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On Improving Distributed Transactional Memory
through Nesting, Partitioning and Ordering

Alexandru Turcu

(ABSTRACT)

Distributed Transactional Memory (DTM) is an emerging, alternative concurrency control
model that aims to overcome the challenges of distributed-lock based synchronization. DTM
employs transactions in order to guarantee consistency in a concurrent execution. When two
or more transactions conflict, all but one need to be delayed or rolled back.

Transactional Memory supports code composability by nesting transactions. Nesting how-
ever can be used as a strategy to improve performance. The closed nesting model enables
partial rollback by allowing a sub-transaction to abort without aborting its parent, thus
reducing the amount of work that needs to be retried. In the open nesting model, sub-
transactions can commit to the shared state independently of their parents. This reduces
isolation and increases concurrency.

Our first main contribution in this dissertation are two extensions to the existing Transac-
tional Forwarding Algorithm (TFA). Our extensions are N-TFA and TFA-ON, and support
closed nesting and open nesting, respectively. We additionally extend the existing SCORe
algorithm with support for open nesting (we call the result SCORe-ON). We implement these
algorithms in a Java DTM framework and evaluate them. This represents the first study of
transaction nesting in the context of DTM, and contributes the first DTM implementation
which supports closed nesting or open nesting.

Closed nesting through our N-TFA implementation proved insufficient for any significant
throughput improvements. It ran on average 2% faster than flat nesting, while performance
for individual tests varied between 42% slowdown and 84% speedup. The workloads that
benefit most from closed nesting are characterized by short transactions, with between two
and five sub-transactions.

Open nesting, as exemplified by our TFA-ON and SCORe-ON implementations, showed
promising results. We determined performance improvement to be a trade-off between the
overhead of additional commits and the fundamental conflict rate. For write-intensive, high-
conflict workloads, open nesting may not be appropriate, and we observed a maximum
speedup of 30%. On the other hand, for lower fundamental-conflict workloads, open nesting
enabled speedups of up to 167% in our tests.

In addition to the two nesting algorithms, we also develop Hyflow2, a high-performance
DTM framework for the Java Virtual Machine, written in Scala. It has a clean Scala API
and a compatibility Java API. Hyflow2 was on average two times faster than Hyflow on
high-contention workloads, and up to 16 times faster in low-contention workloads.

Our second main contribution for improving DTM performance is automated data partition-



ing. Modern transactional processing systems need to be fast and scalable, but this means
many such systems settled for weak consistency models. It is however possible to achieve all
of strong consistency, high scalability and high performance, by using fine-grained partitions
and light-weight concurrency control that avoids superfluous synchronization and other over-
heads such as lock management. Independent transactions are one such mechanism, that rely
on good partitions and appropriately defined transactions. On the downside, it is not usu-
ally straightforward to determine optimal partitioning schemes, especially when dealing with
non-trivial amounts of data. Our work attempts to solve this problem by automating the
partitioning process, choosing the correct transactional primitive, and routing transactions
appropriately.

Our third main contribution is Alvin, a system for managing concurrently running trans-
actions on a geographically replicated data-store. Alvin supports general-purpose transac-
tions, and guarantees strong consistency criteria. Through a novel partial order broadcast
protocol, Alvin maximizes the parallelism of ordering and local transaction processing,
resulting in low client-perceived latency. Alvin can process read-only transactions either lo-
cally or globally, according to the desired consistency criterion. Conflicting transactions are
ordered across all sites. We built Alvin in the Go programming language. We conducted our
evaluation study on Amazon EC2 infrastructure and compared against Paxos- and EPaxos-
based state machine replication protocols. Our results reveal that Alvin provides significant
speed-up for read-dominated TPC-C workloads: as much as 4.8x when compared to EPaxos
on 7 datacenters, and up to 26% in write-intensive workloads.

Our fourth and final contribution is M2Paxos, a multi-leader implementation of Generalized
Consensus. Single leader-based consensus protocols are known to stop scaling once the
leader reaches its saturation point. Ordering commands based on conflicts is appealing
due to the potentially higher parallelism, but is imperfect due to the higher quorum sizes
required for fast decisions and the need to compare commands and track their dependencies.
M2Paxos on the other hand exploits fast decisions (i.e., delivery of a command in two
communication delays) by leveraging a classic quorum size, matching a majority of nodes
deployed. M2Paxos does not establish command dependencies based on conflicts, but it
binds accessed objects to nodes, making sure commands operating on the same object will
be ordered by the same node. Our evaluation study of M2Paxos (also built in Go) confirms
the effectiveness of this approach, getting up to 7× improvements in performance over state-
of-the-art consensus and generalized consensus algorithms.

This dissertation is supported in part by US National Science Foundation under grants CNS
0915895, CNS 1116190, CNS 1130180, and CNS 1217385.
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Chapter 1

Introduction

Until recently, CPU manufacturers were able to increase the performance of their devices by
running them at ever higher frequencies. However around 2004, this trend became unsus-
tainable, and adding multiple processing cores on the same chip became the new standard.
Software developers were forced to embrace concurrency as the means for their programs to
run faster, or perform more advanced processing in a short time.

Handling concurrency correctly is a difficult task. The simple strategy of using a single global
lock may be easy to implement, but it hardly brings any performance benefits, effectively ex-
ecuting all critical sections sequentially. Using fine-grained locks to protect individual pieces
of data enables the much desired scalability, but is inherently error prone. Any mistakes can
lead to hard to trace problems such as deadlocks and race-conditions. Moreover, due to the
randomness of concurrency, these problems may not manifest during testing, misleading the
programmer to ship a defective product.

Using locks also makes code composition difficult. Suppose a library uses locks to control
access to a hash-table and the programmer needs to apply two hash-table operations in an
atomic manner in order to hide the intermediary state from other threads. In this situation,
he or she may introduce extra locks protecting both data structures at the same time,
but this can lead to race conditions or loss of performance if not implemented carefully.
Alternatively, the programmer may try to expose the implementation of the library in order
to understand and then extend its locking mechanism, but again, this is error prone and
moreover it contradicts the encapsulation concept of object-oriented programming.

Transactional Memory (TM) and subsequently, Software Transactional Memory (STM) were
proposed to bring a successful abstraction from the database community, the transaction,
into regular multi-processor programming [48, 106]. Transactions were originally developed
to provide four important properties: atomicity, consistency, isolation and durability (the
ACID properties). In this context, atomicity (or failure atomicity) means that the opera-
tions making up a transaction either all execute to completion, or they appear as if they

1
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atomic {

  acc1.amt += value
  acc2.amt -= value
}

atomic { implicit txn =>
  val acc1 = Hyflow.dir.open[BankAccount](("acc",1))
  val acc2 = Hyflow.dir.open[BankAccount](("acc",2))
  acc1.amt() += value
  acc2.amt() -= value
}

a b

Figure 1.1: Example atomic blocks. In a. objects are assumed to not need opening before being
accessed, as is common for Software Transactional Memory (STM). b. shows the same atomic block
written to Hyflow2’s API, also including object opening.

never started executing. This effectively prevents a transaction from executing partially and
leaving the system in an inconsistent state. The isolation property prevents a transaction
from observing the intermediary states that another parallel transaction may produce while
running. Thus, ACID transactions are serializable: although they may execute concurrently,
the overall effect is the same as if they executed serially, one after another, without any over-
lap. The A and I properties give the illusion that a transaction either executes at a single
instant in time (i.e. atomic execution), or not at all. In TM, transactions are expressed
in the same programming language as the rest of the application through the use of atomic
blocks. An example STM atomic block is shown in Figure 1.1(a).

Lock-based concurrency is even more challenging in the distributed setting. The same prob-
lems are further amplified by the difficulty of debugging distributed systems and their inher-
ent uncertainty. One solution for this problem, Distributed Transactional Memory (DTM)
is an extension of STM to distributed systems. It provides the same easy-to-use abstraction
of transactions expressed in a regular programming language, as illustrated in Figure 1.1(b).

Separate recent efforts brought main-memory storage to traditional Relational DataBase
Management Systems (RDBMS, [109, 52]), which are interfaced using the SQL language.
Yet another separate effort brought transactions to main-memory data-stores [75]. While
this dissertation explicitly targets DTM systems, all three communities mentioned above
relate to in-memory distributed transactions and thus stand to benefit in some degree from
our work.

Performance in DTM is paramount. As a new abstraction trying to replace its predecessor,
DTM must at least match the performance characteristic of distributed locking. As such,
a majority of the research focused on DTM is aiming for increasing its performance. This
quest can be observed in research on directory protocols [119, 8], Multi-Version Concurrency
Control [73], scheduling transactions [9, 55], transaction protocols [102, 11, 101] and DTM
implementations [100, 16, 22].

Our work continues this quest to improve DTM performance and, more generally, the per-
formance of distributed transactions. Towards this purpose we look, in turn, at transaction
nesting, automatic data partitioning, geographically replicated transactions and lease-based
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consensus.

1.1 Transaction Nesting

To solve the code composability problem, TM uses the concept of nesting. A transaction is
nested when it is enclosed within another transaction. Since in TM concurrency control is
handled by an underlying framework or library, application code does not need to know the
details of its callers or callees, thus maintaining encapsulation.

The outer transaction is called parent and the inner transaction is the child. Child transac-
tions can also have their own children, resulting in a tree-like structure. Transactions may
have multiple children, leading to inner transactions that can execute concurrently [116].
However, in this dissertation we will only consider linear nesting [81], where each transac-
tion can only have at most one child, and the bottom-most transaction in the chain is the
only active transaction.

While transaction nesting was studied extensively in non-distributed TM ([83, 4, 78, 80, 81,
116]), this topic was never touched upon in the DTM literature. Nesting can potentially help
improve DTM performance (as it does for non-distributed TM), and we consider important
to evaluate any such improvements.

Closed nesting, as a generic partial rollback mechanism, reduces the amount of work that
needs to be retried in case of transaction aborts. In the distributed context, such work usually
involves opening remote objects — an inherently slow operation due to network latency. For
these reasons, we expect to see closed nesting improving DTM performance. We also seek
to identify what factors and workload characteristics have an influence on performance.

Open nesting reduces isolation by releasing memory locks early, and thus allows more trans-
actions to execute concurrently without aborting. We expect this will directly translate
into greater system throughput (as measured in transactions per second). We again seek to
identify influencing factors.

Finally, irrespective of which algorithms are being used, DTM performance also depends on
the efficiency of the system’s implementation. Being dissatisfied with our current frame-
work, Hyflow, we develop a new framework from scratch, which we named Hyflow2. In
implementing Hyflow2, we focus on performance, ease of use, and rapid prototyping.

1.2 Automatic Data Partitioning

Modern distributed systems require increasing isolation levels, scalable performance, fault-
tolerance and a simple programming model for being easily integrated with transactional
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applications. The recent growth of large scale infrastructures with dozens or hundreds of
nodes needs transactional support ready to scale with them.

Many of the modern transactional storage systems have abandoned strong consistency (e.g.,
serializability) in order to achieve good scalability and high performance [17, 28, 61]. Weak
consistency models (e.g., eventual consistency) incur the expense of allowing some non-
serializable executions, which, if at all tolerated by the application requirements, are more
difficult to deal with for the developers [107]. In fact, it was observed that developers prefer
strong consistency when possible [21].

For this reason, transactional storage systems that offer serializability without forsaking high
speed and high scalability, represent a very promising sweet spot in the overall design space.
One system that approaches this sweet spot for On-Line Transaction Processing (OLTP)
workloads is Granola, as proposed by Cowling and Liskov in [24]. Granola employs a novel
transactional model, independent transactions, to keep overheads and synchronization to a
minimum while guaranteeing serializable distributed transactions. To help reach its high
transaction throughput, Granola relies on storing the data in main memory and operating
upon it using transactions expressed in the application’s native programming language, and
is essentially a DTM system.

One key enabler for good performance in the Granola model is having the data organized in
fine-grained, high-quality partitions that promote the use of single-partition and independent
distributed transactions. This can be considered a drawback for Granola, as developers need
to manually organize the data, choose the transaction primitives, and route transactions
appropriately. Our work focuses on eliminating this drawback by automating the three
tasks.

To reach our goal, we adapt and extend an existing graph-based data partitioning algorithm,
Schism [25], originally proposed for traditional, SQL-based databases. By targeting a DTM
environment, we can reach much higher transaction throughputs than traditional OTLP
workloads [109], and we are presented with some interesting problems that allow us to
innovate.

1.3 Alvin: Geo-Replicated Transactional System

In recent years, there has been an increase in demand for data storage systems capable of
executing distributed transactions spanning across geographic regions. This was reflected
by a significant research interest in geographically distributed computer systems (or GDS,
[107, 60, 120, 21, 77]).

One motivating factor for this trend is the growing number of Internet-scale applications. Ge-
ographically distributed systems are generally employed for two reasons. Firstly, if properly
engineered, a GDS can tolerate major disasters that would bring a whole data-center (site)
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off-line, without service disruptions or data loss. Secondly, GDS can optimize application
performance by exploiting the locality of accesses from geographically-dispersed users.

It is typical for geographically distributed applications not to exhibit high conflicts among
transactions spawned at different sites [77]. This property has encouraged the development
of geo-replicated transactional concurrency control protocols that lower communication costs
when transactions do not conflict, thus boosting performance and scalability. Furthermore,
the ease of programmability is an important goal for any computer system, but it is challeng-
ing to achieve both high performance and good programmability. With distributed systems,
strongly consistent transactions generally lead to great programmability, because they shield
the developers from inconsistent data and partial transactional states, and enable them to
easily reason about application behavior. On the downside, strong consistency is also associ-
ated with poor performance and scalability due to the higher synchronization requirements
and insufficient exploitation of locality.

Thus the concurrency control protocols typically used with geo-replicated transactional sys-
tems can be classified in two categories. The first approach targets high consistency, but
restricts the type of transactions that are allowed [120, 77] and exploiting specific proto-
col optimizations to achieve high performance. The second approach allows general-purpose
transactions, but compromises with a weaker consistency criterion in order to better the per-
formance [6, 107]. This has the negative effect of reduced programmability, as programmers
must cope with the aforementioned issues.

Motivated by this gap between current solutions in this space, we propose a geo-replicated
transactional system called Alvin, which finds an effective trade-off between performance
and strong consistency. Alvin was built around a novel Partial Order Broadcast proto-
col (POB) that globally orders only conflicting transactions while minimizing the number
of communication steps for non-conflicting transactions and avoids relying on a single des-
ignated leader. Alvin was implemented as a DTM framework in the Go programming
language.

1.4 M 2Paxos: Faster General Consensus

Paxos [64, 65] is the most commonly deployed solution for the consensus problem [19]. It
is able to reach agreement between participants interconnected by asynchronous networks,
even in the presence of faults, and it can be employed to easily build strongly consistent
transactional systems [21, 50, 60, 72, 36]. Despite its widespread use, Paxos (as well as
its most commonly deployed variant, Multi-Paxos [65]) is still limited due to its usage of
a single designated leader. When the leader’s resources are exhausted (e.g., CPU, network
bandwidth), the protocol stops scaling, despite the other nodes being underutilized.

Recent research tried to eliminate the bottleneck associated with having a single leader by
allowing all nodes to take leadership for a particular subset of the commands [77, 74, 113].
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These proposals however introduce other costs that prevent scalability, stemming from the
absence of a single point of decision and the competition between leaders in the presence of
conflicting commands.

To provide any benefits at all, multi-leader protocols relax the guarantees they can provide.
Instead of totally ordering all commands, they instead agree on a partial order where con-
flicting commands are totally ordered, whereas non-conflicting commands may be delivered
in different orders at the different nodes participating to the consensus. They solve the
problem of Generalized Consensus [63], which is a generalization of the consensus problem
that requires agreement on an increasing sequence of commands for less than a permutation
of non-conflicting commands. In practice, generalized consensus is enough to provide strong
consistency on top a a transactional replicated data storage system.

The scalability and performance of past solutions to the Generalized Consensus problem are
the result of competing benefits and drawbacks. Firstly, these protocols reduce the number
of communication steps required to reach consensus from three to two, matching the lower
bound for the problem of Consensus in asynchronous systems [66]. Secondly, these protocols
require replies from a super-majority of nodes before a decision is reached. For instance,
assuming N is the number of nodes participating to the consensus, some protocols wait for⌈

3
4
N
⌉

or
⌈

3
4
N − 1

⌉
replies from other nodes [63, 77, 113], whereas (Multi-)Paxos only waits

for a simple majority of
⌊
N
2

⌋
+ 1 replies. Finally, previous Generalized Consensus solutions

need to track, communicate and process the conflict relations between commands, which in
the general case is a rather expensive process.

We thus propose M2Paxos, a solution to the Generalized Consensus problem that employs
a multiple leader strategy, while avoiding the costs incurred by past solutions (i.e., larger
quorum sizes, processing of dependencies). M2Paxos achieves its goals by exploiting the
locality of data accesses, and granting leases to nodes for exclusive ordering privileges on
individual sub-sets of data (partitions). We implement M2Paxos in the Go programming
language.

1.5 Summary of Dissertation Contributions

We design N-TFA and TFA-ON, extensions to the existing Transactional Forwarding Algo-
rithm (TFA) with support for closed nesting, and respectively, open nesting. We implement
N-TFA and TFA-ON in Hyflow, a Java DTM framework and evaluate them on a set of
micro-benchmarks. We find closed nesting has an average performance improvement of only
2% compared to flat nesting, but with a maximum speedup of 84%. Open nesting enabled
up to 30% improvement for write-dominated workloads and increased fundamental conflicts,
and as high as 167% under reduced fundamental conflict workloads. We observe that closed
nesting applies best when transactions do not access many objects, and when the number of
sub-transactions is between 2 and 5. The best speedups for open nesting occur when trans-
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actions are composed of a high number of sub-transactions, and when fundamental conflict
rates are low. To the best of our knowledge, this dissertation contributes the first closed
nesting and open nesting implementations for DTM.

We further verify our results for open nesting by extending another existing STM algorithm
(SCORe, [89]) with support for open nesting. The resulting algorithm (SCORe-ON) was
implemented in Infinispan [75].

We design and implement Hyflow2, a novel high-performance DTM framework for the JVM.
Hyflow2 is the first DTM implementation in Scala, with a Java compatibility API, and with
support for features such as transaction nesting, checkpointing and conditional synchroniza-
tion. At high contention, Hyflow2 proved on average 2x faster than Hyflow, with a peak
of up to 7x at low node counts. At low contention however, Hyflow2 is consistently 8-15x
faster.

We extend the Schism automatic data partitioning algorithm with support for independent
distributed transactions. Thus the newly developed partitioning algorithm suggests parti-
tions that favor both fast single-partition and independent transactions against the slower,
Two-Phase Commit (2PC) coordinated transactions. We develop a mechanism based on
static program analysis for determining edge weights in the graph that Schism uses for
proposing partitions. This essentially enables applying an algorithm like Schism (which
originally only works on SQL workloads) to DTM transactions expressed in a native program-
ming language. We contribute a machine-learning based mechanism for routing transactions,
which is essential for enabling any kind of automatic partitioning in a DTM environment,
where a transaction’s access set is not known a priori. Additional minor contributions in-
clude automatic program refactoring for run-time trace collection, and automatic choice
of an appropriate transaction primitive based on static program analysis. To the best of
our knowledge, this is the first work that provides an end-to-end automated framework for
exploiting independent transactions.

We develop Alvin, the first geo-replicated transactional system that guarantees a strong
consistency level and supports the execution of general-purpose transactions in classic asyn-
chronous environments. We contribute Alvin POB, a novel multi-leader protocol for par-
tially ordering transactions, enabling high scalability in geo-replicated environments. In ad-
dition, the protocol does not need complex local processing for determining the final delivery
order, yielding reduced client-perceived latency. In an extensive evaluation study, Alvin is
shown to outperform state-of-the-art competitors on well-known transactional benchmarks.

Finally, we propose M2Paxos, a novel solution for the Generalized Consensus problem.
M2Paxos does not have the bottleneck of a single leader, while also employing minimal
quorum sizes and not having a slow fall-back path for when contention is encountered.
Additionally, M2Paxos has cheap local processing as it doesn’t need to track relations
between commands. We show M2Paxos scales well and outperforms competitors up to 7×
in a deployment of 49 nodes.
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All of our work is publicly available as at https://bitbucket.org/talex/ .

1.6 Dissertation Organization

This dissertation proposal is organized as follows. In Chapter 2 we summarize relevant
and related previous work. In Chapter 3 we describe our basic system model, our nest-
ing model, and TFA, the base algorithm for all our contributions. Chapter 4 introduces
and evaluates N-TFA, our closed-nested extension to TFA. Open nesting and TFA-ON are
discussed in Chapter 5. In Chapter 6 we introduce Hyflow2, our new-generation DTM
framework. Chapters 7 and 8 introduce and respectively evaluate our automatic data parti-
tioning methodology. Chapter 9 focuses on Alvin. Chapter 10 discusses M2Paxos, while
Chapter 11 provides its detailed algorithm description. Finally, Chapter 12 concludes the
dissertation and discusses potential future work.



Chapter 2

Previous and Related Work

2.1 Distributed Transactional Memory

DTM was first proposed by Herlihy and Sun [49] as an alternative to standard distributed
transactions using Two-Phase Locking and Two-Phase Commit Protocols (2PC) as is stan-
dard in database environments. They use a dataflow -based approach where transactions
execute on a fixed node while the data migrates to the transactions that requires it. One
claimed advantage of this approach is that it does not require a distributed commit proto-
col, making successful commits fast. In order to manage the location of data, the authors
propose a distributed cache-coherence protocol called Ballistic. This protocol, alongside a
contention manager, manage data conflicts and ensure its consistency. On the downside,
it relies on an existing distributed queuing protocol, Arrow [30], that does not take con-
tention into account, and due to its hierarchical structure, scalability is limited — the entire
structure needs rebuilding every time a node joins or leaves the network.

Zhang and Ravindran [119] developed the Relay protocol which takes transactional conflicts
into account and scales better due its use of peer-to-peer data structures. The authors also
introduce Location Aware Cache-coherence protocols (LAC, [118]), where nodes closer to the
data (in terms of communication cost) are guaranteed to locate the object earlier. They show
that LOC protocols, in conjunction with the optimal Greedy contention manager, improve
the makespan competitive ratio, a measure of the efficiency of a transaction execution.

Unlike previous proposals, which do not tolerate unreliable links, Attiya et al. present
Combine [8], a directory protocol that works even in the presence of partial link failures and
non-FIFO message delivery. Combine is however still not network partition tolerant.

Bocchino et al. took an implementation based approach and developed Cluster-STM [12].
They observe that remote communication overheads are the main impediment for scalability,
and thus try to make an appropriate set of design choices, sometimes different than other

9
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cache-coherent STMs. Examples of such choice are aggregating the remote communication
with data communication, and using a single access-set rather than separate read and write-
sets.

Kotselidis et al. developed DiSTM [59], an DTM system optimized for clusters. DiSTM
can be configured with three cache coherence protocols. TCC [42], an existing decentralized
protocol, suffers from large traffic overheads at commit time, as transactions broadcast their
read and write-sets. These overheads are avoided using two newly proposed lease-based
protocols, at the expense of introducing lease bottlenecks and an additional validation step.
In benchmarks, no one protocol achieved greater performance, but rather the best protocol
choice depended was dependent on the amounts of contention and network congestion.

In contrast to cache-coherent DTM, replicated DTM stores multiple writable copies of the
data, and this is a promising approach for achieving fault-tolerance. D2STM is the first
replicated DTM system. Introduced by Couceiro et al [22], it provides strong consistency
even in the presence of failures by using a non-blocking distributed certification scheme.
This scheme is inspired by recent database replication research [85, 87], but employs Bloom
filters in order to reduce the overheads of replica coordination, at the expense of an increased
probability of false aborts.

Asynchronous Lease-based Certification protocol (ALC, [15]) is a protocol for distributed
transaction processing based on asynchronous leases, that enables up to ten times lower
commit latencies. ALC relies on an underlying Optimistic Atomic Broadcast primitive [29]
to establish lease ownership. Once a node has all the leases required for a transaction, it
can certify the transaction locally and finally disseminate its updates using a more efficient
broadcast primitive.

Lilac-TM [46] improves upon the ALC algorithm by dynamically deciding whether and when
to migrate lease ownership or alternatively forward transactions to the node currently owning
the required leases.

Romano et al. report in [96] on implementing a web application using Distributed Transac-
tional Memory, and the experience of its first two years in production. The authors make
several important observations, such as the workload being comprised of only 2% write
transactions, and the average write-set being orders of magnitude smaller than the average
read-set. In [97], they show how DTM would be an appropriate programming model for
applications running in cloud environments (i.e., clusters of hundreds of nodes or more), and
point to several research directions that would help reach this goal.

A number of researchers focused on consistency criteria weaker than serializability in in order
to improve DTM performance. In particular, Multi-Version Concurrency Control (MVCC)
and its associated consistency criterion, Snapshot Isolation (SI) have the advantage of not
generally having to abort read-only transactions. MVCC has been extensively studied in the
database environments and multi-processor STMs [14, 92, 91].

Several DTM systems also use MVCC. ALC [15] relies on MVCC to enable only acquiring
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leases for writes. Peluso et al. introduce the GMU protocol [90], which is the first protocol
to provide Snapshot Isolation and Genuine Partial Replication (i.e., only nodes replicating
used data are involved in the transaction protocol). GMU relies upon several mechanisms. It
employs a new scheme based on Vector Clocks (VC) to determine which version of an object
to be returned by a read operation, and to achieve agreement upon next object version and
the VC value attached to committed transactions. Additionally, prepared transactions wait
in a commit queue (sorted by a particular VC entry) before they are allowed to commit.
The commit operation is effectuated in a standard Two Phase Commit (2PC) fashion. By
disseminating the VC of the oldest transaction still running, old object versions can be safely
garbage collected.

2.2 Nesting in Transactional Memory

Nested transactions (using closed nesting) originated in the database community and were
thoroughly described by Moss in [79]. His work focused on the popular two-phase locking
protocol and extended it to support nesting. In addition to that, he also proposed algorithms
for distributed transaction management, object state restoration, and distributed deadlock
detection.

Open nesting also originates in the database community [34], and was extensively analyzed
in the context of undo-log transactions and the two-phase locking protocol [117]. In these
works, open nesting is used to decompose transactions into multiple levels of abstraction,
and maintain serializability on a level-by-level basis.

One of the early works introducing nesting to Transactional Memory was done by Moss
and Hosking in [81]. They describe the semantics of transactional operations in terms of
system states, which are tuples that group together a transaction ID, a memory location, a
read/write flag, and the value read or written. They also provide sketches for several possible
HTM implementations, which work by extending existing cache coherence protocols. Moss
further focuses on open-nested transactions in [80], explaining how using multiple levels of
abstractions can help differentiate between fundamental and false conflicts and thus improve
concurrency. Ni et al. also discuss the implications of open nesting in [83], and additionally
provide the first open nesting implementation for STM.

Moravan et al. [78] implement closed and open nesting in their previously proposed LogTM
HTM. They implement the nesting models by maintaining a stack of log frames, similar to the
run-time activation stack, with one frame for each nesting level. Hardware support is limited
to four nesting levels, with any excess nested transactions flattened into the inner-most sub-
transaction. In this dissertation, open nesting was only applicable to a few benchmarks, but
it enabled speedups of up to 100%.

Agrawal et al. combine closed and open nesting by introducing the concept of transaction
ownership [4]. They propose the separation of TM systems into transactional modules (or
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Xmodules), which own data. Thus, a sub-transaction would commit data owned by its own
Xmodule directly to memory using an open-nested model. However, for data owned by
foreign Xmodules, it would employ the closed-nesting model and would not directly write to
the memory.

From a different perspective, Herlihy and Koskinen propose transactional boosting [47] as
a methodology for implementing highly concurrent transactional data structures. Boosted
transactions act as an abstraction above the physical memory layer, internally employing
open nesting (or a suspension mechanism) and abstract locks. Boosting works with an
existing concurrent data structure (which it treats as a black box), captures a different
(possibly better) performance-complexity balance than pure open nesting, and is easier to
use and reason about.

2.3 Other Unconventional Database Systems

While not considered Distributed Transactional Memory, a recent line of research is proposing
a complete rewrite of conventional database systems. Stonebraker et al. argue [109] that
conventional DBMS systems, while trying to be provide a solution applicable to a wide
range of problems such as on-line transactional processing (OLTP), data-warehousing, and
stream processing, in reality they do a bad job at all such problems. In [43] the authors
analyze how is the CPU time spent in a conventional DBMS and find out that only a
fraction of time is used to do useful work, while the vast majority of time is spend in
tasks such as resource management, locking and synchronization. Thus, they propose a new
architecture that specifically targets OLTP workloads, and they implement H-Store [53] to
demonstrate its superiority. H-Store stores all the data in the main-memory. Durability is
achieved using network-based replication instead of disk-backed logs. Data is horizontally
partitioned across multiple sites, and each such repository is backed up by a number of
replicas. At each repository, transactions are processed in a single thread. A majority of
transactions in common OLTP workloads only require data from a single site. Such single-
repository transactions are run by H-Store without any concurrency control. H-Store is able
to outperform a leading commercial DBMS by almost two orders of magnitude, while still
guaranteeing strong consistency (serializability).

Cowling and Liskov improve upon H-Store by introducing independent transactions in Gra-
nola [24]. Under this model, single-shot distributed transactions can execute without coordi-
nation between nodes on the critical path as long as the same commit/abort decision can be
individually taken by each repository without an agreement protocol. Read-only and non-
aborting single-shot transactions are good candidates for this model. Repositories vote on a
proposed time-stamp for each transaction and then execute all transactions in time-stamp
order. Voting can be handled asynchronously in a thread separate to the thread executing
transactions.
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Aguilera et al. tackle a similar problem and propose minitransactions [5] as a way to achieve
good performance and scalability. Minitransactions are the result of applying a number of
optimizations to the standard two-phase commit protocol. They significantly reduce the
number of round-trips required to commit a transaction, at the expense of having a severely
constrained transaction primitive (essentially a multi-object compare-and-set) that requires
all its accessed data to be specified in advance. Using this primitive, the authors quickly
implemented a cluster file-system and a group communication service.

We summarize relevant related DTM work in Table 2.1, along with some representative STM
works.
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Serializable Y Y Y Y Y Y Y Y Y Y Y Y Y
MVCC Y Y Y

Replicated Y Y Y Y Y Y Y
Fault-Tolerant Y Y Y Y Y Y
Closed Nesting Y - Y Y
Open Nesting Y
Checkpoints Y

Strong Atomicity † Y † † † Y † Y Y Y Y
Conditional Sync † Y Y

Table 2.1: Summary of DTM related work

† The presence of this feature is not clear from the article.
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2.4 Automatic Partitioning

Partitioning techniques have been widely studied in context of DBMS where the typical ap-
proach is to enumerate possible partition schemes and evaluate them using different method-
ologies. Horticulture [86] is a system similar in spirit to our work. It targets OLTP in
workloads that may sustain temporal skew, and was implemented in H-Store [53], a main-
memory NewSQL system. Horticulture employs a partitioning algorithm derived from a large
neighborhood search. It however lacks support for independent distributed transactions, and
chooses a partitioning strategy at table granularity as opposed to object granularity.

In [82], Nehme and Bruno implement and evaluate several automatic partitioning algorithms
into the query optimizer for a data warehouse system with long, complex queries. Due to
the nature of such a system, the optimization goals are different: data movement costs must
be reduced for each query due to the sheer amount of data involved. The work in [69] also
targets data warehouse systems, but optimizes for data skipping instead. In contrast to these
two approaches, our system aims to reduce distributed transactions when the workload is
composed of short, low-latency OLTP transactions.

In [112], the authors propose a stochastic approach for clustering data in object oriented
DBMS. In context of distributed storage systems, [17] and [20] propose systems which con-
tinuously re-partition data to increase the balancing. Unfortunately these strategies cannot
be easily ported to transaction processing due to the presence of incoming transactional re-
quests. AutoPart [84] is an automated scheme designed for multi-terabyte datasets, without
any OLTP requirements. A dynamic vertical partitioning approach based on query patterns
was published in [95]. However it is better suited for applications where such information
does not tend to change over time.

2.5 Geo-Replicated Transactional Systems

Many modern transactional systems employ geo-replication as a means to reduce data ac-
cess latency and to provide fault-tolerance and disaster recovery. However, most of such
geo-replicated systems chose to relax strong consistency guarantees and instead provide
only eventual consistency, requiring developers to reason about state divergence and manual
merging routines.

Spanner [21] is Google’s globally-replicated database. It provides externally-consistent trans-
actions, and is the first system with such strong guarantees at a global scale. Its architecture
is complex: it relies on the TrueTime API, which exposes the absolute time and the un-
certainty of the time measurement. The uncertainty is kept low by employing multiple
dedicated time servers within each datacenter, each being equipped with modern clock ref-
erences such as GPS and atomic clocks. Internally, each data partition is managed by a
Paxos [64] instance with long-lived leaders in order to agree on a final timestamp for the
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commit of write transactions. Using the TrueTime API, the system can guarantee that only
one Paxos leader exists at any given time. Spanner provides several types of operations:
read-write transactions, read-only transactions, and snapshot reads. Spanner concurrency
control uses two-phase locking for write transactions. Upon a transaction’s commit, a Paxos
write takes place and is assigned a timestamp. This time-stamp is also representative for
the original transactions. In order to ensure that writes are not visible to clients until after
the commit time-stamp is certainly past, Spanner delays the commit, effectively waiting out
the time uncertainty and this introduces additional delays experienced by clients due to the
use of TrueTime API.

Walter [107] is a key-value store with support for transactions. It ensures Parallel Snapshot
Isolation, which offers strong consistency within a site (data-center), but relaxed consistency
across sites. To keep latency low, transactions are only replicated asynchronously across sites.
Walter ensures Parallel Snapshot Isolation, which allows non-conflicting write transactions
that span multiple sites to commit even if they observed incompatible histories. Walter
employs two techniques in order to provide PSI: preferred sites and counting sets. With
preferred sites, each object is owned by a single data-center (its preferred site), and writes to
the object at its preferred site do not need to check for remote conflicts. This is different from
the database concept of primary site, as non-preferred sites are not barred from modifying
an object. Instead, they simply need to check for remote conflicts before proceeding with a
write. Thus, when a transaction accesses objects only at their preferred sites, it can commit
without remote communication. Counting sets (csets) are conflict-free, eventually consistent
data types.

MDCC [60] is an optimistic commit protocol that is able to commit transactions with a single
round-trip across data-centers. MDCC emphasizes reducing transaction latency, and enables
recovery from failure without stalling other transactions. It defaults to Read-Committed
consistency, but the authors claim that other consistency properties could be easily plugged
in. MDCC commits transactions by using one instance of Multi-Paxos [64] per replication
group containing the accessed data items and, if a transaction touches multiple replication
groups, one more communication step is required to reach a consensus among leaders of
the various Paxos instances. On the other hand, MDCC commits transactions by using one
instance of Multi-Paxos [64] (or Generalized Paxos [63] to exploit commutative operations)
per replication group containing the accessed data items and, if a transaction touches multiple
replication groups, an additional phase is required to reach a consensus among the leaders
of the various groups.

Gemini [68] differentiates the desired consistency level depending on operations’ types. While
some operations in a workload may require a high degree of consistency, many others do
not. Authors propose RedBlue consistency, which combines strongly consistent but slow red
operations, with eventually consistent but fast blue operations. It involves the programmer
on deciding which operation is tagged as red or blue.

COPS [70] is a geo-replicated key-value store which implements causal consistency with con-
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vergent conflict handling (or causal+) consistency. COPS supports multi-get transactions,
but no general purpose transactions. COPS requires the use of a client-side library which
tracks dependencies on keys, necessary for ensuring causal+ consistency. Storage nodes then
asynchronously replicate the stream of write operations.

Eiger [71] is a geo-replicated system that offers a richer data model, while maintaining
low transaction latency and supporting both read-only and write-only transactions. Eiger
provides causal consistency by explicitly tracking dependencies on operations, as opposed
to COPS’s tracking of dependencies on data. Read-only transactions are guaranteed to
complete within two rounds of local reads. Write-only transactions use a variant of two-phase
commit (2PC) that is always successful, but may wait for other transactions to complete.

Lynx [120] is a geo-distributed transactional storage that works by chopping transactions
into sequences of pieces. Each piece executes at a different datacenter, and the system
usually replies to clients after the first hop, thus resulting in a very low latency. On the
downside, subsequent hops may not abort a transaction. Conflicts are avoided through the
use of home geo-replicas, which receive all updates for their respective data. Serializability is
ensured by doing an a priori static analysis of the whole workload. Transactions that would
not be serializable using the piece-wise execution model are executed as classic distributed
transactions using two-phase locking and 2PC.

2.6 Consensus

Paxos [64] is perhaps the most widely used solution for the Consensus problem [19]. Partic-
ipants to the Paxos algorithm have three possible roles: proposers, acceptors and learners.
Proposers issue the values that need to be agreed upon following a round of consensus. Ac-
ceptors vote for such values and act as the distributed memory of the protocol. Learners
infer the outcome of every consensus round – they learn the values agreed upon and may
take action to handle them. In practice, nodes are called replicas and usually perform all
three roles at the same time.

In the classic Paxos algorithm, a value is learned after a minimum of four communication
delays. Progress guarantees can not be provided as the Prepare phase may fail in the presence
of multiple concurrent proposals. Multi-Paxos alleviates this problem by letting promises
(the first Paxos round) cover an entire sequence of values. This effectively establishes a
distinguished proposer that acts as a coordinator (also called leader or master). Once a
leader is elected, new values can be learned in only three communication delays and progress
can be guaranteed in the periods of synchrony of the system.

Fast Paxos [67] can eliminate one communication delay by having proposers bypass the
leader and broadcast their request directly to the acceptors. This is called a fast round. If a
fast round fails due to concurrent proposals, a classic Paxos round is needed to recover after
the collision. Thus, in the worst case, it takes six communication delays to learn a value.
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Moreover, acceptors in Fast Paxos have to wait for a number of replies that is greater than
a majority of nodes in the fast rounds (i.e.,

⌈
3
4
N
⌉
, a fast quorum).

Generalized Paxos [63] solves Generalized Consensus [63] that is a variant of Consensus
generalized to agree on an increasing sequence of commands for less than a permutation of
non-conflicting commands. Assuming state machine replication terminology, non-conflicting
(commutative) commands may be delivered in any order, while conflicting commands must
be totally ordered. Generalized Paxos relies on a distinguished node (leader) to detect
command conflicts and enforce an order, and also uses fast quorums as in Fast Paxos. Some
of those limitations are removed by the Fast Genuine Generalized Consensus algorithm [110]
that is able to use optimal quorums size, but still relies on designated leaders.

EPaxos [77] is a leader-less solution to the generalized consensus problem. EPaxos employs
dependency tracking and fast quorums (one smaller than Fast and Generalized Paxos) to
deliver non-conflicting commands using a fast path, in two communication delays. In the
presence of conflicts however, the protocol takes a slow path and uses four communication
delays before delivery.



Chapter 3

Preliminaries: TM, Nesting, TFA

3.1 Primer on Transactional Memory and Nesting

Transactions are a successful abstraction from the database community that give the im-
pression of an atomic execution of a larger piece of code. When a transaction executes
successfully, it is said to commit. Otherwise, it aborts and leaves no evidence that it ever
started executing. If a transaction has to abort, it may retry a fixed number of times.

Transactional Memory can be supported in hardware (Hardware Transactional Memory —
HTM) [76, 93], in software (Software Transactional Memory — STM) [106] or a combination
of the two (hybrid TM) [27]. STM has the unique advantage of being able to run on
commodity hardware. The drawback however is a degradation in performance, as reads and
writes aren’t simple memory operations anymore, but complex functions that implement the
TM protocols.

During a transaction’s execution conflicts may take place. A conflict is said to occur when
two transactions try to access the same memory location, and at least one of those accesses
is a write.

Conflict detection can take place at different times. Using pessimistic concurrency control
the conflicts are detected at the time the memory operations are performed, while under
optimistic concurrency control the detection is postponed and conflicting transactions are
allowed to keep running, but not to commit. The two approaches work best in different
situations: the optimistic strategy gives better results when conflicts are rare (low contention
workload) whereas the pessimistic one performs better under high contention workloads.

Once a conflict is detected, it has to be resolved. In order to resolve the conflicts, there
are two alternatives: (1) Delay one of the transactions in order to allow the other one to
complete, then continue with its execution. (This only works for eager conflict detection.)
(2) Abort one of the transactions and retry it later.

18
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In Transactional Memory, version management refers to the methods employed by the system
for managing writes to the memory. A TM system uses eager version management or direct
update when it writes directly to memory [76]. The previous memory content is recorded
in an undo-log, which is later used to roll back the transaction in the event of an abort.
In such systems, the conflict detection scheme employed must be pessimistic, because write
operations that cause conflicts should not be executed.

The alternative is lazy version management or deferred update. Write operations do not
directly affect the main memory, but instead are recorded in a transaction’s private redo-log.
As a consequence, read operations must also check the redo-log in order to make sure they
observe the most recent value of the desired memory location. Upon commit, the changes
recorded in the redo-log are saved to the shared memory.

Three types of nesting models have been previously studied [44, 81]: flat, closed and open.
They differ based on whether the parent and children transactions can independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the existence of transactions in
inner code. All operations are executed in the context of the outermost enclosing
transaction, leading to large monolithic transactions. Aborting the inner transaction
causes the parent to abort as well (i.e., partial rollback is not possible), and in case of
an abort, potentially a lot of work needs to be rerun.

Closed nesting
In closed nesting, each transaction attempts to commit individually, but inner trans-
actions do not publicize their writes to the globally committed memory. Inner trans-
actions can abort independently of their parent (i.e., partial rollback), thus reducing
the work that needs to be retried, increasing performance.

Open nesting
In open nesting, operations are considered at a higher level of abstraction. Open-nested
transactions are allowed to commit to the globally committed memory independently
of their parent transactions, optimistically assuming that the parent will commit. If
however the parent aborts, the open-nested transaction needs to run compensating
actions to undo its effect. The compensating action does not simply revert the memory
to its original state, but runs at the higher level of abstraction. For example, to
compensate for adding a value to a set, the system would remove that value from the
set. Open-nested transactions breach the isolation property, thus potentially enabling
significant increases in concurrency and performance. However, to be used correctly,
logical isolation is still generally required, and the burden for ensuring it now falls on
the programmers. Therefore, open nesting must be used with extreme caution, and is
generally only recommended for experts.

We illustrate the differences between the three nesting models in Figure 3.1. Here we consider
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T1

T2

Flat subtx accessing shared data structure T1 successfully commits

T2 must abort while T1 is still executing
T2 may proceed after T1 commits

(a) Flat nesting

T1

T2

Closed subtx accessing shared data structure T1 successfully commits

T2's subtx must abort while T1 is still executing
T2's subtx may proceed after T1 commits

(b) Closed nesting

T1

T2

Open subtx accessing shared data structure

T1 successfully commits

T1 subtx commits and releases isolation

T2 subtx only has to abort 
while T1 subtx is executing 

T2 subtx may proceed as 
soon as T1 subtx commits

T2 successfully
commits

(c) Open nesting

Figure 3.1: Simple example showing the execution time-line for two transactions under flat,
closed and open nesting.

two transactions, which access some shared data-structure using a sub-transaction. The
data-structure accesses conflict at the memory level, but the conflict is not fundamental (we
will explain fundamental conflicts later, in Section 3.2.2), and there are no further conflicts
in either T1 or T2. With flat nesting, transaction T2 can not execute until transaction
T1 commits. T2 incurs full aborts, and thus has to restart from the beginning. Under
closed nesting, only T2’s sub-transaction needs to abort and be restarted while T1 is still
executing. The portion of work T2 executes before the data-structure access does not need to
be retried, and T2 can thus finish earlier. Under open nesting, T1’s sub-transaction commits
independently of its parent, releasing memory isolation over the shared data-structure. T2’s
sub-transaction can proceed immediately after that, thus enabling T2 to commit earlier than
in both closed and flat nesting. This example assumes the TM implementation aborts the
minimum amount of work required to resolve the conflict, thus leading to the maximum
performance for each nesting model (in practice, this is accomplished by validating the read
operations and determining the minimal set of transactions that should be aborted).

Besides providing support for code composability, nested transactions are attractive when
transaction aborts are actively used for implementing specific behaviors. For example, con-
ditional synchronization can be supported by aborting the current transaction if a pre-
condition is not met, and only scheduling the transaction to be retried when the pre-condition
is met (for example, a dequeue operation would wait until there is at least one element in
the queue). Aborts can also be used for fault management: a program may try to perform
an action, and in the case of failure, change to a different strategy (try...orElse). In both
these scenarios, performance can be improved with nesting by aborting and retrying only
the inner-most sub-transaction.
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DTM works can be classified into cache-coherent DTM and cluster-DTM. Cache-coherent
DTM [49, 98] maintains copies of the data at the nodes that requires it. A directory protocol
is usually employed to locate the primary copy. When a transaction that modifies a data
object commits, it invalidates all previous copies of the data and effectively migrates the
object to its own node. This approach was proposed by Herlihy and Sun and is called the
data-flow execution model [49].

Alternatively, Cluster DTM [22, 12] replicates the data on a set of closely coupled machines.
The cluster usually employs a group communication protocol [96], a consensus protocol (i.e.,
Paxos), or a lease mechanism [59] for ensuring consistency across replicas.

3.2 System Model

As in [49], we consider a distributed system with a set of nodes {N1, N2, · · · } that commu-
nicate via message-passing links.

Let O = {O1, O2, ...} be the set of objects accessed using transactions. Each object Oj has
an unique identifier, idj. For simplicity, we treat them as shared registers which are accessed
solely through read and write methods, but such treatment does not preclude generality.
Each object has an owner node, denoted by owner(Oj). Additionally, they may have cached
copies at other nodes and they can change owners. A change in ownership occurs upon the
successful commit of a transaction which modified the object.

Let T = {T1, T2, ...} be the set of all transactions. Each transaction has an unique identifier.
A transaction contains a sequence of operations, each of which is a read or write operation
on an object. An execution of a transaction ends by either a commit (success) or an abort
(failure). Thus, transactions have three possible states: active, committed, and aborted.
Any aborted transaction is later retried using a new identifier.

Let O = {O1, O2, ...} be the set of objects accessed using transactions. Every such object
Oj has an unique identifier, idj. For simplicity, we treat them as shared registers which
are accessed solely through read and write methods, but such treatment does not preclude
generality. Each object has an owner node, denoted by owner(Oj). Additionally, they may
have cached copies at other nodes and they can change owners. A change in ownership
occurs upon the successful commit of a transaction which modified the object.

Our implementation executes transactions using the redo-log approach. During the trans-
action’s execution, all object accesses are stored in two temporary buffer called the read-set
and the write-set. At commit-time, if the transaction is still valid, changes are propagated
to the shared state.

When an object is read from the globally committed memory (i.e., the shared state), its
value is stored in the read-set. Similarly, when an object is written, the value is temporarily
buffered in the write-set and does not affect the shared state. Subsequent reads and writes



Alexandru Turcu Chapter 3. Preliminaries: TM, Nesting, TFA 22

are serviced by these sets in order to maintain consistency: inside a transaction, two reads of
the same object (not separated by a write) must return the same value. On abort, the sets
are discarded and the transaction is retried from the beginning. On commit, the changes
buffered in the write-set are saved to the globally committed memory.

A detailed description of the basic protocol (TFA) will be given in Section 3.3.

3.2.1 Nesting Model

Our nesting model is based on Moss and Hosking [81]. While their description uses the
abstract notion of system states, we describe our model in terms of concrete read and write-
sets, as used in our implementation.

With transactional nestings, let parent(Tk) denote the parent (enclosing) transaction of a
transaction Tk. A root transaction has parent(Tk) = ∅. Each transaction may only have one
active child, i.e. parallel nested transactions are outside the scope of this dissertation. A
parent transaction may execute sub-transactions using any of the three nesting models: flat,
closed, or open. We denote this by defining the nesting model of any sub-transaction Tk:

nestingModel(Tk) ∈ {FLAT,CLOSED,OPEN}

Furthermore, root transactions can be considered as a special case of the OPEN nesting
model.

Let’s briefly examine how the four important transactional operations behave in the context
of transaction nesting. As mentioned above, each transaction maintains a redo-log of the
operations it performs in the form of a read-set and a write-set. Reading an object Ok

first looks at the current transaction’s (Tk) read and write-sets. If a value is found, it
is immediately returned. Otherwise, depending on the transaction’s nesting model, two
possibilities arise:

• For nestingModel(Tk) = OPEN , the object is fetched from the globally committed
memory. This case includes the root transaction.

• For nestingModel(Tk) = CLOSED, the read is attempted again from the context of
parent(Tk).

Read operations are thus recursive, going up Tk’s ancestor chain until either a value is found
or an open-nested ancestor is encountered. Write operations simply store the newly written
value to the current transaction’s write-set.

The commit of a closed-nested transaction Tk merges readset(Tk) into readset(parent(Tk))
and writeset(Tk) into writeset(parent(Tk)). Open-nested transactions commit to the glob-
ally committed memory just like root transactions do. They optionally register abort and
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commit handlers to be executed when the innermost open ancestor transaction aborts or
respectively, commits. These handlers are described in Section 5.2.2.

3.2.2 Multi-Level Transactions

We now introduce the concept of multi-level transactions, which is the theoretical model of
open-nesting. Consider a data-structure, such as a set implemented using a skip-list. Each
node in the list contains several pointers to other nodes, and is in turn referenced by multiple
other nodes. When a (successful) transaction removes a value from the skip-list, a number
of nodes will be modified: the node containing the value itself, and all the nodes that hold
a reference to the deleted value. As a result, other transactions that access any of these
nodes will have to abort. This is correct and acceptable if the transactions exist for the sole
purpose, and only for the duration of the data-structure access operations. If however, the
transactions only access the skip-list incidentally while performing other operations, aborting
one of them just because they accessed neighboring nodes in the skip-list would be in vain.
Such conflicts are called false-conflicts : transactions do conflict at the memory level, as one
of them accesses data that was written by the other. However, looking at the same sequence
of events from a higher level of abstraction (the remove operation on a set, etc.), there is no
conflict because the transactions accessed different items.

It is therefore desirable to separate transactions into multiple levels of abstraction. By
making the operations shorter at the lower memory level, isolation at that level is released
earlier, thus enabling increased concurrency. This breaches serializability and must be used
with care. In practice, it is sufficient in most cases to ensure serializability at each abstraction
level with respect to other operations at the same level, while preserving conflicts at higher
levels (i.e., level-by-level serializability [117]). Level-by-level serializability can be achieved
by reasoning about the commutativity of operations at the higher level of abstraction. Two
such operations are conceptually allowed to commute if the final state of the abstract data-
structure does not depend on the relative execution order of the two operations [47]. For
example, in deleting two different elements from a set, the final state is the same regardless
of which of the deletes executes first. In contrast, inserting and deleting the same item from
a set can not commute: which of the two operations executes last will determine the state
of the set.

In order to achieve level-by-level serialization, non-commutative higher-level operations,
when executed by two concurrent transactions, must conflict. Such a conflict is called fun-
damental, as it is essential for a correct execution. One such mechanism for detecting fun-
damental conflicts is by using abstract locks (locks that protect an abstract state as opposed
to a concrete memory location). Two non-commutative operations would try to acquire the
same abstract lock. The first one to execute succeeds at acquiring the abstract lock. The
second operation would be forced to wait (or abort) until the lock is released. Abstract
locks are acquired by open-nested sub-transactions at some point during their execution.
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When their parent transaction commits, the lock can be released. In case the parent aborts,
however, before the lock can be released, the data-structure must be reverted to its original
semantic state, by performing compensating actions that undo the effect of the open-nested
sub-transaction. Referring back to the set example, to undo the effect of an insertion, the
parent would have to execute a deletion in case it has to abort.

Abstract locks can be used to implement read/write locking, mutual exclusion, or even more
complex scenarios, such as compatibility matrices (for encapsulating higher-level reasoning
about commutativity of abstract operations, e.g., in [47])

3.2.3 Open Nesting Safety

Multi-level transactions become ambiguous when open sub-transactions update data that
was also accessed by an ancestor. As described by Moss [80], TM implementations have
multiple alternatives for dealing with that situation (such as leaving the parent data-set
unchanged, updating it in-place, dropping it altogether, and others), which may be confusing
for the programmers using those implementations. We thus decide to disallow this behavior
in TFA-ON: open sub-transactions may not update memory which was also accessed by any
of their ancestors. We thus impose a clear separation between the memory locations accessed
by transactions at the multiple abstraction levels. This separation should make the usage
of open nesting less confusing for programmers. Failure to comply to this rule can easily be
caught by the run-time system and the programmer notified.

Furthermore, the open nesting model’s correctness depends on the correct usage of abstract
locking. Should the programmers misuse this mechanism, race conditions and other hard
to trace concurrency problems will arise. For these reasons, previous works have suggested
that open nesting be used only by library developers [83] – regular programmers can then
use those libraries to take advantage of open nesting benefits.

3.3 Transactional Forwarding Algorithm

TFA [99, 102] was proposed as an extension of the Transactional Locking 2 (TL2) algo-
rithm [31] for DTM. It is a data-flow based, distributed transaction management algorithm
that provides atomicity, consistency, and isolation properties for distributed transactions.
TFA replaces the central clock of TL2 with independent clocks for each node and provides
a means to reliably establish the “happens before” relationships between significant events.
TFA uses optimistic concurrency control, buffering all operations in per-transaction read
and write sets, and acquiring the object-level locks lazily at commit time. Objects are up-
dated once all locks have been successfully acquired. Failure to acquire a lock aborts the
transaction, releasing previously acquired locks and thus avoiding deadlocks.
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N1

N2

N3

x
Tk starts at LC=19

Tk requests O1 at LC=24

O1 is updated at LC=14
ver(O1)=14

RC=24 > LC=16
LC updated to 24

RC=14 < LC=24, OK

O2 is updated at LC=21
ver(O2)=21

RC=29 < LC=39

Tk requests O2 at LC = 29 RC=39 > LC=29; LC:= 39, must fwd txn
First validate ver(O1) < start(Tk)

OK, now start(Tk):=39

ver(O1)=14, still
LC updated to 39

other txn upd O1
ver(O1):=40

T1 tries to commit
T1 locks writeset
and validates readset

O1 is invalid because
ver(O1)=40, was 14

Tk aborts

ver(O1)=40

ver(O2)=21

...

Figure 3.2: Transactional Forwarding Algorithm Example, from [115]

Each node maintains a local clock, which is incremented upon local transactions’ successful
commits. An object’s lock also contains the object’s version, which is based on the value of
the local clock at the time of the last modification of that object. When a local object is
accessed as part of a transaction, the object’s version is compared to the starting time of the
current transaction. If the object’s version is newer, the transaction must be aborted.

Transactional Forwarding is used to validate remote objects and to guarantee that a trans-
action observes a consistent view of the memory. This is achieved by attaching the local
clock value to all messages sent by a node. If a remote node’s clock value is less than the
received value, the remote node would advance its clock to the received value. Upon receiv-
ing the remote node’s reply, the transaction’s starting time is compared to the remote clock
value. If the remote clock is newer, the transaction must undergo a transactional forwarding
operation: first, we must ensure that none of the objects in the transaction’s read-set have
been updated to a version newer than the transaction’s starting time (early-validation). If
this has occurred, the transaction must be aborted. Otherwise, the transactional forwarding
operation may proceed and advance the transaction’s starting time.

We illustrate TFA with an example. In Figure 3.2, a transaction Tk on node N1 starts at a
local clock value LC1 = 19. It requests object O1 from node N2 at LC1 = 24, and updates
N2’s clock in the process (from LC2 = 16 to LC2 = 24). Later, at time LC1 = 29, Tk requests
object O2 from node N3. Upon receiving N3’s reply, since RC3 = 39 is greater than LC1 = 29,
N1’s local clock is updated to LC1 = 39 and Tk is forwarded to start(Tk) = 39 (but not before
validating object O1 at node N2). We next assume that object O1 gets updated on node N2

at some later time (ver(O1) = 40), while transaction Tk keeps executing. When Tk is ready to
commit, it first attempts to lock the objects in its write-set. If that is successful, Tk proceeds
to validate its read-set one last time. This validation fails, because ver(O1) > start(Tk), and
the transaction is aborted (but it will retry later).
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3.4 SCORe

SCORe [89] is a control-flow based, scalable, one-copy serializable partial replication protocol.
It is genuine, as only nodes replicating data touched by a transaction are contacted during
the execution and commitment of the transaction. It also allows read-only transactions to
commit locally (without any remote communication during the commit phase) by ensuring
transactions always read from a consistent snapshot.

SCORe combines a local multi-version concurrency control algorithm with a distributed
logical clock synchronization scheme. Each replica holds multiple versions of the objects it
maintains, which are tagged with a scalar timestamp. The clock synchronization scheme is
used to (a) determine the snapshot visible to transactions, and (b) agree on a final global
serialization order for read-write transactions.

All nodes maintain two scalar variables: commitId stores the timestamp of the last read-write
transaction to commit on that node, and nextId holds the timestamp the node will propose
at the next commit request. Each transaction is associated with a snapshot identifier (sid).
The sid is recorded at the first read operation within each transaction. It is the greatest
of the commitId at the current node, and the commitId at the node servicing the read (if
different). The first read operation in a transaction returns the latest version of the object
being read. All further reads may only observe object versions whose tag number is ≤ sid,
in order to maintain a consistent snapshot.

SCORe commits transactions using an algorithm that can be seen as a combination between
a Two-Phase Commitment (2PC) and the Skeen total order multicast algorithm [40]. 2PC
is used to validate the optimistic execution of update transactions and to ensure the global
state is updated atomically. Skeen’s algorithm is responsible for agreeing on a final commit
ordering across all nodes replicating a certain object. Given that SCORe is a control-flow
algorithm, objects are immobile and do not migrate.

Finally, a node’s nextId is advanced whenever a transaction with a larger sid reads from
that node. This effectively tracks data dependencies between transactions and ensures that
a transaction updating object X is serialized after than all transactions that have observed
a previous version of X.

3.5 DTM Frameworks

Two of our proposed algorithms (N-TFA and TFA-ON) were implemented and evaluated in
Hyflow [98, 99], a DTM framework for Java. Hyflow’s design attempts to be modular by
allowing for pluggable support for lookup protocols, transactional synchronization and recov-
ery mechanisms, contention management policies, cache coherence protocols, and network
communication protocols. Hyflow extends upon Deuce STM [57] and relies on automatic
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byte-code rewriting to provide an API based on annotations, without requiring compiler or
JVM support. Hyflow along with its programming interface and its shortcomings will be
described in Section 6.1.

A third algorithm (SCORe-ON) is implemented in Infinispan [75]. Infinispan is a popular
open-source in-memory data-grid, with support for distributed transactions. Infinispan is
highly configurable, extensible but also complex, is supported commercially and is used in
production world-wide.



Chapter 4

Closed Nesting

We extend TFA to support Closed Nesting and partial aborts. The resulting algorithm,
Nested Transactional Forwarding Algorithm (N-TFA) was implemented in Hyflow and eval-
uated.

4.1 N-TFA Algorithm Description

In TFA, transactions are immobile. Furthermore, we also consider that all sub-transactions
of a transaction Tk are created and executed on the same node as Tk.

Starting from these assumptions, it is straightforward to implement the rules described in
Section 3.2.1. Note that there are two types of commit. The original, top-level commit
model is used when a top-level transaction commits the changes from its replay-log to the
globally committed memory. This commit is only performed after the successful validation
of all objects in the transaction’s read-set, as defined by the TFA algorithm [102]. If the
validation fails, i.e. at least one of the objects’ version is newer than the current transaction’s
starting time, the transaction is aborted. The new merge commit model is used when a sub-
transaction commits the changes from its replay-log to the replay-log of its parent.

A number of questions about how to apply TFA in the context of nested transactions arise.
In TFA, every transaction commit increments the node-local clock and updates the affected
objects’ lock version. Should these operations also be performed upon the commit of a
sub-transaction? Which objects should be processed during the early-validation procedure?
What is the meaning of transaction forwarding inside a sub-transaction?

By answering these questions, we design a protocol which we will call Nested Transactional
Forwarding Algorithm (N-TFA). We must note that two variations of N-TFA could be
obtained based on whether merge commits are conditioned by a read-set validation or occur
unconditionally. In what follows we will only refer to unconditional merge-commits, because

28
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any extraneous validations proved in our experiments to have high overheads that decreased
performance while bringing no benefits.

Assume that transaction Tk opened and read an object O1. Let Tk2 be a sub-transaction of
Tk. Assume that Tk2 also reads object O1, and moreover, Tk2 can successfully commit (O1

was not modified by any other transaction). Intuitively, Tk2 should not update the object’s
lock version when it commits, because, the object as seen by other transactions did not
change. If the version was updated at this point, other unrelated transactions would be
forced to unnecessarily abort due to invalid read-set even if Tk eventually aborts (due to
other objects) without changing O1 in the globally committed memory.

In order to maintain similarity with the original TFA, all objects will be validated against
the outer-most transaction’s starting time. While we could imagine an algorithm where sub-
transaction’s start times were used to validate objects, doing so would only add unnecessary
complexity and would again provide no real benefit. Therefore, all transaction forwarding
operations must be operated upon the starting time of the root transaction.

Summarizing the previous two observations, the starting time of sub-transactions is not
used for object validity verification and the object versions are not updated upon a sub-
transaction’s commit. Consequently, merge-commits and the start of new sub-transactions
are not globally important events and should not be recorded by incrementing node-local
clocks. If the clocks were incremented on such events, remote nodes would need to perform
the transaction forwarding operation unnecessarily, only to find that no objects were changed.
This is undesirable as the forwarding operation bears the overhead of validating all objects
in the transaction’s read-set. Additionally, since no global objects are changed at merge-
commits, no locks need to be acquired for such commits.

Early validation is the process that checks for the consistency of all objects in a transaction’s
read-set before advancing the transaction’s starting time. If early validation was performed
on only the objects in the current sub-transaction (say, Tk2), a situation may arise when
an object in a previous sub-transaction (say, Tk1) becomes inconsistent. In such a case, the
parent transaction’s clock would be advanced, thereby erasing any evidence that Tk1’s object
is inconsistent. Thus, early validation must process all objects encountered to date by the
outer-most enclosing transaction and all of its children.

In case one or more objects are detected as invalid, the upper-most transaction that contains
an invalid object and all of its children should be aborted. In TFA, it was sufficient to stop
the validation procedure when the first invalid object is observed. However, with N-TFA,
all objects within the root transaction must be validated (ideally in parallel) in order to
determine the best point to roll back to.

Let’s now look at an example of N-TFA (Figure 4.1). The top-level transaction Tk is exe-
cuting on node N1. A sub-transaction Tk1 executes and commits successfully. Next, another
sub-transaction Tk2 opens an object O1, which is located on node N2. Tk2 spawns a further
sub-transaction, Tk3 which operates on O1. Assume that at this point sub-transaction Tk3
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N1
executing
txn Tk

N2
O1 is updated
before Tk2 begins

Tk2 requests O1 Tk3 operates on O1, 
which is cached locally

Sub-txn Tk1
does some work 
and commits

x

O1 is updated again 
after being sent to Tk

Sub-txn Tk2

Sub-txn Tk3 nested
inside Tk2

o

An op. by Tk2 triggers 
O1 early validation

O1 validation fails

Tk2 and Tk3 
are aborted, and 

execution is rolled back 
to the start of Tk2, which executes again.

Figure 4.1: Nested Transactional Forwarding Algorithm Example

performs an operation that attempts to validate O1 (such as an early validation or a merge-
commit) and this validation fails. Under TFA, this would abort the root transaction Tk,
including the work done by sub-transaction Tk1. N-TFA on the other hand only aborts as
many sub-transactions are needed to resolve the conflict. In this case, only Tk2 and Tk3 need
to abort. The transaction will be rolled back to the beginning of Tk2, such that the next
operation performed is retrieving a new copy of the previously invalid object, O1.

4.2 Properties

We show that N-TFA maintains the properties of the original TFA, in particular, opacity
and strong progressiveness.

Opacity [38] is a correctness criterion proposed for memory transactions. A transactional
memory system is opaque if the following conditions are met:

• Committed transactions appear to execute sequentially, in their real-time order.

• Any modifications done by aborted or live transactions to the shared state are never
observed by any other transaction.

• All transactions observe a consistent view of the system at all times.



Alexandru Turcu Chapter 4. Closed Nesting 31

Theorem 4.2.1. N-TFA ensures opacity.

Proof. The proof for opacity in TFA can be trivially extended to cover N-TFA. The real-
time ordering condition is satisfied as shown in [102], because changes made to objects by a
transaction are not exposed to other unrelated transactions until the outermost transaction’s
commit phase, when the ordering is ensured through the usage of locks. Within a transaction,
sub-transactions execute serially. There is no need to discuss the ordering of sub-transactions
of different top-level transactions: they are effectively invisible to each other.

Uncommitted changes within a transaction are isolated from outside transactions through
the use of a write-buffer, just as in TFA. Sub-transactions are executed serially and therefore
always observe the correct values. The second condition for opacity is thus satisfied.

Transactions always observe a consistent system state. When N-TFA loads a new object
with a version newer than the outermost transaction’s starting time, it validates all ob-
jects observed by any child sub-transaction. This behavior is identical to the original TFA,
satisfying the third condition for opacity.

Strong Progressiveness is TFA’s progress property. On a transactional memory system,
strong progressiveness implies the following:

• A transaction without any conflicts must commit.

• Among a set of transactions conflicting on a single shared object, at least one of them
must commit.

Theorem 4.2.2. N-TFA ensures strong progressiveness.

Proof. This follows immediately from the proof that TFA is strongly progressive [102], be-
cause the behavior of top-level transactions is identical for both TFA and N-TFA. This is
because, sub-transactions as implemented by N-TFA do not introduce any operations that
can disturb progress:

• External transactions are not affected because no objects are changed and the node-
local clocks are not incremented upon merge model commits.

• Sub-transactions are aborted and retried such that any invalid objects will be re-opened
on retry.

• After a validation procedure, no invalid objects will remain in a transaction that does
not abort.
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4.3 Evaluation

We implemented N-TFA in order to quantify the performance impact of closed nesting in
the distributed STM environment. We also seek to identify the kinds of workloads that are
most appropriate for using closed nesting instead of flat transaction.

4.3.1 Implementation Details

In order to support nesting, we inserted an additional layer of logic between the code of a
parent transaction and the code of its sub-transactions. This extra logic handles the partial
rollback mechanism and the merge-commits. It was designed to be flexible and to provide
support for all three types of nesting: flat, closed and open. While it supports flat nesting
and could, in theory, be automatically inserted for every function call within a transaction,
doing so would unnecessarily degrade performance.

Instead, we chose to manually insert this logic only in those locations where spawning sub-
transactions is desirable. The downside of this approach, at least for now, is that the pro-
grammer must acknowledge the difference between regular function calls and closed-nested
sub-transactions and write his or her code accordingly. Regular function calls must pass a
transactional context variable as an additional parameter (compared to non-transactional
code). Methods that spawn sub-transactions do not need any extra parameters, but must
include the code implementing the extra logic mentioned above. (Modifying the automatic
instrumentation present in both Deuce STM and HyFlow to support this behavior was
deemed unnecessary for our research purposes.)

4.3.2 Experimental Settings

The performance of N-TFA was experimentally evaluated using a set of distributed bench-
marks consisting of two monetary applications (bank and loan) and three micro-benchmarks
(linked list, skip list, and hash table). We record the throughputs obtained when running
the benchmarks with the same set of parameters under both closed and flat nesting, and we
report on the relative difference between them. Most of our figures relay two values: the
average and the maximum. The average value represents multiple runs of the experiment
under increasing number of nodes, while the maximum settles on the number of nodes that
gives the best results in favor of closed nesting. Unfortunately, we cannot compare our re-
sults with any competitor D-STM, as none of the two competitor D-STM frameworks that
we are aware of support closed nesting or partial aborts [11, 16].

We targeted the effect of several parameters:

• Ratio of read-only transactions to total transactions (denoted in figure legends with
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%).

• Length of transaction in milliseconds (L) is used in some tests to simulate transactions
that perform additional expensive processing and therefore take longer time.

• Number of objects (o) is used to control the amount of contention in the system. The
meaning of this number is benchmark-dependent.

• Number of calls (c) controls the number of operations performed per test. In closed-
nested tests, this directly controls the number of sub-transactions.

Our experiments were conducted using up to 48 nodes. Each node is an AMD Opteron
processor clocked at 1.9GHz. We used the Ubuntu Linux 10.04 server operating system and
a network with 1ms end-to-end link delay. Each node spawns transactions using up to 16
parallel threads, resulting in a maximum of 768 concurrent transactions. While this number
may not seem high, we focused on high-contention scenarios by only allowing a low number
of objects in the system.

4.3.3 Experimental Results
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Figure 4.3: Bank monetary application.
First group varies transaction length while
keeping read-ratio constant. Second group
varies the read-ratio for short transactions.

The results of our experiments are shown in Figures 4.2-4.10. Figure 4.2 shows a summary
view of the improvement for each of our benchmarks. Figures 4.3-4.9 provide details on each
of the benchmarks. Finally, Figure 4.10 looks at the scalability of N-TFA.
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Figure 4.4: Loan monetary application.
First group varies transaction length while
keeping read-ratio constant. Second group
varies the read-ratio for short transactions.

20

15

10

5

0

5

10

15

%
 s

pe
ed

up
 c

lo
se

d 
vs

 fl
at

L 10 % 20
L 10 % 35

L 10 % 50

L 10 % 65

L 10 % 80
% 50 L 10

% 50 L 80

% 50 L 160

Results: list

Average
Maximum

Figure 4.5: Linked-list micro-benchmark.
First group varies read-ratio for short trans-
actions. In the second group, transaction
length is varied.

The performance of closed nesting varies significantly compared to flat nesting (see Fig-
ure 4.2). The single worst slowdown recorded was 42%, while the best speedup was 84%.
Across all experiments, closed nesting proved to be on average 2% faster than flat nest-
ing. However, the performance improvements depend strongly on the workload. Within our
benchmarks, closed nesting performed worst for Skip-list (10.4% average slowdown) and best
for Bank (15.3% average speedup).

These results lead us to believe that in workloads where each transaction accesses many
different objects (like in Linked-list and Skip-list), closed nesting will be slower than flat
transactions. On the other hand, in workloads where transactions access few objects (like
Bank, Loan and Hash-table), greater benefit can be obtained from closed nesting.

The most reliable parameter to influence the behavior of closed nesting appears to be the
number of calls. In both Hash-table (Figure 4.6 groups 1 and 3) and Skip-List (Figure 4.8
between groups), we observe that the best performance is achieved with around 2-5 calls per
transaction (workload dependent), after which it declines.

The other parameters that we observed (read ratio and transaction length) did not lead
to any consistent trends. In some cases, increased read-ratio lead to better performance
(e.g. Loan in Figure 4.4 group 2 and Hash-table with c = 5, o = 7 in Figure 4.7 group 3).
Other cases showed a sweet spot in the middle of the range (Hash-table with c = 3, o = 7 in
Figure 4.7 groups 2 and 3). Yet other cases show the opposite effects: performance negatively
correlated with read-ratio on Skip-list (see Figure 4.9 groups 1 and 3), or worst performance
in the middle of the range (Skip-list in Figure 4.9 group 2, Bank in Figure 4.3 group 2
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and, most obviously, Linked-list in Figure 4.5 group 1). Transaction length has a similar
unpredictable influence: negative correlation on Bank (Figure 4.3 group 1) and Hash-table
(Figure 4.6 group 2), middle range peak on Loan (Figure 4.4 group 1) and middle range dip
on Skip-list (Figure 4.9 group 1).

The number of objects parameter was only varied in one benchmark (Hash-table), so we
cannot formulate any trends. This parameter did not apply in other benchmarks such as
as Linked-list and Skip-list. In our particular case we observe that closed nesting seems to
benefit somewhat from the reduced contention enabled by more hash buckets (Figure 4.6
between groups 1 and 3).

From the experiment to evaluate closed nesting’s scalability (Figure 4.10), we observe that
the performance drops with increasing nodes until about 19 concurrent transactions per
object (as seen on Bank in group 1: 12 nodes × 16 threads / 10 objects). After that
threshold, closed nesting performance increases relative to flat nesting.

4.4 Conclusion

We presented N-TFA, an extension of the Transactional Forwarding Algorithm that im-
plements closed nesting in a Distributed Software Transactional Memory system. N-TFA
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guarantees opacity and strong progressiveness. We implemented N-TFA in the HyFlow DTM
framework, thus providing, to the best of our knowledge, the first DTM implementation to
support closed nesting. Our N-TFA implementation, although is on average only 2% faster
than flat transactions, enables up to 84% speedup in limited cases.

We determined that closed nesting applies better for simple transactions that access few
objects. The number of simple sub-transactions is important for the performance of closed-
nesting, and we found that N-TFA performs best with 2-5 sub-transactions. N-TFA scales
somewhat better than TFA, although the performance dips at around 19 concurrent trans-
actions per object.

Closed nesting however fails as a simple, general purpose method for increasing DTM per-
formance. This is because in two out of five benchmarks, closed nesting is on average slower
than flat transactions. In another two benchmarks the average speedup was less than 5%.
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Chapter 5

Open Nesting

We first describe the Transactional Forwarding Algorithm with Open Nesting (TFA-ON),
TFA’s extension to support open nesting. We then describe key details of its implementation
in the HyFlow DTM framework. We proceed to evaluate it experimentally and analyze the
results.

5.1 TFA with Open Nesting (TFA-ON)

We describe TFA-ON with respect to the TFA algorithm and N-TFA (Section 4.1), its closed-
nesting extension. The low-level details of TFA were summarized in Section 3.3, and we omit
them here. In TFA-ON, just as in TFA, transactions are immobile. They are started and
executed to completion on the same node. Furthermore, all children of a given transaction
Tk are created and executed on the same node as Tk.

Open-nested sub-transactions in TFA-ON are similar to top-level, root transactions, in the
sense that they commit their changes directly to the globally committed memory. This
affects the behavior of their closed-nested descendants. Under TFA and N-TFA, only the
start and commit of root transactions were globally important events. As a result, the node-
local clocks were recorded when root transactions started, and the clocks were incremented
when root transactions committed. Also, transactional forwarding was performed upon the
root transaction itself.

Under TFA-ON, open-nested sub-transactions are important as well: their starting time
must be recorded and the node-local clock incremented upon their commit. Closed-nested
descendants treat open-nested sub-transactions as a local root : they validate read-sets and
perform transactional forwarding with respect to the closest open-nested ancestor. Simplified
source code of the important TFA-ON procedures is given in Figure 5.1.

When transactional forwarding is performed, all the read-sets up to the innermost open-

38
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class Txn {

// TFA−ON read−s e t v a l i d a t i o n rou t ine
v a l i d a t e ( ) {
// v a l i d a t e r ead s e t s from s e l f u n t i l
// innermost open ances tor
Txn t = this ;
do {
i f ( ! t . ReadSet . v a l i d a t e (

innerOpenAncestor . s tart ingTime ) )
abort ( ) ; // v a l i d a t i o n f a i l e d

t = t . parent ;
} while ( t != innerOpenAncestor ) ;
// v a l i d a t i o n s u c c e s s f u l
}

forward ( int remoteClk ) {
i f ( remoteClk>innerOpenAncestor . s tart ingTime ) )
{ v a l i d a t e ( ) ; // abor t s txn on f a i l u r e

innerOpenAncestor . s tart ingTime = remoteClk ;
}
}

// TFA−ON commit procedure
commit ( ) {
i f ( nest ingModel == OPEN) {
i f ( checkCommit ( ) ) {

wr i t eSe t . commitAndPublish ( ) ;
hand le r s . onCommit ( ) ;

parent . hand le r s += myCommitAbortHandlers ;
} else hand le r s . onAbort ( ) ;
} else i f ( nest ingModel == CLOSED) {
// merge readSet , wr i teSe t , l o c kSe t and
// hand lers in to parent ’ s
}
}

// Cal l ed when abor t ing a t ransac t i on due to
// ear ly−v a l i d a t i o n /commit f a i l u r e , e t c
abort ( ) {
i f ( ! committing )
hand le r s . onAbort ( ) ;

throw TxnException ;
}

// acqu i r e s locks , v a l i d a t e s read−s e t
checkCommit ( ) {
try {

wr i t eSe t . acqLocks ( ) ;
l o ckSe t . acqAbsLocks ( ) ;
v a l i d a t e ( ) ;
return true ;

} catch ( TxnException ) {
l o ckSe t . r e l e a s e ( ) ;
wr i t eSe t . r e l e a s e ( ) ;
return fa l se ;

}
}

Figure 5.1: Simplified source code for supporting Open Nesting in TFA’s main procedures.
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nested boundary must be early-validated. Validating read-sets beyond this boundary is
unnecessary, because the transactional forwarding operation that is currently underway poses
no risk of erasing information about the validity of such read-sets.

5.1.1 SCORe with Open Nesting (SCORe-ON)

For the most part, SCORe-ON transactions (both parents and open-nesting children) be-
have similarly to normal SCORe transactions, as described in Section 3.4. However, due to
snapshot reads (MVCC) and the fact that SCORe commits read-only transactions differ-
ently from read-write transactions, special treatment is needed for the various parent/child
combinations. We discus how SCORe-ON handles these combinations bellow:

Read-write parent, read-write child. This is the normal behavior where both parent
and child undergo the distributed commitment protocol. The child acquires any needed
abstract locks, which get passed to the parent upon the sub-transaction’s commit.

Read-only parent, read-write child. In this situation, the parent must be treated as a
read-write transaction and undergo the distributed commitment protocol. More specifically,
the read-set must be validated at commit time. Failure to do so may allow a sub-transaction
to make changes based on stale data, thus breaking serializability.

Read-write parent, read-only child. To ensure correctness in this case, SCORe-ON
must acquire abstract locks for all read-only sub-transactions. This guarantees a higher-
level read operation can not become stale, potentially leading the parent transaction execute
an incorrect write operation. A simple way to implement lock acquisition is as normal DTM
read-write operations, effectively transforming the child into a read-write sub-transaction
that must undergo commit-time validation. Thus, the snapshot reads optimization can not
be applied to any sub-transaction that requires abstract locks. This again is needed for
maintaining correctness.

Read-only parent, read-only child. This case is essentially a whole read-only transaction.
In SCORe, read-only transactions are executed using snapshot reads and never need to abort.
Applying open-nesting semantics to this case would negate this optimization. To avoid this,
the programmer should instead use normal flat nesting. If this case is not spotted at design
time, the system would unnecessarily acquire abstract locks for read-only sub-transactions,
slowing transaction execution and reducing concurrency.

5.2 Mechanisms and implementation

Beyond the necessary protocol modifications as described in TFA-ON and SCORe-ON, sev-
eral additional mechanisms are needed in order to support open nesting in an actual im-
plementation. These mechanisms relate to dealing with abstract lock management and the
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execution of commit and compensating actions, as explained in Section 3.2.2.

5.2.1 Abstract locks

Abstract locks are acquired only at commit time, once the open-nested sub-transaction is
verified to be free of conflicts at the lower level. Since abstract locks are acquired in no
particular order and held for indefinite amounts of time, deadlocks are possible. Thus, we
choose not to wait for a lock to become free, and instead abort all transactions until the
innermost open ancestor. This releases all locks held at the current abstraction level.

We implemented two variants of abstract locking: read/write locks and mutual exclusion
locks. Locks are associated with objects, and each object can have multiple locks. Our data-
structure designs typically delegate one object as the higher level object, which services all
locks for the data-structure, and its value is never updated (thus never causing any low-level
conflicts).

5.2.2 Defining Transactions and Compensating Actions

Commit and compensating actions are registered when an open-nested sub-transaction com-
mits. They are to be executed as open-nested transactions by the innermost open-nested
ancestor, when it commits, or respectively, aborts. Closed-nested ancestors simply pass these
handlers to their own parents when they commit, but they have to execute the compensating
actions in case they abort.

We chose to use anonymous inner classes for defining transactions and their optional com-
mit and compensating actions. Compared to automatic or manual instrumentation, this
approach enables rapid prototyping as the code for driving transactions is simple and re-
sides in a single file. Thus, for using open-nested transactions, one only needs to subclass
our Atomic<T> helper class and override up to three methods (atomically, onCommit,
onAbort). The desired nesting model can be passed to the constructor of the derived class;
otherwise a default model will be used. The performance impact of instantiating an object
for each executed transaction is insignificant in the distributed environment, where the main
factor influencing performance is network latency.

We aimed to make the mechanism for defining open nested transactions consistent across
implementations. Specifically, the Atomic<T> acts as a compatibility layer above both
Infinispan and Hyflow, and abstracts away the API differences between frameworks — In-
finispan uses a map-like interface for accessing data (i.e, get and set), while Hyflow has a
directory for keeping track of objects (i.e., open and register). Hyflow’s directory implemen-
tation was reused in TFA/Infinispan, in order to support object migrations, as required by
TFA and the data-flow model. Furthermore, our Atomic<T> layer relieves the user from
having to know the actual model currently in use (data-flow or control-flow).
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new Atomic<Boolean>(NestingModel .OPEN) {
private boolean i n s e r t e d = fa l se ;
@Override boolean a tomica l l y (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
i n s e r t e d = bst . i n s e r t (7 , t ) ;
t . acquireAbsLock ( bst , 7 ) ;
return i n s e r t e d ;
}
@Override onAbort (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
i f ( i n s e r t e d ) bst . d e l e t e (7 , t ) ;
t . re leaseAbsLock ( bst , 7 ) ;
}
@Override onCommit (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
t . re leaseAbsLock ( bst , 7 ) ;
}
} . execute ( ) ;

Figure 5.2: Simplified transaction example for a BST insert operation. Code performing the
actual insertion is not shown.

Figure 5.2 shows how a transaction would look in our implementations. Notice how the
onAbort and onCommit handlers must request (open) the objects they operate on. They
cannot rely on the copy opened by the original transaction, as this copy may be out-of-date
by the time the handler executes (automatic re-open may be a way to address this issue).

5.2.3 Transaction Context Stack

Meta-data for each transaction (such as read and write-sets, starting time, etc.) is stored in
Transaction Context objects. While originally in HyFlow and Infinispan each thread had its
own context object, in order to support nesting, we arrange the context objects in thread-
local stacks. Each sub-transaction (closed or open) has a context object on the stack. For
convenience, we additionally support flat-nested sub-transactions, which reuse an existing
object from the stack instead of creating a new one for the current sub-transaction.

5.3 Evaluation

The goals of our experimental study are finding the important parameters that affect the
behavior of open nesting, and based on those, identifying which workloads open nesting
performs best in. We evaluate and profile open nesting in our implementation. We quantify
any improvements in transactional throughput relative to flat transactions and compare
these with the improvements enabled by closed nesting alone. We focus in our study on
micro-benchmarks with configurable parameters.
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Figure 5.3: Performance relative to flat transactions, with c = 3 calls per transaction and varying
read-only ratio. Both closed nesting and open nesting are included. (TFA-ON/Hyflow)

5.3.1 Experimental Settings

The performance of TFA-ON and SCORe-ON was experimentally evaluated using four dis-
tributed micro-benchmarks including three distributed data structures (skip-list, hash-table,
binary search tree), and an enhanced counter application. Each protocol was implemented
in both Hyflow and Infinispan, for a total of four implementations.

Our evaluation is focused mostly on TFA-ON/Hyflow. Given that Hyflow is our DTM frame-
work research prototype, we were able to easily collect a variety of metrics that allowed us
to perform a comprehensive analysis of open nesting behavior. The remaining three im-
plementations (TFA-ON/Infinispan, SCORe-ON/Infinispan and SCORe-ON/Hyflow) were
evaluated at a higher level, to confirm that our findings are still valid across different base
algorithms and different software frameworks. Unfortunately, we cannot compare our re-
sults with any competitor DTM, as none of the two competitor DTM frameworks that we
are aware of support open nesting [11, 16].

For TFA-ON/Hyflow, we ran the benchmarks under flat [99], closed [115], and open nesting
for a set of parameters. We measured transactional throughput relative to TFA’s flat trans-
actions. Each measurement is the average of nine repetitions. Additionally, we quantify
how much time is spent under each nesting model executing the various components of a
transaction execution:

• Committed/aborted transactions.

• Committed/aborted sub-transactions (closed and open nesting).
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Figure 5.4: Performance relative to flat transactions at a fixed read-ratio with varying number
of calls. Closed-nesting is depicted, but the individual curves are not identified to reduce clutter.
(TFA-ON/Hyflow)
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• Committed/aborted compensating/commit actions (open nesting only).

• Waiting time after aborted (sub-)transactions (for exponential back-off).

Other data that we recorded includes:

• Number of objects committed per (sub-)transaction.

• Which sub-transaction caused the parent transaction to abort.

Unfortunately, we cannot compare our results with any competitor DTM, as none of the two
competitor DTM frameworks that we are aware of support open nesting [11, 16].

The skip-list, hash-table, and BST benchmarks instantiate three objects each, then perform
a fixed number of random set operations on them using increasing number of nodes. Three
important parameters characterize these benchmarks:

• Read-only ratio (r) is the percentage of the total transactions which are read-only. We
used r ∈ {20, 50, 80}.

• Number of calls (c) controls the number of data-structure operations performed per
test. Each operation is executed in its own sub-transaction. We used c ∈ {2, 3, 4, 8}.

• Key domain size (k) is the maximum number of objects in the set. Lower k values lead
to increased semantic conflicts. Unless otherwise stated, we used k = 100.

The fourth benchmark (enhanced counter) was designed as a targeted experiment where the
access patterns of a transaction are completely configurable. Transactions access counter
objects which they read or increment. Transactions are partitioned into three stages: the
preliminary stage, the sub-transaction stage, and the final stage. The first and last stages
are executed as part of the root transaction, while the middle runs as a sub-transaction.
Each stage accesses objects from a separate pool of objects. The number of objects in the
pool, the number of accesses, and the read-only ratio are configurable for each stage. We
also enable operation without acquiring abstract locks, thus emulating fully commutative
objects.

Our experiments were conducted on a 48-node testbed. Each node is an AMD Opteron
processor clocked at 1.9GHz. We used the Ubuntu Linux 10.04 server OS and a network
with 1ms end-to-end link delay.

5.3.2 Experimental Results

We start with our TFA-ON/Hyflow experimental study before we move on to the other
implementations. For all the data-structure micro-benchmarks, we observed that open nest-
ing’s best performance improvements occur at low read-only ratio workloads. Figure 5.3
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Figure 5.5: Time spent in committed vs. aborted transactions, on hash-table with r = 20 and
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Figure 5.6: Overhead of successful open-nested transactions. Plotted is the relative ratio of
the average time taken by successful open-nested transactions to the average time taken by
successful flat transactions. Closed-nested transactions are also shown, with dotted markers
and without identification. (TFA-ON/Hyflow)
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(a) Committed transactions (b) Aborted transactions due to abstract lock acquisi-
tion failure

Figure 5.7: Breakdown of the duration of various components of a transaction under open nesting,
on hash-table with r = 20 and c = 4. (TFA-ON/Hyflow)
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Figure 5.9: Throughput relative to flat nesting with increased key space k = 1000 and write-
dominated workloads r = 20. (TFA-ON/Hyflow)

shows how open nesting throughput climbs up to a maximum and then falls off faster than
either flat or closed nesting as contention increases due to more nodes accessing the same
objects. Figure 5.3 also shows the effect that read-only ratio has on the throughput. It is
noticeable that on read-dominated workloads, open nesting actually degraded performance.
Closed-nesting constantly stayed in the 0-10% improvement range throughout our experi-
ments (closed nesting behavior is uninteresting and will henceforth be either omitted from
the plots or shown without identification markers to reduce clutter).

Focusing on write-dominated workloads (r = 20 and r = 50), Figure 5.4 shows how the
maximum performance benefit of open nesting generally increases as the number of sub-
transactions increases. For more sub-transactions however, the benefit of open nesting occurs
at fewer nodes and falls off much faster with increasing number of nodes. The maximum
improvements we have observed (with reduced key-domain, k = 100) are 30% on skip-list
with r = 20 and c = 4, 31% on hash-table with r = 20 and c = 8, and 29% on BST with
r = 20 and c = 8 [114]. On skip-list it is noticeable that at high contention (c = 8) the
region of maximum benefit disappears and the performance decreases monotonously.

These observations can be explained by examining how is the time spent when using open
nesting. Figure 5.5 shows how the time taken by successfully committed transactions under
open nesting and closed nesting increases at a similar rate. However, open nesting has a sig-
nificant overhead, caused by the increased rate of commits. This effect is more pronounced
in read-dominated workloads, where object updates are rare, and as a result, read-set early-
validations under flat-nesting are also rare (early-validations are performed when a commit
is detected at another node). In open nesting however, the read-set must be validated for
every sub-transaction commit, thus adding multiple network accesses to the cost of success-
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ful transactions. Figure 5.6 shows that the average overheads of open nesting relative to
flat transactions (50-80% on hash-table and 40-50% on skip-list) are significant and higher
than that of closed nesting (3-7% on hash-table and 5-16% on skip-list). We observe the
overheads are benchmark dependent, and are lower for workloads which access more objects
in every sub-transaction. This is apparent when comparing Figures 5.6(b) and 5.6(a), and
further experiments we have performed with higher nodal levels on skip-list [114] confirm
our observation.

On the other hand, the time taken by aborted transactions in open nesting (Figure 5.5) is
much lower at low node-counts, but increases rapidly for higher node-counts. Examining
the average time taken by the various stages of a transaction (Figures 5.7(a) and 5.7(b)), we
see that the duration of transactions (committed or aborted) does increase with increasing
number of nodes, but this increase is relatively small. Moreover, individual failed transactions
consistently take less time than committed ones. Thus, the rapid increase in total time
taken by aborted transactions (and therefore a decrease in overall throughput) can only be
explained if there is a significant increase in the number of aborts. The data upholds this
hypothesis, as shown in Figure 5.8. Note that in our data-structure benchmarks under open
nesting, all transaction (full) aborts are caused by abstract lock acquisition failure. With
respect to the top-level transactions, abstract locks are acquired eagerly – when the sub-
transaction which performed the access commits. When semantic conflicts are frequent, this
strategy will cause more aborts and lower performance compared to TFA’s strategy, which
defers all lock acquisitions to the end of each top-level transaction.

Intuitively, the number of aborts is lower when there are fewer sub-transactions competing
for the same number of locks, or when the number of available abstract locks is increased.
These effects are also illustrated in Figure 5.8. Increasing the number of calls leads to a rapid
increase in the number of aborts. However, the key space k has a more pronounced effect.
Setting k = 1000 reduced the frequency of semantic conflicts and abstract lock contention.
As a result, the number of aborts as compared to other configurations in Figure 5.8 became
negligible, and thus the performance increase of open nesting is more stable and more signif-
icant than for the cases we previously discussed. In Figure 5.9, we show throughput increase
up to 51% on Skip-list (at c = 4 and r = 20) and up to 167% on Hash-table (at c = 8 and
r = 20). Benefits for open nesting become possible even in non-write-dominated workloads:
with c = 3 on skip-list, we have found 12% improvement at r = 80 and 21% improvement
at r = 50 [114].

In our enhanced counter micro-benchmark we observed improvements consistent with our
previous findings (plot in [114]). However, these improvements only manifested if the root
transaction does not experience significant contention after the open-nested sub-transaction
commits. Any increase in contention at this stage quickly leads to performance degrada-
tion. This result is in agreement with the theory, as open nesting releases isolation early,
optimistically assuming the parent will commit. Increased contention after the open-nested
sub-transaction contradicts this assumption.
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Figure 5.10: Relative throughput for TFA-ON implementation in Infinispan.

0 5 10 15 20 25 30 35
# of nodes

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

th
ro

u
g
h
p
u
t 

re
la

ti
v
e
 t

o
 f

la
t

Skip-list
BST
Linked-list

Figure 5.11: Relative throughput for SCORe-ON implementation in Infinispan.

In the context of this benchmark we also briefly experimented with fully commutative objects,
by not acquiring abstract locks at all. For our particular case, this resulted in a further 20-
30% performance benefit for open nesting. Better improvements are however entirely possible
if the post-sub-transaction contention is even lower (in our test, a majority of aborts were
caused by post-sub-transaction contention).

The evaluation of our other three implementations are presented in Figures 5.10, 5.11,
and 5.12. The absolute numbers differ due to differences in the underlying architecture
and benchmark configurations, but the general trends are consistent to those in our compre-
hensive evaluation of TFA-ON/Hyflow.

More specifically, in TFA-ON/Infinispan (Figure 5.10) the relative throughput sees an initial
increase, followed by a drop. The peak throughput is however wider and the slopes in the
graph are much gentler. This test was configured with c = 3 and r = 0.
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Figure 5.12: Relative throughput for SCORe-ON implementation in Hyflow.

For both SCORe-ON implementations (Figures 5.11, and 5.12), the drop in throughput
did not manifest within the range of our experiments. Furthermore, open nesting performs
significantly worse at low contention (fewer nodes), which can be attributed by the inherent
differences between TFA and SCORe algorithms — since SCORe orders commit operations
using a commit queue, the overhead of extra commits in the case of open nesting is greater.
SCORe was configured with the same settings as TFA, to make the comparison fair. Objects
were distributed across nodes using a consistent hash function (as is standard in Infinispan).
The benchmark parameters were c = 7 and r = 0. We purposefully avoided read-only
transactions in these tests, as SCORe-ON would not need to employ open nesting due to the
consistent snapshot reads (See Section 5.1.1).

We presented TFA-ON and SCORe-ON, extensions to two DTM algorithms with support
for open nesting. We implemented our extensions in the HyFlow DTM framework and
the Infinispan data-grid, thus providing (to the best of our knowledge) the first-ever DTM
implementations to support open nesting. Our implementations enabled up to 30% speedup
when compared to flat transactions, for write-dominated workloads and increased semantic
conflicts. Under reduced semantic conflicts workloads, speedup was as high as 167%.

We determined that open nesting performance is limited by two factors: commit overheads
and semantic conflict rate. Semantic conflicts limit the scalability of open nesting at higher
node-counts, and depend on the available key space for abstract locking. Commit overheads
determine the baseline performance of open nesting, at lower node counts, under reduced
contention. Commit overheads are significant under read-dominated workloads, and are also
influenced by the number of objects accessed in sub-transactions. Furthermore, we confirm
that open nesting does not apply well to workloads which incur significant contention after
the open-nested sub-transaction commits.



Chapter 6

Hyflow2: A High-Performance DTM
Framework in Scala

In this chapter we introduce Hyflow2, our high-performance DTM framework for the JVM,
written in Scala. We start by looking at Hyflow and describing our reasons for choosing to
rewrite it from scratch. We then present Hyflow2’s programming interface, and finally, we
evaluate its performance relative to its predecessor.

6.1 The Hyflow DTM framework. Motivation

Hyflow is the original DTM prototype implementing TFA [100]. It was built on top of the
Deuce STM library and the Aleph communication framework. Hyflow’s modular design
attempts to allow for pluggable network transports, transactional algorithms, directory pro-
tocols and contention managers. However its interfaces were not abstract enough to allow

@Atomic
void t r a n s f e r ( Account a1 , Account a2 , int amount )
{ withdraw ( a1 , amount ) ;

d epo s i t ( a2 , amount ) ;
}
@Atomic
void withdraw ( Account a , int amount ) {

a . va lue −= amount ;
}
@Atomic
void depos i t ( Account a , int amount ) {

a . va lue += amount ;
}

Figure 6.1: Example of the original Hyflow API. Transactions are marked using the @Atomic
annotation.

52
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the implementation of more complex algorithms and any possible work around resulted in a
source code difficult to maintain.

Hyflow (just like the underlying Deuce STM) relies on automatic byte-code rewriting to
provide an API based on annotations. As seen in Figure 6.1, the user marks the methods
to be executed transactionally as @Atomic. A Java Agent rewrites such methods into two
polymorphic copies: the first copy has the same signature as the original method, and it
initiates a new transaction (or reuses an already running transaction, if available) and then
calls the second copy within the context of this transaction. The second copy is a transacted
version of the original method’s byte-code. It takes an additional argument (a transaction
context), and replaces all field reads and writes with transactional read and write operations.
Any method calls within transacted code are modified to also pass the transaction context
argument.

The automatic instrumentation also touches on methods not marked as @Atomic, by creating
an additional transacted copy of the method as described above. When such method is called
outside any transaction, the original byte-code is executed. When methods are called within
a transaction (by transacted code), the addition of the transaction context argument leads
to executing the transacted versions of the methods.

This approach works particularly well for a simple multiprocessor transactional memory
system because the instrumented byte-code can be made very fast: no extra objects need to
be instantiated (the transactional context object can be reused), method calls can be kept to
a minimum (the transactional read and write operations can be inlined), and only one thread-
local variable lookup needs to be performed at the beginning of the transaction. However,
this model is particularly poor for rapid prototyping, essential for researchers, because of
the low-level nature of byte-code instrumentation. Moreover, the potential speed benefits of
this model become negligible when dealing with distributed systems, where network accesses
are the most costly operations. Modern JVMs with state-of-the-art Just-in-Time (JIT)
compilation and garbage collection further minimize the benefits of the byte-code rewriting
approach.

Being dissatisfied with Hyflow, we decided to design and implement a better DTM frame-
work, Hyflow2. Our aims for Hyflow2 are as follows:

• High-performance. In order for DTM to have any traction, it needs to be at least
similar in speed with the existing systems it aims to replace. Thus, performance is
paramount.

• Rapid prototyping. We want our framework to be accessible for DTM researchers, in
order to encourage progress in this exciting field. As a side-note, our chosen language
for implementing Hyflow2, Scala, is excellent for the purpose of rapid-prototyping.

• Easy to use. Besides being a vehicle for DTM research, we also want Hyflow2 to be
used by regular programmers. Thus, an easy, clean and familiar API is desirable.
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val c t r = Ref (0 )
atomic { implicit txn =>

c t r ( ) = c t r ( ) + 1
}

Figure 6.2: An example transaction in ScalaSTM (common usage).

va l c t r : Ref [ Int ] = Ref [ Int ] ( 0 )
atomic . apply (new Function1 [ InTxn , Unit ] {

de f apply ( i m p l i c i t txn : InTxn ) : Unit = {
c t r . update ( c t r . apply ( txn ) + 1) ( txn )

}
})

Figure 6.3: A more verbose version of the code in Figure 6.2, with several Scala syntactic
shortcuts written explicitly.

6.2 Hyflow2 API

Hyflow2 API is based on the excellent ScalaSTM API. In fact, Hyflow2 tries to reuse
ScalaSTM’s interfaces wherever possible, and partially implements a back-end for the ScalaSTM
API.

6.2.1 ScalaSTM

ScalaSTM is an STM API for Scala under consideration to be included in the Scala standard
library in an upcoming release. The API allows for pluggable back-end implementations, and
it ships with a reference implementation, CCSTM[13]. Hyflow2 inherits all features described
in this section.

Transactions in ScalaSTM are defined using atomic blocks, as shown in Figure 6.2. To enable
programming using this syntax, atomic is a TxnExecutor object whose apply method takes
a function as its only argument and executes this function as a transaction. The “implicit
txn =>” construct denotes that the function passed to apply takes one implicit argument,
the transaction context object.

ScalaSTM uses transactional references (Ref s) as a container for the values that are to be
accessed using transactional semantics. The Ref containers mediate all access to the data
within. To access a value of a Ref ref1 within a transaction, one would use ref1() – i.e.,
call ref1.apply() – or ref1.get() as an alternative syntax. To change the value of the Ref
inside a transaction, one should use ref1() = v – i.e., call ref1.update(v) – or alternatively,
ref1.set(v).

All of these methods (apply, get, update and set in class Ref) take a transaction context
object (i.e., an instance of the class InTxn) as an additional, implicit argument. Implicit
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de f t a k e F i r s t ( ) : T = atomic {
i m p l i c i t txn =>

va l o ld head = this . head ( )
i f ( o ld head == null )

r e t r y // do not proceed i f empty
this . head ( ) = old head . next
return o ld head . va lue

}

Figure 6.4: Conditional synchronization using retry. Transaction can only proceed once
there is at least one item in the list.

arguments in Scala code may be omitted, as long as the compiler can find in scope a variable
of the appropriate type marked with the implicit keyword. In Figure 6.2, the txn object
is automatically passed to the apply() and update() methods. Figure 6.3 shows how Scala
interprets the code in Figure 6.2.

This mechanism using implicit arguments and Refs leads to a clean syntax with relatively
little redundant code (only the “implicit txn =>” construct and the function call “()” char-
acters are superfluous). Another benefit of this mechanism is protecting against concurrent
access of a memory location from both transactional code and non-transactional code. This
property is highly desirable in TM systems because in such scenarios, the behavior of in-
terleaving transactional with non-transactional operations is undefined. Accesses to a Ref’s
contents via the apply or update methods require an implicit transaction context object to
be in scope, otherwise compilation fails. This requirement is satisfied inside an atomic block
as explained in the previous paragraph. Outside atomic blocks however, no transaction
context value is implicitly available, so calls to apply or update would lead to compilation
errors. Single-operation transactions are used to allow accessing Refs outside atomic blocks.
ref1.single.get() would, for example, spawn a transaction for the sole purpose of retrieving
ref1’s value.

ScalaSTM allows temporarily aborting a transaction using the retry() method. This is usu-
ally used for enforcing preconditions. Suppose for example the takeFirst operation on a
queue (Figure 6.4). When the queue is empty, this operation may invoke retry, effectively
blocking until at least one element is available. This behavior is called conditional synchro-
nization. After calling retry, the transaction should only execute again once any of the values
it has read is updated, otherwise it will follow the same execution path and call retry again.
A simple implementation may, however, blindly restart the transaction after an exponential
back-off, resulting in good performance.

6.2.2 Hyflow2 Objects

While in ScalaSTM transactions operate on Refs directly, Hyflow2 introduces an additional
layer – the Hyflow2 Object – as a container for Refs (see Figure 6.5). This layer is needed
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class Account ( va l i d : S t r ing ) extends HObj {
va l type = f i e l d ( ”” ) // a s t r i n g f i e l d
va l va lue = f i e l d (0 ) // an in t e g e r f i e l d
Hyflow2 . d i r . r e g i s t e r ( this ) // Reg i s t e r with the d i r e c t o r y manager

}

Figure 6.5: Hyflow2 Object example for a bank account.

de f depo s i t ( accId : Str ing , amount : Int ) = atomic {
i m p l i c i t txn =>

va l acc = Hyflow2 . d i r . open [ Account ] ( accId )
va l newVal = acc . va lue ( ) + amount
acc . va lue ( ) = newVal
returm newVal

}

Figure 6.6: Hyflow2 transaction example. Transaction must open an object before operating
on it.

in order to solve the data distribution problem. On a single node objects can be referred
to using a JVM reference, but for multiple nodes, this extra mechanism is required for
identifying objects.

An Hyflow2 Object (henceforth referred to as HObj) mixes in the HObj Scala trait 1 and is
Hyflow2’s basic unit of data. Each Hyflow2 Object has a unique identifier, which Hyflow2
uses to locate the object. This key is usually specified by the user at the object’s creation,
by passing it as an argument to the constructor.

Each HObj is composed from one or more fields. Fields are specialized Refs that maintain
their association with the enclosing HObj and their order number within that object. Fields
are created by calling the HObj.field method inside the object’s constructor, and passing it
an initial value.

6.2.3 Hyflow2 Directory Manager

The Directory Manager (DM) is Hyflow2’s module that keeps track of the objects’ location.
When an HObj instance is created, it registers itself with the DM (Figure 6.5). If the object
later migrates to a different node, it updates its registration with the DM.

The Directory Manager also handles retrieving objects from their owner nodes over the
network. This operation is called opening (see Figure 6.6). It requires the identifier of the
requested object and it generally caches a copy of the requested object on the local node.

1A Scala trait is similar to a Java interface. A class can therefore mix in (i.e., implement) multiple traits.
However unlike interfaces, Scala traits may contain implementation.
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// Simple open−nested t ransac t i on wi thout a b s t r a c t l o c k s or commit or abor t hand lers
openAtomic { i m p l i c i t txn =>

va l c t r = Hyflow . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

}
// Open−nested t ransac t i on tha t acqu i r e s a s i n g l e a b s t r a c t l o c k
openAtomic ( ” abs lock0 ” ) { i m p l i c i t txn =>

va l c t r = Hyflow . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

}
// More complex usage case , with abor t and commit hand lers . Lock i s he ld a f t e r commit .
openAtomic { i m p l i c i t txn =>

acquireAbsLock ( ”absLock0” )
va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

} onAbort { i m p l i c i t txn =>
va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) −= 1

} onCommit { i m p l i c i t txn =>
holdAbsLock ( ”absLock0” )

}

Figure 6.7: Open nesting in Hyflow2

6.3 Transaction Nesting

Hyflow2 includes support for nested atomic blocks. In this section we first briefly describe
the three nesting models previously studied in TM [44, 81]: flat, closed and open. Next we
introduce the API support for nesting in Hyflow2, and explain how it works.

6.3.1 Nesting API

Flat and closed nesting are semantically equivalent and can be used interchangeably (this
does not consider parallel nested transactions, which we do not support). Unlike in the
original Hyflow, we decided not to expose the decision of which of the two models to use in
the regular user-facing API. Hyflow2 may use any of these models to handle nested atomic
blocks. Currently, the decision is fixed based on a configuration value, but in the future it
could be made adaptively at runtime.

Open nesting on the other hand requires API support. Following the style of ScalaSTM, in
Hyflow2 we propose the following syntax (see Figure 6.7):

- An open nested transaction should be started with openAtomic. The body of the
transaction follows the syntax of regular transactions.

- Following the transaction’s body two optional blocks may be specified. These blocks
are introduced by onCommit and onAbort, and represent the transaction’s commit
and abort handlers, respectively. The handlers themselves are executed as open-nested
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STM. atomic (new Runnable {
public void run ( ) {

Counter c t r = Hyflow2 . d i r (). <Counter>open ( ” c t r ” )
c t r . s e t ( c t r . get ( ) + 1 ) ;

} } ) ;

Figure 6.8: ScalaSTM Java compatibility API.

transactions, so they must accept the implicit transaction context argument. If both
handlers are present, their order is not important.

- If an open-nested transaction requires the acquisition of an single abstract lock which
is known in advance, the lock’s identifier can be passed as a string argument to ope-
nAtomic. The lock will be acquired before the open-nested transaction can commit,
and will be released automatically as part of the transaction’s abort and commit han-
dlers. These handlers do not need to be present in the code, the lock will be released
anyway (see Figure 6.7).

- For any other abstract lock scenarios, the locks must be acquired within the sub-
transaction’s body using acquireAbsLock. These locks too will be automatically released
as part of the sub-transaction’s abort and commit handlers.

- If for any reasons an abstract lock should be kept beyond the sub-transaction’s commit
or abort, holdAbsLock must be called in the commit and/or abort handler. Any such
lock will be propagated to the innermost open-nested ancestor transaction and will be
released upon its commit or abort.

6.4 Java Compatibility API

Scala provides excellent interoperability with Java. As a result, many of the operations
described above will just work when invoked from Java code either directly, or in a slightly
different form (for example, methods ref1.get, ref1.set, Hyflow2.dir.open, retry becomes
Txn.retry, etc.). Several of the more advanced Scala features that we use in the Hyflow2 API
are however not supported from Java code, so we need to provide additional mechanisms to
obtain the same results.

6.4.1 Defining Transactions

ScalaSTM already provides a way for starting transactions from Java which uses the Callable
and Runnable interfaces for defining the transaction’s body (Figure 6.8). The transaction
context argument isn’t used anymore – instead, all transactional operations need to dynam-
ically determine the context object at run-time. If no transaction exists for the current



Alexandru Turcu Chapter 6. Hyflow2 59

new Atomic<Boolean> {
public Boolean atomica l l y ( InTxn txn ) {

Counter c t r = Hyflow2 . d i r (). <Counter>open ( ” c t r ” ) ;
c t r . va lue . s e t ( c t r . va lue . get ( ) + 1 ) ;
return true ;

}
public void onCommit ( InTxn txn ) {

// Commit handler , omit i f not needed
}
public void onAbort ( InTxn txn ) {

// Abort handler , omit i f not needed
}

} . execute ( ) ;

Figure 6.9: Hyflow2 Java compatibility API using the Atomic class.

public class Counter extends jHObj {
Ref<Integer> value = f i e l d ( 0 ) ;
public Counter ( ) {

Hyflow2 . d i r ( ) . r e g i s t e r ( this ) ;
}

// This method i s an example t ransac t i on . I t i s not par t o f the Hyflow2 Object d e f i n i t i o n .
public stat ic void increment ( f ina l St r ing id ) {

new Atomic {
public void a tomica l l y ( InTxn txn ) {

Counter c t r = Hyflow2 . d i r (). <Counter>open ( id ) ;
// The f i r s t way o f acce s s ing Refs works only from an Atomic c l a s s
// due to the txn parameter
c t r . s e t ( c t r . get ( txn ) + 1 , txn ) ;
// The second way o f acce s s ing Refs a l s o works us ing a Runnable
c t r . s i n g l e . s e t ( c t r . s i n g l e . get ( ) + 1 ) ;

}
} . execute ( ) ;

} }

Figure 6.10: Scala-style Hyflow2 Object definition in Java. Notice how accessing Refs in this
style is more verbose.

thread, a single-operation transaction is created automatically. This mechanism, however,
does not define the abort and commit handlers required for open-nesting.

To support open-nesting, Hyflow2 provides an Atomic abstract class with three methods:
atomically, onCommit and onAbort. User code must subclass it and provide at least the
implementation for atomically (see Figure 6.9). If implementations are provided for the
other two methods, they will be used as commit and abort handlers. Unlike ScalaSTM’s
Java API, a transactional context object is passed to the transaction as an argument. Our
reasons for doing so will become clear in Section 6.4.2.
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public class Counter extends jHObj {
Ref . View<Integer> value = j f i e l d ( 0 ) ;
public Counter ( ) {

Hyflow2 . d i r ( ) . r e g i s t e r ( this ) ;
}
// Example t ransac t i on
public stat ic void increment ( f ina l St r ing id ) {

STM. atomic (new Runnable {
public void run ( ) {

Counter c t r = Hyflow2 . d i r (). <Counter>open ( id ) ;
c t r . s e t ( c t r . get ( ) + 1 ) ;

} } ) ;
} }

Figure 6.11: Java-style Hyflow2 Object definition in Java. Compact Ref access.

6.4.2 Defining Hyflow2 Objects

Inheriting from a Scala trait in Java code is non-trivial. To allow a simpler way of defining
Hyflow2 Objects in the Java API, we provide an abstract class called jHObj, which users
must subclass.

Fields may be declared in two ways, which we named the Scala and the Java styles. This
decision influences how the fields are later accessed from both Scala and Java code. The
Scala way of declaring fields was already described in Section 6.2.2, and only differs cosmet-
ically (see Figure 6.10). However, choosing to declare fields the Scala way makes Java code
accessing that field more verbose: either the transaction context object needs to be passed
explicitly to each Ref.get / Ref.set call (this object is available by sub-classing the Atomic
abstract class as mentioned in Section 6.4.1), or Ref Views must be used to determine the
context at run-time by calling Ref.single.get or Ref.single.set instead of simply Ref.get or
Ref.set. The Scala style of declaring Refs is thus recommended when the application is
predominantly written in Scala.

For applications written mostly in Java (or even Java-only), the Java style of declaring fields
makes Java code more compact. Fields are declared using jfield instead of field and their
type becomes Ref.View instead of Ref (see Figure 6.11). Java code can now access the fields
using the shorter ref1.get(), etc. Note that the actual method invoked is now Ref.View.get()
and determines the transaction context object dynamically at run-time. When using the
Java style, the Scala compiler will not complain if a Ref.View is accessed outside an atomic
block. Instead, it would fire a single-operation transaction.

6.5 Mechanisms and Implementation

Our implementation uses the actor model using Akka.
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6.5.1 Actors and Futures

Akka is a very efficient actor model implementation for the JVM. The actor model can
lead to very fast implementations because it reduces the need for thread context switching.
Actor libraries generally do their own user-space scheduling, as opposed to relying on the
OS scheduler, and prohibit blocking function calls (such as disk access. etc). Instead, actors
send messages to each other and respond to the messages they receive – it is an event-based
programming model.

An important part of Akka’s interface are Futures. Futures represent the result of a compu-
tation that is expected to complete at some later time. Futures can be used when a thread
sends a request to an actor and expects a response. Instead of waiting for the response to
arrive, the method sending the request immediately returns a Future object. The thread
can register a callback to be executed when the response is received, query the Future pe-
riodically, or even block for the result. Computations can also be composed by chaining or
aggregating Futures, thus reducing the number of times a thread needs to block and improv-
ing performance. Futures, as well as actors, receive and process messages and events using
a configurable thread-pool.

6.5.2 Network Layer

Akka actors provide network transparency. They can seamlessly communicate across JVM
and machine boundaries. Actor instances are identified using ActorRef objects. ActorRef s
can be sent across the network while still maintaining their association with the correct actor.
ActorRef s can then be used on the remote machine to communicate to the original actor.
In conjunction with Futures, this makes it easy for developers to handle communication in
an efficient manner.

Internally, Akka uses Netty for communicating over the network. Netty is a fast, asyn-
chronous event-driven network application framework. It uses the non-blocking, high perfor-
mance Java New I/O API. Netty also uses a configurable thread-pool for servicing received
messages.

6.5.3 Serialization

Serialization is the process of converting an object to a format that can be sent through
the network, and back. Traditionally, Java objects must implement a Serializable interface
in order to enable this functionality. The standard Java serializer however is notorious
for its poor performance. Fortunately, Akka provides an API for custom serializers, so we
implemented an adapter for the Kryo library2. Kryo is one of the fastest JVM serialization

2http://code.google.com/p/kryo/
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Figure 6.12: Hyflow2 system diagram

frameworks, and is compatible with Scala.

6.5.4 Hyflow2 Architecture

Hyflow2 has a modular architecture. Depending on their function, module implementations
need to comply to certain interfaces. Hyflow2 currently provides the following interfaces:
lock service, object store, object directory, barrier service and cluster manager. A module
implementation consists of a singleton object that complies to one of these interfaces and is
used for sending requests to the module and an actor which services such requests. Modules
communicate between each other and with the transactions’ threads using message passing
and Futures.

The lock service module handles acquiring, releasing and verifying the status of object and/or
field locks. The object store module holds the objects themselves and handles queries, up-
dates and validations (version checks). Due to their tight coupling, the lock service and
object store can be combined in a single module. The object directory tracks object loca-
tions: it handles queries, updates, and it can also send notifications to interested transactions
when an object is updated. The cluster manager tracks which nodes participate in Hyflow2
transactions, and is currently implemented by delegating a coordinator node (a gossip proto-
col could be easily integrated for decentralizing the control). The barrier service lets multiple
nodes coordinate their execution and is used mostly for benchmarking. An additional mod-
ule is tasked with gathering statistics from all participating nodes. Figure 6.12 shows a
system diagram including Hyflow2 modules and their interactions with the user-code and
underlying libraries.

Each node has a router actor which serves as a gateway for all request messages (response
messages do not pass through the gateway). The router actor dispatches messages to the
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appropriate module based on the message’s type (Java class). This design allows every
message to contain additional payload data, which can be processed in a consistent way. For
example, the Transactional Forwarding Algorithm (TFA) which Hyflow2 implements needs
to attach an integer (the node-local clock value) to each message sent over the network [102].
Instead of requiring every module to attach payloads to all the messages they send and
receive, payloads are handled automatically in the message’s base class constructor on the
sender node, and is processed on the receiver node by the router actor.

6.5.5 Conditional Synchronization

Hyflow2 is the first DTM implementation to support distributed conditional synchroniza-
tion. This feature was implemented by maintaining a waiting list of transactions which are
blocked on each object. When they execute, transactions record all objects they access in
the transaction’s read-set. When a transaction calls retry, it adds itself to the waiting lists
of all objects which it has previously read, then blocks. Waiting lists are maintained by the
Object Directory. When an object is updated, the Directory is notified, and in turn notifies
all transactions on that object’s waiting list. Because the message adding a transaction to
an object’s waiting list may arrive after the object is updated, the object version is checked
as well: if the transaction is waiting on an old version of the object, the notification is sent
right away. Otherwise, a transaction could be waiting unnecessarily for a condition that is
already satisfied.

6.5.6 Parallel Object Open

This is another feature provided by Hyflow2 that can speed up certain transactions. Since
objects are usually retrieved from remote nodes, the open operation is time-consuming.
When a transaction needs multiple objects and knows their identity in advance, it can use
the parallel object open operation to reduce the number of network round-trips required for
acquiring a copy for each required object.

6.5.7 Transaction Checkpoints

Checkpoints were proposed by Koskinen and Herlihy [58] as an alternate mechanism for
partial rollback. As opposed to nesting, where execution can return only to sub-transaction
boundaries, checkpoints allow resuming execution from any desired location where a check-
point was saved. Checkpoints rely on Continuations, a programming language mechanism
that allow saving and resuming the control state of a program. At their core, continuations
work by saving and restoring the CPU registers and the activation stack.

While some languages have varying degrees of support for continuations (e.g. in C one could
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use getcontext/setcontext or setjmp/longjmp), the official Java Virtual Machine does not
support this feature. In order to add support for continuations in Java, a number of paths
are available:

- Use a library that employs byte-code rewriting, such as JavaFlow, NightWolf or, with
modifications, Kilim. Such libraries employ a user-code level activation stack (as op-
posed to a JVM-level stack) and modify all local variable accesses to explicitly use this
stack.

- Use an alternative JVM with support for continuations, such as the Avian JVM.

- Modify the the open-source JVM to support continuations. A patch is available for
this purpose in the Da Vinci Machine Project.

For Hyflow2 we chose the third approach, as it gives the best performance. While this
requires a non-standard JVM, Hyflow2 can run on stock JVM with checkpoints disabled.

6.5.8 Performance

Thread context switches and network round-trip time are important bottlenecks. The choice
of libraries we used in Hyflow2 was made with the purpose of addressing these issues. Akka
and Netty are event-driven libraries and attempt to minimize thread context switches. We
configured their internal thread pools to a minimum size that produces the greatest perfor-
mance. Also, we specifically targeted serialization in our quest for performance because it
lays on the critical path of sending a message over the network.

6.6 Experimental Evaluation

Hyflow2 was evaluated experimentally using a suite of one pseudo-macro-benchmark (bank
monetary application) and four micro-benchmarks (counter and the skip-list, linked-list and
hash-table data structures). Since we do not seek to evaluate the TFA algorithm but rather
the framework’s performance, we compare against Hyflow which also implements TFA. Com-
parisons between Hyflow and other distributed transactional memory libraries implementing
different algorithms are available elsewhere [102], and have shown that Hyflow outperforms
competitors under most circumstances. Experiments only targeted flat nesting.

Experiments were ran on a testbed consisting of one 48-core and three 24-cores AMD Opteron
machines. The operating system used is Ubuntu Linux 10.04 Server. Every node commu-
nicates with every other node via TCP links above a Gigabit Ethernet connection. The
network is not saturated.
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Figure 6.13: Summary of relative performance across benchmarks.
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The JVM used is the 64-bit HotSpot(TM) Server VM. Benchmarks were run with Just-in-
Time (JIT) compilation enabled. Each test was allowed a warm-up period to compensate
for compilation and class loading overheads before measurement was started.

We evaluated Hyflow2 under two different scenarios. The first is a high-contention scenario.
Up to 32 virtual nodes were spawned on a single 48-core machine. Each node is a JVM
process whose execution is restricted to a single core, and transactions are spawned using a
single thread for each node. Communication takes place via the loopback network interface.
Each benchmark is configured with a minimal number of objects, such that contention is
maximized. The ratio of read-only transactions was also varied between 10%, 50% and 90%
reads. While this is not a genuinely distributed environment, it allows emphasizing the
efficiency of the implementation.

The low-contention scenario is more realistic, with a large number of objects and many
simultaneous transactions. Five nodes were spawned, with each node being allocated 24
cores, for a total of 120 cores. Each node spawns transaction using 96 threads, or 4 threads
per each core.

Figure 6.14 provides details on one of the benchmarks, bank. The figure follows the through-
put as the number of nodes is increased from two to 32 nodes in the high-contention scenario.
Hyflow2 is very fast at a low number of nodes – up to 7 times faster than Hyflow. When
the number of nodes is in middle of the range, the performance becomes comparable. Then,
as more nodes are added, Hyflow2’s performance benefit keeps increasing up to about 30%.
Other benchmarks observed slightly different trends. For example, in hashtable, Hyflow2 is
60% faster or more compared to Hyflow throughout all our tests.

In the low-contention scenario, the results are completely different. Hyflow is barely able
to maintain a reasonable throughput. After running transactions for about a minute, large
pauses cause the throughput to drop significantly (we did not verify but believe this is due to
the garbage collector). We therefore limited the experiment’s duration such as this penalty
is not incurred. Even so, Hyflow2 is about one order of magnitude faster. For example, on
bank configured with 10,000 accounts and 50% read-only transactions, Hyflow managed to
run 3,324 tps whereas Hyflow2 reached 24,623 tps. Results are summarized in Figure 6.13.



Chapter 7

Automated Data Partitioning in DTM

We develop a framework for automatically partitioning data in a DTM environment which
employs Granola independent transactions. Our techniques build upon an existing automatic
partitioning methodology, Schism.

Our implementation is based around Hyflow2 (see Chapter 6), a JVM-based DTM framework
written in Scala. We implemented the Granola protocol in this DTM framework. Unlike
the original Granola implementation, which relies on opaque up-calls from the framework to
the application and lets the application code to handle locking and rollback mechanisms, we
opted to provide a more friendly API and let the framework deal with these mechanisms.

7.1 Background

We start by giving a brief introduction to the techniques at the root of our work: Granola
and Schism.

7.1.1 Granola: Independent Transactions

Granola [24] is a transaction coordination infrastructure proposed by Cowling and Liskov.
Granola targets On-Line Transaction Processing (OLTP) workloads. Granola is a Transac-
tional Memory (TM) system, as it expresses transactions in a native programming language
and operates on data stored in main memory for performance reasons. Synchronization
overheads are kept to a minimum by executing all transactions within the context of a single
thread. This approach reduces the need for locking, and was shown to improve performance
compared to conventional databases in typical OLTP workloads [109, 43, 53].

Granola employs a novel timestamp-based transaction coordination mechanism that supports

67
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three classes of one-round transactions. Single-Repository Transactions are invoked and exe-
cute to completion on one repository (partition) without requiring any network stalls. Coor-
dinated Distributed Transactions are the traditional distributed transactions that use locking
and perform a two-phase commitment process. Additionally, Granola proposes Independent
Distributed Transactions, which enable atomic commitment across a set of transaction par-
ticipants, without requiring agreement, locking and with only minimal communication in the
coordination protocol.

Single-repository and independent transactions execute in timestamp mode. These transac-
tions are assigned an upcoming timestamp, and executed locally in timestamp order. Repos-
itories participating in independent distributed transactions need to coordinate to select the
same timestamp. Each participant proposes a timestamp for executing the transaction, and
broadcasts its proposal (vote) to the other participants. Once all votes are received, the
final timestamp is selected locally as the maximum among all proposals. This selection is
deterministic, and the coordination it requires is very light-weight (needs only one messag-
ing round). At the selected time, the transaction can execute without any stalls or network
communication.

In order to execute coordinated transactions, the repository needs to switch to locking mode.
In locking mode, all transactions must acquire locks (thus incurring overheads), and can
not use the fast timestamp-based execution. Furthermore, coordinated transactions must
undergo a slow two-phase commit. The repository can revert to timestamp mode when all
coordinated transactions have completed.

Granola provides strong consistency (serializability) and fault-tolerance. Data is partitioned
between the Granola repositories – with each repository managing one partition – although
it is also possible to keep some of the data replicated among repositories to improve perfor-
mance. Each repository consists of one master and several replicas. The replicas are used
for fault-tolerance, not for scalability. Most transactions must be executed by the master
node of each repository – the only exception is for read-only, single-repository transactions,
which can run on the replicas.

In Granola, single-repository and independent distributed transactions never conflict, be-
cause they are executed sequentially using a single thread. This means mechanisms employed
for rollback and aborts, such as locking and undo- or redo-logging, are not needed for these
transaction classes, reducing overheads and improving performance.

Granola transactions do have restrictions that limit their applicability and place further
requirements on the potential partitioning schemes: (A) Independent transactions must
reach the same commit decision, independently, on every participating repository. This is
possible when the transaction never aborts (e.g., read-only transactions), or the commit
decision is based on data replicated at every participating repository. (B) All transactions
must be able to complete using only data available at the current repository. This is a
firm requirement for single-repository and independent transactions, but could potentially
be relaxed for coordinated transactions.
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Bank Accounts
{id=1, amount=$100}
{id=2, amount=$100}
{id=3, amount=$50}
{id=4, amount=$0}
{id=5, amount=$50}

Transactions
- transfer(from=2, to=4, amt=$50) 
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- transfer(from=4, to=3, amt=$50)
- balance(accounts=Array(1, 4, 5))

Possible
Partition Boundary

Figure 7.1: Example graph representation in Schism. The shaded areas are the transactions, which
are represented in the graph by edges connecting all accessed objects.

Performance in Granola depends on how the workload and partitioning scheme are able to
exploit fast single-repository and independent transactions. The user must manually define
the partitioning scheme, implement the transactions using the appropriate classes, and route
transactions correctly. Furthermore, the partitioning scheme must be compatible with the
Granola restrictions outlined above. Our work aims to automate this partitioning process.

7.1.2 Schism: Graph-Based Partitioning

Curino et al. presented Schism [25], the approach for automated data partitioning that
we build upon in this dissertation. Besides lacking support for independent transactions,
Schism as is can not be applied to stored-procedure style DTM transactions, which further
motivates our work. For completeness, in this section we overview Schism and describe how
it works.

Schism takes as input a representative workload in the form of an SQL trace, and the desired
number of partitions. It then proposes partitioning and replication schemes that minimize
the proportion of distributed transactions, while promoting single-partition transactions.
This is done in order to increase performance, as single-partition transactions are fast. The
proportion of distributed transactions is a measure of the partitioning quality. The fewer
distributed transactions there are, the higher the partitioning quality. The partitioning
process has four phases:

First, the graph representation phase converts the SQL trace into a graph. Nodes in this
graph represent data items (database tuples/transactional objects) that were encountered in
the trace. Two nodes are connected by an edge if they were accessed together within the same
transaction. Thus, the representation of a transaction takes the form of a clique: the tuples
accessed by the transaction are all interconnected. An example is shown in Figure 7.1.
A number of heuristics are applied to promote scalability, such as tuple and transaction
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Figure 7.2: Example graph representation in Schism, with replication.

sampling, and coalescing tuples accessed by the same set of transactions into a single node.

The graph is then modified by replacing each node with a star-shaped configuration of nodes.
This is done in support for data replication. A node A which previously had n neighbors, is
replaced by n+ 1 nodes: one in the center, A0, which is connected to n new nodes (A1...An)
by edges representing the cost of replicating the original node A. Each of these new nodes
is then connected by a single edge to another node representing the original neighbors. This
processing can also be explained as replacing each edge in the original graph by three edges
connected in sequence: the two outer edges represent the cost of replicating the data, and
the middle edge represents the cost of entering a distributed transaction. An example is
illustrated in Figure 7.2.

In the partitioning phase, the previously constructed graph is partitioned using a standard
k-way graph partitioning algorithm. The authors used the program METIS [54] for this
purpose. This is an optimization problem, where the primary target is minimizing the
cumulative cost of the edges that cut across partitions. This is equivalent to minimizing
the number of distributed transactions. A secondary target is balancing the partitions with
respect to node weights. Node weights can be assigned based on either data size, or number
of transactions, depending on whether the partitions should be balanced in storage size or
load.

For small workloads, the output of the partitioning phase can be used as-is, by means of a
lookup table. Newly created tuples would initially be placed on a random partition, while
a separate background task periodically recomputes the lookup table and migrates data
appropriately. This method however can not be applied to large datasets for two reasons: (i)
creating and partitioning the graph without sampling is limited by the available memory and
processing time, and (ii) the lookup table size is similarly limited by the available memory.

These reasons motivated Schism’s explanation phase. In the explanation phase a more com-
pact model is formulated to capture the tuple → partition mappings as they were produced
in the partitioning phase. Schism does this by employing machine learning, or more specif-
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ically, C4.5 decision trees [94] as implemented in the Weka data mining software [41]. The
resulting models are essentially sets of range rules, and are useful if they satisfy several crite-
ria: they are based on attributes present as WHERE clauses in most SQL queries, they do not
significantly reduce the quality of the partitions by misclassification, and finally, they work
for new, previously unseen queries, as opposed to being over-fitted to the training set. To
satisfy these criteria, the authors employed strategies such as placing limitations on the in-
put attributes to the classifier, using aggressive pruning and cross-validation, and discarding
classifiers that degrade the partitioning quality.

Lastly, the final partitioning scheme is chosen in the final validation phase. The candidates
considered are (i) the machine-learning based range rules, (ii) the fine-grained lookup table,
(iii) a simple hash-based partitioning, and (iv) full-table replication. The scheme chosen is
the one with the fewest distributed transactions. In case two schemes lead to similar results,
the simpler of the two is chosen.

7.2 Overview

Due to our choice of environment and transaction model, Schism can not be applied directly,
because:

• (A) Schism does not support independent transactions. Any distributed transactions
in Schism would have to be 2PC-coordinated, which degrades performance.

• (B) Schism makes no effort to prevent data dependencies across partitions. At best,
such dependencies are incompatible with independent transactions. At worst, they
are incompatible with Granola’s single-round transaction model, leading to unusable
partitions.

• (C) Schism assumes transactions are expressed in SQL code, whose WHERE clauses
can trivially be inspected to obtain information about the dataset of a transaction,
which is then used to route each transaction to the appropriate partitions. Given
that transactions in our system are not expressed in parsable query code, but are
stored procedures written in a programming language, the task of routing transactions
becomes significantly more complicated.

7.2.1 Generating Partitions

This section provides a brief description of the partitioning process. In a production system,
this process would run periodically alongside transaction processing, and dynamically mi-
grate objects at run-time. Our implementation however, being only a prototype, performs
the partitioning off-line.
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The first phase in our partitioning workflow performs static analysis and byte-code rewriting
on all transactional routines in the workload. This step serves three purposes. Firstly, it
collects data dependency information which is later used to ensure the proposed partitioning
schemes are able to comply to our chosen one-round transactional model (no data dependen-
cies are allowed across partitions). Secondly, it extracts summary information about what
operations may be performed inside each atomic block, to determine whether an atomic block
is abort-free or read-only. Finally, each transactional operation is tagged with a unique iden-
tifier to help make associations between the static data dependencies and the actual objects
accessed at run-time.

The second phase is collecting a representative trace for the current workload, which includes
a record for every transactional operation performed. Each record contains the transaction
identifier, the type of operation, the affected object, and the operation’s identifier as previ-
ously tagged.

The next three phases are similar to the corresponding phases in Schism. The graph
representation phase converts the workload trace into a graph where nodes represent objects
and edges represent transactions. This graph is governed by the same rules as in Schism
(see Section 7.1.2). Additionally, edge weights are updated to reflect the new transaction
models, along with their restrictions and desirability. The graph is then partitioned using
METIS in the partitioning phase. The result from this step is a fine-grained association
from object identifiers to partitions. A concise model of these associations is created using
WEKA classifiers in the explanation phase.

The final phase is concerned with transaction routing and model selection. While in Schism
routing information was easily extracted from the WHERE clause of SQL queries when avail-
able, our atomic block model for expressing DTM transactions prohibits using a similar
approach. We thus introduce a machine-learning based routing phase. The data used to
train this classifier is derived from the workload trace, using the object-to-partition map-
ping. Finally a transaction model is selected for every transaction class based on the number
of partitions it needs, whether it may abort, and whether it writes any data (or is read-only).

7.2.2 Using the Partitions at Run-Time

During the previously described process, we train two sets of classifiers. The first set is
tasked with object-to-partition mapping. These classifiers determine the object placement,
and we will call them the placement classifiers. While it may reduce the quality of the
resulting partitions, misclassification at this stage is mostly harmless, since it is the classifier
that dictates the final object placement.

The second set of classifiers are the routing classifiers. They are used on the client side
(i.e., in the thread that invokes the transaction) to decide which nodes to contact for the
purpose of executing the current transaction. Due to the transactions being expressed as
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regular executable code, this information is not readily available until the code is run. Inputs
for these classifiers are the parameters passed to the transaction. Misclassification at this
stage has the potential to be harmful, as a misrouted transaction may not have access to
all objects needed to execute successfully. We address this situation by allowing misrouted
transactions to abort and restart on a larger set of nodes.

Finally, we do not require users to be aware of the partitioning scheme or the transaction
execution model when writing transaction code. Thus, users should be able to write a single
atomic block, and the system would make sure the appropriate code branches will execute at
the corresponding partitions. In our prototype implementation, the same code is expected
to execute properly on all partitions. This requires a defensive programming style, which
checks that the return value of certain object open operations is not null. While this is
a good practice anyway for error handling, our current implementation explicitly uses null
references to denote an object is located at another partition.

7.3 Static Analysis

Our static analysis phase is motivated by three factors: (i) determining data dependencies in
order to avoid dependencies across partitions, (ii) determining which transactions can abort
in order to choose the correct transaction model, and (iii) help with recording workload
traces. Simply observing runtime behavior is insufficient — for instance, observing a partic-
ular transaction profile never aborted as recorded in a runtime trace does not constitute a
guarantee that it can never abort.

Our static analysis phase is implemented using the Soot Java Optimization Framework [62].
Since we operate on JVM bytecode, few of the mechanisms described in this section are
actually specific to Scala — transactions could just as easily be expressed in Java, with only
simple changes required to the static analysis mechanisms. We make several passes over
every application method.

7.3.1 First Pass

The first pass serves three purposes: (i) it identifies transactional methods, (ii) it tags
transactional operations, and (iii) it records associations between the classes Scala uses for
anonymous functions and their main method which contains the application code.

To identify transactional methods, we iterate over all units of each method (units are Soot’s
abstraction over the JVM byte-code). We look for invocations of certain methods and
references to objects of certain classes that are usually associated with transactions — these
are listed in Table 7.1. Methods that match are recorded as transactional methods.

In addition to recording transactional methods, we tag units representing invocations to the
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Table 7.1: Method invocations and reference types that aid in identifying transactional methods
and features (static analysis, first pass).
Method signature / Ref
type

Description

TxnExecutor.apply
(block: Function)

Invokes a transaction given an anonymous function as an atomic block.
The block can be a top-level transaction, and thus an entry point for the
subsequent analysis phases.

TxnExecutor.apply
(name: String, args: Array)

Invokes a pre-registered transaction given its name.

Hyflow.registerAtomic
(name: String, block: Func-
tion)

Registers an atomic block to execute as a transaction when invoked by
name.

HRef.apply()
HRef.update(val: X)

Reads and writes, respectively, a field of a transactional object. Used to
extract data dependencies between objects. Also used to identify read-
only transactions.

Txn.rollback()
Txn.retry()

Permanently or temporarily aborts a transaction. Used to identify non-
aborting transactions and data dependencies leading to an abort decision.

Directory.open(id: Product)
Directory.delete(id: Product)

Opens and deletes a transactional object, respectively. Used to extract
data dependencies between objects.

HObj, HRef Transactional objects and fields, respectively. Any references to these
types flag the containing method as transactional (and therefore, of inter-
est).

InTxn Transaction context type. Same as above.

methods in Table 7.1. Tags are a feature in Soot that can associate information with any
unit, for easier retrieval. Within the tag we store what kind of transactional operation this
invocation represents (e.g., object open, object delete, field read, field write, transaction
abort, etc.), and an integer uniquely identifying each invocation site (we name this integer
the tag id).

Scala uses classes inheriting AbstractFunctionN 1 to implement anonymous functions (clo-
sures). The application code is usually located in a method named apply which takes ar-
guments of the appropriate types. Scala however defines another polymorphic method with
the same name, but with arguments of type Object (the root base class on the JVM). This
method acts as a stub — its purpose is to convert (typecast or un-box) all arguments to
the correct specific type and call the apply method containing the application code. For
the purpose of our static analysis the stub method is not interesting. We thus record the
association between the AbstractFunctionN -derived class and the apply method containing
application code, but only if apply is a transactional method as defined above.

1Where N is an integer standing for the number of arguments taken by the function.



Alexandru Turcu Chapter 7. Automated Data Partitioning in DTM 75

7.3.2 Second Pass

Once all transactional methods and transactional anonymous function classes are known, we
construct a static invocation graph. This is done in the second analysis pass. As before, we
pay attention to method invocations, but targeting the previously identified transactional
methods. We first add all transactional methods as nodes in the invocation graph. Any
invocation of method g from within method f adds to the graph directed edge f → g.

Besides direct invocations of transactional methods, we also add indirect invocations to the
graph. Scala is a functional language and has support for higher-order functions (functions
that take other functions as parameters). An invocation site is included in the graph when
a previously identified transactional AbstractFunctionN object is passed to a higher-order
function (either user-defined, or from the standard library: map, filter, etc.). The edge added
to the static invocation graph points from the invoking function f to the apply method of
the transactional AbstractFunctionN object, which is invoked indirectly by the higher-order
function. Alongside constructing the static invocation graph, all invocation sites (direct and
indirect) are tagged as before.

7.3.3 Third Pass

The third analysis pass extracts internal data dependency information for each transactional
method. It processes each method, taking as input its bytecode as tagged in passes 1 and
2. The output is a directed graph representing data dependencies between accessed objects
and external methods invoked. Firstly, nodes are created in the output graph for important
transactional operations that are the targets of the dependency analysis. Such operations
are object open, create, delete, transaction abort, and also external method invocations, as
tagged in previous steps.

This pass is implemented as a forward data-flow analysis. Each Soot unit has an associated
state data-structure that can hold a representation of its dependencies. This representation
has two parts: (i) a set of node dependencies and (ii) a set of value dependencies. A node
dependency occurs when the result of an important operation (i.e. a transactional object
that has been opened) is used in a subsequent statement. Value dependencies occur when
any other (i.e., non-node) value is used in a subsequent statement. The latter do not have a
presence in the dependency graph, but help propagate dependencies between nodes.

Initially, all the state data-structures are empty. We identify the direct dependencies for
every Soot unit, and categorize them into two sets, for node and value dependencies. The
value dependencies are traced back to the origin unit that defined each of the values. The
states associated with the origin units are then retrieved and merged. We further merge
this state with a state object formed from the value and node dependencies. Finally, we
store the resulting state for the current Soot unit. Pseudocode for this process is shown in
Algorithm 1.
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Algorithm 1 Forward data-flow analysis pseudocode.

for each unit ← allUnits do
allDeps ← unit.getDirectDeps()
(nodeDeps, valueDeps) ← allDeps.partition( isNodeDep )
valueDeps originUnits ← valueDeps.getOriginUnits()
valueDeps states ←

getStateForAll( valueDeps originUnits )
merged valueDepState ← mergeAll( valueDeps states )
currentState ← new DepState( valueDeps, nodeDeps )
newState ← merge( currentState, merged valueDepState )
storeStateForUnit( unit, newState )

end for

After the data-flow analysis, we construct the dependency graph. Starting with an empty
graph, we add nodes for all the units of interest. Then we iterate over all nodes A in the
graph, adding edges from B to A, for all node-dependencies B of A.

We illustrate this process in Figure 7.3. The source code to be analyzed is shown in Fig-
ure 7.3(a). Notice how many intermediate values are held in variables of their own. This
emulates the behavior of Soot, which will indeed use separate locations for every intermedi-
ate value, greatly simplifying the static analysis. For clarity, we show a simplified version. In
Figure 7.3(b) we show the direct dependencies of each node and value in the code. Following
the data-flow analysis, units have an associated state storing all their dependencies, shown
in Figure 7.3(c) as the set of all edges pointing to a particular block. Finally, the dependency
graph is created by discarding all non-node values (Figure 7.3(d)).

7.3.4 Byte-code Rewriting and Trace Collection

Once all transactional method invocation sites are known and tagged, we rewrite the method
byte-code to make certain information available at run-time. For every invocation of a
transactional operation (object open, field read/write, etc.), we change the invocation to
a different method that acts as a wrapper around the desired operation. This wrapper
method takes an extra argument, the tag id (i.e., an invocation site identifier), which it logs
before passing control to the transactional operation. The tag id is filled in by the byte-code
rewriter, as an integer constant.

Other outputs from the static analysis process are the static dependency graphs for all the
methods, the global static invocation graph, and a few other details: Method Unique Iden-
tifier (MUID) for each transactional method; For each transactional operation invocation:
tag id, type of operation; For each transactional method call: tag id, type of method call,
MUID and name for the invoked method; For each type of transaction: transaction name,
MUID for transaction entry point.
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val src1 = Hyflow.dir.open[Counter]("source 1")
val src2 = Hyflow.dir.open[Counter]("source 2")
val temp1 = src1.value() * 2
val temp2 = src2.value() * 3
val dest = Hyflow.dir.open[Counter]("dest")
val result = temp1 + temp2
dest.value() = result

(a) Analyzed source code.

src1 = ... src2 = ...

dest = ...

dest() = result

temp1 = ... temp2 = ...

result = ...

(b) Direct dependencies

src1 = ... src2 = ...

dest = ...

dest() = result

temp1 = ... temp2 = ...

result = ...

(c) Data-flow analysis

src1 = ...

src2 = ...

dest = ...

dest() = result

(d) Final dep graph

Figure 7.3: Forward data-flow analysis example for extracting the intra-method dependency graph.
Rectangles represent nodes (units of interest), rounded rectangles are values.

Next, a representative trace is collected by running the workload using the modified byte-
code. This will result in a log of all the transactions executed, and within those, the important
transactional operations. Log entries contain:

• Transaction id. Differentiates between multiple concurrent transactions.

• Operation name, such as atomic (transaction request), txn begin/commit/abort, obj
create/open, field read/write.

• Tag id. Identifies the static invocation site that generated this log entry. Available for
txn abort, obj create/open, field read/write.

• Operation specific data. Generally, this is the run-time object id this operation acts
upon. For atomic and txn begin, this is a string representing the transaction type.

7.4 Graph Representation and Partitioning

Once a trace is available, it is parsed and converted to a graph where nodes represent objects
and edges represent transactions, as described in Section 7.1.2. A number of heuristics limit
the size of the graph, such as object and transaction sampling, and coalescing the nodes
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Figure 7.4: Example partitioning graph for a txn with data deps.

that are accessed by the same set of transactions. Edges are assigned weights such that the
resulting partitioning is optimized.

7.4.1 Edge Weights

We now explain the process of assigning edge weights. We aim to satisfy several conditions
and optimization criteria: (i) Due to the Granola transaction model, we can not easily allow
data dependencies between partitions. Make a best effort attempt not to allow such de-
pendencies. (ii) When possible, favor independent transactions to coordinated transactions.
(iii) Favor single-node transactions to any kind of distributed transactions.

To satisfy the first rule, we assign the highest weights to all edges that connect objects having
data dependency relationships with each other (heavy edges). For example, in Figure 7.4(a)
we show the static dependency graph for a transaction. Nodes 1, 2, 3 and 4 represent
static invocation sites for some transactional operations. At run-time, one execution of this
transaction uses objects A, B, C and respectively, D, at the four static invocation sites. The
system would assign the following heavy edges : A-B, A-C, A-D and C-D (Figure 7.4(b)).
They denote the A → B dependency, and the A → C → D chain.

In our current implementation we use a very high weight (10,000) for heavy edges, effec-
tively enforcing that no such edges will be broken. We should note that, with the Granola
repository in locking mode, accessing remote objects would be possible, but with a penalty
in performance. As such, instead of making heavy edges unbreakable, we could let the op-
timization process figure out if it may be, in fact, more desirable to break a small number
of heavy edges instead of breaking a larger number of lighter edges. Thus our process could
be extended with a heuristic that assigns weights to heavy edges based on the workload
characteristics, instead of using a large constant as we do now.

The second rule refers to independent transactions as compared to coordinated transactions.
These two models differ in that coordinated transactions execute a two-phase commit round,
and thus allow reaching the commit/abort decision based on data not available at all repos-
itories. Independent transactions can be used when the transaction does not need to abort,
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or reaches a commit/abort decision based on data available to all participating repositories.

To encode this in the partitioning graph, we first identify abort operations. If a transaction
does not have any abort operations, it may be executed using the independent transaction
model. Thus all remaining edges in such a transaction receive the lightest weight possible
(10, we call these light edges). On the other hand, if a transaction does have abort operations,
we want to encourage replication of all objects that were used in the commit/abort decision,
as opposed to entering a coordinated transaction. Thus we use a medium weight (500) for
the edges connecting to such objects. We call these mid-weight edges.

This use-case may lead to replicating an object, even if the object is only accessed by one
transaction. This behavior is new to our work, and requires an adjustment to Schism’s
handling of replicated nodes, which was described in Section 7.1.2. Previously, a replicated
node for object A was created for each transaction that accessed object A. With our use-case,
it is possible that more than one replicated node is required for the same transaction. This
applies for the objects that lead to a commit/abort decision and may be replicated internally.

To better explain this behavior, we provide an example in Figure 7.5. The static dependency
graph is shown in Figure 7.5(a). The transaction makes an abort decision based on an object
opened at invocation site 1. Separately, it accesses three more objects (at sites 2, 3 and 4 ),
with a data dependency between sites 2 and 3. Assuming at run-time, the objects accessed
are A, B, C and respectively, D, this transaction translates to the partitioning graph shown in
Figure 7.5(b). Object A has three replica nodes, one for each other object in the transaction,
arranged in a star-shaped configuration. The cost of replication edges are determined based
on access patterns to object A throughout the workload. Because object A is used to make
a commit/abort decision, its replicas connect to the other objects in the transaction using
mid-weight edges AR −B, AR − C, and AR −D. The other edges are heavy or light edges,
based on the existence of dependency relationships.

Two possible partitioning schemes are shown in Figures 7.5(c) and 7.5(d). In Figure 7.5(c),
object D and one replica of object A are separated from the rest of the objects. This may
happen, for example, when object A is rarely written to, and the cost of replicating it is
therefore low. In this case, the transaction runs as an independent transaction. Alternatively,
Figure 7.5(d) shows a partitioning scheme where only object D is separated from the others.
There is no replication of object A, but the transaction must be coordinated.

7.4.2 Partitioning and Explanation

Once weights are assigned, we let METIS solve the optimization problem and propose a
partitioning scheme. The result is a fine-grained association from objects to partitions. This
can be used as-is only for small workloads. Specifically, we can not use object sampling to
keep the problem size small, because the system would not know what to do with objects
that do not appear in the mapping. If the problem size increases too much, running time
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Figure 7.5: Partitioning graph example in the presence of aborts. The correspondence between
the static invocation sites and objects accessed at runtime is: 1-A, 2-B, 3-C, 4-D.

and memory requirements rapidly increase as well.

We thus employ an explanation phase, where we train machine learning classifiers (using the
Weka library) based on the fine-grained mapping. As opposed to Schism, we do not need to
restrict our classifiers to be rule-based. Instead, we can use any classifier that works best for
the current workload. This is possible because we have the whole stack under our control,
and thus we do not need to restrict ourselves to what could be encoded efficiently in SQL.
Although the current prototype hard-codes a single classifier type, we envision training a
forest of classifiers in parallel, and choosing the ones that produce the best end-to-end results.

We train one classifier for each different type of objects. As in Schism, we use virtual
partition numbers to represent replicated objects. For example, if there are two partitions in
the system, P=1 and P=2, we use P=3 as a virtual partition to represent objects replicated
on both partitions.

7.5 Transaction Routing

Our system uses a stored procedure execution model, invoking transactions using the trans-
action’s name and a list of arguments. Not knowing in advance the data each transaction
is going to access makes it difficult to determine the partitions each transaction needs to be
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routed to. Using a simple directory based approach would be impossible. In Schism, the data
a transaction will access is essentially known in advance — one looks at the WHERE clause of
the SQL query for a quick decision about where to route transactions. This approach does
not work in our situation.

Instead, we need to establish a link between a transaction’s input arguments and the set
of partitions it needs to be routed to for execution. For this, we again turn to machine
learning, and employ another set of Weka classifiers. We train these routing classifiers using
a workload trace. No static knowledge is used for routing. For each transaction in the trace,
we want to route to at least the following partitions:

• Partitions that replicate any object in the writeset.

• A minimal set of partitions R, such that for any object X in the read-set, at least one
partition P ∈ R replicates object X.

Finding R is known as the hitting-set problem, which is NP-complete. Algorithms exist that
approximate R, but are exponential in time [7]. We compute an approximation of the set
R using a simple heuristic (Greedy), and we use that approximation to train our classifiers.
This will be the output of the classifier. The input to the classifier is the list of arguments
being passed to the transaction.

In our current implementation, we let the clients route transactions as they issue them. This
is acceptable in a DTM environment where clients and servers are co-located. If clients can
not be trusted with the identity of the servers, or the servers are located behind a firewall,
it would be possible to employ a dedicated router/gateway process.

Classifiers do not always yield 100% accuracy. Misclassification at the routing stage may
mean more nodes are contacted than strictly necessary, which is a benign situation. However,
it is also possible that not enough nodes are contacted to allow completing the transaction.
In such a situation, the transaction should abort on all currently participating nodes, and
restart on a superset of the nodes. Algorithm 2 describes how to handle this situation (our
prototype does not implement this mechanism yet).

The primitive to be used when executing a transaction is decided after the transaction
has been routed. If only one repository is involved, the single-repository model will be
chosen. For distributed transactions that do not explicitly abort (as identified in the static
analysis phase) the independent transaction model is chosen. All other transactions use the
coordinated model. This approach can be further refined by determining whether the decision
to abort is made based on data available at all nodes. If so, an independent transaction can
be used.

To summarize, we have developed a methodology for using automatic data partitioning in a
Granola-based Distributed Transactional Memory. We perform static byte-code analysis to
determine transaction classes that can be executed using the independent transaction model.
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Algorithm 2 Proposal for handling misrouted transactions.
NCRT = the set of nodes participating in this transaction
upon open(X) = failed do

. find NREPL, the set of nodes that replicate object X
NREPL ← placement classifier (X)
if NREPL ∩NCRT 6= ∅ then

return . X can be processed on a different node and
. the transaction can continue normally

end if
if current txn may write to X then . from static analysis

Restart txn on NCRT ∪NREPL

else
Restart txn on NCRT ∪ANY (NREPL)

end if

We also use the analysis results to propose partitions that promote independent transactions.
Due to our DTM focus, we take a machine-learning approach for routing transactions to the
appropriate partitions.



Chapter 8

Evaluating Automated Data
Partitioning in DTM

8.1 Experimental Setup

We evaluate our partitioning process using several popular On-Line Transaction Processing
(OLTP) benchmarks: TPC-C [23], TPC-W, AuctionMark, EPinions and ReTwis. These
workloads (especially TPC-C) have been employed in many recent works [111, 53, 24], but
while these works assume a manual partitioning, we employ our system in order to automat-
ically derive the partitioning schemes. In our evaluation, we run transactions back-to-back
using the Granola model and compare the manual partitioning against our automatic parti-
tioning for each benchmark. We reiterate that the Granola model requires data partitioning
and can not function without it. Additionally, we compare against PaxosSTM [56], a mod-
ern state-machine replication based DTM system that does not support partitioning, and
Horticulture [86] (the automatic partitioner of H-Store [53]), where available.

Throughput measurements were obtained on the NSF PRObE testbed [35] with up to 20
physical machines. Each machine has 64 AMD Opteron 6272 cores running at 2.1GHz, and
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Figure 8.1: Partition quality on the various benchmarks (lower is better).
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128GB RAM. Machines communicate over a 40GB Ethernet network. Experiments were
allowed sufficient time for warming-up before the measurement was started. Data points
represent the average across eight measurements. Experiments were conducted without
batching to avoid differences in throughput due to details in the batching implementation
(batching is an orthogonal feature).

PaxosSTM supports snapshot reads, an optimization in the execution of read-only transac-
tions. This optimization depends on the use of multi-versioning and full replication in the
underlying protocol, and can negatively affect the freshness of the data available to read-only
transactions. Snapshot reads are not available in Granola because Granola does not offer
multi-versioning or full replication.

8.1.1 Benchmarks

Our work is the first to apply Granola independent transactions to any other benchmark
besides TPC-C. In doing so, we show that independent distributed transactions can be used
in a wide range of OLTP workloads. In the rest of this section we discuss the benchmarks
we used in our evaluation and why the Granola transaction model is appropriate in each
case. We also describe the manual partitioning schemes that we used in our evaluation. In
deriving the manual partition schemes, we took inspiration from the TPC-C partitioning,
which is known to be optimal. While we can not claim our partitions are optimal, they are
still effective at minimizing distributed transactions.

TPC-C emulates a wholesale supplier with a number of geographically distributed sales
districts and associated warehouses. It consists of 9 kinds of objects (i.e., tables, in database
terminology) and 5 transaction profiles (i.e., stored procedures). All objects can be grouped
based on the parent warehouse, except items, which are global. The manual partitioning
scheme we used is known to be optimal. It groups each warehouse and all related objects,
distributing the groups across partitions and replicating all items at all partitions. Using this
scheme, Granola is able to execute all transaction profiles as either single-node or independent
transactions [24]. This is because the only transactions that ever abort (NewOrder) do so
based on data available at all partitions (the Item objects), and thus distributed coordination
is never required.

TPC-W emulates an e-commerce website. It consists of 8 kinds of objects and 14 transac-
tion profiles. None of the transaction profiles ever abort, and can thus be trivially executed
using single-node or independent transactions. One of the frequently used transaction pro-
files (BestSellers) is very long and would appear poorly suited for Granola’s single-thread
execution model. However, in a production setting, the results of such a transaction would
be cached outside the repository, amortizing the impact of long transactions. The manual
partitioning scheme we adopted replicates item, author and country objects at all partitions,
and groups each customers with all related objects, distributing (sharding) groups across all
partitions. This is similar to the TPC-C scheme, with the customers treated like the TPC-C
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Table 8.1: Per phase running time, on TPC-C with 15 warehouses and a 89MB input trace
containing 42k txns.

Tuple-level Creating graph METIS Train placement Compute partitions &
sampling rate from txn trace partitioning classifiers train routing classifiers

5% 1m56 26s 22s 2m51s
10% 3m55 1m01s 37s 7m30s
20% 9m49 1m44s 1m02s 6m18

warehouses.

AuctionMark simulates the workload of a popular auction website. The benchmark is com-
plex and consists of 13 kinds of objects and 14 transaction profiles. Only one of the transac-
tion profiles (UpdateItem, representing 2% of the workload) needs to abort. This transaction
would need to execute using 2PC coordination when it accesses data from multiple parti-
tions. This leaves the remaining distributed transactions (12% of the workload) able to
execute using the independent transaction model. The manual partitioning scheme we used
groups each user together with all the related objects (including the items a user sells) –
users are then sharded across all partitions.

The EPinions benchmark simulates the popular website with the same name. This workload
manages users and products, as well as the many-to-many relationships between them (trust
and reviews encode the relationships between two users, and between an user and a product,
respectively). There are 5 kinds of objects and 9 transaction profiles. None of the trans-
action profiles abort, thus independent transactions can trivially be used for all distributed
transactions. The manual partitioning scheme we adopted for this workload replicates ev-
erything everywhere, thus executing all write transactions as distributed transactions, while
executing read transactions locally. For a read-dominated workload, this scheme results in
fewer distributed transactions when compared to a scheme that uses sharding. With shard-
ing, many read-only transactions would need to execute distributed, because they involve
two users (a buyer and a seller).

Our final workload, ReTwis, is a Twitter clone originally designed to run on a non-transactional
key-value store. We converted all its operations to transactional stored procedures, thus
strengthening consistency and eliminating many round-trips between the application and
the data-store. None of the transactions abort – all distributed transactions can execute
using the independent transaction model. The manual partitioning we adopted for this
benchmark groups users with all related objects, then shards users across all partitions. It is
hard to define a more effective partitioning scheme without a deeper knowledge of the social
graph in the workload.
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8.2 Evaluation

Figure 8.1 is a summary of our experimental evaluation and shows that our tool is able
to match or exceed the manual partitioning schemes in terms of the number of distributed
transactions on all benchmarks. In TPC-C, accesses to the various warehouses are uniform
and each warehouse corresponds to its own partition. Our tool matches the manual partition
scheme for TPC-C, which is known to be optimal. Horticulture also arrives at this optimal
partitioning scheme on TPC-C.

The remaining benchmarks are characterized by significantly more complex data access
patterns, and the automated tool proposes better partitions than our manual partition-
ing schemes. Good partitioning schemes for these benchmarks must take workload details
into account, e.g., which users are most active, what are the social graphs between users,
etc. Such details are complex and usually ignored in manual partitioning, which leads to
sub-optimal partitions.

TPC-W and AuctionMark observed the largest improvements, with distributed transactions
reduced from 24% (and respectively 14%) to only 2%. This reduction was possible because
the objects observed to be frequently accessed together were placed in the same partition.
EPinions and ReTwis also benefited from automatic partitioning, but to a lesser extent.
This can be attributed to the difficulty to partition the many-to-many relationships from
these workloads.

We used three classifier types (Naive Bayes [51], Multilayer Perceptron [45] and C4.5 deci-
sion trees [94]) for both object placement and transaction routing. Figure 8.2 shows results
for a sample TPC-C workload. In this workload, approximately 10.3% of all issued transac-
tions span more than one warehouses. These transactions would be executed as distributed
transactions under the best known manual partitioning for TPC-C, i.e., each warehouse in
its own partition, and all item objects replicated at all partitions. We find that using C4.5
decision trees for placement and routing gives the best results, both in terms of minimizing
distributed transactions and in terms of avoiding misrouted transactions. This applied in all
the workloads that we have tested.

Our system proposes high quality partitions. By manual inspection of the resulting decision
trees, we determined that many of our best partitions were identical to the best known
manual partitioning scheme for TPC-C. The same conclusion is also supported by Figure 8.3,
which compares the ratio of distributed transaction between our best partitions and the
optimal manual partitioning, as the data size (number of warehouses) is increased.

We scope out a direct comparison against Schism — both our system and Schism essentially
propose the same partitions (optimal) on TPC-C. Unlike Schism, our system is able to
use the independent transaction model for most distributed transactions in our workloads.
Instead, Schism would use all 2PC-coordinated transactions, leading to lower performance.
A direct comparison between independent transactions and 2PC-coordinated transactions
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Figure 8.2: Results on TPC-C for a workload configured with 3 warehouses, with different clas-
sifiers. The trace used contains approx. 1200 transactions. Boxes show average values. Black
markers show best classifier. Horizontal line in 8.2(a) shows theoretical best.
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Figure 8.4: Quality of partitioning and routing with respect to increasing trace size, on TPC-C
(15 warehouses). In 8.4(a), horizontal line is optimal manual partitioning.
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was reported in [24].

Due to the random sampling of tuples and transactions, not every partitioning attempt
had the same optimal result. This can be observed in Figure 8.2(a), where the best cases
match the theoretical minimum of distributed transactions, but the average case is a few
percentage points away. Several of the trained classifiers reached 100% routing accuracy
on our test set, as seen in Figure 8.2(c). To deal with the inherent variability of random
sampling, we repeated the partitioning process several times and chose the best result.

As the data size is increased, however, the size of the trace that is the input to the system
must also increase, otherwise the partition quality decreases. For example, if 3 warehouses
only needed a trace with 1.2k transactions to give good partitions, 7 warehouses required
3.5k transactions and 15 warehouses needed 11k transactions. Figure 8.4 shows how the
quality of partitioning and routing evolves with increasing the trace size, for 15 warehouses.
In practice, one would likely start with a short trace (which can be evaluated faster) and
progressively increase the trace size until the partition quality stops improving.

To show how our process scales as we increase the graph size, we present running times
for the various phases in Table 8.1. We varied the graph size by adjusting the tuple-level
sampling factor (i.e., the ratio of data items present in the transaction trace that we represent
as nodes in the graph, the remaining data items are ignored). We notice that a majority of
the time is spent in the graph representation and evaluation phase. In the evaluation phase,
most time is spent computing routing information for each transaction in the input trace
(training the routing classifiers is relatively fast). We believe these two most time-consuming
operations could be further optimized.

While our prototype only supports off-line partitioning, we can estimate a live system would
exhibit a trade-off between three factors: system performance during partitioning, the dura-
tion of partitioning and spare CPU capacity. Since Granola executes all transactions using
a single thread, its maximum throughput is limited by the performance of a single core, and
not by the number of CPU cores available. Thus, as long as spare CPU cores are available
towards partitioning, there will be no interaction between the transaction execution system
and the separate partitioning tool. Transactional throughput can still be affected by run-
time logging, but the impact can be arbitrarily reduced through sampling, at the expense
of needing more time to complete a trace. If spare CPU capacity is still available, certain
phases of the partitioning process can be parallelized to further speed up partitioning.

Figures 8.5 and 8.6 show transactional throughput measurements. PaxosSTM is faster than
our approach on a few of the workloads (AuctionMark-2, EPinions-2). This happens when
contention is low and PaxosSTM benefits from running multiple transactions concurrently.
On higher contention workloads however, Granola’s single-threaded approach performs bet-
ter. This effect is strongest on TPC-C, where all transactions relating to the same warehouse
conflict.

Furthermore, PaxosSTM does not scale with increasing number of nodes, as all transactions
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Figure 8.5: Total transactional throughput by benchmark.
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Figure 8.6: Total throughput on TPC-
C. The bar is the average. The lower
error bar is the standard deviation. The
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must be coordinated across all participants. Our partitioning approach on the other hand
is scalable, especially when the ratio of distributed transactions is low. This can be seen on
EPinions and ReTwis, as the number of nodes is increased from 2 to 5 (and 10 respectively).
With 2 nodes, PaxosSTM is similar or faster than the Granola approach, but as more nodes
are added, throughput under the Granola model increases while on PaxosSTM it stagnates.

Our throughput measurements also reflect the benefits of automated partitioning as com-
pared to manual partitioning. TPC-W observed the best improvement, of almost 4.5x (mea-
sured with 10 nodes). The throughput with manual partitioning did not increase as more
nodes were added to the system, because of the large ratio of distributed transactions. With
automatic partitioning however, throughput increased significantly as the experiment was
scaled up.

AuctionMark and ReTwis showed more modest improvements. In ReTwis the manual parti-
tioning scheme is already good – further improvements are difficult. In AuctionMark, despite
having fewer distributed transactions, the transactions span more partitions and are thus
slower. In TPC-C, both the manual and automatic partitions were already optimal, so the
throughput only reflects the overheads of classifying objects at runtime. This effect is more
pronounced at higher node-counts, when the thread executing Granola transactions becomes
saturated.

In EPinions however, automated partitioning became significantly slower than the manual
partitions as the number of partitions in the system was increased from 2 to 5, despite
still having a lower ratio of distributed transactions. This situation is caused by a skew
in the workload towards a single partition, which then becomes a bottleneck. The issue
can be resolved by balancing the partitions in terms of offered workload instead of data
size. The workload would thus be evenly distributed across all partitions, although the data
distribution may become skewed instead (some partitions hold more data than others).

We additionally varied the fraction of distributed transactions in a TPC-C workload to
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distributed txns.

simulate the effect that partition quality has on throughput. Results are shown in Figure 8.7.
Fewer distributed transactions clearly lead to better performance. This effect is strongest
when distributed transactions account for less than about 10-15% of the total workload.
Thus, optimizing the quality of partitioning can be very beneficial and is especially important
for workloads with less than 10-15% distributed transactions.

To summarize, we evaluated our system on 5 benchmarks and in most cases observe im-
provements in both the ratio of distributed transactions and transactional throughput. The
largest improvements (up to 4.5x in throughput) were observed on benchmarks where dif-
ferent objects were frequently accessed together in non-trivial patterns. We additionally
provided the first investigation of single-repository and independent transaction models on
several benchmarks other than TPC-C.



Chapter 9

Alvin: A General, Consistent,
Geo-Replicated Transactional System

Alvin is a geo-replicated transactional system built around a novel Partial Order Broadcast
protocol (POB) that globally orders only conflicting transactions while minimizing the num-
ber of communication steps for non-conflicting transactions and avoids relying on a single
designated leader.

The idea to consider message semantics when defining consensus originates from Generalized
Consensus [63] and Generic Broadcast [88]. POB however introduces a novel approach for
ordering transaction commits, that does not rely on a single designated leader and thus
avoids the limitations associated with most existing solutions (e.g., Generalized Paxos [63])
when deployed in a geographically distributed system (GDS). A leader is not needed for
neither of ordering transactions or conflict resolution.

POB draws inspiration from modern multi-leader state machine replication protocols that
specifically target GDS, such as Mencius [74] and EPaxos [77]. POB inherits their benefits
while at the same time avoiding their drawbacks. Like Mencius, POB decides the final order
of commands directly on the node that issues them, but benefits from employing a quorum
instead of requiring a information from all nodes in the system. This is especially beneficial
in a GDS setting, with high latencies and unreliable communication, or when some nodes
have a much lower rate of issued commands.

In a similar way to EPaxos, POB may adjust the order of commands after their proposal.
This is done based on command dependencies, and helps reduce the number of communica-
tion steps when no conflicts are present. POB however does not need to process dependency
graphs as EPaxos does. This helps maintain a speedy execution as the graph size increases
due to more complex workloads with a higher transaction size and increased contention.

In POB, each node has a predefined exclusive subset of positions that it can use for propos-
ing new commands. The node proposing a command becomes the command’s leader, and is
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thus responsible for selecting the position which will define the ordering. After the order is
stabilized, commands can be delivered according to their position number. Commands are
also associated with a set of dependencies, allowing POB to reach agreement while commu-
nicating with only a quorum of nodes, as opposed to Mencius which needs acknowledgement
from every other node in the system. The dependencies of a transaction T2 are the set of
transactions conflicting with T2 that precede T2 in the order defined by POB. POB further
ensures that when T1 is in dependency set of T2, its position number will be lower than T2’s
position number and T2 will only be delivered on a node after T1 was also delivered.

Alvin uses POB in conjunction with P-CC, a local parallel concurrency control layer able to
fully exploit all of POB’s advantages. P-CC commits non-conflicting transactions in parallel
and only needs to serialize conflicting transactions, thereby increasing parallelism.

Alvin guarantees that transactions always observe a consistent view of the memory. This
includes transactions that will eventually be aborted. In DTM systems this property is
important, as observing an inconsistent state may lead to crashes or other unexpected be-
havior [37]. This guarantee is provided thanks to Alvin’s transaction processing model.
Transactions execute optimistically on the local site, employing a timestamp-based multi-
versioned scheme for all read operations (i.e., snapshot reads). Upon completion, POB
disseminates a record of the transactions’ execution, and then P-CC is tasked to validate
and commit each transaction at every replica in the system. P-CC’s task can be completed
without any further remote communication, because POB guarantees conflicting transactions
are ordered identically on all nodes.

Alvin is flexible and allows programmers to configure aspects of both the POB and P-CC,
according the the application requirements. Specifically, Alvin offers the choice of two con-
sistency criteria, Serializability (SR) [10] and Extended Update Serializability (EUS) [3, 90]
(i.e., PL-3U [3]). Both are considered as strong consistency. To guarantee serializability,
Alvin broadcasts all transactions through POB, including read-only transactions. Con-
versely, if EUS is desired, Alvin POB only needs to order transactions that contain at least
one write operation. Read-only transactions can be processed locally, at the expense of al-
lowing some non-serializable executions, typically silent to the application. Another choice
Alvin offers to the programmer is whether to enable fast decisions or not. Fast decisions
may lead to agreement after only two communication delays, but require a larger quorum
than the quorum for a classic decision.

We implement Alvin in the Go programming language, and we evaluate it on Amazon
EC2 infrastructure using up to 7 geographically distributed sites, and benchmarks includ-
ing Bank [50] and TPC-C [23]. We compare against two certification-based transactional
systems [87] with Multi-Paxos [64] and EPaxos [77] as the ordering layer. Alvin with EUS
proves to be significantly faster than EPaxos, up to 4.8× on TPC-C with a 7 datacenter
deployment. With SR, Alvin is only 26% faster than EPaxos, due to the absence of a
complex graph processing phase. On Bank, the smaller transactions with significantly lower
contention led to smaller dependency graphs and thus similar behavior between Alvin and
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EPaxos. The performance of Multi-Paxos was significantly lower than the other competitors,
showing how disadvantageous it is to have a single leader in GDS.

9.1 Assumptions and System Model

Our work assumes a set of geographically distributed sites Π = {P1, P2, . . . , PN} executing
operations on some common shared data. They are organized as an asynchronous distributed
system, and use a wide area network for communication between sites. No specific network
delay distribution or upper bound is assumed, thus every message may experience arbitrarily
large but finite delays.

Each node logically represents a datacenter. In practice, multiple nodes may be deployed in
a datacenter. Managing their synchronization is an orthogonal issue which we scope out for
our work. Thus each site stores the entire shared data set, and transactions running at any
site can access any datum locally.

Let N be the total number of sites, and at most f <
⌈
N
2

⌉
of them can experience faults

at any time. At least a majority of nodes is thus always correct. For our work we scope
out Byzantine faults (malicious behavior), and we assume the crash-stop failure model [10].
For any phase of the ordering protocol, a node contacts all sites and waits for a quorum Q
of replies. We employ two quorum types: a classic quorum CQ, and a fast quorum FQ.
Both CQ and FQ at least equal to

⌊
N
2

⌋
+ 1, such that any two quorums have a non-empty

intersection. This means that upon at most f failures, there is at least one correct site with
sufficient information as required for system recovery. The actual values for CQ and FQ
may vary according to configuration, and will be specified later in this chapter.

Furthermore, we assume the presence of a weak unreliable failure detector [40], as is also
needed for implementing a leader election service [39]. This is needed to guarantee agreement
is eventually reached when sites become faulty, such as a datacenter becoming unreachable.

9.2 Alvin: Geo-Replicated Transactional System

Transactions in Alvin follow a simple object-oriented interface. Accesses are performed on
shared objects, and can be either Read or Write. Transactions are delimited using Begin
and Commit commands.

Alvin exploits partial ordering of transactions to improve performance when compared to
a total order approach. Totally ordering all commits on all nodes would certainly guarantee
that the exact same state transitions are executed across the system, but this is too strong
of a condition for a GDS because it unnecessarily delays the commits of all transaction until
all previous transactions (including non-conflicting transactions) are finalized. In Alvin on
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the other hand, transactions only need to wait for conflicting transactions before they are
allowed to commit. With this approach, the shared state across nodes is still guaranteed to
converge quickly, while at the same time allows a much higher degree of parallelism especially
when inter-datacenter conflicts are rare, a common situation in GDS.

Alvin follows a certification-based approach [87] for executing transactions. Its architecture
includes two fundamental layers: the Partial Order Broadcast layer (POB) and the Parallel
Concurrency Control layer (P-CC). POB is responsible for ordering commit requests making
sure conflicting transactions are delivered in the same order at all nodes. P-CC on the other
hand optimistically executes the transactions, making sure to always provide a consistent
view of the shared state. After the commit request is ordered by POB, P-CC also verifies
the optimistic execution is still valid before finally installing the writes to the shared state.

Alvin supports transactional applications consisting of multiple threads distributed among
all nodes. According to the certification-based replication scheme [87] which we employ, a
thread spawns transactions on the same node the thread itself is running. Objects read
and written are recorded in a per transaction private space named read-set (T.RS) and
respectively, write-set (T.WS).

To execute a transaction T , two phases must be completed. In the first phase, the transaction
executes locally, optimistically, to build its read-set and write-set under the control of P-
CC. No changes are made to the shared state at this stage. When complete, the executing
thread broadcasts T (including T.RS and T.WS) using the POB layer and waits so T can be
validated globally and thus committed or aborted. In case of an abort, T ’s records expunged,
and the application thread must restart the transactions. In case of a commit, T waits for
any conflicting transactions ordered before itself, and them proceeds to apply its updates to
the globally shared state.

In order to process a transaction T , the POB layer uses the following interface: POBroad-
cast(T ) is used to broadcast T including its read-set and write-set; PODeliver(T, depsT )
is a callback invoked by POB to deliver T on each node. Besides T , also delivered is a set
of transactions depsT = {T1, · · · , Tm} which contains all transactions Tk conflicting with T
which must be processed (i.e., certified and committed or aborted) before processing T . We
say two transactions T and T ′ are conflicting if at least one of the following conditions is
true: (i) T.WS ∩ T ′.WS 6= ∅, (ii) T.WS ∩ T ′.RS 6= ∅, (iii) T.RS ∩ T ′.WS 6= ∅ (i.e., they
access a common object, and at least one of the accesses to the common object is a write).

9.2.1 Partial Order Broadcast Layer

The POB layer guarantees that conflicting transactions are delivered in the same order on
all nodes. This is motivated by the fact that, two transactions that do not conflict can be
processed in any order, while arriving at the exact same state on all nodes. Alvin prefers
using POB because it is cheaper than using a Total Order Broadcast (TOB) service which
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ensures a total order among all transactions.

POB provides the following properties:

• P1: Strong Uniform Conflicting Order. If a node delivers message m = [T, depsT ]
before message m′ = [T ′, depsT ′ ] and transactions T and T ′ conflict, then every node
delivers m before m′.

• P2: Local Dependency. If a node delivers message m = [T, depsT ] before message
m′ = [T ′, depsT ′ ] and transactions T and T ′ conflict, then T ∈ depsT ′ and T ′ 6∈ depsT .

Property P1 protects against the omission of messages — therefore it is defined as strong. It
comes in contrast with the weak order property that, despite preserving the order of delivery
on all nodes, it would allow some messages to be delivered on some nodes but not on others.
Transaction processing requires the strong order property, as the state of the system can
irrevocably diverge if any transactions are skipped on some nodes.

The second property, P2, ensures that the layer processing a transaction T post-delivery
from POB (i.e., P-CC) has a reliable view of conflicting transactions delivered before T , i.e.,
depsT . All P-CC needs to do to process transactions according to the partial order defined
by POB is to wait for all Tk ∈ depsT before processing T . POB also guarantees the typical
properties of a reliable broadcast service (i.e., validity, integrity, uniform agreement [29]).

Overview. POB enforces an order only among conflicting commands, as previously specified
by the problems of Generalized Consensus [63] and Generic Broadcast [88], for which a
number of solutions have been proposed (e.g., Generalized Paxos [63], EPaxos [77]). POB
improves upon these previous solutions by employing a decentralized design without a stable
leader to dictate the order while avoiding expensive processing on the critical path leading
to the delivery of messages.

POB relies on a deterministic scheme for assigning position numbers in the final order (also
called delivery slots) to submitted transactions. The delivery order of transactions is deter-
mined by the proposing nodes, in a similar way to communication history-based total order
broadcast protocols [29, 74]. The proposing node for transaction T acts as its unique leader
tlT which applies the rules bellow to determine the final delivery position posT ∈ N.

• Rule 1. If transaction T was proposed by node Pi (i.e. tlT = Pi), then T can only be
delivered in a free position labeled posT , such that posT mod N = i.

• Rule 2. Transaction T is delivered in position posT iff for every conflicting transaction
T0 ordered ahead of T (i.e., posT < posT0), T0 is a dependency of T0 and T is not a
dependency of T0 (i.e., T0 ∈ depsT and T 6∈ depsT0).

Following Rule 1 POB can guarantee two transactions proposed by different nodes would
never occupy the same position. It is however possible for two transactions issued by the
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same node to be assigned the same position number. Such a situation is defused by deter-
ministically ordering the two transactions based on their unique numeric identifier. Rule 2
is specifically defined such that POB can satisfy the property P2.

In the absence of suspected failure, the transaction leader tlT for a transaction T is the node
that issued T . Any other node may however suspect the original leader to have failed and
subsequently start a vote to be elected the new leader for T as part of a recovery process.

Protocol. A transaction T is submitted to POB via the POBroadcast(T ) interface, and
goes through the following four phases: Proposal phase, Decision phase, Accept phase and
Delivery phase.

In the Proposal phase, node Pi leader of transaction T selects the next position number
available to be used as posT . posT must be greater than every other position that Pi observed
to be in use, but at the same time is the smallest value allowable under Rule 1. Also selected
is the dependency set depsT , the set of all transactions that conflict with T which have the
position number currently lower than posT .

After collecting this data, Pi broadcasts a Propose〈T, posT , depsT , e〉 to all nodes. At this
stage, all know information about T is broadcast, namely its identifier, read-set and write-set
(T.id, T.RS, and respectively, T.WS).

To support failure recovery, also included with the Propose message and any other message
associated with transaction T is an epoch number e. The epoch is advanced when a node
suspects the old leader to have failed and initiates the recovery procedure. In a similar way
to the Paxos algorithm, a node must ignore all messages with a lower epoch number e0 lower
than its current known epoch number e for transaction T . If on the other hand a message
with a greater epoch number e1 arrives, e is locally updated to this value. The initial epoch
number for all Propose messages is 0, representing the initial epoch for which T ’s sender
is also T ’s initial leader tlT .

Upon receiving a Propose〈T , posT , depsT , e〉message, a node Pj confirms receipt by sending
an AckPropose〈T.id, newPosjT , newDeps

j
T , e〉 message back to Pi. newPos

j
T represents a

request to update posT in the situation when Pj observed another transaction T1 conflicting
with T for which posT1 > posT . In this case, newPosjT will be the next available position
for T such that newPosjT > posT1 (and still compatible with Rule 1 for node Pi). If no such
conflicting transaction exists, then simply newPosjT = posT .

Similarly, newDepsjT is the set of conflicting transactions Tk with posTk
< newPosjT .

POB stores in-flight transactions in a data structure called Delivery Queue (DQueue). At
each node Pj, DQueue holds a tuple 〈T , posT , depsT , status, e〉 for each transaction issued or
received by Pj. DQueue is sorted according to the posT value of each entry. Valid values for
status are Pending, Accepted, Stable. Upon sending or receiving a Propose message
for transaction T , an entry is added to DQueue with its status = Pending.

In the Decision phase, Pi, the leader of transaction T , waits for a quorum of FQ AckPro-
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pose replies from the previous phase. The final position posT and dependencies depsT are
then computed as follows:

• posT is the maximum among all newPosjT position proposals in the quorum.

• depsT is the union of all newDepsjT dependency set proposals in the quorum.

Pi then broadcasts an Accept〈T.id, posT , depsT , e〉 message for T with the final position
and dependency set. In the basic POB configuration, FQ = f + 1. We show in Section 9.2.1
how fast decisions allow avoiding two communication steps if no contention is encountered
by increasing the value of FQ.

In the Accept phase, upon node Pj receiving message Accept〈T.id, posT , depsT , e〉 it up-
dates its corresponding DQueue entry setting status = Accepted and updating posT and
depsT according to the values received.

Node Pj then replies with an AckAccept〈T.id, posT , newDepsjT , e〉, where newDepsjT =
depsT ∪deltaDepsjT . This set deltaDepsjT , contains all the transactions T∆ that conflict with
T , have arrived at Pj after Pj processed the initial Propose message and have a position
posT∆

between the old newPosjT and the new (final) posT .

In the Delivery phase, T ’s leader node Pi waits for a quorum of CQ = f + 1 AckAccept
replies from the previous phase. The value of CQ is the same with the classic Paxos quorum
size and ensures that even in the case of f failures, at least one node in the system remains
having recorded status = Accepted and the final posT . After receiving the CQ replies,
tlT computes the final depsT = ∪jnewDepsjT from those replies and broadcasts a message
Stable〈T.id, posT , depsT , e〉 to inform all nodes of its decision.

Node Pj, upon receiving Stable〈T.id, posT , depsT , e〉, updates its corresponding DQueue
entry by setting state = Stable and updating posT and depsT if needed. Finally, after all
transactions in depsT have been delivered, T can also be delivered by triggering PODe-
liver(T, depsT ).

Following this protocol, a situation may arise at this stage such that T ′ ∈ depsT and
T ∈ depsT ′ , with posT < posT ′ . In order to avoid a deadlock, the dependency set for
the later transaction T ′ is modified to expunge T , but only when statusT =Stable and
statusT ′ =Stable.

When a node Pk suspects that T ’s current leader Pi has crashed and statusT 6= Stable,
Pk starts a Failure Recovery process. Pk tries to become T ’s new leader by executing a
classic Paxos Prepare phase [64]. First, Pk broadcasts a Prepare〈T.id, e2〉, where e2 is
greater than the last observed epoch for T . Upon receiving this request, nodes send a reply
Promise〈T, posT , depsT , statusT , e2〉 , promising to not participate in any round with an
epoch number e < e2. Also included in the reply are the last observed details for transaction
T , as recorded in the node’s DQueue. Upon receiving a quorum of CQ = f + 1 such
Promise replies, Pk is acknowledged as T ’s new leader. Pk can analyze the replies and take
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a decision for T that is guaranteed to be identical to the decision taken by T ’s old leader Pi,
if any.

Based on the replies received above, three situations may arise:

• At least one of the replies contains statusT = Stable. This reply contains the final
details 〈posT , depsT 〉 for transaction T , which Pk must enforce. Thus Pk only needs to
do a Delivery phase by broadcasting a Stable〈T.id, posT , depsT , e2〉 message.

• None of the replies have statusT = Stable, but at least one reply has
statusT = Accepted. This reply contains the details 〈posT , depsT 〉 for transaction T ,
which Pk must use. Thus, Pk starts an Accept phase and broadcasts an
Accept〈T.id, posT , depsT , e2〉 message with these details.

• None of the replies have statusT ∈ {Stable, Accepted}. Pk must start a new
Proposal phase and may select the next available position for T .

Fast Transaction Decisions

Besides the base behavior described in the previous section, POB can also be configured
with a fast-path for taking a decision in only two communication steps. When enabled, fast
decisions help avoid the two message delays of the Accept phase for transactions that do not
encounter contention. In order to support fast decisions, POB requires waiting for a larger
quorum FQ > f + 1 in the Decision phase and has a more complex recovery procedure.
With GDS, we can certainly imagine deployments where fast decisions do not bring any
performance benefits, especially for higher contention workloads. Enabling this optimization
should thus be done after considering the trade-off between the lower number communication
steps and the larger quorum size.

The fast path works as follows: after broadcasting the Propose message, the leader waits
for a fast quorum of FQ identical replies. If these replies are received, the leader makes
the decision immediately and broadcasts the corresponding Stable message with the same
〈posT , depsT 〉. Otherwise, the regular path is taken by proceeding to the Decision phase as
described in the previous section.

With fast decisions, FQ must be adjusted such that, in the event of f faults including a
transaction T ’s leader, the system can safely recover. More specifically, T ’s new leader must
be able to determine the decision of the failed leader, if any, even when this decision was
taken on the fast path.

In the recovery procedure, T new leader tlT = Pk broadcasts a Recover〈T.id, e2〉, and waits
for a quorum of CQ = f + 1 replies. If no transaction T ′ conflicting and concurrent with
T exists, then the recovery is trivial. If such a T ′ exists and its leader tlT ′ has not failed,
the previous decision for T may be inferred from the information sent by tlT ′ . Otherwise,
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assuming tlT , tlT ′ and up to f − 2 other nodes have failed, we must ensure a majority of
the remaining nodes agree with the previous fast-path decision. Therefore, N − FQ − 1,
representing the nodes that may have voted for T ′ but excluding tlT ′ which is known failed,
must be less than a majority of replies,

⌊
CQ
2

⌋
+ 1, or:

N − FQ− 1 <

⌊
CQ

2

⌋
+ 1

A separate condition that needs to be enforced is disallowing two nodes attempting to recover
two different but conflicting transactions T and T ′ to both believe they had a fast quorum.
Supposing each new leader collects half the votes in the recovery phase, i.e., N−f

2
, and

assumes it had all the votes of the failed nodes, except the leader of the other conflicting
transaction, i.e., f − 1, it should not add up to make a fast quorum:

N − f
2

+ f − 1 < FQ

Solving for the two inequations above, and aiming for a minimal number of nodes N = 2f+1,
gives us CQ = f+1 and FQ = f+

⌊
f+1

2

⌋
. These are the same values as the quorums adopted

by EPaxos. Moreover, the full recovery procedure is a trivial extension to the recovery
procedure of EPaxos [77].

9.2.2 Parallel Concurrency Control Layer

The Parallel Concurrency Control layer (P-CC) sits between POB and the application code
on each node in the system. Its two main tasks are (i) optimistically executing the trans-
actions submitted by the clients and (ii) performing the final validation and commit of
transactions after their delivery from POB.

P-CC maintains a node-local variable clock which is incremented with every transaction
commit. Each object retains a list of recent versions. Each object version is tagged with
a pair of integers 〈clk, pos〉 — clk represents the value of clock when the transaction was
committed and pos is the posT value of the transaction that committed it.

The first stage in a transaction’s lifetime is handled by the P-CC and is called execution
phase. The application thread issues Read and Write operations one-at-a-time, which get
serviced by P-CC as part of a transaction. Through the use of Multi-Version Concurrency
Control (MVCC) and the node-local clock, P-CC guarantees transactions always observe a
consistent view of the memory, even if they later abort. Upon its first read operation, a
transaction records clock in a private variable named tcT . Future reads will return object
values tagged with the greatest value clk no bigger than tcT . All reads are also recorded in
the transaction’s read-set, T.RS. Similarly, writes are buffered in the transaction’s write-set
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T.WS, without modifying the shared memory. When the transaction completes its optimistic
execution and attempts to commit, PC-C submits it to the POB layer for global ordering.

The second task of P-CC begins when POB delivers transaction T thus beginning the commit
phase. In the commit phase, P-CC first waits for transactions in depsT to also complete their
commit phase before attempting to process T . After that, T ’s read-set must be validated.
Read-set validation makes sure no objects in T.RS have been updated since T originally
read them, by comparing the pos tag of the latest version of the object with the pos of the
version stored in T.RS. Since the validations must have the same outcome at all replicas,
the globally consistent pos values must be used. If the validation succeeds, P-CC can install
the writes in T.WS to the shared memory and increment the node-local clock.

By employing snapshot reads, P-CC ensures that transactions always observe a consistent
state. Additionally, P-CC can be configured to guarantee one of two consistency criteria for
the set of committed transactions: serializability (SR) or Extended Update Serializability
(EUS). SR is the reference consistency criterion for transactional applications and ensures
every committed transaction appears to have executed atomically. P-CC provides serializ-
ability by submitting all transactions (including read-only transactions) to POB for ordering
and subsequent validation. We should note that SR can also be achieved by totally ordering
all update transactions (thus replacing POB with a Total Order Broadcast layer, or TOB),
and locally committing read-only transactions by default, without any certification, as show
in [104].

EUS [3] is an alternative consistency criterion weaker than SR, but still strong enough for
most transactional applications [90]. Under EUS, the system never transitions to an invalid
state, and all operations observe a consistent state. With respect to update transactions, EUS
and SR are identical. EUS however allows certain executions of read-only transactions that
would otherwise be rejected under SR. More specifically, two read-only transactions executing
at different nodes may observe two non-conflicting update transactions with different orders.
P-CC provides EUS by only submitting update transactions for ordering via the POB layer,
while locally committing read-only transactions by default, without any certification.

Pseudocode and proofs for Alvin are provided in Appendix A.

9.2.3 Garbage Collection

Alvin periodically removes old transactions from the delivery queue DQueue. This is done
to keep dependency sets short, which have to be transmitted over the network. A transaction
may only be considered for deletion when it is known to have completed on all nodes in the
system. This requires disseminating information using a mechanism such as gossip. Alvin
currently uses an approach where a node periodically collects and disseminates the posT of
the oldest transaction still not completed. Transactions in positions older than this posT
may thus be collected.
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We now show it is insufficient to simply collect transactions locally as soon as they complete.
Assume a transaction T has completed at all nodes except P1, which does not yet know T is
stable. Thus all nodes except P1 remove T from their DQueue. A transaction T ′ conflicting
with T arrives at P2 and since T was already collected, T ′ does not acquire a dependency on
T . T ′ can become stable without communicating with P1 (e.g., due to dropped or delayed
messages), broadcasting a Stable〈T ′〉 message. If this message gets delivered to P1 before
Stable〈T 〉, the P1 can deliver T and T ′ in the opposite order compared to all other nodes,
bringing the system in an invalid state.

Finally, garbage collection is also required for removing old object versions when they are no
longer readable by any live transaction. For this, the knowledge of the oldest live transaction
in the system (its tcT value) must be disseminated throughout the cluster.

9.3 Evaluation

We evaluate Alvin by comparing it against two certification-based transaction execution
protocols [87] that rely on MultiPaxos [64] and EPaxos [77] for their ordering layer. Multi-
Paxos ensures serializability by totally ordering the commit requests for all write transactions,
while serving read-only transactions locally through multi-versioning. However, MultiPaxos
is sequencer-based, thus the location of the node designated as the leader significantly affects
its performance. In order to conduct a fair comparison, we used two versions of MultiPaxos:
one with the leader located at a node with a point-to-point latency to other nodes that
is higher than the average (Paxos-HI ), and another where the connection latency is lower
(Paxos-LO). We implemented Alvin and the competitors in the same transaction processing
framework, using Go as the programming language.

We used two benchmarks in the evaluation: TPC-C [23] and Bank [50]. The former is a
well known benchmark representative of on-line transaction processing workloads; the latter
mimics operations of a monetary application where each transaction transfers an amount of
money between some bank accounts. We ran our experiments on the Amazon EC2 infras-
tructure, using r3.2xlarge nodes in up to 7 geographically distributed sites (three in Asia,
two in North America, one in South America and Europe). Each node has 8 CPU cores and
61GB RAM. Results are the average of 7 samples.

Figure 9.1 reports Alvin’s throughput on the TPC-C benchmark by varying the number
of geographically distributed sites in {3,5,7}. In Figure 9.1(a) we also changed the number
of nodes per site as {1,3}, using a write intensive workload (<3% read-only). Results on
read-dominated workloads are showed in Figure 9.1(b). Here we change the percentage
of read-only transactions from 50% to 90% while using one node per datacenter. In this
read dominated scenario we explore both versions of Alvin, ensuring SR (Alvin-SR) and
EUS (Alvin-EUS), with the purpose of assessing the effectiveness of EUS. In all depicted
scenarios, we configured Alvin to run with fast decisions enabled. We batch messages for
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(a) Write-intensive workload for {3,5,7} sites and {1,3} nodes per site.

(b) 50% and 90% read-only transactions. One node per site.

Figure 9.1: Throughput of TPC-C benchmark.

all competitors, using a window of 20 to 50 msec, according to each deployment.

TPC-C’s transactions access several shared objects and have a non-negligible computation.
This results in long transaction execution time and a complex dependency graph to be
analyzed during the processing of commit requests in EPaxos. Therefore, Alvin is able to
improve the parallelism because of the different delivery rules of POB, overcoming EPaxos in
throughput by up to 26%. Both EPaxos and Alvin sustain their throughput while increasing
the system’s load until 9 nodes (3 datacenters with 3 nodes each), then the system becomes
overloaded and performance degrades due to increasing contention. MultiPaxos in both its
configurations performs worse than the others due to the presence of single remote leader
that slows down the entire system’s progress. In addition, these transactions are long thus
the sequential certification limits its performance.

Figure 9.1(b) shows the effectiveness of exploiting EUS in read-dominated workloads by
avoiding to broadcast read-only transactions via the ordering layer. Therefore Alvin-EUS
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provides a speed up of up to 4.8× in throughput when compared to Alvin-SR and EPaxos.
It is important to notice that in these scenarios, MultiPaxos is also able to take advantage
of local computation of read-only transactions. In fact, its Paxos-LO configuration performs
similar to EPaxos and Alvin-SR for the case of 90% of read-only transactions and 3 dat-
acenters. In other scenarios, Paxos-LO saturates its leader’s resources, slowing down the
ordering process. As before, Paxos-HI exposes poor performance due to the high commu-
nication latency with the faraway designated leader. Regarding the comparison between
EPaxos and Alvin-SR, they follow about the same trend observed in Figure 9.1(a) because
they both process read-only transactions in the same way.

85#threads#

125#threads#

(a) Alvin Vs EPaxos on 5 sites.
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(b) Impact of fast decision.

Figure 9.2: Throughput Vs Latency using TPC-C benchmark varying application threads.

In Figure 9.2(a) we plot the latency increasing the system’s load by adding application
threads per node from 15 to 125. Here, we used the TPC-C benchmark deployed on 5 sites,
adopting the same workload as in Figure 9.1(a). For increasing the readability of the plot we
excluded MultiPaxos because its results were 3× slower than the other competitors. From
the analysis of EPaxos’ and Alvin’s trends we observe that Alvin has a lower transaction
latency and it sustains its throughput better than EPaxos. Specifically, with 85 threads per
site EPaxos stops scaling while Alvin is still able to serve more requests. Alvin reaches its
saturation point running 125 threads per site.

With the plot in Figure 9.2(b) we highlight the importance of configuring Alvin without
the fast decision in high contention scenarios. In these situations, the probability of taking
a fast decision after having collected a fast quorum of replies is low. Therefore the POB
layer always pays the maximum number of communication steps to reach a decision by
contacting a fast quorum of nodes in the Proposal phase and then falling back to the Accept
phase. Disabling the fast decision forces the leader to always collect replies from a classic
quorum. We configured TPC-C as in Figure 9.1(a) with 7 sites and one node at each site,
and we increased the load as before. Alvin-NF (fast decisions disabled) has better latency
than Alvin-F (fast decisions enabled) by up to 30 msec, confirming that, in some scenarios,
waiting for an unlikely fast decision does not pay off.
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Figure 9.3: Throughput under write-intensive workload for {3,5,7} sites and {1,3} nodes per
site using Bank benchmark.

The Bank benchmark has very small transactions (only few operations) and the amount of
transactional work can be considered as negligible when compared to the coordination steps
required for establishing the agreement on the global ordering. This makes the results of
both Alvin and EPaxos comparable in almost all configurations tested as we showed in
Figure 9.3. Bank’s accesses are uniformly distributed across all objects and we managed the
total number of shared objects for having an average transaction’s abort rate in the range
of 10-20%.

EPaxos’s dependency graph analysis does not slow down the transaction’s critical path sig-
nificantly because the strongly connected components with more than one node are only
1.7% of the total, thus the main impacting factor on the performance is the number of com-
munication delays used for delivering transactions and, with fast decisions enabled, both
Alvin and EPaxos use the same number of communication delays for delivering. However,
it is worth noting that all competitors relying on partial order instead of total order sus-
tain their throughput when we increase the number of nodes until 7 datacenters, where they
start degrading. MultiPaxos in both its configurations performs worse than others due to the
presence of single remote leader that slows down the entire system’s progress. The exception
is Paxos-LO, which is the closest to others because it benefits from having a low latency
leader when site count is low.

At its core, the design of Alvin shows that it is possible to achieve an effective trade-off
between performance and programmability in geo-replicated environments. An important
insight of our work is that partial ordering of transactions can be significantly exploited
to speed up local concurrency control through parallelism and that it can be determined
without a unique leader, which increases scalability in a geo-replicated setting.



Chapter 10

M2Paxos: Faster General Consensus

M2Paxos is our solution to the Generalized Consensus problem, and combines a number of
desirable properties: (i) it allows fast decisions, in two message delays, (ii) it does not rely on
a single designated leader, (iii) employs a small quorum size, equal to that of classic Paxos
and (iv) does not need to track, record or exchange inter-command dependency relations.

To achieve these goals we turned to a technique often used in database systems to pro-
mote scalability and high-performance: exploiting the locality of data accesses. With this
technique, the data in a system is partitioned across multiple nodes, in such way that the
workload originating on a particular node will find the data it needs on that same node,
with a high probability. Workload locality exploitation generally depends on optimized data
placement, which can be done either manually by a developer or automatically, in a similar
manner to our work in Chapter 7.

M2Paxos works by assigning the responsibility of ordering a certain request to specific
nodes, based on the data accessed by the request. Therefore, two requests accessing the
same data will be ordered by the same node, eliminating the possibility of contention between
them. Furthermore, in order to best exploit workload locality, M2Paxos aims to delegate
ordering a particular request to the same node that issued it with a high likelihood. In such
cases, consensus is reached after only two message delays (which is optimal).

M2Paxos uses the notion of data ownership by nodes, or leases. Only the owner of a partic-
ular data is allowed to make ordering decision for that data. Ownership is asynchronous, in
the sense that it is not time-limited and set to automatically expire, but it can be transferred
when another node requests it. For our work, we only consider on-demand lease transfers —
other techniques such as pre-fetching or statistical transfers can be implemented but are an
orthogonal problem.

M2Paxos clearly works best when a node only issues requests for data whose leases it already
owns. This applies well to workloads exhibiting a high degree of locality as is common for
many On-line Transactional Processing (OLTP) situations, or where transactions access
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multiple related objects. TPC-C [23] is a good example of such a workload, as customers
access their home warehouse with a high probability.

While M2Paxos finds its sweet spot for workloads exhibiting high locality, it remains correct
for all other cases too. Moreover, if command conflicts involve only a pair of nodes (i.e.,
conflict on a single lease), M2Paxos guarantees agreement within three communication
delays in the absence of failures, like Multi-Paxos. This situation is handled by forwarding
requests to the node currently owning all required leases. Another similarity to Paxos is the
quorum size required for agreement, CQ =

⌊
N
2

⌋
+ 1, which is minimal.

To promote scalability, M2Paxos adopted a design that does not require a single desig-
nated leader. The protocol’s design also promotes simplicity, which proved important to
obtain high-performance in practice. Unlike other competitors, M2Paxos does not need to
track, record or exchange inter-command dependency relations. In our Go language imple-
mentation, this allowed M2Paxos to reach performance levels 7× higher than the nearest
competitor, EPaxos (at 49 nodes).

10.1 System Model and Consensus

Let N be the number of nodes in the system, with Π = {p1, p2, . . . , pN} the set of nodes.
Nodes communicate via message passing. Messages may be arbitrarily delayed, and up to f
nodes may fail by crashing (they are not malicious). Nodes that do not crash are correct.

We assume existence of the weakest type of unreliable failure detector [40] that is necessary
to implement a leader election service [39]. This is necessary due to the FLP result [33].
Additionally, due to [19] we must also assume that a majority of nodes

⌊
N
2

⌋
+ 1 is correct,

therefore similarly to classic Paxos, f =
⌊
N
2

⌋
.

We follow the definition and interfaces of Generalized Consensus [63]. Nodes use
Propose(Cmd c) to propose commands. After agreement, the consensus layer delivers C-
stucts using the Decide(C-struct cs) interface. The delivered C-structs satisfy the following
properties:

• (a) Non-triviality: a command included in a delivered C-struct must have been pro-
posed by some node.

• (b) Stability: if a node delivered C-struct cs, then at all later times it can only deliver
cs ◦ σ, where σ is a sequence of commands.

• (c) Liveness: if a command c was proposed by a correct node, then c will eventually
be decided in a C-struct at all correct nodes.

• (d) Consistency: two C-structs decided by different nodes are prefixes of the same
C-struct.
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We define objects as the minimal unit for partitioning data. Data ownership (leases) is
defined on a per-object basis. Commands operate on at least one such object. The set of all
available object in the system is LS. The set of objects accessed by a command c is denoted
by c.LS, where c.LS ⊆ LS.

Objects have a set IN of positions in (also named instances) in which commands may be
decided. When a command is decided, it is associated a position in for each object l ∈ c.LS.
If two commands c1 and c2 are delivered in positions in1 and in2 for the same object l and
in1 < in2, then c1 will be executed before c2.

10.2 Protocol Overview

We now present a high-level overview of M2Paxos’ main components and the way they
interact in order to solve the consensus problem, and we defer the full protocol description
to Chapter 11. We first explain how M2Paxos can reach consensus in two message delays,
which is the theoretical minimum, while still employing minimal sized classic quorums of
cardinality f + 1. This is possible under optimal conditions for M2Paxos, namely when the
workload exhibits temporal locality and there are no conflicts between commands proposed
by different nodes.

Conversely, in less than optimal workloads with conflicts, M2Paxos must switch to one of
two slower paths, depending on the nature of the conflicts encountered. When a conflict
only involves a pair of nodes (i.e., another node holds all the leases needed for the current
command), M2Paxos can reach consensus in three communication delays. Not only does
M2Paxos meet the lower bound defined for the problem of consensus in an asynchronous
system in the presence of conflicts, but it also avoids incurring any penalties due to switching
to a slower path. The latter property is important for effectively exploiting fast decisions,
as shown in [18].

Finally, the most general (but also rare) case is when commands proposed by a node conflict
with commands issued by multiple other nodes. To reach consensus in this case, M2Paxos
takes a path that requires at least four communication delays, and is unbounded. In prac-
tice, this is not a critical problem for M2Paxos, because any workload dominated by such
conflicts will stand to benefit from using classic Multi-Paxos, instead of protocols optimized
for low contention such as EPaxos, Fast/Generalized Paxos, M2Paxos.

The following three subsections each describe one of these cases.

10.2.1 The Fastest Delivery

M2Paxos takes a different approach from other recent scalable implementations of Gen-
eralized Consensus such as EPaxos [77] and Alvin (Chapter 9). These approaches let the
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proposer node be the leader of a command and coordinate with other nodes to define an
ordering. M2Paxos on the other hand, gives exactly one node in the system the authority
to directly decide the delivery positions for each commands.

We need to determine which node in the system has this authority. We define:

Owners ⊂ Π× LS × IN

a logic association of nodes, objects and delivery positions. If 〈pi, l, in〉 ∈ Owners is true,
then node pi has the ownership of object l for position in. We also define:

Decided ⊂ LS × IN

a logic association of nodes with delivery positions. If 〈l, in〉 ∈ Decided is true, then a
command accessing object l has been decided in position in for that object. We say a node
pi is the owner for command c if pi has the exclusive authority to decide an instance in for
every object l ∈ c.LS :

pi IsOwner c = ∀l ∈ c.LS,∃in ∈ IN : Exclusive(pi, l, in)

A node pi has exclusive authority to decide instance l for an object l if Owners contains the
correct association, no other node has competing associations, and the specific instance has
not been decided yet:

Exclusive(pi, l, in) = 〈pi, l, in〉 ∈ Owners∧@pj 6= pi : 〈pj, l, in〉 ∈ Owners∧〈l, in〉 6∈ Decided

In the optimal situation when node pi is the proposer of command c and the relation
pi IsOwner c is satisfied, M2Paxos can reach consensus in two communication delays.
In this situation, upon a Propose(c) request on node pi, the node pi broadcasts:

Accept{〈l, in〉|∀l ∈ c.LS : Exclusive(pi, l, in) = > ∧ in is minimal}

where in are the next available positions at each object l ∈ c.LS for which node pi has exclu-
sive decision authority. Afterwards, node pi waits for a quorum of CQ = f + 1 AckAccept
replies acknowledging receipt, in order to make sure that in case of up to f failures, at least
one node remains that has witnessed its decision.

For example, let’s consider two commands c1 and c2 proposed to the consensus layer and
accessing the pairs of objects {A,B} and respectively, {B,C}. Furthermore, suppose c1 was
decided in position in = 1 for both objects A and B, and c2 was decided in position in = 2
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for the object B and in position in = 1 for the object C. Therefore the sequence delivered
by the consensus so far is c1 ◦ c2.

At this stage, we assume that node pi is the owner of position 2 of object A and position 3
of object be B, namely both Exclusive(pi, A, 2) = > and Exclusive(pi, B, 3) = >. Node
pi now proposes command c3 such that c3.LS = {A,B}, i.e., c3 will access objects A and B.
Then pi can simply broadcast an Accept message for c3 with the set ins = {〈A, 2〉, 〈B, 3〉},
requesting to accept c3 in the final sequence after both c1 and c2. The next decided sequence
will be c1 ◦ c2 ◦ c3.

The scenario described in this section is optimal for M2Paxos, as commands can be de-
cided after only two message delays while employing a classic quorum of minimal size. How-
ever, this scenario can fail if nodes refuse to accept by reply with Nack, or if the relation
pi IsOwner c is not satisfied. We will describe these situations later.

10.2.2 Forwarding Requests

In a different situation from what we described above, a node pi may propose command c
without satisfying the relationship pi IsOwner c, i.e., not having ownership for all objects
accessed by c. While this is a less-than-optimal scenario, there may still be a node pj that
has all required ownership for command c, i.e., pj IsOwner c = >. This case is handled
by forwarding the request to execute command c to node pj, and relying on node pj for a
fast delivery of c. This behavior resembles the classic Multi-Paxos algorithm, where nodes
forward their commands to a stable leader, and let the leader deliver them in two additional
communication delays.

More specifically, upon a Propose(c) event on node pi, where:

pi IsOwner c = ⊥

∃pj ∈ Π|pj IsOwner c = >

Node pi will then forward Propose(c) to node pj. On node pj, the Propose(c) event will
be re-raised. Assuming pj IsOwner c is still satisfied, pj will then broadcast an Accept(c)
message according to Section 10.2.1 and wait for a quorum of CQ = f + 1 AckAccept
replies.

Although in this scenario we can not deliver command c in two communication delays,
M2Paxos is able to deliver in three delays, which matches the lower bound for consensus
in the presence of conflicts [66].
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10.2.3 Requesting Ownership

In the final and most general case, there is no node pj that has ownership of all objects
accessed by some proposed command c:

6 ∃pj ∈ Π|pj IsOwner c

In this case, M2Paxos must alter the Owners relation in order to aggregate ownership
for all objects in c.LS on a single node, which can be either the proposing node pi itself
(as in Section 10.2.1) or some other node (as in Section 10.2.2). In our implementation
we chose to transfer the required ownership to pi, the node having originally proposed c.
While this approach is simple, effective, and allows for delivering the command c within
four communication delays, we also imagine choosing other nodes to transfer ownership to
in order to optimize other metrics, e.g., minimizing the number of leases altered.

Therefore node pi, the proposer of c, attempts to become the new owner for all objects
in c.LS. This task can be done in multiple ways, which may exhibit different behaviors
according to the conflict characteristics of the workload. We first focus on a simple but
effective approach first, which however is not able to provide a bound on the number of
steps required to deliver command c. We later summarize an alternative approach which
can bound the number of communication delays to consensus.

The Effective Approach

With this approach, when pi is proposing a command and no node in the system has all
required leases, M2Paxos runs a Paxos prepare phase for all objects in c.LS. This starts
a new epoch for these objects. To proceed, a quorum of nodes must reply with Promises
to not accept any further requests tagged with a previous epoch. This is the same approach
used in Paxos and similar algorithms when changing the leader.

Therefore, upon Propose(c) on node pi such that

6 ∃pj ∈ Π|pj IsOwner c

node pi will broadcast a message

Prepare {〈l, in, e+ 1〉|l ∈ c.LS}

announcing to other nodes to start the next epoch (computed at sending time as e+1, where
e is the current epoch for object l) and stop accepting any requests with an epoch number
less than that. Afterwards, node pi waits for a quorum of CQ = f + 1 Promise replies,
and, provided there are no Nacks among them, can proceed to take authoritative decisions
for any object in c.LS. More specifically, since now condition pi IsOwner c is true, pi can
follow the procedure described in Section 10.2.1 in order to deliver command c after a total
of four communication steps.
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It may happen that some other node (say pj) sending Promises has previously responded
to an Accept request for some other still unstabilized command c′. In order to maintain
consistency, pj must inform pi of this command alongside the Promise message, and pi must
deliver c′ in the first position of the new epoch.

The Bounded Approach

A more adverse scenario involves multiple nodes concurrently attempting to acquire the
ownership of the same object. In such a case, only one of the nodes can succeed, while the
other ones will receive Nacks and must retry the acquisition attempt after a short back-off
period. If this scenario is frequent, it is indicative of high inter-node conflict. M2Paxos was
not optimized for such a situation, and may lead to unbounded retries before any particular
consensus instance is decided.

Alternatively, one may totally order ownership requests using another separate consensus
protocol to bound communication delays. More specifically, delegating a distinguished node
for ordering all ownership requests is equivalent to using a separate Multi-Paxos layer, and
eliminates the need to retry failed acquisition attempts.

10.3 Evaluation

We implemented M2Paxos and all competitors within a unified framework, written in the
Go programming language [1], version 1.4rc1. Go is compiled, garbage collected and has
built-in support for concurrency.

We evaluated M2Paxos by comparing it against three other consensus algorithms: EPaxos,
Generalized Paxos and Multi-Paxos. We used up to 49 nodes on Amazon EC2 infrastructure.
Unless otherwise stated, each node is a c3.4xlarge instance (Intel Xeon 2.8GHz, 16 cores,
30GB RAM) running Amazon Linux 2014.09.1. All nodes were deployed under a single
placement group. Network bandwidth was measured in excess of 7900mbps.

To stress the system we injected commands in an open-loop using up to 64 client threads at
each node. Commands are accompanied by a 16-byte payload. After issuing each command,
a client thread goes to sleep for a configurable amount of time, i.e., think time. To prevent
overloading the system, we limit the number of commands still in-flight. The limit is config-
ured for best performance under each deployment, and when it is reached, a node will skip
issuing new commands. Each datapoint represents the average of at least 5 measurements.

We first evaluated M2Paxos under its most favorable conditions. More specifically, all
commands touch a single object, and a command proposed by a node can only conflict
with commands proposed by the same node. This scenario is representative for strongly
partitioned data, where replication is only employed for fault-tolerance.
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Figure 10.1: Scalability in a practical deployment. 64 client threads per node, and 5 ms
think time. Command locality is 100%.
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Figure 10.2: Scalability plot. (a) Reflects the maximum attainable throughput. (b) Shows
the median latency when the system is underloaded. Command locality is 100%.
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Figure 10.3: Maximum throughput for 11-nodes deployments with different machine types.
The number of cores are 4, 8, 16 and 32 respectively.

We evaluated the scalability of each consensus protocol as we scaled the system up from 3
to 49 nodes. For each deployment we gradually increased the workload until the saturation
point is reached. We report these results in Figure 10.2. From a throughput perspective (see
Figure 10.2(a)), M2Paxos observes a 3-11× improvement when compared to the nearest
competitor. M2Paxos exhibits great scalability up until 11 replicas. Its throughput keeps
increasing past 11 nodes, albeit at a slower rate. Multi-Paxos is a distant runner-up at 11
nodes and below. After that, Multi-Paxos’ performance degrades, leaving way for EPaxos,
which almost manages to maintain its throughput up to the full 49 nodes.

Figure 10.2(b) shows the median command latency with an underloaded system and ag-
gressive batching disabled. With a low number of nodes, the M2Paxos narrowly wins
over Multi-Paxos, having its latency lower by 23%. As the number of nodes is increased,
M2Paxos remains the fastest to deliver, with up to 41% better latency than EPaxos.

In practice however, a system is not easily and always maintained at full capacity. Therefore
we also explored a more practical deployment with a fixed client workload at each replica,
in order to assess the scalability of our proposal. The results of such a configuration are
showed in Figure 10.1, where M2Paxos, unlike all the other competitors, exhibits near-
linear scalability. This is because M2Paxos is not suffering yet from the high contention at
the network layer, which becomes the bottleneck for a lightweight protocol like M2Paxos
in case of a fully loaded system.

We further evaluated how consensus protocols scale when the number of nodes in a de-
ployment is held constant, but the CPU capacity of each node is increased from 4 to 32
cores. This is relevant for the implementations of Generalized Consensus in order to assess
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Figure 10.4: Throughput varying the fraction of complex commands. The value in paran-
thesis is the number of possible objects per node. The deployment consists of 49 replicas.

their ability to exploit parallelism in case of low or no conflicts among commands. To this
purpose, we ran our benchmark on four classes of Amazon EC2 machines. Each class in-
crement represents a doubling of the number of CPU cores, and an almost 2× increase in
available RAM. Figure 10.3 shows the result of this experiment on four deployments of 11
nodes each. M2Paxos exhibits great scalability up to 16 cores. Throughput still increases
beyond that, but at a lower rate, as other components of the system become bottlenecked
(more specifically, the networking layer). Clearly this scalability is not exhibited by single
leader algorithms, and surprisingly this good trend is not observable even for EPaxos that
pays the costs of dependency management.

We next evaluated the behavior of M2Paxos for workloads that do not exhibit perfect
locality. Towards this purpose, we show latency vs. throughput plots for several deployments
(5, 11 and 49 nodes, see Figure 10.5). For M2Paxos and EPaxos we plot two workloads
at opposite sides of the locality spectrum where commands still access one object. One
workload has perfect locality (100%) and is the best case for M2Paxos, where commands
proposed by a node only conflict with commands from the same node. The other workload
has no locality (0%) and is a worse case. Any other workload would fall between these
two limits. Multi-Paxos and Generalized Paxos are not sensitive to locality. M2Paxos
handles non-local commands by simply forwarding them to the node that currently owns the
requested object (see also Section 10.2.2). EPaxos breaks down 2-6% earlier in the workload
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Figure 10.5: Latency vs. throughput plots, with 0% and 100% command locality for
M2Paxos and EPaxos.
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with no locality. For M2Paxos, the throughput is 13-16% lower for the non-local workload.

Finally, we introduced complex commands in our evaluation (see Figure 10.4). We define
complex commands as the commands that require triggering the Acquisition phase because
they access multiple objects, hence by potentially conflicting with commands from multiple
nodes. Complex commands are similar to distributed transactions. Since M2Paxos uses
real-time backoff to ensure the progress of lease acquisitions, lease migrations are essentially
rate-limited. This results in a drop in throughput as the fraction of complex commands is
increased. The drop rate, corner point, and final throughput all depend on the total number
of objects available in the system, because it affects the contention rate in our experiments.
Multi-Paxos and Generalized Paxos are not affected by the presence of complex commands.
EPaxos exhibits a small reduction in throughput as the percentage of complex commands
nears 100%. However M2Paxos is able to sustain the throughput by even using almost 50%
of complex commands, in case of 1000 objects maintained per node.

10.3.1 Discussion

We evaluated M2Paxos as a standalone protocol that solves the problem of generalized
consensus. M2Paxos is also a good candidate for using as an underlying ordering protocol
in transaction execution frameworks such as Alvin. We however chose not to perform an
evaluation focused on measuring transactional throughput due to the large overheads of
transaction execution when compared M2Paxos’ lightweight coordination. In particular,
we noticed that at maximum throughput, M2Paxos is able to fully utilize all available
cores on each node. If we additionally executed transactions, the system performance would
become limited by transactional bookkeeping, while the distributed coordination through
the M2Paxos protocol would take a minimal fraction of the total CPU usage. Thus while
M2Paxos would still be the fastest competitor, the differences between M2Paxos and its
competitors would be significantly reduced.

In a geographically distributed deployment however, CPU load is not necessarily the bot-
tleneck. M2Paxos’ fast delivery combined with the minimal quorum size directly reduce
latency as one third fewer nodes need to be contacted before a decision. Lowering the latency
with a fixed number of client threads, will in turn increase throughput.

Our evaluation also omitted Alvin POB, which has a communication pattern similar to
EPaxos but with lighter-weight computation on the critical path. As seen in Chapter 9,
POB performs slightly better than EPaxos. However, POB’s performance can not approach
that of M2Paxos, because POB still tracks dependency relationships between commands
and employs a relatively large fast-quorum size. For instance, the quorum size increase by
itself results in a 20% drop in performance.

In this chapter we presented the M2Paxos algorithm, a scalable and high-performance
implementation of Generalized Consensus. M2Paxos is able to decide sequences of com-
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mands with an optimal cost of two communication delays, when in a conflict-free workload.
M2Paxos employs the minimal quorum size for solving consensus in asynchronous systems,
i.e.,

⌊
N
2

⌋
+ 1, where N is the total number of nodes.

M2Paxos thus improves upon Paxos and its variants by avoiding the bottleneck of a single
designated leader to order all commands and resolve conflicts. M2Paxos also improves
upon the recent multi-leader based solutions to Generalized Consensus (e.g., EPaxos) which
need to track and exchange command dependencies and also use a higher quorum size. Our
evaluation study confirms these expectations, showing up to 7× better performance over
state-of-the-art consensus and generalized consensus algorithms.



Chapter 11

M2Paxos: Protocol Details

In this chapter we provide details on all aspects of M2Paxos, including those we only
briefly mentioned in Section 10.2. Given that M2Paxos solves the problem of consensus, it
provides two interfaces to interact with the application layer, namely Propose(Cmd c) and
Decide(C-struct cs). The former is used by any node in the system to propose a command
c, while the latter is used by the consensus layer to notify correct nodes about the delivery
of a C-struct cs.

Before presenting the complete protocol, we first introduce the data structures used by
M2Paxos.

11.1 Data Structures

The following data structures are maintained at every node:

• Decided is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to a command c. Decided[〈l, in〉] = c if c was decided in
the consensus instance (position) in of the object l. Defaults to NULL.

• LastDecided is an unidimensional array that provides a mapping from an object to a
consensus instance. LastDecided[l] = in if the latest instance of object l for which the
current node has observed a decision is in. Defaults to 0.

• Epoch is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to an epoch number expressed as a non-negative integer.
Epoch[〈l, in〉] = e if e is the current (largest) epoch number that was observed by the
current node for consensus instance in of object l. Defaults to 0.
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• Owners is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to a node pi. Owners[〈l, in〉] = pi if pi is the current
owner of consensus instance in of object l. Defaults to NULL.

• Rnd is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to an epoch number e. Rnd[〈l, in〉] = e if e is the highest
epoch number in which the current node participated for the consensus instance in of
object l. Defaults to 0.

• Rdec is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to an epoch number e. Rdec[〈l, in〉] = e if e is the highest
epoch number in which the current node has accepted a command for the consensus
instance in of object l. Defaults to 0.

• V dec is a multidimensional array that provides a mapping from a tuple
〈object, consensus instance〉 to a command c. V dec[〈l, in〉] = c if c is the command
accepted by the current node for the consensus instance in of object l. Defaults to
NULL.

• Acks is a multidimensional array in which a node collects the AckAccept messages
it receives in reply to any outgoing Accept requests. Acks[〈l, in, e〉] = S, where S is
a set and 〈C, j〉 ∈ S if the current node has received an AckAccept message with
command c for consensus instance in of object l and epoch e. Defaults to ∅.

• Cstruct is the most recent status of the command structures that has been delivered
by the current node. Defaults to ⊥.

11.2 The Protocol

M2Paxos receives commands through the Propose(Cmd c) interface. Commands go
through four phases before delivery: (i) coordination, (ii) acquisition, (iii) accept and (iv)
decision. The following subsections describe each of the four phases.

11.2.1 Coordination Phase

The Coordination phase is shown in Algorithm 3 and establishes whether the command can
be decided in two, three or more communication steps. This algorithm is executed whenever
a command c is proposed on a node pi using the Propose(Cmd c) interface.

The first step (Line 2) in the coordination phase is to establish the set ins of instances for
which we want to decide command c. The existence of a tuple 〈l, in〉 ∈ ins symbolizes intent
to deliver c after every other command c′ decided in a lower instance number in′ of object l:
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∃〈l, in′〉 : Decided[〈l, in′〉] = c′ ∧ in′ < in

We also say pi intends to participate to decide c in the consensus instance in for object l.
The set ins is constructed by selecting the next available instance (LastDecided[l] + 1) for
each object l ∈ c.LS, but only if the command c was not already decided for that object.

Algorithm 3 M2Paxos: Coordination phase (node pi).
1: upon Propose(Cmd c)
2: Set ins← {〈l, LastDecided[l] + 1〉 : l ∈ c.LS ∧ @in : Decided[〈l, in〉] = c}
3: if ins = ∅ then
4: return
5: if IsOwner(pi, ins) = > then
6: Bool acc← AcceptPhase(∅, c, ins, Epoch)
7: if acc = ⊥ then
8: trigger Propose(c) to pi

9: else if |GetOwners(ins)| = 1 then
10: send Propose(c) to pk ∈ GetOwners(ins)
11: wait(timeout) until ∀l ∈ c.LS,∃in : Decided[〈l, in〉] = c
12: if ∃l ∈ c.LS, @in : Decided[〈l, in〉] = c then
13: trigger Propose(c) to pi

14: else
15: AcquisitionPhase(c)

16:
17: function Bool IsOwner(Node pi, Set ins)
18: for all 〈l, in〉 ∈ ins do
19: if Owners[〈l, in〉] 6= pi then
20: return ⊥
21: return >
22:
23: function Set GetOwners(Set ins)
24: Set res← ∅
25: for all 〈l, in〉 ∈ ins do
26: res← res ∪ {Owners[〈l, in〉]}
27: return res

If the resulting set ins is empty, it means the command c was already decided for every
object accessed by c so the protocol can safely terminate as the delivery position for c is
known. Otherwise, the algorithm branches based on the ownership relationships, with cases
for a fast delivery, a three-step delivery, and a required ownership reconfiguration.

In the first case (Lines 5-8), the current node pi already has ownership for all required
objects to deliver command c, so a fast delivery in two communication steps is possible. pi
can execute the Accept phase for this command without transitioning to a new epoch. The
protocol terminates if this phase is successful, otherwise, the Coordination phase has to be
retried.

In the second case (Lines 9-13), there is a single node pk 6= pi which has the ownership for all
〈object, consensus instance〉 tuples in ins. Thus M2Paxos can simply request that pk exe-
cutes the Coordination phase for command c, potentially deciding it in two communication
delays. Also considering the forwarding of command Propose(c) from pi to pk, command c
will have been delivered in three communication delays. Node pi keeps watch for the delivery
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of command c to avoid its loss when, for instance, node pk crashes. Should c not be delivered
within a configurable time-out, pi will restart the Coordination phase locally.

In the third case (Lines 14-15), no node in the system has ownership for all objects required
to decide command c. Thus M2Paxos must reconfigure ownership, to aggregate all objects
from c.LS on a single node. M2Paxos enters the Acquisition phase, attempting to acquire
said ownership on the local node pi, which will then have the authority to execute the Accept
phase for command c.

11.2.2 Accept phase

The Accept phase is shown in Algorithm 4. In this phase, a node authoritatively requests
the acceptance of a command in all positions listed in ins, for the epochs eps. An Accept
message is broadcast, and replies are awaited from a quorum of nodes (Lines 8-9). If this
Accept phase is not part of an ownership reconfiguration, namely it was invoked from the
Coordination phase, then the command to be disseminated is the command currently being
proposed, c.

Algorithm 4 M2Paxos: Accept phase (node pi).

1: function Bool AcceptPhase(Array toForce, Cmd c, Set ins, Array eps)
2: Array toDecide
3: for all 〈l, in〉 ∈ ins do
4: if toForce[〈l, in〉] = 〈c′,−〉 : c′ = NULL then
5: toDecide[〈l, in〉]← c
6: else
7: toDecide[〈l, in〉]← c′

8: send Accept(〈toDecide, ins, eps〉) to all pk ∈ Π
9: Set replies← receive AckAccept(〈ins, eps, toDecide,−〉) from Quorum

10: if ∃〈ins, eps, toDecide,NACK〉 ∈ replies then
11: return ⊥
12: else
13: send Decide(〈toDecide, ins, eps〉) to all pk ∈ Π
14: return >
15:
16: upon Accept(〈Array toDecide, int ins, Array eps〉) from pj
17: if ∀〈l, in〉 ∈ ins, Rnd[〈l, in〉] ≤ eps[〈l, in〉] then
18: ∀〈l, in〉 ∈ ins, Owners[〈l, in〉]← pj
19: ∀〈l, in〉 ∈ ins, V dec[〈l, in〉]← toDecide[〈l, in〉]
20: ∀〈l, in〉 ∈ ins, Rdec[〈l, in〉]← eps[〈l, in〉]
21: ∀〈l, in〉 ∈ ins, Rnd[〈l, in〉]← eps[〈l, in〉]
22: send AckAccept(〈ins, eps, toDecide,ACK〉) to all pk ∈ Π
23: else
24: send AckAccept(〈ins, eps, toDecide,NACK〉) to pj

Otherwise, Accept was invoked from the Acquisition phase, and may be required to accept
a different command according to the toForce argument (Lines 3-7), in order to maintain
system consistency as we will later see in Section 11.2.4. This happens when a node has
already accepted a concurrent and conflicting command c′ the same consensus instance as
one of those being proposed, 〈l, in〉 ∈ ins. In this case, pi must collaborate towards deciding
c′ in position in.
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The Accept phase can abort if any of the nodes in the quorum has transitioned to a higher
epoch number for any of the objects l ∈ c.LS. This happens when another node executed the
Acquisition phase for a conflicting command, transferring ownership of l to itself, and thus
leaving pi without authority to decide commands for consensus instances of object l. This
situation can be detected when Rnd[〈l, in〉], the highest epoch number in which a node has
participated, is higher than eps[〈l, in〉], the epoch number received with the current Accept
request. In this case, the contacted node pj ∈ Quorum replies with a Nack, and the Accept
phase fails on pi (Lines 10-11 and 23-24).

The Accept phase is otherwise successful. The remote node broadcasts a positive AckAc-
cept after updating its local state to reflect the latest accepted command for every tuple
〈object, consensus instance〉 from ins (Lines 18-22). More specifically, the following are
updated for every 〈l, in〉 ∈ ins based on the incoming arguments:

• The object’s owner (Owners).

• The last accepted command (V dec).

• The greatest epoch for which the node has accepted a value (Rdec).

• The greatest epoch in which the node has participated in a consensus instance (Rnd).

Finally, if none of the replies in the quorum received by pi are a Nack, pi can inform the
other nodes a decision has been reached by broadcasting a Decide message (Lines 12-14).

11.2.3 Decision phase

The Decision phase (Algorithm 5) is tasked to mark a command c as decided for all objects
accessed by c. As such, it sets Decided[〈l, in〉] = c.

The decision phase can be executed in two situations. Firstly, a node pi can receive a
Decide message to decide a sequence of commands toDecide in all positions ins (Lines
1-4). This message is sent by the owner of the objects in ins at the end of the Accept phase.
Alternatively, a node can take this decision independently when it observes a quorum of
positive AckAccept messages (Lines 6-10), without waiting for a notice from the owner.

Finally, M2Paxos tries to deliver a C-struct including command c as soon as c is decided
and all earlier commands have also been delivered. This condition is satisfied when c is
the next command to be delivered for every object l ∈ c.LS, i.e., in = lastDecided[l] + 1.
M2Paxos then updates Cstruct appending c to it and triggers its delivery to the application
layer on the local node.
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Algorithm 5 M2Paxos: Decision phase (node pi).
1: upon Decide(〈Set toDecide, Set ins, Array eps〉) from pj
2: for all 〈l, in〉 ∈ ins do
3: if Decided[〈l, in〉] = NULL then
4: Decided[〈l, in〉]← toDecide[〈l, in〉]
5:
6: upon AckAccept(〈Set ins, Array eps, Array toDecide, ACK〉) from pj
7: for all 〈l, in〉 ∈ ins do
8: Set Acks[〈l, in〉][eps[〈l, in〉]]← Acks[〈l, in〉][eps[〈l, in〉]] ∪ {〈toDecide[〈l, in〉], j〉}
9: if |Acks[〈l, in〉][eps[〈l, in〉]]| ≥ sizeof(Quorum) ∧Decided[〈l, in〉] = NULL then

10: Decided[〈l, in〉]← c : 〈c,−〉 ∈ Acks[〈l, in〉][eps[〈l, in〉]]
11:
12: upon (∃c : ∀l ∈ c.LS,∃in : Decided[〈l, in〉] = c ∧ in = LastDecided[l] + 1)
13: Cstructs← Cstructs • c
14: trigger Decide(Cstructs)
15: for all l ∈ c.LS do
16: pi.lastDecided[l] + +

11.2.4 Acquisition phase

The Acquisition phase (shown in Algorithm 6) is responsible for transferring the ownership
of all required objects for deciding a command c to the current node pi.

The first step is to build a set ins containing the next available consensus instance (i.e.,
lastDecided[l] + 1) for every object l ∈ c.LS for which command c has not been decided
yet. These are the instances M2Paxos will try to get command c decided in. Furthermore,
the epoch number for every tuple 〈l, in〉 ∈ ins is incremented and afterwards stored in an
array eps. Next, all replicas are sent a Prepare request containing the instances ins and
epochs eps. Execution on pi blocks until a quorum of AckPrepare replies (also known as
promises) is received (Lines 2-6).

If any node pj refuses the Prepare request, it sends back a Nack. This may happen if
there is at least one object which had already transitioned to an epoch equal to or greater
than eps[〈l, in〉], prior to receiving the Prepare request. This situation is identified by
comparing eps[〈l, in〉] to the latest stored epoch for object l on pj, namely Rnd[〈l, in〉].

If pi receives any Nacks, the Acquisition phase is aborted and M2Paxos must re-attempt
command c from the Coordination phase. This is done by triggering a new Propose(c)
event.

If on the other hand node pj does not refuse the Prepare request, it updates its Rnd with
the last epoch numbers it received in eps for every tuple 〈object, consensus instance〉 from
ins. The node thus promises to not participate to any consensus round for position 〈l, in〉
unless the epoch number is greater than eps[〈l, in〉].

The node pj then replies with an AckPrepare. With the reply it also includes information
about the last command c′ that may have been already accepted for all 〈l, in〉 ∈ ins, and
their associated epoch number. By doing so, it forces pi (the node that sent the Prepare
request and is currently executing the Acquisition phase) to decide the previously accepted
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c′ after the Acquisition phase succeeds. This is necessary to maintain consistency among all
replicas in the system.

Back on pi, after a quorum of replies have been collected and if none of them is a Nack,
M2Paxos can enter the Accept phase. First, the function Select is used to determine
the command that will be decided in this phase. For every tuple 〈l, in〉 ∈ ins, Select
chooses the command with the highest epoch number among previously accepted commands
as informed through the decs argument in the quorum of replies. These commands, if any, are
stored in an array toForce which is then passed to the Accept phase. Due to the Acquisition
phase being an extension to multiple objects of the Paxos prepare phase, M2Paxos inherits
the useful property such that, if toForce is non-empty, it is guaranteed to only contain a
single command.

Finally, if the Accept phase is unsuccessful, pi starts a new Coordination phase for command c
by triggering a Propose(c) event. A new Coordination phase is also started if pi was forced
to run the Accept phase for another command c′ 6= c due to a non-empty toForce array.
Acquisition phases can additionally be rate-limited, to make sure a successful acquisition
triggered by a command c is necessarily followed by a successful Accept phase for the same
command c.

Algorithm 6 M2Paxos: Acquisition Phase (node pi).
1: function Void AcquisitionPhase(Cmd c)
2: Set ins← {〈l, LastDecided[l] + 1〉 : l ∈ c.LS ∧ @in : Decided[〈l, in〉] = c}
3: Array eps
4: ∀〈l, in〉 ∈ ins, eps[〈l, in〉]← + + Epoch[〈l, in〉]
5: send Prepare(〈ins, eps〉) to all pk ∈ Π
6: Set replies← receive AckPrepare(〈ins, eps,−,−〉) from Quorum
7: if ∃〈ins, eps,NACK,−〉 ∈ replies then
8: trigger Propose(c)
9: else

10: Cmd toForce← Select(ins, replies)
11: Bool r ← AcceptPhase(toForce, c, ins, eps)
12: if r = ⊥ ∨ (∃l, in : toForce[〈l, in〉] = 〈v, r〉 ∧ v 6= c) then
13: trigger Propose(c)

14:
15: upon Prepare(〈Set ins, Array eps〉) from pj
16: if ∀〈l, in〉 ∈ ins,Rnd[〈l, in〉] < eps[〈l, in〉] then
17: ∀〈l, in〉 ∈ ins, Rnd[〈l, in〉]← eps[〈l, in〉]
18: Set decs← {〈l, in, V dec[〈l, in〉], Rdec[〈l, in〉]〉 : 〈l, in〉 ∈ ins}
19: send AckPrepare(〈ins, eps,ACK, decs〉) to pj
20: else
21: send AckPrepare(〈ins, eps,NACK, decs〉) to pj

22: function Set Select(Set ins, Set replies)
23: Array toForce
24: for all 〈l, in〉 ∈ ins do
25: Epoch k ← max({r : 〈l, in,−, r〉 ∈ decs ∧ 〈−,−,−, decs〉 ∈ replies})
26: Cmd r ← v : 〈l, in, v, k〉 ∈ decs ∧ 〈−,−,−, decs〉 ∈ replies
27: toForce[〈l, in〉]← 〈r, k〉
28: return toForce
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11.3 Correctness Arguments

In this section we provide informal arguments about the correctness of M2Paxos. It is easy
to show that the properties of Generalized Consensus are either trivially verified, or they
can be inferred directly from equivalent properties of Paxos.

The nontriviality property is trivially guaranteed because of the way the Cstruct list is
grown in the Decision phase (Line 13 in Algorithm 5). Only commands that have previously
been proposed make their way to be appended to Cstruct, which is then delivered to the
application layer.

Assume ∃cx ∈ Cstruct, such that cx was not previously proposed by any node. In order
for cx ∈ Cstruct, it means it was decided in a Decision phase and was appended to Cstruct
in Line 13 of Algorithm 5. Therefore ∃〈l, in〉 : Decided[〈l, in〉] = cx. Consequently, at
least one AckAccept or Decide message was received by the current node for which
cx ∈ toDecide. Thus, an Accept phase must have been executed on some node in the system
with either Cmd c = cx or cx ∈ toForce. It is sufficient to consider only the case where
Cmd c = cx, because the case cx ∈ toForce implies some node in the system, during a
previous execution of the algorithm, has accepted a request with Cmd c = cx. Since an
Accept phase can only be started from a from a Propose phase or an Acquisition phase, and
the Acquisition phase is in turn started from a Propose phase, it follows that some node
must have executed Propose(cx), contradicting the original assumption and thus proving
the nontriviality property.

A similar argument can be made for the stability property: the Cstruct list is only mod-
ified by appending commands to the end. Once M2Paxos delivers a C-struct cs1 to the
application layer, cs1 will always remain a prefix of all future C-structs delivered on that
node.

Assume a node first delivers a C-struct Cstruct = cs0 ◦ cx, and then at a later time delivers
Cstruct = cs0 ◦ cy ◦ σ, where cx 6= cy. Since operations on Cstruct are serialized, it follows
that an operation in the M2Paxos algorithm must have updated Cstruct← Cstruct− cx.
However, M2Paxos only ever modifies Cstruct by appending new values to it on Line 13 of
Algorithm 5, which contradicts our assumptions and therefore proves the stability property.

Liveness can be easily ensured with the simple extensions to the M2Paxos algorithm as
described in Section 10.2.3. More specifically, using Multi-Paxos for ordering ownership
acquisition requests would result in the same liveness guarantees for M2Paxos acquisitions
as for Multi-Paxos, and by extension, for M2Paxos.

Finally, consistency is guaranteed because Paxos guarantees that at most one command can
be decided in a specific Paxos instance. This is the case because the steps executed by Paxos
towards deciding a consensus instance, are the same steps M2Paxos executes for deciding
a command c in a consensus instance of a single object l ∈ c.LS. The consistency property
is further supported by the following arguments:
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• M2Paxos only attempts to make a decision for a position 〈l, in〉 if the previous position
(i.e., 〈l, in− 1〉) has already been decided.

• A command is delivered on a node only after it has been decided in a position in for
every object l ∈ c.LS.

• Commands are delivered on a node in an order consistent with the ordering of the
consensus instances for all object l ∈ c.LS.

Assume two different commands are delivered in the same consensus instance by different
nodes. Thus, Decided[〈l, in〉] = c1 on some node p1, and Decided[〈l, in〉] = c2 on another
node p2. This can result in three cases: (i) node p1 must have received a Decide message
with toDecide = c1, and p2 must have received a Decide message with toDecide = c2 for
the same consensus instance 〈l, in〉; (ii) both nodes p1 and p2 receive a quorum of f + 1
AckAccept replies for commands c1 and respectively c2; and (iii) p1 received a Decide
message with toDecide = c1 and p2 received a quorum of f + 1 AckAccept replies for
command c2.

In all these cases, the following two situations may apply, being mutually exclusive and
comprehensive. In situation A, two other different nodes pi and pj must have believed
they hold ownership for this instance, i.e., satisfying both conditions: Exclusive(pi, l, in)
and Exclusive(pj, l, in), while both nodes had their latest epoch number for the instance,
Epoch[〈l, in〉] equal to the same value. Since the epoch value associated with each object
is incremented atomically in Line 4 of Algorithm 6, it follows that the acquisition phase
succeeded concurrently nodes pi and pj. Therefore, nodes pi and pj both obtained f + 1
promises (positive replies to the Prepare request) from replicas in the system. Since there
are a total of 2f + 1 nodes in the system, at least one node must have positively replied
to both Prepare requests. This is impossible due to Lines 15-21 of Algorithm 6, because
upon sending the first reply, a node updates its record of the latest epoch for a particular
instance (Line 17), while when handling the prepare request, the node will reject it due to
the check on Line 15, as it is not larger than the previous instance. Therefore, two different
commands can not be delivered in the same instance according to situation A.

In situation B, node pi executed the accept phase for command c1 but did not yet send its
Stable message. At least one node in the system receives a quorum of Acks and delivers c1

in instance 〈l, in〉. Node pj starts an Acquisition phase (either due to the suspected failure of
node pi or due to an ownership reorganization), and eventually delivers command c2 in the
same position as c1. This implies that in the Accept for command c2, the toForce parameter
was not equal to c1. According to Lines 22-28 of Algorithm 6, it follows that none of the
AckPrepare replies had c1 ∈ decs, i.e. the nodes sending those replies have not already
accepted c1 in instance 〈l, in〉. This is a contradiction, as there are only 2f + 1 nodes in the
system, while f + 1 have previously accepted c1 while another f + 1 did not. Therefore, two
different commands can not be delivered in the same instance according to situation B also.
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Given that situations A and B cover all possible cases, this proves the consistency property
of generalized consensus.



Chapter 12

Conclusions

In this dissertation we made several contributions aimed at improving the performance of
Distributed Transactional Memory. Firstly, we brought closed and open nesting to the
DTM environment and evaluated their behaviors and influencing factors. We also presented
Hyflow2, our new-generation DTM framework for the Java Virtual Machine with support
for nesting. Secondly, we proposed an approach for automatically partitioning data in DTM
workloads, with a focus on independent distributed transactions. Thirdly, we developed
Alvin, a DTM framework for the geographically distributed environment which relies on a
novel partial ordering protocol. Finally, we developed M2Paxos, a generalized consensus
algorithm with a scalable design, fast delivery and minimal quorums.

Closed nesting through our TFA extension, N-TFA, proved insufficient for any significant
throughput improvements. It ran on average 2% faster than flat nesting, while performance
for individual test varied between 42% slowdown and 84% speedup. The observed behavior
was highly workload dependent, but three of our benchmarks saw an average speedup. The
workloads that benefit most from closed nesting are characterized by short transactions, with
between two and five sub-transactions.

Open nesting, as exemplified by our TFA-ON and SCORe-ON implementations, showed
promising results. We determined performance improvement to be a trade-off of the overhead
of additional commits and the fundamental conflict rate. For write-intensive, high-conflict
workloads, open nesting may not be appropriate, and we observed a maximum speedup of
30%. On the other hand, for lower fundamental-conflict workloads, open nesting enabled
speedups of up to 167% in our tests. We identified that open nesting has a performance
sweet spot in the middle of contention range: if contention is too low, the overheads of
open nesting do not justify using it over flat nesting. If on the other hand contention is too
high, the aborts caused by open nesting and the compensating actions they require cause
throughput degradation.

Hyflow2 is our a new, high-performance DTM framework for the JVM with support for
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nesting and checkpointing. Hyflow2 is written in Scala and has a clean Scala API and a
compatibility Java API. Hyflow2 is internally implemented using the actor model, and was
on average two times faster than Hyflow on high-contention workloads, and up to 16 times
faster, and more stable, on high-throughput, low-contention workloads. Hyflow2 stands as
proof that a clean software architecture with makes performance-conscious decisions can
provide significant benefits in transactional throughput.

Our second main contribution is an automated data partitioning methodology targeted to
DTM environments and independent distributed transactions. Our approach is based on
Schism, but applies to in-memory transactions expressed as atomic blocks instead of tradi-
tional SQL workloads, and promotes the light-weight independent transactions coordination
model. Our focus on DTM enabled us to innovate, and thus we were able to contribute a
static transaction analyzer, a transaction router based on machine learning, and a byte-code
rewriting based log generator.

Our approach was able to generate high quality partitions, sometimes resulting in better
performance than our manual partitioning efforts. The maximum improvement we observed
was 4.5×, on TPC-W. This shows that data partitioning is a complicated process that is
best automated, especially on complex workloads that resemble human social graphs.

Our third contribution is Alvin, a geo-replicated transactional system, and POB, the novel
partial order broadcast layer and protocol Alvin is built upon. POB is multi-leader, avoid-
ing the bottlenecks of a single distinguished node and optimizing the delivery latency. At
the same time, POB avoids complex computations on the critical path, allowing it to per-
form better than other similar recent proposals. Alvin is also flexible, allowing a choice of
consistency criteria (serializability or EUS), and fast decisions.

With our evaluation of Alvin we show that EUS is a very attractive consistency criterion in
geo-distributed workloads, enabling speed-ups of up to 4.8× in throughput when compared
to serialization, and if tolerated by the application. Alvin has a similar behavior to EPaxos
on Bank, but is up to 26% faster on TPC-C due to the simpler computations on the critical
path of a transaction and the higher complexity of the workload.

Our fourth and final contribution is M2Paxos, an algorithm implementing generalized con-
sensus that was designed to enable the fastest delivery to date for high-locality workloads.
This is enabled by (i) the partitioning of the ordering authority among the consensus par-
ticipants, (ii) a careful design to not require tracking and communicating inter-message
dependencies, and (iii) the use of minimal quorums in all of our communication steps.

Our evaluation confirms that M2Paxos has achieved its performance goals, showing up
to 7× better throughput than EPaxos on 49 nodes. M2Paxos has proved to scale well
with both the system size and the capacity of individual nodes. Additionally, the latency
was consistently lower than that of EPaxos, a direct consequence of our effort to minimize
quorum sizes.
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12.1 Contributions

To summarize, our contributions were:

• N-TFA, the first DTM algorithm with support for closed nesting. TFA-ON and
SCORe-ON, the first DTM algorithms with support for open nesting.

• The first evaluation of closed and open nesting in the context of distributed transac-
tional memory, and an analysis of the factors that influence their performance behavior
in a transactional workload.

• Hyflow2, a new and highly optimized DTM framework for the JVM, written in Scala,
and with support for nesting and checkpointing.

• The first methodology for automated data partitioning in a DTM environment, with
a focus on promoting independent distributed transactions. Important aspects of our
contribution are: (i) assigning weights based on static program analysis, (ii) machine-
learning based transaction routing, (iii) log generation based on byte-code rewriting,
(iv) automatic choice of an appropriate transaction model.

• Alvin, a novel geo-replicated DTM system with support for serializability and EUS,
and POB, a novel partial-order broadcast layer that is multi-leader, avoids complex
graph computations, and supports fast decisions.

• M2Paxos, the first generalized consensus implementation that: (i) avoids the bottle-
neck of a single designated leader, (ii) employs minimal simple-majority quorums, and
(iii) supports fast decisions in two communication delays.

• Open source implementations of all of the above, at https://bitbucket.org/talex/ .

12.2 Future Work

As future work we suggest improving the automatic data partitioning methodology presented
in Chapters 7 and 8 in order to get better scalability and faster speed as the data-size is
further increased. We propose an algorithm that groups objects together based on access
patterns before invoking the graph partitioning techniques described in this dissertation. By
analyzing the keys and fields commonly accessed together, we believe we may be able to
drastically increase the partitioning granularity without sacrificing the quality of the results,
therefore allowing the enhanced process to scale several orders of magnitude past the present
limits.

For future work on Alvin we suggest implementing a mechanism for sharding data and
workload on multiple nodes within a single datacenter. This would require enhancing the
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Parallel Concurrency Control layer to support coordination between multiple local node.
With these features, Alvin would be able to scale past the CPU and memory limits of a
single node. An additional improvement for Alvin would be to support configurable partial
replication, a useful feature in wake of the recent surge of interest in privacy. Support for
stored-procedure based transactions can be another useful feature for Alvin.

While M2Paxos was designed and evaluated in a local cluster setting, its features make it
an appropriate contender for the geo-distributed setting. We thus suggest that M2Paxos
be evaluated in a GDS, perhaps as a building block for Alvin. M2Paxos can be enhanced
(as mentioned at the end of Section 10.2.3) by replacing its effective but simple Acquisition
phase with a separate ordering layer such as Multi-Paxos or EPaxos, in order to improve
liveness and bound the number of communication delays before agreement.



Bibliography

[1] The Go programming language. http://golang.org/.

[2] 24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference Proceedings. IEEE, 2010.

[3] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. PhD thesis, 1999. AAI0800775.

[4] Kunal Agrawal, I.-Ting Angelina Lee, and Jim Sukha. Safe open-nested transactions
through ownership. In Daniel A. Reed and Vivek Sarkar, editors, PPOPP. ACM, 2009.

[5] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Kara-
manolis. Sinfonia: A new paradigm for building scalable distributed systems. ACM
Trans. Comput. Syst., 27(3):5:1–5:48, November 2009.
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Appendix A

Alvin: Pseudocode and Proofs

A.1 Partial Order Broadcast Layer

Algorithm 7 Decision phase T ’s Leader (node Ni)

1: upon ∃T : |AckProposeSet[T ]| ≥ FQ ∧Decided[T ] = ⊥
2: 〈Set fpos, Int fdeps〉
3: if Leader(T ) = Ni then
4: Decided[T ] = >
5: 〈fpos, fdeps〉 ← CDecide(AckProposeSet[T ], T )
6: trigger 〈Broadcast[ACCEPT ‖ T , fpos, fdeps, getEpoch(T )]〉
7:

Algorithm 8 Decision policy (node Ni)

1: 〈Int, Set〉 CDecide(Set AckProposeSet, T ransaction T )
2: Set fdeps← {T ′ ∈ dep′ : 〈T,−, dep′〉 ∈ AckProposeSet}
3: Int fpos← −1
4: Int maxPos← max{pos′ : 〈T, pos′,−〉 ∈ AckProposeSet}
5: if fpos = −1 then
6: fpos← maxPos

7: return 〈fpos, fdeps〉
8:
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Algorithm 9 Proposal phase (node Ni)

1: upon event 〈POInit〉 do
2: Int Ni.mclock ← i
3: Array Decided[]← {⊥, . . . ,⊥}
4: Array AckProposesSet[]← {∅, . . . , ∅}
5: Array Uniformed[]← {⊥, . . . ,⊥}
6: Array AckAcceptSet[]← {∅, . . . , ∅}
7: Array Delivered[]← {⊥, . . . ,⊥}
8: Array Promises[]← {∅, . . . , ∅}
9: Array Promised[]← {⊥, . . . ,⊥}

10:

11: upon event 〈POBroadcast[Transaction T ]〉 do
12: Ni.mclock ← Ni.mclock + N
13: Set depsT ← DQueue.getDeps(T )
14: trigger 〈Broadcast[PROPOSE ‖ T , Ni.mclock, depsT , 0]〉
15:

16: upon event 〈Deliver[PROPOSE ‖ Transaction T , Int posT , Set depsT , Int e]〉 from
Nj ∧ e ≥ getEpoch(T ) do

17: setEpoch(T, e)
18: Set newDeps← DQueue.getDeps(T ) ∪ depsT
19: Int posLB ← max({posT ′ : T ′ ∈ newDeps} ∪ {posT })
20: Int newPos← min({h : h mod N = j ∧ h > posLB})
21: DQueue.insert(newPos, T, newDeps, PENDING)
22: Ni.mclock ← min({h : h mod N = i ∧ h > newPos ∧ h ≥ Ni.mclock})
23: trigger 〈Send[ACKPROPOSE ‖ Nj , T , newPos, newDeps, e]〉
24:

25: upon event 〈Deliver[ACKPROPOSE ‖ Transaction T , Int newPos, Set deps, Int e]〉
from Nj ∧ Decided[T ] = ⊥ ∧ e = getEpoch(T )do

26: AckProposeSet[T ]← AckProposeSet[T ] ∪ {〈T, newPos, deps〉}
27:
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Algorithm 10 Accept phase (node Ni)

1: upon event 〈Deliver[ACCEPT ‖ Transaction T , Int pos, Set deps, Int e]〉 from Nj ∧
e ≥ getEpoch(T ) do

2: setEpoch(T, e)
3: Set deltadeps← DQueue.getDeps(T ) \ deps
4: DQueue.update(pos, T, deps ∪ deltadeps,ACCEPTED)
5: Ni.mclock ← min({h : h mod N = i ∧ h > pos ∧ h ≥ Ni.mclock})
6: trigger 〈Send[ACKACCEPT ‖ Nj , T , pos, deps, deltadeps, e]〉
7:

8: upon event 〈Deliver[ACKACCEPT ‖ Transaction T , Int pos, Set deps, Set deltadeps]〉
from Nj ∧ Uniformed[T ] = ⊥ ∧ e = getEpoch(T ) do

9: AckAcceptSet[T ]← AckAcceptSet[T ] ∪ 〈T, pos, deps ∪ deltadeps〉
10:

Algorithm 11 Delivery phase (node Ni)

1: upon ∃T : |AckAcceptSet[T ]| ≥ CQ ∧ Uniformed[T ] = ⊥
2: Uniformed[T ]← >
3: Set fdeps← {T ′ ∈ dep′ : 〈T,−, dep′〉 ∈ AckAcceptSet[T ]}
4: Int fpos← pos′ : 〈T, pos′,−〉 ∈ AckAcceptSet[T ]
5: trigger 〈Broadcast[STABLE ‖ T , fpos, fdeps, getEpoch(T )]〉
6:

7: upon event 〈Deliver[STABLE ‖ Transaction T , Int fpos, Set fdeps, Int e]〉 from Nj

∧ e ≥ getEpoch(T ) do
8: setEpoch(T, e)
9: DQueue.update(fpos, T, fdeps, STABLE)

10: Ni.mclock ← min({h : h mod N = i ∧ h > fpos ∧ h ≥ Ni.mclock})
11:

12: upon ∃T ∈ DQueue : Delivered[T.tid] = ⊥ ∧ T.status = STABLE ∧ ∀T ′ ∈
depsT , Deliver[T ′.tid] = >

13: trigger 〈PODeliver[T , depsT ]〉
14: Delivered[T.tid] = >
15:

16: upon ∃T ′, T ′′ ∈ DQueue : T ′.status = STABLE ∧ T ′′.status = STABLE ∧ posT ′′ > posT ′

17: if T ′′ ∈ depsT ′ then
18: depsT ′ ← depsT ′ \ {T ′′}
19:
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Algorithm 12 Failure recovery (node Ni)

1: upon event 〈FDSuspect[Node Nk]〉 ∧ ∃T ∈ DQueue : T.status 6= STABLE ∧ Nk =
getLeader(T ) do

2: setEpoch(T, getEpoch(T ) + 1)
3: trigger 〈Broadcast[PREPARE ‖ T , getEpoch(T )]〉
4:

5: upon event 〈Deliver[PREPARE ‖ Transaction T , Int e]〉 from Nj do
6: if e > getEpoch(T ) then
7: setEpoch(T, e)
8: [mark, pos, deps]← DQueue.getStatus(T )
9: trigger 〈Send[PROMISE ‖ Nj , T , mark, pos, deps, e]〉

10:

11: upon event 〈Deliver[PROMISE ‖ Transaction T , Status mark, Int pos, Set deps, Int
e]〉 from Nj ∧ Promised[T ] = ⊥ ∧ e = getEpoch(T ) do

12: Promises[T ]← Promises[T ] ∪ 〈T,mark, pos, deps, epoch〉
13:

14: upon ∃T : |Promises[T ]| ≥ f + 1 ∧ Promised[T ] = ⊥
15: Promised[T ]← >
16: if ∃〈T, STABLE, pos, deps, e〉 ∈ Promises[T ] then
17: trigger 〈Broadcast[STABLE ‖ T , pos, deps, e]〉
18: else if ∃〈T,ACCEPTED, pos, deps, epoch〉 ∈ Promises[T ] then
19: trigger 〈Broadcast[ACCEPT ‖ T , pos, deps, e]〉
20: else
21: Ni.mclock ← Ni.mclock + N
22: trigger 〈Broadcast[PROPOSE ‖ T , Ni.mclock, e]〉
23:

Algorithm 13 Fast Decision phase T ’s Leader (node Ni)

1: upon ∃T : |AckProposeSet[T ]| ≥ FQ ∧Decided[T ] = ⊥
2: 〈Set fpos, Int fdeps〉
3: if Leader(T ) = Ni then
4: Decided[T ] = >
5: 〈fpos, fdeps〉 ← FDecide(AckProposeSet[T ], T )
6: if fpos 6= −1 then
7: trigger 〈Broadcast[STABLE ‖ T , fpos, fdeps, getEpoch(T )]〉
8: else
9: 〈fpos, fdeps〉 ← CDecide(AckProposeSet[T ], T )

10: trigger 〈Broadcast[ACCEPT ‖ T , fpos, fdeps, getEpoch(T )]〉
11:
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Algorithm 14 Fast Decision policy (node Ni)

1: 〈Int, Set〉 FDecide(Set AckProposeSet, T ransaction T )
2: Set fdeps← {T ′ ∈ dep′ : 〈T,−, dep′〉 ∈ AckProposeSet}
3: Int fpos← max{pos′ : 〈T, pos′,−〉 ∈ AckProposeSet}
4: if ∀〈T, pos′, deps′〉 ∈ AckProposeSet, pos′ = fpos ∧ fdeps = deps′ then
5: return 〈fpos, fdeps〉
6: else
7: return 〈−1, ∅〉
8:

A.1.1 Correctness of POB

First we prove that the POB layer ensures properties P1 and P2.

Lemma A.1.1. For any node that delivers message m = [T, depsT ] before message m′ =
[T ′, depsT ′ ] and T and T ′ conflict, then T ∈ depsT ′.

Proof. The proof follows by contradiction. We assume that there exists a pair of conflicting
transactions T and T ′ and a node Ni such that message m = [T, depsT ] is delivered before
message m′ = [T ′, depsT ′ ] on Ni. Then we prove that if T 6∈ depsT ′ then m cannot be
delivered before message m′ on Ni, by contradicting the hypothesis.

Therefore let us assume that m = [T, depsT ] is delivered before message m′ = [T ′, depsT ′ ] on
Ni and T 6∈ depsT ′ . In addition we name posT and posT ′ respectively the final position T
has in the delivery queue on Ni and the final position T ′ has in that queue.

In that case, each quorum for T ′ has never seen transaction T neither in the Proposal nor
in the Accept phase, thus entailing that there exists a node Nj in a quorum for T that has
inserted T ′ in depsT (because T and T ′ conflict), i.e., T ′ ∈ depsT , and this happened when
T ′ was already accepted on Nj (line 8 of Algorithm 9 executed for transaction T ). Therefore
the final position of T on Ni is greater than the final position of T ′ on Ni,i.e., posT > posT ′ .
Note that if T ′ is inserted in depsT on Nj at the time T ′ is not already accepted, there exists
another node Nk in a quorum for T ′ such that T is inserted in depsT ′ either in the Proposal
or in the Accept phase for T ′ (see line 8 of Algorithm 9 and line 3 of Algorithm 10 executed
for T ′), by violating the hypothesis such that T 6∈ depsT ′ .

Due to the delivery rule defined at line 12 of Algorithm 11, m cannot be delivered before m′

on Ni unless Ni removes T ′ from depsT of m (since we have just proved that T ′ ∈ depsT ).
That can only happens if the condition at line 16 of Algorithm 11 is verified: both m and
m′ are Stable on Ni and posT < posT ′ . Since we have just proved that posT > posT ′ , T ′

cannot be removed from depsT and therefore m cannot be delivered before m′ on Ni.

As a consequence we have that for any node that delivers message m = [T, depsT ] before
message m′ = [T ′, depsT ′ ] and T and T ′ conflict, then T ∈ depsT ′ .
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The Lemma A.1.1 proves that POB satisfies property P2. On the other hand, by using the
following Lemma A.1.2 and Theorem A.1.3 we prove that POB satisfies property P1 too.

Lemma A.1.2. For each transaction T , if node Nj is the first that delivers T , and the
delivery is performed by means of message m = [T, depsT ], then every other correct node
eventually delivers m∗ = [T, deps∗T ], where deps∗T ⊇ {T ′ : T ′ ∈ depsT ∧ posT ′ < posT}, and
posT ′, posT are respectively the final delivery position of T ′ and T .

Proof. Node Nj has delivered m = [T, depsT ] because it has received a Stable message
mst = [STABLE ‖ T ,posT ,depsT ,−] for T from the current leader of T , i.e. Ni (which can
be possibly Nj itself), where posT is the final position decided for T .

In case Ni is a correct node, the lower level broadcast service guarantees that every other
correct node Nk eventually receives message m, entailing that it receives message m∗ =
[T, deps∗T ], where deps∗T = depsT . In addition the delivery rule at line 12 of Algorithm 11
and the recovery procedure of Algorithm 12 ensures that Nk eventually delivers T as soon
as every other transaction T ′′ ∈ depsT has been delivered.

On the contrary, in case Ni is not a correct node, Ni may crash right after Nj (or even
Ni itself) has delivered message m = [T, depsT ]. In this case we show that every other
new correct leader of T will send a Stable message for T equal to m∗st = [STABLE ‖
T ,posT ,deps∗T ,−] and where deps∗T ⊇ {T ′ : T ′ ∈ depsT ∧ posT ′ < posT}, thanks to the
recovery procedure of Algorithm 12.

In fact, since Ni has sent message mst, there exists a quorum Q of nodes having the message
mac = [ACCEPT ‖ T ,posT ,depsacT ,−] and such that depsacT ⊆ depsT (condition at line 1 of
Algorithm 11). So the new correct leader of T collects either mst or at least one message
mac during the recovery procedure. In the former case it broadcasts mst and, if it does not
crash, every other correct node eventually receives mst and delivers m = [T, depsT ]. In the
latter case, it starts an Accept phase by using mac and if it does not crash, it finalizes the
Delivery phase too, with a Stable message that is equal to m∗st where deps∗T contains at least
depsacT , by construction of the Stable message of lines 3-4 of Algorithm 11. Moreover deps∗T
contains every other dependency T ′ was contained in depsT and such that posT ′ < posT . If
this is not the case, in fact, at least a quorum for transaction T ′ will observe mac on at least
one node and it will be associated to a position number greater than posT .

Theorem A.1.3. If some node delivers message m = [T, depsT ] before message m′ =
[T ′, depsT ′ ] and transactions T and T ′ conflict, then every node delivers m′ = [T ′,−] only
after m = [T,−].

Proof. If m = [T, depsT ] is delivered before m′ = [T ′, depsT ′ ] on a node Ni, it follows that
T ∈ depsT ′ by Lemma A.1.1 and the delivery logic (line 12 of Algorithm 11) ensures that m′
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cannot be delivered before m on every other node Nj even in case Nj receives the Stable
message for T ′ before it receives the Stable message for T . This is because T ′ (and so
m′) cannot be delivered till the delivery of T (and so m), due to the wait condition on the
delivery of the dependencies in depsT ′ .

Moreover, this is still true even if the leader of T ′ that has decided its final position crashes,
because the final message m′ = [T ′, deps∗T ′ ] is such that T ∈ deps∗T ′ thanks to Lemma A.1.2
and because the final position of T is less than the final position of T ′.

A.2 Parallel Concurrency Control Layer

Algorithm 15 P-CC - Execution phase (node Ni)

1: upon event 〈Begin[Transaction T ]〉 do
2: T.sid← Ni.CommitClock
3: T.RS ← ∅
4: T.WS ← ∅
5: T.origin← Ni

6:

7: upon event 〈Read[Transaction T , Obj x]〉 do
8: if ∃〈x, val〉 ∈ T.WS then
9: return val

10: Transaction owner ← getLockOwner(x)
11: wait until owner = null ∨ owner 6= getLockOwner(x)
12: V er ver ← getLastV ersion(x)
13: while ver.cClock > T.sid do
14: ver ← ver.prev
15: if T.writeSet 6= ∅ then
16: trigger 〈TxOutcome[T , ⊥]〉
17: T.RS ← T.RS ∪ {〈x, ver.cT id〉}
18: return ver.val
19:

20: upon event 〈Write[Transaction T , Obj x, V alue val]〉 do
21: T.WS ← T.WS \ {〈x,−〉} ∪ {〈x, val〉}
22:

Each node in the system is equipped with a parallel concurrency control (P-CC) layer that is
responsible for executing transactions submitted by clients as well as processing the commit
of transactions delivered by POB. P-CC works completely independently from other nodes
in the system, i.e., all of its activities are executed locally on the node where it is running.
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We can logically split P-CC’s operations into two parts. The first part, the execution phase,
is responsible for executing transactions optimistically. The second part, the commit phase,
is responsible for validating and committing the optimistic execution of write transactions
on all the nodes in the system, in accordance with the order provided by the POB layer.

Algorithm 16 P-CC - Commit phase (node Ni)

1: upon event 〈Commit[Transaction T ]〉 do
2: if T.writeSet 6= ∅ then
3: trigger 〈POBroadcast[T ]〉
4: else
5: trigger 〈TxOutcome[T , >]〉
6:

7: upon event 〈PODeliver[Transaction T , Set deps]〉 do
8: wait until ∀T ′ ∈ deps, T ′.completed = >
9: acquireLocks(T.tid, T.WS)

10: Bool valid← validate(T )
11: if valid = > then
12: Ni.CommitClock ← Ni.CommitClock + 1
13: for all 〈x, val〉 ∈ T.WS do
14: V er v ← getLastV ersion(x)
15: V er new ← 〈val,Ni.CommitClock, T.tid〉
16: new.prev ← v
17: setLastV ersion(x, new)

18: releaseLocks(T.tid, T.WS)
19: T.completed = >
20: if T.origin = Ni then
21: trigger 〈TxOutcome[T , valid]〉
22:

23: function validate(Transaction T ) do
24: for all 〈x, rT id〉 ∈ T.RS do
25: V er 〈val, cClock, cT id〉 ← getLastV ersion(x)
26: if rT id 6= cT id then
27: return ⊥
28: return >
29:

P-CC maintains meta-data for supporting transaction execution. Specifically, each node Ni

has a local logical clock that is shared among all the threads running on that node, called
Ni.CommitClock, and is incremented atomically whenever a new write transaction commits.
P-CC relies on a multi-versioned repository for storing shared objects so that read operations
of a transaction always return the version that is consistent with the snapshot observed so
far. In particular each object x keeps a list of versions corresponding to the sequence of
values committed by transactions on x. Besides the committed value val, each version ver
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also stores the commit clock cClock of the transaction that created ver, along with its id,
called cT id. As a result, ver = 〈val, cClock, cT id〉. Since all the cClock values are generated
by monotonically increasing the Ni.CommitClock and P-CC serializes commits on an object,
each list of versions is ordered according to the cClock values.

The execution phase (Algorithm 15) of a transaction T starts when an application thread
activates T on node Ni by means of the Begin event: T acquires the current value of
Ni.CommitClock and sets it as its snapshot id T.sid. T.sid identifies the transactional
state visible to T , namely all the versions committed before the transaction begins its ex-
ecution. Write operations executed by the Write event handler are always buffered in a
per-transaction write-set so that they can be made visible only upon the transaction’s com-
mit. On the other hand, whenever T wants to read the value of object x via the Read event,
P-CC returns the version of x having the maximum cClock less than or equal to T.sid, only
if T has never written to x. Otherwise, to prevent T from missing its own writes, the read
operation returns the last value written in T ’s write-set. Read operations are also logged in
a per-transaction read-set by storing, for each accessed object x, the object’s identifier and
the transaction’s id ver.cT id associated with the read version ver.

When a local optimistic transaction T ’s execution is completed, the transaction undergoes
the commit phase (Algorithm 16). Therefore the P-CC requests a distributed validation and
commitment phase for T in order to: i) verify that no other concurrent transactions in the
system have already committed a new value on an object read by T ; and ii) guarantee that
updates on the transactional state by T are applied in the same order on all nodes with
respect to other concurrent and conflicting updates. Therefore transaction T is broadcast
to all nodes via the POB protocol and hence it is delivered to each node via the interface
PODeliver(T, {T1, · · · , Tm}).

Exploiting the partial order of POB, in Alvin a transaction can be safely validated after all
the transactions belonging to its depsT set have been committed or aborted, and it does not
wait for the completion of other transactions (as in total order broadcast based replication
schemes [29, 105]). As an example, we consider T1, T2, T3 as three transactions delivered
by POB and their dependency sets depsT1=∅, depsT2={T1} and depsT3={T1} respectively.
In this case, the order among transactions is not total, because there is no order relation
between T2 and T3 even if both depend on T1. This means that the validation and commit
of T2 and T3 can be executed in parallel as soon as T1 either commits or aborts.

At a node Ni, the certification of a transaction consists of i) acquiring locks on the written
objects (whose ids are in T ’s write-set); ii) validating T ’s read-set; iii) atomically increment-
ing Ni.CommitClock by 1; iv) applying the updates by using the new Ni.CommitClock as
cClock only if the validation succeeds; and v) releasing the previously acquired locks. The
lock acquisition does not generate deadlocks because conflicting transactions are delivered
in order by the communication layer, but it is necessary for preventing transactions that
have set their snapshot (sid) with a value greater than or equal to cClock from missing the
versions that are going to be committed by T . Moreover, in case T is a read-only transaction,
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only step ii) is performed since its write-set is empty.

The validation procedure on a node Ni checks that for each version 〈x, rT id〉 in T ’s read-
set, the last committed version for x must be the one committed by transaction rT id. If
even one version read by T is not valid anymore, T is aborted. Due to POB, this decision
is deterministic on all nodes. When the validation of T succeeds on a node Ni, it makes
the values in the write-set (if any) available to any subsequent transaction executing on Ni

that starts with a snapshot id at least equal to Ni.CommitClock just incremented by T .
Therefore P-CC adds a new version 〈val,Ni.CommitClock, T.tid〉 as the last version of x
for each tuple 〈x, val〉 in T ’s write-set.

A.2.1 Correctness of P-CC

We prove that P-CC satisfies EUS by showing that: (A) the set of committed write transac-
tions is serializable, and (B) every transaction T always observes a consistent state. We do
not formally prove that a transaction cannot read any value written by an aborted transac-
tion and any intermediate value written by an executing (not committed yet) transaction,
since this is trivially guaranteed: in fact P-CC makes a write operation of transaction T
visible only if T commits and, for each object x written by T , only the last write operation
on x by T takes effect.

Prelimiary definitions. Before proving correctness of P-CC we introduce some con-
cepts that will be used throughout the proof. A history H is a partial order on the se-
quence of operations Op executed by the transactions, where Op’s values are in the set
{begin, read, write, commit, abort} [3]. We denote with bh, ch, ah respectively begin opera-
tion, commit operation and abort operation executed by transaction Th. When a transaction
Th successfully writes a value on object x, we say that Th writes version xh and we denote
the write operation with wh(xh); on the other hand the notation rh(xk) is used to indicate
the transaction Th has read version xk of x (the one that is written by transaction Tk). In
addition H implicitly induces a total order � on committed object versions [3].

Moreover we define Hup as the history obtained from H by removing all ongoing, aborted
and read-only transactions, i.e. Hup only contains committed write transactions.

We define the Direct Serialization Graph DSG(H) on a history H (as in [3, 10]) as a direct
graph with a vertex VTh

for each committed transaction in H (H contains ch) and a directed
edge from VTh

to VTk
if Th and Tk are conflicting transactions, namely there are two operations

Oph and Opk in H on a common object x and such that at least one of them is a write
operation. We distinguish three types of edges depending on the type of conflicts between
Th and Tk:

- Direct read-dependency edge if there exists an object x such that both wh(xh) and
rk(xh) are in H. We say that Tk directly read-depends on Th and we use the notation



Alexandru Turcu Appendix A. Alvin: Pseudocode and Proofs 153

VTh

wr−→ VTk
.

- Direct write-dependency edge if there exists an object x such that both wh(xh) and
wk(xk) are in H and xk immediately follows xh in the total order defined by �. We
say that Tk directly write-depends on Th and we use the notation VTh

ww−−→ VTk
.

- Direct anti-dependency edge if there exists an object x and a committed transaction
Tp in H, with p 6= h and p 6= k, such that both rh(xp) and wk(xk) are in H and
xk immediately follows xp in the total order defined by �. We say that Tk directly
anti-depends on Th and we use the notation VTh

rw
� VTk

.

Then a history H with a version order � is (1-copy) serializable iff the DSG(H) on H does
not contain any oriented cycle [10].

Lemma A.2.1. Given H any history executed by P-CC and Hup obtained from H, then the
DSG(Hup) graph on Hup does not contain any oriented cycle.

Proof. For each VTh
in DSG(Hup) we define the CV Ch as a commit vector clock associated

to transaction Th. In particular ‖CV Ch‖ = N and CV Ch[i] = cClock, where cClock is the
value of Ni.CommitClock that Th has used to commit on node Ni.

We prove that for each dependency edge VTh
−→ VTk

in DSG(Hup), CV Ch < CV Ck. We
recall that for any two vectors v1 and v2 we write v1 < v2 if and only if ∃i : v1[i] < v2[i] ∧
∀j, v1[j] ≤ v2[j]. Therefore we distinguish three cases depending on the type of dependency
edge:

- VTh

ww−−→ VTk
. Th and Tk conflict on at least one object x and Th commits before Tk.

The POB layer guarantees Th is delivered before Tk on each node while the P-CC layer
guarantees that Tk can be validated only after the completion of the commit of Th (line 8
of Algorithm 16). This means that on each node Nj the commit clock chosen for Tk is at
least greater than or equal to the commit clock chosen for Th and incremented by 1 (line
12 of Algorithm 16). Therefore ∀j, CV Ch[j] < CV Ck[j], and hence CV Ch < CV Ck.

- VTh

wr−→ VTk
. There exists a node Ni where Tk has been executed and Tk has read version

xh of an object x committed by Th on Ni. Since the commit of Tk follows the commit of Th
on Ni, then the delivery of Tk follows the delivery of Th on Ni, because write transactions
are committed upon their delivery via the POB layer. Moreover, since Th and Tk conflict,
the POB layer guarantees that Th and Tk are delivered in the same order on each node
Nj. As in the previous case, on each node Nj the commit clock chosen for Tk is at least
greater than or equal to the commit clock chosen for Th and incremented by 1 (line 12 of
Algorithm 16). Therefore ∀j, CV Ch[j] < CV Ck[j], and hence CV Ch < CV Ck.

- VTh

rw
� VTk

. There exists a node Ni where Th has been executed and Th has read version
xp of an object x committed by Tp on Ni and that is later overwritten by transaction Tk.
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Since validation of Th succeeds because Th commits, Tk is delivered after Th on each node
Nj. As in the previous two cases, on each node Nj the commit clock chosen for Tk is at
least greater than or equal to the commit clock chosen for Th and incremented by 1 (line
12 of Algorithm 16). Therefore ∀j, CV Ch[j] < CV Ck[j], and hence CV Ch < CV Ck.

Therefore we prove by contradiction that the DSG(Hup) graph cannot contain any oriented
cycle. This is because if such a cycle exists, for each node VTh

in the cycle we have CV Ch <
CV Ch, which is clearly the absurd.

Lemma A.2.2. Given H any history executed by P-CC and Hup obtained from H. Let HRO

the history obtained from Hup by adding a read-only transaction TRO contained in H. Then
the DSG(HRO) graph on HRO does not contain any oriented cycle.

Proof. The proof follows the one adopted for Lemma A.2.1. For each VTh
in DSG(HRO),

where Th is different from TRO, we define the CV Ch as a commit vector clock associated
to transaction Th. In particular ‖CV Ch‖ = N and CV Ch[i] = cClock, where cClock is the
value of Ni.CommitClock that Th has used to commit on node Ni. In addition, we associate
to VTRO the value TRO.sid that is the value transaction TRO has used as reference clock to
perform read operations, i.e. the TRO’s snapshot id.

As we show in the proof of Lemma A.2.1, for each dependency edge VTh
−→ VTk

inDSG(HRO),
such that both Th and Tk are different from TRO, CV Ch < CV Ck.

Afterwards we prove that for each pair of edges VTh

wr−→ VTRO and VTRO
rw

� VTk
that involve

the read-only transaction TRO, there exists a node Ni such that we have CV Ch[i] < CV Ck[i].
This is because there exists a node Ni such that the TRO.sid used by TRO to execute read
operations on node Ni (lines 6-20 of Algorithm 15) is greater than or equal to the commit
clock CV Ch[i] used by Th to commit on Ni,namely CV Ch[i] ≤ TRO.sid; in addition, since
TRO misses a write of transaction Tk that commits on Ni, it must be TRO.sid < CV Ck[i].
Hence CV Ch[i] < CV Ck[i], where Ni is the node the executed TRO.

Therefore we prove by contradiction that the DSG(HRO) graph cannot contain any oriented
cycle. This is because if such a cycle exists, given the node Ni that executed transaction TRO,
for each node VTh

in the cycle such that Th is different from TRO we have CV Ch[i] < CV Ch[i],
which is clearly the absurd.

Theorem A.2.3. Given H any history executed by P-CC, then H is accepted by EUS.

Proof. If H is executed by P-CC, then the DSG(Hup) on Hup obtained from H does not
contain any oriented cycle by Lemma A.2.1. This means that the history of write transactions
committed by P-CC is 1-copy serializable.

In addition, by Lemma A.2.2, the DSG(HRO) on HRO obtained from HRO by adding a read-
only transaction TRO from H, does not contain any cycle. This means that any read-only
transaction always observes a transactional state the results from a serializable execution of
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write transactions, thus always observing a consistent state. This is trivially verified also for
every committed update transaction by Lemma A.2.1.

Finally, we have to notice that every ongoing or aborted transaction in P-CC, can be treated
as a read-only transaction that includes all the successfully executed read operations, because
write operations are made visible only if a write transaction commits.

Therefore, by Lemma A.2.1 and Lemma A.2.2, P-CC guarantees that any transaction always
observes a consistent transactional state.

Summarizing, given H any history executed by P-CC, H is accepted by EUS because:

- the history of committed write transaction is H is 1-copy serializable;

- any transaction in H always observes a consistent transactional state.

Theorem A.2.4. Given H any history executed by P-CC where read-only transactions are
validated and committed via POB, then H is accepted by SR.

Proof. The proof follows by Lemma A.2.1 and by considering that P-CC and POB process
the commit of read-only transactions as they do for update transactions.
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