
DR_BEV : Developer Recommendation Based on Executed
Vocabulary

Alon Bendelac

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science and Applications

Francisco Servant, Chair

Na Meng

Osman Balci

May 12, 2020

Blacksburg, Virginia

Keywords: Bug Assignment, Bug Triage, Security Vulnerability, Information Extraction

Copyright 2020, Alon Bendelac

DR_BEV : Developer Recommendation Based on Executed
Vocabulary

Alon Bendelac

(ABSTRACT)

Bug-fixing makes up a large portion of software development expenses. Once a bug is discov-

ered, it must be assigned to an appropriate developer who has the necessary expertise to fix

the bug. While this bug-assignment task has traditionally been done manually, automatic

bug assignment techniques have been developed to facilitate this task. Most of the existing

techniques are report-based. That is, they work on bugs that are textually described in bug

reports. However, only a subset of bugs that are observed as a faulty program execution are

also described textually. Certain bugs, such as security vulnerability bugs, are only repre-

sented with a faulty program execution, and are not described textually. Promptly fixing

these software security vulnerability bugs is necessary in order to manage security threats.

Accordingly, execution-based bug assignment techniques, which model a bug with a faulty

program execution, are an important tool in fixing software security bugs. In this thesis, we

compare WhoseFault, an existing execution-based bug assignment technique, to report-based

techniques. Additionally, we propose DR_BEV (Developer Recommendation Based on

Executed Vocabulary), a novel execution-based technique that models developer expertise

based on the vocabulary of each developer’s source code contributions, and we demonstrate

that this technique out-performs the current state-of-the-art execution-based technique. Our

observations indicate that report-based techniques perform better than execution-based tech-

niques, but not by a wide margin. Therefore, while a report-based technique should be used

if a report exists for a bug, our results should provide confidence in the scenarios in which

only execution-based techniques are applicable.

DR_BEV : Developer Recommendation Based on Executed
Vocabulary

Alon Bendelac

(GENERAL AUDIENCE ABSTRACT)

Bug-fixing, or fixing known errors in computer software, makes up a large portion of soft-

ware development expenses. Once a bug is discovered, it must be assigned to an appropriate

developer who has the necessary expertise to fix the bug. This bug-assignment task has tradi-

tionally been done manually. However, this manual task is time-consuming, error-prone, and

tedious. Therefore, automatic bug assignment techniques have been developed to facilitate

this task. Most of the existing techniques are report-based. That is, they work on bugs that

are textually described in bug reports. However, only a subset of bugs that are observed as

a faulty program execution are also described textually. Certain bugs, such as security vul-

nerability bugs, are only represented with a faulty program execution, and are not described

textually. In other words, these bugs are represented by a code coverage, which indicates

which lines of source code have been executed in the faulty program execution. Promptly

fixing these software security vulnerability bugs is necessary in order to manage security

threats. Accordingly, execution-based bug assignment techniques, which model a bug with

a faulty program execution, are an important tool in fixing software security bugs. In this

thesis, we compare WhoseFault, an existing execution-based bug assignment technique, to

report-based techniques. Additionally, we propose DR_BEV (Developer Recommendation

Based on Executed Vocabulary), a novel execution-based technique that models developer

expertise based on the vocabulary of each developer’s source code contributions, and we

demonstrate that this technique out-performs the current state-of-the-art execution-based

technique.

Dedication

To my loving parents, Uri and Maly Bendelac.

iv

Acknowledgments

I’d like to thank my research advisor, Dr. Francisco Servant, for his guidance. I would also

like to thank Dr. Na Meng and Dr. Osman Balci for serving on my committee. I’d like to

thank Dr. Patel and Dr. Grey for their immeasurable help. Last, but certainly not least, I’d

like to thank my family. I’d like to thank my brother Noam for keeping me company during

my last year in college, my sister Shiri for paving the way through the education system, my

mother Maly for her endless emotional support, and my father Uri for pushing me beyond

my limits.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Review of Literature 6

2.1 Software Artifacts . 6

2.2 Vulnerability Detection Techniques . 7

2.3 Bug Assignment Techniques . 9

2.3.1 WhoseFault, an Execution-Based Technique 9

2.3.2 Report-Based Techniques: Machine Learning Models 10

2.3.3 Report-Based Techniques: Information Retrieval Models 15

3 Empirical Study of Bug-Fix Commits 22

3.1 Research Method . 23

3.2 Results . 23

3.2.1 Discussion . 24

4 Benchmarking Existing Techniques 26

vi

4.1 Research Method . 27

4.1.1 Studied Techniques . 27

4.1.2 Studied Bugs . 30

4.1.3 Definition of Ground Truth . 32

4.1.4 Effectiveness Evaluation Metric . 34

4.1.5 Efficiency Evaluation Metric . 37

4.1.6 Experiment Setup . 37

4.2 Results . 37

4.2.1 Effectiveness . 37

4.2.2 Efficiency . 44

4.2.3 Discussion . 46

5 DR_BEV : Developer Recommendation Based on Executed Vocabulary 48

5.1 Approach . 49

5.1.1 Expertise Modeling . 50

5.1.2 Bug Modeling . 52

5.1.3 Developer Ranking . 52

5.2 Experimental Implementation . 52

5.3 Research Method . 53

5.4 Results . 53

vii

5.4.1 Effectiveness . 53

5.4.2 Efficiency . 54

5.4.3 Sensitivity Analyses . 59

5.4.4 Discussion . 61

6 Conclusions 67

6.1 Threats to Validity . 68

6.1.1 Threats to Internal Validity . 68

6.1.2 Threats to External Validity . 69

6.1.3 Threats to Construct Validity . 69

6.2 Future Work . 69

Bibliography 71

viii

List of Figures

2.1 Hierarchical Classification of Bug Assignment Techniques 9

4.1 Example of Mapping Developer Identifiers in Software Artifacts 34

4.2 Benchmarked Mean NDCG Scores in Bar Charts 41

4.3 Benchmarked NDCG Scores in Box Plots . 42

4.4 Benchmarked Execution Times . 45

5.1 DR_BEV Diagram . 50

5.2 Effectiveness of DR_BEV and Other Techniques in Bar Charts 57

5.3 Effectiveness of DR_BEV and Other Techniques in Box Plots 58

5.4 Sensitivity Analysis #1: Use of Time-Based Expertise Penalties 62

5.5 Sensitivity Analysis #2: Percentage of Code Coverage Used 63

5.6 Sensitivity Analysis #3: Percentage of Project History Used 64

5.7 Sensitivity Analysis #4: Text Vectorization Methods 65

ix

List of Tables

2.1 Bug Report Field Descriptions . 7

2.2 Commit Field Descriptions . 7

3.1 Frequency of Bug Reports and Faulty Executions in Bug-Fix Commits . . . 25

4.1 Summary of Benchmarked Bug Assignment Techniques 28

4.2 Dataset of Studied Bugs . 31

4.3 Comparison of Precision, Recall, and NDCG 36

4.4 Benchmarked Mean NDCG Scores (statistically significant differences from

WhoseFault are highlighted) . 40

4.5 Wilcoxon Significance Test Between WhoseFault and Report-Based Techniques 43

4.6 Average Execution Time (s) Per Bug for Benchmarked Techniques 44

5.1 Mean NDCG Scores for DR_BEV and Existing Techniques (statistically sig-

nificant differences from DR_BEV are highlighted) 55

5.2 Wilcoxon Significance Test Between DR_BEV and Existing Techniques . . . 56

5.3 Mean Execution Time (s) Per Bug for DR_BEV and Existing Techniques . 59

x

Chapter 1

Introduction

Bug-fixing makes up a large portion of software development expenses. A study [1] has

found that in 2017, the cost of software bugs was over 1.7 trillion dollars. Another study [2]

has found that 90% of software cost is maintenance-related. This problem also exists in

software security. In a study [3], 90% of businesses surveyed admitted having a security

incident, and the average cost of a security breach was over half-a-million dollars. Therefore,

tools to facilitate the bug-fixing process in software development can help lower software

maintenance costs.

Once a software bug is identified, it must be assigned to an appropriate developer who has the

necessary expertise to fix the bug. The process of making this bug-to-developer assignment

is known as bug triage [4]. Traditionally, bug triage has been done manually by a developer

referred to as the triager [4]. This manual work, however, has the following three problems:

1. Manual bug triage is time-consuming. The Mozilla bug repository received an

average of nearly 300 daily bug reports [4]. If the triager spent, on average, five minutes

per bug, that adds up to 25 hours per day.

2. Manual bug triage is error-prone. Often, an erroneous bug-to-developer assign-

ment, in which the assigned developer does not have the necessary expertise to fix the

bug, is made. In such a case, the assigned developer reassigns the bug to a more suit-

able developer. This is known as bug reassignment or bug tossing [5]. In the Mozilla

1

2 Chapter 1. Introduction

and Eclipse projects, between 37% and 44% of bug reports are tossed at least once [6].

3. Manual bug triage is tedious. It requires keeping track of developers and their

expertise, especially as the project grows and more components and developers are

added. In the Eclipse project, for example, over 1,200 developers were assigned to

multiple bug reports [6].

While bug triage has traditionally been done manually, automatic bug assignment techniques

have been developed to facilitate this task. Given a bug, the objective of a bug assignment

technique is to rank developers by descending expertise towards the bug. That is, the highest

ranked developer is the one predicted to be most suitable to fix the bug.

Most of the existing bug assignment techniques are report-based. That is, they are designed

for bugs that are textually described in a bug report, which, in turn, is managed in a

bug repository. These techniques operate by mining the project’s bug repository or code

repository, and applying natural language processing techniques to compare the text in a

new bug report to the text in those software artifacts. Because these techniques require

a textual bug description, they work for bugs that a human user of the software system

can observe and describe. Therefore, these techniques are often tested on bugs in user

applications such as Eclipse and Mozilla products [7].

Only a subset of bugs that are observed as faulty code executions, however, are also described

in a textual bug report. Certain bugs, such as security vulnerability bugs, are discovered

with a faulty code execution, but are not textually described in a bug report [8]. Such

security vulnerability bugs are not observed by the user, but rather, are identified via vul-

nerability detection techniques during security testing [9]. Such vulnerabilities include SQL

injections [10, 11], buffer overflows [12], format-string attacks [13], and network attacks [14].

Promptly fixing these software security vulnerability bugs is necessary in order to manage

3

security threats. Accordingly, execution-based, as opposed to report-based, bug assign-

ment techniques are an important tool in fixing software security bugs. To the best of our

knowledge, the only existing execution-based technique is WhoseFault by Servant et al. [15].

Therefore, we consider WhoseFault to be the current state-of-the-art execution-based bug

assignment technique.

This thesis has three goals.

The first goal of this thesis is to empirically determine whether there exist situations in

which a failed execution alone, and not a bug report, is available for a bug. To the best of

our knowledge, this is the first study to do so. The purpose of this goal is to motivate the

necessity for effective execution-based bug assignment techniques. To achieve this goal, we

conduct an empirical study of bug-fix commits in eight open-source software projects, and

we investigate the prevalence of references to bug reports and failed code executions in those

commits.

The second goal of this thesis is to empirically compare the performance of WhoseFault, an

execution-based technique, to report-based techniques in order to determine if the execution-

based technique provides results as accurate as the report-based techniques. While previous

studies have compared report-based techniques, to the best of our knowledge, no study has

compared execution-based and report-based techniques. To achieve this first goal, we have

benchmarked several state-of-the-art bug assignment techniques on a dataset of bugs. We

have constructed a dataset of 340 bugs from eight open-source software projects. We selected

seven bug assignment techniques, and have benchmarked them in terms of effectiveness

and efficiency. Our observations indicate that report-based techniques perform better than

execution-based techniques, but not by a wide margin. Therefore, while a report-based

technique should be used if a report exists for a bug, our results should provide confidence

in the scenarios in which only execution-based techniques are applicable.

4 Chapter 1. Introduction

The third goal of this thesis is to provide a novel execution-based technique that is more

accurate than the state-of-the-art execution-based technique. To the best of our knowledge,

the only existing execution-based technique is WhoseFault [15], and therefore, we consider

it to be the current state-of-the-art execution-based technique. To achieve this second goal,

we propose DR_BEV (Developer Recommendation Based on Executed Vocabulary), a

novel execution-based technique that is based on the vocabulary that developers use in their

source code contributions. We benchmark this technique on the same bug dataset used for

the first goal. Our results suggest that DR_BEV is both more effective and more efficient

than WhoseFault, the current state-of-the-art execution-based technique.

In this thesis, we make the following research contributions:

1. We review existing bug assignment techniques. While other studies [5, 16, 17] have

also reviewed existing techniques, those studies do not include all newer techniques.

To the best of our knowledge, our literature review includes all existing techniques.

2. We conduct an empirical study of bug-fix commits in open-source software projects.

Our objective is to determine whether there exist situations in which a failed execution

alone, and not a bug report, is available for a bug.

3. We benchmark existing state-of-the-art bug assignment techniques on a dataset of bugs

from eight open-source software projects. Our objective is to compare the performance

of report-based and execution-based techniques in terms of effectiveness and efficiency.

4. We present DR_BEV, a novel execution-based bug assignment technique that does

not require a textual bug report. This technique models developer expertise based on

the vocabulary of each developer’s source code contributions.

5. We evaluate DR_BEV on a dataset of bugs, and we compare its performance to that

5

of WhoseFault, the current state-of-the-art execution-based technique.

Chapter 2

Review of Literature

In this chapter, we provide some background related to automatic bug assignment. First,

we describe two software artifacts, namely bug repositories and code repositories, that are

commonly leveraged by bug assignment techniques. Second, in order to more concretely

motivate execution-based bug assignment, we describe security vulnerability detection tech-

niques that model bugs as faulty code executions. Finally, we summarize existing bug

assignment techniques.

2.1 Software Artifacts

To understand the general methodologies behind existing bug assignment techniques, we

describe two software artifacts, namely bug repositories and code repositories, that are com-

monly leveraged by existing bug assignment techniques.

A bug repository is managed by a Bug Tracking System (BTS), and is used to track bug

reports. There are a number of BTSs, including Bugzilla [18], JIRA [19], and the GitHub

issue tacking system [20]. Each bug report in a BTS has a number of fields. While these

fields vary by BTS, Table 2.1 summarizes the most common fields.

A code repository is managed by a Version Control System (VCS), and is used to track

revisions of the project’s source code. There are a number of VCSs, including Git [21],

6

2.2. Vulnerability Detection Techniques 7

Table 2.1: Bug Report Field Descriptions

Field Type Description
Summary Text One-line summary of bug description
Description Text Free-text description of bug
Reported by ID ID of developer who reported the bug
Fixed by ID ID of developer who fixed the bug
Creation date Timestamp Date and time of when report was created
Fix date Timestamp Date and time of when report was marked as fixed
Status Categorical Whether the report is open or closed
Resolution Categorical Whether the report is fixed, a duplicate, won’t be fixed, etc.
Product Categorical The product that is affected by the bug
Component Categorical The component within the product affected by the bug

Table 2.2: Commit Field Descriptions

Field Type Description
Author ID ID of developer who made the commit
Date Timestamp Date and time of when the commit was made
Commit Message Text Short description of code changes

Apache Subversion (SVN) [22], and Concurrent Versions System (CVS) [23]. Revisions of

code in a VCS are commonly called commits. Table 2.2 summarizes the most important

fields in commits.

2.2 Vulnerability Detection Techniques

There are many situations in which existing report-based bug assignment techniques are not

helpful. One important example of such situations is when automated techniques detect

security vulnerabilities that have to later be fixed by an expert software engineer. These

techniques provide an execution of the vulnerability, but not a natural language report. In

order to more concretely motivate execution-based bug assignment, we summarize a number

of security vulnerability detection techniques that produce a faulty code execution trace.

8 Chapter 2. Review of Literature

Zhang et al. [24] proposed SecTAC, a vulnerability detection technique that is based on

trace analysis and symbolic execution. In this technique, existing test methods are used to

generate execution traces, which are sequences of source code statements exercised by a test

case. Each execution trace is symbolically executed to determine if an assignment of values

to variables violates a security constraint. An execution trace is flagged as having a security

vulnerability if indeed an assignment of values to variables violates a security constraint.

They tested their technique on C functions that are known to have security vulnerabilities

such as buffer overflow and formatting string.

Li et al. [8] improved on SecTAC by using backward trace analysis. SecTAC cannot handle

vulnerabilities that are not covered in the execution paths produced by the given test cases.

Li et al.’s technique starts by finding hot spots, or security-sensitive functions, in the source

code. Then, a data flow tree is constructed, and the possible execution traces that lead

to the hot spots are identified. Lastly, symbolic execution is applied to these identified

execution traces. If an execution trace leads to an assignment of values to program variables

that violated a security constraint, then the hot spot corresponding to the execution trace

is flagged as vulnerable.

Halfond et al. [25] developed a technique to detect SQL injection attacks. In such attacks, a

malicious input string to an SQL query results in an illegal query to a database. First, static

program analysis is used to build a model of legitimate queries. Then, runtime monitoring

is applied to check a dynamically-generated query against the statically-built model. If an

illegal query is detected, then the execution is reported as violating a security constraint.

Xu et al. [26] developed a probabilistic-based program anomaly detection technique. The

technique computes the likelihood of an executed sequence of program calls to occur. A

classifier, based on a probabilistic control-flow model, is trained to detect malicious code

executions.

2.3. Bug Assignment Techniques 9

2.3 Bug Assignment Techniques

Next, we summarize existing bug assignment techniques. In order to summarize these ex-

isting techniques in an organized manner, we classify them into a hierarchy of families of

similar techniques, as shown in Figure 2.1. This hierarchy consists of three levels. The first

level distinguishes between execution-based and report-based techniques. The second level

separates report-based techniques into machine learning and information retrieval families.

Finally, at the third level, the report-based techniques are further grouped into families of

similar approaches.

Bug Assignment Techniques
Code Execution-Based Bug Modeling
Bug Report-Based Bug Modeling

Machine Learning
General-Purpose Models
Feature Selection
Tossing Sequence Modeling
Social Networks

Information Retrieval
Topic Modeling
Other

Figure 2.1: Hierarchical Classification of Bug Assignment Techniques

2.3.1 WhoseFault, an Execution-Based Technique

Servant et al. [15] developed WhoseFault, a bug assignment technique that is based on the

execution of test cases. To model a bug, they use the Tarantula [27] fault localization

technique, which computes, for each line of source code, a suspiciousness score based on the

10 Chapter 2. Review of Literature

line-level code coverage of passing and failing test cases. The higher a line’s suspiciousness

score, the higher the likelihood that this line contains a bug. A developer’s expertise score

is measured based on how suspicious the lines that they modified are, and how recent those

modifications were. The idea is that developers who have recently modified highly suspicious

lines of source code are likely to have the necessary expertise to fix the bug. To the best of

our knowledge, this is the only existing execution-based bug assignment technique.

2.3.2 Report-Based Techniques: Machine Learning Models

In machine learning (ML) techniques, bug assignment is modeled as a supervised classifi-

cation problem, in which developers are treated as classes and bug reports are treated as

instances. The developer who fixed the bug is considered to be the ground truth class.

Generally, these techniques follow three main phases: text processing, training, and infer-

ence. First, in the text processing phase, natural language processing techniques are used

to preprocess and vectorize the textual descriptions in bug reports. Next, in the training

phase, a supervised ML model is trained using the labeled instances (i.e. the fixed bug re-

ports). Lastly, in the inference phase, the trained model is used to predict the most suitable

developer for a new, unfixed bug report.

General-Purpose Models

This family of techniques apply general-purpose supervised ML classification models to bug

assignment.

Cubranic et al. [28] pioneered the bug assignment problem by modeling it as a text classi-

fication problem. Their approach compares the text of a given bug report to the texts of

previous bug reports. The idea of their approach is that the developer who fixed previous

2.3. Bug Assignment Techniques 11

bug reports whose texts are similar to a given bug report’s text should be recommended to fix

the bug. They modeled textual bug descriptions as Bag-of-Word vectors. They used Naive

Bayes, a supervised ML model, to perform the text classification. The input to the model

is the vectorized bug description, and the output of the model indicates which developer is

predicted to be the most suitable to fix the bug.

Anvik et al. [4] extended the work of [28] in a number of ways. They used TF-IDF vec-

torization to model the textual bug descriptions. Their approach outputs a ranked list of

recommended developers, as opposed to just one developer. They tested a number of super-

vised learning algorithms, and reported that the Support Vector Machine (SVM) algorithm

performed the best. Lastly, they also cleaned their dataset of bug reports by filtering out

reports that were fixed by inactive or low-activity developers.

Lin et al. [29] applied ML-based bug assignment on Chinese bug data. They developed two

approaches that compared the use of textual and non-textual fields in bug reports. In the

first approach, they applied ML-based bug assignment on the textual fields of bug reports

with an SVM model. In the second approach, they explored the use of non-textual fields

of bug reports with a decision tree model. In their experiment, the non-textual approach

outperformed both the text-based approach as well as manual bug triage.

Recently, more advanced ML models have also been applied to the bug assignment domain.

Jonsson et al. [30] used stacked generalization. In stacked generalization, several independent

ML classifiers are trained, and an additional ML classifier uses those independent classifiers

to make a final prediction. Lee et al. [31] deployed a Convolutional Neural Network (CNN),

and vectorized textual bug descriptions with Word2Vec [32] word embeddings. Lastly, Mani

et al. [33] deployed a Recurrent Neural Network (RNN). RNNs are designed for feature

vectors that represent a temporal sequence, such as the sequence of words in a sentence or

a document.

12 Chapter 2. Review of Literature

Feature Selection

This family of techniques apply feature selection methods on ML-based bug assignment tech-

niques. The purpose of these feature selection methods is to reduce both the dimensionality

and the sparseness of data in order to improve the accuracy of bug assignment.

Ahsan et al. [34] investigated the use of feature selection methods, namely term frequency

and latent semantic indexing (LSI), to reduce the dimensionality of the feature space in an

ML model. With the term frequency method, terms with a frequency below some threshold

are ignored. The objective of LSI is to deal with the issues of synonymy and polysemy.

Synonymy refers to different words with a similar meaning, and polysemy refers to words

with multiple meanings that are inferred from the context. They tested seven ML models,

and obtained the best results when using LSI with SVM.

Zou et al. [35] applied feature selection and instance selection techniques in order to deal

with large-scale and low-quality bug datasets. They used the χ2-test for feature selection

and Iterative Case Filter for instance selection. When they removed 70% of words in bug

reports and 50% of bug reports, they achieved higher accuracies than when using the original

bug dataset in its entirety.

Alenezi et al. [36] investigated five term selection methods on an ML model. These methods

select the most discriminating terms for the classification task. Their results suggest that

the χ2 term selection method outperforms the other four methods.

Wu et al. [5] used statistical methods to identify three factors that contribute to about 90%

of variance in tossing path length (i.e. the number of times that a bug report is tossed among

developers). Then, they applied these factors to improve ML-based bug assignment. They

concluded that their approach can be used as a feature selection method for ML-based bug

assignment.

2.3. Bug Assignment Techniques 13

Tossing Sequence Modeling

This family of techniques model tossing sequences as bug tossing graphs to improve ML-

based bug assignment.

Jeong et al. [6] were the first to propose leveraging bug tossing graphs for bug assignment.

To model bug tossing graphs, they used Markov chains, with states representing developers

and transaction probabilities representing tossing probabilities. They used tossing graphs to

improve ML-based bug assignment as follows. First, they use an ML approach to generate a

list of recommended developers. Then, for each such recommended developer, they use the

tossing graph to determine to which developer is the recommended developer most likely to

toss the bug to. These new developers are then augmented into the recommendation list. In

their experiments, their model has both increased the accuracy of bug triage and decreased

the number of bug tosses.

Bhattacharya et al. [37] implemented multi-feature tossing graphs in which edges are labeled

with developer expertise, and nodes are labeled with developer activity. In order to label

graph edges with developer expertise, they label edges with the product and component

affiliated with the tossed bug. In order to label graph nodes with developer activity, they

label nodes with the difference between the date of the bug being validated and the date of

the last activity of that developer. Like [6], they determine which developers have a tossing

relationship with the ML-based recommended developers, and then augmented these new

developers into the recommendation list.

Wang et al. [38] expanded the idea of a bug tossing graph from a homogeneous network to

a heterogeneous network. In their heterogeneous network, there are multiple types of nodes,

namely developers, bugs, comments, components, and products. There are also multiple

types of edges to denote different relations among nodes. First, they use an ML model to

14 Chapter 2. Review of Literature

predict recommended developers. Then, for each such recommended developer, they use the

heterogeneous network to determine the developer who is most likely to collaborate with the

recommended developer. Finally, they augment these new developers to the recommendation

list.

Zhang et al. [39] have also used the idea of heterogeneous networks. In their approach,

they first used K-Nearest-Neighbor (KNN) to find bug reports similar to the new bug re-

port. Then, they use heterogeneous proximity to rank the developers who contributed to

those similar bug reports. Their heterogeneous proximity approach is based on counting the

number of connections between entities in the network.

Xi et al. [40] developed a sequence-to-sequence model that is trained on both the textual

description as well as the tossing sequence of previous bug reports. The model predicts the

tossing sequence, which begins with the bug report reporter, for the given bug report. The

last developer in the predicted tossing sequence is predicted to be the most suitable to fix the

bug, and the other developers in the predicted tossing sequence are considered as additional

relevant developers.

Huang et al. [41] proposed the use of a multiplex, as opposed to a single-layer, tossing

network. They have built a collaborative multiplex network consisting of a tossing graph

and an email communication graph. They processed the data in the multiplex network into

vectors, which were used to train an ML model.

Xi et al. [42] were the first to combine textual description, metadata, and tossing sequence

for bug triage. First, a sequence-to-sequence model learns textual description and tossing

sequence; and then, a classification model integrates the three information sources.

2.3. Bug Assignment Techniques 15

Social Networks

This family of techniques leverage social network models to rank developers that are recom-

mended with an ML model.

Wu et al. [43] used K-Nearest-Neighbors (KNN) to search for bug reports similar to a given

bug report, and then used frequency and social network metrics to rank developer expertise

based on developer participation in discussion threads in those similar bug reports. They

achieved the best results using their Out-Degree and Frequency techniques. The Frequency

technique counts each developer’s participation in the comments of the similar bug reports.

The Out-Degree score is computed from a social network graph in which developers are

modeled as nodes and edge weights are computed based on cosine similarities of developers

that participated in the bug reports’ discussions.

Xuan et al. [44] improved ML-based bug assignment with a developer prioritization tech-

nique. The developer prioritization technique is based on a social network in which developers

represent nodes and comment counts represent edges. They used SVM and Naive Bayes as

ML models to predict a list of relevant developers. Then, they rank these relevant developers

by descending developer prioritization scores. Their experiments indicated that applying the

developer prioritization technique to an ML model has increased bug triage accuracy over a

stand-alone ML model.

2.3.3 Report-Based Techniques: Information Retrieval Models

In Information Retrieval (IR) techniques, developers are treated as documents and an in-

coming bug report is treated as a search query. Given a search query, the objective is to

retrieve the correct document. That is, given a new bug report, the objective is to retrieve

the developer who has the necessary expertise to fix the bug. IR techniques are based on

16 Chapter 2. Review of Literature

indexing bug reports or computing similarity between bug reports.

Topic Modeling

These techniques used topic modeling. A commonly used topic modeling technique is Latent

Dirichlet Allocation (LDA). LDA models documents as collection of topics, and it models

topics as collections of words.

Park et al. [45] developed a technique that considers both accuracy and cost. They define

cost as the time it takes a particular developer to fix a given bug. They use LDA to group

bugs into categories, and they estimate each developer’s cost towards each bug category. For

each developer, and for each bug type, they estimate the cost of having the developer fix a

bug of that type based on the previous costs of that developer fixing bugs of that type, and

they rank developers by cost. They use an ML-model to rank developers by accuracy, and

then they merge the accuracy-based and the cost-based rankings.

Xie et al. [46] used LDA topic modeling to group fixed bug reports into topics. Next, a

probabilistic model is used to score a developer’s expertise towards a new bug as a function

of the bug’s affiliation to each topic and the developer’s expertise towards the topics. Finally,

the developers are ranked by descending expertise scores.

Naguib et al. [47] used LDA topic modeling to categorize bug reports into topics. Then,

the bug repository was mined to create developer profiles. The set of topics that model

the new bug report were determined. Developers who have expertise in at least half of the

bug report’s topics are considered relevant. To rank these relevant developers, a score was

computed for each developer based on their activity profile.

Xia et al. [48] developed a technique that performs bug report-based (BR-based) and developer-

based (D-based) analyses. In the BR-based analysis, bug reports similar to the new bug

2.3. Bug Assignment Techniques 17

report are found by performing feature engineering that including NLP and LDA, and then

using a multi-label ML model to predict relevant developers. In the D-based analysis, each

developer’s affinity towards the new bug report is measured based on feature engineering,

including NLP and LDA, on previous bug reports fixed by the developer. A linear com-

bination is used to combine the BR-based and the D-based analyses and produce a final

recommendation list.

Yang et al. [49] first use LDA topic modeling to group bug reports. Given a new bug report,

the subset of related topics to the report are determined, and the participating developers

of the reports related to the topics are extracted. Also, the bug reports that have the

same product, component, priority and severity as the given bug are determined, and the

participating developers are extracted. These developers are ranked based on the number of

assignments they received, the number of attachments in the reports assigned to them, the

number of commits made by them, and the number of comments posted by them.

Xia et al. [50] proposed multi-feature topic modeling as an extension of LDA. It takes into

account categorical features, namely product and component, in addition to the textual

description of the bug. It is trained on old bug reports and inference is done on the new bug

report to compute a distribution of topic scores, putting special emphasis on bug reports of

the same feature combination as the new bug report’s feature combination. An affinity score

is computed for each developer, and the developers are ranked by descending affinity score.

Other

Canfora et al. [51] constructed a probabilistic IR model for bug assignment. They mine bug

descriptions from Bugzilla and commit messages from CVS. Then, they index developers

and source files as documents in an information retrieval system. They use these indexes to

18 Chapter 2. Review of Literature

recommend a developer to fix a bug, and to predict the source files that contain the bug.

Matter et al. [52] developed a vector space model (VSM) approach. They model each devel-

oper’s expertise, as well as the query bug report, as a vector, and they use cosine similarity to

rank developers based on the similarity between their expertise vector and the query vector.

Their vectorization technique is based on a Bag-of-Words (BoW) model. First, they mine

the code repository to retrieve each developer’s source code contributions. Then, they vec-

torize each such contribution into a BoW vector, and each of these vectors is weighted by the

recency of the contribution. For each developer, their contribution vectors are aggregated.

Lastly, each developer expertise vector is weighted by the recency of the developer’s most

recent contribution to the code repository.

Helming et al. [53] used a dataset in which work items are linked to functional requirements.

Given a new work item, they identify related work items, and score developers based on the

number of those related work items that they completed. Their model is designed for work

items such as bug reports and other tasks.

Tamrawi et al. [54] implemented a fuzzy set model for developer expertise. Their approach is

based on the idea that each textual bug description is made of a set of technical terms, and

when a developer fixes a bug, they demonstrate expertise related to these terms. For each

term, a fuzzy set is constructed to represent how much expertise each developer has towards

that term. Then, a membership function scores a developer’s expertise towards the terms in

a textual bug description, and developers are ranked by descending expertise scores.

Kagdi et al. [55] developed a heuristic-based technique to recommend developers based on

developer contributions in the code repository. The premise of their approach is that devel-

opers who have contributed to suspicious files are more likely to have the expertise to fix a

given bug. They use LSI to locate and rank units of source code relevant to a bug report.

2.3. Bug Assignment Techniques 19

Then, they mine these source code units in the code repository to rank the developers who

have contributed to these source code units.

Linares-Vasquez et al. [56] developed an IR-based bug assignment technique that does not

require mining of either a code repository or a bug repository. The technique takes advantage

of code authorship information available in the header comments of source code files. LSI

is used to index source code entities. To retrieve relevant source code entities, document

similarity is computed between a textual bug description, used as a query, and the source

code entities in the index. Then, the authorship information in those relevant source code

entities are used to recommend a list of developers.

Nagwani et al. [57] modeled developer expertise based on the frequent terms in the bug

reports that each developer has fixed. For each developer, a list of frequent terms in the bug

reports that they fixed is generated. Then, given a new bug report, developer expertise is

measured based on the similarity between the new bug report terms and each developer’s

list of frequent terms.

Shokripour et al. [58] proposed a two-phased approach that uses both the bug repository and

the code repository. In the first phase, the buggy source code files are predicted. To do so,

they use four information sources: identifiers, commit messages, comments in source code,

and reports of previously fixed bugs. They parse the bug report text and the source code

to create an index of unigram nouns. During the second phase, they recommend developers

based on information about who has previously fixed faults in the predicted source code files.

Hossen et al [59] developed a technique that uses change proneness information to improve

automatic bug assignment. Change proneness is a measure of its change affinity, derived

from each source code entity’s change history. They identify buggy source code units by

comparing the textual bug description to the source code. Then, they use change proneness

20 Chapter 2. Review of Literature

to rank the buggy source code units. Lastly, they rank developers based on their activity

with those ranked buggy source code units.

Hu et al. [60] developed an approach that uses a Developer-Component-Bug (DCB) network.

In a DCB network, developers are linked to the project components that they have worked

on, and bugs are linked to the project components that they are fixed in. For a new bug

report, they use the vector space model (VSM) to compute the similarity between the new

bug and old bugs. Then, they use the DCB network to calculate relevance between the new

bug and the developers.

Badashian et al. [61] used Q&A platform activity to model developer expertise. Their

approach uses answers in the Q&A platform as evidence of expertise, and they use the

number of up-votes of each answers to measure the extent of expertise. They use the tags on

questions to model technical components of possible expertise. They used Stack Overflow

as the Q&A platform in their experiments.

Zanjani et al. [62] used developer-IDE interactions to model developer expertise. Developer

interactions with the IDE include navigate, view, and modify. They first employ an ML

technique to locate source code entities relevant to the textual bug description. Then, the

interaction histories of these entities are mined to recommend developers.

Yang et al. [63] developed a technique that recommends relevant files regarding the new

bug in addition to recommending relevant developers. To identify relevant commits, they

measure term similarity between the new bug report and the historical commits using the

cosine function. They use collaborative topic modeling (CTM) to identify personalized files

for the recommended developers.

Peng et al. [64] developed a relevant search technique. They use an inverted index to map a

term to the list of documents that contain the term. They use this index to search for bug

2.3. Bug Assignment Techniques 21

reports that are similar to the new bug report. Then, developers are scored based on the

similarity of the similar bug reports to the new bug report.

Chapter 3

Empirical Study of Bug-Fix Commits

Most of the existing techniques in the bug assignment domain are designed for cases in which

a bug report is available. However, some studies have indicated situations in which only a

failed code execution may be available. A few examples include security vulnerability detec-

tion techniques that flag code executions that cause potential security vulnerabilities [26];

failures in continuous integration pipelines that are captured in failing test cases [65]; and

bugs found in crowdsourced mobile testing, in which executed bugs are often reported with

screenshots [66].

In this chapter, we perform an empirical study of bug-fix commits, or commits that fix bugs,

in the code repositories of eight open-source software projects. The objective of this study

is to empirically investigate whether there exist situations in which a failed code execution

alone, and not a bug report, is available for a bug. These potential situations, in turn, are

the motivation for execution-based bug assignment techniques.

In this chapter, we seek to answer the following research question:

1. How prevalent are bug reports and failed code executions?

22

3.1. Research Method 23

3.1 Research Method

We studied eight open-source software projects: JFreeChart, Commons Lang, Commons

Math, Mockito, Joda-Time, Commons IO, Rhino, and AspectJ. These projects are well-

known and commonly used in the software engineering domain. We mined and analyzed the

commits in each project’s code repositories. From the collection of commits, we identified

the bug-fix commits. Then, we counted the number of those bug-fix commits that reference

both a bug report and a failed execution, only a bug report, only a failed execution, and

neither a bug report nor a failed execution.

In order to make these identifications, we developed the following heuristic:

• A commit is a bug-fix commit if the commit message contains the word “fix”.

• A bug-fix commit has a corresponding bug report if the commit message contains a

reference to a bug report ID.

• A bug-fix commit has a corresponding failed execution if the commit message or the

filename of one of the modified files contains the word “test”.

Note that while this heuristic is based upon reasonable assumptions, it is not intended to be

a perfect heuristic. However, the objective of this study is not necessarily to compute exact

numbers, but rather, the objective is to gain a general understanding of whether there exist

bugs without a bug report, but with an execution.

3.2 Results

The results of this experiment are shown in Table 3.1. In this table, the columns indicate

the following information:

24 Chapter 3. Empirical Study of Bug-Fix Commits

• Project: Name of software project.

• All: Number of commits in the code repository.

• Bug-Fix: Number of bug-fix commits.

• Both: Number of bug-fix commits with both a bug report and a failed execution.

• Report: Number of bug-fix commits with a bug report, but without a failed execution.

• Execution: Number of bug-fix commits without a bug report, but with a failed

execution.

• Neither: Number of bug-fix commits with neither a bug report nor a failed execution.

Additionally, the last two rows of the table indicate the following information. In the All

Projects row, we sum the counts for all projects combined. In the % of Bug-Fix row, we

compute each count from the All Projects row as a percentage of the number of bug-fix

commits in all projects combined.

As shown in the last row of the table, report without execution was the most common

situation, at 33.67%, and execution without report was the least common situation, at 14.38%.

3.2.1 Discussion

The results of this experiment lead to the following observations. Bug reports are more

prevalent than failed code executions. However, there exist situations in which only a failed

code execution is available. In our experiment, approximately 14% of bug-fix commits had a

reference to a failed code execution only, and not to a bug report. As a result, we conclude

that there is an important need for effective execution-based bug assignment techniques.

3.2. Results 25

Table 3.1: Frequency of Bug Reports and Faulty Executions in Bug-Fix Commits

Project All Bug-Fix Both Report Execution Neither
Commons IO 1538 205 45 13 54 93
Rhino 2242 828 14 436 40 338
AspectJ 12066 2496 994 585 424 493
JFreeChart 937 63 3 0 60 0
Commons Lang 3637 511 187 324 0 0
Commons Math 4966 831 298 533 0 0
Mockito 3188 597 183 64 164 186
Joda-Time 1710 337 19 21 102 195
All Projects 30284 5868 1743 1976 844 1305
% of Bug-Fix 100% 29.70% 33.67% 14.38% 22.24%

This is the key motivation for the next experiment, in which we benchmark existing state-

of-the-art bug assignment techniques.

Chapter 4

Benchmarking Existing Techniques

Benchmarks allow for evaluation and comparison of systems or techniques based on factors

such as effectiveness and efficiency. In this chapter, we perform a benchmark that compares

WhoseFault, the existing execution-based bug assignment technique, to a number of state-

of-the-art report-based techniques. The objective is to investigate how well the execution-

based technique can perform compared to report-based techniques. While other studies have

compared report-based techniques, to the best of our knowledge, no study has compared

execution-based and report-based techniques.

In this benchmarking experiment, we seek to describe the relative performance of execution-

based and report-based techniques as one of the following three possible cases:

• Case 1: Execution-based techniques are worse than report-based techniques. In this

case, one should consider the option of writing a bug report. If a high-quality report

can be efficiently written, then it makes sense to write one in order to make use of

report-based techniques. Otherwise, execution-based techniques are the best available

option.

• Case 2: Execution-based techniques are better than report-based techniques. In this

case, we should transition to apply them in all scenarios in which a buggy execution

exists.

• Case 3: Execution-based and report-based techniques perform similarly. In this case,

26

4.1. Research Method 27

execution-based techniques could be beneficial because the human effort of writing a

report could be avoided. Alternatively, a “hybrid” technique, which would take into

account both kinds of input, could be developed.

In this chapter, we seek to answer the following research questions:

2. How does WhoseFault compare to report-based techniques in terms of effectiveness?

3. How does WhoseFault compare to report-based techniques in terms of efficiency?

4.1 Research Method

We selected a set of seven bug assignment techniques: one execution-based technique and

six report-based techniques. We constructed a dataset of 340 bugs from eight open-source

software projects. We ran each technique on each bug in our dataset. To measure effec-

tiveness, we used the Normalized Discounted Cumulative Gain (NDCG) metric. To measure

efficiency, we measured the execution time of each technique on each of the studied bugs. We

evaluated these results to determine which one of the three cases, described at the beginning

of this chapter, is observed in this benchmarking experiment.

4.1.1 Studied Techniques

We perform our benchmark on seven existing bug assignment techniques summarized in

Table 4.1. Our rationale for selecting these seven techniques is as follows. We chose Whose-

Fault because, to the best of our knowledge, it is the only existing execution-based bug

assignment technique. We chose Xia and Lee because they are the most recently published

28 Chapter 4. Benchmarking Existing Techniques

bug-assignment techniques in the most selective software engineering journals and confer-

ences. More specifically, they were published in Transactions on Software Engineering and

ESEC/FSE, respectively. Lastly, we chose the other four techniques because they are some

of the most seminal works in this area. To the best of our knowledge, we are studying more

techniques than any other bug assignment evaluation did, as of the time of writing.

Table 4.1: Summary of Benchmarked Bug Assignment Techniques

Technique Expertise
Modeling Bug Modeling Text Vector-

ization

Scoring
Methodol-
ogy

Cubranic [28] Fixed bug re-
ports New bug report Bag-of-Words Naive Bayes

Anvik [4] Fixed bug re-
ports New bug report TF-IDF SVM

Matter [52] Source code con-
tributions New bug report Bag-of-Words Cosine similarity

Tamrawi [54] Fixed bug re-
ports New bug report Bag-of-Words Fuzzy sets

Lee [31] Fixed bug re-
ports New bug report Word2Vec Convolutional

Neural Network

Xia [50] Fixed bug re-
ports New bug report Bag-of-Words Topic Modeling

WhoseFault [15] Code repository
mining

Fault localiza-
tion Heuristic

To further motivate the selection of each of these techniques, we provide a brief summary of

each selected technique:

• Cubranic: Cubranic et al. [28] model their technique as a supervised ML model,

and they apply bag-of-words vectorization and a Naive Bayes classifier. In their work,

they have not compared their technique to any baseline, since they have pioneered bug

assignment. To the best of our knowledge, this is the second most-cited technique as

of the time of writing.

• Anvik: Anvik et al. [4] also model their technique as a supervised ML model, but

4.1. Research Method 29

they apply TF-IDF vectorization and an SVM classifier. They have not compared

their technique to any baseline. To the best of our knowledge, this is the most-cited

technique as of the time of writing.

• Matter: Matter et al. [52] model developer expertise based on the vocabulary of each

developer’s source code contributions, and they apply cosine similarity to score exper-

tise towards a bug report. They have not compared their technique to any baseline. To

the best of our knowledge, this is, as of the time of writing, the most-cited technique

that models developer expertise from the history of the source code.

• Tamrawi: Tamrawi et al. [54] use fuzzy sets to model developer expertise. They

evaluated their technique against SVM, decision tree, and Naive Bayes ML classifiers.

Tamrawi et al.’s [54] work has been used for comparison in a number of studies [39, 48,

50].

• Lee: Lee et al. [31] apply Word2Vec word embeddings to vectorize bug descriptions,

and they use a Convolutional Neural Network as a supervised ML model. They eval-

uated their techniques against manual bug triage.

• Xia: Xia et al. [50] use LDA topic modeling to model developer expertise. They

evaluated their technique against Tamrawi’s technique.

• WhoseFault: Servant et al. [15] developed WhoseFault, an execution-based technique.

WhoseFault recommends developers who have made recent modifications to source

code lines that have high fault localization suspiciousness values. They have evaluated

their technique against naive simplifications of their proposed approach. To the best of

our knowledge, WhoseFault is currently the only existing execution-based technique.

We used the original implementation of WhoseFault, and we implemented the other tech-

30 Chapter 4. Benchmarking Existing Techniques

niques in Python using scikit-learn [67] for machine learning, TensorFlow [68] and Keras [69]

for Convolutional Neural Networks, NLTK [70] for natural language processing, and Py-

Driller [71] for mining Git repositories.

4.1.2 Studied Bugs

Previous studies have shown that the performance of bug assignment techniques vary strongly

between different projects. For example, Anvik et al. [4] evaluated their technique on three

projects: Eclipse, Firefox, and GCC. Their technique performed significantly better on the

Eclipse and Firefox projects than on the GCC project. Therefore, it is better to test bug

assignment techniques on multiple projects than it is on one project.

In order to benchmark the bug assignment techniques, we need a dataset of fixed bugs. For

each such bug in our dataset, we need the following data:

1. Code repository: We need the project’s code repository, which will be mined by

WhoseFault and Matter. In addition, we need to identify the post-fix commit - that is,

the commit that contains the fix for the bug. Specifically, we need to determine who

made that bug-fixing commit. Lastly, for WhoseFault, we need fault localization data

(i.e. suspiciousness value for each executable line of code) for the pre-fix commit - that

is, the commit directly before the post-fix commit. Note, the prefix-commit contains

the bug, and the post-fix commit does not.

2. Bug repository: We need the project’s bug repository, which will be mined by the bug

report-based techniques. More specifically, we need the bug reports corresponding to

the bugs in our dataset. Additionally, we need all the bug reports that were previously

fixed to be used as the training data.

4.1. Research Method 31

Table 4.2: Dataset of Studied Bugs

Source Project Name Identifier Number of Bugs Bug Repository

Defects4J

JFreeChart Chart 7 Sourceforge
Commons Lang Lang 63 JIRA
Commons Math Math 103 JIRA
Mockito Mockito 38 GitHub
Joda-Time Time 23 Sourceforge, GitHub

Additional Commons IO IO 19 JIRA

iBugs Rhino Rhino 15 Bugzilla
AspectJ AspectJ 72 Bugzilla

Total 340

While we wanted to use a dataset of security vulnerability bugs, we were unaware of any

such dataset that contains all the information needed to run this experiment. Therefore, we

studied bugs in software engineering in general. We constructed a dataset of 340 fixed bugs

from eight open-source software projects. This dataset is summarized in Table 4.2. For each

of these bugs, the pre-fix commit contains at least one failing test case that demonstrates

the bug. As shown in the Source column of the table, we used Defects4J [72] and iBugs [73],

two datasets of real software bugs, to collect bugs from five and two software projects,

respectively. Additionally, we mined Apache Commons IO to complement those two datasets.

For brevity, we will refer to these projects by the short identifying names specified in the

Identifier column of the table. To the best of our knowledge, we are studying more software

projects than any other bug assignment evaluation did, as of the time of writing.

For each project in the dataset, we obtained fault localization data and mined the project’s

bug repository. For the Defects4J projects, we used the fault localization data provided by

Pearson et al. [74]. For the other projects, we used a propriety dataset of fault localization

data. To mine the bug repositories, we used an API for each of the four bug tracking systems.

We did not use all bugs in the Defects4J dataset for the following reasons:

• Chart: We have not used 19 bugs provided by Defects4J, because Defects4J did not

32 Chapter 4. Benchmarking Existing Techniques

provide a link to a bug report for those bugs.

• Lang: We did not use 2 bugs provided by Defects4J because they were not marked as

fixed in the bug repository.

• Math: We did not use 3 bugs provided by Defects4J because two of them were not

marked as fixed in the bug repository, and one of them was the first bug to be marked

as fixed in the bug repository (and therefore, there were no fixed reports to train on).

• Time: We did not use 4 bugs provided by Defects4J because they were not marked as

fixed in the bug repository.

• Closure: Additionally, Defects4J includes bugs for the Closure Compiler project. We

did not use any of those bugs because there are no publicly available bug reports

for those bugs. Specifically, Google, which developed this project, has initially used

a proprietary bug tracking system [?], and eventually transferred to using GitHub

as a bug tracking system. The bug reports written in the old bug repository, which

contained the necessary reports, were not transferred to the new repository.

4.1.3 Definition of Ground Truth

In the bug assignment domain, the ground truth is the set of developers who actually have

the necessary expertise to fix a given bug. Other studies have defined slightly different

variations of the ground truth. In this study, in order to be able to compare the performance

of different techniques, we define the ground truth as a union of the definitions used by

any of our studied techniques. We define the ground truth as the developer who made the

bug-fixing commit in the code repository and also the developer who marked the bug report

as fixed in the bug repository. These may or may not be the same developer, and therefore,

4.1. Research Method 33

the ground truth consists of either one or two developers.

In 68% of the bugs in our dataset, the developer who made the bug-fixing commit has also

marked the bug report as fixed (i.e. the ground truth consists of a single developer). In the

other 32% of bugs, the developer who made the bug-fixing commit was not the developer

who marked the bug report as fixed (i.e. the ground truth consists of two developers).

Mapping Developer Identifiers in Software Artifacts

Often, a single developer uses multiple identifiers across software artifacts or within a single

software artifact. For example, a developer might use a username as one identifier and a full

name as another identifier. Grouping developer identifiers that belong to the same human

developer is an important task for correctly modeling developer expertise based on developer

activities in software artifacts.

To address this task, we manually group developer identifiers that refer to the same developer.

Then, we assign each developer a unique numerical identifier, and map all of a developer’s

identifiers to the developer’s unique numerical identifier. This way, we avoid treating a single

developer, with multiple identifiers, as multiple distinct developers.

Figure 4.1 shows a simple example of this mapping task. Identifiers from the code and bug

repositories are on the left and right sides, respectively. The unique numerical developer

identifiers are in the center of the figure. In this example, every developer used a single

identifier in the bug repository. So, each identifier in the bug repository points to a distinct

numerical identifier. Next, consider the identifiers in the code repository. Alice and Bob each

used two distinct identifiers in the code repository. Alice’s two code repository identifiers

point to the same numerical identifier, 0. Likewise, Bob’s two code repository identifiers

point to the same numerical identifier, 1.

34 Chapter 4. Benchmarking Existing Techniques

Developer IDs

0

1

2

Code repository authors

Alice Ant
<alice@gmail.com>

Alice A. Ant
<a@yahoo.com>

Bob Brown
<bob@gmail.com>

Bob B. Brown
<bob@gmail.com>

Charlie
<charlie@gmail.com>

Bug repository authors

alice

bob

charlie

Figure 4.1: Example of Mapping Developer Identifiers in Software Artifacts

4.1.4 Effectiveness Evaluation Metric

It is important that we select an effectiveness evaluation metric that well suits our study. In

this study, the evaluation metric should be able to score a ranking of items, or in this case,

developers. An ideal ranking would have all the ground truth developers at the top of the

ranked list. So, we want the evaluation metric to give a higher score the higher the ground

truth developers are ranked, and a lower score the lower the ground truth developers are

ranked. While precision and recall have been used in previous bug assignment studies, we

argue that the Normalized Discounted Cumulative Gain (NDCG) metric is a more suitable

evaluation metric for a ranking task.

Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain (NDCG) metric is a measure of ranking qual-

ity [75]. NDCG is a normalization of DCG, which is based on the principle that relevant

items are more useful the higher they appear in the ranking. In DCG and NDCG, each

4.1. Research Method 35

item has a relevancy value between 0 and 1.0, and an ideal ranking would rank all items by

descending relevancy. DCG is defined in Equation 4.1. In this equation, k is the number of

top elements, in the recommendation ranking, that are considered, and reli is the relevance

of the ith element in the recommendation ranking.

DCG@k =
k∑

i=1

2reli − 1

log2(i+ 1)
(4.1)

We use Burges et al.’s [76] definition of NDCG, shown in Equation 4.2, as the ratio between

the DCG scores of the actual recommendation ranking and the ideal ranking. With this

definition, an NDCG score is between 0 and 1.0, with a higher score indicating a better

ranking. In our work, for a given bug, we assign a relevancy score of 1.0 to the ground truth

developers, and a relevancy score of 0 to all other developers.

NDCG@k =
DCG@k(actual recommendation)
DCG@k(ideal recommendation) (4.2)

Comparison of Precision, Recall, and NDCG

Precision and recall have been commonly used for evaluation in previous bug assignment

studies [4, 28, 34, 35, 36, 43, 51, 52, 56, 59, 60, 63, 64]. Precision is defined as the proportion

of relevant items retrieved to total items retrieved. Recall is defined as the proportion of

relevant items retrieved to total relevant items. Precision@k and recall@k only consider the

top-k ranked items. Equations 4.3 and 4.4 define precision and recall, respectively, in the

context of bug assignment.

Precision =
of appropriate recommendations

of recommendations made (4.3)

36 Chapter 4. Benchmarking Existing Techniques

Table 4.3: Comparison of Precision, Recall, and NDCG

Technique A Technique B Technique C

Ranking
(1) Alice (1) Bob (1) Charlie
(2) Bob (2) Alice (2) Bob
(3) Charlie (3) Charlie (3) Alice

Precision@3 0.33 0.33 0.33
Recall@3 1.00 1.00 1.00
NDCG@3 1.00 0.63 0.50

Recall = # of appropriate recommendations
of possibly relevant developers (4.4)

In Table 4.3, we compare precision, recall, and NDCG with a simple ranking task. In this

example, there are three bug assignment techniques, labeled A, B, and C. The ground truth

developer, as shown in bold and italics, is Alice. Techniques A, B, and C have ranked Alice in

first, second, and third place, respectively. Therefore, an ideal evaluation metric would score

techniques A, B, and C in descending order. We evaluated each technique using precision,

recall, and NDCG at k = 3. As shown in the table, neither precision nor recall meet the

requirement that techniques A, B, and C would be scored in descending order. NDCG, on the

other hand, does meet this requirement. The reasoning behind this result is that precision

and recall are designed for an unordered selection problem, while NDCG is designed for an

ordered ranking problem.

So, we decide to use NDCG as our effectiveness evaluation metric. We evaluate our results

using NDCG@1, NDCG@5, and NDCG@10. That is, we evaluate the single top recommen-

dation, the top-5 recommendations, and the top-10 recommendations, respectively.

4.2. Results 37

4.1.5 Efficiency Evaluation Metric

To measure the efficiency of each technique, we measured the execution time, in seconds, of

each technique on each bug in our dataset.

4.1.6 Experiment Setup

In real-world use, when a bug report is being triaged, previously fixed bug reports can be

used for triage. However, bug reports that haven’t been fixed yet, or haven’t even been

written yet, cannot be used for triage. Therefore, each bug has a different training set of

fixed bug reports. To accurately simulate this, we train and test on each bug in our dataset

separately. For each bug in the testing set (see Table 4.2), the training set consists of all bug

reports that have been fixed before the testing bug was fixed. The reasoning for comparing

fix dates is as follows. Between the creation timestamp of the testing bug report and its

fix timestamp, there could be other bug reports that get marked as fixed, which would

increase the training set for this particular testing bug. So, during this time window, a bug

assignment technique could be redeployed in order to include the newly fixed bug reports.

4.2 Results

4.2.1 Effectiveness

We ran each of the seven benchmarked techniques on our dataset of 340 bugs, and measured

effectiveness using NDCG@1, NDCG@5, and NDCG@10. The results are shown in Table 4.4,

in Figure 4.2 as bar charts and in Figure 4.3 as box plots. In each of those two figures, we

have grouped the bugs by the eight software projects. Additionally, in the All Projects group,

38 Chapter 4. Benchmarking Existing Techniques

results are shown for all 340 bugs as one project. In the box plots of Figure 4.3, we also

show an All Projects (Medians) group. In this group, for each technique, the box plot shows

eight median scores - one for each project.

There is a high variance in NDCG scores across projects. As seen in Figure 4.2, the highest

scores were received on projects Chart and Time. These two projects have a small number

of developers, which makes bug assignment easier. In project Chart, only four developers

have fixed a bug. In project Time, 89% of bug reports have been marked as fix by a single

developer. For project Chart, all techniques have received a perfect score of 1.0 at all three

levels of NDCG. In project Time, Cubranic, Anvik, Lee, and Xia have received a perfect

score, also at all three levels of NDCG.

Next, we consider the performance of Xia. The Xia technique takes into account the prod-

uct and component categorical variables of bug reports. The projects that we test on use

different bug tracking systems, some of which do and some of which do not support product

and component fields. For those bug reports that do not have a product or component, we

assigned a single dummy value for those fields. Four projects, namely Chart, Math, Mock-

ito, and Time, have a single product-component pair each. Project IO has four product-

component pairs, Rhino has three pairs, and Lang and AspectJ each has fourteen pairs. We

would expect that Xia would perform better on projects with multiple product-component

pairs, since that gives valuable information for the technique in order to “compartmental-

ize” bugs by product-component pairs. Indeed, at both NDCG@5 and NDCG@10, Xia was

more accurate than all other techniques on projects Lang and AspectJ, which have the most

product-component pairs.

In project Rhino, Matter received an exceptionally higher score than other techniques at all

levels of NDCG. This could be explained by the fact that most of the textual bug descriptions

in this project have included either some source code or a stack trace. Since Matter compares

4.2. Results 39

the textual bug description to developers’ source code contributions in the code repository,

it makes sense that having source code in the bug description would boost Matter’s score.

Overall, the most effective technique was Xia. At all three levels of NDCG, Xia received the

highest mean score in the All Projects group.

Next, we consider the effectiveness of WhoseFault, the execution-based technique, compared

to the effectiveness of the report-based techniques. At NDCG@1, WhoseFault has per-

formed better than Matter, Tamrawi, and Lee, but worse than Cubranic, Anvik, and Xia.

At NDCG@5, WhoseFault performed better than Tamrawi, but worse than all other five

techniques. At NDCG@10, all six bug report-based techniques have performed better than

WhoseFault.

We want to test the statistical significance of the differences in scores between WhoseFault

and the report-based techniques. To do so, we use the Wilcoxon signed-rank significance test.

We chose the Wilcoxon statistical significance test due to the paired, or matched, nature of

our data. That is, each technique was tested on the same dataset of bugs. In Table 4.5,

we show the p-values for these tests. P-values less than 0.05 imply that the difference

in score is statistically significant. These values are highlighted in yellow. Likewise, in

Table 4.4, cells corresponding to a statistically significant difference from WhoseFault are

also highlighted in yellow. Consider the p-values for all projects combined (see “All Projects”

in Table 4.5). At NDCG@1, WhoseFault has performed statistically significantly better

than Matter and Tamrawi. These are the only techniques that WhoseFault has performed

statistically significantly better than at any level of NDCG.

40 Chapter 4. Benchmarking Existing Techniques

Table 4.4: Benchmarked Mean NDCG Scores (statistically significant differences from
WhoseFault are highlighted)

Metric Project Cubran
ic

Anvik
M

att
er

Tam
raw

i

Lee Xia W
hose

Fau
lt

N
D

C
G

@
1

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.556 0.556 0.460 0.254 0.556 0.619 0.286
Math 0.437 0.417 0.456 0.282 0.388 0.456 0.485
Mockito 0.763 0.789 0.289 0.763 0.658 0.737 0.500
Time 1.000 1.000 0.565 0.696 1.000 1.000 0.826
IO 0.368 0.474 0.526 0.158 0.421 0.579 0.579
Rhino 0.200 0.333 0.867 0.267 0.333 0.333 0.533
AspectJ 0.611 0.486 0.333 0.500 0.486 0.556 0.653
All Projects 0.568 0.550 0.453 0.412 0.524 0.588 0.526

N
D

C
G

@
5

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.691 0.682 0.682 0.518 0.663 0.823 0.448
Math 0.572 0.545 0.594 0.491 0.538 0.606 0.556
Mockito 0.816 0.831 0.534 0.795 0.781 0.797 0.627
Time 1.000 1.000 0.752 0.888 1.000 1.000 0.936
IO 0.696 0.742 0.801 0.597 0.676 0.820 0.731
Rhino 0.661 0.745 0.951 0.712 0.736 0.719 0.828
AspectJ 0.752 0.738 0.644 0.722 0.684 0.772 0.759
All Projects 0.708 0.703 0.660 0.632 0.677 0.754 0.644

N
D

C
G

@
10

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.705 0.698 0.707 0.535 0.686 0.826 0.451
Math 0.594 0.576 0.612 0.526 0.573 0.634 0.562
Mockito 0.816 0.841 0.615 0.820 0.792 0.815 0.627
Time 1.000 1.000 0.796 0.888 1.000 1.000 0.936
IO 0.696 0.742 0.801 0.597 0.713 0.820 0.749
Rhino 0.661 0.745 0.951 0.712 0.736 0.719 0.828
AspectJ 0.784 0.758 0.644 0.750 0.726 0.781 0.759
All Projects 0.724 0.721 0.683 0.654 0.703 0.768 0.647

4.2. Results 41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
 S

co
re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

5
 S

co
re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault

(c) Mean NDCG@10 Scores

Figure 4.2: Benchmarked Mean NDCG Scores in Bar Charts

42 Chapter 4. Benchmarking Existing Techniques

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
1

Sc
or

e

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault

(a) NDCG@1 Scores

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
5

Sc
or

e

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault

(b) NDCG@5 Scores

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
10

 S
co

re

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault

(c) NDCG@10 Scores

Figure 4.3: Benchmarked NDCG Scores in Box Plots

4.2. Results 43

Table 4.5: Wilcoxon Significance Test Between WhoseFault and Report-Based Techniques

Metric Project Cubranic Anvik Matter Tamrawi Lee Xia

NDCG@1

Chart 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.00 0.00 0.03 0.59 0.00 0.00
Math 0.47 0.34 0.67 0.00 0.14 0.67
Mockito 0.03 0.01 0.06 0.02 0.16 0.05
Time 0.05 0.05 0.03 0.32 0.05 0.05
IO 0.10 0.32 0.65 0.01 0.26 1.00
Rhino 0.03 0.08 0.10 0.05 0.18 0.08
AspectJ 0.47 0.02 0.00 0.03 0.01 0.16
All Projects 0.21 0.49 0.05 0.00 0.93 0.07

NDCG@5

Chart 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.00 0.00 0.00 0.10 0.00 0.00
Math 0.47 0.73 0.36 0.09 0.71 0.10
Mockito 0.00 0.00 0.21 0.00 0.00 0.00
Time 0.05 0.05 0.01 0.32 0.05 0.05
IO 0.54 0.83 0.30 0.11 0.53 0.20
Rhino 0.00 0.06 0.10 0.02 0.11 0.02
AspectJ 0.73 0.50 0.01 0.15 0.00 0.88
All Projects 0.00 0.00 0.48 0.69 0.09 0.00

NDCG@10

Chart 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.00 0.00 0.00 0.05 0.00 0.00
Math 0.28 0.83 0.26 0.31 0.99 0.03
Mockito 0.00 0.00 0.82 0.00 0.00 0.00
Time 0.05 0.05 0.02 0.32 0.05 0.05
IO 0.47 0.94 0.44 0.05 0.58 0.33
Rhino 0.00 0.06 0.10 0.02 0.11 0.02
AspectJ 0.40 0.95 0.01 0.59 0.28 0.54
All Projects 0.00 0.00 0.18 0.60 0.00 0.00

44 Chapter 4. Benchmarking Existing Techniques

Table 4.6: Average Execution Time (s) Per Bug for Benchmarked Techniques

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault
Chart 1.05 0.24 61.89 1.93 55.99 1440.3 35.77
Lang 0.13 0.09 6.44 0.49 41.39 153.88 15.56
Math 0.22 0.17 12.84 0.6 67.99 169.81 111.43
Mockito 0.22 0.14 17.09 0.52 37.19 206.47 23.26
Time 0.12 0.05 9.33 0.29 23.22 65.94 9.26
IO 0.04 0.03 1.93 0.15 20.21 12.8 15
Rhino 0.2 0.19 4.67 0.58 28.15 130.44 2205.83
AspectJ 2.39 3.64 14.48 4.67 92.31 3749.11 448.71
All Projects 0.66 0.87 12.28 1.41 57.07 937.54 233.78

4.2.2 Efficiency

To measure the efficiency of the techniques, we measure the execution time, in seconds,

of each technique on each bug in our dataset. To maximize the accuracy of these time

measurements, we ran all techniques on the same computer, with no other programs running

in the background. Due to time limitations, we only conducted time measurements on a

random sample of AspectJ bugs. More specifically, we ran Xia on multiple AspectJ bugs in

parallel for effectiveness measurements, and then, we ran, in series, a random sample of 10

AspectJ bugs for time measurement purposes. Other than Xia-AspectJ, we have produced

complete time measurements for all other technique-project combinations. The results are

shown in Figure 4.4 and Table 4.6.

As shown in Table 4.6, Cubranic, Anvik, Matter, Tamrawi, and Lee were more efficient

than WhoseFault by an order of magnitude. Nevertheless, WhoseFault took an average of

roughly 234 seconds per bug, which is reasonable. Xia, the most effective technique, is the

least efficient technique, at roughly 938 seconds per bug.

4.2. Results 45

Figure 4.4: Benchmarked Execution Times

46 Chapter 4. Benchmarking Existing Techniques

4.2.3 Discussion

In this benchmarking experiment, we have compared the performance, in terms of effec-

tiveness and efficiency, of WhoseFault, an execution-based bug assignment technique, and

six report-based techniques. Recall that at the beginning of this chapter, we have outlined

three possible cases that could be supported by the results of our benchmarking experiment.

Our results support case 1. That is, our results indicate that execution-based techniques are

worse than report-based techniques.

First, consider the effectiveness of WhoseFault compared to the report-based techniques (see

Figure 4.2). At NDCG@1, WhoseFault has performed statistically significantly better than

Matter and Tamrawi. WhoseFault also performed better than Lee, at NDCG@1, but not by

a statistically significantly difference. Although WhoseFault performed worse than Cubranic,

Anvik, and Xia at NDCG@1, our significance test did not indicate that these differences were

statistically significantly better. At NDCG@5, WhoseFault is less effective than all the other

techniques except for Tamrawi. Cubranic, Anvik, and Xia have all performed statistically

significantly better than WhoseFault, at NDCG@10.

Next, consider the efficiency of WhoseFault compared to the report-based techniques (see

Table 4.6). WhoseFault is slower than all the other techniques, expect for Xia, by an order

of magnitude. However, it is roughly four times faster than Xia, the most effective technique

in our experiment. Even though WhoseFault is slower than most of the benchmarked tech-

niques, its efficiency is still reasonable - on average, WhoseFault took 234 seconds to execute

on a single bug. Therefore, there is not a big difference between WhoseFault and the other

techniques in terms of efficiency.

These observations indicate the following conclusions. Report-based techniques are better,

but execution-based techniques are not much worse. If both a bug report as well as an

4.2. Results 47

execution are available, one should probably use either Xia for effectiveness or Cubranic for

efficiency. If only an execution, and not a report, is available, then one should consider the

option of writing a bug report. If a high-quality report could be efficiently written, then

one could use a report-based technique. Otherwise, an execution-based technique should

be used. The fact that the execution-based techniques are not much worse than report-

based techniques should provide confidence in the scenarios in which only execution-based

techniques are applicable.

Chapter 5

DR_BEV : Developer

Recommendation Based on Executed

Vocabulary

The objective of an execution-based expertise finding technique is to rank developers in

descending order of expertise towards a given execution-based bug. To the best of our

knowledge, the only existing execution-based expertise finding technique is WhoseFault [15].

Therefore, we consider WhoseFault to be the state-of-the-art execution-based expertise find-

ing technique. WhoseFault models a bug using Tarantula, a fault localization technique.

The idea behind WhoseFault is that developers who have recently modified highly suspi-

cious lines of code are most likely to have the necessary expertise to fix a bug. At the core of

WhoseFault is a heuristic formula that assigns each developer an expertise score based on the

recency and fault localization suspiciousness of the developer’s line-level code modifications.

In this chapter, we propose an alternative execution-based bug assignment technique, called

DR_BEV (Developer Recommendation Based on Executed Vocabulary), that models ex-

pertise with a vocabulary-based expertise model, as opposed to a location-based expertise

model. The idea behind DR_BEV is that a developer demonstrates expertise by the vocab-

ulary in their source code contributions, and this expertise can be applied to anywhere in the

code where that vocabulary exists. DR_BEV is inspired by the work of Matter et al. [52].

48

5.1. Approach 49

First, we present the idea of DR_BEV. Then, we provide details of our implementation, and

lastly, we test DR_BEV on the dataset described in Chapter 4.1.2.

5.1 Approach

We model DR_BEV as an information retrieval system in which documents represent de-

velopers and a search query represents a bug. Given a bug, our objective is to rank the

developers in descending order of expertise towards the bug. To model the expertise of each

developer as a document, we use their source code contributions. To model the bug as a

search query, we use the buggy code execution coverage source code as text.

Let D = {d1, . . . , dm} be the set of m developers. Let V = {w1, . . . , wn} be the vocabulary

of n terms that occur in the code repository. Let Mmxn be a term-document matrix (TDM)

with m rows and n columns. The value Mi,j is equal to the number of times that the

term wj occurs in the source code contributions of developer di. Developer di’s expertise is

modeled by Mi, the ith row of M . Let Q be a query vector, of length n, that represents

a bug. The value of Qj is equal to the number of times that term wj occurs in the code

coverage of the buggy execution. To rank the m developers by their expertise towards the

bug, DR_BEV proceeds as follows. For each developer di, DR_BEV computes the cosine

similarity between Mi and Q as the developer’s expertise score. It then ranks the developers

by descending expertise scores.

As shown in Figure 5.1, DR_BEV has three main stages: expertise modeling, bug modeling,

and developer ranking. In the expertise modeling stage, we model developer expertise in a

TDM based on developers’ source code contributions in the project’s code repository. Next,

in the bug modeling stage, we model the bug as a query vector based on the buggy code

execution. Lastly, in the developer ranking stage, we score developer expertise based on

50 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

Code Repository

Buggy code execution

Term-Document matrix

Query vector

(1) Expertise
modeling

(2) Bug
modeling

(3) Developer
ranking

Developer
recommendation

Figure 5.1: DR_BEV Diagram

cosine similarity, and rank developers by descending expertise scores.

We also perform two time-based expertise penalty techniques introduced by Matter et al. [52]:

• Vocabulary decay: For each commit, the word counts are weighted by a decay factor

that is a factor of the age of the commit. We calculate the time difference, in weeks,

between today and the date of the commit. The word counts are decayed by a factor

of 3% for each week.

• Inactive developer penalty: For each developer, we calculate the time difference, in

years, between today and the date of the developer’s latest commit. Then, we penalize

each developer’s expertise score by 0.2 for each year in this calculated time difference.

5.1.1 Expertise Modeling

Developer expertise is modeled from the developers’ source code contributions in the project’s

code repository. This stage has three steps: (1) code repository mining, (2) text processing,

and (3) vectorization.

5.1. Approach 51

In the code repository mining step, we mine each commit in the project’s code repository as

follows. We retrieve the identification of the author who made the commit, the timestamp

of when the commit was made, and the commit’s source code contribution, which, following

Matter et al.’s [52] definition, we define as comprising of the following components:

• Added code: When a developer adds line of source code, they show expertise for those

lines because it is required to have expertise in the vocabulary of the added code.

• Deleted code: Likewise, it is also required to have expertise in the vocabulary of deleted

code.

• Context code: The vocabulary of code near the added or deleted code is relevant to

those added or deleted lines. We used git’s default three lines of context above and

below blocks of added or deleted code.

• Commit message: Each commit has a short textual message that briefly describes the

changes made.

In the text processing step, we process the text of each source code contribution, which

contains the components indicated above. We tokenize by camel-case and non-alphabetic

characters. In order to reduce the size and complexity of the data, we perform stemming and

stop word removal. We stem each token to its root form. For example, connect, connected,

and connecting are all stemmed to the root connect. We remove stop words such as a, but,

and to.

Finally, we vectorize the processed text. For each developer, we proceed as follows. We create

an empty bag-of-words vector of length n. For each commit made by the developer, we take

the processed text, and count word occurrences to create a vector v of word counts. Then,

we decay v in accordance to the vocabulary decay technique, and lastly, we add this decayed

52 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

vector of counts to the developer’s bag-of-words vector. Each developer’s bag-of-words vector

represents their expertise.

5.1.2 Bug Modeling

The bug is modeled from a buggy execution of code. The lines of source code that were

executed by a failing test case are used as the query text. To create the query vector Q,

this query text is vectorized in the same fashion described in the text processing step of the

expertise modeling stage.

5.1.3 Developer Ranking

Finally, in the developer ranking stage, we rank the developers by descending score of ex-

pertise towards the bug. For developer di, the expertise vector Mi is the i-th row of M .

The bug is represented by the query vector Q. To compare the bug vector to the developer

vectors, we use cosine similarity, as shown in Equation 5.1. The expertise score for developer

di is the cosine similarity between Mi and Q. Lastly, we rank the developers by descending

expertise scores.

Similarity(A,B) =
A ·B

||A|| ||B||
(5.1)

5.2 Experimental Implementation

We implemented our technique in Python. We used PyDriller [71] to mine Git reposito-

ries. For stemming, we used the Porter Stemmer [77], and for stop word removal, we used

5.3. Research Method 53

NLTK’s [70] list of stop words.

5.3 Research Method

We evaluate DR_BEV on the bug dataset described in Chapter 4.1.2. We investigate

DR_BEV ’s effectiveness and efficiency in comparison to WhoseFault, the state-of-the-art

execution-based technique, as well as to report-based techniques (see Chapter 4.1.1). We

address effectiveness in order to give the user confidence in using DR_BEV, and we address

efficiency in order to determine DR_BEV ’s practicality. We measure effectiveness using

NDCG@1, NDCG@5, NDCG@10, and we measure effiency by measuring the execution time

of each technique on each bug.

In this chapter, we seek to answer the following research questions:

4. How does DR_BEV compare to other techniques in terms of effectiveness?

5. How does DR_BEV compare to other techniques in terms of efficiency?

6. How do various parameter settings affect DR_BEV ’s effectiveness?

5.4 Results

5.4.1 Effectiveness

We compare the effectiveness of DR_BEV to that of the benchmarked techniques (see

Chapter 4.1.1), and we perform Wilcoxon significance tests between DR_BEV ’s scores and

other techniques’ scores. We report mean effectiveness scores in Table 5.1. We show the

54 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

effectiveness comparison in Figure 5.2 as bar charts and in Figure 5.3 as box plots. In

both figures, we report scores grouped by project, as well as all projects combined in the

All Projects group. In Table 5.2, we report Wilcoxon p-values. In both Table 5.2 and

Table 5.2, we highlight values, which are less than or equal to 0.05, that indicate a statistically

significant difference in scores.

At all three levels of NDCG, the most effective technique was Xia.

Consider the effectiveness of DR_BEV in comparison to that of the six report-based tech-

niques (i.e. Cubranic, Anvik, Matter, Tamrawi, Lee, and Xia). At NDCG@1, NDCG@5, and

NDCG@10, DR_BEV was more effective than three, two, and two of the six report-based

techniques, respectively, in the All Projects group.

Next, consider the effectiveness of DR_BEV in comparison to that of WhoseFault, the

only existing execution-based technique. At all three levels of NDCG, DR_BEV was more

effective than WhoseFault in the All Projects group.

Finally, consider the Wilcoxon p-values shown in Table 5.2. At NDCG@1, no technique has

performed statistically significantly better than DR_BEV. At NDCG@5, only one technique,

namely Xia, performed statistically significantly better than DR_BEV. At NDCG@10,

two techniques, namely Anvik and Xia, performed statistically significantly better than

DR_BEV.

5.4.2 Efficiency

Table 5.3 shows the mean execution time, in seconds, of each technique on each project’s

bugs, as well as on All Projects combined. Consider the efficiency of each technique in the

All Projects group. DR_BEV was faster than three techniques (i.e. Lee, Xia, WhoseFault),

and slower than four (i.e. Cubranic, Avik, Matter, Tamrawi). On the average bug, DR_BEV

5.4. Results 55

Table 5.1: Mean NDCG Scores for DR_BEV and Existing Techniques (statistically signifi-
cant differences from DR_BEV are highlighted)

Metric Project C
ub

ra
ni

c

A
nv

ik

M
at

te
r

Ta
m

ra
w

i

Le
e

X
ia

W
ho

se
Fa

ul
t

D
R

_
B

E
V

N
D

C
G

@
1

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.556 0.556 0.460 0.254 0.556 0.619 0.286 0.492
Math 0.437 0.417 0.456 0.282 0.388 0.456 0.485 0.388
Mockito 0.763 0.789 0.289 0.763 0.658 0.737 0.500 0.711
Time 1.000 1.000 0.565 0.696 1.000 1.000 0.826 0.783
IO 0.368 0.474 0.526 0.158 0.421 0.579 0.579 0.684
Rhino 0.200 0.333 0.867 0.267 0.333 0.333 0.533 0.867
AspectJ 0.611 0.486 0.333 0.500 0.486 0.556 0.653 0.444
All Projects 0.568 0.550 0.453 0.412 0.524 0.588 0.526 0.532

N
D

C
G

@
5

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.691 0.682 0.682 0.518 0.663 0.823 0.448 0.682
Math 0.572 0.545 0.594 0.491 0.538 0.606 0.556 0.521
Mockito 0.816 0.831 0.534 0.795 0.781 0.797 0.627 0.653
Time 1.000 1.000 0.752 0.888 1.000 1.000 0.936 0.920
IO 0.696 0.742 0.801 0.597 0.676 0.820 0.731 0.873
Rhino 0.661 0.745 0.951 0.712 0.736 0.719 0.828 0.951
AspectJ 0.752 0.738 0.644 0.722 0.684 0.772 0.759 0.664
All Projects 0.708 0.703 0.660 0.632 0.677 0.754 0.644 0.671

N
D

C
G

@
10

Chart 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lang 0.705 0.698 0.707 0.535 0.686 0.826 0.451 0.707
Math 0.594 0.576 0.612 0.526 0.573 0.634 0.562 0.565
Mockito 0.816 0.841 0.615 0.820 0.792 0.815 0.627 0.677
Time 1.000 1.000 0.796 0.888 1.000 1.000 0.936 0.920
IO 0.696 0.742 0.801 0.597 0.713 0.820 0.749 0.873
Rhino 0.661 0.745 0.951 0.712 0.736 0.719 0.828 0.951
AspectJ 0.784 0.758 0.644 0.750 0.726 0.781 0.759 0.664
All Projects 0.724 0.721 0.683 0.654 0.703 0.768 0.647 0.692

56 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

Table 5.2: Wilcoxon Significance Test Between DR_BEV and Existing Techniques

Metric Project C
ub

ra
ni

c

A
nv

ik

M
at

te
r

Ta
m

ra
w

i

Le
e

X
ia

W
ho

se
Fa

ul
t

NDCG@1

Chart 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.41 0.43 0.67 0.01 0.41 0.09 0.02
Math 0.48 0.67 0.26 0.11 1.00 0.33 0.08
Mockito 0.48 0.26 0.00 0.56 0.53 0.76 0.05
Time 0.03 0.03 0.10 0.41 0.03 0.03 0.74
IO 0.06 0.16 0.18 0.00 0.13 0.53 0.48
Rhino 0.00 0.02 1.00 0.01 0.00 0.00 0.10
AspectJ 0.01 0.58 0.19 0.41 0.55 0.09 0.01
All Projects 0.29 0.61 0.02 0.00 0.79 0.09 0.86

NDCG@5

Chart 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.94 0.90 0.81 0.00 0.68 0.00 0.00
Math 0.30 0.73 0.02 0.28 0.81 0.05 0.21
Mockito 0.00 0.00 0.07 0.00 0.00 0.00 0.28
Time 0.03 0.03 0.05 0.41 0.03 0.03 0.74
IO 0.02 0.08 0.13 0.00 0.05 0.43 0.13
Rhino 0.00 0.02 1.00 0.01 0.01 0.01 0.10
AspectJ 0.01 0.01 0.52 0.08 0.58 0.00 0.01
All Projects 0.08 0.11 0.62 0.04 0.80 0.00 0.25

NDCG@10

Chart 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lang 0.98 0.91 0.85 0.00 0.84 0.00 0.00
Math 0.48 0.76 0.09 0.18 0.81 0.07 0.80
Mockito 0.00 0.00 0.29 0.00 0.01 0.00 0.07
Time 0.03 0.03 0.05 0.41 0.03 0.03 0.74
IO 0.02 0.08 0.13 0.00 0.08 0.43 0.13
Rhino 0.00 0.02 1.00 0.01 0.01 0.01 0.10
AspectJ 0.00 0.00 0.52 0.01 0.04 0.00 0.01
All Projects 0.06 0.05 0.50 0.04 0.34 0.00 0.04

5.4. Results 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
 S

co
re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault DR_BEV

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

5
 S

co
re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault DR_BEV

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Project

Cubranic Anvik Matter Tamrawi Lee Xia WhoseFault DR_BEV

(c) Mean NDCG@10 Scores

Figure 5.2: Effectiveness of DR_BEV and Other Techniques in Bar Charts

58 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
1

Sc
or

e

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault
DR_BEV

(a) NDCG@1 Scores

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
5

Sc
or

e

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault
DR_BEV

(b) NDCG@5 Scores

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects All Projects (Medians)
Project

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
10

 S
co

re

Cubranic
Anvik
Matter
Tamrawi
Lee
Xia
WhoseFault
DR_BEV

(c) NDCG@10 Scores

Figure 5.3: Effectiveness of DR_BEV and Other Techniques in Box Plots

5.4. Results 59

Table 5.3: Mean Execution Time (s) Per Bug for DR_BEV and Existing Techniques

C
ub

ra
ni

c

A
nv

ik

M
at

te
r

Ta
m

ra
w

i

Le
e

X
ia

W
ho

se
Fa

ul
t

D
R

_
B

E
V

Chart 1.05 0.24 61.89 1.93 55.99 1440.30 35.77 74.21
Lang 0.13 0.09 6.44 0.49 41.39 153.88 15.56 7.17
Math 0.22 0.17 12.84 0.60 67.99 169.81 111.43 13.45
Mockito 0.22 0.14 17.09 0.52 37.19 206.47 23.26 14.03
Time 0.12 0.05 9.33 0.29 23.22 65.94 9.26 9.80
IO 0.04 0.03 1.93 0.15 20.21 12.80 15.00 2.38
Rhino 0.20 0.19 4.67 0.58 28.15 130.44 2205.83 6.13
AspectJ 2.39 3.64 14.48 4.67 92.31 3749.11 448.71 20.24
All Projects 0.66 0.87 12.28 1.41 57.07 937.54 233.78 13.85

was roughly 68 times faster than Xia, which was the most effective technique (see Figure 5.2).

5.4.3 Sensitivity Analyses

We performed the following sensitivity analyses on DR_BEV :

• Use of Time-Based Expertise Penalties: We compare the effectiveness of using vocab-

ulary decay only, inactive developer penalty only, both penalties, and neither penalty.

• Percentage of Code Coverage Used: Each line of source code that has a fault localization

suspiciousness score greater than 0.0 was executed, or covered, by a failed test case.

The buggy code coverage consists of all lines of source code with a suspiciousness

score greater than 0.0. We test our technique where the buggy source code consists of

different percentages of the most suspiciousness lines of source code. More specifically,

we test the use of 5%, 10%, 20%, 30%, …, 100% of the most suspiciousness source code

lines.

60 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

• Percentage of Project History Used: We compare the effectiveness of using the whole

code repository history for expertise modeling to the effectiveness of using some per-

centage of the most recent history in the code repository. More specifically, we test

the use 5%, 10%, 20%, 30%, …, 100% of the project’s most recent history.

• Text Vectorization Methods: We compare the effectiveness of count vectorization and

TF-IDF vectorization.

Figure 5.4 shows the results of the Use of Time-Based Expertise Penalties analysis. The

results indicate that the inactive developer penalty strongly improves DR_BEV ’s effective-

ness. The two configurations in which the inactive developer penalty was used (i.e. Inactive

Developer and Both) were more effective than the other two configurations (i.e. None and

Vocabulary Decay).

Figure 5.5 shows the results of the Percentage of Code Coverage Used analysis. Consider the

effectiveness of the All Projects group. At NDCG@1, using 100% and 60% of code coverage

yielded the highest effectiveness. At NDCG@5 and NDCG@10, 40% and 100%, respectively

of code coverage yielded the highest effectiveness. One possible explanation for why using

40% or 60% is more effective than using 100% is that Tarantula, the fault localization

technique used, was very accurate, and therefore, using only some percentage of the most

suspicious lines generates a better bug model than using the entire buggy code coverage does.

However, because the percentage of code coverage used does not strongly affect DR_BEV ’s

effectiveness, one should be confident in using an entire buggy code coverage in the case that

fault localization data is unavailable.

Figure 5.6 shows the results of the Percentage of Project History Used analysis. In the

All Projects group, the highest effectiveness at NDCG@1, NDCG@5, and NDCG@10 was

achieved when 10%, 5%, and 10%, respectively, of the project’s history was used. One

5.4. Results 61

possible explanation for why using only the recent commits, rather than the project’s entire

commit history, is more effective is that the developer’s vocabulary of expertise changes

quickly with time. Therefore, only the most recent history is a good representation of the

developers’ expertise. Another possible explanation is that, often, the developer who is most

suitable to fix a bug has very recently made contributions to the source code, and therefore,

the most recent history alone is a strong indication of expertise towards the bug.

Figure 5.7 shows the results of the Text Vectorization Methods analysis. At all three levels of

NDCG, TF-IDF vectorization was more effective than count vectorization in the All Projects

group.

Collectively, the sensitivity analyses indicate that some fine tuning of parameters can improve

DR_BEV ’s effectiveness. The fourth sensitivity analysis (see Figure 5.7) indicates that

replacing count vectorization with TF-IDF vectorization improves the mean NDCG@5 score

for All Projects roughly from 0.67 to 0.71. Additionally, the first sensitivity analysis (see

Figure 5.4) suggests that the expertise penalty techniques can be fine tuned.

5.4.4 Discussion

Recall that in Chapter 4, our benchmarking experiment supported case 1: execution-based

techniques are worse than report-based techniques. We observed that while WhoseFault,

the current state-of-the-art execution-based technique, is worse than existing report-based

techniques, it is not worse by much.

In this chapter, we proposed DR_BEV, a novel execution-based bug assignment technique

based on the vocabulary in a buggy code execution. The results of the experiment in this

current chapter further support the conclusion that execution-based techniques are worse,

but not by much, than report-based techniques. At NDCG@5, Xia was the only technique

62 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
 S

co
re

Project

None Vocabulary Decay Inactive Developer Both

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

5
 S

co
re

Project

None Vocabulary Decay Inactive Developer Both

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Project

None Vocabulary Decay Inactive Developer Both

(c) Mean NDCG@10 Scores

Figure 5.4: Sensitivity Analysis #1: Use of Time-Based Expertise Penalties

5.4. Results 63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

1
 S

co
re

Percentage of Code Coverage Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

5
 S

co
re

Percentage of Code Coverage Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Percentage of Code Coverage Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(c) Mean NDCG@10 Scores

Figure 5.5: Sensitivity Analysis #2: Percentage of Code Coverage Used

64 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

1
 S

co
re

Percentage of Project History Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

5
 S

co
re

Percentage of Project History Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Percentage of Project History Used

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

(c) Mean NDCG@10 Scores

Figure 5.6: Sensitivity Analysis #3: Percentage of Project History Used

5.4. Results 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
 S

co
re

Project

Counts TF-IDF

(a) Mean NDCG@1 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

5
 S

co
re

Project

Counts TF-IDF

(b) Mean NDCG@5 Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chart Lang Math Mockito Time IO Rhino AspectJ All Projects

M
ea

n
 N

D
C

G
@

1
0

 S
co

re

Project

Counts TF-IDF

(c) Mean NDCG@10 Scores

Figure 5.7: Sensitivity Analysis #4: Text Vectorization Methods

66 Chapter 5. DR_BEV : Developer Recommendation Based on Executed Vocabulary

that was statistically significantly better than DR_BEV, and no technique was statistically

significantly better than DR_BEV at all three levels of NDCG. DR_BEV is 68 times more

efficient than Xia, the most effective technique. Our experiment indicates that a user should

have confidence in DR_BEV ’s performance. However, if a high-quality bug report can be

efficiently written, then one could use Xia for higher effectiveness, albeit lower efficiency.

Chapter 6

Conclusions

In this thesis, we made four main research contributions. First, we summarized existing bug

assignment techniques and classified them into a hierarchy of families of similar techniques.

To the best of our knowledge, we have included all published techniques as of the time

of writing. Second, we conducted an empirical study of bug-fix commits in open-source

software projects. In this study, we found out that there exist situations in which a failed

execution alone, and not a bug report, is available for a bug. Third, we benchmarked existing

techniques in order to compare WhoseFault, an execution-based technique, to report-based

techniques. To the best of our knowledge, this is the first study to compare execution-based

and report-based techniques. Our results in this benchmarking experiment indicate that

while report-based techniques perform better than execution-based techniques, execution-

based techniques perform competitively with report-based techniques. Lastly, we proposed

a novel execution-based technique, DR_BEV, which models developer expertise based on

the vocabulary of each developer’s source code contributions. Our experiment indicates that

DR_BEV is more effective and more efficient than the existing state-of-the-art execution-

based technique.

67

68 Chapter 6. Conclusions

6.1 Threats to Validity

6.1.1 Threats to Internal Validity

Threats to internal validity relate to possible errors in the experimentation.

One threat to internal validity in our work has to do with our replication of existing bug

assignment techniques (see Chapter 4.1.1). We have done our best to replicate each technique

as accurately as possible. When we were unsure of any intricate details, we made what we

believed to be the most natural choice for the technique’s design.

Another threat to internal validity has to do with the mapping of developer identifiers in

software repositories (see Chapter 4.1.3). There might have been errors in our mapping

of developer identifiers. The identifiers in the code repositories have mostly consisted of a

full name followed by an email address. In the bug repositories, the identifiers have mostly

consisted of usernames. We have done our best to match identifiers between the bug and

code repositories. For example, given a username in the bug repositories, we opened the

webpage corresponding to that username in the online bug repository. In some instances,

we were able to see the developer’s full name on that page. In other instances, however, we

were not. In those cases in which we were unsure, we made our best judgement regarding

which identifiers match.

A third threat to internal validity has to do with parameter optimization. Our settings for

the parameters of each technique might not have been optimal for each software project

studied, which could affect our results. However, our objective was to determine how well

predetermined parameters, which were presented in each technique’s original paper, suit new

software projects. In order to determine the results when each technique’s parameters are

optimized for each software project, one would have to optimize those parameters for each

6.2. Future Work 69

technique and for each individual software project.

6.1.2 Threats to External Validity

Threats to external validity relate to the generalizability of the experimental results. In our

work, we evaluated the studied techniques on eight open-source software projects. Due to the

very large variety of software projects, we are unable to definitively state that our findings

will hold for any software project in general. However, to reduce this threat, we conducted

our study on real software projects that are extensively used in real-world applications. To

further minimize this threat, more bugs from other software projects should be analyzed.

6.1.3 Threats to Construct Validity

Threats to construct validity relate to the suitability of the evaluation metric used. In our

case, we scored each technique’s effectiveness based on the location of the ground truth

developer in a ranked list of recommended developers. However, there are a number of

possible scenarios in which the ground truth developer is not the one most suitable to fix

the bug. For example, the most suitable developer might not have fixed the bug because

they were unavailable to do so when the bug was discovered. As another example, the most

suitable developer might not have fixed the bug because a novice developer was given the

bug-fixing task for learning purposes.

6.2 Future Work

As future work, DR_BEV should be tested on other software projects. It should also be

tested on a dataset of security vulnerabilities, where the buggy code coverage was produced

70 Chapter 6. Conclusions

with a vulnerability detection technique. Also, other Information Retrieval techniques, such

as topic modeling, should be experimented with. Lastly, in order to evaluate the usage of

DR_BEV by developers, a user application should be developed to easily deploy DR_BEV

on a new software project.

Bibliography

[1] Tricentis, “Software Fail Watch - 5th Edition,” pp. 1–37, 2018.

[2] S. M. H. Dehaghani and N. Hajrahimi, “Which factors affect software projects mainte-

nance cost more?,” Acta Informatica Medica, vol. 21, no. 1, pp. 63–66, 2013.

[3] K. lab, “Damage Control: the Cost of Security Breaches It Security Risks Special Report

Series,” 2015.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” Proceedings - In-

ternational Conference on Software Engineering, vol. 2006, pp. 361–370, 2006.

[5] H. Wu, H. Liu, and Y. Ma, “Empirical study on developer factors affecting tossing path

length of bug reports,” IET Software, vol. 12, no. 3, pp. 258–270, 2018.

[6] G. Jeong, S. Kim, and T. Zimmermann, “Img-929155833-0001.Pdf,” pp. 111–120, 2009.

[7] A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla defect tracking dataset:

A genuine dataset for mining bug information,” IEEE International Working Conference

on Mining Software Repositories, pp. 203–206, 2013.

[8] H. Li, T. Kim, M. Bat-Erdene, and H. Lee, “Software vulnerability detection using

backward trace analysis and symbolic execution,” Proceedings - 2013 International Con-

ference on Availability, Reliability and Security, ARES 2013, pp. 446–454, 2013.

[9] P. Liu, J. Su, and X. Yang, “Research on software security vulnerability detection

technology,” Proceedings of 2011 International Conference on Computer Science and

Network Technology, ICCSNT 2011, vol. 3, pp. 1873–1876, 2011.

71

72 BIBLIOGRAPHY

[10] MeiJunjin, “An approach for SQL injection vulnerability detection,” ITNG 2009 - 6th

International Conference on Information Technology: New Generations, pp. 1411–1414,

2009.

[11] M. K. Gupta, M. C. Govil, and G. Singh, “An approach to minimize false positive

in SQLI vulnerabilities detection techniques through data mining,” 2014 International

Conference on Signal Propagation and Computer Technology, ICSPCT 2014, pp. 407–

410, 2014.

[12] E. Haugh and M. Bishop, “Testing C Programs for Buffer Overflow Vulnerabilities.,”

Ndss, 2003.

[13] M. F. Ringenburg and D. Grossman, “Preventing format-string attacks via automatic

and efficient dynamic checking,” Proceedings of the ACM Conference on Computer and

Communications Security, pp. 354–363, 2005.

[14] D. Kergl, “Enhancing Network Security by Software Vulnerability Detection Using So-

cial Media Analysis Extended Abstract,” Proceedings - 15th IEEE International Con-

ference on Data Mining Workshop, ICDMW 2015, pp. 1532–1533, 2016.

[15] F. Servant and J. a. Jones, “W HOSE F AULT : Automatic Developer-to-Fault Assign-

ment Through,” Proceeding ICSE ’12 Proceedings of the 34th International Conference

on Software Engineering, no. 2, pp. 36–46, 2012.

[16] V. Akila, G. Zayaraz, and V. Govindasamy, “Bug triage in open source systems: a

review,” International Journal of Collaborative Enterprise, vol. 4, no. 4, p. 299, 2014.

[17] D. G. Lee and Y. S. Seo, “Systematic review of Bug report processing techniques to im-

prove software management performance,” Journal of Information Processing Systems,

vol. 15, no. 4, pp. 967–985, 2019.

BIBLIOGRAPHY 73

[18] T. Weissman, “Bugzilla,” 1998.

[19] Atlassian, “JIRA,” 2002.

[20] GitHub, “GitHub Issue Tracker,” 2002.

[21] Pilato, C. Michael, Ben Collins-Sussman and B. W. Fitzpatrick, Version control with

subversion: next generation open source version control. O’Reilly Media, Inc, 2008.

[22] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, “Version Control with Sub-

version (r4543),” vol. 7, 2011.

[23] The CVS Team, “CVS - Open Source Version Control,” 1990.

[24] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, and W. Wang, “Detecting vulnerabilities

in C programs using trace-based testing,” Proceedings of the International Conference

on Dependable Systems and Networks, pp. 241–250, 2010.

[25] W. G. Halfond and A. Orso, “AMNESIA: Analysis and monitoring for NEutralizing

SQL-injection attacks,” 20th IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE 2005, pp. 174–183, 2005.

[26] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self: Probabilistic

reasoning of program behaviors for anomaly detection with context sensitivity,” Pro-

ceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN 2016, pp. 467–478, 2016.

[27] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist

fault localization,” Proceedings - International Conference on Software Engineering,

pp. 467–477, 2002.

74 BIBLIOGRAPHY

[28] D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,” 16th

Int. Conference on Software Engineering and Knowledge Engineering, pp. 92–97, 2004.

[29] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study on bug assignment

automation using Chinese bug data,” 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, ESEM 2009, pp. 451–455, 2009.

[30] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, Automated bug

assignment: Ensemble-based machine learning in large scale industrial contexts, vol. 21.

Empirical Software Engineering, 2016.

[31] S. R. Lee, M. J. Heo, C. G. Lee, M. Kim, and G. Jeong, “Applying deep learning

based automatic bug triager to industrial projects,” Proceedings of the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, vol. Part F1301, pp. 926–931,

2017.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-

sentations in vector space,” 1st International Conference on Learning Representations,

ICLR 2013 - Workshop Track Proceedings, pp. 1–12, 2013.

[33] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the effectiveness

of deep learning for bug triaging,” ACM International Conference Proceeding Series,

pp. 171–179, 2019.

[34] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic software bug triage system (BTS)

based on latent semantic indexing and support vector machine,” 4th International Con-

ference on Software Engineering Advances, ICSEA 2009, Includes SEDES 2009: Sim-

posio para Estudantes de Doutoramento em Engenharia de Software, pp. 216–221, 2009.

[35] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set reduction for bug triage,”

BIBLIOGRAPHY 75

Proceedings - International Computer Software and Applications Conference, pp. 576–

581, 2011.

[36] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using text mining,”

Journal of Software, vol. 8, no. 9, pp. 2185–2190, 2013.

[37] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and multi-feature

tossing graphs to improve bug triaging,” IEEE International Conference on Software

Maintenance, ICSM, 2010.

[38] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “DevNet: Exploring developer collab-

oration in heterogeneous networks of bug repositories,” International Symposium on

Empirical Software Engineering and Measurement, pp. 193–202, 2013.

[39] W. Zhang, S. Wang, and Q. Wang, “KSAP: An approach to bug report assignment

using KNN search and heterogeneous proximity,” Information and Software Technology,

vol. 70, pp. 68–84, 2016.

[40] S. Xi, Y. Yao, X. Xiao, F. Xu, and J. Lu, “An effective approach for routing the bug

reports to the right fixers,” ACM International Conference Proceeding Series, 2018.

[41] J. Huang and Y. Ma, “Predicting the Fixer of Software Bugs via a Collaborative Mul-

tiplex Network: Two Case Studies,” pp. 469–488, 2019.

[42] S. Q. Xi, Y. Yao, X. S. Xiao, F. Xu, and J. Lv, “Bug Triaging Based on Tossing Sequence

Modeling,” Journal of Computer Science and Technology, vol. 34, no. 5, pp. 942–956,

2019.

[43] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “DREX: Developer recommendation with

K-nearest-neighbor search and EXpertise ranking,” Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, pp. 389–396, 2011.

76 BIBLIOGRAPHY

[44] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug repositories,”

Proceedings - International Conference on Software Engineering, pp. 25–35, 2012.

[45] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim, “CosTriage: A cost-aware

triage algorithm for bug reporting systems,” Proceedings of the National Conference on

Artificial Intelligence, vol. 1, pp. 139–144, 2011.

[46] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “DRETOM: Developer recommendation

based on topic models for bug resolution,” ACM International Conference Proceeding

Series, pp. 19–28, 2012.

[47] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee recommendation

using activity profiles,” IEEE International Working Conference on Mining Software

Repositories, pp. 22–30, 2013.

[48] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommendation for bug

resolution,” Proceedings - Working Conference on Reverse Engineering, WCRE, pp. 72–

81, 2013.

[49] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage and severity predic-

tion based on topic model and multi-feature of bug reports,” Proceedings - International

Computer Software and Applications Conference, pp. 97–106, 2014.

[50] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving Au-

tomated Bug Triaging with Specialized Topic Model,” IEEE Transactions on Software

Engineering, vol. 43, no. 3, pp. 272–297, 2017.

[51] G. Canfora and L. Cerulo, “Supporting change request assignment in open source devel-

opment,” Proceedings of the ACM Symposium on Applied Computing, vol. 2, pp. 1767–

1772, 2006.

BIBLIOGRAPHY 77

[52] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-

based expertise model of developers,” Proceedings of the 2009 6th IEEE International

Working Conference on Mining Software Repositories, MSR 2009, pp. 131–140, 2009.

[53] J. Helming, H. Arndt, Z. Hodaie, M. Koegel, and N. Narayan, “Semi-automatic assign-

ment of work items,” ENASE 2010 - Proceedings of the 5th International Conference

on Evaluation of Novel Approaches to Software Engineering, pp. 149–158, 2010.

[54] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-based auto-

matic bug triaging (NIER track),” Proceedings - International Conference on Software

Engineering, pp. 884–887, 2011.

[55] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Assigning change requests to software

developers,” Journal of software: Evolution and Process, pp. 3–33, 2012.

[56] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshyvanyk,

“Triaging incoming change requests: Bug or commit history, or code authorship?,” IEEE

International Conference on Software Maintenance, ICSM, pp. 451–460, 2012.

[57] N. K. Nagwani and S. Verma, “Predicting expert developers for newly reported bugs

using frequent terms similarities of bug attributes,” International Conference on ICT

and Knowledge Engineering, pp. 113–117, 2011.

[58] R. Shokripour, Z. M. Kasirun, S. Zamani, and J. Anvik, “Automatic bug assignment

using information extraction methods,” Proceedings - 2012 International Conference on

Advanced Computer Science Applications and Technologies, ACSAT 2012, pp. 144–149,

2012.

[59] M. K. Hossen, H. Kagdi, and D. Poshyvanyk, “Amalgamating source code authors,

78 BIBLIOGRAPHY

maintainers, and change proneness to triage change requests,” 22nd International Con-

ference on Program Comprehension, ICPC 2014 - Proceedings, pp. 130–141, 2014.

[60] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on historical

bug-fix information,” Proceedings - International Symposium on Software Reliability

Engineering, ISSRE, pp. 122–132, 2014.

[61] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug triaging,” 2015 IEEE

31st International Conference on Software Maintenance and Evolution, ICSME 2015 -

Proceedings, pp. 506–510, 2015.

[62] M. B. Zanjani, H. Kagdi, and C. Bird, “Using developer-interaction trails to triage

change requests,” IEEE International Working Conference on Mining Software Repos-

itories, vol. 2015-Augus, pp. 88–98, 2015.

[63] H. Yang, X. Sun, B. Li, and Y. Duan, “DR-PSF: Enhancing Developer Recommendation

by Leveraging Personalized Source-Code Files,” Proceedings - International Computer

Software and Applications Conference, vol. 1, pp. 239–244, 2016.

[64] X. Peng, P. Zhou, J. Liu, and X. Chen, “Improving bug triage with relevant search,”

Proceedings of the International Conference on Software Engineering and Knowledge

Engineering, SEKE, pp. 123–128, 2017.

[65] Travis, “https://docs.travis-ci.com/user/code-climate.”

[66] Y. Feng, J. A. Jones, Z. Chen, and C. Fang, “Multi-objective test report prioritization

using image understanding,” ASE 2016 - Proceedings of the 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering, pp. 202–213, 2016.

[67] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller, “Scikit-

BIBLIOGRAPHY 79

learn,” GetMobile: Mobile Computing and Communications, vol. 19, no. 1, pp. 29–33,

2015.

[68] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning

on Heterogeneous Distributed Systems,” 2016.

[69] F. Chollet, “Keras,” 2015.

[70] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” 2002.

[71] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework for mining soft-

ware repositories,” ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pp. 908–911, 2018.

[72] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to en-

able controlled testing studies for Java programs,” 2014 International Symposium on

Software Testing and Analysis, ISSTA 2014 - Proceedings, pp. 437–440, 2014.

[73] V. Dallmeier, “iBUGS - Software Engineering Chair (Prof. Zeller) - Saarland University.”

[74] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and

B. Keller, “Evaluating & improving fault localization techniques,” Icse, no. August

2016, 2017.

80 BIBLIOGRAPHY

[75] K. Jarvelin and J. Kekalainen, “IR evaluation methods for retrieving highly relevant

documents,” SIGIR Forum (ACM Special Interest Group on Information Retrieval),

vol. 51, no. 2, pp. 41–48, 2000.

[76] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-

der, “Learning to rank using gradient descent,” ICML 2005 - Proceedings of the 22nd

International Conference on Machine Learning, no. January, pp. 89–96, 2005.

[77] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,

1980.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Review of Literature
	Software Artifacts
	Vulnerability Detection Techniques
	Bug Assignment Techniques
	WhoseFault, an Execution-Based Technique
	Report-Based Techniques: Machine Learning Models
	Report-Based Techniques: Information Retrieval Models

	Empirical Study of Bug-Fix Commits
	Research Method
	Results
	Discussion

	Benchmarking Existing Techniques
	Research Method
	Studied Techniques
	Studied Bugs
	Definition of Ground Truth
	Effectiveness Evaluation Metric
	Efficiency Evaluation Metric
	Experiment Setup

	Results
	Effectiveness
	Efficiency
	Discussion

	DR_BEV: Developer Recommendation Based on Executed Vocabulary
	Approach
	Expertise Modeling
	Bug Modeling
	Developer Ranking

	Experimental Implementation
	Research Method
	Results
	Effectiveness
	Efficiency
	Sensitivity Analyses
	Discussion

	Conclusions
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity

	Future Work

	Bibliography

