
 

A Numerical Based Determination of Stress Intensity Factors for Partially 

Cracked Flexural I-shaped Cross-sections 

 

Eshwari Someshwara Korachar 

 

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State 

University in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

In 

CIVIL ENGINEERING 

 

Matthew H Hebdon, Chair 

Matthew R Eatherton 

Ioannis Koutromanos 

February 25, 2019 

Blacksburg, Virginia 

 

Keywords: Stress Intensity Factor, Geometry Factor, Edge Crack, Full-width Crack, Linear 

Elastic Fracture Mechanics, Fracture 

 

Copyright © 2019, Eshwari Someshwara Korachar  



 

 

A Numerical Based Determination of Stress Intensity Factors for Partially Cracked 

Flexural I-shaped Cross-sections 

ABSTRACT 

The AASHTO LRFD design specifications and the AASHTO manual for bridge evaluation 

are consistently revised using knowledge of previous bridge failures. Although modern steel 

structures are designed to resist fatigue cracking from service loads, cracks in the tension 

flanges of steel bridge girders have been observed as a result of stress concentrations, design 

errors, welding quality control, and vehicular impacts. Cracks can grow in size with time and 

active cyclic live loads and may result in a member fracture. Fracture is a dangerous limit state 

which occurs with little to no warning. One method to quantify the stress field in the vicinity 

of a crack tip is by calculating the Stress Intensity Factor (SIF) around the crack tip. Finding 

SIFs for a cracked geometry may help an engineer to determine the fracture potential based on 

crack dimensions found during the inspection. Rolled I-beam and steel plate girders are 

extensively used as bridge superstructure members to efficiently carry live loads. This research 

was focused on determining Stress Intensity Factors (SIFs) of partially cracked I-sections using 

Finite Element Analysis. Two different tension flange crack profiles were studied: edge cracks, 

and full-width cracks. The SIF solutions were further used to study the fracture behavior and 

stress redistribution in the partially cracked flexural I-shaped members.  

  



 

 

A Numerical Based Determination of Stress Intensity Factors for Partially Cracked 

Flexural I-shaped Cross-sections 

GENERAL AUDIENCE ABSTRACT 

Steel is one of the fundamental materials used in the construction of bridge structures, and 

steel girder bridges are one of the most common types of bridge structures seen in the United 

States. Past bridge failures have helped engineers to understand shortcomings in design 

specifications, and AASHTO codes have been developed and revised over the years to reflect 

an improved understanding and evolution of engineering behavior. Engineers must make sure 

that a design is robust enough for functional use of the component during its service life.  It is 

also equally important to understand the potential chances of failure and make the structure 

strong enough to overcome any failure mechanisms. Fracture is one structural failure mode 

which occurs with little to no warning and hence is very dangerous. One efficient way to 

quantify the stress field in the vicinity of a crack tip is by calculating the Stress Intensity Factor 

(SIF) around a crack tip. Fracture literature is available which describes different methods of 

determining SIFs for cracked members. However, there are no solutions available to find a SIF 

of a partially cracked flexural I-shaped members. This research was focused on determining 

Stress Intensity Factors and studying the fracture behavior of partially cracked I-sections using 

Finite Element Analysis. The resulting SIF solutions were further used to study the fracture 

behavior and stress redistribution in partially cracked flexural I-shaped members.
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CHAPTER 1: Introduction   

1.1 Background 

There have been several cases of bridge failures in the past and some of the primary reasons 

for these failures are material defects, design errors, loading uncertainties, and construction 

deficiencies (Roylance, 2001). The AASHTO LRFD Design Specifications and the AASHTO 

Manual for Bridge Evaluation have been improved over the past few decades with a deep 

understanding of the previous bridge failures. The engineer has to make sure that the design is 

robust enough for the effective functioning of the different individual components during its 

service life. It is also important for them to understand the potential chances of failure and 

make the structure strong enough to overcome any failure mechanisms (Grandt, 2004).  

Steel girder bridges are one of the most common types of bridge structures seen in the US. 

Girders can be either a rolled I-shape member or a built-up member and are extensively used 

as bridge superstructure members to efficiently carry live loads. Figure 1 shows a riveted built-

up girder with web plates, flange angles, and cover plates (Top), and rolled I-beam girder 

(Bottom). A structural member comprising of steel plates and angles connected using either 

bolts or welds is called a built-up member.  
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Figure 1: Built-up Steel Plate Girders (Top), Rolled I-beam Girder (Bottom) (Ohio Department 

of Transportation, 2008) 

Although modern steel structures are typically designed to prevent fatigue, cracks which 

may reduce the fatigue life of steel sections can form and grow due to material defects, 

construction errors, member geometry, stress concentrations, and vehicular impacts. For 

example, in the case of an overpass type bridge with low clearance, overheight vehicles may 

impact the bottom portion of the steel girder, resulting in damage and potential cracks or crack 

initiation points. Moreover, bridge structures are subjected to continuous live load cycles from 
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moving vehicles. These load cycles can cause an existing flaw or crack to grow in size and 

eventually result in failure. With time and continuously acting fatigue load cycles, a crack may 

reach critical crack length and cause the member fracture (Roylance, 2001) as shown in Figure 

2. 

 

Figure 2: Relationship between Stress Cycles and Crack Length (Grandt, 2004) 

The field of fracture mechanics involves the study of the behavior of cracked members 

under applied loading conditions. “Fracture toughness”, is a measure of resistance offered by 

a component to crack growth, and is a material property. Hence, it is important to choose the 

material properties as per the requirements. Generally, the material should be strong, stiff 

(modulus of elasticity), and have resistance to fracture, fatigue, and corrosion (Grandt, 2004). 

Other factors which contribute to the study of fracture resilience are member geometry and 

type of loading since they have a direct influence on the crack growth behavior.  

According to the theory of linear elasticity, for a very sharp crack, the theoretical stress at 

the crack tip is equal to infinity, which is called “crack tip singularity”, (Figure 3).  However, 
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it is not possible to have infinite stress in real materials. Localized stress concentrations can be 

observed at the crack tip. In ductile materials such as steel, the material will start to yield due 

to these high stresses at the crack tip, and plastic deformation will occur creating a plastic zone 

around the crack tip (Figure 3). The plastic deformation will blunt the cracks, which means the 

cracks will have some non-zero radius, thus removing the crack tip singularity in the member. 

It should be noted that fracture can occur without any plastic deformation even though the 

applied stress is well below the yield stress (Grandt, 2004).  

 

Figure 3: Crack Tip Singularity (Sun and Jin, 2012) 

The size of this plastic zone limits the application of Linear Elastic Fracture Mechanics 

(LEFM). The Stress Intensity Factor (SIF) equation which is developed assuming the linear 

elastic material behavior, should be altered to include any plasticity in the member. If the size 

of the plastic zone is small compared to the size of the member, the changes in the SIF 

equations will be insignificant (Barnby, 1971). Usually, most of the bridge structural members 

are elastic in behavior. Also, the cracked steel sections such as W-shapes, the material behavior 

at the member level will be mostly elastic. Hence, LEFM analysis can be applied to study the 
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crack growth in a member (Courtin, Gardin et al., 2005). Moreover, bridge structures are more 

susceptible to brittle fractures because of the cold environmental conditions in which they can 

exist during winter months. Considering these aspects, LEFM is used to determine the SIF 

equations for the current research.  

In LEFM there are three modes of failure which depend on the loading pattern. Mode Ⅰ or 

‘opening mode’ is related to tension loading which causes the crack faces to open perpendicular 

to each other. Mode ⅠⅠ & ⅠⅠⅠ are related to shear loading which causes the crack faces to slide 

relative to each other as shown in Figure 4.  

 

Figure 4: Fracture modes (Roylance, 2001) 

One of the efficient ways to measure stress in the vicinity of the crack tip is by calculating 

the Stress Intensity Factor (SIF). SIF is one of the fundamental terms used in LEFM and is 

denoted by ‘K’. The general expression for SIF is given by equation 1. 

 K a   
(1) 

where ‘β’ is the geometry factor, ‘σ’ is the far-field stress, and ‘a’ is the crack length. This 

equation can be applied to calculate the SIF of any arbitrary geometry and crack profile, with 

a unique geometry factor, ‘β’. The geometry factor ‘β’ depends on the cross-sectional 
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dimensions and crack length of the considered geometry. The SIF, ‘K’ can be expanded to all 

the three modes of failure and sometimes even to the mixed modes of failures where both 

tension and shear loadings are measured. Mode Ⅰ is most common in primary structural 

elements with tensile stresses longitudinal to the member, such as is present in plate girders. 

In this study, Mode Ⅰ loading will be evaluated and ‘KⅠ’ will be the SIF related to mode Ⅰ or 

opening mode.  

In order to determine the potential chances of structural failure, it is very important for an 

engineer to analyze the flaw criticality. SIF values can help to characterize the crack as critical 

or sub-critical. If the crack is critical, the member should be examined for any potential chances 

of fracture. Structural failure due to fracture can be very sudden without any plastic 

deformation, which means with no warning. If the crack is not critical, the remaining fatigue 

life can be calculated, because the crack will have slow steady growth with continuously load 

cycles (Sherman, 2016). 

There has been much work conducted in the field of fracture mechanics and previous 

research has resulted in many different empirical formulas to determine the SIF of the various 

member and crack geometries. There are handbook solutions available which have SIF 

equations for several crack configurations (Grandt, 2004), (Tada, Paris et al., 2000).  However, 

a search of relevant literature found no solutions available for calculating the SIF of partially 

cracked flexural I-shaped members.  

 

 



7 

 

1.2 Objective and Scope 

The two objectives of the research study are: first, to analytically determine the SIF for 

both (a) an edge crack, and (b) a full-width crack in the tension flange of an I-shaped member, 

and second, to study the stress distribution of the partially cracked flexural I-shaped members.   

In steel members, regions with high tensile stresses are more prone to fatigue crack 

formations, e.g., the tension flange of an I-shaped member. Hence, in this study, two crack 

geometries located in the tension flange of flexural members were studied.  The first crack 

geometry was an edge crack, while second crack geometry was a full-width crack, as shown 

in Figure 5.  

 

Figure 5: Crack Geometries Located in the Tension Flange of an I-shaped Member 

The study was conducted in three phases. In the first phase, two FE models of 46' long 

partially cracked I-shaped member were developed. The first flexural member model had an 

edge crack in the tension flange. An edge crack was selected because it has similar geometry 

to common edge cracked plates loaded in tension, and for such flaws, common practice is to 
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treat the bottom flange as such. For flexural members, the tension flange represents the location 

with the largest tensile stress, and therefore the largest strain energy release rate. A crack will 

grow in size when the strain energy release rate exceeds the energy required to form new crack 

surfaces (Griffith, 1921).  

The second flexural member model had a full-width crack in the tension flange. The crack 

was assumed to be all the way through the width of the tension flange and partially through 

the flange thickness. This crack profile was selected because of its similarity to mechanically 

fastened built-up girders with a failed single cover plate (Hebdon, Bonachera Martin et al., 

2017). Such a geometry was theorized to have the potential to describe the stress state for 

members with single component failure. Afterward, the tension flange of the flexural I-shaped 

member was separately analyzed as an axially loaded plate with edge crack and full-width 

crack geometries. This was done because the behavior of the tension flange of an I-shaped 

flexural member is similar to the axial plate under tension. For the analysis, the same loading 

conditions as used in the tension flange of the flexural I-shaped member were applied. The 

obtained SIFs were further compared to the available handbook solutions of the edge cracked 

plates.  

In the second phase, parametric studies were performed to determine the geometry factor, 

‘β’ for both (a) an edge crack, and (b) a full-width crack in a partially cracked I-shaped 

member. The resulting geometry factors were then compared with solutions widely accepted 

for uniaxial loaded plates with edge cracks. The geometry factor, ‘β’ is a dimensionless term 

which is a function of crack length and other cross-sectional dimensions of the member. For 

the case of an I-shaped geometry, the variation of SIF was studied for parameters including 

tension flange thickness, tension flange width, web height, and crack length. From the obtained 
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results, parameters which had a significant influence on the SIF were used to develop an 

analytical equation for the geometry factor ‘β’ for both the crack configurations considered in 

the study. The geometry factor ‘β’ was further used to calculate the SIF in the vicinity of the 

crack tip.  

In the third phase, the SIF solutions were used to study the fracture behavior of the 

specimens with edge crack profile. Both the I-shaped member and plate models were analyzed 

and a relation between the fracture stress and crack length was determined. Using this 

relationship, the fatigue crack growth behavior under the given loading condition was studied. 

Also, the critical crack length to cause the member fracture under given loading conditions 

were interpreted from the results.  

Furthermore, a study comparing the stress redistribution of an I-shaped member with a full-

width crack, and a built-up section with a failed cover plate was conducted. The stress increase 

in the tension flange of the I-shaped member due to the presence of a full-width crack was 

determined using cross-sectional stress values. In a cracked structural steel member, since the 

crack plane is not able to carry the load, and the presence of crack will reduce the net area of 

the section, the net-sectional stress is affected in the region immediately adjacent to the crack. 

A study was conducted to compare characteristics of a built-up I-shaped member with a failed 

cover plate to a solid I-shaped member with a full-width crack profile.  
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CHAPTER 2: Literature Review 

2.1 Fracture Mechanics 

Fracture mechanics can be classified into experimental fracture mechanics and 

computational fracture mechanics. The former method includes experimental studies, where 

specimens are tested to find fracture load/stress, critical crack length, or fracture toughness. 

The latter method involves the use of numerical techniques such as the Finite Element Method 

(FEM), and Boundary Element Method (BEM). 

Some of the early works in the field of Fracture Mechanics was conducted by Griffith and 

Irwin. The early application to study crack parameters was based on the energy release rate. It 

was found that a crack will grow in size when the strain energy release rate (G) is greater than 

or equal to the energy required to form new crack surfaces (Griffith, 1921).  A crack extension 

force ‘G’ was derived, as shown in equation 2, where ‘U’ is the elastic strain energy stored in 

a cracked member, and ‘A’ is the crack area.  

 U
G

A




  

(2) 

Later work derived a relation between the crack extension force ‘G’ and SIF ‘K’, based on 

the amount of elastic work required to close the crack tip, as given in equation 3 (Irwin 1957).  

 2G K  (3) 

Linear-Elastic Fracture Mechanics (LEFM) and Elastic-Plastic Fracture Mechanics 

(EPLM) are the two concepts used in Fracture Mechanics to study the crack parameters, which 

depend on the member material behavior. In the field of structural engineering, it is very 

common to assume linear elastic material behavior. The application of LEFM is limited by the 
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size of the plastic zone around the crack. Although there will be plastic material behavior at 

the tip of the crack, the member level material behavior will be mostly elastic. Therefore, 

LEFM can be used to determine the crack parameters.  

Irwin proposed the term SIF, ‘K’ in 1957 (Irwin 1957), and the stress field in the vicinity 

of a crack can be measured in terms of SIF. For example, an elliptical notch will have stress as 

given by equation 4 (Grandt, 2004) at the crack tip. As the notch becomes very sharp (zero 

radius) the stress becomes infinite, which is called the “crack tip singularity”. 

 

0
lim 1 2tip

a


 



 
     

 
 

        (4) 

 

where ‘ρ’ is the notch radius and ‘a’ is the crack length  

Using this relationship, an equation for the SIF was formulated, which is given by equation 

5 (Grandt, 2004).  

 
0

lim 2I tip
r

K r 


  (5) 

σtip is found to depend on r-1/2, where ‘r’ is the distance measured from the crack tip. When ‘r’ 

is equal to crack length ‘a’, the SIF equation becomes as given in equation 6.  

 K a   (6) 

where ‘a’ is the crack length, ‘σ’ is the far-field stress, and ‘β’ is the geometry factor. 

Another term commonly used in LEFM is the Stress Concentration Factor, ‘Kt’.  ‘Kt’ gives 

a measure of the localized stress increase around the crack tip and is defined as the ratio of 
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local stress to remote or far-field stress. It depends on the geometry of the member and the 

alignment of the crack.  

The stress field in the vicinity of the crack tip can be found using equation 632. The SIF 

depends on the crack configuration, type of loading, and cross-sectional geometry (Aliabadi, 

2002), and the value of SIF determines the behavior of the crack (Critical or Sub-critical). A 

critical crack is one which may cause member fracture. Several studies have been conducted 

in the past and SIF solutions for common crack geometries are documented in handbooks 

(Grandt, 2004). Common crack geometries include an edge cracked plate, a double-edge 

cracked plate, a center cracked plate, a plate with radial cracks emanating from the hole, and 

an edge cracked rectangular beam.  

2.2 Numerical Techniques 

The Finite Element method (FE) is one of the most common methods used for the analysis 

of new crack configurations (Grandt, 2004). In numerical fracture mechanics, the crack growth 

behavior can be studied by calculating the crack parameters including SIF, Crack Tip Opening 

Displacement (CTOD), and J-integral.  FE program packages like ABAQUS and ANSYS are 

specially designed to calculate the crack parameters using these above-mentioned approaches 

(Schreurs, 2012).  

Previous researchers in the field mechanics have used special Finite Elements that have 

built-in square-root singularity in the calculation of SIF. According to the theory of linear 

elasticity, the stress at the crack tip is singular (infinite), which is called as crack tip singularity. 

Barsoum introduced the usage of quarter-point elements to incorporate the crack tip singularity 

and explains that the singularity in these elements can be achieved by placing the mid-side 
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node at the quarter point from the tip of the crack (Barsoum, 1976). Schreurs described the 

quarter point elements as “standard 8-node quadrilateral or 6-node triangular elements, where 

two mid-side points are repositioned towards one corner node, such that they divide the side 

in the ratio 1:3” (Schreurs, 2012), as shown in Figure 6.  

 

Figure 6: Rectangular Quarter-point Element, Triangular, and Collapsed Singular Finite Element 

(Schreurs, 2012) 

Fracture literature has shown that using special finite elements that have built-in square-

root singularity will improve the accuracy of the numerical results near the crack tip (Barsoum, 

1976). These elements help to simulate the strain singularity which agrees with the theory of 

linear fracture mechanics (Aliabadi, 2002). The concept of crack tip singularity for a one-

dimensional 3-node element is explained below. Figure 7 shows a three node element defined 

in the local coordinate system ( 1   ), while in the global coordinate system node 1 is at 

the origin (x=0), and node 2 is at ‘L’ (length of the element).  
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Figure 7: One Dimensional Three Node Element (Schreurs, 2012) 

In FEA, the shape functions help us to define the deformed shape of an element at nodal 

points. The shape functions should satisfy displacement compatibility, and achieve constitutive 

relationships (Grandt, 2004). Further, these functions can be used to solve problems with 

applied load and the boundary condition. ABAQUS software uses these element shape 

functions for the analysis (ABAQUS 6.14 Documentation, 2014).  

For a three-node element (Figure 7) there will be three shape functions, one for every node. 

It is denoted by Ni, where ‘i’ is the node number.  

Node 1: N1= ξ (ξ-1)  

Node 2: N2= ξ (ξ+1) 

Node 3: N3= (ξ2-1) 

       The position of any point in the global co-ordinate can be interpreted using equation 7.  

 
     2

1 2 3
1 1

2 2
x x x x          

(7) 

       For, x1 = 0 and x2 = L, equation 7 becomes,  

 
   2

3
1

2
x L x      

 (8) 



15 

 

Similarly, the displacement at any point along the x-direction can be interpreted using the 

nodal displacements u1, u2, and u3, using equation 7.  

 
     2

1 2 3
1 1

2 2
u u u u          

(9) 

 

The strain can be calculated by taking the derivative of the displacement field. For a three-

node element, the strain is given by equation 10.  

 
1 2 3

1 1
2

2 2

du
u u u

d
  




   
      
   

 
(10) 

  To convert the strain from local coordinate to global co-ordinate we can use the following 

equation 11.  

 du
d

dx
d

du

dx





  
(11) 

   If we apply this concept to a quarter point element, where the node 3 is at a distance of 

L/4 from the crack tip, as shown in Figure 8. For x1 = 0, x2 = L, and x3 = L/4, equation 7 

becomes,  

 
   21

2 4

L
x L      

(12) 

 

Figure 8: Quarter Point Element 
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The relationship between ‘ξ’ and ‘x’ is given by
4x

L
   . Further, differentiating 

equation 12  with respect to local co-ordinate ‘ξ’ gives,  

 
 

1

2

dx
L xL

d



    

(13) 

Using equation 11 & 13, we can show the strain singularity at the crack tip. At the crack 

tip, x=0, and ξ=-1, for which equation 14 becomes infinite, which proves the crack tip 

singularity property.  

 du
du d

dx xL


  

(14) 

This proof of strain singularity can also be applied to 2-D and 3-D models. Figure 9 shows 

a 2-D and 3-D singular quarter-point elements. Barsoum has shown the proof of crack tip 

singularity property of 2-D eight-noded quadrilateral elements, 2-D six-noded triangular 

elements, 3-D twenty-noded cubic elements, and 3-D prism elements (Barsoum, 1976).  

 

Figure 9: (a) 2-D (b) 3-D Singular Finite Elements (Courtin, Gardin et al., 2005) 
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In ABAQUS software, under the interaction tool, we have the option to assign quarter-

point elements. Interaction module: Special  Crack  Edit  Singularity  Mid-side node 

parameter = 0.25 (Figure 10). Using these elements around the crack line helps to achieve 

strain singularity at the crack tip (ABAQUS Analysis User's Manual, 2006).  

 

Figure 10: Assigning Collapsed Quarter-point Elements in ABAQUS 

 However, for the analysis, total strain energy and stiffness should be finite. According to 

Hibbitt, the stiffness of a 2-D rectangular or a 3-D cubic quarter-point elements was found to 

be singular at the crack tip (Barsoum, 1976). While the results obtained using 2-D triangular 

or 3-D prism quarter-point elements (Collapsed quarter-point elements) were comparatively 

better. Figure 6 shows a collapsed quarter-point element, where nodes 1, 8, and 4 are collapsed 

to move together as a single node. ABAQUS allows the user to use collapsed quarter-point 

elements for FEA, as shown in Figure 10. Furthermore, using numerical integration such as 

Gaussian integration rule to calculate the stiffness of special crack tip elements eliminates the 

stiffness singularity problem (Barsoum, 1976).  
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Although the usage of quarter-point elements to determine the SIF are widely known, there 

is an indirect energy method used to calculate the SIF. It is called the J-integral approach. Rice 

introduced the concept of J-integral (Rice, 1968). One advantage of using the J-integral 

approach is that it is path independent (Schreurs, 2012). It does not require refined meshes or 

usage of quarter-point elements around the crack region since it is dependent on the energy 

release rate. J-integral values are usually determined for elastic-plastic models, because of the 

dominant non-linear material behavior. For a linear material response, the SIF value can also 

be calculated from the J-integral value(Manual, 2006). For a plane strain condition, equation 

15 can be used to calculate SIF from the obtained J-integral.  

 2
2(1 )

IJ K
E


  

(15) 

where ‘J’ is the J-integral, ‘KI’ is the Mode-1 SIF, ‘ν’ is the Poisson’s ratio, and ‘E’ is the 

Modulus of Elasticity of Steel.  

Determination of J-integral and stress intensity factor using the commercial FE 

software ABAQUS in austenitic stainless steel (AISI 304) plates 

Venkatachalam et.al., studied the variation of SIF, J-integral, and T-stress with respect to 

crack length, load, and specimen thickness. ‘T-stress’ is a fairly new term which is defined as 

a stress parallel to the crack plane (Venkatachalam, Harichandran et al., 2008). An edge 

cracked plate was analyzed for both linear-elastic and elastic-plastic models. Three 

dimensional FE models were developed using linear brick elements without reduced 

integration (C3D8).  

It was observed that as the crack length was increased from 0.5 mm to 0.6mm, the SIF 

decreased significantly, approximately by 1000 MPa mm . However, with further increase in 
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the crack length (0.6 mm to 0.9 mm) the decrease in the SIF was much less than before. 

Secondly, for both the linear-elastic and elastic-plastic models J-integral value decreased with 

the increase in load and there was a noticeable change in J-integral after the load crossed the 

elastic limit (300N). Lastly, the variation of T-stress with crack length, and specimen thickness 

was non-uniform (Venkatachalam, Harichandran et al., 2008).  

Boundary Element Method (BEM) 

In the past two decades, a new numerical technique called Boundary Element Method 

(BEM) was developed and introduced as an alternative to traditional analysis methods. 

Aliabadi in his book “The Boundary Element Method - Applications in Solids and Structures 

(Volume 2)”, describes BEM as one of the accurate and most efficient numerical technique for 

SIF calculation (Aliabadi, 2002). There have been a lot of developments in this field and the 

BEM has been applied by researchers to solve various 2-D, and 3-D problems.  

Some of the important applications of the BEM includes the development of a fundamental 

solution or Green’s function which was limited to only 2-D problems. Next is the multi-region 

formulation which can be applied to solve symmetric and antisymmetric problems in both 2-

D, and 3-D configurations by introducing artificial boundaries. Last of all, the Double 

Boundary Element Method (DBEM), where the problem is solved by applying displacement 

boundary integral equation and traction boundary integral equation to each one of the crack 

surfaces (Aliabadi, 2002).   

2.3 Experimental and Analytical Research Studies on Fracture Mechanics 

Fracture is one of the many structural failure modes which occurs with minimal to no 

warning and hence is very dangerous. Figure 11 shows that the stress required to cause member 
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fracture decreases as the crack length increase. SIFs also helps to evaluate the severity of an 

existing crack which could be a potential cause for fracture. 

 

Figure 11: Relation between Fracture Stress and Crack Size (Grandt, 2004) 

In bridge construction, I-beams and built-up sections are extensively used as super-

structure members. Some literature is available which describes different methods of 

determining SIF for specifically cracked I-shaped member. Cracks usually originate at sudden 

cross-sectional change or weld toe details (Haddad El, Topper et al., 1979). With continuously 

acting fatigue stresses, these cracks can grow further and lead to member fracture.  

Stress Intensity Factors for Structural Steel I -beams 

A study conducted by Pedro at.el., focused on developing a SIF equation for a “two-tip 

web crack” and a “symmetric three-tip crack” in an I-beam, as shown in Figure 12. Two-tip 

web crack is a crack with one front growing up the web and the other down the web. A 
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symmetric three-tip crack is a crack with two fronts growing symmetrically across the flange 

and the third up the web” (Pedro, Akhrawat et al., 2008).  

 

Figure 12: (a) Two-tip web crack (b) Symmetric three-tip crack (Pedro, Akhrawat et al., 2008) 

As shown in Figure 12, the “two-tip cracks” are always eccentric. Hence, SIFs will be 

different. While, “three-tip cracks” are mostly symmetric, requiring two SIFs, one for the web 

crack tip and the other for the two flange crack tips. The following SIF equation was proposed 

by the author for a two-tip cracked I-beam subjected to tension or bending.   

  A,B A,B
w, wK f a     

 
(16) 

where, A and B represent upper crack tip and lower crack tip respectively, aw = half web crack 

length, σ = axial and bending stress at the flange-to-web junction, je / (d / 2)   (normalized 
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crack eccentricity), 
j

w w
d

a / e
2


 

  
 

(normalized web crack length). Refer to Figure 12 for the 

definition of variables.  

For the three-tip cracked I-beam subjected to tension or bending SIF was given by equation 

17.  

  w,f w,f
w, f w, fK f a     

 
(17) 

Where, w and f represent the web crack tip and flange crack tip, aw = web crack length, af = 

flange crack length, w w ja / d  (normalized web crack length),  f f fa / b / 2  (normalized 

flange crack length). 

The other two parameters included in the equation are f wA / A   , flange-to-web area 

ratio and j fd / b  , depth-to-width ratio. ‘f’ is a correction factor used in the calculation of 

stress intensity. From the AISC manual, seven pairs of W shapes were considered which had 

the same ‘β’ value but different ‘γ’ value. These sections were further divided into two shapes. 

The deeper and narrower sections were categorized as shape 2 while remaining ones were 

categorized as shape 1, as shown in Figure 13. 
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Figure 13: Shape Classification of the Specimens (Pedro, Akhrawat et al., 2008) 

ABAQUS was used to develop the models and the J-integral method was used to calculate 

the SIF for Mode I (opening mode) type loading. The correction factor, ‘f’ was obtained by 

normalizing the calculated SIF value with applied stress and crack length (Pedro, Akhrawat et 

al., 2008). The parameter ‘β’ was validated for central web cracks under tension and bending 

for both the crack configurations. The researchers concluded that the difference between SIF 

results between shape 1 and shape 2 was very small, which means ‘γ’ does not influence the 

SIF calculation much. Hence, the parameter ‘β’ can be used to characterize the SIF calculation 

of W shapes (Pedro, Akhrawat et al., 2008).  
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Stress Intensity for Cracked I-beams 

Another study conducted by Dunn et.al. focused on determining the SIF for a cracked I-

beam subjected to a pure bending moment, ‘M’. The crack (a) was assumed to be extended to 

a part of the web from the flange of the I-beam, as shown in Figure 14.  

 

Figure 14: Cracked I-beam Geometry (Dunn, Suwito et al., 1997) 

One of the objectives of the study was to find the non-dimensional parameter ‘β’ for the 

geometry shown in Figure 14. In the past, researchers have used β =1 for several engineering 

application. However, according to literature the parameter ‘β’ depends on cross-sectional 

geometry and the crack length (Bazant, 1990). Detailed continuum finite element analysis was 

performed to develop a relationship for ‘β’ in terms of three non-dimensional geometric 

parameters ‘ξ1’, ‘ξ2’, ‘ξ3’ defined as
a

h
    , 2

t

b
  , 3

w

h
  (Figure 14).  
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Non-dimensional geometric parameter values were varied over a range and the data points 

obtained from the FEA were further fit (Figure 15) to obtain an equation for ‘β’. From the 

analysis, it was found that the parameter ‘ξ1’ had maximum influence on the parameter ‘β’. 

Hence, equation 18 was determined for parameter ‘β’ in terms of ‘ξ1’.  

 0.374  
  (18) 

 

Figure 15: FE Data Points and Curve Fit (Dunn, Suwito et al., 1997) 

For a range of ‘ξ1’ between 0.2 and 0.8, the ‘β’ decreased by about 40%. While there was 

a change of about 11% in the ‘β’ with respect to the other two non-dimensional parameters 

‘ξ2’, ‘ξ3’, which means their effect is less significant, and hence were neglected in further 

research (Dunn, Suwito et al., 1997). Dunn et.al. further conducted an experimental study to 

validate the numerical technique results. Twelve Polymethyl Methacrylate (PMMA) I-beams 
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specimens with the same crack profile were tested under four-point bending to determine the 

fracture load. The ‘ξ1’ was varied between 0.37 and 0.7. The fracture loads were further used 

to calculate the fracture toughness (KIc). The author stated that the calculated KIc were in good 

agreement with the predicted results. 

Standards to Control Fracture in Steel Bridges Through the Use of High -Toughness 

Steel and Rational Inspection 

The two-year inspection interval and the Hands-on-inspection of FCMs have been useful 

in identifying the faults in bridge components, which could have been dangerous. But, these 

inspections are time-consuming, expensive and sometimes requires lane closures which 

interrupt the traffic. Hence, researchers are coming up with new methods to design and monitor 

the structures.   

According to a study conducted by Sherman, an economical and safer bridge design can 

be achieved by incorporating the Fracture Control Plan (FCP) and Damage Tolerant Design 

(DTD).  An FCP helps to treat fracture as another limit state and may also be used to form 

rational inspection intervals based on the type of bridge, as well as the likelihood of failure. 

Material toughness, design review, fabrication requirements, and welder certifications were 

considered to form the AASHTO FCP (Sherman, 2016).  

The axial and bending specimens used in the experimental study conducted by Sherman 

were fabricated using two different grades of steel: grade 50 and grade 70. A total of 11 

specimens (five axial and six bending) were used for the study. An angle grinder was used to 

create edge notches in the tension flange of the bending specimen, and in the plate as shown 

in Figure 16. After creating the crack, a load equal to 75% Fy was applied to test for fracture 

(AASHTO, 2011). The crack length was increased until the member fractured. Fracture load 
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and stress at the time of failure and the critical crack length were noted for all the specimens. 

From the study, it was found that the fracture toughness increased by almost 28.5% when grade 

70 steel was used in comparison to grade 50 steel, because of the higher stress state related to 

the grade 70 steel (Sherman, 2016).  

    

Figure 16: Creating V-notch in the Test Specimens (Sherman, 2016) 

FE models of the experimental study specimens with the same crack profiles were 

developed to study the fracture toughness. In order to achieve good accuracy in the results, the 

area around the crack tip was meshed with very fine elements. Partition tool was used to divide 

the area around the crack line into two concentric circles and a rectangle. The circles were 

meshed to have ten elements of equal size, and the perimeter of the rectangle was meshed with 

local seed size of 0.125 inch. Figure 17 shows a generated structured mesh around the crack 

tip.  
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Figure 17: Refined Meshing at the Crack Tip (Sherman, 2016) 

A parametric study was conducted where simplified beam and plate models were 

developed using ABAQUS software. A total of 32 specimens were analyzed for the edge crack 

profile. Based on the Probability of Detection (POD) study a crack length of 3inch was used 

in the study (Whitehead, 2015). Both linear-elastic and elastic-plastic analysis were carried. 

“The linear-elastic analysis provided the crack demand in terms of SIF while the elastic-plastic 

analysis provided the crack demand in terms of j-integral” (Sherman, 2016).  

The bottom flange width, thickness, and web height were varied over a range of values in 

the parametric study of the simplified beam models. The fracture toughness demand decreased 

with the increase in tension flange thickness, and with the increase in tension flange width. 

However, the fracture toughness demand increased with the increase in the web height  

(Sherman, 2016). The researcher concluded that design and material properties are the two 

most important components in the integrated FCP which helps to reduce any structural failure 

due to brittle fracture (Sherman, 2016). Hence, it is important to keep in mind a few things for 
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the development of the integrated FCP which includes the type of loading, material properties, 

the existence of any defects, and both shop and in-service inspection methods.  

2.4 Fracture Resilience and Redundancy 

For the safety of the public, a bridge should be strong enough to tolerate damage and still 

have sufficient capacity to carry the load (Ghosn and Yang, 2014).  One way to provide bridge 

safety is by making the structural components fracture resistant. A fracture resilience study 

conducted by Hebdon et.al. showed that the probability of a built-up steel member to 

experience brittle fracture is very scarce compared to experiencing failure due to fatigue crack 

growth over time and continuous load cycles (Hebdon, Bonachera Martin et al., 2017). The 

other ways to make the structure fracture resistant have been discussed in the above sections. 

For example, studying the crack growth behavior by determining the SIF, or J-integral.   

Structural safety can also be achieved by providing redundancy. The NCHRP report 776 

defines redundancy as “the capability of a bridge system to continue to carry the load after the 

failure of one of its main member” (Ghosn and Yang, 2014). There are three types of 

redundancy. NCHRP report 354 classifies them as follows, “member level redundancy; when 

the crack is restrained from propagating to the adjacent component from the failed 

component”. Second, “structural redundancy; an external static indeterminacy which occurs in 

continuous girders with more than two spans”. Third, “load-path redundancy; an internal static 

indeterminacy results from having redundant components or members” (Connor, Dexter et al., 

2005).   

Although AASHTO specifications classify the fracture critical bridges as non-redundant, 

some of the bridge failures in the past were prevented when the live load was carried by the 
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remaining intact members through alternative load paths. It is true that every bridge failure is 

unique and the level of redundancy in each case is different. The residual strength can be 

measured in terms of the redundancy ratio. Different methods of calculating the redundancy 

ratio have been discussed in the literature.  

Load Redistribution and Remaining Fatigue Life of Steel  Built-Up Members Subjected 

to Flexure Following a Component Failure  

Hebdon et al. conducted a research study to find the remaining load carrying capacity of a 

partially failed built-up member and to calculate the remaining fatigue life after the failure of 

the first component. Both experimental and computational studies were conducted. The results 

of the experimental study were used to validate the FEA. A parametric study was conducted 

where FE models of girders with multiple cover plates varying from 1 to 4 were evaluated. The 

same number of cover plates were used in both tension and compression regions with 75% to 

100% failure rate. The bending specimen with a single cover plate had nonsymmetrical stress 

greater than the symmetrical (100%) cover plate failure (Hebdon, Bonachera Martin et al., 

2017). 

After the failure of a component, the flexural strength of the remaining intact components 

of the built-up section was calculated using the standard bending equation (σ = My/Inet). Then, 

a plot between ‘ratio of FE stress-to-calculated stress’ and ‘number of cover plates’ was 

developed. With the increase in the number of the cover plates, the FE stress also increased. 

From the obtained relationship, an amplification factor ‘βAF’ was determined which is given 

by equation 19. It is a function of the number of cover plates (N).  
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 
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AF

N
 

(19) 

This factor was useful in studying the stress distribution around the failure point in a built-

up member. The amplification factor provides a method to approximate the stress in the 

adjacent component after the fracture. The localized stress increase can be determined by 

multiplying the calculated stress with the amplification factor (Hebdon, Bonachera Martin et 

al., 2017).  
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CHAPTER 3: Analytical Methods 

3.1 Modeling 

Two types of FE models were developed for analysis including flexural I-shaped member 

models, and axially loaded plate models. The flexural I-shaped member models with two 

different crack geometries were analyzed to determine the SIF (Figure 18). The first crack 

geometry was an edge crack located in the tension flange of the flexural member. The second 

crack geometry was a full-width crack located in the tension flange of the flexural member. 

The full-width crack was defined as a crack present along the entire width and partially through 

the thickness of the tension flange.  

 

Figure 18: Flexural I-shaped Member with Edge Crack, and Full-width Crack Profile 
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After studying the flexural I-shaped member models, the tension flange was also separately 

evaluated as an axially loaded plate. This was done because the behavior of the tension flange 

of an I-shaped flexural member is similar to the axial plate under tension. The SIF solution for 

axial plates with an edge crack profile is available in the LEFM handbooks. A study was 

conducted where a comparison was made between the obtained SIF solution of the flexural I-

shaped member model and the available handbook solution of the axially loaded plate with 

edge crack profile. Two comparison studies were made: the first one for the edge crack profile, 

and the second one for the full-width crack profile. This study was conducted to verify if the 

available handbook solution of the axially loaded plate with an edge crack profile can be used 

to find the SIF solution of the partially cracked flexural I-shaped member. The following 

section describes the ABAQUS modeling procedure used in the analysis of these models to 

determine SIF. 

ABAQUS Modeling Procedure 

Finite Element Analysis software, ABAQUS CAE version 6.14 produced by Dassault 

System Simulia Corp. was used to develop all the models in this research study. Parts were 

extruded as three-dimensional solid deformable elements. Since LEFM analysis is the focus of 

this research study, material properties including a modulus of elasticity of 29,000 ksi, and a 

Poisson’s ratio of 0.3 were used to achieve linear-elastic model behavior.  

All models were meshed with linear three-dimensional hexahedral elements with reduced 

integration (C3D8R). The reduced integration did not make a difference in the results, and hence, 

was used for the analysis purpose. Five flexural I-shaped members with edge crack profile were 

modeled and were separately analyzed with (C3D8) and without reduced integration (C3D8R). It 
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was observed that there was a difference of less than 1% in the average SIF around the edge crack 

line. Hence, CED8R elements were used to mesh all the FE models.  

In ABAQUS, a crack was created, assigned and edited using the ‘special’ tool under the 

‘interaction’ module. A ‘contour integral’ type of crack was created, and the crack was allowed 

to open ‘normal to the crack plane’. To determine SIF from the FEA, the crack tip singularity 

property was incorporated in the model. As discussed in the literature review, the singularity 

tab under the crack edit option was used to simulate the strain singularity in the model (Figure 

10). A mid-side node parameter of 0.25 was assigned and the nodes along the crack front were 

collapsed to move together as a single node.  

In a cracked geometry, the stress field near the crack should be monitored closely, and the 

near crack stress field depends on the mesh around it (Kittur and Huston, 1990). Hence, an 

independent instance was created to mesh the part as per the preference. For this reason, a mesh 

refinement study was conducted for a rectangular beam model with an edge crack in the tension 

region. Rectangular beam model was used for benchmark study purposes. The structural mesh 

around the crack line was refined until there was minimal to no variation in the output. To 

achieve finely structured meshing around the crack tip, the partition tool was used to divide 

the region into two concentric circles and a rectangle. The two circles were centered on the 

crack tip and had a radius of 0.01 inch and 0.11 inch, respectively. The rectangular box had a 

dimension of 2 inch x 2 inch, as shown in Figure 19.  
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Figure 19: Partition around the Crack Line (Top), Schematic Diagram of Partition around the 

Crack tip (Bottom) 

The area within the circles were meshed with ten elements to have a fine structured mesh 

in the region. The local seed size along the perimeter of the rectangle was refined until the 

difference in the output was negligible (Less than 1%). The element local seed size around the 

crack line was varied from 0.5 inch to 0.0625 inch in three increments. From each analysis 
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average SIF was obtained. It was observed that there was no difference (0%) in the SIF values 

between the local seed size of 0.125 inch and 0.0625 inch. Hence, a local seed size of 0.125 

inch was chosen for modeling purposes. While a global seed size of 0.5 inch was used to mesh 

the remaining regions (outside the rectangular partition). Figure 20 shows a typically generated 

mesh with fine elements around the crack line and coarse elements in the remaining regions.  

 

 

Figure 20: Typical Generated Mesh (top), Schematic Diagram of Circular Mesh (Bottom) 

ABAQUS allows the user to calculate crack parameters in terms of SIF. Once the crack 

was created, a history output for SIF was requested for eight contours around the crack tip 
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using the history output tool (Figure 21). The requested output were calculated for a layer of 

elements around the crack line known as “Contours”. The ABAQUS manual defines a contour 

as a “ring of elements completely surrounding the crack tip or the nodes along the crack line 

from one crack face to the opposite crack face” (Manual, 2006). ABAQUS automatically 

selects the node-sets to form these element rings based on the generated mesh around the crack 

line.  

  

Figure 21: History Output Request 

Each contour will have a certain number of picked sets, which depends on the thickness of 

the member. For example, for a 1.5 inch thick plate and a seed size of 0.125 inch there will be 

13 picked-sets (12 elements). Figure 22 below represents a typical picked-set for contours 

around the crack line. Each one of these picked-sets will have a corresponding history output. 

History output results for SIF were obtained using the results tool, (Figure 23). The localized 

stresses around the crack tip will cause plastic deformation, forming a plastic zone. So, the 
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results of the contours near the crack tip are less accurate. Hence, for the evaluation purpose, 

SIF values of all the picked-sets of eight contour were recorded.  

 

Figure 22: Typical Picked-set of a Contour 

 

Figure 23: History Output 

Contour 
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3.1.1 Benchmark Study  

Axial Members 

A benchmark study was performed to verify the ABAQUS modeling procedure used to 

calculate the SIF. The results obtained from the benchmark study were compared to the 

available handbook solutions to see the percentage difference in the output. In the benchmark 

study, axially loaded plates with different crack geometries were analyzed. The specimen 

dimensions were taken from the study conducted by Sherman 1(Sherman, 2016). Two different 

plate geometries were considered. Plate 1 was 1.5 inch thick and 22 inch wide. Plate 2 was 2.5 

inch thick and 14 inch wide. All the models were of same length equal to 120 inch. 

A total of five axially loaded plate specimens were developed for the FEA.  Models A1, 

A2, A3, & A4 had plate 1 geometry, while model A5 had plate 2 geometry. In each model, 50 

ksi yield strength steel was used except in model A4 where 70 ksi yield strength steel was used 

to study the variation of SIF with the steel yield strength. Table 1 shows the specimen matrix 

of the axially loaded plates with their respective crack configuration.  

Table 1: Axial Specimen Matrix 

Model 

Name 

Type of 

Crack 

Plate 

Thickness 

(inch) 

Plate 

Width 

(inch) 

Grade 

of Steel 

(ksi) 

Stress 

Applied 

(ksi) 

A1 Edge 1.5 22 50 37.5 

A2 Double-Edge 1.5 22 50 37.5 

A3 Center 1.5 22 50 37.5 

A4 Edge 1.5 22 70 52.5 

A5 Edge 2.5 14 50 37.5 

 

A half symmetry boundary condition was used to reduce the computation time. Figure 24 

shows the half symmetric edge cracked plate model, with x-axis symmetry boundary condition 
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applied on the left end of the plate except at the crack plane. A crack length of 3 inch was used 

similar to the parametric study carried out at Purdue University(Sherman, 2016). Based on the 

Probability of Detection (POD) study a 3 inch crack length has a high detection rate of 65% 

(Whitehead, 2015). A uniform stress of 37.5 ksi (75% Fy) was applied over the cross-section 

of the plate. This was done to match the loading conditions used in the analysis of the axially 

loaded plate models by Sherman(Sherman, 2016).  

 

Figure 24: Half Symmetric Plate Model with Edge Crack Profile 

Flexural Members 

After evaluating the axial specimens, rectangular beam (flexural) models were studied 

under four-point loading. A flexural specimen 480 inch long, 12 inch wide, and 3 inch thick 

was selected for the study. A total of two beam models were developed (Table 2). Model B1, 

was a full-size beam model with no crack, while model B2 was a symmetric beam model with 

a 3 inch edge crack (Figure 25). A point load equal to 15 kips was applied at a ⅓rd distance 

(160 inch) from both the supports. The cross-sectional stress profiles of both the models were 

compared to see the shift in the neutral axis due to the presence of the crack. Additionally, for 

Model B2, SIF was determined and was compared with the handbook solution.  
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Table 2: Bending Specimen Matrix 

Model 

Name 

Length of the 

Member (inch) 
Type of Model 

Type of 

Crack 

B1 480 Full-Size Model No Crack 

B2 240 Symmetric Model Edge Crack 

 

Figure 25: Specimen B2 Model 

3.1.2 Model Types 

After verifying the model development procedure in ABAQUS to calculate the SIF, FE 

models of the partially cracked flexural I-shaped members were developed for analysis 

following the same modeling procedure. Only the constant moment region of the flexural I-

shaped member was modeled incorporating both the symmetry boundary condition and 

trapezoidal loading to save model development and analysis time. Afterward, parametric 

studies were conducted for each one of the crack configurations to determine an analytical 

equation for the geometric factor ‘β’. The parameters evaluated in this study include: tension 

flange thickness, tension flange width, web height, and crack length. This geometric factor was 
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further used in the SIF solution of the partially cracked flexural I-shaped member to determine 

the SIF in the vicinity of the crack line.  

Simplified Models of Flexural I-shaped member  

For the analysis of a flexural specimen, a built-up member 46 feet long, made of steel plates 

and angles (Hebdon, 2015) was considered. The bottom flange of the member included an 

angle 6"x6"x¾" and a cover plate 14"x¾", which were connected using rivets. The web was 

made of ½"x46" plate and the top flange was made of 14"x2" plate (Figure 26). Developing an 

FE model of the built-up member with fasteners was complex and time-consuming. Instead, a 

simplified I-shaped member model was developed with similar dimensions of the built-up 

member.  

 

Figure 26: (a) Built-up Member, (b) I-shaped member 
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For the compression flange, the top flange dimensions 2"x14" were used. The web 

dimensions were kept equal to the dimensions of the web plate ½"x46". The tension flange 

width was equal to the width of the cover plate (14 inch). The thickness of the horizontal leg 

of the angle (¾ inch) and the thickness of the bottom cover plate (¾ inch) were added together 

and used as the thickness for the tension flange in the simplified I-shaped member model. 

Figure 26 shows the cross-sections of both the built-up member and the simplified I-shaped 

member.  

A study was conducted to simplify the flexural I-shaped member model by using the 

symmetry boundary condition and trapezoidal loading. This simplification was necessary since 

nearly seventy I-shaped member models with or without cracks were developed for the analysis 

in parametric studies. For the study, flexural I-shaped member under four-point loading were 

studied, and the focus was the maximum moment region of the I-shaped member. For a beam 

under four-point loading, the region between the point loads have a constant moment value, 

and that region is called a “constant moment region”. 

A simplified I-shaped member model (184 inch long) representing only the constant 

moment region was developed. Trapezoidal loading in ABAQUS was used to apply the 

constant moment value on the member (Figure 27). An ASTM A709 Steel with a specified 

minimum yield strength of 50 ksi (ASTM International, 2005) was considered for the research 

purpose. An analytical expression field was used to define the equation for stress profile along 

the height (y-axis) of the girder. A target stress of 55% Fy (27.5 ksi) was applied at the extreme 

tension fiber of the flexural member. This was done to simulate the loading conditions used in 

the older structures to achieve full design load, and also to match the experimental testing done 
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at Purdue University (Hebdon, 2015). Global seed size of 0.5 inch was used to develop the 

structural mesh in the model. 

 

Figure 27: Trapezoidal Loading 

To further simplify the above model, both the symmetry boundary condition and 

trapezoidal loading were used together. Therefore, only half of the constant moment region of 

the flexural I-shaped member was modeled. Figure 28 shows the 92 inch long simplified 

flexural I-shaped member model with trapezoidal loading on the right edge and the z-axis 

symmetry boundary condition on the left edge. Global seed size of 0.5 inch was used to 

generate the structured mesh in this model. The total time including the model development 

time and the analysis time was reduced significantly (50%) in comparison to the above flexural 

I-shaped member model.  
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Figure 28: Symmetric Model with Trapezoidal Loading 

Partially Cracked Flexural I-shaped Members 

This research study mainly focused on analyzing two configurations of partially cracked 

flexural I-shaped members. The first flexural partially cracked I-shaped member geometry had 

an edge crack in the tension flange. The second flexural partially cracked I-shaped member 

geometry had a full-width crack in the tension flange. The same modeling procedure as 

described under ABAQUS modeling procedure in Section 3.1 was used to develop the partially 

cracked flexural I-shaped member models. Other details regarding the geometry and loading 

are described below.  

Edge Crack Profile 

Two FE models were developed to determine the SIF for an edge crack profile in a tension 

flange. An edge crack was selected because it has similar geometry to common edge cracked 

plates loaded in tension, and for such flaws, common practice is to treat the bottom flange as 

such. For flexural members, the tension flange represents the location with the largest tensile 

stress, and therefore the largest strain energy release rate. A crack will grow in size when the 
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strain energy release rate exceeds the energy required to form new crack surfaces(Griffith, 

1921).  

The first model was a flexural I-shaped member model (Figure 29), 92 inch long developed 

using both trapezoidal loading and symmetry boundary condition. The second model was an 

axially loaded plate, with plate dimensions matching the tension flange dimensions of the I-

shaped member. The width and thickness of the plate were equal to the width and thickness of 

the tension flange (Figure 30). A symmetry boundary condition was used to develop the plate 

model, and it had the same edge crack configuration and loading as the I-shaped member 

tension flange. For the analysis of plate model, a uniform tensile stress of 27.5 ksi was applied 

to match the extreme tension fiber stress of the flexural I-shaped member.  

 

Figure 29: (a) Elevation and (b) Cross-sectional View of an Edge Crack Configuration in an I-

shaped member 
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Figure 30: (a) Elevation and (b) Cross-sectional View of an Edge Crack Configuration in an 

Axially Loaded Plate  

In both the models, a 3 inch long straight through thickness edge crack was created using 

the ‘special’ tool under the ‘interaction’ module (Figure 31). The stress field around the crack 

line was closely monitored by developing finely structured mesh. The same mesh generation 

procedure as described under ABAQUS modeling procedure (Section 3.1) was followed. 

Figure 32 shows the fine mesh around the edge crack in the tension flange of the I-shaped 

member.  

 

Figure 31: Edge Crack Plane in the Tension Flange 

Crack Plane 
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Figure 32: Fine Meshing around the Crack Line in the Tension Flange of the I-shaped member 

 

Full-width Crack Profile 

The second partially cracked flexural I-shaped member geometry had a full-width crack in 

the tension flange, as shown in Figure 33. A full-width crack is a crack which is all the way 

through the width and partially through the thickness of the component. This crack geometry 

Local Seeding 

Global Seeding 
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was selected to simulate the stress state resulting from a failure of a cover plate in the tension 

region of the built-up section (Hebdon, Bonachera Martin et al., 2017). Such a geometry was 

theorized to have the potential to describe the stress state for members with single component 

failure. For example, in order to represent a 0.75 inch thick cover plate failure, the full-width 

crack was assumed to be present throughout the width and up to 0.75 inch from the bottom of 

the tension flange.  

Similar to the edge crack geometry, two FE models were developed to determine the SIF 

for the full-width crack profile. The first model was a flexural I-shaped member model, 92 inch 

long developed using both trapezoidal loading and symmetry boundary condition as described 

under Simplified Models of Flexural I-shaped member (Section 3.1.2). And, the second model 

was an axially loaded plate, with plate geometry matching the tension flange dimensions of 

the I-shaped member. Figure 34 shows the elevation and cross-sectional view of an axially 

loaded plate with the full-width crack profile.  
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Figure 33: (a) Elevation and (b) Cross-sectional View of a Full-Width Crack 

Configuration in an I-shaped member 

 

Figure 34: (a) Elevation and (b) Cross-sectional View of a Full-Width Crack 

Configuration in an Axially Loaded Plate  

In both the models, a 0.75 inch full-width crack was created using the ‘special’ tool under 

the ‘interaction’ module (Figure 35). The stress field around the crack line was closely 

monitored by developing finely structured mesh. Figure 36 shows the fine structured mesh 

along the full-width crack line and coarse mesh in the remaining region of the I-shaped 
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member. The area between the circles were meshed to have ten elements and a local seed side 

of 0.125 inch was used along the perimeter of the rectangle. The remaining regions were 

meshed with global seed size of 0.5 inch. The same meshing procedure was used to develop 

all the remaining flexural I-shaped member models with a full-width crack profile.  

 

Figure 35: Full-width Crack Plane in the Tension Flange 

Crack Plane 
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Figure 36: Structured Mesh in the Partially Cracked Flexural I-shaped Member (Top), Fine Mesh 

along the Full-width Crack Line in the Tension Flange (Bottom) 

3.2 Parametric Study  

One of the main objectives of the research study was to determine the SIF equation for 

both configurations of partially cracked I-shaped members. The fundamental SIF equation can 

be used to determine the SIF in the vicinity of a crack of any arbitrary geometry with a unique 

geometry factor ‘β’, which means a different geometry factor will be used for every geometry. 

Local Seeding 

Global Seeding 
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The SIF equation given by equation 20 includes three important terms: crack length ‘a’, the 

far-field stress ‘σ’, and the geometry factor ‘β’.  

 K a   
     (20) 

The geometry factor ‘β’ varies for different cracked orientations relative to the member 

and direction of loading. It is known that, for a cracked geometry, the ‘β’ generally depends 

on the crack length and cross-sectional dimensions of the member. For example, the ‘β’ for an 

edge cracked plate is a function of the ratio of crack length ‘a’ to plate width ‘W’ (Figure 37), 

and one of the handbook solutions is given by equation 21 (Grandt, 2004).  

 

Figure 37: Edge Cracked Plate: (a) Elevation View (b) Cross-sectional View 

 2 3 4) 1.12 0.231 ) 10.55 ) 21.73 ) 30.29 )a a a a a
W W W W W

           (21) 

The focus of the research study is partially cracked flexural I-shaped members. Hence, in 

the parametric study, the parameters tested to see their influence on the SIF included tension 
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flange thickness (tf), tension flange width (bf), web height (hw), and crack length (a). Figure 38 

shows the cross-sections of the partially cracked flexural I-shaped members.  

 

Figure 38: Partially Cracked Flexural Member Cross-sections 

3.2.1 Edge Crack Geometries 

The first parametric study was performed for the I-shaped member geometry with an edge 

crack in the tension flange. The SIF variation was studied for four parameters which were 

understood to influence the SIF directly. The study parameters included tension flange 

thickness, web height, tension flange width, and edge crack length.  

Tension Flange Thickness (tf) 

The first parameter considered in the parametric study was the tension flange thickness. A 

total of 5 flexural I-shaped member models were developed. The thickness of the tension flange 

was varied between 1 inch and 2 inch in increments of 0.25 inch (Table 3). In all the models, 
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a constant edge crack length of 3 inch and a constant tension flange width of 14 inch was used. 

All the remaining parameters such as web dimensions and top flange dimensions were kept 

unaltered.   

Table 3: Flange Thickness Variation for Edge Crack Profile 

Group 

No., 

Model 

Name 

Tension 

Flange 

Thickness, 

tf (inch) 

Tension 

Flange 

Width, bf 

(inch) 

Web 

height, 

hw (inch) 

Crack 

Length, 

a (inch) 

A 

A1 1 14 46 3 

A2 1.25 14 46 3 

A3 1.5 14 46 3 

A4 1.75 14 46 3 

A5 2 14 46 3 

 

Web Height (hw) 

The second parameter considered in the parametric study was the web-height. A total of 5 

flexural I-shaped member models were analyzed. The web-height was varied between 34 inch 

and 58 inch, with an increment of 6 inch with a constant web thickness of 0.5 inch (Table 4). 

All the other parameters like crack length and tension flange dimensions were kept constant so 

that the effect of web height could be analyzed separately.  

Table 4: Web Height Variation for Edge Crack Profile 

Group 

No., 

Model 

Name 

Web 

height, 

hw (inch) 

Tension 

Flange 

Width, bf 

(inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Crack 

Length, 

a (inch) 

B 

B1 34 14 1.5 3 

B2 40 14 1.5 3 

B3 46 14 1.5 3 

B4 52 14 1.5 3 

B5 58 14 1.5 3 
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Tension Flange Width (bf) 

The third parameter considered in the parametric study was the tension flange width. A 

total of 6 flexural I-shaped member models were analyzed. In these models, the flange width 

was varied between 13 inch and 26 inch with a constant flange thickness of 1.5 inch, as shown 

in All the other parameters like crack length and web dimensions were kept constant so that 

the effect of tension flange width could be analyzed separately.  

Table 5. All the other parameters like crack length and web dimensions were kept constant 

so that the effect of tension flange width could be analyzed separately.  

Table 5: Tension Flange Width Variation for Edge Crack Profile 

Group 

No., 

Model 

Name 

Tension 

Flange 

Width, bf 

(inch) 

Tension 

Flange 

Thickness, tf 

(inch) 

Web 

height, hw 

(inch) 

Crack 

Length, a 

(inch) 

C 

C1 13 1.5 46 3 

C2 14 1.5 46 3 

C3 15 1.5 46 3 

C4 18 1.5 46 3 

C5 22 1.5 46 3 

C6 26 1.5 46 3 

 

Edge Crack Length (a) 

The last parameter considered in the parametric study was the edge crack length. From the 

SIF equation (Equation 20), the crack length is directly proportional to SIF. A total of 5 flexural 

I-shaped member models were developed with an edge crack length varying from 1 inch to 5 

inch, as shown in Table 6. In all the models, the cross-sectional dimensions were kept constant.  
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Table 6: Edge Crack Length Variation for Edge Crack Profile 

Group 

No., 

Model 

Name 

Crack 

Length, 

a (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw (inch) 

D 

D1 1 14 1.5 46 

D2 2 14 1.5 46 

D3 3 14 1.5 46 

D4 4 14 1.5 46 

D5 5 14 1.5 46 

 

In each of the simplified I-shaped member models, the trapezoidal loading expression was 

changed with respect to the specimen dimensions. For flexural I-shaped member models, stress 

equal to 55% Fy (27.5 ksi) was applied at the extreme tension fiber of the member. The 

modeling procedure as described in the sections above was followed to develop all the models.  

3.2.2 Full-width Crack Geometries 

The second parametric study performed was for the I-shaped member geometry with a full-

width crack in the tension flange. The same parameters evaluated in the parametric study of 

the edge crack profile were studied to observe the variation in the SIF of the full-width crack 

profile. When the influence of a single parameter on the SIF was studied, the remaining 

parameters were kept unaltered, as shown in the tables above.  

Tension Flange Width (bf) 

The variation in SIF was studied for three different tension flange widths 14 inch, 20 inch 

and 26 inch for a constant tension flange thickness of 1.5 inch (Table 7). In all the models, a 
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crack length of 0.75 inch, and a web height of 36 inch was used. All the parameters except the 

tension flange width were kept constant so that the effect of tension flange width could be 

analyzed separately. 

Table 7: Tension Flange Width Variation for Full-width Crack Profile 

Group 

No., 

Model 

Name 

Tension 

Flange 

Width, bf 

(inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw (inch) 

Crack 

Length, 

a (inch) 

E 

E1 14 1.5 46 0.75 

E2 20 1.5 46 0.75 

E3 26 1.5 46 0.75 

 

Web Height (hw) 

The web height was varied between 34 inch and 58 inch in increments of 12 inch, for a 

constant web thickness of 0.5 inch. Tension and compression flange dimensions were kept 

unaltered, as shown in Table 8. In all the models a full-width crack length of 0.75 inch was 

used.  

Table 8: Web Height Variation for Full-width Crack Profile 

Group 

No., 

Model 

Name 

Web 

height, 

hw (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Crack 

Length, 

a (inch) 

F 

F1 34 14 1.5 0.75 

F2 46 14 1.5 0.75 

F3 58 14 1.5 0.75 

 

Tension Flange Thickness (tf) 

The tension flange thickness was varied between 1.5 inch and 2.25 inch in increments of 

0.25 inch (Table 9). In all the models, a crack length of 0.75 inch and a tension flange width 
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of 14 inch was used. All the other parameters except tension flange thickness were kept 

constant to study the variation of SIF with tension flange thickness. 

Table 9: Tension Flange Thickness Variation for Full-width Crack Profile 

Group 

No., 

Model 

Name 

Tension 

Flange 

Thickness, 

tf (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Web 

height, 

hw 

(inch) 

Crack 

Length, 

a (inch) 

G 

G1 1.5 14 46 0.75 

G2 1.75 14 46 0.75 

G3 2 14 46 0.75 

G4 2.25 14 46 0.75 

 

Full-width Crack Length (a) 

The variation in SIF was studied for two different crack lengths of 0.75 inch and 1.125 

inch, as shown in Table 10. All the parameters except crack length was kept constant. In both 

the models, tension flange width of 14 inch, a tension flange thickness of 2.25 inch, and web 

height of 46 inch was used.  

Table 10: Full-width Crack Profile Variation for Full-width Crack Profile 

Group 

No., 

Model 

Name 

Crack 

Length, 

a (inch) 

Tension 

Flange 

Width, bf 

(inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw 

(inch) 

H 
H1 0.75 14 2.25 46 

H2 1.125 14 2.25 46 
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CHAPTER 4: Results and Discussion 

4.1 Benchmark Study 

This subsection consists of the FE results of the benchmark study specimens. The 

benchmark study included analysis of axially loaded plate models and rectangular beam 

models.  

Axial Members 

The analysis of axially loaded plates with different crack configurations included three 

types of crack configurations: edge cracked, double-edge cracked, and center cracked. The FE 

models were analyzed to determine the crack parameters in terms of SIF for each crack profile, 

and the obtained FE results were further compared with available handbook solutions. SIF 

solutions for common crack geometries are available in linear-elastic fracture mechanics 

handbooks. In the current study, “Fundamentals of Structural Integrity” (Grandt, 2004) was 

used to calculate the closed-form solutions of the cracked geometries considered in the 

benchmark study.  

The benchmark study results were compared with the handbook solutions to verify the 

accuracy of the modeling procedure followed in ABAQUS to calculate the SIFs. For the 

purpose of analysis, SIF values from the eight contour were determined for each model. Each 

contour included thirteen picked-sets, and each picked-set had a corresponding SIF value. 

From the recorded SIF values, maximum, minimum, and average SIF values were obtained. 

Then, a comparison was made between the average SIF and the closed form solution, as shown 

in Table 11. The calculation of closed-form solutions for all the axial plate benchmark study 

specimens is shown in Appendix B.1. 
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Table 11: Benchmark Study Results 

Model 

Name 

Stress Intensity Factor (SIF)  

( ksi in ) 

Maximum Minimum Average 

Closed 

form 

solution 

% 

Difference 

A1 151.1 140.9 148.9 143 4 

A2 92.7 89.5 94 91.3 3 

A3 86.3 82.4 85.4 83.3 3 

A4 220.8 205.7 216.5 209.4 3 

A5 170.2 156.1 167.6 162 3 

 

The FE results showed a good correlation with the closed form solution. An average 

difference of about 3% was observed between the FE results and the closed form solution. The 

dimensions and the material grade used in these models can be found in Table 1. Additionally, 

for an edge crack profile, it was observed that a 2.5 inch thick plate (Model A5) had higher 

stress intensity factor as compared to a 1.5 inch plate (Model A1). Thicker material offers 

higher constraint to the crack growth limiting the plastic deformation around the crack tip 

(Francesco M. Russo, 2016).  Model A4 with a yield strength of 70 ksi had higher SIF in 

comparison to Model A1 with a yield strength of 50 ksi.   

Flexural Members 

Two rectangular beam models, B1 and B2 (Table 2) under four-point loading with and 

without an edge crack respectively were analyzed. For a point load of 15 kips, the calculated 

stress value (σ=Mc/y) at the extreme fibers due to bending was found to be 33.3 ksi. The 

presence of 3 inch edge crack in the tension flange at the mid-span reduced the cross-sectional 

net area which in turn increased the net-section stress. Also, the neutral axis shifted upwards 
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by approximately 0.7 inch due to the presence of edge crack. Comparison between the cross-

sectional stress profiles of both the models is shown in Figure 39.   

 

Figure 39: Cross-Sectional Stress Profiles of Rectangular Beam Models 

For model B1, the cross-sectional stress profile was linear with a stress value of 

approximately 32.5 ksi at the extreme tension and compression fiber. While in the edge cracked 

beam model (B2), a theoretical stress increase of up to approximately 1500 ksi was observed 

in the tension region near the edge crack line. This is because of the stress concentration near 

the crack tip, and the linear elastic member material behavior.  

The SIF in the vicinity of the edge crack was obtained for model B2. A maximum SIF 

value of 58.7 ksi in , minimum SIF of 52.4 ksi in , and an average SIF of 53.3 ksi in were 

recorded from the FEA. Using the handbook solution, a SIF of 58.2 ksi in  was calculated 

0

1

2

3

4

5

6

7

8

9

10

11

12

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60

H
ei

g
h
t 

al
o
n
g
 y

 a
x
is

 (
in

ch
)

Bensing stress (ksi)

w/o crack w/ crack



63 

 

which is about 8% higher than the FE solution. The calculation of closed-form solutions for 

specimen B2 is shown in Appendix B.1. 

The results of both axial and bending models used in the benchmark study were in close 

approximation with the available closed-form handbook solutions. Hence, the modeling 

procedure followed for the benchmark study in ABAQUS was further employed to determine 

the SIFs of partially cracked flexural I-shaped cross-sections. 

4.2 Model Types 

Simplified Models of Flexural Members 

Two simplified models of the flexural I-shaped member were analyzed. The first I-shaped 

member model represented the constant moment region, where trapezoidal loading was used 

to apply the constant moment on the section. The second model was the simplified version of 

the first model in which both the symmetric boundary conditions and trapezoidal loading were 

used together. A load causing stress equal to 55% Fy (27.5 ksi) at the extreme tension fiber was 

applied in both the models.  

The cross-sectional stress profiles of both the I-shaped member models were compared and 

studied. (Figure 40). There was minimal difference in the results between the two models. 

From the FEA, stress equal to 27.3 ksi was recorded at the extreme tension fiber, which was 

0.7% less than the applied stress 27.5 ksi. In addition, the model development and analysis 

time were reduced significantly. Therefore, a simplified version of the beam model (92 inch 

long) with both trapezoidal loading and symmetric boundary condition was used in modeling 

all the flexural specimens.  
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Figure 40: Cross-sectional Stress Profiles of the I-shaped member 

Partially Cracked Flexural I-shaped Members 

Edge Crack Profile 

The first partially cracked I-shaped member geometry had an edge crack in the tension 

flange. A simplified model of the I-shaped member with an edge crack was developed and 

analyzed to find the SIF in the vicinity of the edge crack. Figure 41 shows the stress contours 

in the constant moment region of the edge cracked I-shaped member, and Figure 42 shows a 

close-up view of the localized stress concentration around the edge crack.  
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Figure 41: Partially Cracked I-shaped member with an Edge Crack 

      

Figure 42: Local Stress Concentration around the 3 inch Edge Crack in an I-shaped member 

There was a significant stress increase in the tension flange and part of the web around the 

crack line, while the stress in the crack plane was almost zero. From the FEA, an average SIF 

of 116.7 ksi in was obtained at the eighth contour from the crack tip. After analyzing the 

flexural I-shaped member model, the tension flange of the I-shaped member was separately 

simulated as an axially loaded plate. Figure 43 shows the localized stress concentration around 

the edge crack in the axial plate. From the FEA, an average SIF of 122.6 ksi in was obtained 

at the eighth contour from the crack tip.  
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Figure 43: Stress Concentration in a 3 inch Edge Crack Axial Member 

Using the handbook solution for an edge cracked plate, a SIF of 118.8 ksi in  was obtained, 

which was approximately 3% lower than the FE result. Next, a comparison between the axial 

plate and flexural I-shaped member SIFs were made, and it was observed that the SIF value of 

the flexural beam model was approximately 5% less than the SIF value of the plate model. The 

reason for getting a lower SIF value in the flexural beam model was because of the constraint 

provided by the web to the edge crack opening.  

Full-width Crack Profile 

The second partially cracked flexural I-shaped member geometry had a full-width crack in 

the tension flange. Similar to the first crack geometry, two FEAs were performed. The first 

model was a flexural I-shaped member model, while the second model was an axially loaded 

plate model. The same crack profile and the similar loading conditions were used for analysis 

in both models.  
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FE output in terms of SIF was obtained for both the models. Figure 44 shows the partially 

cracked flexural I-shaped member with a full-width crack, and Figure 45 shows the close-up 

view of the localized stress concentration around the full-width crack. There was a significant 

stress increase in the remaining portion of the tension flange above the full-width crack line. 

For the partially cracked flexural I-shaped member, an average SIF of 76.5 ksi in was obtained 

at the eighth contour from the crack tip.   

 

Figure 44: Stress Contours in a Partially Cracked flexural I-shaped member with a Full-width 

Crack 

   

Figure 45: Localized Stress near the Full-width Crack in a flexural I-shaped member 

From the analysis of an axially loaded plate, an average SIF of 119.3 ksi in was obtained, 

which was almost the same as the calculated closed form solution (119.4 ksi in ). However, 

there was a large difference between the SIF of the flexural I-shaped member and plate models. 
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The SIF of the axial plate with a full-width crack was approximately 56% more than the SIF 

of the flexural I-shaped member with a full-width crack in the tension flange. The web of the 

flexural I-shaped member gives some constraining effects, limiting the full-width crack from 

opening. While the axially loaded plate had no such constraints.  

4.3 Parametric Study – Edge Crack Geometry 

The following section discusses the parametric study results of the specimens with an edge 

crack profile. Parameters including the tension flange thickness, tension flange width, web 

height, and edge crack length were studied for their influence on the SIF. The main focus was 

to find an analytical equation for the geometry factor ‘β’ which can be used to calculate the 

SIF of a partially cracked flexural I-shaped member with an edge crack configuration. 

For each model, the FE results in terms of SIF were calculated from the ABAQUS output 

file, and the average SIF at the 8th contour was recorded. The SIF value directly depends on 

the crack length, and hence it is not correct to study the variation of SIF with the above-

mentioned parameters. Therefore, from each analysis, the ‘β’ was calculated (Equation 22) 

using the obtained SIF, and the respective crack length ‘a’.  

 

a


 




 

(22) 

where ‘KI’ is the average SIF obtained from FEA, ‘a’ is the crack length, and ‘σ’ is the far-

field stress. Next, the percentage difference in the ‘β’ value for each of the parameters was 

recorded and studied. The results from the parametric studies are shown below. 
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Tension Flange Thickness (tf) 

Ten FEA models were conducted to see the influence of tension flange thickness (tf) on the 

SIF. Table 12 shows the variation of ‘SIF’ and ‘β’ for five different flange thickness values. It 

was observed that as the flange thickness was increased from 1 inch to 2 inch, there was a 

slight decrease (1%) in the SIF value. A negligible percentage difference of about 1.5 % was 

calculated between the ‘β’ values of specimen A1 & A5. The results indicated that the tension 

flange thickness had an insignificant influence on the geometry factor ‘β’. Hence was not 

included in the finite element data fit (analytical equation) of the geometry factor ‘β’.  

Table 12: Variation of SIF with the Tension Flange Thickness 

Group 

No., 

 Model 

Name 

Tension 

Flange 

Thickness, 

tf (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Web 

height, 

hw 

(inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

A 

A1 1 14 46 3 117.3 1.39 

A2 1.25 14 46 3 117.2 1.39 

A3 1.5 14 46 3 116.9 1.38 

A4 1.75 14 46 3 116.5 1.38 

A5 2 14 46 3 116 1.37 

 

Web Height (hw) 

The second parameter evaluated in the parametric study was the web height (hw) of the 

partially cracked flexural I-shaped member. Table 13 shows the parametric study results for 

different web height values and their respective ‘SIF’ and ‘β’ values. The results show that as 

the web height was increased from 34 inch to 58 inch, the SIF values also increased. However, 

the increase in the SIF value was insignificant. A percentage difference of about 1.5% was 

observed between specimen B1 & B5. The results indicated that the web height had an 
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insignificant influence on the geometry factor ‘β’. Hence was not included in the finite element 

data fit (analytical equation) of the geometry factor ‘β’. 

Table 13: Variation of SIF with the Web Height 

Group 

No., 

Model  

Name 

Web 

height, 

hw 

(inch) 

Flange 

Width, 

bf 

(inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

B 

B1 34 14 1.5 3 115.7 1.37 

B2 40 14 1.5 3 116.2 1.38 

B3 46 14 1.5 3 116.6 1.38 

B4 52 14 1.5 3 116.9 1.39 

B5 58 14 1.5 3 117.2 1.39 

 

Tension Flange Width (bf) 

The third parameter in the parametric study was the tension flange width (bf). Six FEA 

were performed where the flange width was varied between 13 inch and 26 inch, and it was 

observed that the SIF decreased significantly with the increase in flange width (Table 14). It 

was also observed that there was a difference of about 15% between the ‘β’ values of specimen 

C1 & C6. The results indicated that the tension flange width had a significant influence on the 

geometry factor ‘β’. Hence was used in the finite element data fit for the determination of the 

analytical equation for geometry factor ‘β’.  
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Table 14: Variation of SIF with Tension Flange Width 

Group 

No., 

Model  

Name 

Tension 

Flange 

Width, 

bf 

(inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw 

(inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in )  

Geometry 

Factor ‘β’ 

C 

C1 13 1.5 46 3 119.6 1.42 

C2 14 1.5 46 3 116.9 1.38 

C3 15 1.5 46 3 114.4 1.35 

C4 18 1.5 46 3 108.9 1.29 

C5 22 1.5 46 3 104.5 1.24 

C6 26 1.5 46 3 101.8 1.21 

Crack Length (a) 

Flexural I-shaped member models with varying crack lengths were analyzed to study the 

localized stress increase around the crack tip and the shift in the neutral axis. For all the models, 

in-plane bending stress along the longitudinal direction (z-axis) of the member were recorded. 

Due to the presence of a crack, the stress at the crack tip was found to be very high compared 

to the applied or the far field stress, and these high stresses resulted in plastic deformation 

around the crack. This region of stress concentration around the crack is also called the plastic 

zone.  

Figure 46 shows the localized stress in the flexural I-shaped members with an edge crack 

varying from 1 inch to 5 inch, in increasing order of the crack length. Grey coloured region 

which is outside the selected stress range of 50 ksi to -50 ksi shows the plastic deformation 

near the crack line. As the crack length was increased the localized stress region also increased, 

resulting in a larger crack tip plastic zone. It was observed that the maximum influence of edge 

crack is on the tension flange, and as the crack length was increased there was some plastic 

deformation in the web region near the flange-web joint.  
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Figure 46: Stress Concentration in Flexural Member with Crack Growth 

The effect of the edge crack was also studied at each of the cross-sectional stress profiles.  

Figure 47 shows the cross-sectional stress profiles along the centerline of the partially cracked 

flexural I-shaped members with different edge crack profiles, and Figure 48 shows the close-

up view of the shift in neutral-axis as the edge crack length is increased from 1 inch to 5 inch.  
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Figure 47: Cross-Sectional Stress Profiles of Flexural Member with Different Crack Lengths 

 

Figure 48: Shift in Neutral-Axis of Flexural Member with Increasing Crack Length 
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It was observed that as the crack length was increased, the stress in the extreme tension 

fiber increased by up to 20 ksi, and the stress in the extreme compression fiber was increased 

by about 0.5 ksi. In addition, with the increase in crack length the neutral axis shifted upwards 

by approximately an inch. Additionally, the influence of the edge crack length on the SIF was 

studied. It was observed that as the crack length was increased, there was an increase in the 

SIF values as shown in Table 15. It was observed that as the crack length was increased from 

1 inch to 5 inch, there was an increase of about 50 % in the ‘β’ value. 

Table 15: Variation of SIF with Edge Crack Length 

Group 

No., 

Model 

Name 

Crack 

Length, 

a (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw 

(inch) 

Avg SIF  

( ksi in ) 

Geometry 

Factor ‘β’ 

D 

D1 1 14 1.5 46 55.7 1.14 

D2 2 14 1.5 46 86.2 1.25 

D3 3 14 1.5 46 116.7 1.38 

D4 4 14 1.5 46 151.1 1.55 

D5 5 14 1.5 46 190 1.74 

 

Geometry Factor – Edge Crack Geometry 

Based on the parametric study results, the parameters which had the most significance or 

highest influence on the SIF were used to develop an analytical equation for the geometry 

factor ‘β’. For the edge crack profile, the edge crack length (a), and tension flange width (bf) 

had the most significant influence on the SIF, while the influence of tension flange thickness 

(tf), and web height (hw) was insignificant and hence were neglected.  

An analytical equation for the geometric factor as a function of crack length (a), and flange 

width (bf) was developed by curve fitting the FE data points. A total of twenty-one FE models 
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of different partially cracked flexural I-shaped member geometries were developed for 

analysis. After evaluating the flexural I-shaped member models, the tension flange of the 

member was separately studied as an axially loaded plate. Similar to the flexural members, 

twenty-one FE models of the axially loaded plates were analyzed. The geometry of the plate 

was similar to the tension flange geometry including the crack profile and loading conditions. 

The crack length (a) was varied between 1 inch and 12.5 inch, and the flange width (bf) was 

varied between 14 inch and 26 inch. In order to match the fracture mechanics terminology, the 

tension flange width (bf) was denoted by ‘W’. Table 16 shows the specimen matrix in 

increasing order of the ratio of the crack length (a)-to-flange width (W).  
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Table 16: Specimen Matrix for Edge Crack Profile 

Crack 

Length, 

a (inch) 

Tension 

Flange 

Width, 

W (inch) 

a/W 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

Plate Beam Plate Beam 

1 26 0.038 55.8 54.1 1.14 1.11 

1 22 0.045 56.1 54.5 1.15 1.12 

1 18 0.056 56.5 54.9 1.16 1.13 

1 14 0.071 57.3 55.7 1.18 1.14 

2 26 0.077 82.9 80 1.2 1.16 

2 22 0.091 84 81.2 1.22 1.18 

2 18 0.111 86 83 1.25 1.2 

3 26 0.115 105.9 101.8 1.25 1.21 

3 22 0.136 108.7 104.5 1.29 1.24 

2 14 0.143 89.4 86.2 1.3 1.25 

3 18 0.167 113.4 108.8 1.34 1.29 

3 15 0.2 119.6 114.4 1.42 1.36 

5.5 26 0.212 165.3 157.2 1.45 1.38 

3 14 0.214 122.6 116.9 1.45 1.38 

3 13 0.231 126.3 119.6 1.5 1.42 

3.5 14 0.25 142 133.3 1.56 1.46 

4 14 0.286 162.6 151.1 1.67 1.55 

5.4 18 0.3 195.7 180.2 1.73 1.59 

5 14 0.357 213.9 190.1 1.96 1.74 

8.8 22 0.4 318.1 273.1 2.2 1.89 

8.1 18 0.45 350.6 274.2 2.53 1.98 

12.5 26 0.481 459.1 350.2 2.66 2.03 

At first, FEA of flexural I-shaped member models was performed. Then, from each 

analysis, the average SIF value from the eighth contour was used to calculate the respective 

‘β’ of the specimen. Table 16 shows the SIF obtained from the FEA, and the calculated 

geometry factor ‘β’. Next, a plot between the ‘β’ and ‘a/W’ was generated using all the 

obtained flexural I-shaped member specimen data points. An analytical equation for the 

geometry factor ‘β’ as a function of the ratio of crack length (a)-to-flange width (W) was 

determined by curve fitting the data points as a second-degree polynomial function, as shown 

in Figure 49.  
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Figure 49: Geometry Factor ‘β’ for a flexural I-shaped member with an Edge Crack Profile 

The following equation 23 is the determined analytical equation for the geometry factor 

‘β’. This obtained geometry factor can further be used in the SIF equation to calculate the SIF 

in the vicinity of the edge crack in a flexural I-shaped member.  

      
2

1.053 1.155 2.005a a a
W W W

     
(23) 

      where, ‘a’ is the crack length, ‘W’ is the tension flange width. 

After evaluating the flexural I-shaped member models, the tension flange of the member 

was separately studied as an axially loaded plate. A similar procedure was followed and the 

‘β’ for each specimen was calculated using the SIF obtained from FEA (Table 16). Then, a 

plot between ‘β’ and ‘a/W’ was developed and the data points were further used to develop an 

equation to represent the geometry factor ‘β’ as a function of ‘a/W’ for an edge cracked plate 

(Figure 50).  

β= 2.005 (a/W)2 + 1.155 (a/W) + 1.053
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Figure 50: Geometry Factor ‘β’ for an Axially Loaded Plate with an Edge Crack Profile 

The following equation 24 is the determined analytical equation for the geometry factor 

‘β’. This obtained geometry factor can be used in the SIF equation to calculate the SIF in the 

vicinity of the edge crack in an axially loaded plate.  

      
2

1.152 0.004 6.586a a a
W W W

     
(24) 

      where, ‘a’ is the crack length, ‘W’ is the tension flange width. 

Furthermore, a plot (Figure 51) between ‘β’ vs ‘a/W’ was developed for comparison of the 

three solutions: obtained beam solution (Equation 23), obtained plate solution (Equation 24) 

and the available handbook solution (Equation 21). The plate solution for edge crack profile 

was further compared with the available handbook solution. It was observed that the obtained 

plate solution for the geometry factor ‘β’ was in close approximation with the available 

β = 6.586 (a/W)2 - 0.004 (a/W) + 1.152
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handbook solution. However, the determined plate and beam geometry factor solutions were 

in a good agreement up to a/W ratio of approximately 0.20 and deviated beyond that.  

 

Figure 51: Geometry Factor ‘β’ for an Edge Crack Profile 

4.4 Parametric Study – Full-Width Crack Geometry 

Similar to the edge crack profile, the variation of SIF was studied for parameters including 

tension flange thickness, tension flange width, web height, and full-width crack length.  

Tension Flange Width (bf) 

Table 17 shows the FE results in terms of SIF for three different flange width values. The 

geometry factor ‘β’ was calculated using the obtained SIF value.  It was observed that there 

was an increase in the SIF with the increase in the flange width. There was a difference of 

about 10% between the ‘β’ values of specimen E1 & E3.  
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Table 17: Variation of SIF with Tension Flange Width 

Group 

No., 

Model 

Name 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw 

(inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

E 

E1 14 1.5 46 0.75 76.5 1.81 

E2 20 1.5 46 0.75 80.7 1.91 

E3 26 1.5 46 0.75 83.9 1.99 

 

Web Height (hw) 

Web height was the second parameter studied in the parametric study. As shown in Table 

18, there was no difference (0%) in the ‘β’ value as the web height was increased from 34 inch 

to 58 inch. The results indicated that the geometry factor ‘β’ of the flexural I-shaped member 

with full-width crack profile does not depend on the web height. Hence, it was not considered 

in the determination of analytical for geometry factor ‘β’.  

Table 18: Variation of SIF with the Web Height 

Group 

No., 

Model 

Name 

Web 

height, 

hw 

(inch) 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

F 

F1 34 14 1.5 0.75 76.3 1.81 

F2 46 14 1.5 0.75 76.5 1.81 

F3 58 14 1.5 0.75 76.6 1.81 
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Tension Flange Thickness (tf) 

In Table 19, the variation of SIF with the tension flange thickness (tf) was recorded. It was 

observed that when the thickness was increased from 1.5 inch to 2.25 inch, there was about a 

20% decrease in the ‘β’ value. The results indicated that the tension flange thickness had a 

significant influence on the geometry factor ‘β’. Hence was used in the finite element data fit 

for the determination of the analytical equation for geometry factor ‘β’. 

Table 19: Variation of SIF with the Tension Flange Thickness 

Group 

No., 

Model 

Name 

Tension 

Flange 

Thickness, 

tf (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Web 

height, 

hw 

(inch) 

Crack 

Length, 

a (inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

G 

G1 1.5 14 46 0.75 76.5 1.81 

G2 1.75 14 46 0.75 69.2 1.64 

G3 2 14 46 0.75 64.1 1.52 

G4 2.25 14 46 0.75 60.6 1.44 

 

Full-width Crack Length (a) 

The crack length has a direct influence on the SIF value. As shown in Table 20, there was 

a significant increase in the SIF by about 30 ksi in  when the crack length was increased from 

0.75 inch to 1.125 inch. And, there was a 21.5% increase between in the ‘β’ values of specimen 

H1 & H2. The results indicated that the crack length had a significant influence on the 

geometry factor ‘β’. Hence was used in the finite element data fit for the determination of the 

analytical equation for geometry factor ‘β’. 
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Table 20: Average SIF values for a Specific Crack Length 

Group 

No., 

Model 

Name 

Crack 

Length, 

a (inch) 

Tension 

Flange 

Width, 

bf (inch) 

Tension 

Flange 

Thickness, 

tf (inch) 

Web 

height, 

hw 

(inch) 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

H 
H1 0.75 14 2.25 46 60.6 1.44 

H2 1.125 14 2.25 46 90.7 1.75 

 

Geometric Factor – Full-width Crack Geometry 

The geometry factor depends on the cross-sectional dimension of the member and the crack 

dimension. Although all the parameters except the web height influenced the geometry factor, 

only the parameters with the most significant or highest influence on the SIF were used to 

develop the analytical equation. From the parametric study conducted on the full-width crack 

configuration, it was observed that tension flange thickness and the full-width crack length had 

the highest influence on the SIF, of about 20%, and 21.5% respectively. Other than that, there 

was a variation of about 10% in the SIF with the tension flange width variation, and there was 

no variation in the SIF with the web height. Considering the amount of influence of these 

parameters on the SIF, tension flange thickness, and full-width crack lengths were used to 

determine an analytical equation for geometry factor ‘β’ of the partially cracked flexural I-

shaped member with a full-width crack.  

A total of thirteen FE models of different configurations of partially cracked flexural I-

shaped member s were developed for the analysis. Following the analysis of flexural I-shaped 

member models, axially loaded plate models were analyzed. Thirteen FE models of axially 

loaded plate were developed and analyzed to determine an analytical equation for the geometry 

factor ‘β’. The same crack configuration and loading conditions were used for the analysis.  

All the FE models had a full-width crack in them. The crack length (a) along the component 
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thickness was varied between 0.45 inch and 1.35 inch, while the tension flange thickness (tf) 

was varied between 1.5 inch and 2.25 inch. In order to match the fracture mechanics 

terminology, the flange thickness was denoted by ‘W’. Table 21 shows the specimen matrix in 

terms of increasing order of ‘a/W’.  

Table 21: Specimen Matrix for Full-width Crack Profile 

Crack 

Length, 

a (inch) 

Flange 

Thickness, 

W (inch) 

a/W 

Avg SIF 

( ksi in ) 

Geometry 

Factor ‘β’ 

Beam Plate Beam Plate 

0.45 1.5 0.3 46.4 1.42 55.2 1.69 

0.75 2.25 0.33 60.6 1.44 75.9 1.8 

0.7 2 0.35 60.2 1.48 76.3 1.87 

0.75 2 0.38 64.1 1.52 83.8 1.99 

0.6 1.5 0.4 60.3 1.6 80.7 2.14 

0.75 1.75 0.43 69.2 1.64 99.8 2.36 

1 2.25 0.44 79.7 1.64 116.3 2.39 

0.9 2 0.45 77.2 1.67 115.2 2.49 

0.75 1.5 0.5 76.5 1.81 119.3 2.83 

1 2 0.5 86.2 1.77 140.2 2.88 

1.125 2.25 0.5 90.7 1.75 154.9 3 

1.125 2 0.56 98.3 1.9 180.9 3.5 

1 1.75 0.57 95 1.95 174.9 3.59 

1.35 2.25 0.6 111.9 1.98 230.8 4.08 

 

From each analysis, the average SIF from the eighth contour were recorded. Next, using 

the obtained SIF, the geometry factor ‘β’ for each crack length was back-calculated using the 

SIF equation (Equation 22). Then, for the partially cracked flexural I-shaped member models, 

a plot between ‘β’ and ‘a/W’ was developed, and the data points were fit as a second-degree 

polynomial equation, as shown in Figure 52.  
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Figure 52: Geometry Factor ‘β’ for a flexural I-shaped member with a Full-width Crack Profile 

An analytical equation was determined for the geometry factor ‘β’ in terms of ‘a/W’. The 

following 26 is the determined analytical equation for the geometry factor of a partially failed 

flexural I-shaped member with a full-width crack.  

      
2

1.03 0.88 1.22a a a
W W W

     
(25) 

       where, ‘a’ is the crack length, ‘W’ is the tension flange thickness. 

Similar FE modeling and analysis procedure was followed to determine an analytical 

equation for ‘β’ of plate models with a full-width crack profile. Average SIF was obtained 

from the FE output file of each analysis. Figure 53 shows the polynomial curve fit of the FE 

data points, and equation 26 is the determined second-degree polynomial equation for 

geometry factor ‘β’ of the plate models with a full-width crack profile.  

β = 1.22 (a/W)2 + 0.88 (a/W) + 1.03
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Figure 53: Geometry Factor ‘β’ for an Axially Loaded Plate with a Full-width Crack Profile 

      
2

2.46 7.67 17.12a a a
W W W

     
(26) 

      where, ‘a’ is the crack length, ‘W’ is the tension flange width. 

Figure 54 shows a combined plot comprising the obtained beam solution, plate solution, 

and the available handbook solution. The obtained plate solution was further compared to 

available handbook solution for an edge crack profile (Equation 21). The results show that 

there was a good approximation between the obtained plate solution and the available 

handbook solution. However, the difference between the obtained plate and flexural I-shaped 

member solutions increased with the increase in the ‘a/W’ ratio. This indicates that the plate 

solutions were conservative compared to the determined flexural I-shaped member solution, 

especially with larger a/W ratios.  

β = 17.12 (a/W)2 - 7.67 (a/W) + 2.46
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Figure 54: Geometry Factor ‘β’ for Full-width Crack Profile 

4.5 Fracture Behavior of Edge Cracked Specimens  

The determined geometry factor ‘β’ for the partially cracked flexural I-shaped member was 

further used to study the fracture behavior of the edge cracked members. The fracture behavior 

of both flexural and axial specimens with an edge crack was studied under the applied loading 

condition (55% Fy). In this study, the stability of the crack as a function of stress, crack size, 

and fracture toughness was studied. Additionally, the fatigue crack growth behavior under the 

applied load condition was studied.  

At first, the fracture toughness which is a measure of resistance offered by a specimen to 

the crack growth was determined. One of the most widely used methods to calculate fracture 

toughness is by using the Charpy V-notch test notch toughness value. From a previous 
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research, a two-stage CVN-KId-Kc correlation was found (Barsom and Rolfe, 1999). ‘KId’ is 

the dynamic SIF and is given by Equation 27. 

 5( )IdK CVN E  (27) 

where ‘CVN’ is the notch toughness value, ‘E’ is the modulus of elasticity. ‘KIc’ is the static 

SIF, and the difference between ‘KId’ & ‘KIc’ is given by temperature shift, denoted as ‘Tshift’ 

(Figure 55). Temperature shift is a function of yield strength ‘σys’, and is given by Equation 

28.  

 215 1.5shift ysT    (28) 

 

Figure 55: Temperature Shift between ‘KId’ & ‘KIc’ (Barsom and Rolfe, 1999). 

The minimum specified CVN values for bridge steels are given in AASHTO LRFD Bridge 

Design Specifications. AASHTO specifies a CVN value of 30 ft-lb @ 10 oF for A709 Grade 

50 steel under Zone III (Wright, 2015). Using the following two-stage CVN-KId-Kc correlation 
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(Equation 27 & 28) (Barsom and Rolfe, 1999) the fracture toughness (KIc) value for this 

specified CVN was calculated.  

For steel with a yield strength of 50 ksi, modulus elasticity of 29,000 ksi, and CVN value 

of 30 ft-lb @ 10 oF, a fracture toughness (KIc) of 228.5 ksi in  @ -130 oF was obtained. 

Alternatively, using the Roberts-Newton lower-bound CVN-KIc relation (Equation 29)  

(Barsom and Rolfe, 1999) a fracture toughness of 80 ksi in was calculated for this same CVN 

value.  

 0.639.35( )cK CVN  (29) 

The calculated material fracture toughness was further used to find the fracture stress 

values for the corresponding edge crack length. The calculations were performed for both the 

plate and flexural I-shaped member models. Fracture toughness is the critical SIF which causes 

the member fracture. The obtained fracture toughness was further used to calculate the 

anticipated critical stress at member fracture (Equation 30).  

 Ic
c

K

a


 
  

(30) 

where ‘KIc’ is the fracture toughness, ‘σ’ is the fracture stress, ‘a’ is the edge crack length, and 

‘β’ is the determined geometry factor for the edge crack profile.  

Both the plate and flexural I-shaped member models with an edge crack profile were 

analyzed to find the anticipated fracture stress values. The edge crack length was varied from 

1 inch to 5 inch in increments of 1 inch. I-shaped flexural member models were analyzed and 

the fracture stress was determined for each corresponding edge crack length using Equation 

30. For the calculations, a fracture toughness (KIc) of 228.5 ksi in was used.  
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The same calculations were repeated for five values of the edge crack. Following the 

flexural I-shaped member models, axially loaded plate models were analyzed to find the 

fracture stress values for the same material fracture toughness (KIc). Then, a comparison 

between the results of flexural I-shaped member and plate models were made to see the 

variation in the output by using different geometric configurations. Table 22 below shows the 

calculated fracture stress values for five different edge crack values for both the flexural I-

shaped member and plate models.  

Table 22: Fracture Stress Values for Higher Fracture Toughness Value (228.5 ksi in ) 

Crack 

Length 

(a), in 

a/W 

Geometry 

Factor (β) 
Fracture Stress 

(σ), ksi 
% 

Difference 
Beam Plate Beam Plate 

1 0.071 1.14 1.18 113.1 109.3 3% 

2 0.143 1.26 1.29 72.3 70.7 2% 

3 0.214 1.39 1.45 53.5 51.3 4% 

4 0.286 1.54 1.69 41.9 38.1 9% 

5 0.357 1.72 1.99 33.5 29 13% 

8.8 0.4 1.83 2.2 23.7 19.8 16% 

12.5 0.481 2.07 2.67 17.6 13.7 22% 

Afterward, the fracture behavior of the same flexural I-shaped member and plate models 

were studied for a lower-bound fracture toughness (KIc) of 80 ksi in . Table 23 shows the 

calculated fracture stress values for five different edge crack lengths for both the flexural I-

shaped member and plate models. Figure 56 shows the plot for fracture stress vs crack length 

for both the plate and flexural I-shaped member models for both a lower-bound and a higher 

fracture toughness value.  
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Table 23: Fracture Stress Values for Lower-bound Fracture Toughness Value (80 ksi in ) 

Crack 

Length 

(a), in 

a/W 

Geometry 

Factor (β) 

Fracture Stress 

(σ), ksi % 

Difference 
Beam Plate Beam Plate 

1 0.071 1.14 1.18 39.6 38.3 3% 

2 0.143 1.26 1.29 25.3 24.7 2% 

3 0.214 1.39 1.45 18.7 18 4% 

4 0.286 1.54 1.69 14.7 13.4 9% 

5 0.357 1.72 1.99 11.7 10.1 14% 

8.8 0.4 1.83 2.2 8.3 6.9 17% 

12.5 0.481 2.07 2.67 6.2 4.8 23% 

 

 

Figure 56: Fracture Stress vs Crack Length Relation for Higher (228.5 ksi in ), and Lower-

bound Fracture Toughness (80 ksi in ) 

Fracture stress and the crack length are inversely proportional to each other. As the crack 

length increases, the stress required to cause the member fracture decreases, and vice-versa. 
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The results indicated that the difference in fracture stress outputs between the flexural I-shaped 

member and plate models increased with the increase in the crack length for higher fracture 

toughness, as shown in Table 22 & Table 23.  

This relation between the fracture stress and crack length helps to characterize the crack as 

critical or sub-critical. For example, if we consider the fracture stress vs crack length relation 

curve for a fracture toughness 80 ksi in  (lower-bound curve), for a 4 inch long edge crack the 

stress required to cause the flexural I-shaped member fracture is 14.7 ksi, while for the same 

edge crack length, the stress required to cause the plate fracture is 13.4 ksi. The result from the 

plate model were approximately 9% less than the flexural I-shaped member model, which 

means that the results obtained from the plate models were conservative. Also, the plate models 

result in a shorter calculated fatigue life to get to the critical crack length when compared to 

the flexural I-shaped member models.  

Another application of these results is to study the fatigue life of the rolled steel girder: by 

using the relationship between Stress Cycles and Crack Length (Figure 2). The crack may grow 

slowly with continuous live load cycles and may cause member fracture when it becomes 

critical. Another way to interpret these results is. For example, for a stress of 10 ksi, using the 

lower-bound fracture toughness (80 ksi in ), the results from the plate model indicated that the 

member fracture will occur when the crack reaches approximately 7.5 inch in length. While 

the flexural I-shaped member model results indicate that the member fracture will occur when 

the crack reaches approximately 5.3 inch in length. This difference in the crack length indicates 

that the flexural I-shaped member model will take several more fatigue live load cycles in 

comparison to the plate model before experiencing a fracture. 
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4.6 Stress Redistribution in a Partially Cracked Flexural I-shaped Member 

The following section discusses the stress distribution in a partially cracked flexural I-

shaped member with a full-width crack. A comparison was made between the stress 

distribution of a flexural I-shaped member with a full-width crack and a built-up section with 

a failed cover plate. 

A study conducted by Hebdon et.al. focused on determining the load distribution in a steel 

built-up member composed of angles and cover plates. The researchers concluded that after 

the failure of the first component (cover plate), the stress mostly distributes to the adjacent 

component (cover plate or angles). From the analysis, an amplification factor as a function of 

the number of cover plates was determined (Equation 19). For a built-up section, after the 

failure of a component, the stress increase in the adjacent component can be calculated by 

multiplying the net section stress with the amplification factor. The net-section stress of the 

remaining intact-components can also be calculated using the mechanics-of-materials equation

 My
I  .  

In the present study, the full-width crack in a flexural I-shaped member was assumed to 

represent the 100% failure of a cover plate in a built-up section. So, a comparison was made 

between the current study and the results obtained by Hebdon et.al. The cross-sectional 

dimensions of both the flexural I-shaped member and the built-up section are the same as 

shown in Figure 57. The same boundary conditions and loading (55% Fy) were used for the 

analysis of both the models.  
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Figure 57: (a) Built-up Member (b) Partially Cracked flexural I-shaped member 

For the study, a partially cracked flexural I-shaped member with a full-width crack located 

in the tension flange was considered. The tension flange was 1.5 inch thick and 14 inch wide. 

The depth of the full-width crack was 0.75 inch from the bottom of the flange which was equal 

to the thickness of the cover plate (Figure 57). The a/W ratio was 0.5. In the FE model of the 

flexural I-shaped member, the region around the full-width crack line was finely meshed 

following the same meshing procedure as explained in the previous chapters. The tension 

flange was meshed into 16 elements of different size along the cross-section of the member, as 

shown in Figure 58. The detailed view of the elements above the full-width crack line with 

element number and size is shown in Figure 59.  
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       Figure 58: Structured Mesh along the Cross-section of the Tension Flange  

 

Figure 59: Detailed View of the Elements above the Full-width Crack Line 

Due to a reduction in the net-sectional area, the cross-sectional stress increases, especially 

in the remaining tension flange region (0.75 inch x 14 inch). Hence, a cross-sectional stress 

profile (Figure 60) for the partially cracked flexural I-shaped member was obtained to calculate 

the resultant stress in the remaining portion of the tension flange. It was seen that there was a 

steep increase in the stress near the crack line in the tension flange. Also, it was observed that 

there was significant stress increase in the remaining portion of the tension flange above the 
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crack line. The neutral axis shifted upwards by about 0.6 inch due to the presence of 0.75inch 

full-width crack.  

 

Figure 60: Cross-sectional Stress Profile of the Partially Cracked flexural I-shaped member with 

a Full-width Crack 

The full-width crack was present along the entire width of the flange and hence will affect 

the cross-sectional stress throughout the flange width. Therefore trapezoidal rule was used to 

calculate the stress increase in the remaining tension flange region. The remaining tension 

region (0.75 inch x 14 inch) had eight elements of different size along the cross-section. At 

each node location, a horizontal path was created and the stress values at a hundred equal 

intervals along the flange width were recorded. Figure 61 shows the selected horizontal paths 

(top), and the detailed view of the element number and size (bottom).  
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Figure 61: Paths along the Flange Width (Top), Detailed View of the Elements (Bottom) 

Next, for each path, net-stress was calculated using the trapezoidal rule (Equation 31).  

 1 ( )
( )

2

i j
path j i

f

x x
b

 


 
  

 
  

(31) 

where ‘σpath’ is the equivalent cross-sectional stress along each specified path along the flange 

width, ‘σi’ & ‘σj’ are stresses calculated at integration points for node 1 & 2 respectively, ‘xi’ 

& ‘xj’ is the distance between node 1 & 2 from the origin respectively, ‘bf’ is the tension flange 

width.  
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Table 24 shows the resultant stress calculation along all the eight paths. Next, the resultant 

flange stress was calculated using the cross-sectional stress at each path. Further, the 

trapezoidal rule (Equation 32) was used to find the resulting cross-sectional stress along the 

height in the remaining tension flange region.  

 1 ( )
( )

' 2

i j
cs j i

f

y y
t

 


 
  

 
  

(32) 

where, ‘σcs’ is the resulting cross-sectional stress along the height of the tension flange, and  

‘tf'’ is the tension flange thickness excluding the full-width crack.   

A resulting net-section stress of 65.4 ksi was obtained from the calculations as shown in 

Table 24. The results indicate that there was a stress increase of 138% in the tension flange of 

the flexural I-shaped member due to the presence of the full-width crack.  

Table 24: FE Stress Calculations 

Path 

Number 

Cross-

sectional 

Stress (ksi) 

Element 

size 

Net 

Element 

Stress  

1 895.5 0.0033 2.92 

2 514.6 0.0033 2.35 

3 300.5 0.0033 1.36 

4 95.15 0.10 19.8 

5 56.87 0.13 9.88 

6 38.14 0.13 6.18 

7 18.24 0.13 3.66 

8 5.16 0.25 2.93 

Net-section Stress 65.4ksi 

 

Following the analysis of flexural I-shaped member, a built-up steel member composed of 

a single cover plate and angles in the tension region having the same cross-sectional 

dimensions as that of flexural I-shaped member was considered for analysis using equations 
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proposed by Hebdon (Equation 19). First, the moment capacity of the built-up section 

including all the components was calculated using the bending stress equation, for stress of 

27.5 ksi (55% Fy) in the extreme tension fiber. The calculations are shown in equation 33.  

 431625.4
27.5 32330.8

26.9

net

net

I in
M ksi kip in

y inch
       

(33) 

Next, for the same moment capacity, the stress in the extreme tension fiber of the built-up 

section with a completely failed cover plate was calculated using equation 34. There was a 

stress increase of about 16.2 ksi in the extreme tension region due to the reduced cross-sectional 

area.  

 
4

30.7
32330.8 43.2

22972

cr
cr

cr

y inch
M kip in ksi

I in
        

(34) 

Using equation 19 an amplification factor of 1.25 was calculated for a built-up section with 

one cover plate. The calculations are shown below (Equation 35).  

 1
1 0.2 1 1 0.2 1 1.25

4 4
F

N


   
         

   
 

(35) 

 The calculated stress (σcr) was further multiplied by the amplification factor (βAF) to find 

out the stress increase in the adjacent angle (Equation 36) due to the failed cover plate.  

 1.25 43.2 54angle F cr ksi ksi        (36) 

The obtained FE net-section stress for the flexural I-shaped member with a full-width crack 

was almost 21% higher than the calculated stress for the built-up section with a single cover 

failure. The reason for achieving a higher net-section for the flexural I-shaped member with a 

full-width crack is because of the stress concentration around the crack line. This indicates that 

evaluating the built-up member with a failed cover plate as a flexural I-shaped member with a 

full-width crack in the tension region yielded conservative results.    
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Furthermore, similar calculations were performed on a built-up section having two cover 

plates and an angle in the tension region. The bottommost cover plate was failed (Figure 62) 

and the stress increase in the adjacent cover plate was calculated by multiplying the 

amplification with the net-section stress of the remaining intact components. The amplification 

factor is a function of number of cover plates (Equation 19), and for two cover plates, an 

amplification factor of 1.3 was calculated. Using the amplification factor, stress of 48.35 ksi 

was calculated in the second cover plate due to the failure of a first cover plate.  

The calculated stress was further compared with the FE cross-sectional stress of the flexural 

I-shaped member with a full-width crack. The cross-sectional dimensions of the flexural I-

shaped member were same as that of the build-up section (Figure 62). The tension flange was 

2.25 inch thick and the full-width crack was 0.75 inch from the bottom of the flange, with an 

a/W ratio was 0.33. The full-width crack geometry was equal to the failed cover plate 

geometry.  

 

Figure 62: (a) Built-up Section (b) flexural I-shaped member with Full-width Crack 
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The same procedure as explained above was used to calculate the stress in the remaining 

portion of the tension flange (0.75 inch x 14 inch) above the full-width crack line. Eight 

horizontal paths were created to calculate the average stress along the flange width. Then, the 

trapezoidal rule (Equation 32) was used to calculate the net-section stress in the tension flange 

of the flexural I-shaped member, as shown in Table 25.  

Table 25: FE Stress Calculation 

Path 

Number 

Cross-sectional 

Stress (ksi) 
Element size 

Resulting 

Element Stress  

1 387 0.0033 1.74 

2 228.28 0.0034 1.03 

3 77.42 0.1 15.3 

4 50.94 0.13 8.22 

5 41.65 0.13 5.93 

6 35.92 0.13 4.97 

7 31.85 0.13 4.34 

8 26.1 0.13 3.71 

Total 60.3ksi 

 

For a load of 55% Fy, and due to a 0.75 inch full-width crack, net-section stress of 60.3 ksi 

was calculated. The results indicate that there was a stress increase of about 119% in the 

remaining tension flange region.  Also, a difference of about 25% was observed between the 

FE stress and the calculated stress values. The stress concentration around the full-width crack 

line is the reason for obtaining higher stress in the remaining tension flange region of the 

flexural I-shaped member. It was observed that near the full-width crack line there was a steep 

increase in the cross-sectional stress of the flexural I-shaped member. While in the built-up 

section there is no such local stress concentration due to the failed cover plate.   
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CHAPTER 5: Conclusions and Summary 

5.1 Conclusions  

1. There are no available SIF solutions for the partially cracked flexural I-shaped member 

with edge crack or with a full-width crack profile.  

Edge Crack Profile  

2. It was concluded that varying the tension flange thickness (tf) and the web height (hw) had 

a negligible influence on the geometry factor ‘β’ of the partially cracked flexural I-shaped 

member with an edge crack profile. 

3. The geometry factor ‘β’ of the partially cracked flexural I-shaped member with an edge 

crack profile was found to depend on the tension flange width (bf). The geometry factor ‘β’ 

was found to decrease with an increase in the tension flange width (bf). There was a 

difference of about 15% between the specimens having flange width (bf) 13 inch and 26 

inch.  

4. The edge crack length (a) had the most profound influence on the geometry factor ‘β’ of 

the partially cracked flexural I-shaped member with an edge crack profile. There was a 

50% increase in the ‘β’ values when the edge crack length was varied between 1 inch and 

5 inch.  

5. It was observed that there was a redistribution of stresses in the tension flange and part of 

the web near the crack line in partially cracked flexural I-shaped member with edge crack. 

Additionally, the neutral axis shifted upwards by about an inch between the flexural I-

shaped member models with no edge crack and a 5 inch edge crack.  
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6. For both the partially cracked flexural I-shaped member, and an axially loaded plate with 

an edge crack profile, the geometry factor ‘β’ was determined and was found to be a 

function of the ratio of crack length-to-flange width (a/W). The determined SIF solution (β 

factor) for the flexural I-shaped member was only in good agreement with the plate solution 

(or handbook solution) up to a/W ratio of 0.2 (within 5%), and the solutions deviated at 

larger a/W ratios.  

7. For the partially cracked flexural I-shaped member with an edge crack profile, the 

relationship between the fracture stress and crack length can be further used to analyze the 

flaw criticality (i.e. the number of fatigue cycles before the member fracture can be 

calculated).  

Full-width Crack Profile  

8. The tension flange thickness (tf) and the crack length (a) had the most significant influence 

on the geometry factor ‘β’ of the partially cracked flexural I-shaped member with a full-

width crack profile. There was a difference of about 20% in the geometry factor ‘β’ 

between the specimens having flange thickness (tf) 1.5 inch and 2.25 inch. Also, a 21.5% 

increase in the geometry factor ‘β’ of the flexural I-shaped member was recorded as the 

full-width crack was varied from 0.75 inch to 1.125 inch.  

9. For both the partially cracked flexural I-shaped member, and an axially loaded plate with 

a full-width crack profile, the geometry factor ‘β’ was determined as a function of the ratio 

of crack length-to-flange thickness (a/W). There was a difference of about 19% between 

the obtained flexural I-shaped member and the plate SIF solution for an a/W ratio of 0.3, 

and the solution deviated beyond that. For an a/W ratio of 2.25, the difference in the SIF 

solutions was as high as 106%.  



103 

 

10. The local stress concentration was seen in the majority portion of the tension flange and 

part of the web around the full-width crack line. The region of the plastic zone was larger 

in the case of the edge crack profile in comparison to a full-width crack profile.  

11. The cross-sectional stress profiles under a loading of 55% Fy (27.5 ksi) were studied to 

analyze the effect of stress redistribution. Flexural I-shaped member models with two 

different a/W ratio were analyzed: 0.5 and 0.33. The results show that the higher a/W (0.5) 

was the worst case, and there was a stress increase of about 138% in the tension flange due 

to the presence of a full-width crack.  

12. A built-up section with a failed cover plate was simulated using a simplified partially 

cracked flexural I-shaped member with full-width crack and the stress redistribution was 

studied. The stress increase in the tension flange due to full-width crack was calculated and 

compared to previous research results of built-up sections with a failed cover plate. There 

was a difference of approximately 23% between both the results. The stress in the tension 

flange of the flexural I-shaped member was higher than the stress in the adjacent angle of 

the built-up section due to the localized stress concentration around the full-width crack.  

5.2 Future Work and Recommendation 

Geometry Factor ‘β’ of the flexural I-shaped member with a full-width crack profile 

From the parametric study of the partially cracked flexural I-shaped member with a full-

width crack profile, it was observed that in addition to the tension flange thickness (tf) and full-

width crack length (a), the tension flange width (bf) had some influence on the geometry factor 

(SIF). So, additional FEA models should be performed to include the effect of tension flange 

width (bf) in the SIF solution. A more sophisticated (accurate) solution for geometry factor as 
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a function of all the three parameters- tension flange thickness (tf), full-width crack length (a), 

tension flange width (bf) can then be determined.  

Elastic-Plastic Fracture Mechanics (EPFM) 

This research had focused on LEFM of partially cracked flexural I-shaped members. The 

plastic zone around the crack line/crack tip limits the application of LEFM. Also, the plastic 

deformation around the crack tip is not captured in the LEFM. Hence, EPFM analysis can be 

performed to quantify the stress in the vicinity of the crack line, especially when the nonlinear 

material behavior is dominant in the member. The crack parameter in terms of the J-integral 

can be obtained instead of SIF which is a common practice for linear-elastic models.  

Internal cracks 

In structural steel girders, it is more likely to observe internal cracks. A similar study could 

be conducted to determine a SIF solution for the flexural I-shaped member with different types 

of internal cracks. The Penny shaped cracks are one of the most types of internal cracks seen 

in flexural I-shaped members. Structural members with high tensile stresses are prone to crack 

formation such as the tension flange of the I-shaped member. Therefore, similar research can 

be performed to analyze the penny-shaped cracks, and a parametric study can be conducted to 

determine an analytical equation for the geometry factor ‘β’.  

Failure Assessment Diagram (FAD)  

A Failure Assessment Diagram (FAD) helps to study the nature of crack: acceptable, 

critical or unacceptable. Considering the loading condition, material property, and member 

geometry, a FAD curve can be developed. FAD gives a relation between the brittle fracture 

and plastic collapse. Figure 63 shows the schematic representation of FAD(Sharma, Ghosh et 
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al., 2014), where the x-axis is plastic collapse ratio (Lr), and the y-axis is the brittle fracture 

ratio (Kr). The FAD helps to analyze the nature of crack, and the chances of structural failure 

due to the presence of a crack. In this research study, the SIF solution was determined for 

partially cracked flexural I-shaped cross-sections. Also, the fracture toughness value was 

determined using the CVN notch toughness value. These parameters can be used to develop a 

FAD for partially cracked flexural I-shaped cross-sections, and study the nature of crack for 

the potential chances of structural failure. Next, for a specific crack length, a FAD point can 

be calculated. Then, using the FAD curve and the calculated FAD point, a crack can be 

classified as critical or sub-critical. If the FAD point is within the area of the curve then the 

crack is stable. Further, using that information, the remaining fatigue life of the structure can 

also be calculated.  

 

Figure 63: Typical Failure Assessment Diagram (Sharma, Ghosh et al., 2014) 
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APPENDIX A 

A.1 Model Development  

A.1.1 Symmetry  

Symmetry and anti-symmetry boundary condition help to reduce the model development 

and analysis time, especially when developing an FE model of a complex geometry comprising 

of a lot of components. A more simplified model of a structure having one or more reflective 

symmetry planes can be developed by taking advantage of symmetry boundary condition on 

the symmetrical edges. To apply the symmetry boundary condition, the support conditions 

have to be symmetric about the same plane, while the loading can either be symmetric, or anti-

symmetric. On the symmetry plane, the perpendicular displacement vector, and the parallel 

rotational vector are zero. The opposite criteria will apply to the anti-symmetric plane.   

An example of a tension plate with a hole in the center is explained in this section. The 

plate is symmetric about both the x and y-axis, hence only quarter portion was modeled for 

analysis. Figure 64 shows the quarter portion of the plate which will be used for analysis 

instead of a full-size plate.  

 

Figure 64: Quarter portion of the tension plate 
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Boundary condition ‘XSYMM’ (zero displacement along the x-axis and zero rotations 

along the y-axis and z-axis) has been applied to achieve x-axis symmetry while boundary 

condition ‘YSYMM’ (zero displacement along the y-axis and zero rotations along the x-axis 

and z-axis) has been applied to achieve y-axis symmetry. Figure 65 & Figure 66 below shows 

the symmetry boundary condition about the x-axis and y-axis respectively. Notice that the 

displacement or rotation at the flaw points (Holes or Cracks) are not zero. The quarter center-

hole portion in this example.  

 

Figure 65: X-axis symmetry 

 

Figure 66: Y-axis symmetry 
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Figure 67 below shows the uniform load applied on the symmetric edge (X-axis) of the 

plate. In this example, a pressure of 5ksi is applied on the right edge. The negative sign 

indicates the tension force on the surface.  

 

Figure 67: Tension loading 

We only have the quarter portion of the plate which helps to finely mesh the part especially 

around the flaw or crack line. This will eventually help to increase the accuracy of the history 

outputs such as SIF, J-integral etc., Moreover, the analysis run time will be significantly 

reduced.  

A.1.2 Modeling a Crack  

Finite Element Analysis is one of the best approaches to study the crack growth behavior 

in a member. ABAQUS is a popular and useful software used to model and analyze the 

geometries with cracks. When the crack is very sharp the stress at the tip of the crack is 

theoretically infinite which is called as “Crack tip singularity”. Although, in reality, the cracks 

are not very sharp, they have definite thickness. However, it is difficult to measure the 

thickness and sketch it on the member cross-section. Instead, ABAQUS allows the user to 

simulate the crack using the ‘special tool’ under the ‘interaction module’. The special tool 

allows the user to create, and edit cracks.   
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Cracks can be simulated on a complete geometry as well as on a symmetric plane. If the 

crack is on a symmetric plane seam command is not used to define the crack and no symmetry 

boundary conditions are applied at the crack plane.  The cracks can be of any nature like edge 

crack, center crack or double edge crack. 

Assigning the seam 

When the partition tool is used to represent a crack, the elements on each side of the crack 

planes are connected and share nodes. When we assign the seam, these element nodes will be 

separated. Under the interaction module, using special tool => crack => Assign seam, select 

the edge or face to assign the seam to represent a crack. The black solid line shown in Figure 

68 shows the seam line representing the edge crack.  

 

Figure 68: Seam line representing the edge crack 
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Defining the crack 

After assigning the seam, a crack can be defined to request specific output. This can be 

done using the interaction module => special => crack => create or by double-clicking ‘Cracks’ 

in the model tree, under ‘Assembly’, ‘Engineering Features’. Give a name to the crack and 

select contour integral in the type as shown in Figure 69. The reason for selecting the contour 

integral type is that the requested output will be calculated for a layer of elements around the 

crack line. History output at each node for each contour around the crack line will be 

automatically specified after running the job.   

 

Figure 69: Crack Creation 

The crack front determines the first layer of elements used to calculate the requested output 

value (Huizer, 2017). Crack extension direction can be assigned either by using normal to the 

crack plane option or using q vectors. Figure 70 shows the crack extension direction in red 

arrows defined using normal to crack plane option. If the crack is on the symmetry plane under 

the edit crack window check the box “On symmetry plane (half-crack model)” as shown in 
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Figure 70. If this option is used, no symmetry boundary conditions or seam are applied on the 

crack plane, allowing it to open under the applied load.  

 

Figure 70: Edit crack options 

If we are interested in finding the SIF of a model, defining the crack tip singularity is very 

important. This can be defined using the singularity tab located on the right side of the general 

tab under the edit crack window (Figure 71). Mid-side node parameter of 0.25 will be used and 

the nodes along the crack line will be constrained to move together by choosing “Collapsed 

element side, single node” option under degenerate element control at the crack line.  
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Figure 71: Crack-tip Singularity 

Requesting history output 

Crack-related history output can be created using the ‘history output request’ option. Under 

History Output Requests => domain => crack => choose the required crack name if there is 

more than one crack, as shown in Figure 72. Have at least eight contours for best results. Then, 

select a type of output required like J-integral or SIF. If there is more than one output, create 

separate history output requests for each one.  



116 

 

 

Figure 72: History Output Request 

After submitting the job and completing the analysis, under the results tab, history output 

can be obtained (Figure 73). Figure 74 shows the visualization of the edge cracked plate. The 

stress concentration and plastic deformation (plastic zone) around the crack tip can be 

observed.  

 

8 
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Figure 73: History Output 

 

Figure 74: Visualization of Edge Cracked Plate 



118 

 

APPENDIX B 

B.1 Handbook Solution for Benchmark Study Specimens 

In the following section the calculation for handbook solution of benchmark study 

specimens are showed.  

Axial Specimens 

Specimen A1 – Edge Crack Profile
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Specimen A2 – Double-Edge Crack Profile 

 

 

Specimen A3 – Center Crack Profile 
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Specimen A4 – Edge Crack Profile 
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Specimen A5 –Edge Crack Profile 
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Bending Specimens 

Specimen B2 – Edge Crack Profile 

 

 

 


