—H22C                       | 109.5       |
| C11—P1—Rh1  | 121.0 (2)   | H22A—C22—H22B                     | 109.5       |
| C12—P1—Rh1  | 116.1 (2)   | H22A—C22—H22C                     | 109.5       |
| C12—P1—C11  | 100.6 (3)   | H22B—C22—H22C                     | 109.5       |
| C13—P1—Rh1  | 112.4 (2)   | P2—C23—H23A                       | 109.5       |
| C13—P1—C11  | 102.7 (3)   | P2—C23—H23B                       | 109.5       |
| C13—P1—C12  | 101.3 (3)   | Р2—С23—Н23С                       | 109.5       |
| C21—P2—Rh1  | 115.6 (2)   | H23A—C23—H23B                     | 109.5       |
| C22—P2—Rh1  | 111.5 (2)   | H23A—C23—H23C                     | 109.5       |
|             | × /         |                                   |             |

| C22—P2—C21    | 103.4 (3) | H23B—C23—H23C | 109.5       |
|---------------|-----------|---------------|-------------|
| C23—P2—Rh1    | 121.1 (2) | P3—C31—H31A   | 109.5       |
| C23—P2—C21    | 100.5 (3) | P3—C31—H31B   | 109.5       |
| C23—P2—C22    | 102.6 (3) | P3—C31—H31C   | 109.5       |
| C31—P3—Rh1    | 112.6 (2) | H31A—C31—H31B | 109.5       |
| C31—P3—C32    | 103.0 (4) | H31A—C31—H31C | 109.5       |
| C31—P3—C33    | 102.3 (3) | H31B—C31—H31C | 109.5       |
| C32—P3—Rh1    | 114.2 (2) | P3—C32—H32A   | 109.5       |
| C33—P3—Rh1    | 121.4 (2) | Р3—С32—Н32В   | 109.5       |
| C33—P3—C32    | 101.1 (3) | Р3—С32—Н32С   | 109.5       |
| P1—C11—H11A   | 109.5     | H32A—C32—H32B | 109.5       |
| P1—C11—H11B   | 109.5     | H32A—C32—H32C | 109.5       |
| P1—C11—H11C   | 109.5     | H32B—C32—H32C | 109.5       |
| H11A—C11—H11B | 109.5     | Р3—С33—Н33А   | 109.5       |
| H11A—C11—H11C | 109.5     | Р3—С33—Н33В   | 109.5       |
| H11B—C11—H11C | 109.5     | Р3—С33—Н33С   | 109.5       |
| P1—C12—H12A   | 109.5     | H33A—C33—H33B | 109.5       |
| P1—C12—H12B   | 109.5     | H33A—C33—H33C | 109.5       |
| P1—C12—H12C   | 109.5     | H33B—C33—H33C | 109.5       |
| H12A—C12—H12B | 109.5     | H1A—O1—H1B    | 104.12 (17) |
| H12A—C12—H12C | 109.5     | H1B—O1—H1A    | 104.12 (17) |
| H12B—C12—H12C | 109.5     |               |             |
|               |           |               |             |

Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H  | H····A | D····A | <i>D</i> —H··· <i>A</i> |
|-----------------------|------|--------|--------|-------------------------|
| O1—H1 <i>B</i> ···Cl3 | 0.97 | 2.57   | 3.481  | 157                     |

## (RhP3Cl3MeOH) fac-Trichloridotris(trimethylphosphane-kP)rhodium methanol hemisolvate

| Crystal data                                   |                                                                 |
|------------------------------------------------|-----------------------------------------------------------------|
| $[RhCl_{3}(C_{3}H_{9}P)_{3}] \cdot 0.5CH_{4}O$ | F(000) = 1848                                                   |
| $M_r = 453.50$                                 | $D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$                       |
| Monoclinic, $P2_1/n$                           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å           |
| a = 16.0993 (16)  Å                            | Cell parameters from 50 reflections                             |
| b = 15.5910(9) Å                               | $\theta = 3-20^{\circ}$                                         |
| c = 16.4152 (14) Å                             | $\mu = 1.59 \text{ mm}^{-1}$                                    |
| $\beta = 115.084 \ (13)^{\circ}$               | T = 298  K                                                      |
| $V = 3731.7 (5) Å^3$                           | Prism, clear light yellow                                       |
| Z = 8                                          | $0.6 \times 0.6 \times 0.3 \text{ mm}$                          |
| Data collection                                |                                                                 |
| Siemens P4                                     | 4858 independent reflections                                    |
| diffractometer                                 | 4171 reflections with $I > 2\sigma(I)$                          |
| Radiation source: fine-focus sealed tube       | $R_{\rm int} = 0.034$                                           |
| Graphite monochromator                         | $\theta_{\rm max} = 22.5^\circ, \ \theta_{\rm min} = 1.9^\circ$ |
| sea;ed X-ray tube scans                        | $h = -1 \rightarrow 17$                                         |
| Absorption correction: $\psi$ scan             | $k = -1 \rightarrow 16$                                         |
| (North <i>et al.</i> , 1968)                   | $l = -17 \rightarrow 16$                                        |
| $T_{\min} = 0.807, \ T_{\max} = 0.915$         | 3 standard reflections every 200 reflections                    |
| 5957 measured reflections                      | intensity decay: 0.0(2)                                         |
|                                                |                                                                 |

Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                                                                             |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                                | H-atom parameters constrained                                                                                     |
| $wR(F^2) = 0.071$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 4.1793P]$                                                                 |
| S = 1.08                                                       | where $P = (F_o^2 + 2F_c^2)/3$                                                                                    |
| 4858 reflections                                               | $(\Delta/\sigma)_{\rm max} = 0.003$                                                                               |
| 328 parameters                                                 | $\Delta \rho_{\rm max} = 1.03 \text{ e } \text{\AA}^{-3}$                                                         |
| 0 restraints                                                   | $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$                                                        |
| Primary atom site location: structure-invariant direct methods | Extinction correction: <i>SHELXL2014</i> (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Secondary atom site location: difference Fourier map           | Extinction coefficient: 0.00519 (17)                                                                              |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x           | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|-------------|--------------|-----------------------------|
| Rh1  | 0.76635 (2) | 0.66132 (2) | 0.08786 (2)  | 0.02237 (12)                |
| Cl1  | 0.82866 (8) | 0.79954 (7) | 0.07477 (9)  | 0.0435 (3)                  |
| Cl2  | 0.65651 (8) | 0.67764 (8) | -0.06932 (7) | 0.0445 (3)                  |
| C13  | 0.87487 (8) | 0.60045 (8) | 0.03606 (8)  | 0.0449 (3)                  |
| P1   | 0.72796 (9) | 0.52126 (7) | 0.09374 (8)  | 0.0361 (3)                  |
| P2   | 0.87465 (8) | 0.66934 (7) | 0.23406 (8)  | 0.0308 (3)                  |
| P3   | 0.64873 (8) | 0.71971 (7) | 0.11404 (8)  | 0.0314 (3)                  |
| C11  | 0.8230 (4)  | 0.4462 (3)  | 0.1382 (4)   | 0.0583 (15)                 |
| H11A | 0.8605      | 0.4524      | 0.1061       | 0.087*                      |
| H11B | 0.7996      | 0.3887      | 0.1311       | 0.087*                      |
| H11C | 0.8590      | 0.4577      | 0.2009       | 0.087*                      |
| C12  | 0.6631 (5)  | 0.4911 (4)  | 0.1567 (5)   | 0.076 (2)                   |
| H12A | 0.6949      | 0.5102      | 0.2178       | 0.114*                      |
| H12B | 0.6565      | 0.4298      | 0.1557       | 0.114*                      |
| H12C | 0.6035      | 0.5172      | 0.1299       | 0.114*                      |
| C13  | 0.6596 (4)  | 0.4779 (3)  | -0.0171 (4)  | 0.0614 (16)                 |
| H13A | 0.6011      | 0.5060      | -0.0426      | 0.092*                      |
| H13B | 0.6509      | 0.4175      | -0.0125      | 0.092*                      |
| H13C | 0.6907      | 0.4872      | -0.0550      | 0.092*                      |
| C21  | 0.8719 (4)  | 0.5969 (4)  | 0.3203 (3)   | 0.0588 (15)                 |
| H21A | 0.8132      | 0.6008      | 0.3222       | 0.088*                      |
| H21B | 0.9191      | 0.6127      | 0.3778       | 0.088*                      |
| H21C | 0.8818      | 0.5391      | 0.3063       | 0.088*                      |

| C22  | 0.9893 (3)   | 0.6550 (4)  | 0.2430 (4)   | 0.0567 (15)  |
|------|--------------|-------------|--------------|--------------|
| H22A | 0.9979       | 0.5962      | 0.2310       | 0.085*       |
| H22B | 1.0329       | 0.6699      | 0.3027       | 0.085*       |
| H22C | 0.9983       | 0.6914      | 0.2002       | 0.085*       |
| C23  | 0.8810 (4)   | 0.7718 (3)  | 0.2882 (4)   | 0.0536 (14)  |
| H23A | 0.8582       | 0.8160      | 0.2434       | 0.080*       |
| H23B | 0.9436       | 0.7839      | 0.3282       | 0.080*       |
| H23C | 0.8445       | 0.7699      | 0.3217       | 0.080*       |
| C31  | 0.5349 (3)   | 0.6773 (4)  | 0.0457 (4)   | 0.0572 (15)  |
| H31A | 0.5217       | 0.6830      | -0.0169      | 0.086*       |
| H31B | 0.4902       | 0.7086      | 0.0580       | 0.086*       |
| H31C | 0.5327       | 0.6178      | 0.0597       | 0.086*       |
| C32  | 0.6344 (4)   | 0.8316 (3)  | 0.0863 (5)   | 0.071(2)     |
| H32A | 0.6892       | 0.8621      | 0.1238       | 0.107*       |
| H32B | 0.5835       | 0.8537      | 0.0958       | 0.107*       |
| H32C | 0.6228       | 0.8391      | 0.0243       | 0.107*       |
| C33  | 0.6502(4)    | 0.7160 (4)  | 0.2248 (3)   | 0.0554 (15)  |
| H33A | 0.6542       | 0.6574      | 0.2442       | 0.083*       |
| H33B | 0.5950       | 0.7413      | 0.2227       | 0.083*       |
| H33C | 0.7023       | 0.7473      | 0.2664       | 0.083*       |
| Rh2  | 0.29937 (2)  | 0.83004 (2) | 0.11738 (2)  | 0.02531 (12) |
| Cl4  | 0.44698 (8)  | 0.89262 (9) | 0.14246 (9)  | 0.0497 (3)   |
| C15  | 0.29238 (9)  | 0.77329 (8) | -0.02441 (8) | 0.0480 (3)   |
| C16  | 0.38403 (10) | 0.69898 (8) | 0.18403 (9)  | 0.0534 (4)   |
| P4   | 0.15796 (9)  | 0.76893 (8) | 0.07421 (9)  | 0.0412 (3)   |
| P5   | 0.31781 (8)  | 0.86191 (7) | 0.26057 (7)  | 0.0309 (3)   |
| P6   | 0.24255 (8)  | 0.96155 (7) | 0.05702 (7)  | 0.0277 (3)   |
| C41  | 0.0844 (4)   | 0.7767 (4)  | -0.0452 (4)  | 0.0686 (17)  |
| H41A | 0.0786       | 0.8357      | -0.0634      | 0.103*       |
| H41B | 0.0250       | 0.7539      | -0.0571      | 0.103*       |
| H41C | 0.1108       | 0.7445      | -0.0782      | 0.103*       |
| C42  | 0.0818 (4)   | 0.8051 (4)  | 0.1233 (4)   | 0.0610 (16)  |
| H42A | 0.1085       | 0.7920      | 0.1864       | 0.092*       |
| H42B | 0.0237       | 0.7766      | 0.0943       | 0.092*       |
| H42C | 0.0729       | 0.8660      | 0.1152       | 0.092*       |
| C43  | 0.1622 (5)   | 0.6541 (3)  | 0.0936 (5)   | 0.0735 (19)  |
| H43A | 0.1949       | 0.6269      | 0.0635       | 0.110*       |
| H43B | 0.1010       | 0.6317      | 0.0706       | 0.110*       |
| H43C | 0.1931       | 0.6429      | 0.1570       | 0.110*       |
| C51  | 0.2460 (4)   | 0.9416 (3)  | 0.2801 (3)   | 0.0477 (13)  |
| H51A | 0.2562       | 0.9965      | 0.2596       | 0.072*       |
| H51B | 0.2612       | 0.9444      | 0.3432       | 0.072*       |
| H51C | 0.1828       | 0.9258      | 0.2477       | 0.072*       |
| C52  | 0.4313 (3)   | 0.9011 (4)  | 0.3307 (3)   | 0.0522 (14)  |
| H52A | 0.4761       | 0.8607      | 0.3302       | 0.078*       |
| H52B | 0.4376       | 0.9082      | 0.3911       | 0.078*       |
| H52C | 0.4406       | 0.9553      | 0.3080       | 0.078*       |
| C53  | 0.3059 (4)   | 0.7705 (3)  | 0.3231 (3)   | 0.0480 (13)  |

| H53A | 0.2448      | 0.7482     | 0.2937      | 0.072*      |
|------|-------------|------------|-------------|-------------|
| H53B | 0.3177      | 0.7882     | 0.3830      | 0.072*      |
| H53C | 0.3491      | 0.7269     | 0.3256      | 0.072*      |
| C61  | 0.2455 (4)  | 0.9750 (3) | -0.0508 (3) | 0.0470 (13) |
| H61A | 0.3062      | 0.9631     | -0.0452     | 0.071*      |
| H61B | 0.2292      | 1.0329     | -0.0711     | 0.071*      |
| H61C | 0.2028      | 0.9362     | -0.0934     | 0.071*      |
| C62  | 0.3089 (4)  | 1.0522 (3) | 0.1198 (3)  | 0.0516 (14) |
| H62A | 0.3124      | 1.0511     | 0.1797      | 0.077*      |
| H62B | 0.2798      | 1.1045     | 0.0905      | 0.077*      |
| H62C | 0.3696      | 1.0493     | 0.1226      | 0.077*      |
| C63  | 0.1272 (3)  | 0.9971 (3) | 0.0347 (3)  | 0.0425 (12) |
| H63A | 0.0832      | 0.9593     | -0.0082     | 0.064*      |
| H63B | 0.1180      | 1.0543     | 0.0108      | 0.064*      |
| H63C | 0.1196      | 0.9965     | 0.0896      | 0.064*      |
| 01   | 0.0306 (5)  | 1.0413 (3) | 0.1833 (4)  | 0.1076 (18) |
| H1   | 0.0327      | 1.0913     | 0.1996      | 0.161*      |
| C2   | -0.0030 (4) | 0.9903 (4) | 0.2311 (4)  | 0.0705 (17) |
| H2A  | -0.0355     | 0.9425     | 0.1946      | 0.106*      |
| H2B  | -0.0439     | 1.0232     | 0.2476      | 0.106*      |
| H2C  | 0.0471      | 0.9696     | 0.2845      | 0.106*      |
|      |             |            |             |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|------------|--------------|--------------|--------------|--------------|--------------|
| Rh1 | 0.0230 (2) | 0.02200 (19) | 0.02360 (19) | 0.00153 (14) | 0.01137 (15) | 0.00271 (14) |
| Cl1 | 0.0405 (7) | 0.0301 (6)   | 0.0631 (8)   | -0.0004 (5)  | 0.0251 (6)   | 0.0148 (6)   |
| Cl2 | 0.0390 (7) | 0.0641 (8)   | 0.0261 (6)   | 0.0069 (6)   | 0.0096 (5)   | 0.0060 (5)   |
| Cl3 | 0.0452 (7) | 0.0563 (8)   | 0.0423 (7)   | 0.0173 (6)   | 0.0273 (6)   | 0.0041 (6)   |
| P1  | 0.0411 (7) | 0.0244 (6)   | 0.0434 (7)   | -0.0039 (5)  | 0.0186 (6)   | -0.0009 (5)  |
| P2  | 0.0303 (6) | 0.0311 (6)   | 0.0282 (6)   | 0.0023 (5)   | 0.0095 (5)   | 0.0005 (5)   |
| P3  | 0.0265 (6) | 0.0341 (6)   | 0.0373 (7)   | 0.0029 (5)   | 0.0172 (5)   | 0.0018 (5)   |
| C11 | 0.065 (4)  | 0.027 (3)    | 0.068 (4)    | 0.011 (3)    | 0.015 (3)    | 0.004 (3)    |
| C12 | 0.102 (5)  | 0.042 (3)    | 0.114 (6)    | -0.013 (3)   | 0.076 (5)    | 0.013 (3)    |
| C13 | 0.062 (4)  | 0.043 (3)    | 0.064 (4)    | -0.009 (3)   | 0.012 (3)    | -0.015 (3)   |
| C21 | 0.078 (4)  | 0.060 (4)    | 0.036 (3)    | 0.002 (3)    | 0.022 (3)    | 0.009 (3)    |
| C22 | 0.025 (3)  | 0.081 (4)    | 0.050 (3)    | 0.010 (3)    | 0.002 (2)    | 0.003 (3)    |
| C23 | 0.057 (3)  | 0.044 (3)    | 0.046 (3)    | -0.009 (3)   | 0.008 (3)    | -0.018 (3)   |
| C31 | 0.029 (3)  | 0.086 (4)    | 0.054 (3)    | -0.004 (3)   | 0.016 (3)    | -0.004 (3)   |
| C32 | 0.069 (4)  | 0.042 (3)    | 0.131 (6)    | 0.026 (3)    | 0.070 (4)    | 0.022 (3)    |
| C33 | 0.049 (3)  | 0.081 (4)    | 0.043 (3)    | 0.007 (3)    | 0.027 (3)    | -0.010 (3)   |
| Rh2 | 0.0255 (2) | 0.0244 (2)   | 0.0276 (2)   | 0.00468 (14) | 0.01264 (16) | 0.00091 (14) |
| Cl4 | 0.0295 (6) | 0.0641 (8)   | 0.0616 (8)   | 0.0000 (6)   | 0.0253 (6)   | 0.0014 (7)   |
| C15 | 0.0720 (9) | 0.0401 (7)   | 0.0366 (7)   | 0.0102 (6)   | 0.0275 (6)   | -0.0030 (5)  |
| C16 | 0.0707 (9) | 0.0416 (7)   | 0.0518 (8)   | 0.0308 (7)   | 0.0297 (7)   | 0.0140 (6)   |
| P4  | 0.0372 (7) | 0.0310 (7)   | 0.0511 (8)   | -0.0076 (6)  | 0.0145 (6)   | -0.0006 (6)  |
| P5  | 0.0313 (7) | 0.0342 (7)   | 0.0281 (6)   | 0.0046 (5)   | 0.0134 (5)   | 0.0024 (5)   |
| P6  | 0.0283 (6) | 0.0244 (6)   | 0.0297 (6)   | 0.0011 (5)   | 0.0118 (5)   | 0.0003 (5)   |
|     |            |              |              |              |              |              |

# supporting information

| C41 | 0.050(3)  | 0.068 (4) | 0.062 (4) | -0.019 (3) | -0.001 (3) | -0.013 (3) |
|-----|-----------|-----------|-----------|------------|------------|------------|
| C42 | 0.040 (3) | 0.071 (4) | 0.079 (4) | -0.009 (3) | 0.031 (3)  | 0.004 (3)  |
| C43 | 0.079 (5) | 0.033 (3) | 0.101 (5) | -0.013 (3) | 0.032 (4)  | 0.002 (3)  |
| C51 | 0.061 (3) | 0.047 (3) | 0.043 (3) | 0.016 (3)  | 0.030 (3)  | 0.000 (2)  |
| C52 | 0.045 (3) | 0.066 (4) | 0.033 (3) | -0.003 (3) | 0.004 (2)  | 0.002 (3)  |
| C53 | 0.063 (3) | 0.044 (3) | 0.045 (3) | 0.005 (3)  | 0.031 (3)  | 0.013 (2)  |
| C61 | 0.064 (3) | 0.039 (3) | 0.047 (3) | 0.011 (3)  | 0.032 (3)  | 0.009 (2)  |
| C62 | 0.058 (3) | 0.030 (3) | 0.053 (3) | -0.013 (2) | 0.012 (3)  | -0.006(2)  |
| C63 | 0.035 (3) | 0.042 (3) | 0.050(3)  | 0.011 (2)  | 0.017 (2)  | 0.006 (2)  |
| 01  | 0.145 (5) | 0.095 (4) | 0.077 (3) | -0.022 (4) | 0.040 (3)  | -0.020 (3) |
| C2  | 0.063 (4) | 0.084 (5) | 0.063 (4) | -0.003 (4) | 0.026 (3)  | 0.001 (4)  |
|     |           |           |           |            |            |            |

Geometric parameters (Å, °)

| Rh1—Cl1  | 2.4248 (11) | Rh2—P4   | 2.2857 (13) |
|----------|-------------|----------|-------------|
| Rh1—Cl2  | 2.4455 (12) | Rh2—P5   | 2.2952 (12) |
| Rh1—Cl3  | 2.4363 (12) | Rh2—P6   | 2.2922 (11) |
| Rh1—P1   | 2.2825 (12) | P4—C41   | 1.814 (6)   |
| Rh1—P2   | 2.2951 (12) | P4—C42   | 1.819 (5)   |
| Rh1—P3   | 2.2998 (12) | P4—C43   | 1.815 (5)   |
| P1—C11   | 1.816 (5)   | P5—C51   | 1.815 (5)   |
| P1—C12   | 1.816 (5)   | P5—C52   | 1.804 (5)   |
| P1—C13   | 1.811 (5)   | P5—C53   | 1.812 (5)   |
| P2—C21   | 1.827 (5)   | P6—C61   | 1.802 (5)   |
| P2—C22   | 1.803 (5)   | P6—C62   | 1.808 (5)   |
| P2—C23   | 1.810 (5)   | P6—C63   | 1.820 (4)   |
| P3—C31   | 1.820 (5)   | C41—H41A | 0.9600      |
| P3—C32   | 1.793 (5)   | C41—H41B | 0.9600      |
| P3—C33   | 1.810 (5)   | C41—H41C | 0.9600      |
| C11—H11A | 0.9600      | C42—H42A | 0.9600      |
| C11—H11B | 0.9600      | C42—H42B | 0.9600      |
| C11—H11C | 0.9600      | C42—H42C | 0.9600      |
| C12—H12A | 0.9600      | C43—H43A | 0.9600      |
| C12—H12B | 0.9600      | C43—H43B | 0.9600      |
| C12—H12C | 0.9600      | C43—H43C | 0.9600      |
| С13—Н13А | 0.9600      | C51—H51A | 0.9600      |
| C13—H13B | 0.9600      | C51—H51B | 0.9600      |
| С13—Н13С | 0.9600      | C51—H51C | 0.9600      |
| C21—H21A | 0.9600      | С52—Н52А | 0.9600      |
| C21—H21B | 0.9600      | С52—Н52В | 0.9600      |
| C21—H21C | 0.9600      | С52—Н52С | 0.9600      |
| C22—H22A | 0.9600      | С53—Н53А | 0.9600      |
| C22—H22B | 0.9600      | С53—Н53В | 0.9600      |
| C22—H22C | 0.9600      | С53—Н53С | 0.9600      |
| С23—Н23А | 0.9600      | C61—H61A | 0.9600      |
| С23—Н23В | 0.9600      | C61—H61B | 0.9600      |
| С23—Н23С | 0.9600      | C61—H61C | 0.9600      |
| C31—H31A | 0.9600      | C62—H62A | 0.9600      |
|          |             |          |             |

| C31—H31B                                             | 0.9600                    | C62—H62B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                 |
|------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| C31—H31C                                             | 0.9600                    | С62—Н62С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                 |
| С32—Н32А                                             | 0.9600                    | С63—Н63А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                 |
| C32—H32B                                             | 0.9600                    | С63—Н63В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                 |
| С32—Н32С                                             | 0.9600                    | С63—Н63С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                 |
| С33—Н33А                                             | 0.9600                    | O1—H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8200                 |
| С33—Н33В                                             | 0.9600                    | 01-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.379 (7)              |
| C33—H33C                                             | 0.9600                    | C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600                 |
| Rh2—Cl4                                              | 2,4371 (12)               | C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600                 |
| Rh2—C15                                              | 2.4477(12)                | C2—H2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600                 |
| Rh2—Cl6                                              | 2.1177(12)<br>2 4424 (12) | 02 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9000                 |
|                                                      | 2.1121(12)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Cl1—Rh1—Cl2                                          | 87.44 (4)                 | P4—Rh2—Cl5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.19 (5)              |
| Cl1—Rh1—Cl3                                          | 86.01 (4)                 | P4—Rh2—Cl6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94.79 (5)              |
| Cl3—Rh1—Cl2                                          | 88.69 (4)                 | P4—Rh2—P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95.00 (5)              |
| P1—Rh1—C11                                           | 169.61 (4)                | P4—Rh2—P6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.38 (4)              |
| P1— $Rh1$ — $Cl2$                                    | 93.24 (5)                 | P5—Rh2—Cl4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.68 (5)              |
| P1— $Rh1$ — $C13$                                    | 83 64 (5)                 | P5— $Rh2$ — $C15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170 38 (4)             |
| P1— $Rh1$ — $P2$                                     | 96 15 (4)                 | P5— $Rh2$ — $C16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85 24 (4)              |
| P1Rh1P3                                              | 96.41 (4)                 | P6— $Rb2$ — $C14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84 07 (4)              |
| $P2\_Rh1\_C11$                                       | 83 39 (4)                 | P6— $Rh2$ — $C15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93 63 (4)              |
| $P_2$ Rh1 Cl2                                        | 170.60(4)                 | P6— $Rb2$ — $C16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170.61.(5)             |
| P2 Pb1 C13                                           | 170.00(4)                 | P6 $Pb2$ $P5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170.01(3)<br>05.05(4)  |
| $P_2 = Rh1 = P_3$                                    | 92.09(4)                  | $C_{A1}$ $P_A$ $P_b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114.5(2)               |
| $P_2 = R_{11} - P_3$                                 | 93.95(4)                  | $C_{41} = P_4 = C_{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 114.3(2)<br>101.8(3)   |
| $P_3 = P_{h1} = C_{12}$                              | 93.90 (4)<br>82.62 (4)    | $C_{41} = P_4 = C_{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.8(3)<br>102.4(3)   |
| 13 - K11 - C12<br>13 - K11 - C12                     | 32.02(4)                  | $C_{41} = 14 = C_{43}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.4(3)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1/1.30(4)                 | C42 = P4 = Rh2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.21(19)<br>112.5(2) |
| $C_{11}$ $P_{1}$ $C_{12}$                            | 113.90(10)<br>101.2(2)    | C43 = F4 = KHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.3(2)<br>102.2(3)   |
| C12 P1 P1                                            | 101.2(3)                  | $C_{43}$ $F_{4}$ $C_{42}$ $C_{51}$ $P_{5}$ $P_{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.2(3)               |
| C12 $P1$ $R11$                                       | 120.2(2)                  | $C_{52}$ $P_{5}$ $P_{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.87(17)             |
| C13 $P1$ $C11$                                       | 112.00(19)<br>102.2(2)    | $C_{32}$ $P_{3}$ $R_{112}$ $C_{52}$ $P_{5}$ $C_{51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.32(18)             |
| C13 - P1 - C11                                       | 102.3(3)<br>102.0(2)      | $C_{52}$ P5 $C_{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.8(3)               |
| C13 - P1 - C12                                       | 103.0(3)                  | $C_{52}$ P5 P12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.1(2)               |
| $C_2 I = P_2 = RhI$                                  | 121.30 (19)               | C53—P5—Rh2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.25 (18)            |
| $C_{22}$ P2—Rn1                                      | 112.11 (18)               | $C_{3}$ $P_{3}$ $C_{3}$ $P_{3}$ $C_{3}$ $P_{3}$ $C_{3}$ $P_{3}$ $P_{3$ | 102.1(2)               |
| $C_{22}$ = P2 = C21                                  | 102.8 (3)                 | C61 - P6 - Rh2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.90 (16)            |
| C22—P2—C23                                           | 103.1(3)                  | C61—P6—C62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.3 (2)              |
| C23—P2—Rh1                                           | 114.92 (18)               | C61—P6—C63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.5 (2)              |
| C23—P2—C21                                           | 100.4 (3)                 | C62—P6—Rh2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.98 (17)            |
| C31—P3—Rh1                                           | 115.75 (18)               | C62—P6—C63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.5 (2)              |
| C32—P3—Rh1                                           | 111.43 (18)               | C63—P6—Rh2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.06 (16)            |
| C32—P3—C31                                           | 102.1 (3)                 | P4—C41—H41A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                  |
| C32—P3—C33                                           | 103.4 (3)                 | P4—C41—H41B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                  |
| C33—P3—Rh1                                           | 120.93 (18)               | P4—C41—H41C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                  |
| C33—P3—C31                                           | 100.9 (3)                 | H41A—C41—H41B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| P1—C11—H11A                                          | 109.5                     | H41A—C41—H41C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| P1—C11—H11B                                          | 109.5                     | H41B—C41—H41C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                  |
| P1—C11—H11C                                          | 109.5                     | P4—C42—H42A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                  |

| H11A—C11—H11B                          | 109.5 | P4—C42—H42B                   | 109.5 |
|----------------------------------------|-------|-------------------------------|-------|
| H11A—C11—H11C                          | 109.5 | P4—C42—H42C                   | 109.5 |
| H11B—C11—H11C                          | 109.5 | H42A—C42—H42B                 | 109.5 |
| P1—C12—H12A                            | 109.5 | H42A—C42—H42C                 | 109.5 |
| P1-C12-H12B                            | 109.5 | H42B—C42—H42C                 | 109.5 |
| P1-C12-H12C                            | 109.5 | P4—C43—H43A                   | 109.5 |
| H12A - C12 - H12B                      | 109.5 | P4—C43—H43B                   | 109.5 |
| H12A - C12 - H12C                      | 109.5 | P4—C43—H43C                   | 109.5 |
| H12R C12 H12C                          | 109.5 | H43A - C43 - H43B             | 109.5 |
| P1—C13—H13A                            | 109.5 | H43A - C43 - H43C             | 109.5 |
| P1H13R                                 | 109.5 | H43B - C43 - H43C             | 109.5 |
| P1H13C                                 | 109.5 | P5                            | 109.5 |
| H13A C13 H13B                          | 109.5 | P5 C51 H51R                   | 109.5 |
| H13A C13 H13C                          | 109.5 | P5 C51 H51C                   | 109.5 |
| ШЗА—СІЗ—ШЗС                            | 109.5 | H51A C51 H51R                 | 109.5 |
| $\frac{113D}{C21} = \frac{113C}{113C}$ | 109.5 | H51A C51 H51C                 | 109.5 |
| $P_2 = C_2 I = H_2 I A$                | 109.5 | H51R - C51 - H51C             | 109.5 |
| $P_2 = C_2 I = \Pi_2 I D$              | 109.5 | H51B-C51-H51C                 | 109.3 |
| $r_2 = c_2 = n_2 r_1$                  | 109.5 | P5-C52-H52R                   | 109.5 |
| $\Pi 21A - C21 - \Pi 21B$              | 109.5 | P3-C32-H52C                   | 109.3 |
| $H_2IA = C_2I = H_2IC$                 | 109.5 | $P_{2} = C_{2} = H_{2} C_{2}$ | 109.5 |
| $\Pi 2 \Pi D = C 2 \Pi = \Pi 2 \Pi C$  | 109.3 | H52A C52 H52C                 | 109.3 |
| P2—C22—H22A                            | 109.5 | H52A—C52—H52C                 | 109.5 |
| P2—C22—H22B                            | 109.5 | H52B-C52-H52C                 | 109.5 |
| P2—C22—H22C                            | 109.5 | P5                            | 109.5 |
| H22A—C22—H22B                          | 109.5 | P5                            | 109.5 |
| H22A—C22—H22C                          | 109.5 | P5-C53-H53C                   | 109.5 |
| H22B—C22—H22C                          | 109.5 | H53A—C53—H53B                 | 109.5 |
| P2—C23—H23A                            | 109.5 | H53A—C53—H53C                 | 109.5 |
| P2—C23—H23B                            | 109.5 | H53B—C53—H53C                 | 109.5 |
| P2—C23—H23C                            | 109.5 | P6—C61—H61A                   | 109.5 |
| H23A—C23—H23B                          | 109.5 | P6—C61—H61B                   | 109.5 |
| H23A—C23—H23C                          | 109.5 | P6—C61—H61C                   | 109.5 |
| H23B—C23—H23C                          | 109.5 | H61A—C61—H61B                 | 109.5 |
| P3—C31—H31A                            | 109.5 | H61A—C61—H61C                 | 109.5 |
| P3—C31—H31B                            | 109.5 | H61B—C61—H61C                 | 109.5 |
| P3—C31—H31C                            | 109.5 | P6—C62—H62A                   | 109.5 |
| H31A—C31—H31B                          | 109.5 | P6—C62—H62B                   | 109.5 |
| H31A—C31—H31C                          | 109.5 | P6—C62—H62C                   | 109.5 |
| H31B—C31—H31C                          | 109.5 | H62A—C62—H62B                 | 109.5 |
| Р3—С32—Н32А                            | 109.5 | H62A—C62—H62C                 | 109.5 |
| Р3—С32—Н32В                            | 109.5 | H62B—C62—H62C                 | 109.5 |
| Р3—С32—Н32С                            | 109.5 | P6—C63—H63A                   | 109.5 |
| H32A—C32—H32B                          | 109.5 | P6—C63—H63B                   | 109.5 |
| H32A—C32—H32C                          | 109.5 | Р6—С63—Н63С                   | 109.5 |
| H32B—C32—H32C                          | 109.5 | H63A—C63—H63B                 | 109.5 |
| Р3—С33—Н33А                            | 109.5 | Н63А—С63—Н63С                 | 109.5 |
| Р3—С33—Н33В                            | 109.5 | H63B—C63—H63C                 | 109.5 |
| Р3—С33—Н33С                            | 109.5 | C2—O1—H1                      | 109.5 |

| H33A_C33_H33B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                  | O1 - C2 - H2A                      | 109 5                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|-----------------------|
| H33A_C33_H33C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                  | 01 - 02 - H2B                      | 109.5                 |
| H33B_C33_H33C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                  | $01 - C^2 - H^2C$                  | 109.5                 |
| $C_{14}$ Rb2 C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87 35 (5)              | $H_{2}A = C_{2} = H_{2}B$          | 109.5                 |
| $C_{14}$ $R_{h2}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87.55 (5)<br>86.57 (5) | $H_{2A} = C_2 = H_{2D}$            | 109.5                 |
| $C_{14}$ $C_{16}$ $C_{15}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.37 (3)              | $H_{2} = C_{2} = H_{2} C_{2}$      | 109.5                 |
| CIO-KII2-CIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.13(4)<br>172.28(5)  | H2D—C2—H2C                         | 109.5                 |
| r4—R112—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 172.28 (3)             |                                    |                       |
| Cl1—Rh1—P1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.4 (4)               | P3—Rh1—P2—C23                      | -47.9 (2)             |
| Cl1—Rh1—P1—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158.6 (3)              | Cl4—Rh2—P5—C51                     | 111.9 (2)             |
| Cl1—Rh1—P1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -80.4 (3)              | Cl4—Rh2—P5—C52                     | -8.4(2)               |
| Cl1—Rh1—P2—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166.5 (2)              | Cl4—Rh2—P5—C53                     | -125.53 (19)          |
| Cl1—Rh1—P2—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -71.8 (2)              | Cl4—Rh2—P6—C61                     | 72.9 (2)              |
| C11—Rh1—P2—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.5 (2)               | C14—Rh2—P6—C62                     | -42.6(2)              |
| Cl1—Rh1—P3—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.6 (2)              | C14—Rh2—P6—C63                     | -165.5(2)             |
| Cl1— $Rh1$ — $P3$ — $C32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.5 (3)               | C15—Rh2—P4—C41                     | -38.0(2)              |
| C11 - Rh1 - P3 - C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1071(2)               | $C_{15}$ $R_{h2}$ $P_{4}$ $C_{42}$ | -1597(2)              |
| Cl2— $Rh1$ — $P1$ — $Cl1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1299(2)                | C15 = Rh2 = P4 = C43               | 79 1 (3)              |
| C12 Rh1 $P1$ $C12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1080(3)               | C15 = Rh2 = P6 = C61               | -141(2)               |
| C12 Rh1 P1 $C12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131(2)                 | $C_{15}$ $R_{h2}$ $P_{6}$ $C_{62}$ | -129.6(2)             |
| C12 = Rh1 = P3 = C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.7(2)                | C15 = Rh2 = P6 = C63               | 129.0(2)<br>107 5 (2) |
| $C_{12} = R_{h1} = P_3 = C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -723(3)                | $C_{15} = R_{12} = 10 - C_{03}$    | -1227(2)              |
| $C_{12}$ $R_{11}$ $-15$ $-C_{52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.3(3)                | C16 Ph2 P4 C42                     | 122.7(2)              |
| $C_{12}$ = $R_{11}$ = $I_{12}$ = $C_{12}$ = $C_{12}$ = $R_{11}$ = $C_{12}$ = $C_{12}$ = $R_{11}$ = $C_{12}$ = | 100.0(2)               | C16 Ph2 P4 C42                     | -5.6(2)               |
| C13 = K11 = P1 = C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.3(2)<br>162.7(2)    | C16 Ph2 P5 C51                     | -3.0(3)               |
| C13 - K11 - P1 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.7(3)               | C10 $R112$ $P3$ $C51$              | -101.7(2)             |
| $C13 - K\Pi - P1 - C13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -75.3(2)               | $CI_{0}$ Rn2 $P_{3}$ $C_{32}$      | 77.9 (2)              |
| C13 - Rn1 - P2 - C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10/.9(2)              | Clo-Rn2-P5-C53                     | -39.2(2)              |
| C13— $Rh1$ — $P2$ — $C22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.9 (2)               | P4—Rh2—P5—C51                      | -6/.3(2)              |
| C13— $Rh1$ — $P2$ — $C23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131.1 (2)              | P4—Rh2—P5—C52                      | 1/2.3 (2)             |
| P1—Rh1—P2—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -24.0(2)               | P4—Rh2—P5—C53                      | 55.2 (2)              |
| P1—Rh1—P2—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.7 (2)               | P4—Rh2—P6—C61                      | -99.5 (2)             |
| P1—Rh1—P2—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -145.0 (2)             | P4—Rh2—P6—C62                      | 145.0 (2)             |
| P1—Rh1—P3—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -48.7 (2)              | P4—Rh2—P6—C63                      | 22.1 (2)              |
| P1—Rh1—P3—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -164.8 (3)             | P5—Rh2—P4—C41                      | 151.7 (2)             |
| P1—Rh1—P3—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.5 (2)               | P5—Rh2—P4—C42                      | 30.0 (2)              |
| P2—Rh1—P1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -50.5 (2)              | P5—Rh2—P4—C43                      | -91.3 (3)             |
| P2—Rh1—P1—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.7 (3)               | P5—Rh2—P6—C61                      | 164.96 (19)           |
| P2—Rh1—P1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -167.3 (2)             | P5—Rh2—P6—C62                      | 49.5 (2)              |
| P2—Rh1—P3—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -145.7 (2)             | P5—Rh2—P6—C63                      | -73.4 (2)             |
| P2—Rh1—P3—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98.3 (3)               | P6—Rh2—P4—C41                      | 55.3 (2)              |
| P2—Rh1—P3—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -23.4 (2)              | P6—Rh2—P4—C42                      | -66.4 (2)             |
| P3—Rh1—P1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -147.2 (2)             | P6—Rh2—P4—C43                      | 172.4 (3)             |
| P3—Rh1—P1—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -25.0 (3)              | P6—Rh2—P5—C51                      | 27.6 (2)              |
| P3—Rh1—P1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.0 (2)               | P6—Rh2—P5—C52                      | -92.7 (2)             |
| P3—Rh1—P2—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.1 (2)               | P6—Rh2—P5—C53                      | 150.16 (19)           |
| P3—Rh1—P2—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -165.1 (2)             |                                    |                       |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | H···A | D····A    | D—H…A |
|--------------------------|-------------|-------|-----------|-------|
| O1—H1···Cl6 <sup>i</sup> | 0.82        | 2.47  | 3.184 (5) | 147   |

Symmetry code: (i) -x+1/2, y+1/2, -z+1/2.