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(ABSTRACT) 

This thesis presents the development of a numerical model for one-dimensional pollutant 

transport in a porous medium. A computer program POLUTE1D has been developed. The 

numerical model is based on the flow and mass transport equations and the finite element 

method has been used for its formulation. The problem involves unsaturated flow and 

convective dispersive transport of a contaminant species. A literature survey on the evalu-

ation of the dispersion coefficient is included. A waste disposal dump site is analysed as a 

one-dimensional problem by using this model. The effect of the liner thickness, the liner 

permeability, the ponding head and the initial condition of the porous domain on the spread 

of the contaminant is studied. Conclusions are presented based on a parametric study. 
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Chapter 1 

Introduction 

During the past decade, hazardous waste disposal has become one of the major environ-

mental problems facing many nations. The pollution problem is a slow-acting, non-visible 

phenomenon, which can involve a gradual contamination of the good water as it flows from 

the hazardous waste site. It takes years for people to find out whether they or their children 

are victims of chemical poisoning. 

US industries generate about 300 million tons of toxic waste per year. These chemicals have 

in too many cases been dumped all over the US in the mistaken belief that the toxicity will be 

lost with time before it seeps into ground water, and many of these dumpsites are leaking and 

contaminating the ground water. It is a serious challenge for the Environmental Protection 

Agency (EPA) to remedy this misguided practice with too little resources in too short a time. 

However, there is no other alternative at the moment than to put these waste materials in 

landfills which are going to leak some day. 
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Now that all are aware of this problem, it has given rise to the situation where every com-

munity says, "No dumpsites in my backyard". To alleviate the fears of these communities, the 

dumpsites should be located in remote areas and they should have a good liner of sufficient 

thickness to prevent seepage through the layers of soil and rock into ground water supplies. 

In this report, a finite element mathematical model is presented, which may be used to predict 

the liner thickness and liner permeability with a reasonable accuracy. Also by using this 

model, the spread of the contaminant in a landfill could be determined. 

Chapter Two explains the basic concepts involved in modeling pollutant transport models. 

This chapter contains the flow and mass transport equations, the constitutive laws, the 

volumetric water content - capillary pressure relationship and details about the dispersion 

coefficient. 

The finite element formulation of the model is given in Chapter Three. Chapter Four is a 

parametric study of the effects due to the changes in liner thickness and permeability, ponding 

pressure and initial condition on pollutant concentration in the porous domain. 
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Chapter 2 

Basic Concepts in Pollutant Transport Through a Porous 

Medium 

2.1 General 

The study of pollutant transport is very costly if it relies entirely on field investigation. For this 

reason, investigators often turn to numerical models as tools to predict pollutant transport in 

a porous medium. Although such approaches can be powerful, it should be born in mind, that 

the numerical prediction will be only as good as the hydrologic setting and available data 

which are input into the model. 

A dumpsite which is extensive may be analysed as a one-dimensional problem. That is, if it 

has a large longitudinal and lateral dimension, the problem is idealized to a one-dimensional 

case, where the pollutant will flow only in the vertical direction (Figure 1 on page 5 ). In this 
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case there are two different phenomena taking place: the flow of water through the unsatu-

rated medium and the dispersion of the pollutant concentration. 

2.2 Flow Equations 

The constitutive law for the flow problem is Darcy's Law. 

q = _ k oH az 

where q = Hydraulic flux density 

k = Hydraulic conductivity 

H = Hydraulic head 

Z = Depth 

[2.1] 

The velocity in eqn (2.1) is in the Z direction. Since the velocity decreases with the gradient, 

a negative sign occurs in eqn (2.1). 

For seepage flow in a porous medium, Darcy's Law is valid if the flow occurs with a very low 

value (nearly equal to zero) of Reynold's number Re or with Re < 0 . When the particle size 

is less than 1 mm, the latter may be assumed to occur. Hence, ifthe porous medium is clayey, 

silty, or silty-fine sands, the application of Darcy's Law is justified. 

The equations used in this presentation are based on the assumptions that the medium is 

rigid, the fluid is homogeneous and incompressible, the flow is continuous and irrotational and 

the capillary, air convection and inertia effects are negligible. 
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~--=====- -~~~- Liner 

Soll 

v WT 

Figure 1. One Dimensional Problem 
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The one-dimensional vertical flow equation for an incompressible fluid in a rigid porous me-

dium may be obtained from a solution to Richard's equation (Huyakorn et al., 1983) which may 

be written as 

c l!L= _j_ [k (l!L - 1 )] 
h at az az 

where h = Capillary pressure head 

t =Time 

Z = Depth taken positive downwards 

k = Unsaturated hydraulic conductivity 

= krksat 

kr = Relative conductivity ratio 

ksat = Saturated hydraulic conductivity 

= Water capacity 

9 = Volumetric water content 

Volume of water 
Total volume 

[2.2] 

To obtain the parameters k and Ch, one has to determine water content e vs pressure h re-

lationship of the porous medium. 
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2.3 9- h Relationship 

An apparatus to determine the 0 - h curve is shown in Figure 2 on page 8. The porous 

sample is initially saturated with water. The volume of water needed to saturate the sample 

can be calculated. Air is pumped in under pressure from the top of the sample, while the 

water level in the outer tube is kept constant. When the soil water gets stabilized in the 

sample, the outflow from the sample can be measured. This outflow is the water displaced 

by air in the porous sample. Hence the volume of water now in the porous medium can be 

computed. This leads us to the present volumetric water content in the porous sample. de-

termined from the observed outflow. Hence for the known applied pressure, the volumetric 

water content of the sample can be obtained. Repeating the experiment for varying pres-

sures, a set of points may be obtained for the plot of the 0 - h curve. 

Figure 3 on page 9 shows the typical relationship between 0 and h. In this figure 0, is the 

saturated water content and 0, is the residual water content. a. can be determined exper-

imentally. The residual water content 0, is defined as the water content at which the gradient 

~~ in the 0 - h curve becomes zero at a very large h. However, in Figure 3 on page 9 it 

should be noted that the slope ~~ becomes zero near 0, as well as near the saturation point 

a •. This relationship also indicates the pore size distribution of the porous medium. An anal-

ogy for this characteristic may be made by considering a bundle of capillary tubes of various 

radii. The capillary rise in a tube relative to the free surface and hence the nuid pressure head 

is inversely proportional to its radius, due to the surface tension forces acting on the tube. 

Therefore, if the soil is very porous, the pressure-head will be low and vice versa. 

This curve will have a hysteresis, if wetting and drying experiments are conducted in the 

porous medium. There are models available describing this phenomenon. However, for our 

purpose, the hysteresis will be disregarded and the drying curve will be assumed to represent 

the e - h curve. 
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Figure 3. Typical O· h curve 
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Van Genuchten (1978) describes the e - h relationship with the empirical form 

es - e, e = e, + -------1-
[ 1 + I ah I nJ1 - nl 

for h < 0 [2.3] 

for h ~ 0 

where e,. a and n are the empirical parameters which are determined by fitting the best 

curve, for the experimental data. Typical values of a and n for few soils are given in 

Table 1 on page 11. 

The S, vs h curve is shown in Figure 4 on page 12. S, has a value of 1.0 when h is zero. 

While n is constant, if a is increased from 1 to 5, the curve shifts towards the vertical axis. If 

a is kept constant and n is increased from 1 to 2, the slope of the curve becomes shallower. 

a and n are simply curve-fitting parameters. 

The water capacity is the slope of the e - h curve. Differentiating eqn (2.3) with respect to 

h, the water capacity is obtained as 

[2.4] 
e e .J_ .l_m = - am( s - ,) Sm (1 - Sm) 

1 - m e e 
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n :r 
Ill 

"C -II ... 
N 

.... .... 

Textural class Particle size distribution Bulk density Parameter Values 

sand silt clay a n 0, 0, k, 

(lb/cu.ft) n-1 ft day- 1 

sandy loam 61 24 15 1550 0.375 1.301 0.110 0.355 0.2 

silt loam 28 56 15 1570 1.44 1.461 0.173 0.388 4.3 

sandy clay 56 18 26 1530 0.71 1.225 0.199 0.402 0.3 
loam 

clay 21 31 48 1110 0.15 1.319 0.127 0.589 0.0006 

Table 1. Parameter values for Van Genuchten model determined from transient one-step outflow experiments (Kool et al., 1985) 



h 

n Constant 

1.0 

0 
h 

a Constant 

Figure 4. Effects of a and n 
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2.4 Hydraulic Conductivity 

The relative hydraulic conductivity (k,) is the ratio between the unsaturated conductivity and 

the saturated conductivity (k,) of a porous medium. Using the same analogy as before, con-

sider the soil mass as a bundle of capillary tubes. Since k is proportional to r 2 where r is the 

capillary radius, it is possible to relate O(h) to pore-size distribution and to predict k(O). 

There are a number of models available depending on these analyses. Mualem (1976) derives 

the following equation for relative hydraulic conductivity . 

...!... [ t• h (X)dX l 2 k = 52 _a __ _ 
r e 1 1 So h(x)dx 

[2.5] 

where h is the pressure head, given as a function of the effective saturation. The first term 

s;'2 results because of the assumptions made about the connectivity of the capillary tubes. 

From eqn (2.4) Van Genuchten (1978) derives his expression for relative hydraulic conductivity 

as follows: 

(m = 1 - ~) 
[2.6] 

(0 < m < 1) 

Substituting eqn (2.3) in eqn (2.5), the relative hydraulic conductivity can be written in terms 

of pressure head as 

[ 1 - (ah)n - 1 {1 + (ah)n}..:. m]2 

k,(h) = -----------
m 

[2.7] 

The relationship of k and h in eqn (2.6) could be graphically displayed as in Figure 5 on page 

15. 
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2.5 Mass Transport Equation 

The one-dimensional mass-transport equation may be written as (Huyakorn et al., 1983) 

2 
R .22... = ok - v oc + i< c + o at 022 az 

where c = Concentration 

D = Dispersion coefficient 

v = Mean pore water velocity = f 
t =Time 

Z = Depth 

R = Retardation coefficient 

K = First-order decay coefficient 

Q = Zero-order source or sink 

[2.8] 

The coefficient K is used in a situation where the material undergoes first-order decay. For 

the occurrence of mass transport with adsorption, the retardation coefficient R is applied. 
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h Pressure Head 

Figure 5. Unsaturated hydraulic conductivity 
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2.6 Dispersion Coefficient 

The dispersion coefficient D of a material is due to its mechanical or convective dispersion 

and molecular diffusion. Convective dispersion is the movement of pollutants associated with 

bulk flow of the liquid phase. This is the most important mechanism in the transport of 

pollutant. Hence, convection depends largely on ground water movement which in turn relies 

on the pressure head, the permeability and the porosity. 

If the contaminant is mixed with water due to the random movement of the molecules, it is 

termed 'molecular diffusion'. As an example, if one adds alcohol to a glass of water and lets 

the mixture sit still, the spreading of the alcohol in the water is due to molecular diffusion. 

When a rod is inserted in the glass and stirred, significant mixing will occur. This is due to the 

convective dispersion and depends on the direction and magnitude of the velocity of the fluid. 

Taylor (1953) considers D as proportional to v2 where v is the average pore-fluid velocity. 

Bear and Todd (1960) introduces D = 8 1 v where 8 1 is some characteristic medium length. 

In Saffman's (1960) model the dispersion coefficient is stated as 

2 
_Q_= T + .E_ 
D0 m 15 for P < 1 

_Q_= T + £..[ ln{ 3P) - J]_ - £..(2...)2] + .i. for 1 < < P < <a( 8i ) 2 
D0 m 6 2 12 8 i 9 
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where D0 = Diffusion coefficient of solute 

Dm = Diffusion coefficient of solute in macropores 

v = Mean fluid velocity 

D . Tm = D m = Tortuos1ty of macropores 
0 

= ~ in Saffmans model 

P = vd = Peclet number 
Do 

d = Particle diameter 

f, = Pore length 

a = Pore radius 

Ross (1977) describes the dispersion coefficient D as 

D _ n 
-- T + k1P D m 

0 

where k1, n = Empirical constants which depends on the characteristics of the porous media 

Ross (1977) reports values for k1 between 0.16 and 7.9 and for n between 1.0 and 1.56. How-

ever, Brigham et al.,(1961) has reported values as high as 53 for k,. 

The viscosity ratio of fluids and the homogeneity of the porous material affects the values of 

k, and n (Brigham et al., 1961). Also these constants depend on the values of D0 (Ross 1977). 
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B.S.Ghuman et al., (1980) formulates: 

D - n a - mvP 

where Da = Apparent dispersion coefficient 

vp = Pore water velocity 

m, n = Constants characterizing the porous medium 

Table 2 on page 19 summarizes the various equations describing the dispersion coefficient. 

Considering all the equations in Table 2 on page 19, a more generalized equation for the 

dispersion coefficient may be written as 

where D = Dispersion coefficient of solute 

D0 = Diffusion coefficient of solute 

P = vi = Peclet number 
Do 

a, b, k1,n = Empirical constants 

v = Mean nuid velocity in pore space 

t = 'Characteristic length' of porous medium 

[2.9] 

For our study eqn (2.9) is used to calculate D in the mass transport eqn (2.8). Table 3 on page 

20 gives the values for the diffusion coefficient D0 • The values used for a, b, k1 and n are 0.67, 

1, 0.5 and 1 respectively as per Ross (1977). The dispersivity E, of the soil is defined as k,t, 

using the above parameters. 
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Dispersion Equations 

Taylor (1953) D cc v2 

Bear & Todd (1960) D = 81V 

Saffman (1960) _Q_=T. +.E D0 m 15 for P < 1 

_Q_ = r. + .e.[ '"(le.) - -1L - .e.(JLY] D0 m 6 2 12 8 / 

+~ 
9 for 1 < < p < < a(~ )z 

B.S.Ghuman et al., (1980) D. = m vn 

Ross (1977) _Q_ = T. + k pn Do m 1 

Table 2. Summary of dispersion equations 
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Diffusion Coefficients Do 
(ftZ day-1) 

Gases 10 
Inorganic solute ions 10-s 
Organic molecules 10-1 

Table 3. Diffusion coefficient• of solutes (Ross 1977) 
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Chapter 3 

Finite Element Formulation 

3.1 General 

The finite element technique is one of the versatile and favoured simulation methods available 

for the study of pollutant transport in a porous medium. Since soil in its natural condition is 

highly inhomogeneous, irregular, and nonlinear, the finite element method is ideally suited to 

account for them. In this chapter, the finite element formulation of the governing equations 

of unsaturated flow and pollutant transport, will be described. 

Rowe (1984) used closed form solution for his one dimensional pollutant transport model with 

constant dispersion coefficient D. The finite difference technique has been widely used for 

solving mass transport problems (Huyakorn et al., 1983). A one dimensional finite element 

model was developed by Guymon (1970), for transport problems assuming steady state flow. 

Also there are several two dimensional finite element codes for mass transport problems 
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(Guymon., 1970, Huyakorn et al., 1983). Essentially in all these programs, the mass transport 

equations are solved assuming the velocity field. In this study the flow equation is used to 

get the velocity and couple it with the mass transport equation to get the concentration spread. 

Also the Van Genuchten model for unsaturated flow and a varying dispersion coefficient with 

velocity and water content are used. 

3.2 Governing Equations 

The numerical model is to be based upon the governing differential equations for the flow and 

mass transport given below. 

oh _ a [ (oh )] ch Tt - az k az - 1 (3.1) 

2 
R.2£...=ok-v ac +Kc+Q at 022 az (3.2) 

3.3 Finite Element Formulation 

The main procedures used for formulating finite element equations are the variational and 

residual methods. The functional associated with the flow eqn (3.1) is given by 

A = s[J_ k (l!l.)2 + ch h ~h ] dl - q h I 
2 fJZ ot nux boundary 

(3.3] 

where q is the fluid flux and for no-flow condition, this becomes zero. 

For a two-noded, one-dimensional element, the shape functions are assumed linear and given 

as below. 
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where L Is the local coordinate and (q,,) -{:} 

Differentiating eqn (3.4) with respect to Z and t we have, 

ie., 

and oh = L[-1i1 - L)h + -1i1 + L)h] at at 2' 1 2' 2 

=[NJ 

which may be written as, 

l!J... = [NJ {Q} at h 

Chapter 3 
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Substituting eqns (3.5) and (3.6) into eqn (3.3) and taking variations will lead to the element 

equation 

[3.7] 

where [K] = s:1
2[af k [B] dZ 

[ 1 -1] 
= ~ -1 1 

Qh = q at the flux boundary 

The element equations are assembled to obtain the global equations and solved for the nodal 

values of h. Substituting this into eqn (3.5) the fluid velocity v for each element can be ob-

tained. 
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For the mass transport problem, the same element with linear shape functions given In eqn 

(3.4) is again used. 

c- [~1 - L) ~1 +L)J{:} 
C - [N1 N2] {::} 

[3.8] 

The element equations are derived by the Glerkin's Method of Weighted Residual. Weighting 

the residual with respect to N,, we have 

JZz[_l_(o oc ) - v oc - Ak - Kc + a] N dZ = 0 z, az az . az at ' [3.9] 

Substitution of eqn (3.8) into eqn (3.9) will yield 

[3.10] 
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Integrating eqn (3.10) will lead to the element equation in matrix form, 

[3.11] 

where' {qJ -[:] 

ac1 
at 

ctc = 
ac2 
Tt 

= 
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Assembly of the element eqn (3.11) will lead to the global eqn (3.12) which in matrix form is 

[K] {r} + [Kr] {f} = {R} [3.12] 

Where [K] and [K1] are the assembled property matrices, {R} is the assembled force vector 

and {r} is the assembled nodal concentration. 

3.4 Solution in time 

There are various time integration schemes available to solve the global eqn (3.12). The se-

lection of time integrator depends on factors desired, such as accuracy, stability and ease of 

computer implementation. A general p method of time integration scheme is adopted here: 

[3.13] 

where p (0 ~ p ~ 1) is a scalar. Table 4 on page 28 gives the various methods available 

depending on the values of p. The accuracy and stability depends upon the eigen-values of 

the matrices [K] and [K1]. These matrices are dependent on time step M. When M ex-

ceeds a certain value, the Forward Difference Method becomes unstable. For 

p = f or p = ~ there will be numerical oscillations when M is too large. These methods 

are unconditionally stable. The Backward Difference Method is less accurate for large M. 

However, this method is unconditionally stable and the calculated values do not oscillate 

about the correct values. 
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p Method 

0 Forward difference 

1 Central difference 2 
2 Galerkin's method 
3 
1 Backward difference 

Table 4. Time Integration methods 
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3.5 Non Linear Technique 

3.5.1 Picard's method 

Nonlinear problems are usually solved by taking a series of linear steps. An equlibrium 

equation written in the form [K] {O} = {R} is nonlinear when the stiffness matrix [K] is a 

function of {D}. 

To solve this equation, the first step is to assume a value for {O} and calculate [K]. The 

current [K] is used to compute the next {D} and the process is repeated until the conver-

gence to the desired solution DA (Figure 6 on page 30). Usually, the criterion for convergence 

is chosen as I 0 1+1 - 0 1 I :;;; E 0 1 where i is the number of iteration and E is the desired ac-

curacy. 

3.5.2 Newton - Raphson method 

This method is illustrated in Figure 7 on page 31. If there is a solution D = 0 1 for the 

equation f{O) = [K] {O} - {R} = 0, the equation can be written using a truncated Taylor 

series expansion 

with 0 1+1 = 0 1 + tlD 1• 

The improved value of 0 1+ 1 is obtained by using 
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{D} 

Figure 6. Picard'• method 
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Do 
ADO D1 

AD1 D2 
{D} 

Figure 7. Newton· Raphson method 
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where (Kr) is the tangential matrix. Near the solution, this method converges, but if the initial 

assumed value is not close, divergence might occur. 

Generally, the Newton-Raphson Method converges faster than the Picard Method. However, 

to compute the tangent, the derivative of the equation should be taken. This makes the cal-

culation complicated and still does not guarantee convergence. Hence, in this study Picard's 

Method has been adopted. 

In our case, the nonlinearity involved in the governing equation presents an S curve as in 

Figure 8 on page 33. Therefore, in this program, after each iteration, from the new value of 

0 2 obtained and the previous value 0 1, the average is taken to get 

0 3 (i.e., 0'3 = (01 + 0 2)/ 2), which will be used to update the stiffness matrix [K]. This 

process tends to make the convergence faster. In the present formulation, this technique has 

been adopted to calculate Ch and k, and to solve Eqn (3.7). 

3.6 POLUTE1 D 

A computer program POLUTE1D has been developed to do the above calculations in the 

mainframe and personal computer. The program calculates the nodal h using the nonlinear 

techniques mentioned in the previous section and hence the mean pore velocity. This velocity 

is substituted in the dispersion equation to obtain the dispersion coefficient. The mass 

transport equation uses this coefficient and the velocity to compute the nodal concentration 

at each time step. 
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Figure 8. Modified Plcard's method 
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Chapter 4 

Parameteric Study 

4.1 Introduction 

In this chapter, the effects of the various parameters involved in a one-dimensional pollutant 

transport problem in a porous medium is studied. For this purpose, a typical one-dimensional 

problem is chosen, as shown in Figure 9 on page 35. A toxic waste materiai with concen-

tration C0 is disposed at the top of the lagoon. The water table is located at a depth of H, 

feet below the ground. The landfill has a liner thickness of hi. feet. Because of flood condi-

tions, the ponding depth at the top is assumed as hw feet. 
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Figure 9. One-dimensional problem 

Chapter 4 35 



4.2 Parameters 

For our study we assume the soil at the location of the landfill as sandy clay loam. The liner 

material for the landfill is chosen as clay. The representative parameter values for the two 

materials used in this study is given in Table 5 on page 37. The toxic waste at the site is 

considered as an inorganic chemical, which is not radioactive or biodegradable. Hence the 

value of K in the mass transport eqn (2.8) may be assumed as zero. Since we are not con-

sidering any source or sink in the system, Q also becomes zero in eqn (2.8). From Table 3 

on page 20 the diffusion coefficient D0 for the chemical waste is 10- 3 ft2 day- 1• The retarda-

tion coefficient R is assumed one. 

In our problem we are assuming the total depth H, as 10 feet. The sandy clay loam overlies 

an aquifer, which has a very large transmissivity. Due to the presence of the aquifer, there 

is a mounted water table at the bottom of the soil layer. Hence at the bottom layers soil is 

saturated and pressure head h may be considered to be zero. The 0 - h distribution for the 

sandy clay loam and clay is given in Figure 10 on page 38. It was found that a twenty element 

mesh was adequate for the finite element analysis. Hence in our analysis each_ element 

measures 0.5 feet. 

For the following analysis unless otherwise stated, the total head for the initial condition is 

taken as zero, assuming a state of equilibrium. Also the ponding head is kept zero for all the 

following analysis except for the study, of the effect of the ponding head on the pollutant mi-

gration. The datum line is at the water table level. The concentration and the total head at 

the surface (i.e., at the top node) of the porous medium is kept bounded. If we assume the 

transmissivity of the aquifer to be very high, the fluctuation in the pressure head h with time, 

could be neglected for our analysis. Hence at the bottom of the soil layer the total head may 

be bounded as zero. The concentration at the bottom node is allowed to build up. 
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Soll Parameter Parameter Values 

sandy clay a 0.71 
loam n 1.5 e, 0.1 e, 0.4 

k, 0.3 

clay a 0.15 
n 1.2 e, 0.15 e, 0.4 
k, 0.0003 - 0.03 

Table 5. Represantatlve values for sandy clay loam and clay (Kool et al., 1986) Units of 
a in n-1, k, in ft day- 1 
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Figura 10. 0 • h relationship for sandy clay loam and clay used In the example. 
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All the analysis in this thesis is done by using the program POLUTE1D. In the following figures 

the concentration C in the porous domain is given as a ratio g0 , where C0 is the concen-

tration introduced at the surface. In our analysis this concentration is assumed to remain 

constant with time. The effects of the thickness, permeability and dispersivity of the liner, the 

ponding pressure and the initial condition of the domain on pollutant transport is studied by 

varying the above factors. 

4.3 The effect of liner thickness 

In Figure 11 on page 40 the depth vs the concentration ratio for the porous domain is given 

after the introduction of the contaminant. It takes 340 days for the contaminant ratio to be-

come one at the bottom node, for a no liner condition. The spread of the contaminant, after 

a one foot liner has been introduced for the landfill is given for time levels 312, 3860 and 42000 

days. For this case the liner k, is taken as 0.0003 ft day- 1 • For the entire domain to have a 

concentration of C0 it takes 115 years with a one foot liner, compared to the 340 days it takes 

to achieve the same result with a no liner condition. This figure clearly indicates the strong 

effects of the liner in pollutant spread. 

The effect of different liner thicknesses is presented in Figure 12 on page 41. It is a plot of 

time vs g0 , where time is on a log scale in the Y axis. The liner k, is kept constant at 0.0003 

ft day- 1 • The concentration of the pollutant in the landfill is C0• The change in concentration 

at a point A, 10 feet below the surface is plotted, for a no liner condition and after a liner of 

1.0 and 1.5 feet has been introduced. This figure shows that the contaminant ratio to become 

one at point A, it takes approximately 1, 55, and 1180 years for a no liner, 1.0 and 1.5 feet liner 

conditions respectively. From this figure the remarkable effect of the liner thickness on 

pollutant transport could be interpreted. 
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4.4 The effect of liner permeability 

In Figure 13 on page 43 the liner thickness is kept constant at 1.5 feet and the permeability 

of the liner is varied from 0.0003 ft day- 1 to 0.03 ft day- 1• The Y axis is the time in log scale 

and the X axis is the concentration ratio. The concentration at point A, ten feet below the 

surface is plotted against time. For a low permeability (0.0003 ft day- 1) liner the concentration 

at A to become C0 it takes approximately 1180 years, whereas for a liner with permeability 

0.03 ft day- 1 it takes about 13 years. When the landfill does not have any liner it may be noted 

from Figure 12 on page 41, for the same conditions it takes only one year for point A to get 

C0 concentration. This figure clearly shows the dramatic effect of the permeability. 

4.5 The effect of liner dispersivity 

Figure 14 on page 44 is the same type of time vs g
0 

graph as explained previously, plotted 

for the change in concentration at point A, which is ten feet below the surface. The liner 

thickness and permeability is kept constant at 1.5 feet and 0.0003 feet day- 1 respectively. Two 

curves are plotted for liner dispersivities of 0.078 inches and 1.8 inches. From the curves it 

could be concluded that the effect of dispersivity of the liner, on pollutant spread is negligible. 
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4.6 The effect of ponding depth 

In Figure 15 on page 46 the effect of the ponding depth is analysed. For the same initial 

condition the ponding depth h, is varied from 0 to 3 feet. That is, in this instance the top 

boundary condition for the total head is changed from 10 to 13 feet. The liner thickness is 1.5 

feet and the liner k, is 0.0003 ft day- 1• Again the change in concentration at point A which is 

10 feet below the surface is plotted against time. The Y axis has time in log scale. From the 

curves it could be seen that the effect of the ponding depth is marginal. 

4.7 The effect of initial condition 

The effect of the initial condition on pollutant transport in the porous medium is shown in 

Figure 16 on page 47. The total head at the surface for the for the initial condition is taken 

as -200 feet. This means that the porous domain, is initially in a dry condition. The curves 

are plotted for conditions of no liner, 1.0 and 1.5 feet liners. These curves are simil~r to the 

curves in Figure 12 on page 41, except for the initial condition. However by comparison of 

Figure 12 on page 41 and Figure 16 on page 47 it could be seen that the curves look almost 

the same and it may be stated that the initial condition does not affect the pollutant dispersion. 
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Chapter 5 

Summary and Conclusions 

Modeling is probably the most important aspect of solving a subsurface flow problem. In this 

study a computer program POLUTE1D has been developed based on a one dimensional 

pollutant transport model. This program has been demonstrated to be a versatile tool in 

predicting one dimensional pollutant transport in a porous medium. 

The model is based on the flow and mass transport equations. These equations depend on 

the values of Ch and k. Ch is the slope of the 9 vs h curve. From the VanGenuchten model 

k can be calculated. The dispersion coefficient is a function of the velocity. This coefficient 

is used in the mass transport equation to compute the nodal concentration. 

In the preceding analysis the pollutant concentration C0 at the surface was assumed to re-

main constant, independent of time. This is a very conservative estimate. Also in the analysis 

on the effect of the ponding head hw, again it was assumed that hw remains constant with 

time. 
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For the solution in time, if the time increment for each step is small, the numerical oscillations 

in the output data may be avoided. That is, the smaller the time increment the more accurate 

the output becomes. However as the analysis was performed until the entire porous domain 

reach the same concentration C0 as in the landfills, the total time involved in the analysis is 

very large. This precludes the economical use of a constant small time step. Therefore in the 

present analysis a gradually increasing time step was used to optimise the computer time. 

To prevent the pollutant infiltration into the ground from a waste pond an impermeable thick 

liner should be used. From the plots in the previous chapter, .it could be seen that the 

permeability and the thickness of the liner has a very large effect on the migration of the 

pollutant than any other factors. The effects due to these factors are almost similar. 

The dispersivity of the liner does not have much control over the contaminant spread. Mar-

ginal effects were seen due to the changes in the ponding depth and initial condition of the 

porous domain. 

This one dimensional program is applicable only in an extensive waste pond. If the breadth 

of the dump site is smaller than the length, a two dimensional model should be used. These 

models are predictive models. However, to establish confidence, the numerical model has to 

be compared with the field observations. Until such tests are done, this model should be used 

in field situation with caution. 
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