Hoeftding-"Tree-Based Learning from Data Streams and Its
Application in Online Voltage Security Assessment

Zhijie Nie

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
n

Electrical Engineering

Virgilio Centeno, Chair
Jaime De La Ree Lopez
Vassilis Kekatos

August 8, 2017
Blacksburg, Virginia

Keywords: Power Systems Stability, Voltage Security Assessment, Machine Learning,
Decision Trees, Hoeftding Trees
Copyright 2017, Zhijie Nie



Hoeffding-Tree-Based Learning from Data Streams and Its Application in
Online Voltage Security Assessment

Zhijie Nie

ABSTRACT

According to the proposed definition and classification of power system stability addressed
by IEEE and CIGRE Task Force, voltage stability refers to the stability of maintaining the
steady voltage magnitudes at all buses in a power system when the system is subjected to a
disturbance from a given operating condition (OC). Cascading outage due to voltage collapse
is a probable consequence during insecure voltage situations. In this regard, fast responding
and reliable voltage security assessment (VSA) is effective and indispensable for system to
survive in conceivable contingencies. This paper aims at establishing an online systematic
framework for voltage security assessment with high-speed data streams from synchrophasors
and phasor data concentrators (PDCs). Periodically updated decision trees (DTs) have been
applied in different subjects of security assessments in power systems. However, with a
training data set of operating conditions that grows rapidly, re-training and restructuring a
decision tree becomes a time-consuming process. Hoeffding-tree-based method constructs a
learner that is capable of memory management to process streaming data without retaining
the complete data set for training purposes in real-time and guarantees the accuracy of
learner. The proposed approach of voltage security assessment based on Very Fast Decision
Tree (VFDT) system is tested and evaluated by the IEEE 118-bus standard system.



Hoeffding-Tree-Based Learning from Data Streams and Its Application in
Online Voltage Security Assessment

Zhijie Nie

GENERAL AUDIENCE ABSTRACT

Voltage security is one of the most critical issues in the power systems operation. Given
an operating condition (OC), Voltage Security Assessment (VSA) provides a tool to access
whether the system is capable to withstand disturbances if there is one or more than one
elements is not functioning appropriately on the power grid. Traditional methods of VSA
require the knowledge of network topologies and the computational contingency analysis of
various circumstances. With trained models, decision-tree-based VSA is able to assess the
voltage security status by collectible measurements among the system in a real-time manner.
The system topology may alter over and over by system operators in order to meet the needs
of heavy load demand and power quaility requirements. The proposed approach based on
Very Fast Decision Tree (VFDT) system is capable of updating trained decision-tree models
regarding to changes of system topology. Therefore, the updated decision-tree models is able
to handle different system topology and to provide accurate security assessment of current

OC again.



Acknowledgments

I would like to express my gratitude to Dr. Virgilio Centeno, my committee chair and
advisor, who has been provide guidance, support, and assistance behind this thesis. And I
am also grateful to my fellow Dr. Duotong Yang, who has incented me, and broaden my

academic scope from various perspectives.

I am also grateful to Dr. Kevin D. Jones from Dominion Energy for his encouragement and
help.

I would also like to thank Dr. Jaime De La Ree Lopez and Dr. Vassilis Kekatos for their
patience and support in overcoming problems that I have been confronted with during my

research and coursework.

Last but not least, I would also like to acknowledge my fellow doctoral students at Center for
Power and Energy for their friendship: Chen Wang, Tapas Kumar Barik, Andreas Schmitt,
Elliott Mitchell-Colgan, Jacques Delport, and Xiawen Li.

v



Contents

1

3

Introduction
1.1 Risks of Power Systems Voltage Security . . . . . .. .. .. ... ... ...

1.2 Overview of Machine Learning Methods . . . . . . ... .. ... ... ...

Background on Decision Trees and Online Voltage Security Assessment

Framework

2.1 Overview of Decision Trees and Ensemble Learning Method . . . . . . . ..
2.1.1 Induction of a Decision Tree . . . . . . . . . .. ... ... ... ...
2.1.2  Ensemble Learning of Decision Trees . . . . . .. ... .. ... ...

2.2 Voltage Security Assessment . . . . . . . . ...

2.3  Online Voltage Security Assessment Framework . . . .. ... ... .. ...

2.4 SUMMATY . . . . v v e e e

Very Fast Decision Trees System and Its Application in Online Voltage

Security Assessment

3.1 Hoeffding Bound . . . . . ... .. ...



3.2 Hoeffding Trees Algorithm and VFDT System . . . . . ... ... ... ... 24

3.2.1 Induction of A Hoeffding Tree . . . . . . . .. ... ... ... .... 24
3.2.2 The VFDT System . . . . ... . ... ... . . 26
3.3 Reweighting of Ensemble Hoeffding Trees . . . . . . . . . ... ... ... .. 29
3.4 VFDT System applied in Online Voltage Security Assessment . . . . . . .. 30
3.5 Summary ... 31
Case Study and Implementation on openECA Platform 33
4.1 Preparation of Training and Updating Database of OCs . . . . . . . . . . .. 33
4.2 Updating Performance Test Using VFDT System . . . . ... ... .. ... 34
4.3 Online VSA Applications implemented with openECA . . . . . . . ... .. 35
4.3.1 Introduction of openECA Platform . . . . ... .. ... ... .. .. 35
4.3.2 Measurements Data Structure and Data Mappings Setup . . . . . . . 36
4.3.3 Configurations of Analytics generated by openECA Client . . . . . . 38
4.3.4 Shadow System Simulator Testbed . . . . . . ... ... ... .... 40
4.4 Deployment of Online Voltage Security Assessment Analytic . . . . . .. .. 41
4.5 SUMMATY . . . . o oot e 43
Conclusions and Future Works 49
5.1 Conclusions . . . . . . . . . 49
5.2 Future Works . . . . . ..o 50

vi



Bibliography

Appendix A Python Implementations of Hoeffding Trees
ALl main() . . ...
A2 class HoeffdingTree() . . . . . . . . . . .

A3 class ActiveHNode() . . . . . . . .

A4 class GiniSplitMetric()

Appendix B Management of Data Structure in openECA

B.1 Manage Data Structure using SQL scripts

B.2 Manage Data Mappings

vil

52

56

56

o8

66

68

69



List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

4.1

4.2

4.3

Example: A trained decision tree model structure . . . . . . . ... ... .. 6
A training dataset for ensemble learning example . . . . . . . ... ... .. 13
An ensemble decision trees trained by AdaBoost . . . . . . ... ... .. 14
Single-Load Infinity-Bus System . . . . . . .. ... .. ..o 15
P-U CUTVES . . . . o o 16
U-q CUTVES . . . . o . 17
Loadability limit and security boundary . . . . . . . ... .. .. ... ... 19
The Workflow of Online Voltage Security Assessment Framework . . . . . . . 21
Hoeffding bounds on different settingsof 6 . . . . . . . ... ... ... ... 27
Periodic Update of Online VSA Applications using VEDT System . . . . . . 32
IEEE 118-bus standard system . . . . . .. .. .. ... . 0. 44
Computation time for modifying DT model . . . . . . .. .. .. ... ... 45
Testing error for modified DT model . . . . . ... .. ... ... ... ... 45

viil



4.4

4.5

4.6

4.7

4.8

Complete Data Structure of openECA Platform . . . . . ... ... ... .. 46

Dataflow Overview of Online VSA Applications . . . . . . . ... ... ... 47
Test Harness Metrics of Shadow System Deployed as openECA Analytic . . 47
Grafana Dashboard for Time-series Data Visualization . . . . .. . ... .. 48
Simulation Result of Closed-Loop Control Architecture . . . . . . .. .. .. 48

1X



List of Tables

1.1

2.1

2.2

2.3

4.1

4.2

4.3

4.4

Overviews of Machine learning algorithms . . . . . .. .. .. .. ... ...

A training dataset example for supervised learning task . . . . . . . .. . ..
A training dataset for ensemble learning example . . . . . . . ... ... ..

An ensemble decision trees trained by AdaBoost . . . . . . .. ... ... ..

Number of Secure/Insecure OC Samples for Case Study . . . . . .. ... ..
Measurements Data Structure for Online VSA Applications . . . . . . . . ..
Manage Input/Output Data Mappings in openECA . . . . . . .. ... ...

Configurations for openECA-Based Closed-Loop Control Architecture . . . .

12

12

34

37

39

42



Chapter 1

Introduction

Modern power systems are experiencing an unprecedented occasion with high-speed data
streaming due to the increasing amount of installations of Phasor Measurement Unit (PMU)
and Advanced Metering Infrastructure (AMI). One of the great challenges for power electric
utilities and regional transmission organizations (RTOs) is to meet the system-wide voltage
security requirement. Therefore, it is critically important for operators and coordinators
to build an intelligent tool for wide-area situational awareness and decision-making in re-
sponse to the continuously streaming data. With machine learning techniques implemented,
controllers driven by PMU measurements and synchrophasor-based linear state estimator
(LSE) would be the keystones to achieve this goal [1-4]. The study of this paper aims to
design a framework for online Voltage Security Assessment (VSA) for region voltage con-
troller that provides voltage security status analysis within a control region where PMUs
are installed. It is expected that this proposed assessment framework is capable to handle

real-time high-speed data streams.

From the time being, there are various voltage control methodologies developed for transmis-
sion grids in the past century. Instead of solving the single-constrained OPF problem [5-7],
researchers from Denmark and United States proposed a two-phase control scheme based
on decision trees (DTs) [8]. The proposed DT model in the first phase is developed for
identifying potential security issues in dynamic security assessment. Then, the second phase
DT model provides online decision support on preventive control strategies. The insecure
operating conditions (OCs) are detected by the first DT, then the final control trajectory



is searched out of numerous new OCs based on optimal generators outputs subject to min-
imum economic cost. While this approach provides faster online situational awareness and
controllability, its accuracy and reliability are highly dependent on how the learning data
set of OCs is generated. Topology changes due to forced outages of network elements could
result in differences between the offline learning database and the real-time operating condi-
tions, and ultimately cause inaccurate classification predictions. A more robust data mining
framework introduced in [9] shows its effectiveness in dealing with variations of OCs and

system topology changes by using online ensemble learning method.

The study of this paper aims at designing a framework of online voltage security assessment
that timely provides decisions on security status for real-time system operating conditions. It
is also expected that the proposed decision-tree-based voltage security assessment is capable
to deal with high-speed PMU data streams. To provide a cost-effective and accurate VSA
scheme, there are two primary issues inherent in decision-tree-based methodologies with re-
spect to high-speed data streams. First, machine learning techniques provide power systems
with a probabilistic perspective, which is highly dependent on the pre-analyzed data set of
OCs and their possible variances. However, system configurations like transformer load tap
changers (LTCs) switching or topology changes, might be conducted frequently during a day
at the system operation center. Hence, an offline-trained decision-tree model may return
inaccurate predictions due to the differences between the prepared OCs and the unexpected
actual OCs. Second, regarding to the high-speed data streams collected from PMUs, it is
necessary to establish a timely update scheme for the trained model in order to adapt to the

modified system configurations and new operating situations.

To maintain the robustness of such a decision-tree-based assessment, Diao et al. [3] intro-
duced multiple optimal DT's and corrective DT's to further improve the performance as an
addition to the trained model, but it also increases the burdens of computation complexity
and memory management with an increasing number of DTs. He et al. [9] employed an
adaptive ensemble decision-tree learning method, which adjusts the voting weights of weak
learners based on inaccurate predictions, and flips the predictions whose errors are more
than 0.5 during each periodic update. In the paper, Incremental Tree Induction (ITT) [10] is
used as a lossless online updating algorithm; with a new incoming data set, I'TI provides the
same DT ultimately as the DT built from scratch using Quinlan’s ID3 [11]. However, this
technique is memory-intensive and time-consuming [12] because it involves recursive trans-

positions that require storing all the training and updating data within the decision nodes.



Alternatively, in regards to mining high-speed data streams, Hoeffding trees (HT's) [13] as an
incremental decision-tree learning method is proposed and capable to be trained in constant
time per sample. Empirical studies have revealed its advantages when continuing to update

the DT model with massive numbers of data samples [14].

1.1 Risks of Power Systems Voltage Security

In recent years, with increasing demand on electricity, the voltage security problem still
raises some concerns regarding to current complex transmission networks. Voltage security
has been addressed as a critical problem for system operation since the 1920s [15]. As listed
in [16], voltage collapses and voltage disturbance incidents happened in many mature systems
worldwide in the past century. From previous occurrences of voltage issues, discussions have
been elevated to IEEE/CIGRE Joint Task Force in order to tackle voltage issues with a
systematic definition. Here, the definitions of voltage security established and developed

in [17] are adopted, which are:

e The ability of a power system to maintain steady voltages at all buses in the system
after being subjected to a disturbance from a given initial operating condition, which
depends on the ability to maintain/restore equilibrium between load demand and load

supply from the power system.

And four categories have been classified regarding to voltage security issues: large-disturbance
voltage stability, small-disturbance voltage stability, short-term wvoltage stability, and long-
term wvoltage stability. This paper focuses on small-disturbance short-term voltage stability
that involves load-tap-changers (LTCs), shunt compensators, and any other slower acting
equipment when subjected to increasing load in the system. The time-responses for short-
term voltage stability may vary from several to many minutes, and the static system analysis
method is applied to study the factors influencing the stability margins and the effects of

these acting equipment.



1.2 Overview of Machine Learning Methods

Under the background of Big-Data, data analysts and engineers are capable to collect large
amounts of data from images, videos, sensors, Internet-of-Things (IoT) devices, etc.. Ma-
chine Learning, explores the study and construction of pure data-driven algorithms that
finds patterns in data and make predictions with newly arrived data based on established

models.

In machine learning studies [18,19], two types of categorization of machine learning algo-

rithms are commonly discussed.

1. Depending on whether a learning technique requires “labels” or not, the algorithms in
machine learning can be classified into two categories, which are supervised learning
and unsupervised learning. Supervised learning focuses on learning a rule to map
inputs and outputs with presented desired “labels” for outputs. And unsupervised
learning develops hidden patterns in data without given “labels” to find the nature in

the inputs.

2. Depending on the output from different studied tasks, the algorithms in machine learn-
ing can be classified into three categories, which are classification, regression, and

clustering.

e Classification algorithms establish models to classify data into specific categories,
which are regarded discrete “labels”. Popular algorithms include k-Nearest Neigh-
bor (kNN), Logistic Regression, Naive Bayes methods, Support Vector Machine
(SVM), Decision Trees, etc..

e Regression algorithms build models to predict continuous datapoints as “labels”.
Popular algorithms include Linear Regression, Neural Networks (NN), Decision
Trees, etc..

e Clustering, as an unsupervised learning task, finds the nature groupings or pat-
terns on the data without any “labels” provided in the original dataset. Popular
algorithms include k-Means method, Gaussian Mixture Models (GMM), hidden

Markov models, etc..

Examples of machine learning problems are listed in Table 1.1.



Table 1.1: Overviews of Machine learning algorithms

Task Category Common Problems for Studies

Classification Supervised learning Spam filtering, cancer diagnosis, bank mar-
keting

Regression Supervised learning Electricity load forecasting, pre-programmed

trading, communities and crime study

Clustering Unsupervised learning Character trajectories, facial recognition

Decision Trees approach in the classification usage is a broadly discussed machine learn-
ing methodology applied in voltage security assessment and dynamic security assessment
of power systems [3, 8,20, 21], which proposed a novel way to tackle system-wide security
problem instead of using conventional methods like P-V and V-Q) curves analysis. With
regard to security assessment problems, decision trees approach offers simple and direct de-
cision rules to classify operating conditions, which benefits the real-time operation of power
systems analytics. On the use of decision trees, Cutsem et al. [20,21] proposed machine
learning frameworks for voltage security assessment and transient security assessment of
power systems. In these application, a decision tree (DT) model is established to classify

specific operating conditions as “Secure” and “Insecure”.

An example of DT model is shown in Figure 1.1. A trained DT model is structured as a
flowchart-like tree drawn upside down, consisting of two groups of internal nodes: attribute
nodes, including the “root”, represent testing conditions for particular nodes regarding to
the input parameters; and terminal nodes, indicate the results for a set of input values as

class “labels”.

In this paper, an adaptive ensemble decision-tree-based voltage security assessment using
Very Fast Decision Tree (VFDT) system for updates is proposed in order to guarantee the
robustness of the proposed technique after possible topology changes or any unpredictable
system conditions captured by PMU data streams. Initially, the ensemble DT model consists
of multiple DTs with voting weights generated by the Adaptive Boosting (AdaBoost) algo-
rithm. Instead of re-training the whole set of DTs from scratch, an adaptive DT updating
scheme of VFDT system is introduced to update the ensemble trees. The proposed method-
ology provides a lightweight method that benefits memory management for high-speed data

streams, which requires only the latest updating data and basic statistical analysis instead



¥13<1.00

17 < 0.961221 A ; 21==0916676

16 »=0.965033

x1=1.00538

x1 = 1.00402 £&1 »= 1.00402

Figure 1.1: Example: A trained decision tree model structure

of the whole data set for updating purposes.

The remaining parts of this paper is organized as follows: Chapter 2 details the induction
process of a decision tree, discuss the ensemble learning of DT, and illustrates the basic con-
cept of voltage security assessment. Chapter 3 demonstrates the framework VFDT system
scheme applied in online voltage security assessment analytics. Simulation results of pro-
posed methodology using IEEE 118-bus system model are presented in Chapter 4. Finally,

conclusions are drawn in Chapter 5.



Chapter 2

Background on Decision Trees and
Online Voltage Security Assessment

Framework

2.1 Overview of Decision Trees and Ensemble Learning
Method

The decision tree methodology, is a supervised learning technique that offers a statistical per-
spective identifying the inherent boarders between multiple classes by learning the thresholds

of parameters in the candidate attributes that each distinct class possesses.

First of all, clarify some terminology used throughout the explanation of inductive process

of a decision tree model.

e Attributes: parameters from the input data

e Attribute node: a node that splits data into successor nodes based on certain criterion

against a threshold value on an attribute!

!The “root” is also an attribute node with certain criterion against a threshold value on an attribute.



Table 2.1: A training dataset example for supervised learning task

Instance Desired Label Attrib.1 Attrib.2 Attrib.3 ... Attrib.M
T ClassA 1.004 0.976 0.988 o 1.062
T ClassB 0.999 1.026 0.967 ... 1.035
T3 ClassB 1.011 1.023 0.937 ... 1.075
TN ClassA 1.021 0.983 0.961 o 1.015

e Best split: the one obtaining the highest information is selected as the basis at each

attribute node by applying the heuristic measurement on all possible attributes

e Data instance: a series of attribute values related to a certain desired label, examples

for data instances are shown in 2.1 representing a training dataset
e Desired label: the given class label of a data instance

e Heuristic measurement: the indicator that measures the information by the parameters

in all data instances of the dataset

e Split: a process of changing a node to an attribute node and splitting into multiple

terminal nodes
o Predicted label: the class label of a data instance predicted by the trained model

e Terminal node: a node indicates the class to which the data instance belongs, used

interchangeably with “leaf node”

2.1.1 Induction of a Decision Tree

The growing of a decision tree from scratch is an inductive process starting from the “root”.

A pseudo-code for an incremental tree induction process can be summarized as follows:

1. Initialize the tree with a “root” with the training dataset installed;



2. At a node, find the best attribute according to the best splitting rule for each attribute;

3. Assign the attribute node with best splitting criterion achieved above, and split the

installed data instances into two successor nodes;

4. Determine whether to stop the induction process at successor nodes according to the

termination rule;

5. Recursively call the induction process for all non-terminal nodes.
It is required to answer two major questions throughout the induction, namely:

e To find the best split points, what kind of heuristic measurements for a splitting cri-

terion is efficient in the classification task?

e Should the node-splitting process be terminated or continued? If terminated, which

class “label” should be assigned for a terminal node?

Best Splitting Rule

On the use of a DT model, an object could be grouped into a specific class using an inductive
approach, which searches exhaustively for the best split points at all attribute nodes. The
Gini indez, an alternative approach of Information Gain, favors larger partitions in the two-
class problems; it measures the input node to efficiently choose the best split position that
has the minimum value to generate the DT inductively. A general expression of Gini index

is given by

nc

Gini =1- (pc|k)® (2.1)

c=1

where n¢ is defined as the number of discrete classes, and p. denotes the probability of a
specific class at the fallen node k. This approach is also used as the heuristic measurement
G () to find the best splits when deriving the Hoeffding tree in Chapter 3.2.



10

With Gini index implemented as the heuristic measurement, notice that the higher the score,
the better the criterion that distinguishes class labels with one attribute. Therefore, the best
splitting rule for an attribute node is to choose the highest score in heuristic measurement

as the splitting criterion to ensure the efficiency of the decision tree.

Termination Rule

By applying the best splitting rule above, a decision tree could be fully established to tell
all training instances apart with accurate class label predictions just as CART algorithm
provides?; however, this procedure is unnecessary and poses a risk of over-fitting for a de-
veloped classification model. As a result, a well-developed decision tree model does not only
distinguishes different classes efficiently, but also maintains a high training accuracy with a
rational number of tree levels. The termination rule could be applied if decrease in impurity

is smaller than a user-defined bound in heuristic measurement.

2.1.2 Ensemble Learning of Decision Trees

Ensemble learning methodology is a process that utilizes multiple models of expert to improve
the performance of single weak learning algorithm. In this paper, the Adaptive Boosting
(AdaBoost) algorithm [22] is adopted in the offline VSA training to improve the performance
and accuracy of the security assessment of OC variations and unexpected topology changes.
AdaBoost is an ensemble learning algorithm which linearly combines the outputs from L
weak hypotheses of decision tree h; () with a weighted sum to represent the final result
H (x) of the combined model.

H (x) = sgn (Z arhy (:I:)) (2.2)

where a; denotes the voting weight for the weak classifier h;, and sgn(-) is the sign function

(or signum function) that extracts the sign of a real number.

2CART (Classification And Regression Trees) algorithm fully grows a decision tree model to realize zero

impurity, and prunes the tree by assigning terminal nodes regarding to the largest probability of (p.|k).



11

Given a training dataset D = {(x1,v1),..., (€n,yn)}, in which for any i, &; € X and
y; € {—1,4+1}. Initially, each the training instance is uniformly distributed with a weight
wz(l) = ;ll, then call the weak learner to train with this distribution dV). After that, calculate

the training error e; under the distribution, and set the voting weight «; for each classifier
as follows:

1 1—61
=1 2.
a 2n( o ) (2.3)

This iterative process is sequentially continued for L times by re-distributing the weights of

data instances with

4+ — g0 P (—yzzzhz (%)) (2.4)
l

where 4\; is the normalization factor for the distribution for the next weak learner d Y,

To demonstrate the ensemble learning method, Table 2.2 details a randomly generated 2-
D training dataset with 10 instances labeled as “4+1” and the other 10 labeled as “—1".
Figure 2.1 presents a scatter graph of these two-class data instances, in which “41” class
instances are represented by blue plus sign markers, and “—1” class instances are represented

by red circle markers.

By applying AdaBoost algorithm to fit the training dataset to a classification model, here
L = 6 weak learners are adopted in this example. To simplify the demonstration, weak
learners adopted are simple one-level decision trees, each of which only consists of one “root”
and two “leafs” corresponding to the classification results at the “root”. Table 2.3 illustrates
all classification criteria and the voting weights of each weak classifiers. The trained ensemble
model of all weak classifiers is shown in Figure 2.2. The voting weights are revealed in the

form of color saturation in the figure.



Table 2.2: A training dataset for ensemble learning example

Label T T
+1 —0.7867  0.7061
+1 0.9238 0.2441
+1 —0.9907 —0.2981
+1 0.5498 0.0265
+1 0.6346 —0.1964
+1 0.7374 —0.8481
+1 —0.8311 —-0.5202
+1 —0.2004 —0.7534
+1 —0.4803 —0.6322
+1 0.6001 —0.5201
-1 —=0.1371 —-0.1655
-1 0.8213 —0.9007
-1 —0.6363 0.8054
-1 —0.4723 0.8896
-1 —0.7089 —0.0183
-1 —=0.7278 —0.0215
—1 0.7386  —0.3246
—1 0.1594 0.8001
-1 0.0997 —0.2615
-1 -0.7101 —-0.7776

Table 2.3: An ensemble decision trees trained by AdaBoost

[ Voting weight Criterion if True if False
1 0.1413 r9 < 0.7531 +1 -1
2 0.2280 xy < —0.7573 +1 -1
3 0.1726 x1 < 0.3546 -1 +1
4 0.2044 x1 < 0.7380 +1 -1
5 0.0999 x1 < 0.8725 -1 +1
6 0.1536 e < —0.4223 +1 -1




13

0.8 o o © A

06
04

02

02} , e *
04f

061

Figure 2.1: A training dataset for ensemble learning example

2.2 Voltage Security Assessment

From a general perspective [23], power system stability analysis concentrates on the capabil-
ity of withstanding any conceivable disturbance under a certain operating condition (OC).
Voltage Security Assessment is an evaluation tool that conducts voltage and steady-state
stability computations to determine whether the system is operating within the maximum
loadability, and it is also capable to be execute to determine the post-control stability status
of a particular OC [2,8]. In practice, the P-V curves and V-@Q) curves are two commonly used
techniques for voltage collapse analysis of power systems. The bifurcation points (or knee
points), of P-V curves and V-@Q curves indicate the maximum loadability limits that the
power could be delivered without incurring any voltage instability issues. Voltage collapses
will occur on the heavily loaded system with a load demand higher than the maximum load-
ability. These knee points are the bifurcation points of the nonlinear power system model.
Represented in mathematical terms, the maximum loadability corresponds to a scalar func-
tion ¢ of p, in which p represents the load demand vector p = [P, ..., Py, Q1, . - ., Qn], where
m denotes the number of buses in the system. Then, consider the following optimization
problem as follows:



14

Figure 2.2: An ensemble decision trees trained by AdaBoost

max ¢(p)
pu (2.5)

subject to @(p,u) =0

where (p,u) = 0 represents the set of equality constraints, which generally corresponds
to the OC of steady-state power systems, and u denotes a set of steady-state variables, for
instances, V' and 0. To solve the problem above, define a Lagrangian function below:

L(p,u,w) = {(p) + w p(p, u) (2.6)

where w denotes the vector of Lagrangian multipliers. According to the Karush-Kuhn-
Tucker’s first-order optimality conditions [24], the Jacobian matrix V,¢ of the Lagrangian
function is singular at a loadability limit.



15

X

Figure 2.3: Single-Load Infinity-Bus System

Consider a single-load infinity-bus system of Figure 2.3, with a load supplied by an infi-
nite bus through one transmission line. The steady-state equations, which is the equality

constraints in the optimization problem of Equation ((2.5)) could be listed as follows:

FE
P YV in 6 (2.7)

2
Q:E?VCOSQ—VY (2.8)

By normalizing the variables based on the short circuit power, which is E?/X | it yields

_ PX _ QX _ Vv
P="ppqd= g5, V=7,

Rewrite the steady-state equations as follows:

p=wvsinf (2.9)

q=vcost — v (2.10)

Given the trigonometric identity equation v2sin + v2cos?0 = v?, it yields:

p=1/v2— (q+12)° (2.11)



16

tan ¢ = -0.75]
——tano=-05
tan ¢ = -0.25]
—tano=0
12— - : ——tan0=0.25
——tan¢=-05
tan¢=-0.75
tano=1.0

08—

06—

0.4~

Figure 2.4: p-v Curves

For different settings of the constant power factors on load, tan ¢ = g, Figure 2.4 reveals

the group of normalized p-v curves.

As Figure 2.4 shows, at a unity power factor load, tan ¢ = 0 (given ¢ = 0), the (normalized)
maximum power is limited at p,.. = 0.5 when the voltage at load bus drops to a critical
value as Veriticat = 0.7073. For an increasing lagging power factor tan¢ > 0 (given ¢ > 0),
which represent more and more inductive loads are connected to the load bus, we can see
that the maximum power limit decreases significantly. On the other hand, for leading power
factors tan ¢ < 0 (given ¢ < 0), the loadability limits are higher, and the voltages at these
limits are also higher. To achieve a leading power factor, connecting shunt compensation
at load bus is a feasible and practical way in order to raise up the loadability limit and to
prevent the system from voltage collapse. Therefore, localized shunt compensation and LTC

transformers are commonly applied solutions in local and regional voltage control schemes.

For different settings of the constant active power values on load, p, Figure 2.5 reveals the

group of normalized v-¢ curves?.

From Figure 2.5, for a high loading setting, p = 1, the critical voltage is even higher than

3The result can be deducted by taking the derivative of Equation (2.11) and setting it to zero
4The result can also be achieved by mapping p-v curves sampling points in Figure 2.4 onto the v-¢ plane.



17

-0.8

o -0.6

—04

Figure 2.5: v-q¢ Curves

1 p.u., but it also requires reactive power compensation to be sufficient. Similar to the
results shown in the p-v curves, it is notable that, localized shunt compensation is critically
necessary for heavy loads condition for the sake of secure voltage profiles. The advantage
for the v-q curves is revealing the operating conditions as the intersection of the reactive
power compensator characteristics and the v-g curves as system characteristics [23]. This
advantage helps engineers testing the system robustness regarding to the voltage stability

analysis.

Finally, conclude the sources of voltage collapse in the elementary power system model as

follows:

e Excessive active power connected to the load buses

Insufficient reactive compensation at load buses

Long transmission lines between the generations and the loads

e Low source voltage at the generators buses



18

Consider a system of n buses, it is assumed that the current operating point p, is stable
in the equilibrium wg. As the load demands vary, the equilibrium point w varies in the
state-space system. In search of the steady-state stability limits (SSSL), when the increasing
load demand reaches a critical load limit p,, the system can easily lose its stability when
encountering any disturbance. Such a set of critical load demands p, denote the voltage
stability margin . In this study, a series of indicators are computed to measure the Eu-
clidean distances between the current stable OC p, to the set of voltage stability margin ¥
to find the shortest distance of ||p, — p.||. In addition, for the cases with minimum distances

dmin < 0, the OCs are also regarded as insecure OCs.

Amin = min lpo — 2l (2.12)

7

As discussed in [2,3], in an unstable OC, no information is left regarding to the nature
and locations of the problem. Therefore, it is necessary to create a security boundary as
shown in Figure 2.6, which indicates how far away the system is approaching to voltage
collapse. Kessel and Glavitsch in [25] presented a methodology using L-indicator to assess
the stationary voltage stability. Shukla and Mili in [26] proposed a hierarchical coordinated
voltage instability detection scheme by computing the parameter vector at the point of
voltage collapse. In this work, the voltage security boundary is approximated by finding
the insecure OCs whose Euclidean distances to the secure operation limits are less than a
user-defined threshold value 6.

2.3 Online Voltage Security Assessment Framework

To perform an accurate and timely evaluation of VSA for varying OCs, a machine-learning-
based online framework is introduced to identify the voltage security status with time-series

streaming data in this chapter.

Grid Protection Alliance (GPA) has been providing open-source software platforms for an-
alytics development in power systems since 2010. Open-source Phasor Data Concentrator
(openPDC') and open-source and Extensible Control and Analytics (openECA) are two soft-

ware development systems designed for streaming real-time synchrophasor data under IEEE



19

4Load at Bus 2

Loadability Limit

/I.nsecure
/

/ /
Secure /
Security Boundary /

J

operating condition

Load at Bus 17

Figure 2.6: Loadability limit and security boundary

(C37.118 protocols. OpenECA provides a platform accessing time-series synchrophasor data
to practical analytics, such as online voltage security assessment, localized VAR controllers,

and regional voltage controllers.

In the online voltage security assessment application using openECA platform, time-series
voltage measurements are continuously collected from distributive PMUs and centralized
PDCs in a real-time manner. Figure 2.7 reveals our proposed online VSA applications with

periodic update of the classification models in five major stages as follows:

1. Offline dataset preparation: Based on the knowledge of system model, use the power
system simulator software to run power flow calculation and to generate a dataset of
voltage measurement frames® regarding to different settings on load patterns. By ap-
plying network contingencies on each voltage measurement frames, identify the voltage

security status and label the voltage measurement frames with “Secure” or “Insecure”.

2. Online supplement dataset preparation: Voltage measurement frames in a period of
time are collected from openECA platform. After applying network contingencies on
each frames, these frames are labeled with security status according to contingencies
analysis results. These data frames are grouped as updating data instances for periodic

update of classifiers.

5Each voltage measurement frame represents the voltage profiles at all selected buses after the power flow

calculation, and is treated as a data instance for the classifier training.



20

3. Offltine training of classifiers: The ensemble of classifiers are initialized by AdaBoost
algorithm using offline dataset. Each classifier model in the ensemble model is trained
by the weak learner to prevent over-fitting problems. The algorithm also calculates

the voting weights for each classifier model.

4. Periodic update of classifiers: The proposed scheme for classifier update should be
capable to update the ensemble model with the online supplement dataset. This pro-
cess should be capable to handle large among of input data that openECA platform

provides.

5. VSA applications: It consists of two main applications: Preventive VSA application
and Remedial VSA application. Preventive VSA reads each data frames published by
openECA and returns a security assessment result of “Secure” or “Insecure” based on
the trained/updated classifier model. Remedial VSA responses when the preventive
VSA returns a “Insecure” label for current openECA input frame, and starts searching
for feasible voltage control strategies that bring the system back to a “Secure” operating
condition. Remedial VSA incorporates a series of classifiers trained /updated based on
the prepared dataset, and the result of each classifier is representing the predicted
security status if the related control strategy is executed according to current voltage

profiles.

With ensemble decision trees trained offline using AdaBoost, it is ready to apply the initial
classifiers to the online VSA applications in Figure 2.7, whose workflow is shown as the
solid line. However, a robust VSA application should be able to adapt to different operating
conditions by updating the classifiers (shown as the dash line in the figure). The following
chapter proposes an incremental tree induction method to update the trained ensemble
decision trees by testing the Hoeffding bound to decide whether it is necessary or not to

update the models when collecting data from openECA platform.

2.4 Summary

This chapter reveals the use of decision-tree models in the online voltage security assess-
ment. At the beginning, a common induction process of decision-tree model is illustrated.

To develop a robust classification model, one of the ensemble learning methods is presented.



Power System
Simulator ™
Offline Dataset
Preparation Time-serilestnIine
Data Platform @
v
Online Supplement
Dataset Preparation
Offline Training
v
@ ---------------------- Periodic Update
v
v v
4 Online VSA Applications
Preventive VSA Remedial VSA
/

v

( Security Assessment Results & Control Strategies )

Figure 2.7: The Workflow of Online Voltage Security Assessment Framework

21



22

Subsequently, the voltage security problem and related analysis methodology are discussed.
In order to perform online VSA in a real-time manner, the assessment framework incorpo-
rated with offline training and online periodic update is elaborated. The AdaBoost algorithm
is applied in the offline training stage to initialize the ensemble model of decision trees. To
adapt the ensemble model according to different configurations on power systems, a new

method for periodic update will be presented in the following chapter.



Chapter 3

Very Fast Decision Trees System and
Its Application in Online Voltage

Security Assessment

For a common decision tree, each terminal node contains a number of training instances
passed down from the root. During the tree induction process, to decide whether a terminal
node should be split to a new generated attribute node or not depends on the criterion
of heuristic measurement selecting the best attributes in the decision tree as illustrated in
Chapter 2.1.1. Alternatively in [27], Domingos and Hulten applied Hoeffding bound, also
known as additive Chernoff bound, to serve as a role of the statistical condition about how
many samples should be seen before executing a split under a high-speed data streams

environment.

3.1 Hoeffding Bound

Let Z1, Zy, ..., Z, be independent bounded random variables within the range of [a,b].
According to the Hoeffding Inequality, for Vt > 0,

23



24

n

23 (#-2)

=1

Pr{ > t} < 2exp (— 2;22) (3.1)

where Z is the estimated mean of the random variable Z, Z = (Z, + Zy + - -+ + Z,)/n. And

B denotes the range of existing random variables, which equals to |b — al|. Say that with a

confidence of 1 — §, the true mean p is at least Z — e, i.e.

Pr(u<Z-—eg)>1-46 (3.2)

By the Equations (3.1) and (3.2), the Hoeffding bound is defined as follows:

- [BPm(1)5)

3.2 Hoeffding Trees Algorithm and VFDT System

3.2.1 Induction of A Hoeffding Tree

From Equation (3.2), by replacing the random variable Z with the heuristic measurement
value, notice that with confidence 1 — §, we have received sufficient information to split
a terminal node into branches if the difference of the highest two heuristic measurements
AG = G (X,) — G (Xy) is larger than the Hoeffding bound €. This is the primary principle
for the incremental tree induction process of Hoeffding trees (HTs), whose pseudo-code is

shown in Algorithm 1.

Algorithm 1 demonstrates the Hoeffding tree induction process. The inputs are the decision-
tree model DT, training dataset D, attribute set X, heuristic measurement method G, split
confidence 0, and grace period n;, respectively. Line 2 initializes the model with a root.
However, this initialization is optional; in Chapter 2.3, the decision-tree models are generated
offline using AdaBoost algorithm. Line 3 20 is the iterative process of inducing a HT for

every single training instance. In line 4, the model DT sorts it to a terminal node according



25

to its attribute values and the attribute conditions in DT'; then, the training instance is
stored at the terminal node holding sufficient statistics. The code from line 7 18 is executed
periodically according to the grace period n,,;,. This periodic process speeds up the training
by postponing the data since recalculating the heuristic measurement for all data is time-
consuming and re-evaluating is unnecessary for each instance. Line 8 17 restates the core
principle of inducing HT. It is a key feature in the condition of line 13 that involves the
“null” attribute Xy considering the benefit of not splitting. The “null” attribute could be
regarded as a pre-pruning process that prevents splitting unless an attribute is sufficiently
better than Xy according to Hoeffding bound. In line 13, 7 is a user-defined threshold called
“tie-breaking” considering the situation of two or more attributes causing a low Hoeffding

bound, and the setting of 7 allows continuing the induction in this case.

Algorithm 1 Hoeffding Tree Induction Algorithm
1: procedure HOEFFDINGTREE(DT, D, X, G, 0, Nin)

2: initialize DT with a root if the decision tree is empty

3: for all training instances (g, yx) € D do

4: Sort each instance into the terminal node [ using DT
5 Update sufficient statistics in [
6 Increment n;, the number of instances seen by [
7 if n; mod n,;, = 0 and instances seen by [ are not the same class then
8 Compute G (X;) for each attribute X; € X
9: Let X, be the attribute with highest G}
10: Let X, be the attribute with second-highest G|
11: Compute the Hoeffding bound in equation (3.3)
12: end if
13: if X, # Xy and (G, (X,) — G;(X}) > ey or ey < 7) then
14: Replace the terminal node [ with an attribute node splitting on X,
15: for all branches under the new attribute node do
16: Add a new terminal node with initialized sufficient statistics
17: end for
18: end if
19: return DT
20: end for

21: end procedure

The induction process of a Hoeffding three shows its merit of independence from the distri-



26

bution from training data. This property of HT's benefits the application of online learning
algorithm with infinite data instances. The trade-off resides in the rule of splitting becomes
more conservative [27] compared with traditional distribution-dependent algorithms, which
will have to capture more data instances to reach the confidence 1 — 9. The parameters in

the algorithm above are detailed in the next section.

3.2.2 The VFDT System

In [27], Domingos and Hulten refer the implementation of online decision-tree learning system
based on Hoeffding tree algorithm as Very Fast Decision Tree (VEDT) system. VFDT system
is capable to apply different kinds of heuristic measurement such as Information Gain and
Gini index to find the best attributes when building decision-tree models. Its efficiency has
been studied in a distributed wireless sensor network application [14]. In this chapter, five
essential factors are studied in the Algorithm 1 that influences the split of a HT during the

tree induction process.

Split Confidence

As introduced in Chapter 3.1, the definition of “Hoeffding bound” applies a parameter of
confidence 1 — ¢ that tells the true mean u is at least 7 — €. Figure 3.1 illustrates a series
of different settings on 0 with the same range value B = 1. The blue solid line shows the
Hoeffding bound with a setting of 6 = 1073, the red dot line with § = 1075, and the green
dash line with § = 10~7. From the graph, we can notice that with lower confidence, the
Hoeffding bound drops rapidly with the first thousand data instances. We also notice that
for increasing confidence, it requires a larger number of data instances n to achieve the same
Hoeffding bound level as desired. As a result, on configuring the value of §, the higher
the confidence at each attribute nodes results in more data instances should be collected to

examine the boundary, which subsequently affects whether this node should be split or not.



27

0.5
—_—3=1e-3
0.45} : : : 3=1e-5
= ==3%=1e-7
0.4f
0.35f
0.3F
«F 0.25F
h
T T e o m w am mm— o
0 | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
n x 10*

Figure 3.1: Hoeffding bounds on different settings of o

Grace Period

Except for the confidence value 1 — ¢, there is another parameter plays a critical role in the

induction of a Hoeffding tree, which is called the Grace Period, as denoted as ny;,.

On the use of high-speed streaming data, it is costly to examine every data instance to tell
whether the classification model should be updated or not. Usually, one single data instance
has trivial influence on the accuracy of the classifier. To achieve the efficiency of the update
process, the VEDT system provides an execute query of delay on streaming dataflow by
setting the grace period. In Algorithm 1, the condition n; mod ny;, = 0 is examined every
time a new data instance is collected and before testing the Hoeffding bound. This mod
condition indicates that we can execute the process at least every n,;, instances dropped
on this terminal node. In other words, we don’t need to examine the Hoeffding bound of
a terminal node until the number of instances reaches a multiple of grace period, while the
terminal node maybe impure. The effect of grace period has been discussed in [13,28] with
a dataset whose number of data instances is in a million-class. The grace period decides the
time to split an impure node, and alleviates the computation burden when new data keeps

flowing in frequently.



28

Heuristic Measurement

Heuristic Measurement, guides which splitting rule to be used when choosing the best split.
The higher scores in heuristic measurement indicates the better the splitting rule is capa-
ble to tell classes apart. For example, both Quinlan’s ID3 algorithm [11] and it successor
(C4.5 algorithm utilize the normalized information gain as the heuristic measurement during
training. However, the VFDT system is more flexible on choosing methods of heuristic mea-
surement and allows the use of different kinds of heuristic measurement depending on the

type of classification tasks.

In this paper, Gini index discussed in Chapter 2.1.1 is used as the heuristic measurement due
to its advantages in two-class classification tasks. The usage of Gini index is also tested in
some other machine learning algorithms, for instance, CART [29]. In the applications, pick
the attribute of the highest Gini index value at each attribute node to achieve the best split.
Note that recalculating the heuristic measurement happens frequently when developing a
Hoeffding tree. With an adequate setting on split confidence 1 — § and grace period Ny,
the recalculating frequency is reduced, in which the tree induction process spends most of
time. If a larger value is set to split confidence, the computation of heuristic measurement
spends more time to collect data instances and find the suitable attribute due to the strict

confidence condition.

Hoeffding Tie Threshold

To further enhance the robustness of VEDT system, Domingos and Hulten have also intro-
duced the Hoeffding tie threshold T considering the circumstance that two or more attributes
may have close values in heuristic measurement. For power systems, the voltage magnitude
measurements are quite similar on two close buses when the electrical distance is short be-
tween buses. Hence, such circumstances can easily arise for the VSA applications. The
condition G (X,) — G (X,) > ey is going to be hard to achieve. The tree induction process
will be halted consequently, because the two attributes yield small difference in heuristic
measurement. To eliminate the effects of these potential situations, an alternative condi-
tion is introduced to resume the induction process, which is ey < 7 shown in Algorithm 1.
When the Hoeffding bound of two or more attributes drops to a sufficiently small value,

the tie threshold 7 allows the algorithm to continue on incremental induction by splitting



29

on the best one, although the second-best option is approximate. This action is referred as
Tie-breaking in [28].

Null Attribute

Notice that, in the Algorithm 1, a Null Attribute Xy is referred as a “pre-pruning” process
when inducing the Hoeffding tree. Pruning, represents a process of trimming the terminal
nodes in a decision tree model into a smaller scale. This process discards some of terminal
nodes, and replaces the attribute nodes with terminal nodes assigned with the class of higher
probabilities. Generally speaking, it is necessary to prune a decision tree when the models,
for example, a fully-grown CART, is so complex that it poses risks of over-fitting problems.
And such process is commonly applied after a decision tree is fully trained, as known as

POSt-pruning.

Accordingly, VFDT system offers a way to determine whether a node should be pruned or
not during the induction instead of pruning after the whole tree is structured. It introduces
a null attribute to consider not to split a node. For a non-splitting node, it predicts the most
frequent class dropped to this node. Just like a normal attribute, the heuristic measurement
of a null attribute accounts for the impurity of a node. An arbitrary node is prevented
from splitting until the impurity of this node increases to a certain level, then a useful split
is executed. Therefore, this introduced feature benefits the efficiency during inducing a
Hoeffding tree.

3.3 Reweighting of Ensemble Hoeffding Trees

As an incremental induction process of decision trees, the VFDT system provides flexibility
in the initialization of Hoeffding tree. It requires the tree structures to be updated with new
data instances regardless of the method used to generate the initial models. Therefore, the
VEDT is capable to handle the ensemble learners with multiple trained decision trees. In
Chapter 2.1.2, the ensemble models learnt by AdaBoost algorithm is discussed. Given trained
ensemble decision trees models, each decision tree can be further induced incrementally using

the same induction process of Hoeffding trees.



30

In addition to the updated tree structures, the voting weights for all decision trees are also
required to be recalculated due to new updating data instances incoming. In [30], Bauer
and Kohavi discuss the empirical usages of different ensemble learning methods regarding
to the voting techniques, including Bagging, Boosting, and their variants. In this study, the
reweighting method for modified classifiers based on the exponential loss function is adopted.
In this case, the voting weight of each Hoeffding tree in the ensemble model is re-calculated

as follows:

e 1o (1—e
a = Eln( *el ) (3.4)

€

In Equation (3.4), the * sign represents the updated parameters after new data instances
are dropped throughout the tree model. With re-weighted ensemble model, we are allowed

to continue to use the ensemble model for a specific classification task.

3.4 VFDT System applied in Online Voltage Security

Assessment

A time-series data publication platform is capable to publish voltage measurements with
time-stamps through capturing measurement from distributive PMUs installed in power
systems in a real-time manner. As already shown in Figure 2.7, the measurement data will
continue to be labeled! as “Secure” or “Insecure”, before updating the classification model

in the online VSA applications.

Figure 3.2 reveals the proposed update stage in the online VSA applications in order to
update the classification models prepared in advance. It consists of three major steps as

follows:

1. The existing ensemble model of DT's are initialized by AdaBoost algorithm using offline
training dataset. Each of DT in the ensemble model is a short tree stump learned by

the weak learner to prevent the model from over-fitting problems. The algorithm also

'In this study, this process as is referred as Online Supplement Dataset Preparation.



31

generates the voting weights for each DT model to achieve a weighted sum of the
ensemble model.

2. The proposed scheme is capable to update the ensemble model with one new OC at
one time instead of re-training the ensemble model with the online supplement dataset.
During the periodic update stage, each DT model’s structure is further induced incre-
mentally based on the Hoeffding bound, which guarantees that the inductions are
necessary with sufficient statistics to improve the performance. By using VFDT sys-
tem, it relieves the computation burden in the tree induction process when adapting
the ensemble model to changed OCs.

3. Then, the voting weights o of all updated DTs in the ensemble model are re-calculated

according to the training errors of each modified DT.

4. Online VSA applications utilize the modified ensemble model to assess the security
status of current OC again according to the voltage measurements collected in real-

time.

3.5 Summary

This chapter illustrates how the Hoeffding bound controls the tree induction process from
scratch or from a moderately-developed classification model. A set of configured parameters
for the VFDT system is explained. To realize the periodic update stage in online VSA
applications, the VFDT system is adopted to update the ensemble model developed as
explained in the previous chapter, followed by a reweighting process. The online voltage
security assessment framework has been completed heretofore with offline training stage and
online periodic update stage.



S

A5

Trained Ensemble
Decision Trees

Dataset

8 Supplement

A 4

Periodic Update

A S

i

v

Hoeffding Tree Incrementa

| Induction

32

G4

Reweighting Ensemble Hoeffding Trees

Q

\ 4

A5

Updated Ensemble
Hoeffding Trees

VFDT System
Configurations

Figure 3.2: Periodic Update of Online VSA Applications using VEDT System



Chapter 4

Case Study and Implementation on
openECA Platform

4.1 Preparation of Training and Updating Database of
OCs

The proposed scheme of VSA is evaluated using IEEE 118-bus standard system shown in
Figure 4.1. The system is divided into 3 areas as suggested in [31]. The system division is
conducted based on two levels of decomposition. The first level provides a cluster analysis
that determines the appropriate number of divided areas. The second level decomposition
assigns the remaining buses to the areas identified in the first level according to proximity
analysis. In each area, load buses are assumed to have the same loading variation pattern,
and the load is randomly scaled up and down in the same percentage to generate different
OCs. Thus, the productions of generators among the system are dispatched within their areas
by following the zone-based loading pattern. Voltage magnitude measurements at all buses
are selected for the generation of learning database. Overall, 20,245 OCs are generated by
scaling up the load demands from 100% to 150% of their base case value for each area. VSA is
implemented to determine whether the OC is “Secure” or “Insecure”. In this paper, it is also
assumed that the maximum loadability and the security boundary mentioned in Chapter 2.2
are overlapping. The minimum distance threshold to determine the insecure OCs is highly

depending on the security requirement for the system. A smaller the threshold indicates the

33



34

Table 4.1: Number of Secure/Insecure OC Samples for Case Study

Label  Training Initial Test Update Post-test
Secure 9948 6615 1752 1164
Insecure 2199 1483 1450 967

system can operate closer to the security boundary. In this study, the threshold value is
selected as 15 which provides a clear boundary between the normal OCs and the unstable
OCs. For all the secure and insecure OCs, 60% of them are used for training, and the rest are
reserved for testing the initial ensemble model as shown in Table 4.1. The initial ensemble
of decision-tree is trained offline using AdaBoost algorithm mentioned in Chapter 2.1.2 with

L = 30 weak learners.

4.2 Updating Performance Test Using VFDT System

To test the robustness of proposed methodology using VEDT system for updating, the
transmission line (15, 33) is tripped on the IEEE 118-bus system. As shown in Table 4.1,
new updating data and test data are created using the same OCs generation method in
previous section with a different system topology. Within these new OCs, 3,202 of them
are ready to be deployed to update the initial ensemble model, and 2,131 are reserved as
the post-test database for the modified ensemble model. The computation is run in Python
3.5.2 using PyCharm Community Edition on an Intel® Core™ i5 @2.20GHz computer.

Figure 4.2 and Figure 4.3 show the computation time and testing error during the updating
process for a DT in the ensemble model. It is observed that, with more and more instances
incorporated, the default method takes more time to rebuild the DT model because of the
increasingly growing database. By contrast, the Hoeffding tree algorithm saves considerable
computation time by only inducing the leaf nodes with sufficient statistics, instead of growing
the DT from scratch. For the proposed method, the computation time for each update is
only related to the size of update dataset at one time. The step differences of red line in
Figure 4.3 reveals the changes in the DT model. Despite that the Hoeffding tree algorithm

is relatively conservative to apply the splits in leaf nodes, the testing errors is still able to



35

decrease to the same level as the default DT.

4.3 Online VSA Applications implemented with openECA

4.3.1 Introduction of openECA Platform

OpenECA is an open-source Extensible Control and Analytics platform for synchropha-
sor data collected from phasor measurement units (PMUs) and phasor data concentrators
(PDCs). It contains a robust database for different types of synchrophasor-based measure-
ments captured from different devices. Figure 4.4 reveals the relationship of time-series
data structure established for openECA platform. For a generated openECA project of
analytic, it virtually establishes an internal phasor data concentrator processing interested
measurements, realizes the functionality according to the developed algorithm with the use
of measurement values, and publishes related output signals to the openECA server in the
end. For example, for an openECA-developed linear state estimator [4], it utilizes available
measurements provided by synchrophasors to analyze and estimate the operating state of

power systems in real-time use!.

The deployment of an analytic project using openECA contains the following five major

steps:

1. Establish the data structure for expected measurements

2. Establish the data mappings of measurements with IDs assigned by the internal histo-

rians

3. Generate a code template and develop the analytic within the generated “Algorithm”
file

4. Test and debug the completeness and functionality of developed analytic

5. Create an installable file for analytic to be released and deployed at substations or

control centers depending on the analytic’s functionality

Yhttps://github.com/kdjones/openLSE



36

4.3.2 Measurements Data Structure and Data Mappings Setup

Manage Data Structure

There are six fields in the data structure? required to be defined for each measurement by

using SQL query scripts:

e SignallD: a globally unique identifier (GUID) generated by openECA when a measure-

ment is created

e PointTag: a string of primary key relating to the particular measurement in the data
table, which is the unique record. This field is commonly designated in a form of
“DEVICEPREFIX!DEVICESUFFIX:-MEASUREMENTNAME”

o SignalTypelD: an integer used to distinguish the measurement types, including magni-
tude and angle of voltage and current, frequency, rate of change of frequency (df /dt),

calculated value, digital value, etc.

e SignalRefernce: a string that facilitates other internal or external connections to search

and access such measurement
e Description: a string of text that describes the measurement

e Fnabled: a binary value that determines whether the measurement is enabled in

openECA platform

For online VSA applications, measurements are created for all bus voltage magnitudes, the
capacitor banks’ circuit breakers states, and their closing and tripping signals as listed in
Table 4.2. Additionally, in the last column, AssignedID is an identifier automatically as-
signed by Primary Phasor Archive (PPA) as the default historian. ResetSignal is created
for initializing and abort the testing environment for online VSA applications. And LoadIn-
crementPercentage is simulating as the load patterns on the system, which is by a CSV file

using the “CsvinputAdapter” developed within openECA platform.

2A  complete data structure of each measurement includes SignallD, HistorianID,

PointID, DevicelD, PointTag, AlternateTag, SignalTypelD, PhasorSourcelndex, SignalRefer-
ence, Adder, Multiplier, Description, Enabled. Detailed settings of all fields can refer to
https://github.com/GridProtectionAlliance/openPDC.



37

861-Vdd ALTOASTTISVHIN-STISS INHdA ALTOASTTASVHIN'STT™SS oqnop AMOASTTESEIIN
€8'Vdd ALTOAEISVHINSTISS INHJA ATLTOACASVHN8TT SS orqnop ANOAELSEOIN
¢8'Vdd ALTOACHSVHIN-STISS INHJA ATLTOACHSVHN8TT SS oqnop ANOACHS®OIN
18:vdd ALTOATASVHIN-STISS NHJA ATLTOATASVHIN-8TT™SS oqnop ANOATIS®OIN
08:Vdd AYMAdVOSOTINSHLVLSSILSS IO1d AIMIdVOSOTANSHLVLS8TT SS J104ys ATgde)GOTUSIRIS
6L:'Vdd  AIMAdVOTLANSHLVLSSILSS IDId AIMIdVOVLANSHLVLS-8TT SS J104ys ATgde)pLguseIers
8L:Vdd  AIMddVOSTANSHLVLSSILSS IDI1d AIMIdVOSVANSHLVLS8TTSS J104ys ATgde)grguseIels
LLVdd AIMAdVOSYANSHLVLS-SITSS IDI1d ANIMAIVOSTANSHLVLS-8TT 5SS J10Us ATgdeDergusere)s
9L:'Vdd  AdMAdVOTPINSHLVLSSILSS O1d ANIMIdVOPPANSHLVLS8TTSS J10ys ATFARDTTIuSeIS
GL'vdd  AIMAdVOTEINSHLVLSSILSS DI1d AIIdVOPEANSHLV.LS8TTSS J104ys ATFAeDTEIUSIRIS
vL-vdd dIYLSOTANSLOV-8TISS IDId dIYLSOTANSLOV:8IT SS J1o4ys dureordgusPy
€L'vdd dIYLVLANSLOV-8TISS IDI1d dIYLVLANSLOV: 81T SS J10Us duryLgusPy
¢L'vdd dIIL8PANSLOV-8TISS IDId dIYL8VANSLOV:8IT SS J107s dur8ygusIy
1.°vdd dIdLSYANSLOV-8IISS O1d dIYLSYANSLOV8TT SS J1047s duTGrausIy
0L:Vdd dIYLVPINSLOV-8TISS IDId dIYLVPANSLOV:8IT SS }1047s durpyrgusPy
69-vdd dIYLVEINSLOV-8TISS IDI1d dIYLVEANSLOV:8IT SS J104ys durpegusPy
89:Vdd HSOTOSOTANSLOV-S8ITSS DId HSOTOSOTANSLOV8TITSS J10Us 9SO[DGOTUSPY
L9-vdd HSOTOVLANSLOV-8IISS OI1d HSOTOVLANSLOV:8IT™SS J107s 9SO[DYLHUSIY
99:vdd HSOTOSVANSLOV-8ITSS DI1d HSOTOSVANSLOV:8TT SS }1047s 9SO[DETHUSIV
G9:'vdd HSOTOSTANSLOV-8IISS IDId HSOTOSFANSLOV:SII™SS J104ys 9SO[DSTHUSIV
¥9:vdd HSOTOVPANSLOV-8TISS IDI1d HSOTOVPANSLOV:S8IT SS J10Us OSO[DYYUSIOV
€9°'vdd HSOTOPEANSLOV-8IISS O1d HSOTOVEANSLOV:8II™SS J107s ISO[DYEUSIY
I7-vdd HIONIAVOT-8IISS O1d HIONIAVOT-8ILSS oqnop 93RJUADIDJ USUIDIOUTPRO]
¢9'vdd LHSHY-STTSS IDId LHSHY8TT™SS J1o4ys [euSIGIosay

(qIpausIssy ouaIRY[euUslS  odAT [RUSIS Seyjutog odATReye(] e N

suorjeorddy YSA oUIU() I0J 9INIONILG RIR(] SJUSWOINSLIN :Z'F 9[R],



38

The complete SQL scripts used to construct the database’s structure is detailed in Ap-

pendix B.1.

Manage Data Mappings

In Table 4.2, a data structure for necessary measurements is established. Now these mea-
surements are ready to connect to analytic’s variables by assigning PPA IDs shown in the
last column. According to the functionality of analytics, some measurements act as input
data, and other measurements act as output data. Given assigned with the same PPA IDs
for all measurement, openECA provides data sharing between different analytics. As men-
tioned later in this paper, a testbed analytic called Shadow System Simulator is developed
to simulate the control results of certain control actions provided by online VSA. Shadow
System and online VSA applications respectively uses these measurements in a different way;,
as shown in Table 4.3. OpenECA configures data mappings for analytics in basic ASCII files
detailed in Appendix B.2.

4.3.3 Configurations of Analytics generated by openECA Client

o AllowPreemptivePublishing: a boolean configuration of openECA analytic. If “True”,
the internal concentrator is allowed to publish for analytic’s use when all measurement
data arrives within a user-defined “LagTime”. The setting of this parameter should be

set as “True” unless the measurement data is not able to arrive routinely as expected.

e [FramesPerSecond: defines the time resolution for measurement data® published by
internal concentrator. Then, the concentrator is capable of assigning timestamps with
specific time intervals to measurement data. For example, given a synchrophasor send-
ing data at a rate of 30 frames per second, the timestamps of data are assigned with
33.333 ms interval.

e LagTime: defines the maximum time for an openECA analytic to wait for the new

measurement data from concentrator before algorithm execution.

3The measurement data includes input data from openECA, and output data, which will be received by

openECA after algorithm execution through the internal concentrator.



Table 4.3: Manage Input/Output Data Mappings in openECA

Name AssignedID  For Shadow System For Online VSA
ResetSignal PPA:62 Input N/A
LoadIncrementPercentage PPA:41 Input N/A
ActSnB34Close PPA:63 Input Output
ActSnB44Close PPA:64 Input Output
ActSnB45Close PPA:65 Input Output
ActSnB48Close PPA:66 Input Output
ActSnB74Close PPA:67 Input Output
ActSnB105Close PPA:68 Input Output
ActSnB34Trip PPA:69 Input Output
ActSnB44Trip PPA:70 Input Output
ActSnB45Trip PPA:71 Input Output
ActSnB48Trip PPA:72 Input Output
ActSnB74Trip PPA:73 Input Output
ActSnB105Trip PPA:74 Input Output
StateSnB34CapBkrV PPA:75 Input Output
StateSnB44CapBkrV PPA:76 Input Output
StateSnB45CapBkrV PPA:77 Input Output
StateSnB48CapBkrV PPA:78 Input Output
StateSnB74CapBkrV PPA:79 Input Output
StateSnB105CapBkrV PPA:80 Input Output
MeasB1VoltV PPA:81 Input Output
MeasB2VoltV PPA:82 Input Output
MeasB3VoltV PPA:83 Input Output
MeasB118VoltV PPA:198 Input Output

39



40

e LeadTime: defines the maximum time that the concentrator allows when the incoming
measurement data is assigned with future timestamps. This configuration is defined
due to the difference between the clock of local machine and the GPS synchronous
time. It prevents the concentrator from discarding “invalid” measurement data with

future timestamps within a specified tolerance.

4.3.4 Shadow System Simulator Testbed

Shadow System Simulator is an openECA analytic deployed as a Windows service written in
C+# scripts. It interacts with the power flow engine powered by Siemens PSS®E to provide a
set of time-series measurement signals of all of the values collected from the static power flow
calculation. Shadow System also can receive control signals from other openECA analytics
like Localized Volt-VAR Control and Regional Voltage Control for raising or lowering LTCs,

opening or closing circuit breakers, changing load patterns.

In order to test the functionality of online VSA applications, the Shadow System is deployed
as a testbed simulating the actual real-time operation of IEEE 118-bus system. Shadow
System is capable of streaming system measurement data to openECA Server node at a rate
of 1 frame per second. The frame rate is so limited primarily due to the execution time
that PSS®E needs to finish the power flow calculation. A better processor on the server
where Shadow System is located could perform in a higher frame rate with a lower average
publication time. On the other hand, the online VSA applications return a set of control
signals according to the decision-tree-based classifier to openECA Server node. Using the
identical channels for these signals, openECA platform will provide Shadow System with
control signals to construct a complete control loop. Figure 4.5 demonstrates the dataflow

between different openECA analytics.

Figure 4.6 reveals a list of critical metrics during the execution of Shadow System Simulator
on openECA platform. In the figure, we need to be aware of the some of the statuses when
running Shadow System as a background Windows service?. In the last few rows in the list,

we can notice that the analytic establishes a phasor data concentrator to provide measure-

4In this work, the openECA-based analytic Shadow System is running as a service when testing the func-
tionality of other control analytics deployed by NSSM. NSSM is a service manager program that facilitates

the background service deployment of applications. Please refer to https://nssm.cc/ for further information.



41

ment value at 1 frame per second as designed (shown as “Timer reference count”). Besides,
the “Defined frame rate” also verifies the setting of this openECA analytic. The status of
“Average publication time” shows that the algorithm spends around 600 ms during each
publication of the concentrator. This is totally acceptable because this value is sufficiently
smaller than 1000 ms, the time interval which the concentrator should publish measurements
with. However, we notice that the “Estimated mean frame rate” is shown as 0.93 frame per
second. A rational explanation for this would be, when starting the Shadow System service,
the compilation process prevent the concentrator from immediate publication of data. This
phenomenon is acceptable since none of measurement expected to be published is discarded,

as shown as “Last discarded measurement” in the status metrics.

In addition, Grafana Dashboard® is a back-office visualization system designed to view time-
series data used to support processing analytics. By creating an internal subscription to
openECA, it monitors the real-time values of voltage magnitudes and the corresponding

states of circuit breakers of capacitor banks as shown in Figure 4.7.

4.4 Deployment of Online Voltage Security Assessment
Analytic

As shown in Figure 4.5, in order to establish the closed-loop architecture to test the func-
tionality of proposed online voltage security assessment, the Shadow System Simulator plays
a role as a testbed simulating the operation of the IEEE 118-bus system. Several config-
urations are required to develop the cooperation between two openECA-based analytics.
The meaning for these settings has been illustrated in Chapter 4.3.3, and these settings are
specified in Table 4.4.

An explanation for these settings is demonstrated as follows:

1. For both analytics, it is assumed that the power flow calculation results and the outputs
from online VSA including the assessment result and the feasible control strategy if
needed, are able to arrive routinely at 1 frame per second as designed. Therefore, we

allow preemptive publishing for both analytics as default.

Shttps://grafana.com/



42

Table 4.4: Configurations for openECA-Based Closed-Loop Control Architecture

Setting Shadow System Simulator Online VSA
AllowPreemptive Publishing True True
FramesPerSecond 1 1
LagTime (in seconds) 1 2
LeadTime (in seconds) 4 1

2. The “LagTime” for Shadow System depends on the publication time needed in each
execution of the internal concentrator. To prevent the incompleteness of measurement
data for online VSA usage, the lag time waiting for measurement is set to be larger

than the publication time of Shadow System analytic.

3. Despites that the online VSA analytic takes much less time than the Shadow System
does, the “LagTime” for online VSA is set to be larger than that fo Shadow System.
The reason is to ensure execution sequence for both analytics. For each frame being
processed, we firstly run Shadow System to collect the power flow results as mea-
surements to be published to openECA. Then in the online VSA analytic, we exploit
these measurement to assess the voltage security status of this frame. This setting
synchronizes two analytics which may start at different time so that the online VSA

can provide assessment according to the measurement values at this exact time frame.

4. If necessary, the online VSA analytic provides control signals to the Shadow System
when an insecure voltage profile is detected. To complete the control architecture,
a modification on control signals is set to be 3 seconds (larger than the “LagTime”
of online VSA) more than the key frame’s timestamp, so that the Shadow System is

capable of controlling system devices like capacitor banks in the following frames.

5. According to the setting of updated timestamp, the Shadow System need to set “Lead-

Time” as 4 seconds in order to receive control signals at a future time.

So far, we have completed the control loop as power flow calculation and measurement pub-
lication (Shadow System), voltage security assessment (online VSA), decisions for control
strategy (online VSA), and execution of control signals (Shadow System) eventually. Fig-

ure 4.8 visualizes the simulation result of the closed-loop control performance of Shadow



43

System and online VSA applications. A heavily increasing load condition is simulated to
approach the loadability margin on the system. In this figure, we notice with load increasing,
a control action of closing capacitor banks at bus 44, 45 and 105 is conducted to the system
due to detected insecure voltage security status. By closing capacitor banks, voltages at cer-
tain buses are escalated, and the system returns to a secure operating condition accordingly.
This simulation is running in loops. By the end of each loop, the load demand decreases to

the initial value, and all capacitor banks are tripped to return to the initial circumstance.

4.5 Summary

At the beginning, this chapter demonstrates the preparation process of the training and
updating dataset of system operating conditions. As illustrated in the previous chapter,
the VFDT system is employed to the periodic update in online VSA. The performance of
updating classification model using VFDT system is evaluated, and the result shows that it
is capable of training classifiers in a batch mode instead of developing the whole classifiers

from scratch.

In order to apply the online VSA analytic, the use of a time-series synchrophasor-data-driven
platform — openECA is detailed subsequently. The configuration parameters and necessary
data structure preparation for an openECA-based analytic is discussed. A openECA-based
testbed analytic — Shadow System Simulator has also been developed in order to complete
the closed-loop control architecture for the online VSA applications. Finally, the online
voltage security assessment analytic is deployed and tested with Shadow System implemented
with the IEEE 118-Bus System model.



44

“©

N
i

C

I
]

!
i
a
a o
&

a
-

)

s

©

4

®

Figure 4.1: IEEE 118-bus standard system



Time/s

error

0.20

0.15 A

0.10 ~

0.05 4

0.00

i
||

7

ot

— defaultTree
—— HoeffdingTree

WL

T
500

T T
1000 1500

T
2000

Number of Instances

T T
2500 3000

Figure 4.2: Computation time for modifying DT model

0.18

0.16 A

0.14 A

0.12 A

0.10 A

0.08 A

0.06 A

0.04

0.02

— defaultDT
—— HoeffdingTree

T T
1000 1500

T
2000

Number of Instances

T T
2500 3000

Figure 4.3: Testing error for modified DT model

45



46

TN
JlPW3EIU0D
Jaquinpyauoyd
auwen
wAuoloy
ar @
Jopuap

ssauboigur
paasaqg
pauued
QIuoRIaULoIIEIU]
apnyne]
apnyibuo
araamagiopuag
griuvedwod
032 NUBIUEDS]
aweny
wAUDUY
a &
20183042110

Tan
uondiuasag
auey
auopuas

Xapu[adinog
quioseyguoneursag
aseyy

adA]

12921

qraomag

a g

J0seyd bo—

a & |eer
20142 I0pUDA

Japiopeo
TN

awepy O ———

wALDydely
WALDIDY
a @
Auedwony

Japiopea
aueny
WALDIY
ar
U01122ULI0D12)UT

syunfupasubug
aaunog
uoneIAaIqgy
N

paigeu3

1apiopeo]
saUrpaInsealy
JsIPEU0D
S{d1Luaulsni
auozauw]

BuISUORIaLIL0D
QIUORIAULOIAIUT
apnye]
apnybuo
QIIoI0304d
Qraamagiopuay,
Qssany
QrueuosH
qréuedwo’
0jeAUBIUEIS]
awep

awep
wAUDLY

a &
0203044

WALDUY O —

Qruased
a d
arepon

20149 o—

wAUDLY
awepy
a &
adA| |eubig

paigeu3

uondusag (|

Nk
43ppy
auaiajayeubls
X3PUIALINOCI0SELd
qradieuis
Beajewiayy

B2 13u0d

areakag

pa|geu3
J1Bpappen]
uondiasag
BuusuoIaULD
awepadi ]
SWENA|qUassY
auweny

WALDLY

a &

8piopeo]
12ge
ar
DHDU_.}WDEMW\DWHDQHZO
qarspon
|enbigediaaqueansinding

J1apiopeo
adi)

1297

at
Qraamaqueansinding
QI=pon

bojeuyadiaegueansinding

Japlopeo
aseyd
add]
e -
a
qranaaqueansinding
QIspon
Joseydadiaagueansinding

Pa|qeul
Japiopeo]
auwey
wiuooyedg
WwAUDLDY

a &
queydepy
QaI=pop

ao1aequesnsinding

2

Qarspor
uelI03SIH

anued
Qruevossy
aneudls &
JUBLIDINSEDY

DquLOLmecmﬁ
anund
QIueHsH
a g
Queidepy
a1epon
JuBWRINSEaWENSINdING

paiqeu3
Japiopeo]
[BALLYAGSIIOGMO]Y

B [EYSHRO[DEI07125N

awpeat

auw) e
puUIaGIadSaUELY
Aauanbaigeuion

[puURYDRIRJMRISOINY
awei4byuodysigndoIny

|auURLDpURIWODY
apodal
BULSUORDEULDD
add]
awep
whtoDy

a &

arepon

wea.nginding

Complete Data Structure of openECA Platform

Figure 4.4



IEEE 118-Bus System

Shadow System
Simulator
(openECA Analytic)

Qg

=

=== Control Signals

=== Power Flow Data

i

“,—,‘ Grafana

Dashboard

openECA
Server Node

Online VSA
(openECA Analytic)

Figure 4.5: Dataflow Overview of Online VSA Applications

o

C# ShadowSys118 Test Harness

- o Ed

Algorithm test harness is running. To stop algorithm, close this window.

Status

Messages

Data concentration is:
Total process run time:
Measurement wait delay:
Local clock tolerance:
Maximum time resolution:
Down-sampling method:
Local clock time (UTC):
Using clock as real-time:
Local clock accuracy:
Ignore bad timestamps:
Allow sorts by arrival:
Use preemptive publishing:
Time reasonability check:
Process by received time:

Received measurements:
Processed measurements:
Discarded measurements:

Down-sampled measurements:
Published measurements:
Expected measurements:
Last discarded measurement:
Average publication time:
Pre-lag-time publication:
Down-sampling application:
User function utilization:
Published measurement loss:
Total sorts by arrival:
Measurement time accuracy:
Missed sorts by timeout:
Loss due to timeouts:
Using precision timer:
Wait handle timeout:

Wait handle expirations:
Total published frames:
Defined frame rate:
Estimated mean frame rate:
Processing interval:

Timer reference count:
Total frame rate timers:
Queued frame count:

Last published frame:

Last sorted measurement:

Alg.;unﬂ:wm. Subscriber Concentrator

Figure 4.6: Test Harness Metrics of Shadow System Deployed as openECA Analytic

Enabled

1 minute 37.35 seconds

1 seconds (lag time)

4 seconds (lead time)

8 ticks

LastReceived

26-Jul-20817 ©3:47:07.042

False

-8.3862 second deviation from latest time
False

True

True

Enabled

False

7832

793

e

84

684

e (@ / frame)

<none>

638.70852 milliseconds

©.0000%

10.5927%

63.87085% of available time used
©.0000%

e

100.0000%

e

©.0000%

True

12@@ milliseconds

e

o8

1 frames/sec, 10666006.80 ticks/frame
8.93 frames/sec

18@@.8@ milliseconds

1 concentrator for the 1fps @ 1000.08ms timer
1

3
26-Jul-2017 ©3:47:84.000
PPA:41

47



48

6 Shadowsys118 Last 5 minutes Refresh eve:
Bus Voltage Measurement Load Pattern
1360K s
bAoA A
N I
so\‘"\."(v‘(\.w“m il
1350K || M\ |
IRIRIR |
385K o || 1) | \
VY
1340K
> »
135K
1330k o
1325K
10
1320K

1315¢ 0
1
11530 11600 11630 11700 1730 11800 111830 1as00 [N M q 116 a7 s e
— ECAISS 1 TV - ECAISS 1 TV ECAISS 1 v oltage Measurement [ —ecass 11esTATELOAD Load

oo,

TAPV SNB34 SNB44 SNB45S SNBA8 SNB74 SNB105 SN1 SN2

TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED

ime Status of Voltage C

Capacitor Banks In Service
25
20

(i ||||||||||| ] IIIIIIHH 0] III]lI“"

11510 111520 111530 111540 111550 111600 111670 111620 111630 111640 11650 11700 19710 114720 111730 114740 111750 111800 111810 111820 111830 111840 1LIES0 111900 111910 111920 11:1930
- ECAISS_118: PBKRV — ECAISS_118: PBKRY

Capacitor Bank

Transformer LTC Tap Position

s

i U I

2 Ml 1 [l 1 [l Lanlill
v 1

119500 111520 114530 111540 119550 111600 111610 111620 111630 111640 111650 111700 11710 114720 111730 111740 114750 111800 111810 11:1820 111830 111840 111850 111900 111910 111920 11:19:30

= ECAISS_118STATETXTAPY LTC Tap Position j

Figure 4.7: Grafana Dashboard for Time-series Data Visualization

G Shadowsys118 Last5 minutes Refresh every 1s

Bus Voltage Measurement Load Pattern
1400k e

1390k h ~
1380K
1370k
1360k

1350k

1340k

“-===\\

1330 275
102100 102130 102200 102230 102300 102330 102400 102430 102500 102530 1021 1022 1023 1024 1025

— ECAISS1 TV = ECAISS1 OLTV = ECAISS_1 v — ECAISS_118:STATELOAD

LTC Tap Position SN1 SN2 SNB34 SNBA4 SNBAS. SNB4S SNB74 SNB105

TRIPPED TRIPPED TRIPPED CLOSED CLOSED TRIPPED TRIPPED CLOSED

RVC Capacitor Banks In Service
40

20
20
0
0
102200 102210 102220 102230 102240 102250 102300 102510 102320 102330 102340 102350 102400 102470 102620 102630 102440 102450

102050 102100 102110 102120 102130 102140 102150 102500 102510 102520 102530 102540

= ECAISS_118:STATESNB24CAPBKRY — ECAISS_118:STATESNBA4CAPBKRY ~ ECAISS_1 PBKRY = ECAISS 1 CAPBKRY = ECAISS_1 (CAPEKRV == ECAISS_ PEKR

LVC Capacitor Banks In Service

102050 10:2100 10210 10:2120 102130 10:21:40 102150 102200 10:2210 102220 102230 102240 102250 102300 102310 102320 102330 102540 102350 102400 102410 102420 102430 102440 102450 102500 102510 102520 102530 102540

Figure 4.8: Simulation Result of Closed-Loop Control Architecture



Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this study, a Hoeffding-tree-based methodology for online voltage security assessment
is proposed with respect to real-time high-speed data streams collected from PMUs and
PDCs. The proposed assessment framework is initially employed with the generation of DT
training sample database considering different OCs with randomly scaled bus load conditions.
AdaBoost algorithm, a popular ensemble learning method is implemented in order to develop
initial ensemble model of decision trees according to the offline dataset. With the Very Fast
Decision Tree (VFDT) system, the developed ensemble models of decision trees are capable
of being adaptively updated by an incremental tree induction process based on Hoeffding

bound with voting weights recalculated depending on the accuracy of each classifier.

To simulate the real-time use of the online VSA applications, an open-source control and
analytics platform — openECA is engaged to manage the time-series measurement data. In
order to simulate the static behavior of power systems, a system simulator called “Shadow
System Simulator” is developed using power flow calculation results from PSS®E to publish
measurement data to openECA in a fixed-interval manner. With Shadow System of IEEE
118-bus system deployed at the background, the openECA-based analytic of online VSA
applications can receive the voltage measurement from openECA platform and perform

voltage security analysis using the ensemble model of decision trees initialized by offline

49



50

training dataset and updated by online supplement dataset. A changed topology scenario is
introduced to the system model in order to test the robustness of proposed online periodic
update methodology. Simulation results show that the proposed method is able to reduce
the computation burden and have a lower misclassification error compared to the traditional

decision tree training method.

The contributions of this thesis work is detailed as follows:

A framework of online voltage security assessment using pure data-driven method —

ensemble decision-tree model is presented.

e The periodic update for the ensemble model utilized in online VSA applications is
proposed. By using VFDT system, a new tree induction system based on Hoeffding
bound, the ensemble model of decision trees can be further induced incrementally, and

reweighted according to the accuracy for each modified classifier.

e Shadow System Simulator, a PSS®E-powered testbed for static control analytics is

developed using openECA platform.

e The analytic of online VSA applications is developed using openECA platform in order
to perform voltage security analysis using pure data-driven method and to provide
feasible control strategies when an insecure voltage profile is detected. The closed-loop

control architecture is completed by deploying Shadow System as testbed.

5.2 Future Works

From the standpoint of online assessment, a probable extension of proposed framework using
VFDT system would include not only static analysis like voltage security assessment, but
also dynamic study of power systems like transient stability assessment. In [9], the ensemble
model of decision trees are utilized for online dynamic security assessment. With the use of
VFDT system, online dynamic security assessment would update the tree models adaptively
not only with the voting weights, but also, the tree structure, which is more importantly

engaged in the classification tasks.



ol

From the perspective of pure data-driven methodology, the decision-tree learning is a su-
pervised learning method that allows deeper tree induction based on the existing models.
The enhancement of Hoeffding-tree-based method would be further extended with the use of
option trees in [32]. Another appealing extensions of this work would be to include different
machine learning techniques like support vector machine and neural networks in order to

allow model update with unknown data incoming in a batch mode.

For a real-time simulator, the Shadow System Simulator utilizes the power flow solver pow-
ered by PSS®E: however, such analytic can be further enhanced by using other the time-
series-based simulators in order to perfect the simulations with stronger solvers designed for
power systems to accomplish in-depth analysis tasks like dynamic analysis with outstanding

time-savings.



Bibliography

1]

J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor mea-
surement applications in power systems,” IEEE Transactions on Smart Grid, vol. 1,
no. 1, pp. 20-27, June 2010.

E. E. Bernabeu, J. S. Thorp, and V. Centeno, “Methodology for a security / depend-
ability adaptive protection scheme based on data mining,” IEEE Transactions on Power
Delivery, vol. 27, no. 1, pp. 104-111, Jan 2012.

R. Diao, K. Sun, V. Vittal, R. J. O’Keefe, M. R. Richardson, N. Bhatt, D. Stradford,
and S. K. Sarawgi, “Decision tree-based online voltage security assessment using pmu
measurements,” IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 832-839, May
2009.

K. D. Jones, J. S. Thorp, and R. M. Gardner, “Three-phase linear state estimation
using phasor measurements,” in 2013 IEEE Power Energy Society General Meeting,
July 2013, pp. 1-5.

J. S. Thorp, M. Ilic-Spong, and M. Varghese, “Optimal secondary voltage-var control
using pilot point information structure,” in The 23rd IEEE Conference on Decision and
Control, Dec 1984, pp. 462-466.

Q. Guo, H. Sun, M. Zhang, J. Tong, B. Zhang, and B. Wang, “Optimal voltage con-
trol of pjm smart transmission grid: Study, implementation, and evaluation,” IFEFE
Transactions on Smart Grid, vol. 4, no. 3, pp. 1665-1674, Sept 2013.

D. Yang, R. Sun, J. D. L. Ree, and M. Mcvey, “Capacitor bank model validation
with particle swarm optimization algorithm,” in 2016 IEEE Power and Energy Society
General Meeting (PESGM), July 2016, pp. 1-5.

52



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

53

C. Liu, K. Sun, Z. H. Rather, Z. Chen, C. L. Bak, P. Thgersen, and P. Lund, “A
systematic approach for dynamic security assessment and the corresponding preven-
tive control scheme based on decision trees,” in 2014 [IEFEE PES General Meeting —
Conference Exposition, July 2014, pp. 1-1.

M. He, J. Zhang, and V. Vittal, “Robust online dynamic security assessment using adap-
tive ensemble decision-tree learning,” IEEE Transactions on Power Systems, vol. 28,
no. 4, pp. 4089-4098, Nov 2013.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse, “Decision tree induction based on
efficient tree restructuring,” Machine Learning, vol. 29, no. 1, pp. 5-44, 1997.

J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp.
81-106, Mar 1986. [Online|. Available: http://dx.doi.org/10.1007/BF00116251

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line random forests,”
in 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops, Sept 2009, pp. 1393-1400.

P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings of the
sizth ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2000, pp. 71-80.

H. Yang, S. Fong, G. Sun, and R. Wong, “A very fast decision tree algorithm for real-
time data mining of imperfect data streams in a distributed wireless sensor network,”

International Journal of Distributed Sensor Networks, 2012.

C. P. Steinmetz, “Power control and stability of electric generating stations,” Transac-
tions of the American Institute of FElectrical Engineers, vol. 39, no. 2, pp. 1215-1287,
1920.

P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control. McGraw-
hill New York, 1994, vol. 7.

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziar-
gyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem, and V. Vittal, “Definition and
classification of power system stability ieee/cigre joint task force on stability terms and
definitions,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug
2004.



[18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

28]

54

D. Barber, Bayesian reasoning and machine learning. Cambridge University Press,
2012.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer

series in statistics New York, 2001, vol. 1.

T. V. Cutsem, L. Wehenkel, M. Pavella, B. Heilbronn, and M. Goubin, “Decision tree
approaches to voltage security assessment,” IEE Proceedings C - Generation, Transmis-
ston and Distribution, vol. 140, no. 3, pp. 189-198, May 1993.

L. Wehenkel, T. V. Cutsem, and M. Ribbens-Pavella, “An artificial intelligence frame-
work for online transient stability assessment of power systems,” IEEE Transactions on
Power Systems, vol. 4, no. 2, pp. 789-800, May 1989.

Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning
and an application to boosting,” in Furopean conference on computational learning
theory. Springer, 1995, pp. 23-37.

C. Taylor, N. Balu, and D. Maratukulam, Power system woltage stability, ser.
The EPRI Power System Engineering Series. McGraw-Hill Ryerson, Limited, 1994.
[Online]. Available: https://books.google.com/books?id=CPtSAAAAMAAJ]

T. Van Cutsem and C. Vournas, Voltage stability of electric power systems. Springer
Science & Business Media, 1998, vol. 441.

P. Kessel and H. Glavitsch, “Estimating the voltage stability of a power system,” IEEFE
Power Engineering Review, vol. PER-6, no. 7, pp. 72-72, July 1986.

S. Shukla and L. Mili, “A hierarchical decentralized coordinated voltage instability
detection scheme for sve,” in 2015 North American Power Symposium (NAPS), Oct
2015, pp. 1-6.

P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings of the
sizth ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2000, pp. 71-80.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Data stream mining - a practical
approach. [Online]. Available: http://www.cs.waikato.ac.nz/ abifet/MOA /StreamMin-
ing.pdf



95

[29] D. G. Denison, B. K. Mallick, and A. F. Smith, “A bayesian cart algorithm,” Biometrika,
vol. 85, no. 2, pp. 363-377, 1998.

[30] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants,” Machine learning, vol. 36, no. 1, pp. 105-139, 1999.

[31] H. Mehrjerdi, S. Lefebvre, M. Saad, and D. Asber, “A decentralized control of parti-
tioned power networks for voltage regulation and prevention against disturbance prop-
agation,” IEEFE Transactions on Power Systems, vol. 28, no. 2, pp. 1461-1469, 2013.

[32] R. Kohavi and C. Kunz, “Option decision trees with majority votes,” in ICML, vol. 97,
1997, pp. 161-169.



Appendix A

Python Implementations of Hoeflding
Trees

A.1 main()

import sys, csv

import numpy as np

import scipy.io as sio

import time

import matplotlib.pyplot as plt

# import pydotplus

from sklearn import tree

from sklearn.metrics import accuracy_score

from hoeffdingtree import *

def main():
InitFileName = ’IEEE300_load_init100.csv’
TrainFileName = ’IEEE300_load_train3100.csv’
TestFileName = ’IEEE300_test_last356.csv’

InitDataset = open_dataset(InitFileName, O, probe_instances=10000)
TrainDataset = open_dataset(TrainFileName, O, probe_instances=10000)

TestDataset = open_dataset(TestFileName, O, probe_instances=10000)

elapsed_time = []

o6



Appendix A 57

err = []

vidt = HoeffdingTree()

# Set some of the algorithm parameters

vidt.set_grace_period(50)

vidt.set_hoeffding tie_threshold(0.4)

vidt.set_split_confidence(0.0000001)

# Split criterion, for now, can only be set on hoeffdingtree.py file.

# This is only relevant when Information Gain is chosen as the split criterion

vidt.set_minimum_fraction_of_weight_info_gain(0.01)

vfdt.build_classifier (InitDataset)
print(vEdt)
NumInstances = 0

# Simulate a data stream
with open(TrainFileName) as f:
stream = csv.reader(f)
# Ignore the CSV headers
next (stream)
# for item in stream:
for item in stream:
NumInstances = NumInstances + 1
inst_values = list(item)
for i in range(len(inst_values)):

if TrainDataset.attribute(index=i).type() == ’Nominal’:

inst_values[i] int (TrainDataset.attribute(index=i)
.index_of_value(str(inst_values([i])))

else:

inst_values[i] float(inst_values[i])
new_instance = Instance(att_values=inst_values)

new_instance.set_dataset(TrainDataset)

# Record the time duration while updating the model

tic = time.time()

vfdt.update_classifier(new_instance)

elapsed_time.append ([NumInstances, time.time() - tic])

print (’ [Hoeffding Training] HT model is trained with {0} instances in the

dataset...’.format (NumInstances))

# Simulate another data stream to test the Model



Appendix A

# Test the accuracy every 10 instances
if (NumInstances % 10 == 0):

elapsed_time

NumTestInstances = 0O

err_count = 0

with open(TestFileName) as f:
stream = csv.reader(f)
# Ignore the CSV headers
next (stream)
# for item in stream:

for item in stream:

NumTestInstances = NumTestInstances + 1
inst_values = list(item)
for i in range(len(inst_values)):
if TestDataset.attribute(index=i).type() == ’Nominal’:
inst_values[i] = int(TestDataset.attribute(index=i)
.index_of_value(str(inst_values[i])))
else:
inst_values[i] = float(inst_values[i])
new_instance = Instance(att_values=inst_values)
new_instance.set_dataset (TestDataset)

err_count = err_count + vfdt.predict_classifier(new_instance)

print (’\tTesting Error Rate: {0}/{1} = {2}}’.format(err_count,

NumTestInstances,
100 * err_count /

NumTestInstances))

# Calculate the training error for the new model

err.append ([NumInstances+100, err_count / NumTestInstances])

np.array(elapsed_time)

err = np.array(err)

return (vfdt,elapsed_time,err)

A.2 class HoeffdingTree()

import math

from operator import attrgetter

o8



from
from
from

from

from
from
from
from
from
from
from
from

from

Appendix A

core import utils

core.attribute import Attribute

core.instance import Instance

core.dataset import Dataset

ht
ht
ht

ht.
ht.
ht.
ht.
ht.
ht.

.activehnode import ActiveHNode
.ginisplitmetric import GiniSplitMetric

.hnode import HNode

inactivehnode import InactiveHNode
infogainsplitmetric import InfoGainSplitMetric
leafnode import LeafNode

splitcandidate import SplitCandidate
splitmetric import SplitMetric

splitnode import SplitNode

class HoeffdingTree(object):

"""Main class for a Hoeffding Tree, also known as Very Fast Decision Tree

def

(VFDT) . """

__init__(self):

self._header = None

self._root = None

self._grace_period = 200
self._split_confidence = 0.0000001
self._hoeffding_tie_threshold = 0.05

self._min_frac_weight_for_two_branches_gain = 0.01

# Split metric stuff goes here
self .GINI_SPLIT = O
self .INFO_GAIN_SPLIT = 1

self._selected_split_metric = self.INFO_GAIN_SPLIT
self._split_metric =

InfoGainSplitMetric(self. _min_frac_weight_for_two_branches_gain)
#self._selected_split_metric = self.GINI_SPLIT
#self._split_metric = GiniSplitMetric()

# Leaf prediction strategy stuff goes here

# Only used when the leaf prediction strategy is based on Naive Bayes, not

useful right now
#self._nb_threshold = 0

99



Appendix A 60

self._active_leaf_count = 0

]
o

self._inactive_leaf_count

self._decision_node_count

# Print out leaf models in the case of naive Bayes or naive Bayes adaptive
leaves

self._print_leaf_models = False

def __str__(self):
if self._root is None:
return ’No model built yet!’
return self._root.__str__(self._print_leaf_models)
def reset(self):
"""Reset the classifier and set all node/leaf counters to zero."""
self._root = None

self._active_leaf_count = 0

self._inactive_leaf_count

]
o

self._decision_node_count

def set_minimum_fraction_of_weight_info_gain(self, m):

self. _min_frac_weight_for_two_branches_gain = m

def get_minimum_fraction_of_weight_info_gain(self):

return self._min_frac_weight_for_two_branches_gain

def set_grace_period(self, grace):

self._grace_period = grace

def get_grace_period(self):
return self._grace_period

def set_hoeffding_tie_threshold(self, ht):
self._hoeffding_tie_threshold = ht

def get_hoeffding_tie_threshold(self):
return self._hoeffding_tie_threshold

def set_split_confidence(self, sc):

self._split_confidence = sc

def get_split_confidence(self):



def

def

def

Appendix A 61

return self._split_confidence

compute_hoeffding bound(self, max_value, confidence, weight):
"""Calculate the Hoeffding bound.

Args:
max_value (float):
confidence (float):
weight (float):

Returns:
(float): The Hoeffding bound.

nmnn

return math.sqrt(((max_value * max_value) * math.log(1.0 / confidence)) /
(2.0 * weight))

build_classifier(self, dataset):

"""Byild the classifier.

Args:
dataset (Dataset): The data to start training the classifier.
i
self.reset()
self._header = dataset
if self._selected_split_metric is self.GINI_SPLIT:
self._split_metric = GiniSplitMetric()
else:
self._split_metric =

InfoGainSplitMetric(self. _min_frac_weight_for_two_branches_gain)

for i in range(dataset.num_instances()):

self.update_classifier(dataset.instance(i))

update_classifier(self, instance):

"""Update the classifier with the given instance.

Args:

instance (Instance): The new instance to be used to train the classifier.
nan
if instance.class_is_missing():

return

if self._root is None:



Appendix A

self._root = self.new_learning node()

1 = self._root.leaf_for_instance(instance, None, None)
actual_node = 1.the_node
if actual_node is None:

actual_node = ActiveHNode ()

1l.parent_node.set_child(l.parent_branch, actual_node)

# ActiveHNode should be changed to a LearningNode interface if Naive Bayes
nodes are used
if isinstance(actual_node, InactiveHNode):
actual_node.update_node(instance)
if isinstance(actual_node, ActiveHNode):
actual_node.update_node(instance)
total_weight = actual_node.total_weight ()
if total_weight - actual_node.weight_seen_at_last_split_eval >
self._grace_period:
self.try_split(actual_node, l.parent_node, 1l.parent_branch)

actual_node.weight_seen_at_last_split_eval = total_weight

def predict_classifier(self, instance):

"""Predict the result of the instance given the trained classifier.

Args:
instance (Instance): The instance to be used to make the prediction.
i
if instance.class_is_missing():
return
if self._root is Nomne:

self._root = self.new_learning node()

1 = self._root.leaf_for_instance(instance, None, None)

actual_node = 1.the_node
if actual_node is None:
actual_node = ActiveHNode ()

1l.parent_node.set_child(l.parent_branch, actual_node)

# predict/actual_placement class

ins_class_predict = str(actual_node)

# true class



def

def

Appendix A 63

ins_class_attribute = instance.class_attribute()

ins_class_true = str(ins_class_attribute.value(instance.class_value()))

PredictTag = (ins_class_predict == ins_class_true)

if PredictTag:

err_increment = 0O
else:
err_increment = 1

return err_increment

distribution_for_instance(self, instance):

"""Return the class probabilities for an instance.

Args:

instance (Instance): The instance to calculate the class probabilites for.

Returns:

list[float]: The class probabilities.
nuan
class_attribute = instance.class_attribute()

pred = []

if self._root is not Nomne:

1 = self._root.leaf_for_instance(instance, None, None)

actual_node = 1l.the_node

if actual_node is Nonme:

actual_node = 1l.parent_node

pred = actual_node.get_distribution(instance, class_attribute)
else:

# All class values equally likely

pred = [1 for i in range(class_attribute.num_values())]

utils.normalize (pred)
return pred
deactivate_node(self, to_deactivate, parent, parent_branch):
"""Prevent supplied node of growing.

Args:



def

def

Appendix A

to_deactivate (ActiveHNode): The node to be deactivated.
parent (SplitNode): The parent of the node.
parent_branch (str): The branch leading from the parent to the node.

leaf = InactiveHNode(to_deactivate.class_distribution)

if parent is None:
self._root = leaf
else:

parent.set_child(parent_branch, leaf)

self._active_leaf_count -= 1

self._inactive_leaf_count += 1

activate_node(self, to_activate, parent, parent_branch):

"""Allow supplied node to grow.

Args:
to_activate (InactiveHNode): The node to be activated.
parent (SplitNode): The parent of the node.
parent_branch (str): The branch leading from the parent to the node.
o
leaf = ActiveHNode()
leaf.class_distribution = to_activate.class_distribution

if parent is None:
self._root = leaf
else:

parent.set_child(parent_branch, leaf)

self._active_leaf_count += 1

self._inactive_leaf_count -= 1

try_split(self, node, parent, parent_branch):
"""Try a split from the supplied node.

Args:
node (ActiveHNode): The node to split.
parent (SplitNode): The parent of the node.
parent_branch (str): The branch leading from the parent to the node.

# Non-pure?

64



Appendix A 65

if node.num_entries_in_class_distribution() > 1:
best_splits = node.get_possible_splits(self._split_metric)
best_splits.sort(key=attrgetter (’split_merit’))

do_split = False
if len(best_splits) < 2:
do_split = len(best_splits) > O
else:
# Compute Hoeffding bound
metric_max =
self._split_metric.get_metric_range(node.class_distribution)
hoeffding_bound = self.compute_hoeffding_ bound(
metric_max, self._split_confidence, node.total_weight())
best = best_splits[len(best_splits) - 1]
second_best = best_splits[len(best_splits) - 2]
if best.split_merit - second_best.split_merit > hoeffding_bound or
hoeffding _bound < self._hoeffding tie_threshold:
do_split = True

if do_split:
best = best_splits[len(best_splits) - 1]
if best.split_test is None:
# preprune
self.deactivate_node(node, parent, parent_branch)

else:

new_split = SplitNode(node.class_distribution, best.split_test)

for i in range(best.num_splits()):
new_child = self.new_learning_node()
new_child.class_distribution =
best.post_split_class_distributions[i]
new_child.weight_seen_at_last_split_eval =
new_child.total_weight ()

branch_name = 7’

if
self._header.attribute(name=best.split_test.split_attributes() [0]).is_nume:
if 1 is O:
branch_name = ’left’
else:
branch_name = ’right’
else:

split_attribute =



Appendix A 66

self._header.attribute(name=best.split_test.split_attributes() [0])
branch_name = split_attribute.value(i)

new_split.set_child(branch_name, new_child)

self._active_leaf_count -= 1
self._decision_node_count += 1

self._active_leaf_count += best.num_splits()

if parent is None:
self._root = new_split
else:

parent.set_child(parent_branch, new_split)

def new_learning_node(self):
"""Create a new learning node. Will always be an ActiveHNode while Naive Bayes

nodes are not implemented.

Returns:
ActivellNode: The new learning node.

nun

# Leaf strategy should be handled here if/when the Naive Bayes approach is
implemented

return ActiveHNode()

A.3 class ActiveHNode()

from ht.leafnode import LeafNode

from ht.hnode import HNode

from ht.gaussianconditionalsufficientstats import GaussianConditionalSufficientStats
from ht.nominalconditionalsufficientstats import NominalConditionalSufficientStats

from ht.splitcandidate import SplitCandidate

class ActiveHNode(LeafNode):
"""A Hoeffding Tree node that supports growth."""
def __init__(self):
init__Q)
# The total weight of the instances seen at the last split evaluation.

super () .

self .weight_seen_at_last_split_eval = 0O
# Statistics for the attributes.
# Dict of tuples (attribute name, ConditionalSufficientStats).



Appendix A 67

self._node_stats = {}

def update_node(self, instance):

"""Update the node with the supplied instance.

Args:
instance (Instance): The instance to be used for updating the node.
Wi
self .update_distribution(instance)
for i in range(instance.num_attributes()):
a = instance.attribute(i)
if i is not instance.class_index():
stats = self._node_stats.get(a.name(), None)
if stats is Nonme:
if a.is_numeric():
stats = GaussianConditionalSufficientStats()
else:
stats = NominalConditionalSufficientStats()

self._node_stats[a.name()] = stats

stats.update(instance.value(attribute=a),
instance.class_attribute() .value(index=instance.class_value()),

instance.weight())

def get_possible_splits(self, split_metric):
"""Return a list of the possible split candidates.

Args:
split_metric (SplitMetric): The splitting metric to be used.

Returns:
list[SplitCandidate]: A list of the possible split candidates.
splits = []
null_dist = []
null_dist.append(self.class_distribution)
null_split = SplitCandidate(None, null_dist,
split_metric.evaluate_split(self.class_distribution, null_dist))

splits.append(null_split)

for attribute_name, stat in self._node_stats.items():

split_candidate = stat.best_split(split_metric, self.class_distribution,



Appendix A

attribute_name)
if split_candidate is not None:

splits.append(split_candidate)

return splits

A.4 class GiniSplitMetric()

from ht.splitmetric import SplitMetric

class GiniSplitMetric(SplitMetric):
"""The Gini split metric."""
def evaluate_split(self, pre_dist, post_dist):
total_weight = 0.0
dist_weights = []
for i in range(len(post_dist)):
dist_weights.append(self.sum(post_dist[i]))
total_weight += dist_weights[i]
gini_metric = 0
for i in range(len(post_dist)):
gini_metric += (dist_weights[i] / total_weight) * self.gini(
post_dist[i], dist_weights[i])

return 1.0 - gini_metric

def gini(self, dist, sum_of_weights=None):
if sum_of_weights is Nomne:
sum_of_weights = self.sum(dist)
gini_metric = 1.0
for class_value, mass in dist.items():
frac = mass.weight / sum_of_weights
gini_metric -= frac * frac

return gini_metric

def get_metric_range(self, pre_dist):

return 1.0

68



Appendix B

Management of Data Structure in
openECA

B.1 Manage Data Structure using SQL scripts

USE openECA;

INSERT INTO Node(Name, CompanyID, Description, Settings, MenuType, MenuData, Master,
LoadOrder, Enabled)
VALUES(’Default’, NULL, ’Default node’,
’RemoteStatusServerConnectionString={server=localhost:8525;integratedSecurity=true};dataPubl
’File’, ’Menu.xml’, 1, 0, 1);

UPDATE Node SET ID=’eb57b4at6d-ca9e-403c-ad2e-9a1db9a8a707’ WHERE Name=’Default’;

INSERT INTO Historian(NodeID, Acronym, Name, AssemblyName, TypeName,
ConnectionString, IsLocal, Description, LoadOrder, Enabled)

VALUES (’ e57b4a6d-ca9e-403c-ad2e-9a1db9a8a707’, ’PPA’, ’Primary Phasor Archive’,
’TestingAdapters.dll’, ’TestingAdapters.VirtualOutputAdapter’, ’’, 1, ’Primary
Phasor Archive’, 0, 1);

INSERT INTO Device(NodeID, Acronym, Name, IsConcentrator, CompanyID, HistorianID,
AccessID, VendorDevicelID, ProtocolID, Longitude, Latitude, InterconnectionID,
ConnectionString, MeasuredLines, LoadOrder, Enabled)

VALUES (’ e57b4a6d-ca9e-403c-ad2e-9a1db9a8a707’, ’TESTDEVICE’, ’Test Device’, O,
30, 1, 2, 2, 3, -89.8038, 35.3871, 1, ’transportProtocol=File;

69



Appendix B 70

file=Sample1344.PmuCapture; useHighResolutionInputTimer=True’, 3, 0, 1);

INSERT INTO Phasor(DevicelID, Label, Type, Phase, SourceIndex) VALUES(1, ’500 kV Bus
17’ IV), 7+7’ 1);

INSERT INTO Phasor(DeviceID, Label, Type, Phase, SourceIndex) VALUES(1, ’500 kV Bus
27, V7, 0+, 2);

INSERT INTO Phasor(DeviceID, Label, Type, Phase, SourceIndex) VALUES(1, ’Cordova’,

)17’ ;+7’ 3)’
INSERT INTO Phasor(DeviceID, Label, Type, Phase, SourceIndex) VALUES(1, ’Dell’, ’I’,
T+, 4

INSERT INTO Phasor(DeviceID, Label, Type, Phase, SourceIndex) VALUES(1, ’Lagoon
Creek’, ’I’, ’+’, b);

—-— Shadow System using 118 bus system(ShadowSys118) for Online VSA Applicatiomns

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:LOADINCRE’, 9, NULL, ’SS118-LOADINCRE’, ’Shadow System for 118-bus system
- Load Increment in percentage’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:RESET’, 9, NULL, ’SS118-RESET’, ’Shadow System for 118-bus system - Reset
Signal to read initial system configuration’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB34CLOSE’, 9, NULL, ’SS118-ACTSNB34CLOSE’, ’Shadow System for
118-bus system - Action flag of closing Capacitor Bank at bus 34 ActSnB34Close’,
s

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB44CLOSE’, 9, NULL, ’SS118-ACTSNB44CLOSE’, ’Shadow System for
118-bus system - Action flag of closing Capacitor Bank at bus 44 ActSnB44Close’,
D

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB45CLOSE’, 9, NULL, ’SS118-ACTSNB45CLOSE’, ’Shadow System for
118-bus system - Action flag of closing Capacitor Bank at bus 45 ActSnB45Close’,
1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB48CLOSE’, 9, NULL, ’SS118-ACTSNB48CLOSE’, ’Shadow System for
118-bus system - Action flag of closing Capacitor Bank at bus 48 ActSnB48Close’,



Appendix B

1
INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

71

’SS_118:ACTSNB74CLOSE’, 9, NULL, ’SS118-ACTSNB74CLOSE’, ’Shadow System for
118-bus system - Action flag of closing Capacitor Bank at bus 74 ActSnB74Close’,

1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB105CLOSE’, 9, NULL, ’SS118-ACTSNB105CLOSE’, ’Shadow System
118-bus system - Action flag of closing Capacitor Bank at bus 105
ActSnB105Close’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB34TRIP’, 9, NULL, ’SS118-ACTSNB34TRIP’, ’Shadow System for
system - Action flag of tripping Capacitor Bank at bus 34 ActSnB34Trip’,

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB44TRIP’, 9, NULL, ’SS118-ACTSNB44TRIP’, ’Shadow System for
system - Action flag of tripping Capacitor Bank at bus 44 ActSnB44Trip’,

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB45TRIP’, 9, NULL, ’SS118-ACTSNB45TRIP’, ’Shadow System for
system - Action flag of tripping Capacitor Bank at bus 45 ActSnB45Trip’,

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB48TRIP’, 9, NULL, ’SS118-ACTSNB48TRIP’, ’Shadow System for
system - Action flag of tripping Capacitor Bank at bus 48 ActSnB48Trip’,

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:ACTSNB74TRIP’, 9, NULL, ’SS118-ACTSNB74TRIP’, ’Shadow System for
system - Action flag of tripping Capacitor Bank at bus 74 ActSnB74Trip’,

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

for

118-bus
1);

118-bus
1);

118-bus
1);

118-bus
1);

118-bus
1);

’SS_118:ACTSNB105TRIP’, 9, NULL, ’SS118-ACTSNB105TRIP’, ’Shadow System for

118-bus system - Action flag of tripping Capacitor Bank at bus 105
ActSnB105Trip’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

’SS_118:STATESNB34CAPBKRV’, 9, NULL, ’SS118-STATESNB34CAPBKRV’, ’Shadow System

for 118-bus system - Capacitor Bank at bus 34 circuit breaker state value

StateSnB34CapBkrV’, 1);
INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,



Appendix B

PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:STATESNB44CAPBKRV’, 9, NULL, ’SS118-STATESNB44CAPBKRV’, ’Shadow System
for 118-bus system - Capacitor Bank at bus 44 circuit breaker state value
StateSnB44CapBkrV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:STATESNB45CAPBKRV’, 9, NULL, ’SS118-STATESNB45CAPBKRV’, ’Shadow System
for 118-bus system - Capacitor Bank at bus 45 circuit breaker state value
StateSnB45CapBkrV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:STATESNB48CAPBKRV’, 9, NULL, ’SS118-STATESNB48CAPBKRV’, ’Shadow System
for 118-bus system - Capacitor Bank at bus 48 circuit breaker state value
StateSnB48CapBkrV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:STATESNB74CAPBKRV’, 9, NULL, ’SS118-STATESNB74CAPBKRV’, ’Shadow System
for 118-bus system - Capacitor Bank at bus 74 circuit breaker state value
StateSnB74CapBkrV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

72

’SS_118:STATESNB105CAPBKRV’, 9, NULL, ’SS118-STATESNB105CAPBKRV’, ’Shadow System

for 118-bus system - Capacitor Bank at bus 105 circuit breaker state value
StateSnB105CapBkrV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB1VOLTV’, 3, NULL, ’SS118-MEASB1VOLTV’, ’Shadow System for 118-bus
system - Bus 1 Voltage Magnitude MeasB1VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB2VOLTV’, 3, NULL, ’SS118-MEASB2VOLTV’, ’Shadow System for 118-bus
system - Bus 2 Voltage Magnitude MeasB2VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB3VOLTV’, 3, NULL, ’SS118-MEASB3VOLTV’, ’Shadow System for 118-bus
system - Bus 3 Voltage Magnitude MeasB3VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB4VOLTV’, 3, NULL, ’SS118-MEASB4VOLTV’, ’Shadow System for 118-bus
system - Bus 4 Voltage Magnitude MeasB4VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,



Appendix B

73

’SS_118:MEASBSVOLTV’, 3, NULL, ’SS118-MEASB5VOLTV’, ’Shadow System for 118-bus

system - Bus 5 Voltage Magnitude MeasB5VoltV’, 1);
INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

’SS_118:MEASB6VOLTV’, 3, NULL, ’SS118-MEASB6VOLTV’, ’Shadow System for 118-bus

system - Bus 6 Voltage Magnitude MeasB6VoltV’, 1);
INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

’SS_118:MEASB7VOLTV’, 3, NULL, ’SS118-MEASB7VOLTV’, ’Shadow System for 118-bus

system - Bus 7 Voltage Magnitude MeasB7VoltV’, 1);
INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

’SS_118:MEASB8VOLTV’, 3, NULL, ’SS118-MEASB8VOLTV’, ’Shadow System for 118-bus

system - Bus 8 Voltage Magnitude MeasB8VoltV’, 1);
INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

’SS_118:MEASBOVOLTV’, 3, NULL, ’SS118-MEASBOVOLTV’, ’Shadow System for 118-bus

system - Bus 9 Voltage Magnitude MeasB9VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB10VOLTV’, 3, NULL, ’SS118-MEASB10VOLTV’, ’Shadow System for
system - Bus 10 Voltage Magnitude MeasB10VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB11VOLTV’, 3, NULL, ’SS118-MEASB11VOLTV’, ’Shadow System for
system - Bus 11 Voltage Magnitude MeasB11VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB12VOLTV’, 3, NULL, ’SS118-MEASB12VOLTV’, ’Shadow System for
system - Bus 12 Voltage Magnitude MeasB12VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB13VOLTV’, 3, NULL, ’SS118-MEASB13VOLTV’, ’Shadow System for
system - Bus 13 Voltage Magnitude MeasB13VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB14VOLTV’, 3, NULL, ’SS118-MEASB14VOLTV’, ’Shadow System for
system - Bus 14 Voltage Magnitude MeasB14VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB15VOLTV’, 3, NULL, ’SS118-MEASB15VOLTV’, ’Shadow System for
system - Bus 15 Voltage Magnitude MeasB15VoltV’, 1);

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus



Appendix B

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB16VOLTV’, 3, NULL, ’SS118-MEASB16VOLTV’, ’Shadow System for
system - Bus 16 Voltage Magnitude MeasB16VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB17VOLTV’, 3, NULL, ’SS118-MEASB17VOLTV’, ’Shadow System for
system - Bus 17 Voltage Magnitude MeasB17VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB18VOLTV’, 3, NULL, ’SS118-MEASB18VOLTV’, ’Shadow System for
system - Bus 18 Voltage Magnitude MeasB18VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB19VOLTV’, 3, NULL, ’SS118-MEASB19VOLTV’, ’Shadow System for
system - Bus 19 Voltage Magnitude MeasB19VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB20VOLTV’, 3, NULL, ’SS118-MEASB20VOLTV’, ’Shadow System for
system - Bus 20 Voltage Magnitude MeasB20VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB21VOLTV’, 3, NULL, ’SS118-MEASB21VOLTV’, ’Shadow System for
system - Bus 21 Voltage Magnitude MeasB21VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB22VOLTV’, 3, NULL, ’SS118-MEASB22VOLTV’, ’Shadow System for
system - Bus 22 Voltage Magnitude MeasB22VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB23VOLTV’, 3, NULL, ’SS118-MEASB23VOLTV’, ’Shadow System for
system - Bus 23 Voltage Magnitude MeasB23VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB24VOLTV’, 3, NULL, ’SS118-MEASB24VOLTV’, ’Shadow System for
system - Bus 24 Voltage Magnitude MeasB24VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB25VOLTV’, 3, NULL, ’SS118-MEASB25VOLTV’, ’Shadow System for
system - Bus 25 Voltage Magnitude MeasB25VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

74



Appendix B

’SS_118:MEASB26VOLTV’, 3, NULL, ’SS118-MEASB26VOLTV’, ’Shadow System for
system - Bus 26 Voltage Magnitude MeasB26VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB27VOLTV’, 3, NULL, ’SS118-MEASB27VOLTV’, ’Shadow System for
system - Bus 27 Voltage Magnitude MeasB27VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB28VOLTV’, 3, NULL, ’SS118-MEASB28VOLTV’, ’Shadow System for
system - Bus 28 Voltage Magnitude MeasB28VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB29VOLTV’, 3, NULL, ’SS118-MEASB29VOLTV’, ’Shadow System for
system - Bus 29 Voltage Magnitude MeasB29VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB30VOLTV’, 3, NULL, ’SS118-MEASB30VOLTV’, ’Shadow System for
system - Bus 30 Voltage Magnitude MeasB30VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB31VOLTV’, 3, NULL, ’SS118-MEASB31VOLTV’, ’Shadow System for
system - Bus 31 Voltage Magnitude MeasB31VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB32VOLTV’, 3, NULL, ’SS118-MEASB32VOLTV’, ’Shadow System for
system - Bus 32 Voltage Magnitude MeasB32VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB33VOLTV’, 3, NULL, ’SS118-MEASB33VOLTV’, ’Shadow System for
system - Bus 33 Voltage Magnitude MeasB33VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB34VOLTV’, 3, NULL, ’SS118-MEASB34VOLTV’, ’Shadow System for
system - Bus 34 Voltage Magnitude MeasB34VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB35VOLTV’, 3, NULL, ’SS118-MEASB35VOLTV’, ’Shadow System for
system - Bus 35 Voltage Magnitude MeasB35VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB36VOLTV’, 3, NULL, ’SS118-MEASB36VOLTV’, ’Shadow System for
system - Bus 36 Voltage Magnitude MeasB36VoltV’, 1);

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

75



Appendix B

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB37VOLTV’, 3, NULL, ’SS118-MEASB37VOLTV’, ’Shadow System for
system - Bus 37 Voltage Magnitude MeasB37VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB38VOLTV’, 3, NULL, ’SS118-MEASB38VOLTV’, ’Shadow System for
system - Bus 38 Voltage Magnitude MeasB38VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB39VOLTV’, 3, NULL, ’SS118-MEASB39VOLTV’, ’Shadow System for
system - Bus 39 Voltage Magnitude MeasB39VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB40VOLTV’, 3, NULL, ’SS118-MEASB40VOLTV’, ’Shadow System for
system - Bus 40 Voltage Magnitude MeasB40VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB41VOLTV’, 3, NULL, ’SS118-MEASB41VOLTV’, ’Shadow System for
system - Bus 41 Voltage Magnitude MeasB41VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB42VOLTV’, 3, NULL, ’SS118-MEASB42VOLTV’, ’Shadow System for
system - Bus 42 Voltage Magnitude MeasB42VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB43VOLTV’, 3, NULL, ’SS118-MEASB43VOLTV’, ’Shadow System for
system - Bus 43 Voltage Magnitude MeasB43VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB44VOLTV’, 3, NULL, ’SS118-MEASB44VOLTV’, ’Shadow System for
system - Bus 44 Voltage Magnitude MeasB44VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB45VOLTV’, 3, NULL, ’SS118-MEASB45VOLTV’, ’Shadow System for
system - Bus 45 Voltage Magnitude MeasB45VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB46VOLTV’, 3, NULL, ’SS118-MEASB46VOLTV’, ’Shadow System for
system - Bus 46 Voltage Magnitude MeasB46VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

76



Appendix B

’SS_118:MEASB47VOLTV’, 3, NULL, ’SS118-MEASB47VOLTV’, ’Shadow System for
system - Bus 47 Voltage Magnitude MeasB47VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB48VOLTV’, 3, NULL, ’SS118-MEASB48VOLTV’, ’Shadow System for
system - Bus 48 Voltage Magnitude MeasB48VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB49VOLTV’, 3, NULL, ’SS118-MEASB49VOLTV’, ’Shadow System for
system - Bus 49 Voltage Magnitude MeasB49VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB50VOLTV’, 3, NULL, ’SS118-MEASBS50VOLTV’, ’Shadow System for
system - Bus 50 Voltage Magnitude MeasB50VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB51VOLTV’, 3, NULL, ’SS118-MEASB51VOLTV’, ’Shadow System for
system - Bus 51 Voltage Magnitude MeasB51VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB52VOLTV’, 3, NULL, ’SS118-MEASB52VOLTV’, ’Shadow System for
system - Bus 52 Voltage Magnitude MeasB52VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB53VOLTV’, 3, NULL, ’SS118-MEASB53VOLTV’, ’Shadow System for
system - Bus 53 Voltage Magnitude MeasB53VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB54VOLTV’, 3, NULL, ’SS118-MEASB54VOLTV’, ’Shadow System for
system - Bus 54 Voltage Magnitude MeasB54VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB55VOLTV’, 3, NULL, ’SS118-MEASB55VOLTV’, ’Shadow System for
system - Bus 55 Voltage Magnitude MeasB55VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB56VOLTV’, 3, NULL, ’SS118-MEASB56VOLTV’, ’Shadow System for
system - Bus 56 Voltage Magnitude MeasB56VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB57VOLTV’, 3, NULL, ’SS118-MEASB57VOLTV’, ’Shadow System for
system - Bus 57 Voltage Magnitude MeasB57VoltV’, 1);

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

7



Appendix B

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB58VOLTV’, 3, NULL, ’SS118-MEASB58VOLTV’, ’Shadow System for
system - Bus 58 Voltage Magnitude MeasB58VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB59VOLTV’, 3, NULL, ’SS118-MEASB59VOLTV’, ’Shadow System for
system - Bus 59 Voltage Magnitude MeasB59VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB60OVOLTV’, 3, NULL, ’SS118-MEASB60OVOLTV’, ’Shadow System for
system - Bus 60 Voltage Magnitude MeasB60VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB61VOLTV’, 3, NULL, ’SS118-MEASB61VOLTV’, ’Shadow System for
system - Bus 61 Voltage Magnitude MeasB61VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB62VOLTV’, 3, NULL, ’SS118-MEASB62VOLTV’, ’Shadow System for
system - Bus 62 Voltage Magnitude MeasB62VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB63VOLTV’, 3, NULL, ’SS118-MEASB63VOLTV’, ’Shadow System for
system - Bus 63 Voltage Magnitude MeasB63VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB64VOLTV’, 3, NULL, ’SS118-MEASB64VOLTV’, ’Shadow System for
system - Bus 64 Voltage Magnitude MeasB64VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB65VOLTV’, 3, NULL, ’SS118-MEASB65VOLTV’, ’Shadow System for
system - Bus 65 Voltage Magnitude MeasB65VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB66VOLTV’, 3, NULL, ’SS118-MEASB66VOLTV’, ’Shadow System for
system - Bus 66 Voltage Magnitude MeasB66VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB67VOLTV’, 3, NULL, ’SS118-MEASB67VOLTV’, ’Shadow System for
system - Bus 67 Voltage Magnitude MeasB67VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

78



Appendix B

’SS_118:MEASB68VOLTV’, 3, NULL, ’SS118-MEASB68VOLTV’, ’Shadow System for
system - Bus 68 Voltage Magnitude MeasB68VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB69VOLTV’, 3, NULL, ’SS118-MEASB69VOLTV’, ’Shadow System for
system - Bus 69 Voltage Magnitude MeasB69VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB7OVOLTV’, 3, NULL, ’SS118-MEASB70VOLTV’, ’Shadow System for
system - Bus 70 Voltage Magnitude MeasB70VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB71VOLTV’, 3, NULL, ’SS118-MEASB71VOLTV’, ’Shadow System for
system - Bus 71 Voltage Magnitude MeasB71VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB72VOLTV’, 3, NULL, ’SS118-MEASB72VOLTV’, ’Shadow System for
system - Bus 72 Voltage Magnitude MeasB72VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB73VOLTV’, 3, NULL, ’SS118-MEASB73VOLTV’, ’Shadow System for
system - Bus 73 Voltage Magnitude MeasB73VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB74VOLTV’, 3, NULL, ’SS118-MEASB74VOLTV’, ’Shadow System for
system - Bus 74 Voltage Magnitude MeasB74VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB75VOLTV’, 3, NULL, ’SS118-MEASB75VOLTV’, ’Shadow System for
system - Bus 75 Voltage Magnitude MeasB75VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB76VOLTV’, 3, NULL, ’SS118-MEASB76VOLTV’, ’Shadow System for
system - Bus 76 Voltage Magnitude MeasB76VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB77VOLTV’, 3, NULL, ’SS118-MEASB77VOLTV’, ’Shadow System for
system - Bus 77 Voltage Magnitude MeasB77VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB78VOLTV’, 3, NULL, ’SS118-MEASB78VOLTV’, ’Shadow System for
system - Bus 78 Voltage Magnitude MeasB78VoltV’, 1);

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

79



Appendix B

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB7OVOLTV’, 3, NULL, ’SS118-MEASB79VOLTV’, ’Shadow System for
system - Bus 79 Voltage Magnitude MeasB79VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB8OVOLTV’, 3, NULL, ’SS118-MEASB8S8OVOLTV’, ’Shadow System for
system - Bus 80 Voltage Magnitude MeasB80VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB81VOLTV’, 3, NULL, ’SS118-MEASB81VOLTV’, ’Shadow System for
system - Bus 81 Voltage Magnitude MeasB81VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB82VOLTV’, 3, NULL, ’SS118-MEASB82VOLTV’, ’Shadow System for
system - Bus 82 Voltage Magnitude MeasB82VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB83VOLTV’, 3, NULL, ’SS118-MEASB83VOLTV’, ’Shadow System for
system - Bus 83 Voltage Magnitude MeasB83VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB84VOLTV’, 3, NULL, ’SS118-MEASB84VOLTV’, ’Shadow System for
system - Bus 84 Voltage Magnitude MeasB84VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB85VOLTV’, 3, NULL, ’SS118-MEASB85VOLTV’, ’Shadow System for
system - Bus 85 Voltage Magnitude MeasB85VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB86VOLTV’, 3, NULL, ’SS118-MEASB86VOLTV’, ’Shadow System for
system - Bus 86 Voltage Magnitude MeasB86VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB87VOLTV’, 3, NULL, ’SS118-MEASB87VOLTV’, ’Shadow System for
system - Bus 87 Voltage Magnitude MeasB87VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB88VOLTV’, 3, NULL, ’SS118-MEASB88VOLTV’, ’Shadow System for
system - Bus 88 Voltage Magnitude MeasB88VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

80



Appendix B

’SS_118:MEASB89VOLTV’, 3, NULL, ’SS118-MEASB89VOLTV’, ’Shadow System for
system - Bus 89 Voltage Magnitude MeasB89VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBOOVOLTV’, 3, NULL, ’SS118-MEASBOOVOLTV’, ’Shadow System for
system - Bus 90 Voltage Magnitude MeasB90VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB91VOLTV’, 3, NULL, ’SS118-MEASB91VOLTV’, ’Shadow System for
system - Bus 91 Voltage Magnitude MeasB91VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO92VOLTV’, 3, NULL, ’SS118-MEASB92VOLTV’, ’Shadow System for
system - Bus 92 Voltage Magnitude MeasB92VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO3VOLTV’, 3, NULL, ’SS118-MEASBO3VOLTV’, ’Shadow System for
system - Bus 93 Voltage Magnitude MeasB93VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB94VOLTV’, 3, NULL, ’SS118-MEASB94VOLTV’, ’Shadow System for
system - Bus 94 Voltage Magnitude MeasB94VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBOSVOLTV’, 3, NULL, ’SS118-MEASBOS5VOLTV’, ’Shadow System for
system - Bus 95 Voltage Magnitude MeasB95VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO96VOLTV’, 3, NULL, ’SS118-MEASBO6VOLTV’, ’Shadow System for
system - Bus 96 Voltage Magnitude MeasB96VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO7VOLTV’, 3, NULL, ’SS118-MEASBO7VOLTV’, ’Shadow System for
system - Bus 97 Voltage Magnitude MeasB97VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO8VOLTV’, 3, NULL, ’SS118-MEASBO98VOLTV’, ’Shadow System for
system - Bus 98 Voltage Magnitude MeasB98VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASBO99VOLTV’, 3, NULL, ’SS118-MEASBO99VOLTV’, ’Shadow System for
system - Bus 99 Voltage Magnitude MeasB99VoltV’, 1);

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

118-bus

81



Appendix B

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB100VOLTV’, 3, NULL, ’SS118-MEASB100VOLTV’, ’Shadow System
118-bus system - Bus 100 Voltage Magnitude MeasB100VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB101VOLTV’, 3, NULL, ’SS118-MEASB101VOLTV’, ’Shadow System
118-bus system - Bus 101 Voltage Magnitude MeasB101VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB102VOLTV’, 3, NULL, ’SS118-MEASB102VOLTV’, ’Shadow System
118-bus system - Bus 102 Voltage Magnitude MeasB102VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB103VOLTV’, 3, NULL, ’SS118-MEASB103VOLTV’, ’Shadow System
118-bus system - Bus 103 Voltage Magnitude MeasB103VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB104VOLTV’, 3, NULL, ’SS118-MEASB104VOLTV’, ’Shadow System
118-bus system - Bus 104 Voltage Magnitude MeasB104VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB105VOLTV’, 3, NULL, ’SS118-MEASB105VOLTV’, ’Shadow System
118-bus system - Bus 105 Voltage Magnitude MeasB105VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB106VOLTV’, 3, NULL, ’SS118-MEASB106VOLTV’, ’Shadow System
118-bus system - Bus 106 Voltage Magnitude MeasB106VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB107VOLTV’, 3, NULL, ’SS118-MEASB107VOLTV’, ’Shadow System
118-bus system - Bus 107 Voltage Magnitude MeasB107VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB108VOLTV’, 3, NULL, ’SS118-MEASB108VOLTV’, ’Shadow System
118-bus system - Bus 108 Voltage Magnitude MeasB108VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB109VOLTV’, 3, NULL, ’SS118-MEASB109VOLTV’, ’Shadow System
118-bus system - Bus 109 Voltage Magnitude MeasB109VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,

for

for

for

for

for

for

for

for

for

for

82



Appendix B

’SS_118:MEASB110VOLTV’, 3, NULL, ’SS118-MEASB110VOLTV’, ’Shadow System for
118-bus system - Bus 110 Voltage Magnitude MeasB110VoltV’, 1);

INSERT INTO Measurement (HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB111VOLTV’, 3, NULL, ’SS118-MEASB111VOLTV’, ’Shadow System for
118-bus system - Bus 111 Voltage Magnitude MeasB111VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB112VOLTV’, 3, NULL, ’SS118-MEASB112VOLTV’, ’Shadow System for
118-bus system - Bus 112 Voltage Magnitude MeasB112VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB113VOLTV’, 3, NULL, ’SS118-MEASB113VOLTV’, ’Shadow System for
118-bus system - Bus 113 Voltage Magnitude MeasB113VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB114VOLTV’, 3, NULL, ’SS118-MEASB114VOLTV’, ’Shadow System for
118-bus system - Bus 114 Voltage Magnitude MeasB114VoltV’, 1);

INSERT INTO Measurement (HistorianID, DevicelID, PointTag, SignalTypeID,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB115VOLTV’, 3, NULL, ’SS118-MEASB115VOLTV’, ’Shadow System for
118-bus system - Bus 115 Voltage Magnitude MeasB115VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB116VOLTV’, 3, NULL, ’SS118-MEASB116VOLTV’, ’Shadow System for
118-bus system - Bus 116 Voltage Magnitude MeasB116VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB117VOLTV’, 3, NULL, ’SS118-MEASB117VOLTV’, ’Shadow System for
118-bus system - Bus 117 Voltage Magnitude MeasB117VoltV’, 1);

INSERT INTO Measurement(HistorianID, DeviceID, PointTag, SignalTypelD,
PhasorSourceIndex, SignalReference, Description, Enabled) VALUES(1, 1,
’SS_118:MEASB118VOLTV’, 3, NULL, ’SS118-MEASB118VOLTV’, ’Shadow System for
118-bus system - Bus 118 Voltage Magnitude MeasB118VoltV’, 1);

INSERT INTO ApplicationRole (Name, Description, NodeID) VALUES (’Administrator’,
’Administrator Role’, ’eb7b4a6d-ca9e-403c-ad2e-9al1db9a8a707’);

INSERT INTO ApplicationRole (Name, Description, NodeID) VALUES (’Editor’, ’Editor’,
’e57b4abd-ca9e-403c-ad2e-9a1db9a8a707’) ;

INSERT INTO ApplicationRole (Name, Description, NodeID) VALUES (’Viewer’, ’Viewer
Role’, ’e57b4ab6d-cade-403c-ad2e-9a1db9a8a707’);

83



Appendix B

B.2 Manage Data Mappings

Shadow System Simulator

SS118Data Inputs SS118Data_InputMapping {
ResetSignal: PPA:62
LoadIncrementPercentage: PPA:41
ActTxRaise: PPA:42
ActTxLower: PPA:43
ActSniClose: PPA:44
ActSniTrip: PPA:45
ActSn2Close: PPA:46
ActSn2Trip: PPA:47
ActSnB34Close: PPA:63
ActSnB44Close: PPA:64
ActSnB45Close: PPA:65
ActSnB48Close: PPA:66
ActSnB74Close: PPA:67
ActSnB105Close: PPA:68
ActSnB34Trip: PPA:69
ActSnB44Trip: PPA:70
ActSnB45Trip: PPA:71
ActSnB48Trip: PPA:72
ActSnB74Trip: PPA:73
ActSnB105Trip: PPA:74

SS118Data Outputs SS118Data_OutputMapping {
StateTxTapV: PPA:48
StateSn1CapBkrV: PPA:49
StateSn2CapBkrV: PPA:50
StateSn1BusBkrV: PPA:51
StateSn2BusBkrV: PPA:52
MeasTxVoltV: PPA:53
MeasSn1VoltV: PPA:54
MeasSn2VoltV: PPA:55
MeasTxMwV: PPA:56
MeasTxMvrV: PPA:57
MeasGnlMwV: PPA:58
MeasGniMvrV: PPA:59
MeasGn2MwV: PPA:60



Appendix B

MeasGn2MvrV: PPA:61
StateSnB34CapBkrV: PPA:75
StateSnB44CapBkrV: PPA:76
StateSnB45CapBkrV: PPA:77
StateSnB48CapBkrV: PPA:78
StateSnB74CapBkrV: PPA:79
StateSnB105CapBkrV: PPA:80
MeasB1VoltV: PPA:81
MeasB2VoltV: PPA:82
MeasB3VoltV: PPA:83
MeasB4VoltV: PPA:84
MeasB5VoltV: PPA:85
MeasB6VoltV: PPA:86
MeasB7VoltV: PPA:87
MeasB8VoltV: PPA:88
MeasB9VoltV: PPA:89
MeasB10VoltV: PPA:90
MeasB11VoltV: PPA:91
MeasB12VoltV: PPA:92
MeasB13VoltV: PPA:93
MeasB14VoltV: PPA:94
MeasB15VoltV: PPA:95
MeasB16VoltV: PPA:96
MeasB17VoltV: PPA:97
MeasB18VoltV: PPA:98
MeasB19VoltV: PPA:99
MeasB20VoltV: PPA:100
MeasB21VoltV: PPA:101
MeasB22VoltV: PPA:102
MeasB23VoltV: PPA:103
MeasB24VoltV: PPA:104
MeasB25VoltV: PPA:105
MeasB26VoltV: PPA:106
MeasB27VoltV: PPA:107
MeasB28VoltV: PPA:108
MeasB29VoltV: PPA:109
MeasB30VoltV: PPA:110
MeasB31VoltV: PPA:111
MeasB32VoltV: PPA:112
MeasB33VoltV: PPA:113
MeasB34VoltV: PPA:114
MeasB35VoltV: PPA:115



MeasB36VoltV:
MeasB37VoltV:
MeasB38VoltV:
MeasB39VoltV:
MeasB40VoltV:
MeasB41VoltV:
MeasB42VoltV:
MeasB43VoltV:
MeasB44VoltV:
MeasB45VoltV:
MeasB46VoltV:
MeasB47VoltV:
MeasB48VoltV:
MeasB49VoltV:
MeasB50VoltV:
MeasB51VoltV:
MeasB52VoltV:
MeasB53VoltV:
MeasB54VoltV:
MeasB55VoltV:
MeasB56VoltV:
MeasB57VoltV:
MeasB58VoltV:
MeasB59VoltV:
MeasB60VoltV:
MeasB61VoltV:
MeasB62VoltV:
MeasB63VoltV:
MeasB64VoltV:
MeasB65VoltV:
MeasB66VoltV:
MeasB67VoltV:
MeasB68VoltV:
MeasB69VoltV:
MeasB70VoltV:
MeasB71VoltV:
MeasB72VoltV:
MeasB73VoltV:
MeasB74VoltV:
MeasB75VoltV:
MeasB76VoltV:
MeasB77VoltV:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

Appendix B

86



MeasB78VoltV:
MeasB79VoltV:
MeasB80VoltV:
MeasB81VoltV:
MeasB82VoltV:
MeasB83VoltV:
MeasB84VoltV:
MeasB85VoltV:
MeasB86VoltV:
MeasB87VoltV:
MeasB88VoltV:
MeasB89VoltV:
MeasB90VoltV:
MeasB91VoltV:
MeasB92VoltV:
MeasB93VoltV:
MeasB94VoltV:
MeasB95VoltV:
MeasB96VoltV:
MeasB97VoltV:
MeasB98VoltV:
MeasB99VoltV:

MeasB100VoltV:
MeasB101VoltV:
MeasB102VoltV:
MeasB103VoltV:
MeasB104VoltV:
MeasB105VoltV:
MeasB106VoltV:
MeasB107VoltV:
MeasB108VoltV:
MeasB109VoltV:
MeasB110VoltV:
MeasB111VoltV:
MeasB112VoltV:
MeasB113VoltV:
MeasB114VoltV:
MeasB115VoltV:
MeasB116VoltV:
MeasB117VoltV:
MeasB118VoltV:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Appendix B

87



Appendix B

Online VSA Applications

RVC118Data Inputs RVC118Data_InputMapping {
StateSnB34CapBkrV: PPA:75
StateSnB44CapBkrV: PPA:76
StateSnB45CapBkrV: PPA:77
StateSnB48CapBkrV: PPA:78
StateSnB74CapBkrV: PPA:79
StateSnB105CapBkrV: PPA:80
MeasB1VoltV: PPA:81
MeasB2VoltV: PPA:82
MeasB3VoltV: PPA:83
MeasB4VoltV: PPA:84
MeasB5VoltV: PPA:85
MeasB6VoltV: PPA:86
MeasB7VoltV: PPA:87
MeasB8VoltV: PPA:88
MeasB9VoltV: PPA:89
MeasB10VoltV: PPA:90
MeasB11VoltV: PPA:91
MeasB12VoltV: PPA:92
MeasB13VoltV: PPA:93
MeasB14VoltV: PPA:94
MeasB15VoltV: PPA:95
MeasB16VoltV: PPA:96
MeasB17VoltV: PPA:97
MeasB18VoltV: PPA:98
MeasB19VoltV: PPA:99
MeasB20VoltV: PPA:100
MeasB21VoltV: PPA:101
MeasB22VoltV: PPA:102
MeasB23VoltV: PPA:103
MeasB24VoltV: PPA:104
MeasB25VoltV: PPA:105
MeasB26VoltV: PPA:106
MeasB27VoltV: PPA:107
MeasB28VoltV: PPA:108
MeasB29VoltV: PPA:109
MeasB30VoltV: PPA:110
MeasB31VoltV: PPA:111
MeasB32VoltV: PPA:112
MeasB33VoltV: PPA:113



MeasB34VoltV:
MeasB35VoltV:
MeasB36VoltV:
MeasB37VoltV:
MeasB38VoltV:
MeasB39VoltV:
MeasB40VoltV:
MeasB41VoltV:
MeasB42VoltV:
MeasB43VoltV:
MeasB44VoltV:
MeasB45VoltV:
MeasB46VoltV:
MeasB47VoltV:
MeasB48VoltV:
MeasB49VoltV:
MeasB50VoltV:
MeasB51VoltV:
MeasB52VoltV:
MeasB53VoltV:
MeasB54VoltV:
MeasB55VoltV:
MeasB56VoltV:
MeasB57VoltV:
MeasB58VoltV:
MeasB59VoltV:
MeasB60VoltV:
MeasB61VoltV:
MeasB62VoltV:
MeasB63VoltV:
MeasB64VoltV:
MeasB65VoltV:
MeasB66VoltV:
MeasB67VoltV:
MeasB68VoltV:
MeasB69VoltV:
MeasB70VoltV:
MeasB71VoltV:
MeasB72VoltV:
MeasB73VoltV:
MeasB74VoltV:
MeasB75VoltV:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Appendix B

89



MeasB76VoltV:
MeasB77VoltV:
MeasB78VoltV:
MeasB79VoltV:
MeasB80VoltV:
MeasB81VoltV:
MeasB82VoltV:
MeasB83VoltV:
MeasB84VoltV:
MeasB85VoltV:
MeasB86VoltV:
MeasB87VoltV:
MeasB88VoltV:
MeasB89VoltV:
MeasB90VoltV:
MeasB91VoltV:
MeasB92VoltV:
MeasB93VoltV:
MeasB94VoltV:
MeasB95VoltV:
MeasB96VoltV:
MeasB97VoltV:
MeasB98VoltV:
MeasB99VoltV:

MeasB100VoltV:
MeasB101VoltV:
MeasB102VoltV:
MeasB103VoltV:
MeasB104VoltV:
MeasB105VoltV:
MeasB106VoltV:
MeasB107VoltV:
MeasB108VoltV:
MeasB109VoltV:
MeasB110VoltV:
MeasB111VoltV:
MeasB112VoltV:
MeasB113VoltV:
MeasB114VoltV:
MeasB115VoltV:
MeasB116VoltV:
MeasB117VoltV:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:
PPA:

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Appendix B

90



Appendix B

MeasB118VoltV: PPA:198

RVC118Data Outputs RVC118Data_QOutputMapping {
ActSnB34Close: PPA:63
ActSnB44Close: PPA:64
ActSnB45Close: PPA:65
ActSnB48Close: PPA:66
ActSnB74Close: PPA:67
ActSnB105Close: PPA:68
ActSnB34Trip: PPA:69
ActSnB44Trip: PPA:70
ActSnB45Trip: PPA:71
ActSnB48Trip: PPA:72
ActSnB74Trip: PPA:73
ActSnB105Trip: PPA:74



