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We present an overview of the effects of detailed-balance violating perturbations on the universal static
and dynamic scaling behavior near a critical point. It is demonstrated that the standard critical dynamics
universality classes are generally quite robust: In systems with nonconserved order parameter, detailed
balance is effectively restored at criticality. This also holds for models with conserved order parameter,
and isotropic nonequilibrium perturbations. Genuinely novel features are found only for models with
conserved order parameter and spatially anisotropic noise correlations.
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One of the major goals in theoretical nonequilibrium
physics has been the identification and classification of
universality classes for the long-wavelength, long-time
scaling behavior both near continuous dynamical phase
transitions, and for systems displaying generic scale in-
variance. Indeed, through investigations of certain specific
models, a number of prototypical nonequilibrium univer-
sality classes have been identified. Prominent examples
are driven diffusive systems (DDS) [1], models of driven
interfaces and growing surfaces [2], depinning transitions
[3], and phase transitions from active to absorbing states
[4], e.g., in diffusion-limited chemical reactions.

A complementary approach is to study the influence
of nonequilibrium perturbations on the known universal-
ity classes for equilibrium dynamical critical phenomena
[5]. Equilibrium critical dynamics is concerned with the
relaxational and reversible kinetics near a thermodynamic
critical point at temperature Tc, as generically described
by the Landau-Ginzburg-Wilson (LGW) model for an n-
component order parameter vector field S in d space di-
mensions [6]. In addition to the two independent static
critical exponents, e.g., the correlation length exponent n

defined via j ~ jtj2n (t � T 2 Tc) and Fisher’s expo-
nent h for the algebraic decay of the two-point correla-
tion function at criticality (T � Tc), C�x 2 x0� ~ jx 2

x0j2�d221h�, the order parameter relaxation is governed
by a dynamic exponent z that describes critical slowing
down: The characteristic time scale diverges as tch ~

jtj2zn upon approaching the transition. This allows for
time scale separation and thus a formulation of critical dy-
namics in terms of nonlinear Langevin equations: The
relevant “slow” modes consist of the order parameter and
all conserved quantities to which it is statically or dynam-
ically coupled. All remaining “fast” degrees of freedom
are captured through an effective Gaussian white noise.
Different values for z ensue depending on whether the
order parameter is a conserved quantity or not, and on
the additional conserved quantities present. The diffusive
relaxation of the latter near criticality can either be charac-
terized by the same exponent z as for the order parameter
0031-9007�02�88(4)�045702(4)$20.00
(“strong” dynamic scaling), or be given by different power
laws (“weak” scaling) [5].

In order to ensure relaxation towards thermal equilib-
rium at long times, as given by a Gibbs distribution, one
has to carefully implement detailed-balance conditions. In
the language of nonlinear Langevin equations, these are
(i) the Einstein relation between the relaxation constants
and the noise strengths, and (ii) the condition that the prob-
ability current associated with reversible kinetics be diver-
gence free [7]. Naturally, the following question arises:
What happens if the equilibrium conditions are violated?

In this Letter, we shall explore two generic types of de-
tailed-balance violations, namely (a) coupling the order pa-
rameter and additional conserved quantities to heat baths
with different temperatures, and (b) allowing for spatially
anisotropic noise correlations for conserved variables. To
determine their universal features, we map the Langevin
dynamics for most of the models listed in Ref. [5] to a
dynamic field theory [8], and employ standard renormal-
ization group (RG) methods [6].

In the theory of static critical phenomena, an analogous
issue concerns the effect of terms that break the original
order parameter symmetry, e.g., the influence of cubic
anisotropies on the isotropic n-component Heisenberg
model. There, the rotational symmetry is restored at
criticality, provided n , nc � 4 [9]. Since detailed
balance originates from time-reversal symmetry, we
might anticipate that it could, under certain conditions,
effectively become reinstated in nonequilibrium critical
dynamics, whereupon the asymptotic scaling laws are
those of the corresponding equilibrium model. Yet even
then, the question arises of whether there exist any
nonequilibrium dynamical RG fixed points that could
strongly influence crossover regimes. The other possible
scenario is of course that violating detailed balance con-
stitutes a relevant perturbation, rendering the equilibrium
RG fixed point unstable, and driving the system towards a
genuine nonequilibrium stationary state.

The simplest case represents purely relaxational dynam-
ics, with either nonconserved or conserved, and therefore
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diffusively relaxing, order parameter S [10] (models A and
B according to the classification in Ref. [5], respectively).
With the effective LGW Hamiltonian

H�S� �
Z

ddx

∑
t

2
S�x�2 1

1
2

�=S�x��2 1
u

4!
S�x�4

∏
,

(1)

the corresponding Langevin equations read

≠tS�x, t� � 2l�i=�adH�S��dS�x, t� 1 z �x, t� , (2)

where a � 0�2� for models A (B). The noise has zero
mean, �z �x, t�� � 0, and its correlations are taken to be

�za�x, t�z b�x 0, t0�� � 2l̃�i=�adabd�x 2 x0�d�t 2 t0� .
(3)

The equilibrium Einstein relation requires l̃ � kBTl,
which ensures that the associated probability distribution
for a configuration S approaches Peq�S� ~ exp�2H�S��
kBT� as t ! `. (Henceforth, we put kBT � 1.) Setting
l̃ fi l violates detailed balance; yet this simply repre-
sents a temperature shift here. Indeed, upon rescaling
S ! �l̃�l�1�2S and u ! ũ � �l̃�l�1�2u, detailed bal-
ance is formally restored, albeit with a different nonlinear
static coupling [11]. At criticality, the RG flow will
take the latter to the Heisenberg fixed point, independent
of its initial value, and thus the equilibrium critical
exponents are recovered, namely to lowest nontrivial
orders in the deviation e � 4 2 d from the upper criti-
cal dimension dc � 4: n21 � 2 2 �n 1 2�e��n 1 8�,
h � �n 1 2�e2�2�n 1 8�2 [6], and z � 2 1 ch with
c � 6 ln 4

3 2 1 1 O�e� for model A, whereas z � 4 2 h

(exactly) for model B [10]. We already note that the same
rescaling with g2 ! g̃2 � l̃g2�l maps the isotropic
O�3�-symmetric nonequilibrium model J [11]

≠tS � 2gdH�S��dS 3 S 1 l=2dH�S��dS 1 z ,
(4)

�za�x, t�zb �x0, t0�� � 22l̃=2dabd�x 2 x0�d�t 2 t0�
(5)

onto its equilibrium version, with z � �d 1 2 2 h��
2 [12].

It is indeed a well-established fact that model A or
Glauber dynamics for the kinetic Ising model (n � 1�
is quite robust against nonequilibrium perturbations
[13,14], even when these break the up/down symmetry
[15]. Novel features arise only when Kawasaki dynamics
is introduced, whereupon the order parameter becomes
conserved (model B), and in addition the noise strength is
rendered anisotropic: l̃=2 ! l̃k=

2
k 1 l̃�=

2
� in Eq. (3),

corresponding to coupling the longitudinal and transverse
sectors (of dimensions dk��) to heat baths with different
temperatures Tk��. For this two-temperature or randomly
driven model B, and for Tk . T�, only the transverse sec-
tor softens at Tc. As a consequence, the system develops
marked anisotropies akin to driven lattice gases (or equi-
librium uniaxial dipolar magnets, Lifshitz points, and fer-
roelastic materials), described by the generalized scaling
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law C�qk, q�, v, t� � q
222z1h
�

eC6�q�j, qk�q11D
� , v�

qz
�� [1]. As D fi 0, equilibrium isotropic scaling is

violated. However, upon omitting irrelevant terms, the
Langevin equation at criticality may be written in the form

≠tS�x, t� � l�=2
�dHeff�S��dS�x,t� 1 z �x, t� , (6)

with an effective Hamiltonian that contains long-range in-
teractions [16] [here,

R
q · · · �

R
ddq��2p�d · · ·]

Heff �
Z

q

cq2
k 1 q2

��t� 1 q2
��

2q2
�

jS�q�j2

1
Z

ddx
ũ�

4!
S2. (7)

These strongly affect the nature of the ordered phase, and
reduce the upper (to dc � 4 2 dk) as well as lower criti-
cal dimension [16,17]. To one-loop order (only), the e

expansion for the static critical exponents formally yields
the same results as for the equilibrium Heisenberg model,
albeit with e � 4 2 d 2 dk. The two-loop results for
dk � 1 can be found in Ref. [18]. Moreover, the exact
scaling relations D � 1 2 h�2 and z � 4 2 h hold.

We have extended these considerations to models C and
D [19], which take the static coupling

DH�S, r� �
Z

ddx

∑
1
2

r�x�2 1
g
2

r�x�S�x�2
∏

(8)

of the nonconserved/conserved order parameter to the con-
served energy density r into account [20]. The dynamics
is then defined through Eq. (2) with H�S, r� � H�S� 1

DH�S,r�, setting a � 0�2� for model C (D), and

≠tr�x, t� � D=2dH�S,r��dr�x, t� 1 h�x, t� , (9)

�h�x, t�h�x0, t0�� � 22 eD=2d�x 2 x0�d�t 2 t0� . (10)

In addition to ũ, there appears now a three-point coupling
f � l̃g2�l, also marginal in dc � 4, as well as the di-
mensionless ratio of time scales w � l�D, and the pa-
rameter Q � eDl�Dl̃, which can be interpreted as the
temperature ratio Tr�TS of the heat baths coupled to the
energy density and order parameter, respectively. For
model C, we find the associated RG one-loop beta func-
tion bQ � 22Q�1 2 Q�fw��1 1 w�2. This result al-
ready establishes the stability of the equilibrium fixed point
Q�

eq � 1. In fact, we have not found any other, genuinely
nonequilibrium RG fixed points corresponding to Q � 0
or Q � ` at all. This remains true even when we allow
for spatially anisotropic noise for the conserved field r,
as the RG beta function for the additional new variable
s � Qk�Q� becomes to one-loop order: bs � 2s�1 2

s�fQ��3�1 1 w�3, with the isotropic fixed point s
�
is �

1 being stable. Thus, there are merely the three (one-loop)
equilibrium scaling regimes [20]: (a) Strong-scaling, n �
1: w� � 1, zS � zr � 2 1 a�n; (b) weak-scaling, 2 #

n , 4: w� � `, zS � 2�1 1 a�nn� , zr � 2 1 a�n;
(c) “model A,” n $ 4: w� � `, zS � 2 1 ch, zr � 2;
here a � 2 2 dn denotes the specific-heat critical expo-
nent. In contrast to the above results, a linear coupling of
a conserved mode to the order parameter induces effective
045702-2



VOLUME 88, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 28 JANUARY 2002
long-range interactions, leading to novel genuine nonequi-
librium behavior [21].

For model D, the characteristic time scale for the or-
der parameter is always much larger than that of the dif-
fusive field, and therefore w� � 0. By integrating out
the scalar fields r from the dynamic functional, one can
then readily show that the nonequilibrium parameter Q

disappears entirely from the theory in the limit w ! 0
[19], which completely reduces the model to the equilib-
rium theory, with zS � 4 2 h, whereas zr � 2 1 a�n

for a . 0 and zr � 2 for a , 0 (“model B”). Upon al-
lowing for spatially anisotropic order parameter noise cor-
relations, we arrive at a two-temperature model D. As for
the corresponding pure order parameter relaxation dynam-
ics, the nonequilibrium perturbations then induce strong
anisotropies, whereupon the effective Hamiltonian (7) en-
ters the model-D equations of motion, with only transverse
Laplacians, and the associated downwards shift of dc. The
model-D scaling relations for the anisotropy and dynamic
exponents still apply, as well as the two different regimes
for a . 0 and a , 0, albeit with the static exponents n,
h, a of the long-range anisotropic theory [19].

Purely relaxational dynamics provides, however, an in-
sufficient description for many real systems. Often, fully
reversible, nondissipative terms originating in the micro-
scopic dynamics need to be taken into account; in isotropic
ferromagnets (model J), for example, there is also the spin
precession in the local magnetic field, see Eq. (4). Such re-
versible contributions in the Langevin equations for criti-
cal dynamics may also involve mode couplings to other
conserved and therefore slow variables: In planar ferro-
magnets, the (nonconserved) order parameter is confined
to the xy plane, say, but the nonvanishing commutators
of the spin components yield a coupling to the diffusive
fluctuations of the conserved z component of the magneti-
zation (�Sz� � 0). In isotropic antiferromagnets, the order
parameter is represented by the three-component staggered
magnetization (not conserved), dynamically coupled to the
conserved magnetization. The corresponding Langevin
equations define models E and G, respectively [22]; their
generalization to n order parameter components is termed
the Sasvári-Schwabl-Szépfalusy (SSS) model, originally
introduced in the context of structural phase transitions
[23,24]. Last, a consistent description of the critical dy-
namics near the liquid-gas transition, or equivalently, of
the phase separation in binary liquids, involves not only the
conserved scalar order parameter density S (a linear com-
bination of the mass and energy densities), but in addition
the independent and also conserved transverse correspond-
ing current density j� (model H) [24,25]. In the following,
we describe the effects of nonequilibrium perturbations on
these dynamic universality classes with reversible mode
couplings [11,26].

The results of our investigations of isotropic and
anisotropic nonequilibrium versions of the SSS model
were already reported in Ref. [11]; for completeness
we review our essential findings here. As in model C,
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we may choose different effective temperatures for the
n-component order parameter S and the n�n 2 1��2
noncritical, conserved generators M of the rotation group
O�n�. The coupled Langevin equations of motion read

≠tS
a � g

X
bfia

MabSb 2 ldH�S��dSa 1 z a , (11)

�za �x, t�z b�x0, t0�� � 2l̃dabd�x 2 x0�d�t 2 t0� , (12)

≠tM
ab � 2g�Sa=2Sb 2 Sb=2Sa� 1 D=2Mab

1 hab, (13)

�hab�x, t�hgd�x0, t0�� � 22 eD=2d�x 2 x0�d�t 2 t0�
3 �dabdgd 2 daddbg� .

(14)

As opposed to the purely relaxational models, there ex-
ist genuine nonequilibrium fixed points here, correspond-
ing to temperature ratios Q � TM�TS � 0 and `. In the
former case, there is no feedback to the order parameter,
and the critical dynamics is essentially model-A like (zS �
zM � 2), with anomalous noise correlations ~ qd22 for
the generators M. For Q

�
N � `, the order parameter dy-

namics does not affect the conserved fields, thus zM � 2,
but is itself strongly influenced by their fluctuations (w �
l�D � `). We find zS � d�2, as in equilibrium, but a
modified static exponent n21 � 2 2 2�n 1 2�e��n 1 8�
[11]. However, both these fixed points are unstable, and
the asymptotic critical properties are governed by the equi-
librium strong-scaling fixed point with zS � zM � d�2
[23,24]. Allowing for spatially anisotropic noise for the
generators M provides the new parameter s � Qk�Q�,
but does not change the overall picture: The isotropic fixed
point s

�
is remains stable, whence the equilibrium criti-

cal behavior is eventually recovered [11]. The anisotropic
fixed points are essentially determined by a combination
of the Q � 0 and Q � ` characteristics in the different
spatial sectors.

The intriguing question now arises how nonequilibrium
perturbations affect the critical dynamics of a conserved
order parameter field, when reversible mode couplings are
present. We have therefore investigated the nonequilibrium
model H, as defined by [26]

≠tS � 2g�=S� ? j 1 l=2
µ
t 2 =2 1

u
6

S2
∂
S 1 z ,

(15)

�z �x, t�z �x0 , t0�� � 22l̃=2d�x 2 x0�d�t 2 t0� , (16)

≠tj� � T�g�=S��t 2 =2�S 1 D=2j 1 h� , (17)

�h�x, t� ? h�x0, t0�� � 22d eD=2d�x 2 x0�d�t 2 t0� ,
(18)

where T� �q� � dij 2 qiqj�q2 denotes the transverse
projector in momentum space, and we have omitted
irrelevant (in the RG sense) terms. As in model D,
asymptotically w � l�D ! 0; as a consequence, only
one additional nonequilibrium fixed point Q

�
N � 0 is
045702-3
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allowed. In analogy with the corresponding SSS model
fixed point, the order parameter dynamics is model-B
like, zS � 4, while zj � 2, with anomalous noise cor-
relations again ~ qd22 in Fourier space [26]. Yet from
bQ � 2�1 2 Q� 2

3 f̃�1 1 1�16Q�, where f̃ � l̃g2�l2D,
we infer that once more the equilibrium weak-
scaling fixed point Q

�
E � 1 is stable, with zS � 4 2 18e�

19 and zj � 2 2 e�19 (Galilean invariance fixes zS 1

zj � d 1 2) [24,25]. However, the generalization to
spatially anisotropic noise, l̃=2 ! l̃k=

2
k 1 l̃�=

2
� andeD=2 ! eDk=

2
k 1 eD�=

2
� has a drastic effect. As in the

corresponding models B and D, in this two-temperature
model H, the characteristic anisotropic DDS singularities
emerge. In combination with the mode-coupling terms,
this prevents the system from approaching an effective
equilibrium model: The divergence-free condition for the
reversible probability current cannot be satisfied. In fact,
to one-loop order at least we even find a runaway flow
for the RG couplings, and are thus unable to determine
the long-time scaling behavior [26]. Remarkably, the
similarly constructed anisotropic, two-temperature model
J is plagued by the same pathology [11], as is a recently
studied uniformly rather than randomly driven model J
[27]. In that instance, computer simulations revealed
that the system displays spatiotemporal chaos at long
times; perhaps the absence of an RG fixed point in the
two-temperature models J and H may indicate chaotic
behavior as well.

We have investigated the effect of detailed-balance
violations on critical dynamics. Generally, models with
nonconserved order parameter are quite robust against
nonequilibrium perturbations. The relaxational models A
and C only have an equilibrium fixed point. For the SSS
model, comprising models E and G, genuine nonequilib-
rium fixed points do exist, corresponding to unidirectional
couplings between order parameter and conserved fields,
but are unstable. Thus, at criticality, the standard critical
behavior is eventually recovered. This remains true
even when the conserved noise is rendered spatially
anisotropic. Essentially the same statements apply for
models B, D, J, and H with conserved order parame-
ter, provided detailed-balance violations are introduced
isotropically. With spatially anisotropic order parameter
noise correlations, however, we find (to one-loop order)
no RG fixed points for models J and H with reversible
mode-coupling terms. In contrast, the two-temperature
relaxational models B and D are asymptotically described
by an effective equilibrium model, with characteristic
anisotropic, long-range correlations.
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