
Efficient Symbolic Execution of Concurrent Software

Shengjian Guo

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Chao Wang, Co-chair

Michael Hsiao, Co-chair

Yaling Yang

Haibo Zeng

Dongyoon Lee

Na Meng

Sept 21, 2018

Blacksburg, Virginia

Keywords: Symbolic execution, Concurrent software, Predicate summary, Incremental execution,

Programmable logic controller, Cache timing leak

Copyright 2019, Shengjian Guo

Efficient Symbolic Execution of Concurrent Software

Shengjian Guo

ABSTRACT

Concurrent software has been widely utilizing in computer systems owing to the highly efficient

computation. However, testing and verifying concurrent software remain challenging tasks. This

matter is not only because of the non-deterministic thread interferences which are hard to reason

about but also because of the large state space due to the simultaneous path and interleaving explo-

sions. That is, the number of program paths in each thread may be exponential in the number of

branch conditions, and also, the number of thread interleavings may be exponential in the number

of concurrent operations. This dissertation presents a set of new methods, built upon symbolic ex-

ecution, a program analysis technique that systematically explores program state space, for testing

concurrent programs. By modeling both functional and non-functional properties of the programs

as assertions, these new methods efficiently analyze the viable behaviors of the given concurrent

programs. The first method is assertion guided symbolic execution, a state space reduction tech-

nique that identifies and eliminates redundant executions w.r.t the explored interleavings. The sec-

ond method is incremental symbolic execution, which generates test inputs only for the influenced

program behaviors by the small code changes between two program versions. The third method is

SYMPLC, a technique with domain-specific reduction strategies for generating tests for the mul-

titasking Programmable Logic Controller (PLC) programs written in languages specified by the

IEC 61131-3 standard. The last method is adversarial symbolic execution, a technique for detect-

ing concurrency related side-channel information leaks by analyzing the cache timing behaviors of

a concurrent program in symbolic execution. This dissertation evaluates the proposed methods on

a diverse set of both synthesized programs and real-world applications. The experimental results

show that these techniques can significantly outperform state-of-the-art symbolic execution tools

for concurrent software.

Efficient Symbolic Execution of Concurrent Software

Shengjian Guo

GENERAL AUDIENCE ABSTRACT

Software testing is a technique that runs software as a black-box on computer hardware multiple

times, with different inputs per run, to test if the software behavior conforms to the designed func-

tionality by developers. Nowadays, programmers have been increasingly developing multithreaded

and multitasking software, e.g., web browser and web server, to utilize the highly efficient multi-

processor hardware. This approach significantly improves the software performance since a large

computing job can now decompose to a set of small jobs which can then distribute to concur-

rently running threads (tasks). However, testing multithreaded (multitask) software is extremely

challenging. The most critical problem is the inherent non-determinism. Typically, executing se-

quential software with the same input data always results in the same output. However, running

a multithreaded (multitask) software multiple times, even under the same input data, may yield

different output in each run. The root reason is that concurrent threads (tasks) may interleave

their running progress at any time; thus the internal software execution order may be altered unex-

pectedly, causing runtime errors. Meanwhile, finding such faults is difficult, since the number of

all possible interleavings can be exponentially growing in the number of concurrent thread (task)

operations. This dissertation proposes four methods to test multithreaded/multitask software effi-

ciently. The first method summarizes the already-tested program behaviors to avoid future testing

runs that cannot lead to new faults. The second method only tests program behaviors that are

impacted by program changes. The third method tests multitask Programmable Logic Controller

(PLC) programs by excluding infeasible testing runs w.r.t the PLC semantics. The last method tests

non-functional program properties by systematic concurrency analysis. This dissertation evaluates

these methods upon a diverse set of benchmarks. The experimental results show that the proposed

methods significantly outperform state-of-the-art techniques for concurrent software analysis.

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background . 1

1.2 Contributions . 3

1.3 Organization . 4

2 Preliminaries 5

2.1 Concurrent Programs . 5

2.2 Generalized Interleaving Graph (GIG) . 7

2.3 Baseline Symbolic Execution . 9

3 Assertion Guided Symbolic Execution 13

3.1 Introduction . 14

3.2 Motivation . 17

3.3 Summarizing the Explored Executions . 21

3.3.1 Computing Predicate Summary at b-PP Nodes 23

3.3.2 Computing Predicate Summary at i-PP Nodes 24

iv

3.4 Pruning the Redundant Executions . 26

3.4.1 Assertion Guided Pruning . 27

3.4.2 Interaction with DPOR . 28

3.4.3 Proof of Correctness . 30

3.5 Optimizations . 31

3.5.1 Leveraging Static Program Slicing . 31

3.5.2 Approximating the Summary Constraints 33

3.6 Evaluation . 34

3.7 Conclusion . 38

4 Incremental Symbolic Execution 39

4.1 Introduction . 41

4.2 Motivation . 44

4.2.1 Pruning with Change-Impact Analysis . 44

4.2.2 Pruning with Execution Summary . 46

4.3 The Incremental Approach . 48

4.3.1 The Overall Algorithm . 48

4.3.2 Change-Impact Analysis . 50

4.3.3 Redundant Path Pruning . 55

4.4 Evaluation . 59

4.4.1 Subjects and Methodology . 60

4.4.2 Experimental Results . 61

4.4.3 Threats to Validity . 65

4.5 Conclusion . 65

5 Symbolic Execution of PLC Code 67

5.1 Introduction . 68

v

5.2 Motivation . 71

5.2.1 Single-task PLC Programs . 71

5.2.2 Multi-task PLC Programs . 73

5.3 Modeling PLC Program Semantics . 76

5.3.1 Translating PLC Tasks to C . 76

5.3.2 Constructing the Test Harness . 78

5.4 Symbolic Execution Phase . 79

5.4.1 Multithreaded C Model for PLC . 79

5.4.2 Overall Algorithm . 81

5.5 PLC-specific Reductions . 83

5.5.1 Priority-based Reduction . 83

5.5.2 Period-based Reduction . 87

5.5.3 Stateful Exploration . 90

5.6 Evaluation . 91

5.6.1 Subjects and Methodology . 91

5.6.2 Results on Single-task PLC Applications 93

5.6.3 Results on Multi-task PLC Applications 95

5.7 Conclusion . 98

6 Adversarial Symbolic Execution 99

6.1 Introduction . 100

6.2 Motivation . 102

6.2.1 A Self-leaking Program and the Repair 103

6.2.2 New Leak Induced by Concurrency . 104

6.2.3 Adversarial Symbolic Execution . 106

6.3 The Threat Model . 107

vi

6.3.1 Cache and the Timing Side Channels . 107

6.3.2 Example of an Attack . 109

6.4 Adversarial Symbolic Execution . 112

6.4.1 The Baseline Algorithm . 112

6.4.2 Enhanced Algorithm . 113

6.5 Adversarial Cache Analysis . 115

6.5.1 Cache Modeling . 115

6.5.2 Leakage Detection . 117

6.5.3 The Running Example . 118

6.6 Optimizations . 119

6.6.1 Domain-specific Reduction . 120

6.6.2 Layout-directed Reduction . 121

6.7 Evaluation . 121

6.7.1 Subjects and Methodology . 122

6.7.2 Results Obtained with Fixed Addresses 124

6.7.3 Results Obtained with Symbolic Addresses 125

6.7.4 Discussion . 127

6.8 Conclusion . 128

7 Conclusions 129

Bibliography 131

vii

List of Figures

2.1 A two-threaded program and its generalized interleaving graph (GIG). 8

3.1 The AGSE (Assertion Guided Symbolic Execution) method. 14

3.2 Our new method only explores one full run and four partial runs. 18

3.3 AGSE reduces the number of executions from 2k down to (k + 1). 21

3.4 Example for static program slicing computation. 31

3.5 Using Type A and B nodes outside the slice. 31

3.6 Scatter plots comparing AGSE with Cloud9. 37

3.7 Scatter plots comparing AGSE with DPOR. 37

3.8 Parameterized results for reorder2false benchmark. 38

4.1 The summary based incremental symbolic execution. 41

4.2 Example: Old version(left) and new version (right). 44

4.3 Interleaved executions of the program: π1, . . . , π6. 45

4.4 Executions explored by incremental symbolic execution (with POR). 45

4.5 Not all four paths need to be re-explored though all instructions are impacted. . . . 47

4.6 Example for false data-dependencies across threads. 54

4.7 The WBS example taken from DiSE [100]. 57

4.8 SCIA (new) versus standard symbolic execution. 63

viii

4.9 SCIA (new) versus DPOR-only symbolic execution. 63

4.10 Comparing CIA versus SCIA. 64

5.1 The overall flow of SYMPLC. 69

5.2 Three implementations of the PLC Responder in ST. 72

5.3 A Multi-task PLC Program in Structured Text. 74

5.4 The task interleaving that fails the assertion. 75

5.5 The Multithreaded C Model of the ST Program. 77

5.6 The control flow graph of the modified program. 86

5.7 Three periodic tasks with a hyper-period of 600ms. 88

6.1 Flow of the cache timing leak detector SYMSC. 101

6.2 A program with cache-timing leak (cf. [30]). 103

6.3 The direct-mapped cache layout (cf. [30]). 103

6.4 Concurrent program with side-channel leak. 105

6.5 Interleaving 6-9-13-11 and the cache layout. 106

6.6 A two-threaded encryption program. 109

6.7 Concurrency-related code in HPN-SSH [5]. 111

6.8 The three interleavings generated by SYMSC. 115

6.9 Example code for accessing S-Box lookup tables. 120

ix

List of Tables

3.1 The weakeast precondicion computation along a program path. 23

3.2 Applying various reduction techniques to Figure 2.1. 28

3.3 Summary of the experimental results. 35

4.1 Comparing the paths explored by DiSE and Conc-iSE. 57

4.2 Execution summaries computed for P in Conc-iSE. 58

4.3 Experimental results of concurrent benchmarks. 62

5.1 Explored interleavings with priority-based reduction. 87

5.2 Results of SYMPLC on single-task PLC programs. 94

5.3 Results of SYMPLC on multi-task PLC programs. 96

5.4 Results of comparing different reduction techniques. 97

6.1 Interleavings and thread T1’s cache sequences. 105

6.2 Cache-related information of interleaving p. 118

6.3 Benchmark statistics . 123

6.4 Results of leak detection with fixed addresses. 124

6.5 Results of leak detection with symbolic addresses. 126

x

Chapter 1

Introduction

1.1 Background

Reasoning about the runtime behaviors of concurrent software has always been a challenging

task [52, 67, 83, 114]. It is not only because of the large state space within each thread but also

because of the nondeterministic interactions among concurrent threads. In software testing, for ex-

ample, testers have to carefully generate a set of test inputs that can cover as many as possible the

paths in each thread and the interleavings of these concurrently running threads [35, 66, 131, 132].

However, direct construction of these data inputs is impractical because the number of the program

paths may be exponential in the number of branch conditions. Furthermore, under the same data

input, a program may exhibit different behaviors concerning how the concurrent threads interfere

with each other. In the worst case, the number of interleavings can also be exponential in the num-

ber of concurrent operations. Hence, due to the simultaneous program path explosion and thread

interleaving explosion, an exhaustive enumeration of all possible behaviors of concurrent software

is always unrealistic.

1

2 CHAPTER 1. INTRODUCTION

Symbolic execution is a program analysis and testing method first proposed in the 1970s [39, 74].

It has attracted considerable attentions in recent years due to the rapid progress of modern SAT

(Satisfiability) and SMT (Satisfiability Modulo Theory) Solving techniques [41]. Indeed, the past

decade has witnessed exciting advances in symbolic execution related techniques for both sequen-

tial [22, 24, 58, 59, 98, 110, 111, 112, 118, 120] and concurrent software [14, 38, 48, 72, 104].

The main strengths of these techniques include precise modeling of the program semantics, sys-

tematic state space exploration, and automated test input generation. However, existing methods

are still limited in their capabilities of mitigating state space explosion, especially for concurrent

software.

Moreover, software updates from the patches or augment of new features may introduce new bugs

to the existing code base. While existing regression testing tools attempt to address this problem,

e.g., by leveraging the changes between two program versions to reduce the testing cost of the

new version [70, 117, 133], they primarily focused on test selection or prioritization as opposed

to generating new test cases. In this context, symbolic execution is a practical solution to the test

generation problem. However, although recent works [100, 106, 127] have leveraged symbolic ex-

ecution in regression testing to reduce the test generation cost for sequential software, they cannot

directly apply to concurrent software.

Apart from multithreaded programs, there also exists multi-task concurrent software, e.g., the Pro-

grammable Logic Controller (PLC) software [71]. The interleaved execution of PLCs’ multiple

tasks engenders complex behaviors that are difficult to analyze in existing PLC verification meth-

ods [7, 15, 16, 40, 80, 95, 96]. Thus, an automated testing tool based on symbolic execution

could greatly benefit PLC software testing. However, the difference between PLCs’ priority-based

scheduling scheme and the classic thread scheduling scheme pose significant challenges to tradi-

tional symbolic execution methods. Furthermore, such symbolic execution tool has to deal with

the periodic and non-terminating semantics of each task in a PLC system.

1.2. CONTRIBUTIONS 3

Besides testing program functional properties, symbolic execution based methods can also model

and analyze the non-functional properties, such as the existence of information leakage through

side channels [19, 28, 29?]. For example, if symbolic execution technique can generate different

values of sensitive inputs (e.g., cryptographic key or security token) that cause program execution

timing variance, then the program is considered to have cache timing side-channel leaks. Recent

works [12, 19, 28, 29, 99, 101, 123?] have applied symbolic execution to detecting side-channel

leaks, but they primarily focused on self-leaks in sequential programs. However, a program that is

leak-free when running alone may still have leaks when interleaved with other threads. And there

lacks a symbolic execution method that targets analyzing such scenario.

1.2 Contributions

In this dissertation, I develop a set of new symbolic execution based methods for concurrent soft-

ware, to address the challenging problems outlined in section 1.1.

First, I develop a new redundancy removal technique, named Assertion Guided Symbolic Execu-

tion, to reduce the overhead of symbolic execution by identifying the program paths and thread

interleavings that have been explored previously and skipping them during the subsequent explo-

ration if necessary.

Second, I develop a summary-based incremental symbolic execution method, named Conc-iSE, to

leverages code changes between two closely related program versions to prune away redundant

paths and interleavings during the execution of the new program version. Conc-iSE allows sym-

bolic execution to explore only new program behaviors introduced by code changes.

Third, I develop a symbolic execution based method, named SYMPLC, for automatically testing

4 CHAPTER 1. INTRODUCTION

PLC software written in languages specified by the IEC 61131-3 standard. I also develop PLC-

specific reductions for eliminating redundant interleavings thus effectively reducing the interleav-

ing search space.

Fourth, I develop SYMSC, an Adversarial Symbolic Execution method for detecting cache timing

leaks, or proving their absences, in concurrent software. SYMSC shows that timing-leak-freedom

is not a compositional property: a program that is not leaky when running alone may become leaky

when interleaved with other threads.

1.3 Organization

In Chapter 2, I establish the notations and provide the technical background.

In Chapter 3, I present Assertion Guided Symbolic Execution for multithreaded C programs.

In Chapter 4, I present Incremental Symbolic Execution for multithreaded software written in C.

In Chapter 5, I present SYMPLC, the symbolic execution based testing tool for PLC software code,

together with three PLC-specific techniques.

In Chapter 6, I present SYMSC, the Adversarial Symbolic Execution method which targets detect-

ing the cache timing side-channel leaks that manifest in concurrent program executions.

Finally, I conclude this dissertation in Chapter 7.

Chapter 2

Preliminaries

In this chapter, I establish the formal notations of a concurrent program and the baseline symbolic

execution algorithm for it. In addition, I also define a generalized interleaving graph to present

possible executions of a concurrent program. The concepts and annotations introduced in this

chapter will be used throughout the following chapters.

2.1 Concurrent Programs

For ease of presentation, here I consider a simple imperative language with integer variables, as-

signments, and if-else statements only. This approach elides the details for handling of complex

language features such as pointers, recursion, and system calls in symbolic execution since these

are orthogonal issues addressed previously by many symbolic execution tools [22, 38]. A multi-

threaded program P consists of a set of threads {T1 . . . Tm}, where each thread, Ti, can be viewed

as a sequential procedure. All threads share the same set of global variables SVar while individual

thread maintains a set of thread-local variables LVar i.

5

6 CHAPTER 2. PRELIMINARIES

Let st be an instruction in a thread with the thread index tid. Let event e = 〈tid, l, st, l′〉 be

an execution instance of st, where l and l′ represent the locations before and after executing the

instance of st in the thread tid. If the same instruction is executed more than once, e.g., st is inside

a recursive function call or in a loop, the execution makes copies of l, st, l′ to make unique for each

event. Conceptually, this corresponds to unrolling loops and recursive calls. A global control state

(GCS) of the multithreaded program is a tuple s = 〈l1, . . . , lm〉, where each li is a location in Ti. A

global control state represents an abstract state implicitly containing all concrete states that have

the same thread locations but potentially different values of the local and global variables.

Properties of interest are represented by assertions. Here I assume that every assertion in the form

assert(c) is transformed to if(!c)abort. I also define an event named abort to represent the faulty

program termination and another event named halt to represent the normal program termination.

Let vl denote a local variable, vg denote a global variable, cond l denote a local condition, and

expl denote an local expression. In addition to abort and halt, each instruction st in an event may

correspond to one of the following three types:

• α-operation, which is a local assignment operation vl := expl;

• β-operation, which is a local branch assume(cond l);

• γ-operation, which is a global operation defined as follows:

– γ-I is a global write vg := expl or read vl := vg;

– γ-II is a thread synchronization operations.

For each if(c)-else statement, the execution use assume(c) to denote the then-branch, and assume(¬c)

to denote the else-branch. Without loss of generality, the execution assumes that all if-else condi-

tions use only local variables or local copies of global variables [55]. Hence global operations (γ)

directly affect the thread interleaving order, while β-operations directly affect the path taken by

each thread. α-operations, on the other hand, do not directly affect the selection of any program

2.2. GENERALIZED INTERLEAVING GRAPH (GIG) 7

path or thread interleaving.

For thread synchronizations, I focus on mutex locks and condition variables since they are fre-

quently used in mainstream multithreaded programming environments such as C, C++, and Java.

Specifically, I consider the following types of γ-II operations: thread creation, thread join, lock,

unlock, signal, and wait. If other thread synchronizations or blocking operations are used they can

be modeled similarly as γ-II events.

During the execution of the program, γ-operations are the thread interleaving points whereas β-

operations are thread-local branching points. Both contribute to the path and interleaving explosion.

In contrast, α-operations are local and thus invisible to other threads; they do not contribute directly

to the path and interleaving explosion.

A concrete execution of the multithreaded program is characterized by π = (in, sch), where in

is the data input and sch is the thread schedule corresponding to the total order of events e1 . . . en.

Its homologous symbolic execution can be denoted by (∗, sch), where the symbol ∗ indicates the

data input is kept symbolic and thus may take any value. Each execution of the program P can be

represented by a finite word {α, β, γ}∗{halt, abort}. If the execution ends with halt it is a normal

execution. If the execution ends with abort it is a faulty execution.

2.2 Generalized Interleaving Graph (GIG)

The set of all possible executions of a multithreaded program can be captured by a generalized

interleaving graph (GIG), in which the nodes denote global control states and the edges denote

events. The root node corresponds to the initial symbolic state. The leaf nodes correspond to

normal or faulty ends of the execution. Each internal node may have:

8 CHAPTER 2. PRELIMINARIES

a1: a=x++;

a2: if(a==0) A1;

else A1;

a3: a=y++;

a4: if(a==0) A2;

else A2;

a5:
--- [T1] ---

b1: b=x++;

b2: if(b==0) B1;

else B1;

b3: b=y++;

b4: if(b==0) B2;

else B2;

b5:
--- [T2] ---

{a3, b4}

{a3, b5}

{a1, b1}

{a3, b1}

{a5, b1}

{a1, b3}

{a3, b3} {a1, b5}

{a5, b3}

{a5, b5}

A1A2
B1

A1

B1

B1

B1

B2

B1

B1

B1

A1

A1

A1

A2

A2

A2

A2

A1

{a2, b1}

{a4, b1}

B1

B2

run-iirun-i run-iii

A2

{a5, b2}

{a5, b4}

B1

B1

{a1, b2}

{a1, b4}

{a2, b5}

{a4, b5}

{a3, b2}

{a4, b3}

Figure 2.1: A two-threaded program and its generalized interleaving graph (GIG).

• one outgoing edge corresponding to an α-operation;

• two outgoing edges corresponding to a β-operation; or

• k outgoing edges where k ≥ 2 is the number of enabled γ-operations from different threads.

A node with two or more outgoing edges is a pivot point.

• If the pivot point corresponds to β-operations then it is a branching pivot point (b-PP).

• If the pivot point corresponds to γ-operations then it is a thread interleaving pivot point

(i-PP).

Figure 2.1 shows an example program and its GIG where black edges represent events from thread

T1 and blue edges represent events from thread T2. For simplicity, here I assume that a=x++ is

atomic on the execution platform. The root node (a1, b1) corresponds to the starting points of the

2.3. BASELINE SYMBOLIC EXECUTION 9

two threads. The terminal node (a5, b5) corresponds to the end of the two threads. Nodes such

as (a1, b1) are i-PP nodes, where the program execution can run either thread 1 which leads to

(a2, b1), or thread 2 which leads to (a1, b2). In contrast, nodes such as (a2, b1) are b-PP nodes,

where the execution can take either the assume(a = 0) branch, leading to the code segment A1, or the

assume(a 6= 0) branch, leading to the code segment A1.

Note that the GIG does not have loop-back edges since the GIG paths represent unrolled executions.

Furthermore, pointers, aliasing, and function calls have been resolved as well during execution.

However, a GIG may have branches, which makes it significantly different from the typical thread

interleaving graph used in the partial order reduction literature.

As is typical in symbolic execution algorithms, here I focus on only a finite set of executions and

assume that each execution has a finite length. Typically, the user of a symbolic execution tool

needs to construct a proper testing environment that satisfies the above assumption. In KLEE [22]

and Cloud9 [38], for example, the user may achieve this by bounding the size of the symbolic input

thereby restricting the execution to a fixed number of paths of finite lengths.

2.3 Baseline Symbolic Execution

Following the majority of prior works on symbolic execution, I assume that the given program is

terminating and each program execution has a finite length. I also assume the program is determin-

istic, i.e., the sequence of the instructions will be completely determined by (in, sch), where in is

the data input and sch is the thread schedule. Therefore, (in, sch) represents a concrete execution.

In contrast, π = (∗, sch) represents a symbolic execution where ∗ is the symbolic data input and

sch = e1 . . . en is an order of the executed events. Algorithm 1 presents the baseline symbolic

execution procedure for multithreaded programs following the prio works such as [38, 107, 108].

10 CHAPTER 2. PRELIMINARIES

The recursive procedure Explore is invoked with the symbolic initial state s0. Inside the procedure,

the algorithm differentiates among three scenarios based on whether s, the current state, is an i-PP

node, a b-PP node, or a internal computation node.

If s is an i-PP node where multiple γ-operations are enabled, the algorithm recursively explores

the next γ event from each thread. If s is a b-PP node where multiple sequential branches are

feasible, the algorithm recursively explores each branch. If s is a non-branching node, the algo-

rithm explores the next event. The current execution ends if s is a leaf node (normal_end_state,

faulty_end_state) or an infeasible_state, at which point the algorithm returns from Explore(s) by

popping the state s from the stack S.

Each state s ∈ S is a tuple 〈pcon,M, enabled , branch, done〉, where pcon is the path condition

for the execution to reach s from s0, M is the symbolic memory map, s.enabled is the set of

γ-events when s is an i-PP node, s.branch is the set of β-events when s is a b-PP node, and

s.done is the set of α or β events already explored from s by the recursive procedure. Initially, s0

is set to 〈true,Minit〉, where true means the state is always reachable and Minit represents the

initial content of the memory. The execution of each instruction t is performed by the procedure

NextSymbolicState as follows:

• If t is halt, the execution ends normally.

• If t is abort, and s.pcon is satisfiable under the current memory map s.M, the execution has

found an error.

• If t is v:=exp, the execution changes the current symbolic memory M by updating v’s

content to exp.

• If t is assume(c), the execution updates the path condition to (pcon ∧ c).

At each pivot point (i-PP or b-PP), the baseline algorithm tres to flip a decision made previously

to compute a new execution. Let (in, sch) denote the current execution. By flipping the decision

2.3. BASELINE SYMBOLIC EXECUTION 11

Algorithm 1: Baseline Symbolic Execution Procedure.
1 Initially: State stack S = ∅; Start Explore(s0) with the symbolic state s0.

2 Explore(State s)
3 begin
4 S.push(s);
5 if s is a b-PP node then
6 while ∃t ∈ s.branch\s.done do
7 Explore(NextSymbolicState(s, t)); // β event
8 s.done← s.done ∪ {t};
9 end

10 else if s is an i-PP node then
11 while ∃t ∈ s.enabled\s.done do
12 Explore(NextSymbolicState(s, t)); // γ event (enhanced)
13 s.done← s.done ∪ {t};
14 end

15 else if s is other sequential computation node then
16 Explore(NextSymbolicState(s, s.crt)); // α event
17 else
18 // end of execution
19 end
20 S.pop();
21 end

22 NextSymbolicState(State s, Event t)
23 begin
24 let s = 〈pcon,M, enabled, branch, done〉;
25 if t is halt then
26 s′ ← normal_end_state;
27 else if t is abort then
28 s′← faulty_end_state;
29 else if t is assignment v := exp then
30 s′← 〈pcon,M[v 7→ exp]〉;
31 else if t is assume(c) andM[pcon ∧ c] is satisfiable then
32 s′← 〈pcon ∧ c,M〉;
33 else
34 s′← infeasible_state;
35 end
36 return s′;
37 end

made previously at an i-PP node, the algorithm computes a new execution (in, sch ′), where sch ′ is

a permutation of the original thread schedule. In contrast, by flipping the decision made previously

at a b-PP node, the algorithm computes a new execution (in ′, sch), where in ′ is a new data input.

Note that in both cases, the newly computed execution will be the same as the original execution

up to the flipped pivot point. After the flipping, the rest of the execution will be a free run.

As an example, consider the GIG in Figure 2.1, where the current execution is represented by the

12 CHAPTER 2. PRELIMINARIES

dotted line run-i. Flipping at the b-PP node (a4, b3) would lead to the new execution labeled run-ii,

whereas flipping at the i-PP node (a3, b3) would lead to the new execution run-iii.

Chapter 3

Assertion Guided Symbolic Execution

New developments on symbolic execution [39, 74] have applied to both sequential [22, 24, 56, 58,

59, 98, 109, 118] and concurrent programs [14, 48, 104, 107, 108] in existing works. However,

these methods are still limited on the problem of state space explosion. That is, the number of

execution paths within each thread may be exponential in the number of branch conditions, and

the number of thread interleavings may be exponential in the number of concurrent operationsi in

different threads. Many techniques have been proposed to address this problem, including the use

of function summaries [57], interpolation [69, 89, 130], static analysis [17], heuristic exploration

[85], and coverage metrics [21, 48].

Assertions can be leveraged to model various program properties, ranging from logic and numer-

ical errors to memory safety and concurrency errors, and has been the focus of many software

verification projects. When semantic errors of the program are modeled as code reachability, i.e.,

the reachability of a bad state guarded by the assertion condition, we can concentrate on exploring

potentially failure-inducing executions as opposed to all feasible executions of the program. This

approach is particularly attractive in the presence of concurrency, since it becomes possible to uni-

13

14 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

formly handle the exploration of both intra-thread execution paths and inter-thread interleavings

leading to a simple but more powerful analysis algorithm.

In this chapter, I develop a new and complementary method, named AGSE (Assertion Guided

Symbolic Execution), which is specifically for pruning redundant executions in multithreaded pro-

grams where the properties under verification are expressed as assertions. This method focuses on

identifying and eliminating executions that are guaranteed to be redundant for checking assertions.

3.1 Introduction

Initial
Test Input

Symbolic
Execution

(in, sch)

Flip i-PP?

yes

(in, sch ′)

no
Flip b-PP?

yes

(in ′, sch)

no
End

Computing
Summary

Pruning
Executions

Static Slicing

Figure 3.1: The AGSE (Assertion Guided Symbolic Execution) method.

Figure 3.1 illustrates the overall flow of AGSE. The shaded block represents the new addition,

and the remainder illustrates the baseline symbolic execution procedure for multithreaded pro-

grams [107, 108]. Specifically, given a program P and some symbolic input variables, the proce-

dure explores feasible executions of the program systematically, e.g., in depth-first search order.

Starting with an initial test (in, sch) consisting of program inputs and thread schedule, the baseline

method first produces a concrete execution followed by a symbolic trace. Then, it tries to generate

3.1. INTRODUCTION 15

a new test by flipping a prior decision at either a thread interleaving pivot point (i-PP) or a local

branch pivot point (b-PP). The new test is denoted by either (in, sch ′) or (in ′, sch), depending

on whether changes are made to the thread schedule (sch ′) or data input (in ′), respectively. The

iterative procedure terminates when no new test can be generated. State explosion occurs because

it has to explore the combined space of data inputs and thread schedules where each execution may

be unique, i.e., it leads to a different program state.

AGSE extends the baseline symbolic execution procedure by adding a new constraint-based prun-

ing block shown in Figure 3.1. This new approach centers around the idea of summarizing the

reasons why the bad state is unreachable via previously explored executions, and leveraging such

information to avoid similarly futile executions. Specifically, at each global control location n,

AGSE uses a predicate summary (PS) constraint to capture the weakest preconditions [44] of the

assertion condition along all explored executions starting from n. Therefore, PS[n] captures the

reason why prior executions are not able to violate the assertion. Whenever symbolic state n is

reached again through another execution path, AGSE checks if the new path condition is subsumed

by PS[n]. If so, AGSE can safely backtrack from n since extending the execution beyond n would

never lead to a bad state.

In both cases, the primary technical challenge is to ensure the overall algorithm remains sound in

the presence of such optimizations. I have implemented AGSE in Cloud9 [38], a state-of-the-art

symbolic execution tool built upon LLVM and KLEE [22], to handle multithreaded C programs.

I have also implemented heuristic based minimizations of predicate summary constraints during

symbolic execution to reduce the computational overhead. Further, I have evaluated AGSE on a

number of standard multithreaded C applications. The results show that AGSE can reduce the

number of testing executions as well as the overall run time significantly.

AGSE’s pruning of redundant executions can be viewed as a way of systematically exploring an

16 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

abstract search space defined by a set of predicates [11] which, in this case, are extracted from the

assertion. Although the concrete search space may be arbitrarily large, the abstract search space

can be significantly smaller. In this sense, our method is similar to predicate abstraction [60] in

model checking except that the latter requires constructing a priori a finite-state model from the

actual software code whereas our method directly works on the software code while leveraging the

predicates to eliminate redundant executions.

AGSE is complementary to standard partial order reduction (POR) techniques in that it relies on

property-specific information to reduce the state space. However, POR techniques typically do

not target particular states. Experiments show that AGSE can indeed eliminate a different class

of redundant executions from those eliminated by state-of-the-art dynamic partial order reduction

(DPOR) [50] method. Toward this end, since DPOR is an elegant but delicate algorithm that can

easily be made unsound without taking great care in the implementation [129], a main technical

challenge in AGSE is to make sure the new pruning technique does not interfere with DPOR or

make it less effective.

AGSE differs from the prior works by Wachter et al. [122], and Chu and Jaffar [36], which extended

the well-known framework of lazy abstraction with interpolants by McMillan [89] to multithreaded

programs. One main difference is that the computation of predicate summaries is significantly

more general than existing methods, especially at the thread interleaving pivot points, where AGSE

merge summaries from multiple execution paths to form a combined summary. Another main

difference is in the integration of property specific pruning with partial order reduction. Kahlon

et al. [73] implemented a variant of the symbolic partial order reduction algorithm whereas AGSE

integrates the predicate summary-based pruning method with the more scalable DPOR algorithm.

To sum up, I make the following contributions:

• I propose an Assertion Guided Symbolic Execution method to identify and eliminate redun-

3.2. MOTIVATION 17

dant executions in multithreaded programs to reduce the overall computational cost.

• I implement the method in a state-of-the-art symbolic execution tool while ensuring it does

not interfere with the popular DPOR algorithm or make it less effective.

• I demonstrate through experiments that the new method can indeed achieve a significant

performance improvement on public benchmarks.

3.2 Motivation

In this section, I illustrate the high-level ideas in AGSE with examples.

Consider the example in Figure 3.2, which has two threads T1 and T2, two local variables a and b,

and a global variable x. The initial value of x is a symbolic input which can be any integer value.

The purpose is to check if the assertion fails and, if so, compute a failure-inducing test input.

The program has six distinct executions, each leading to a different final state defined by the values

of a and b. According to the theory of partial order reduction [50], they belong to six different

equivalence classes [88], as each has a different final state. However, exploring all six executions

is not necessary for the purpose of checking the assertion, since some of these executions share

the same reason why they cannot reach the bad state. AGSE can reduce the exploration from six

executions to one full execution together with four partial executions, as illustrated by the red

dotted lines in Figure 3.2.

AGSE first extracts a set of predicates by computing the weakest preconditions of the assertion

condition along the explored executions. These predicates are then combined at the merge points

(in the graph) to form a succinct summary that captures the reason why the bad state has not been

reached via executions starting from these merge points. During subsequent symbolic execution it-

18 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

x = symbolic(V);

if(x>10) return;

----[T1]------------------------[T2]----

x = 10; a = x;

x = 20; b = x;

--

assert(a<=b)

(x ≤ 10)

a = x;

a = x;

n1

n2

n4

n7

n5

n3

n6

n8

n9

a = x;

x = 20;

x = 10;

x = 10;

x = 20;b = x;

b = x;

b = x;

x = 10;

x = 20;

run#1

run#2

run#3

run#4

run#6

(a ≤ b)

Run 1: if(x<=10)x=10;x=20;a=x;b=x; leads to (a=20,b=20).
Run 2: if(x<=10)x=10;a=x;x=20;b=x; leads to (a=10,b=20).
Run 3: if(x<=10)x=10;a=x;b=x;x=20; leads to (a=10,b=10).
Run 4: if(x<=10)a=x;x=10;x=20;b=x; leads to (a=V ,b=20).
Run 5: if(x<=10)a=x;x=10;b=x;x=20; leads to (a=V ,b=10).
Run 6: if(x<=10)a=x;b=x;x=10;x=20; leads to (a=V ,b=V).

a = x;n1

n2

n4

n3

n6

b = x;

x = 10;

x = 20;

n5

n7 n7 n7 n8 n8

x = 10;

n8

x = 10;

n5

a = x;

a = x;

b = x;
b = x;x = 20;

b = x;b = x;

x = 20;

(x ≤ 10)

x = 20;
b = x;

x = 20; x = 20;
n9

(a ≤ b)

n9 n9 n9 n9 n9

(a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b)

Figure 3.2: Our new method only explores one full run and four partial runs.

erations, AGSE needs to explore only those executions that have not be covered by these predicates,

thereby leading to a sound reduction of the search space.

Now, I provide a step-by-step explanation of how AGSE works on this example:

• Run 1 is the first and only execution fully explored by AGSE, which goes through nodes

n1, n2, n4, n7 in the graph in Figure 3.2 before executing b=x;if(a<=b). Since it does not

violation the assertion, AGSE summarizes the reason at n9 and n7, respectively, as follows:

3.2. MOTIVATION 19

PS[n9] = (a ≤ b) and PS[n7] = (a ≤ x). That is, as long as (a ≤ x) holds at node n7, it

would be impossible for the execution to reach the bad state.

• Run 2 goes through nodes n1, n2, n5 before reaching n7, where its new path condition is

pcon[n7] = (V ≤ 10) and symbolic memory isM =(a=10,x=20). Since pcon[n7]→ PS[n7]

under M, meaning the set of reachable states falls inside PS[n7], continuing the current

execution from n7 would never lead to a bad state. Therefore, AGSE skips the remainder of

this execution.

• Run 3 goes through nodes n1, n2, n5, n8 before reaching n9, where its path condition again

falls within PS[n9]. AGSE skips the remainder of this execution and updates the summary at

n8 and n5 as follows: PS[n8] = (a ≤ b) and PS[n5] = wp[n7]∧wp[n8] = (a ≤ 20)∧(a ≤ x).

By conjoining the weakest preconditions along both interleavings n5 → n7 and n5 → n8,

AGSE captures the summary common to both interleavings.

• Run 4 goes through nodes n1, n3 before reaching n5, with the new path condition pcon[n5] =

(V ≤ 10) and symbolic memory M =(a=V,x=10). Since pcon[n5] → PS[n5] under M,

AGSE skips the remainder of this execution, which would have led to Run 4 and Run 5 if it

is allowed to continue.

• Run 6 goes through nodes n1, n3, n6 before reaching n8, where the new path condition falls

within PS[n8]. Therefore, AGSE skips the remainder of this execution.

• At this moment, AGSE has completed the exploration.

Note that AGSE conjoins weakest preconditions from different interleavings at i-PP nodes such

as n5, but unions weakest preconditions from different thread-local paths at b-PP nodes (see Sec-

tion 3.3.) Also, note that the amount of reduction achieved by AGSE depends on the program

structure as well as the location of the assertion. For example, if if(x>10) changes to if(x>11),

AGSE would have to explore Run 5 instead of skipping it because pcon[n5] = (V ≤ 11) would no

longer be subsumed by PS[n5] = (V ≤ 10).

20 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

The running example demonstrates that AGSE differs from standard partial order reduction tech-

niques such as DPOR [50] which could not prune away any of the six interleavings. Furthermore,

AGSE also differs from the stateful state space exploration techniques commonly used in model

checking [62, 65, 121], which record the forward reachable states explicitly during exploration to

prevent visiting them again. Such methods would not be effective for the example in Figure 3.2

either because each of the six executions leads to a distinct state. In contrast, AGSE achieves a

significant reduction due to the guidance of property specific information. In this sense, AGSE is a

property directed reduction, whereas the aforementioned POR techniques are property agnostic.

However, it can be tricky to combine AGSE’s pruning method with the state-of-the-art DPOR

algorithm. The main advantage of DPOR over static POR techniques lies in its dynamic update

of backtrack sets, which uses runtime information to compute the dependency relation between

shared variable accesses. Without taking any additional measure, pruning redundant executions

may interfere with the dynamic update of backtrack sets in DPOR. Consider run 4 in Figure 3.2

as an example. If the execution is allowed to complete, when b=x is executed, thread T2 will be

added to the backtrack set of node n3. However, if run 4 is terminated pre-maturely at node n5 due

to AGSE’s predicate summary-based pruning, thread T2 would not be added to the backtrack set

of node n3 since b=x has been skipped. As a result, the DPOR algorithm would not explore run 6.

Therefore, integrating DPOR with property specific pruning is a challenging task. AGSE’s solution

to this problem is in Section 3.4.2.

AGSE’s computation of predicate summaries at the thread interleaving merge point n5 in Figure 3.2

shows that it is different from the prior work by Wachter et al. [122], and Chu and Jaffar [36].

Specifically, AGSE combines the summaries from all outgoing edges by conjoining them together,

whereas existing methods do not merge interpolants at these i-PP nodes. Furthermore, AGSE

differs from these existing methods in that they both implemented a symbolic POR whereas AGSE

integrates the more scalable DPOR algorithm.

3.3. SUMMARIZING THE EXPLORED EXECUTIONS 21

x = y = z = 1;

---[T1]--------------[T2]---

a = x; x = 10;

assert(a>0)

---[T1]-------------[T3]----

b = y; y = 10;

assert(b>0)

---[T1]-------------[T4]----

c = z; z = 10;

assert(c>0)

x = y = z = 1;

(b > 0)

(a > 0)

(c > 0)

* Run 1: a=x;x=10;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).
* Run 2: a=x;x=10;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).

Run 3: a=x;x=10;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).
* Run 4: a=x;x=10;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).
* Run 5: x=10;a=x;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).

Run 6: x=10;a=x;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).
Run 7: x=10;a=x;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).
Run 8: x=10;a=x;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).

Figure 3.3: AGSE reduces the number of executions from 2k down to (k + 1).

Next, I use the example in Figure 3.3 to demonstrate that AGSE has the potential to achieve an

exponential reduction. In this contrived example, the interleaving of instructions in {a=x, x=10} is

completely independent from {b=y, y=10} and {c=z, z=10}. Exploring all feasible executions results

in 23 runs, each of which leads to a different final state. However, based on the abstract search

space induced by the assertions, AGSE can reduce the exploration of eight runs down to one full run

together with three partial runs, as marked by the ‘*’ symbol in Figure 3.3. To further generalize

the example, a program with k independent code segments would have 2k distinct interleavings,

which can be reduced by AGSE to (k + 1) executions.

3.3 Summarizing the Explored Executions

I first present how AGSE symbolically summarizes the reasons why explored executions cannot

reach a bad state. In the next sections I will leverage the summary to prune away redundant

22 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

executions.

AGSE’s summarization of the explored executions is based on the weakest precondition computa-

tion [44]. I differentiate the following two scenarios, depending on whether the execution encoun-

ters the assert statement or not.

• For each execution that encounters assert(c) (and satisfies the condition c), AGSE computes

the weakest precondition of the predicate c along this execution.

• For each execution that does not encounter the assert statement at all, AGSE computes the

weakest precondition of the predicate true along this execution.

Since the weakest precondition is a form of Craig’s interpolant [89], it provides a succinct expla-

nation as to why the explored execution cannot reach the bad state guarded by ¬c.

Definition 3.1. Here I define the weakest precondition of the predicate ψ with respect to a sequence

of instructions as follows:

• For the statement t: v:=exp, WP (t, ψ) = ψ[exp/v];

• For the statement t: assume(c) , WP (t, ψ) = ψ ∧ c;

• For the sequence t1;t2, WP (t1; t2, ψ) = WP (t1,WP (t2, ψ)).

In the above definition, ψ[exp/v] denotes the substitution of variable v in ψ with exp. As an

example, consider the execution path in Table 3.1, which consists of three branch conditions and

three assignments. Column 1 shows the control locations along the current path. Column 2 lists

the sequence of executed instructions. Column 3 presents the weakest preconditions computed

backwardly starting at l6. Column 4 shows the rules applied during the computation.

3.3. SUMMARIZING THE EXPLORED EXECUTIONS 23

Table 3.1: The weakeast precondicion computation along a program path.

Loc. Instruction WP Computed Rule Applied

l0 if(a ≤ 0) (a ≤ 0) ∧ (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l1 res := res+ 1 (b ≤ 0) ∧ (c ≤ 0) wp[exp/v]
l2 if(b ≤ 0) (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l3 res := res+ 2 (c ≤ 0) wp[exp/v]
l4 if(c ≤ 0) (c ≤ 0) wp ∧ c
l5 res := res+ 3 true wp[exp/v]
l6 true terminal

3.3.1 Computing Predicate Summary at b-PP Nodes

Assume that the baseline symbolic execution procedure traverses the GIG in the depth-first search

(DFS) order, meaning that it backtracks s, a branching pivot point (b-PP), only after exploring both

outgoing edges s
assume(c)
−−−−−→ s′ and s

assume(¬c)
−−−−−−→ s′′. This also includes the entire execution trees

starting from these two edges. Let wp[s′] and wp[s′′] be the weakest preconditions computed from

the two outgoing executions, respectively.

Following the classic definition of weakest precondition provided by Dijkstra [44], AGSE computes

the weakest precondition at the b-PP node s as follows:

wp[s] := (c ∧ wp[s′]) ∨ (¬c ∧ wp[s′′]) .

Then, AGSE uses wp[s] computed from these outgoing edges to update the global predicate sum-

mary PS[s].

For each global control state s AGSE defines a PS[s], which is the union of all weakest precon-

ditions along the outgoing edges. Recall that the Explore procedure may visit each node s mul-

tiple times, presumably from different execution paths (from s0 to s). Therefore, AGSE main-

tains a global map PS and updates each predicate summary entry PS[s] incrementally. Initially

PS[s] = false for every GIG node s. Then, AGSE merges the newly computed wp[s] to PS[s] every

24 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

time the Explore procedure backtracks from s.

The detailed method for updating the predicate summary is highlighted in blue in Algorithm 2,

which follows the overall flow of Algorithm 1, except for the following two additions:

• AGSE computes wp[s] before the procedure backtracks from state s. At this moment, wp[s]

captures the set of all explored executions from s as a continuation of the current execution.

• AGSE updates the summary as follows: PS[s] = PS[s] ∨ wp[s]. Here, PS[s] captures the set

of execution trees as a continuation of all explored executions from s0 to s, including wp[s],

which represents the newly explored execution tree.

3.3.2 Computing Predicate Summary at i-PP Nodes

In contrast to the straightforward computation of weakest precondition at the sequential merge

point, the situation at the interleaving merge point is trickier. In fact, to the best of our knowledge,

there does not exist a definition of weakest precondition in the literature for thread interleaving

points. A naive extension of Dijkstra’s original definition would be inefficient since it leads to the

explicit enumeration of all possible interleavings. For example, assume that an i-PP node has two

outgoing edges s
γ1
−→ s′ and s

γ2
−→ s′′, one may attempt to define the weakest precondition at node

s as follows:

((γ1 <hb γ2) ∧ wp[s
′]) ∨ ((γ2 <hb γ1) ∧ wp[s

′′]) ,

where (γ1 <hb γ2) means that γ1 executes before γ2, (γ2 <hb γ1) means that we γ2 executes before

γ1, and wp[s′] and wp[s′′] are the weakest preconditions along the two interleavings, respectively.

Although the above definition serves the purpose of summarizing the weakest preconditions along

all explored executions from s, it has a drawback: the size of wp[s] computed in this way can

3.3. SUMMARIZING THE EXPLORED EXECUTIONS 25

Algorithm 2: Assertion Guided Symbolic Execution.
1 Initially: State stack S = ∅, summary PS[n] = false for all node n; Start Explore with the symbolic state s0.

2 Explore(State s)
3 begin
4 S.push(s);
5 if s is a b-PP node then
6 wp[s] := false;
7 while ∃t ∈ s.branch\s.done do
8 Explore(NextSymbolicState(s, t)); // β event
9 s.done← s.done ∪ {t};

10 wp[s]← wp[s]∨ computeWP (t, s′);
11 end
12 else if s is an i-PP node then
13 wp[s] := true;
14 while ∃t ∈ s.enabled\s.done do
15 Explore(NextSymbolicState(s, t)); // γ event (enhanced)
16 s.done← s.done ∪ {t};
17 wp[s]← wp[s]∧ computeWP (t, s′);
18 end
19 else if s is other sequential computation node then
20 Explore(NextSymbolicState(s, t)); // α event
21 wp[s]← computeWP (t, s′);
22 else
23 // end of execution
24 wp[s]← true;
25 end
26 PS[s] := PS[s] ∨ wp[s];
27 S.pop();
28 end

29 NextSymbolicState(State s, Event t)
30 begin
31 let s = 〈pcon,M, enabled, branch, done〉;
32 if t is halt then
33 s′ ← normal_end_state;
34 else if t is abort then
35 s′← faulty_end_state;
36 else if t is assignment v := exp then
37 s′← 〈pcon,M[v 7→ exp]〉;
38 else if t is assume(c) andM[pcon ∧ c] is satisfiable then
39 s′← (pcon → PS[s]) ? early_termination_state : 〈pcon ∧ c,M〉;
40 else
41 s′← infeasible_state;
42 end
43 return s′;
44 end

45 ComputeWP (Event t, State s′)
46 begin
47 if t is assume(c) then
48 return wp[s′] ∧ c;
49 else if t is assignment v := exp then
50 return wp[s′][v 7→ exp];
51 else
52 return wp[s′];
53 end
54 end

26 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

quickly explode when there are a large number of threads. Recall that in a multithreaded program

the number of outgoing edges at an i-PP node equals the number of enabled threads and the number

of interleavings of k concurrent threads can be k! in the worst case.

However, for the purpose of pruning redundant executions, the weakest precondition computation

does not have to be precise to be effective. To mitigate the aforementioned interleaving explosion

problem, AGSE uses the following definition, which can be viewed as an under-approximation of

the naive definition:

wp[s] :=
∧

1≤i≤k

wp[sk] ,

where each wp[si] is the weakest precondition computed along one of the k outgoing edges of the

form s
γi−→ si, such that 1 ≤ i ≤ k. Consider Figure 3.2 as an example. AGSE computes the

weakest precondition at node n5 by conjoining weakest preconditions at the two successor nodes

n7 and n8. That is, wp[n5] = wp[n7] ∧ wp[n8] = (a ≤ 20) ∧ (a ≤ x).

For the purpose of pruning redundant executions, conjoining weakest preconditions from differ-

ent interleavings at i-PP nodes is a sound approximation. Although it may not capture all the

explored executions and thus fail to prune certain redundant executions, all the pruned executions

are guaranteed to be redundant.

3.4 Pruning the Redundant Executions

I present how AGSE leverages the predicate summaries to prune away redundant executions in this

section.

3.4. PRUNING THE REDUNDANT EXECUTIONS 27

3.4.1 Assertion Guided Pruning

To decide if AGSE can skip executions starting from a global control state s where s has been

visited by Explore previously through some executions from s0 to s, but is reached again through

a new execution, AGSE checks if the path condition of current path, s.pcon, can be subsumed

by PS[s] under the current memory map s.M. Intuitively, the s.pcon represents the set of states

reachable along the current execution from s0 to s, whereas PS[s] represents the set of states from

which it is impossible to reach the bad state.

Within the NextSymbolicState procedure in Algorithm 2, AGSE checks for the pruning condition

as follow:

• If s.pcon → PS[s] holds under s.M, extending the current execution beyond s would not

lead to a bad state. Therefore, AGSE backtracks immediately by setting s′ as an early termi-

nation state.

• Otherwise, there may exist an extension of the current execution beyond s to reach the bad

state. In this case, AGSE needs to continue the forward symbolic execution as usual.

The validity of s.pcon→ PS[s] can be decided by checking the satisfiability of (s.pcon ∧ ¬PS[s])

using an SMT solver. That is, s.pcon → PS[s] holds if and only if (s.pcon ∧ ¬PS[s]) is unsatisfi-

able.

AGSE’s new pruning approach is complementary to partial order reduction techniques. POR is

a generic reduction that relies solely on commutativity between concurrent operations. Therefore,

two executions are considered equivalent as long as they result in the same program state. AGSE, in

contrast, deploys assertions to guide the pruning. Therefore, even executions that result in different

program states may still be regarded as equivalent.

28 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

Consider the GIG in Figure 2.1, which has 54 feasible executions (Assume that x++ is atomic

in this example.). However, note that a1:a= x++ and b1:b= x++ do not commute, because from a

state where x=0, for instance, executing a1;b1 leads to a=0,b=1,x=2, but executing b1;a1 leads to

a=1,b=0,x=2.

Table 3.2: Applying various reduction techniques to Figure 2.1.

Reduction Technique Number of Paths

None 54
Partial order reduction (POR) 34

Our predicate summary-based pruning method 18
Both POR and our new pruning method 13

As shown in Table 3.2, without applying any reduction technique, the program has a total of 54

distinct runs. Partial order reduction (POR) alone can reduce the 54 runs down to 34 runs. AGSE’s

summary-based pruning method alone can reduce the 54 runs down to the 18 runs. Finally, apply-

ing both pruning method and POR can reduce the 54 runs down to 13 runs.

3.4.2 Interaction with DPOR

However, there is a caveat in combining our predicate summary-based pruning method with dy-

namic partial order reduction [50], because DPOR is a delicate algorithm that relies on the dynamic

computation of the backtrack sets. Without taking precautions, naively pruning away redundant

executions, even if they do not lead to the bad state, may deprive DPOR the opportunity to properly

update its backtrack sets, thereby leading to unsound reduction.

As shown in Section 3.2, when the current execution is run 4 in Figure 3.2, by the time node n5

is reached DPOR has not had the opportunity to update its backtrack set at n3. Ideally, thread T2

should be put into the backtrack set of n3, that is, after Explore backtracks to n3, it should proceed

to explore run 6.

3.4. PRUNING THE REDUNDANT EXECUTIONS 29

However, since n5.pcon → PS[n5] along run 4, AGSE’s pruning method would force Explore to

backtrack from n5, thereby skipping the remainder of run 4 and run 5. Here, the technical challenge

is how to properly update the backtrack set at node n3 before Explore backtracks from n5.

Fortunately, similar problems were encountered during the development of stateful DPOR algo-

rithms [129]. In AGSE I follow the solution by Yang et al. [129]. Specifically, AGSE maintains

two global tables, RVar [s] and WVar [s], for each global control state s. The RVar table stores the

set of global variables that have been read by some thread during previously explored executions

starting from s. Similarly, the WVar table stores the set of global variables that have been written

to by some thread during previously explored executions starting from s. These two tables are

updated at the same time the global PS table is updated.

For the example in Figure 3.2, after exploring run 1, run 2, and run 3, AGSE would have WVar [n5] =

{(x, T1)} representing that x=20 has previously been executed by thread T1 at some point after n5.

Similarly, AGSE has RVar [n5] = {(x, T2)} representing that b=x has previously been executed by

thread T2 at some point after n5.

Whenever procedure Explore decides to skip the execution tree from a node s, AGSE leverages the

information stored in WVar [s] and RVar [s] to properly update the backtrack sets for DPOR. For

example, the original DPOR algorithm waits until assignment b=x is executed by thread T2 before

it can update the backtrack set of n3. Now, using the entry (x, T2) ∈ RV ar[n5], it can put thread

T2 into the backtrack set of n3, as if b=x has been executed by thread T2 at some point after n5.

The correctness of this solution follows Yang et al. [129] in the context of stateful DPOR, which en-

sures that DPOR remains sound in the presence of assertion guided pruning. For more information

on the dynamic update of backtrack sets, please refer to the original description of DPOR [50].

30 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

3.4.3 Proof of Correctness

Now, I state and prove the correctness of the overall algorithm. Let SEorig be the baseline symbolic

execution procedure described in Algorithm 1, and SEnew be the new symbolic execution proce-

dure with predicate summary-based pruning, as described in Algorithm 2. Then SEnew is a sound

reduction of SEorig if it always reaches the same set of error states as SEorig .

Theorem 3.2. Given a program P and an error locationE. The new symbolic execution procedure

SEnew reaches E if and only if the original symbolic execution procedure SEorig reaches E.

Proof: I divide the proof into two steps. First, I prove that if SEnew reaches E, then SEorig also

reachesE. This is straightforward because SEnew explores a subset of the execution paths explored

by SEorig , as shown by a comparison of the two versions of NextState in Algorithms 1 and 2.

Second, I prove that if SEorig reaches E, then SEnew reaches E. I do this by contradiction. Assume

that SEorig can reach E along a path π but SEnew cannot. Since Lines 42–43 in Algorithm 2 are

the only places where SEnew can skip a path, there must exist an event 〈s, t, s′〉 in path π such that

s.pcon → PS[s] holds under s.M.

• Since path π is feasible, the subpath of π from s′ to E must also be feasible. To skip π

in SEnew , the subpath must have been explored and then summarized in PS[s′], presumably

when SEnew first explored the subpath.

• But if PS[s′] already includes this common subpath from s′ to E, by definition, SEnew must

have reached the error block E. This contradicts our assumption that the new symbolic

execution procedure SEnew cannot reach the error block E.

Therefore, the assumption is incorrect. The theorem holds.

3.5. OPTIMIZATIONS 31

3.5 Optimizations

In AGSE, the amount of entries in the summary table and the size of the logical formula in each

entry may become an performance bottleneck. Since large logic formulas are expensive to compute

and store, I would like to reduce the associated computational cost without affecting soundness of

the overall procedure. Toward this end, I propose two optimizations.

3.5.1 Leveraging Static Program Slicing

The first optimization is to combine the assertion guided pruning with static program slicing to

achieve a more significant state space reduction. Given an assertion statement st, AGSE defines

the slice of st as the set of all statements in the program that may affect the result of st. The

slice is computed based on two dependency relations: the control dependency relation and the

data dependency relation. Intuitively, a statement st′ is a control dependency of a statement st

if the execution of st′ determines whether st can be executed. Whereas a statement st′′ is a data

dependency of st if the execution of st′′ may affect the data used in st.

1 if (p)

2 y = v;

3 z = w * 5;

4 if (q)

5 x = z * 2;

6 assert(x);

7

Figure 3.4: Example for static program slic-
ing computation.

Slice

A

B

assert(c)

s0

Figure 3.5: Using Type A and B nodes out-
side the slice.

Consider the example in Figure 3.4. The write to x at Line 5 has a control dependency at Line 4,

and a data dependency at Line 3. The slice of Line 5 is defined as the transitive closure of its

32 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

control and data dependencies, which consists of Lines 3–5. In contrast, the branching statement

at Line 1 and the write to y at Line 2 are irrelevant since their execution will not affect the value

written to x at Line 5 nor the reachability of Line 5. Therefore, for the purpose of checking the

assertion at Line 6, which is related to the value of x at Line 5, AGSE can simply ignore Lines 1–2.

In other words, the slice of Line 5 (and Line 6) defines a sub-program producing an equivalent

result as the full program as far as assertion checking is concerned.

AGSE combine static program slicing with symbolic execution as follows. First, AGSE computes

the static program slice prior to the start of symbolic execution. Then, inside the symbolic execu-

tion procedure as described in Algorithm 2, for each to-be-executed b-PP or i-PP node s, AGSE

checks if the corresponding branch condition or global operation belongs to the static slice of the

assertion statement. If the answer is no, AGSE handles a pivot point s (which can be an i-PP or a

b-PP) in one of the following ways depending on the node type as illustrated in Figure 3.5.

• Type A: If s is not on any path from s0 to the assertion statement, AGSE treats each outgoing

edge from s as if it is halt. In other words, AGSE stops the current execution and backtrack

from s immediately. Note that backtracking will automatically trigger the computation of

weakest precondition.

• Type B: If s is on some GIG path from s0 to the assertion statement, AGSE cannot simply

treat s as the end of the program since outgoing paths from s may still lead to the asser-

tion failure. As shown in Figure 3.5, AGSE has to symbolically execute at least one of the

outgoing edges from the Type B node, while skipping the other outgoing edges.

The correctness of this approach directly follows from the definition of slicing. For both Type A

and Type B nodes outside the program slice, which outgoing edge to execute does not affect the

reachability of the bad state. Due to the relative efficiency of the static slicing algorithm, the over-

head of computing the slice is minimal compared to the subsequent symbolic execution procedure.

3.5. OPTIMIZATIONS 33

However, experiments show that, by leveraging static program slicing results, AGSE can signifi-

cantly decrease of the number of executions to be explored, thus decreasing the complexity of the

overall analysis.

3.5.2 Approximating the Summary Constraints

In general, any kind of underapproximation of PS[s] may be applied to Algorithm 2 to replace

PS[s], while the soundness of the proposed pruning method still maintains. The optimization here

is to heuristically reduce the computational cost associated with predicate summaries. Toward this

end, I develop the following two underapproximations in AGSE.

First, AGSE uses a fixed-size global hash table to control the overall storage cost for PS. Note that

two different global control locations s and s′ may possibly map to the same entry in this hash table.

Whenever such collision happens, instead of storing both summaries in a linked list for that entry,

AGSE limits the overall cost by dropping one of them. That is, when key(s) = key(s′), AGSE

heuristically removes one entry, effectively setting the corresponding predicate summary false.

Second, AGSE uses a fixed threshold to bound the size of each individual logical constraint for

PS[s]. In other words, when the predicate summary becomes too large, AGSE will stop adding

new weakest-preconditions to it, thereby dropping all subsequently explored subpaths. That is,

if (size(PS[s]) < bnd) PS[s]:=PS[s] ∨ wp[s] .

This is again an underapproximation of PS[s].

A main advantage of this on-demand constraint minimization framework is that it allows various

forms of underapproximations to be plugged into it without affecting the soundness proof of the

overall algorithm. With underapproximations, it is possible that we may no longer be able to

34 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

prune away all redundant executions, however, AGSE can guarantee that all pruned executions are

truly redundant. In particular, the baseline symbolic execution in Algorithm 1 (no pruning) can be

viewed as an extreme form of underapproximation, where PS[s] is underapproximated to false for

all global control locations.

3.6 Evaluation

I have implemented AGSE in Cloud9 [38], which in turn builds upon the LLVM compiler [8]

and the KLEE symbolic virtual machine [22]. Note that KLEE does not by itself support multi-

threading, and although Cloud9 has extended KLEE to support a limited number of POSIX thread

routines, it does not attempt to cover all feasible thread interleavings. Indeed, Cloud9 allows for

context switches only before certain POSIX thread synchronizations but not before shared variable

reads/writes. Furthermore, Cloud9 does not support partial order reduction. Instead, it forks new

executions every time specific POSIX synchronizations are encountered.

I have extended Cloud9 to implement the baseline symbolic execution in Algorithm 1, which

systematically explores both intra-thread paths and thread interleavings. Then, I implemented the

DPOR algorithm [50]. Based on these extensions, I have implemented the new assertion guided

pruning (Algorithm 2) with the optimizations presented in Section 3.5.

I have conducted experiments on two sets of benchmarks. The first set consists of multithreaded

C programs from the 2014 Software Verification Competition (SV-COMP) benchmark [115] and

programs from [48, 79]. The second set consists of two real multithreaded applications: nbds [93],

a collection of lock-free data structures, and nedmalloc [94], a thread-safe malloc implementation.

Each of these programs has between 40 to 6,500 lines of code, with a combined total of 40,291

lines of code. Each benchmark program is first compiled into LLVM bitcode using Clang, before

3.6. EVALUATION 35

given to the symbolic execution tool with a set of user annotated variables as symbolic input.

Table 3.3: Summary of the experimental results.

Cloud9 +DPOR +DPOR+AG

Name LOC Threads Runs Time (s) Runs Time (s) Runs Time (s)

fibbenchfalse1 44 2 924 61.4 48 2.0 15 1.8
fibbenchfalse2 44 2 − >1800 628 36.2 34 3.9
fibbenchfalse3 44 2 − >1800 8704 503.8 378 13.7

indexertrue 85 2 − >1800 81 2.8 24 6.0
lazy01false 51 3 11 0.5 3 0.3 3 1.1

reorder2false1a 85 2 7 0.3 3 0.3 3 1.2
reorder2false1b 85 3 91 1.4 26 0.6 9 1.2
reorder2false1c 85 4 2421 89.1 205 3.2 39 1.6
reorder2false2a 85 2 23 0.6 14 0.5 14 1.5
reorder2false2b 85 3 479 8.9 233 5.0 64 2.2

sigmafalse1 49 2 12 0.4 6 0.3 2 1.2
sigmafalse2 49 3 180 3.2 50 1.0 2 1.2
sigmafalse3 49 4 4830 222.4 862 18.6 2 1.2

singletonfalse 57 4 60 1.1 24 0.6 19 1.1
stackfalse 120 2 527 8.6 236 3.9 49 2.8

stateful01true 55 2 6 0.4 6 0.4 5 1.2
twostage3false 129 3 4862 302.1 88 1.1 34 2.2

dekkertrue 55 2 − >1800 280 3.6 6 1.5
petersontrue1 43 2 − >1800 1052 22.7 64 2.7
petersontrue2 43 2 − >1800 2566 86.6 85 8.1

readwritelktrue1 52 2 24 0.6 4 0.3 4 1.1
readwritelktrue2 52 4 − >1800 − >1800 436 14.9
timevarmutextrue 55 2 41 0.8 4 0.3 2 1.0

szymanskitrue 55 2 − >1800 − >1800 6 1.8
unveriftrue 40 2 − >1800 221 2.9 27 1.7

bluetoothbad 88 2 − >1800 1789 25.1 95 4.0
art-example 71 2 450 11.5 146 3.1 9 1.5
fsbenchbad 86 8 − >1800 256 9.2 9 20.9
tickettrue 76 2 1062 19.6 274 4.8 44 1.9

accountbad 60 3 8 0.4 8 0.4 8 1.0
circularbufbad1 109 2 118 1.7 118 1.9 58 3.8
circularbufbad2 109 2 358 5.5 358 5.5 132 6.4
readreadwrite 50 3 96 1.4 19 0.5 3 1.1

queuefalse 167 2 252 3.9 252 3.8 26 3.9

nbds-slU1a 1942 2 − >1800 133 8.9 5 7.8
nbds-slU1b 1942 2 − >1800 − >1800 76 16.2
nbds-slU1c 1942 2 − >1800 − >1800 202 35.2
nbds-slU2a 1942 2 − >1800 241 25.3 29 12.8
nbds-slU2b 1942 2 − >1800 − >1800 118 24.5
nbds-slU2c 1942 2 − >1800 − >1800 717 164.8

nbds-skiplist 1994 3 − >1800 − >1800 1 25.1
nbds-hashw1a 2322 2 − >1800 1339 167.4 123 177.8
nbds-hashw1b 2322 2 − >1800 6501 1568.9 675 222.8
nbds-hashw1c 2322 2 − >1800 − >1800 2399 476.9
nbds-hashw2a 2234 2 − >1800 5852 674.1 369 155.3
nbds-hashw2b 2234 2 − >1800 − >1800 1735 257.4
nbds-hashw2c 2234 2 − >1800 − >1800 4017 528.4

nbds-hash 2375 2 − >1800 − >1800 2283 333.8
nbds-list 1887 3 − >1800 10274 1130.7 1 5.9

nedmalloc 6303 4 − >1800 − >1800 1 12.0

Average 986.9 518.5 51.6

36 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

Table 3.3 summarizes the results of the experimental evaluation. Columns 1–3 present the bench-

mark name, lines of C code, and the number of threads in each program. Columns 4–9 compare the

performance of three different methods in terms of the number of explored runs and the total exe-

cution time. Cloud9 denotes the baseline symbolic execution in Algorithm 1, +DPOR denotes the

baseline algorithm with dynamic partial order reduction, and +DPOR+AG denotes AGSE, which

augments the baseline algorithm with DPOR and assertion guided pruning. The runtime of AGSE

includes the time to compute the slice. All tests used a maximum time of 30 minutes.

In the remainder of this section, I analyze the experimental results in more details for the following

two questions:

1. How effective is AGSE’s pruning technique? Is it more effective than DPOR alone?

2. How scalable is AGSE? Is it practical in handling realistic C programs?

First, I show the comparison of Cloud9 and +DPOR+AG (AGSE) in two scatter plots in Figure 3.6,

where the x-axis in each scatter plot represents the number of runs (or time) of the baseline al-

gorithm (Cloud9), and the y-axis represents the number of runs (or time) of +DPOR+AG. Each

benchmark program is represented by a dot in the scatter plots; dots below the diagonal lines are

winning cases for our method. The results show that AGSE can significantly reduce the number

of runs explored by symbolic execution as well as the overall execution time. In many cases, the

baseline algorithm timed out after 30 minutes while AGSE finished in a few seconds.

Next, I show the comparison of +DPOR and +DPOR+AG in the scatter plots in Figure 3.7. The

goal is to quantify how much of the performance improvement comes from AGSE’s new asser-

tion guided pruning as opposed to DPOR. Again, dots below the diagonal lines are winning cases

for +DPOR+AG over DPOR. For most of the benchmark programs, AGSE demonstrated a signifi-

cant performance improvement over DPOR. For some benchmark programs, however, AGSE was

slightly slower than +DPOR despite that it executed the same, or a smaller, number of runs. This

3.6. EVALUATION 37

100 101 102 103
100

101

102

103

Runs Cloud9

R
un

s
+

D
P

O
R

+
A

G

100 101 102 103
100

101

102

103

Time (s) Cloud9

T
im

e
(s

)
+

D
P

O
R

+
A

G

Figure 3.6: Scatter plots comparing AGSE with Cloud9.

100 101 102 103
100

101

102

103

Runs +DPOR

R
un

s
+

D
P

O
R

+
A

G

100 101 102 103
100

101

102

103

Time (s) +DPOR

T
im

e
(s

)
+

D
P

O
R

+
A

G

Figure 3.7: Scatter plots comparing AGSE with DPOR.

is due to the additional overhead of running the supplementary static slicing algorithm, as well as

predicate summary-based pruning, which did not provide sufficient performance boost to offset

their overhead.

However, it is worth noting that, where the combined optimization of slicing and pruning is able

to bring a performance improvement, it often leads to a drastic reduction in the execution time

compared to DPOR alone. For example, in nedmalloc (Table 3.3), AGSE was able to identify that

the property does not depend on any shared variables. In such cases, it can safely skip exploring

the entire interleaved state space and finish in just one run.

38 CHAPTER 3. ASSERTION GUIDED SYMBOLIC EXECUTION

2 3 4 5 6

101

102

103

104

Number of Threads

R
un

s
Cloud9
+DPOR

+DPOR+AG

2 3 4 5 6

100

101

102

103

Number of Threads

T
im

e
(s

)

Cloud9
+DPOR

+DPOR+AG

Figure 3.8: Parameterized results for reorder2false benchmark.

I also evaluated the growth trends of the three methods when the complexity of the benchmark

program increase. Figure 3.8 shows the results of comparing the three methods on a parameterized

program named reorder2false. In the two figures, the x-axis denotes the number of threads created

in this parameterized benchmark while the y-axis presents, in logarithmic scale, the number of runs

explored and the execution time in seconds. As shown by these two figures, the computational

overhead of all three methods increases as the complexity of the program increases. However,

AGSE increases at a significantly reduced rate compared to the two existing methods.

3.7 Conclusion

I have presented a predicate summary-based pruning method for improving symbolic execution of

multithreaded program. The method is designed to work with the DPOR algorithm, and has the

potential of achieving exponential reduction. I have implemented the method in emphCloud9 and

demonstrated its effectiveness through experiments on multithreaded C/C++ benchmarks.

Chapter 4

Incremental Symbolic Execution

As software evolves, updates made from the addition of new features or patches may introduce

new bugs. While some existing regression testing tools can leverage code changes between two

software versions to reduce the testing cost, they focus primarily on test case selection or test case

prioritization as opposed to the creation of new test cases. In contrast, symbolic execution is a

technique for automatically generating new tests, and, in recent works [100, 106, 127], has been

used in regression testing to reduce the overall cost for sequential software testing.

Change-impact analysis [125] has been widely applied in software testing and verification. The

existing incremental symbolic execution tool, DiSE [100], uses an intra-procedural static change-

impact analysis and then leverages it to reduce the cost of symbolic execution. The extension

of DiSE, named iDiSE [106], improves it in two ways: by making the change-impact analysis

inter-procedural, and by using dynamic calling-context information to increase accuracy. Yang et

al.extend DiSE [127] to a property-guided symbolic execution procedure for checking assertions

in evolving programs.

39

40 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

Change-impact analysis has been used in the context of program verification as well. Backes et

al. [10] use a change impact analysis to improve the functional equivalence checking in regression

verification. Specifically, the change-impact is used to focus on the equivalence checking of af-

fected portions of the code. Similarly, SymDiff [81] focuses on proving assertions in the context

of regression verification.

However, none of these previous techniques were designed for concurrent programs: they all target

sequential software, and their extensions to concurrent programs remains non-trivial due to the

inherent difficulties in analyzing thread interferences.

Specifically, prior works use conservative static analysis methods to estimate the impact of the

code changes and then leverage the information to avoid re-executing program paths that are not

affected by these code changes. However, these existing methods only handle code changes in se-

quential software. Furthermore, they rely on the overly conservative and intra-procedural analysis

to estimate the change impacts, without making use the more accurate information available from

previous runs.

In this chapter, I develop Conc-iSE: the first summary based incremental symbolic execution algo-

rithm for concurrent programs.

Conc-iSE also differs from the prior works on regression testing of multithreaded programs [70,

117, 133]. In Jagannath et al. [70] and Yu et al. [133], the primary focus was on test case selection

and test case prioritization, i.e., to detect certain concurrency bugs quicker by heuristically select-

ing test cases and scheduling them in certain orders, as opposed to generating new test cases. In

contrast, Conc-iSE focuses on making symbolic execution incremental, which will benefit test case

generation. Our method also differs from the work by Terragni et al. [117], which symbolically

analyzes the alternative interleavings of some concrete executions based on the trace logs. Unlike

our method, it does not perform symbolic execution based test input generation to explore both

4.1. INTRODUCTION 41

intra-thread program paths and inter-thread interleavings.

4.1 Introduction

Figure 4.1 shows the overall flow of Conc-iSE. It takes both old (P) and new (P ′) program versions,

together with a set of execution summaries of P as input, and iteratively explores new execution

paths through P ′. During the iterative exploration Conc-iSE uses supplementary information from

both P (the execution summaries) and P ′ to perform the incremental analysis.

New Program (P ′) Old Program (P)

Concurrent Change

Impact Analysis

Summary of P

transferred to P ′

Symbolic Execution Pruning the

Redundant State

Current Input

(in, sch)

Generate New

Test Input

Figure 4.1: The summary based incremental symbolic execution.

The standard and non-incremental symbolic execution procedure is shown in the lower half of

Figure 4.1, which starts from an arbitrary initial test (in, sch) of P ′ and repeatedly generates new

tests for the new program P ′. Here, in denotes the data input and sch denotes the thread schedule.

I also assume the new program P ′ has a deterministic execution which is decided by the pair

(in, sch). During symbolic execution, new states are generated to explore alternate branches and

alternate thread schedules. For each new state, the symbolic execution engine generates a new

pair (in ′, sch ′) containing the data input and thread schedule to reach the new state. In the non-

42 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

incremental approach, no information about previously explored executions in the old program

version P as well as changes made to the new program version P ′ are used to decide if a new

program state is redundant: program executions equivalent to behavior in P are re-explored in P ′.

Incremental Symbolic Execution considers two program versions P and P ′ while assuming P is a

prior version which has already been explored symbolically. The goal is to only explore the new

behavior in P ′. Prior work [100, 106] used a forward change-impact analysis, built on the idea

of program slicing [124], to determine if a statement in P ′ was affected by a modification; only

affected portions of the code in P ′ need to be explored again during symbolic execution.

However, performing a change-impact analysis using a conservative static analysis alone often

results in the testing of redundant executions. This is because a conservative static analysis, such

as program slicing, ignores the actual values of variables in the program. As shown in Section 4.2,

even if a statement is modified (from P to P ′), the paths affected by this modification may still

be equivalent to some paths in the previous version. To define a more accurate equivalence class

of execution paths, I make use of the predicate summaries (introduced in Section 3.3) from P

while testing P ′, as opposed to performing only a conservative change-impact analysis. At a high

level, the predicate summaries, defined at each global control state, capture the set of all explored

executions starting from s (suffixes). The summaries are computed using a backward weakest-

precondition computation. Notice that the AGSE method developed in Chapter 3 applies predicate

summaries to one program only – it is a non-incremental symbolic execution algorithm.

Conc-iSE also has a more aggressive change-impact analysis that is inter-procedural and inter-

thread, and therefore may be used to handle both sequential and concurrent programs. It consists

of a forward analysis and a backward analysis. The forward change-impact analysis computes the

program statements in P ′ that may be affected by the code changes to P . Similar to prior works on

incremental symbolic execution [100, 106, 127], this is used to avoid portions of P ′ unaffected by

4.1. INTRODUCTION 43

the code changes. Intuitively, if a code modification in P ′ only affects a small number of statements

then much of P ′ is the same as P . In contrast, the backward change-impact analysis computes the

set of statements that may impact some statements that are changed from P to P ′. The backward

analysis is used to determine if an predicate summary from the old version P can be carried over

to the new version P ′.

The combination of predicate summaries and forward and backward change-impact analyses, as

well as their interaction with the baseline symbolic execution procedure, is shown in Figure 4.1.

Prior incremental symbolic execution techniques [100, 106, 127] only handled sequential programs

and only used a simpler version of the forward change-impact analysis. In contrast, Conc-iSE is the

first incremental symbolic execution algorithm capable of handling concurrent programs. Specif-

ically, when a new state in P ′ is generated, Conc-iSE checks both the change-impact information

and the predicate summaries to see if the state is either in the unmodified section of the program,

or if it is equivalent to some previously explored execution in P . If either condition is true, then

the new state is redundant and can be skipped.

To sum up, I make the following contributions:

• I propose the first incremental symbolic execution algorithm capable of handling code changes

in concurrent programs.

• I develop a new summary based algorithm for pruning away redundant paths and interleav-

ings during incremental symbolic execution.

• I develop a new static analysis algorithm that leverages both forward and backward change-

impact analysis to more aggressively estimate the impact of code changes.

• I implement the new method in Conc-iSE and evaluate it on a set of multithreaded programs

to show the effectiveness at decreasing testing time.

44 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

4.2 Motivation

In this section, I use two examples to state the main ideas behind the new method.

4.2.1 Pruning with Change-Impact Analysis

x = 15, y = 5;

/** [Thread 1] **/

1: a = x;

2: y = 10;

3:

/** [Thread 2] **/

4: x = 10;

5: b = y;

6:

/** [Thread 1] **/

1: a = x;

2: y = 10;

3:

/** [Thread 2] **/

4: x = 5; //modified

5: b = y;

6:

assert(a>=10);

assert(b>=5);

Figure 4.2: Example: Old version(left) and new version (right).

Consider the example in Figure 4.2; the old program, on the left-hand side, has two threads ac-

cessing shared variables x and y. The two variables are initialized to 15 and 5, respectively. After

running both threads, the two assertions are checked. The new program is shown on the right-hand

side; the only modification is on Line 4.

First, due to the sharing of variable x, Line 1 in the first thread is also affected though the modifi-

cation of Line 4 is in the second thread. However, such impacted instructions cannot be identified

by existing algorithms [100, 106, 127] since they are not always safe for concurrent programs. In

contrast, Conc-iSE solves this problem.

Second, I want to stress that there are six possible executions of the program, as shown in the

abstract state transition graphs in Figure 4.3. State-of-the-art partial-order reduction (POR) tech-

niques can reduce the number of executions down to four. Conc-iSE does even better by reducing

4.2. MOTIVATION 45

the number of executions down to two.

(a ≥ 10)

x = 10;

n1

n2

n4

n7

n5

n3

n6

n8

n9

x = 10;

y = 10;

y = 10;b = y;

b = y;

y = 10;

π1

π4

π5

x = 10;

b = y;

a = x;

a = x;

a = x;π2

π3

π6

Figure 4.3: Interleaved executions of the program: π1, . . . , π6.

Specifically, in Figure 4.3 each node denotes a global control state, e.g., n1 = (1, 4) means Thread 1

is at Line 1 and Thread 2 is at Line 4, while n2 = (2, 4) means they are at Lines 2 and 4, respectively.

After applying POR, only four executions remain (marked by red dotted arrows), as shown on the

left in Figure 4.4. The reason why π2 and π6 are skipped is because they are equivalent to π1 and π5,

respectively. That is, executing the two independent instructions y = 10 and x = 10 in different

orders always lead to the same result. (More specifically, these two executions are removed by a

POR method with sleep-sets; refer to [51, 55] for more information.)

n1

n2

n4

n3

n6

y = 10;

n5

n7 n7 n7 n8 n8

a = x;

n8

a = x;

n5

x = 10;

x = 10;

b = y; y = 10;

y = 10;
n9n9 n9 n9 n9 n9

(a ≥ 10) (a ≥ 10)

b = y;

y = 10; b = y;

(a ≥ 10) (a ≥ 10)

π1 π4π3

a = x; x = 10;

b = y;

(a ≤ 10)

π5

b = y; b = y;
y = 10; y = 10;

(a ≥ 10)

(modified)

x = 5;
(modified)

x = 5;
(modified)

n1

n2

n4

n3

n6

y = 10;

n5

n7 n7 n7 n8 n8

a = x;

n8

a = x;

n5

b = y; y = 10;

y = 10;
n9n9 n9 n9 n9 n9

(a ≥ 10) (a ≥ 10) (a ≥ 10) (a ≤ 10)

b = y;

b = y;

(a ≥ 10) (a ≥ 10)

π1

a = x;

b = y;

y = 10;

y = 10;
b = y;

y = 10;

x = 5;

π4

Figure 4.4: Executions explored by incremental symbolic execution (with POR).

By leveraging the concurrent change-impact analysis, Conc-iSE can identify even more redundant

executions than POR. Specifically, since the code change in Line 4 does not impact Line 2 or Line 5

or assert(b>=5), Conc-iSE does not re-explore the different execution orders of y = 10 and b = y.

Because of this reason, as shown in the right-hand-side tree in Figure 4.4, Conc-iSE can reduce the

46 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

four executions further down to two (π1 and π4). Here I assume that assertions are embedded in the

individual threads. As such, the assertion conditions always refer to local variables, or local copies

of global variables. This is consistent with many prior works on POR [51]. It is also worth pointing

out the assertions are important in this example: if the assertion is assert(a>=b), then π3 and π5

may not be skipped. Details of the new change-impact analysis algorithm and its application to

incremental symbolic execution are presented in Sections 4.3.1 and 4.3.2.

4.2.2 Pruning with Execution Summary

In addition to extending the prior change-impact analysis algorithm [100, 106, 127] from sequen-

tial programs to concurrent programs, I also develop an orthogonal pruning technique based on a

backward change-impact analysis. That is, instead of computing the set of instructions that may

be affected by the changes, Conc-iSE compute the set of instructions that may affect the changed

instructions. Details of the backward change-impact analysis and its application are presented in

Sections 4.3.1 and 4.3.3. Here I illustrate the main ideas using the example in Figure 4.5.

Consider the two versions of the sequential program; the old version is on the left, and the new

version is on the right. The only modification is on Line 1; the condition is changed from (x > 0)

to (x ≥ 0). The forward change-impact analysis computes that the change has impacted all the

other lines in the new program. Therefore, applying existing algorithms such as [100, 106, 127]

would not help since they would re-explore all four paths.

Notice, however, that if dividing initial program states into three sets, denoted by (x > 0), (x = 0),

and (x < 0), that only when (x = 0) does the modified program behave differently from the origi-

nal program. In the old version, such case was handled by paths π3 and π4, but in the new version,

it is handled by paths π1 and π2. Therefore, instead of re-exploring all paths, the new execution

4.2. MOTIVATION 47

1: if (x>0)

2: a = x+2;

3: else

4: a = x-2;

5: if (y>0)

6: b = a+1;

7: else

8: b = a-1;

9: assert(b!=0);

1: if (x>=0) //(modified)

2: a = x+2;

3: else

4: a = x-2;

5: if (y>0)

6: b = a+1;

7: else

8: b = a-1;

9: assert(b!=0);

b = a− 1;

n1

n2

n5

n4

n5

a = x+ 2;

n6 n8

(y ≤ 0)

n9 n9

b = a+ 1;

π1 π4

(x > 0)

π2

n6

(b 6= 0)

π3

n8

a = x− 2;

n9

(b 6= 0) (b 6= 0)

(y > 0)
(y > 0)(y ≤ 0)

or (x = 0)

(x < 0)

(b 6= 0)

(moved)

b = a+ 1;
b = a− 1;

n9

Figure 4.5: Not all four paths need to be re-explored though all instructions are impacted.

only needs to re-explore π1 and π2. The question then is how to figure out, algorithmically, that

paths π3 and π4 are indeed redundant.

The solution in Conc-iSE is to compute, for each global control state s, a summary of all the

explored executions starting from s. For example, the summary at n4, with respect to assert(b6=0),

would be PS[n4] = (y > 0) ∧ (x 6= 1) ∨ (y ≤ 0) ∧ (a 6= 3). This summary is created from the

union of the weakest precondition of (b 6= 0) along the two outgoing paths.

Since the code change in Line 1 does not affect the aforementioned weakest precondition com-

putation, the summary can be carried over to the new program. During the analysis of the new

program, an execution can stop as soon as the path condition, denoted, e.g., as pcon[n4] = (x < 0),

falls within the set PS[n4] of explored executions. This early termination can be done because if

pcon[n4]∧¬PS[n4] is unsatisfiable, re-exploring the executions starting from n4 would not lead to

any new error.

In Section 4.3.3, I will introduce another example used to showcase the power of an latest incremen-

48 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

tal symbolic execution technique, DiSE [100]. The example shows that the new summary-based

technique in Conc-iSE can offer an even greater reduction.

4.3 The Incremental Approach

4.3.1 The Overall Algorithm

The incremental symbolic execution algorithm for concurrent programs, shown in Algorithm 3,

has two significant changes compared to the baseline procedure in Algorithm 1. However, since

the bulk of the recursive procedure remains the same, in Algorithm 3 I only highlight the parts that

are significantly different.

First, the input of the symbolic execution procedure has changed. Instead of taking one program

as input, the new procedure in Conc-iSE takes both old program version P and new version P ′ as

the input. Prior to the symbolic execution of the new program P ′, Conc-iSE computes the forward

impacted set ISfwd and the backward impacted set ISbwd. In addition, Conc-iSE carries over the

table PS of predicate summaries computed in P . For each state s, the set of explored executions

starting from s is denoted PS[s].

Second, new Lines 27–29 and 32–34 are added inside NextSymbolicState. They leverage ISfwd,

ISbwd, and PS[s] to decide, at each symbolic execution step (s
t
−→ s′), if all executions starting at

the next state s′ are redundant. Specifically, if t.inst 6∈ ISfwd, the current branching statement is

not in the impacted set. Since which branch to execute at s is immaterial, if one of the branches

has previously been explored, Conc-iSE can force an early termination of the current execution.

Similarly, if t.inst 6∈ ISbwd, the weakest precondition computation, upon which the execution

4.3. THE INCREMENTAL APPROACH 49

Algorithm 3: Incremental Symbolic Execution.
1 ISfwd ← ComputeForwardImpactedSet(P, P ′);
2 ISbwd ← ComputeBackwardImpactedSet(P, P ′);
3 PS[s]← the summary at s computed in previous program P ;
4 . . .
5 NextSymbolicState(State s, Event t)
6 begin
7 let s = 〈pcon,M, enabled, branch, done〉;
8 if t is halt then
9 s′ ← normal_end_state;

10 else if t is abort then
11 s′← faulty_end_state;
12 else if t is assignment v := exp then
13 if t.inst 6∈ ISbwd and pcon =⇒ PS[s] then
14 s′ ← early_termination_state;
15 else
16 s′ ← 〈pcon,M[v 7→ exp]〉;
17 end

18 else if t is assume(c) andM[pcon ∧ c] is satisfiable then
19 if t.inst 6∈ ISfwd and the other branch was explored then
20 s′ ← early_termination_state;
21 else
22 s′ ← 〈pcon ∧ c,M〉;
23 end

24 else
25 s′← infeasible_state;
26 end
27 return s′;
28 end

summary is calculated, will not be affected by the code changes. Therefore, Conc-iSE can carry

the summary PS[s] from P to P ′. If the current path condition pcon, in the modified program, is

subsumed by PS[s] then continuing the execution from s would lead to no new errors. In such case,

Conc-iSE can enforce an early termination of the current execution.

For the example in Figure 4.5, the code change in Line 1 would only invalidate the summary

PS[n1]. Therefore, although Conc-iSE cannot force an early termination at n1, it can leverage the

summaries at other nodes to prune away redundant executions. In particular, when the execution

reaches either n2 or n4, Conc-iSE terminates the execution immediately. This is because both

pcon[n2] ∧ ¬PS[n2] and pcon[n4] ∧ ¬PS[n4] are unsatisfiable. Specifically, Conc-iSE maintains

50 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

the following predicate summaries:

PS[n2] = (y > 0) ∧ (x 6= −3) ∨ (y ≤ 0) ∧ (x 6= −1)

PS[n4] = (y > 0) ∧ (x 6= 1) ∨ (y ≤ 0) ∧ (x 6= 3)

Furthermore, the path conditions are pcon[n2] = (x ≥ 0), and pcon[n4] = (x < 0), respectively.

Therefore, Conc-iSE can check pcon[n2] ∧ ¬PS[n2] as follows:

= (x ≥ 0) ∧ ((y ≤ 0) ∨ (x = −3)) ∧ ((y > 0) ∨ (x = −1))

= (x ≥ 0) ∧ (y ≤ 0) ∧ (y > 0)

= false

It can also check pcon[n4] ∧ ¬PS[n4] as follows:

= (x < 0) ∧ ((y ≤ 0) ∨ (x = 1)) ∧ ((y > 0) ∨ (x = 3))

= (x < 0) ∧ (y ≤ 0) ∧ (y > 0)

= false

The above checks indicate that no new errors can be detected by continuing the symbolic execution

from n2 and n4. Therefore, Conc-iSE terminates the execution immediately without exploring any

remaining paths. In the remainder of this section, I will present the algorithms for conducting the

forward and backward change-impact analysis, as well as the construction and reuse of predicate

summaries.

4.3.2 Change-Impact Analysis

The first important component of Conc-iSE is the detection and characterization of code changes,

called the change-impact analysis (CIA) [84]. The identification of code changes requires com-

4.3. THE INCREMENTAL APPROACH 51

parison of two program versions by matching their representations, often in the form of flow

graphs [103], tree representations [128], or locations in source files. Conc-iSE follows Person

et al. [100] to define three types of changes: deleted, added, and modified.

Computing the Impacted Sets

Algorithm 4 presents the new change-impact analysis for multithreaded programs in Conc-iSE.

The analysis takes two program versions P and P ′ as input and returns two impacted sets as

output. One impacted set is ISfwd, the forwardly impacted set, while the other impacted set is ISbwd,

the backwardly impacted set. The computation of the two sets consists of several steps.

First, Conc-iSE compares P and P ′ using a lightweight diff tool that computes the set ∆diff of

changed instructions (added, deleted, or modified). Since the remaining instructions exist in both

programs, Conc-iSE constructs a map ∆map that maps every unchanged instruction inst ∈ P to its

counterpart inst ′ ∈ P ′.

Second, for each added instruction, denoted instadd ∈ ∆diff , Conc-iSE performs a forward control-

and data-dependency analysis in P ′ to identify all instructions depending on instadd . Details of

this analysis are presented in the next subsection. Conc-iSE also performs a backward control- and

data-dependency analysis in P ′ to identify all instructions that instadd depends on. Here I denote

the set of instructions as AI .

Third, for each modified instruction, denoted instmod ∈ ∆diff , Conc-iSE performs a forward

control- and data-dependency analysis in P ′ to identify the instructions depending on instmod .

Conc-iSE also performs a backward control- and data-dependency analysis to identify all instruc-

tions that instmod depends on. Let’s denote the set of instructions as MI .

Fourth, for each deleted instruction, denoted instdel ∈ ∆diff , Conc-iSE performs both the forward

52 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

Algorithm 4: Forward and backward change-impact analysis.
1 ∆diff ← Diff (P, P ′);
2 ∆map ←Map (P, P ′,∆diff);

3 ComputeForwardImpactedSet(P , P ′)
4 begin
5 ISfwd ← { };
6 foreach inst ∈ ∆diff do
7 if inst is added then
8 ISfwd ← ISfwd∪ FwdDependencyAnalysis(P ′, inst);
9 else if inst is modified then

10 ISfwd ← ISfwd∪ FwdDependencyAnalysis(P ′, inst);
11 else
12 // inst is deleted
13 impacted ← FwdDependencyAnalysis(P , inst);
14 foreach st ∈ impacted do
15 st′ ← QueryMap (∆map , st);
16 ISfwd ← ISfwd∪ FwdDependencyAnalysis(P ′, st′);
17 end

18 end

19 end
20 return ISfwd;
21 end

22 ComputeBackwardImpactedSet(P , P ′)
23 begin
24 ISbwd ← { };
25 foreach inst ∈ ∆diff do
26 if inst is added then
27 ISfwd ← ISfwd∪ BwdDependencyAnalysis(P ′, inst);
28 else if inst is modified then
29 ISfwd ← ISfwd∪ BwdDependencyAnalysis(P ′, inst);
30 else
31 // inst is deleted
32 impacted ← BwdDependencyAnalysis(P , inst);
33 foreach st ∈ impacted do
34 st′ ← QueryMap (∆map , st);
35 ISfwd ← ISfwd∪ BwdDependencyAnalysis(P ′, st′);
36 end

37 end

38 end
39 return ISbwd;
40 end

and backward control- and data-dependency analysis to compute the set of instructions depending

on instdel , and the set of instructions that instdel depends on. Let’s denote this set as DI .

Fifth, Conc-iSE iteratively computes AI , MI , and DI , using the results from the previous step as

input, until the computation reaches a fixed point. Furthermore, for each deleted instruction in DI ,

4.3. THE INCREMENTAL APPROACH 53

Conc-iSE retrieves its counterpart in P ′ by querying the ∆map; the results form a new set DI ′.

Finally, the union of AI , MI , and DI ′ forms the complete set of impacted instructions IS.

Algorithm 4 formalizes the above descriptions by dividing the computation of ISfwd and ISbwd into

two separate routines. These routines, in turn, rely on two subroutines (described in Section 40) to

perform the control- and data-dependency analysis for concurrent programs.

Inter-Thread Dependency Analysis

The control- and data dependency relations are computed by a constraint-based, flow- and context-

insensitive analysis. Largely, the analysis follows traditional approaches [49, 68]: It calculates

control-dependencies using post-dominance, and data-dependencies by the transitive closure of

use-def chains. The main contributions here are reasoning about the soundness of this analysis in

a concurrent setting, and applying it in a change-impact analysis.

First, an informal intuition behind control- and data-dependencies is: a statement s2 is control

dependent on a statement s1 if the computation of s1 determines if s2 is executed. For example, in

if (c) x++; the statement x++ is control-dependent on if (c) (specifically, on the value of

the predicate c). On the other hand, s4 is data dependent on s3 if the computation of s3 influences

the computation of s4. For example, in a = x; b = a + y; the statement b = a + y is

data-dependent on the statement a = x since the value of a determines the value of b.

In terms of soundness, Conc-iSE considers all ordering of statements since its data-dependency

analysis is flow-insensitive. As a result, any statement from any thread can, effectively, execute

at any time. This over-approximates the potentially more restrictive scheduling constraints, which

ensures the soundness of the analysis for multithreaded programs.

54 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

1 int x = 0;

2 void thread1() {

3 int t1 = x;

4 create(thread2);

5 }

6 void thread2() {

7 x = 5;

8 }

Figure 4.6: Example for false data-dependencies across threads.

However, using a flow-insensitive analysis, while sound, results in false dependencies across

threads. Consider the program in Figure 4.6: thread one reads the value of x and then creates thread

two which writes to x. In a flow-insensitive analysis, the read in thread one is data-dependent on

the write in thread two. But, the write can never be visible to thread one: thread two does not exist

until after the read.

To capture this situation, Conc-iSE uses the happen-before relation. A statement s1 happens-

before a statement s2 if on all program executions s1 executes before s2, e.g., the statement

create(thread2) happens-before x = 5.

Conc-iSE refines the flow-insensitive data-dependency analysis as follows: if s1 happens-before

s2 then s1 must not be data-dependent on s2. This is sound because the happens-before relation

ensures there does not exist a program path from s2 to s1 so, s1 cannot witness the effect of s2.

Currently, Conc-iSE deduces happens-before constraints from thread creation. This approach is

similar to recent work using happens-before to refine data race detection [91, 92].

In the implementation Conc-iSE first builds the DATADEP relation, where (a, b) ∈ DATADEP

means the variable a is data-dependent on the variable b. To compute the relation, Conc-iSE first

scan the program to generate a set of input items for the DATADEP relation.

To generate the input items, Conc-iSE use the structure of each instruction to determine the data-

dependency, similar to prior constraint-based analyses for Java [18, 90, 105]. Here I use the binary

4.3. THE INCREMENTAL APPROACH 55

operation to showcase how Conc-iSE handles it; other instructions are handled similarly. A binary

operation r = op v1 v2, where r, v1, and v2 are variables and op is an operator, such as add applies

op to v1 and v2 to produce r. So, the input items to DATADEP are (r, v1) and (r, v2).

Similarly, Conc-iSE provides input items to the happens-before relation from thread creation sites.

Within a thread, Conc-iSE determines the happens-before relation using dominance and reachabil-

ity on the threads control-flow graph. If s1 dominates s2 and s1 is not reachable from s2, then s1

happens-before s2. Dominance ensures that on all paths to s2 contain s1; reachability ensures that

there is no path from s2 to s1. All in all, this ensures that s1 always occurs before s2.

Conc-iSE then computes the transitive closure of the happens-before and DATADEP relations and

use happens-before to filter false dependencies from DATADEP. Finally, the forward (resp. back-

ward) dependency analysis on some statement s is the forward closure from s of the combination

of the control- and data-dependency relations, often called the slice [124].

4.3.3 Redundant Path Pruning

The second important component of the new incremental analysis is the pruning of executions that

have already been explored. This section explains how to reuse the predicate summaries in the

new program P ′ to prune away redundant executions whereas the computation of the predicate

summaries in P is in Section 3.3.

First, the symbolic execution of P stores the predicate summaries [61] of all the explored exe-

cutions in a table denoted PS, where each entry PS[s] stores a logical formula that represents all

explored executions (suffixes) starting from s. Then, during the symbolic execution of P ′, Conc-

iSE leverages the backward analysis result to decide if the summaries can be carried over to P ′.

56 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

Reusing the Execution Summaries

Prior to using the summary table computed in P in the new program P ′, Conc-iSE checks if recent

code changes have invalidated some of these summaries. If the answer is no, Conc-iSE can safely

reuse them to prune away redundant executions in P ′. For example, in Figure 4.5, since the only

change is at Line 1, i.e., from if (x>0) to if (x>=0), the weakest precondition computation is

not affected at all other nodes except for n1. In other words, Conc-iSE can reuse the previously

computed summaries at all the other nodes.

The method for leveraging the summaries to prune away redundant executions lays at Lines 13–14

and Lines 19–20 in Algorithm 3. Here, pcon represents the set of forwardly reachable states along

the current execution, while ¬PS[s] represents the set of states that may lead to some previously

unexplored errors. If the intersection is empty, however, there is no need to continue the current

execution beyond s. In the actual implementation, the validity of (pcon =⇒ PS[s]) is decided

by checking the satisfiability of its negation, (pcon ∧ ¬PS[s]), which can be solved efficiently by

existing SMT solvers.

To demonstrate the advantages of Conc-iSE over existing techniques, I apply it a motivating exam-

ple used in the DiSE [100] paper, called WBS, which has been used to showcase the pruning power

of the DiSE tool. Since DiSE was designed for sequential programs, the WBS example, shown

in Figure 4.7, is also a sequential program. Nevertheless, Conc-iSE can handle it as a concurrent

program with a single thread.

In the WBS example, there is only one code change at Line 2, where the guard is changed from

(PedalPos == 0) to (PedalPos <= 0). The red rounded rectangles represent the impacted Control

Flow Graph (CFG) nodes in P ′, while the white rounded rectangles (except nbegin and nend) repre-

sent nodes that are not impacted by the change. The baseline symbolic execution procedure needs

4.3. THE INCREMENTAL APPROACH 57

1: int AltPress:=0; Meter:=2
procedure UPDATE(int PedalPos, int BSwitch, int
PedalCmd)

2: if PedalPos<=0 then //(modified)
3: PedalCmd += 1
4: else if PedelPos == 1 then

5: PedalCmd += 2
6: else PedalCmd = PedalPos

7:

8: PedalCmd = PedalCmd + 1
9:

10: if BSwitch == 0 then

11: Meter = 1
12: else if BSwitch == 1 then

13: Meter = 2
14:

15: if PedalCmd == 2 then

16: AltPress = 0
17: else if PedalCmd == 3 then

18: AltPress = 1/4
19: else AltPress == 1/2

n2: PedalPos ≤ 0

nbegin

n3: PedalCmd += 1 n4: PedalPos == 1

n5: PedalCmd += 2 n6: PedalCmd = PedalPos

n8: PedalCmd = PedalCmd + 1

n10: BSwitch == 0

n11: Meter = 1 n12: BSwitch == 1

n13: Meter = 2

n15: PedalCmd == 2

n16: AltPress = 0 n17: PedalCmd == 3

n18: AltPress = 1/4 n19: AltPress = 1/2

nend

n2: modified

true false

true false

true false

true

false

true false

true false

Figure 4.7: The WBS example taken from DiSE [100].

to explore all twenty-one paths whereas DiSE only needs to explore seven paths (Table 4.1), due to

the reduction based on its forward impact analysis. That is, the change at node n2 does not impact

the nodes n10, n11, n12 and n13.

Table 4.1: Comparing the paths explored by DiSE and Conc-iSE.

π Explored by DiSE Explored by Conc-iSE

1 {n2, n3, n8, n10, n11, n15, n16} partial (up to n3)
2 {n2, n3, n8, n10, n11, n15, n17, n18} skipped
3 {n2, n3, n8, n10, n11, n15, n17, n19} skipped
4 {n2, n4, n5, n8, n10, n11, n15, n16} partial (up to n4)
5 {n2, n4, n5, n8, n10, n11, n15, n17, n18} skipped
6 {n2, n4, n5, n8, n10, n11, n15, n17, n19} skipped
7 {n2, n4, n6, n8, n10, n11, n15, n16} skipped

However, there is still redundancy among the seven executions explored by DiSE. As shown in the

third column of Table 4.1, certain common subpaths are explored repeatedly. For example, {n8,

n10, n11, n15, n16} is an already-explored subpath in π1 but it is re-explored in π4 and π7, also, {n10,

58 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

n11, n15, n17, n18} is an already-explored subpath in π2 but it is re-explored in π5, and {n10, n11,

n15, n17, n19} is an already-explored subpath in π3 but it is re-explored in π6. In contrast, Conc-iSE

can reduce the seven executions further down to two executions (Column 3 in Table 4.1).

Table 4.2: Execution summaries computed for P in Conc-iSE.

Entry Summary

PS[n19] true

PS[n18] true

PS[n17] ((PedalCmd==3)∧PS[n18])∨((PedalCmd 6=3)∧PS[n19])
= true

PS[n16] true

PS[n15] ((PedalCmd==2)∧PS[n17])∨((PedalCmd 6=2)∧PS[n17]))
= true

PS[n13] = PS[n15][2/Meter] = true

PS[n12] ((BSwitch==1)∧PS[n15])∨((BSwitch 6=1)∧PS[n15]) = true

PS[n11] = PS[n15][1/Meter] = true

PS[n10] ((BSwitch==0)∧PS[n11])∨((BSwitch 6=0)∧PS[n12]) = true

PS[n8] = PS[n10][(PedalCmd + 1)/PedalCmd] = true

PS[n6] = PS[n8][PedalPos/PedalCmd] = true

PS[n5] = PS[n8][(PedalCmd + 2)/PedalCmd] = true

PS[n4] ((PedalPos==1)∧PS[n5])∨((PedalPos 6=1)∧PS[n6]) = true

PS[n3] = PS[n8][(PedalCmd + 1)/PedalCmd] = true

PS[n2] ((PedalPos ≤0)∧PS[n3])∨((PedalPos>0)∧PS[n4]) = true

Specifically, during the symbolic execution of the old program P , the predicate summaries at n17,

n15, n10, n4 and n2 are incrementally constructed, and Table 4.2 shows the summary table of P in

terms of these locations.

Then, in the symbolic execution of the new program P ′, Conc-iSE first applies the forward change-

impact analysis for the modification in Line 2 (which is the same as in DiSE), and then apply the

backward change-impact analysis, which indicates that the summary is invalid only at node n2

(immediately before Line 2); for all other nodes, Conc-iSE can safely reuse the summaries since

these nodes are not in the backward slice of n2.

By checking the validity of pcon[s] =⇒ PS[s] for the nodes s 6= n2 during the execution,

Conc-iSE reduces the seven runs further down to two partial runs.

The execution on P ′ starts by visiting n2. As the summary at n2 is invalid, since it is in the

backwards impacted-set, the execution continues exploring without checking the summary. Con-

4.4. EVALUATION 59

sider that the true branch of n2 is first selected; execution proceeds until reaching the next assign-

ment statement at n3. Noticing that the summary at n3 is still valid and (pcon[n3] ∧ ¬PS[n3]) =

(PedalPos≤0)∧ ¬true = false, the execution stops here, generates the first partial run {n2, n3}, and

backtracks to n2.

Next, the false branch of n2 is selected and the execution runs until the following branch statement

at n4. As (pcon[n4] ∧ ¬PS[n4]) = (PedalPos>0)∧ ¬true = false, then the execution also stops and

generates the second partial run {n2, n4} before backtracking to n2. Since the two outgoing edges

of n2 have been explored and n2 is the entry of the program, the whole execution on P ′ terminates.

Therefore, the two runs explored by Conc-iSE are π1 ={n2, n3} and π4 ={n2, n4}, as shown in

Column 3 of Table 4.1.

4.4 Evaluation

Conc-iSE builds upon the LLVM compiler [82] and the Cloud9 [38] symbolic execution engine.

Cloud9 relies on KLEE [23] as the backend. I extended Cloud9 to soundly support POSIX threads;

the original implementation only coarsly considered different interleavings at synchronization op-

erations. In contrast, the baseline symbolic execution procedure in Conc-iSE schedules threads

at a finer granularity (e.g., the memory accesses) and ensures that all interleavings are systemat-

ically explored. Furthermore, I have implemented the dynamic partial-order reduction (DPOR)

algorithm [51], which Cloud9 does not originally support.

In addition, I have implemented the forward and backward change impact analysis to provide

guidance to the incremental symbolic execution algorithm. The implementation of the change-

impact analysis follows on the construction of program dependence graphs similar to [49] and [68].

60 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

The change-impact analysis also contains a flow-insensitive pointer analysis capable of handling

multithreaded programs. The analysis is constraint-based and works on LLVM bitcode. The Z3’s

µZ [64] fix-point solver is used to compute the fix-point of the constraints.

To share the summary information between the symbolic execution of different program versions,

Conc-iSE uses the Memcached Distributed Cache as an external persistent storage. The summaries

are computed and encoded in KLEE KQuery formula format during the symbolic execution. After

executing the original program, summaries are serialized as binary sequences for Memcached

storage. Before running the new program, they are loaded into main memory and mapped to

the corresponding global control locations. Conc-iSE also has a summary renewal mechanism to

determine if the code changes have invalidated the summaries of some global control locations,

and reset these summaries to false if such situation happens.

4.4.1 Subjects and Methodology

Experiments are conducted on two sets of benchmarks. The first set consists of multi-threaded C

programs from the 2015 Software Verification Competition (SV-COMP) benchmarks [116] and C

programs from [48, 79]. The second set includes a collection of lock-free data structure applica-

tions (nbds-list, nbds-skiplist and nbds-hashtable) from [93]. Each of these benchmark programs

has between 50 to 2,500 lines of code, with a total of 34,219 lines. Each benchmark program is

first compiled to LLVM bitcode by Clang, before given to the symbolic execution engine.

For the C programs from [48, 79, 116], since there are no different versions of these programs

available online, I manually made three types of mutants to the programs, acting as modified,

deleted and added statements. For benchmark programs from [93], I studied the evolution history

of them from the code repository, and selected some real updates from the developer team as the

4.4. EVALUATION 61

changes to those programs.

4.4.2 Experimental Results

Table 4.3 summarizes the experimental results of the evaluation. The program name, version,

amount of changes, lines of code, and the thread number for each program are shown in columns 1–

5. Columns 6–11 compare the experimental performance of three different methods in terms of

the number of explored program runs as well as the total execution time. Full exploration de-

notes the baseline symbolic execution procedure introduced in Algorithm 1, while DPOR denotes

the baseline symbolic execution augmented with dynamic partial order reduction, and Incremental

denotes our new method, which augments the baseline procedure with dynamic partial order reduc-

tion, change-impact analysis, and summary-based pruning. The static analysis time and summary

computation time are also included in the execution time of Incremental method. All tests used a

maximum time threshold of 30 minutes.

The remainder of this section discusses the experimental results in more details, for the two re-

search questions:

1. How effective is the proposed Incremental technique?

2. How scalable is Conc-iSE? Can it handle realistic C programs?

First, two scatter plots in Figure 4.8 compares the experimental performance between Full Explo-

ration and Incremental. The x-axis of each scatter plot denotes the execution time (or number of

runs) of the baseline symbolic execution (Full Exploration), while the y-axis denotes the execution

time (or number of runs) of Conc-iSE (Incremental). In the scatter plots, each dot represents a

benchmark program, and the dots below the diagonal lines are the winning cases of Incremental.

Figure 4.8 shows that Incremental can significantly reduce the number of runs explored by sym-

62 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

Table 4.3: Experimental results of concurrent benchmarks.

Full DPOR CIA SCIA (new)

Name Version LOC # Changes Impacted (%) Threads # Runs Time (s) # Runs Time (s) # Runs Time (s) # Runs Time (s)

v1 65 1 0.0 924 16.6 48 0.8 1 0.3 1 0.3
v2 66 2 10.6 − >1800 142 2.0 142 2.2 22 0.9

fibbench v3 67 2 13.6 2 − >1800 628 12.1 628 12.0 34 2.4
v4 67 2 17.9 − >1800 3943 160.3 3943 161.4 39 2.5
v5 68 3 2.9 − >1800 1420 30.3 10 0.4 7 0.3

v1 68 1 8.8 749 14.2 106 1.8 106 1.7 38 0.9
v2 69 1 10.1 5838 370.1 208 3.5 208 3.4 81 1.6

account v3 70 3 14.3 3 1773 50.5 168 2.8 168 2.7 55 1.2
v4 70 1 6.6 1773 47.8 168 2.7 14 0.5 11 0.4
v5 71 2 6.6 13407 1642.4 325 5.3 11 0.4 9 0.3

v1 58 1 10.3 156 2.4 12 0.4 12 0.4 9 0.3
v2 59 2 11.9 1399 36.1 43 0.8 43 0.8 18 0.5

lazy01 v3 61 4 11.5 3 8313 624.1 71 1.2 71 1.2 18 0.5
v4 62 2 1.6 8313 625.3 71 1.1 2 0.3 2 0.1
v5 61 4 13.1 − >1800 211 3.1 179 2.5 26 0.6

v1 85 1 22.4 − >1800 729 29.6 729 30.5 33 20.3
v2 85 1 16.5 − >1800 81 2.5 5 0.4 5 0.4

indexer v3 86 2 23.3 2 − >1800 90 2.5 90 2.6 30 5.2
v4 87 2 2.3 − >1800 90 2.5 1 0.3 1 0.3
v5 88 2 22.7 − >1800 1314 41.2 1314 43.7 563 53.9

v1 59 1 5.1 191 2.7 36 0.7 1 0.2 1 0.3
v2 60 3 13.3 105 1.6 10 0.4 4 0.3 4 0.3

readreadwrite v3 63 3 12.7 3 728 13.7 34 0.7 34 0.8 20 0.5
v4 63 1 12.7 728 14.0 34 0.7 9 0.3 8 0.3
v5 67 5 19.1 5444 175.1 101 1.6 22 0.6 18 0.5

v1 65 2 9.2 88 1.4 37 0.7 37 0.7 12 0.4
v2 67 1 9.0 296 4.3 117 1.7 46 0.8 15 0.4

stateful01 v3 68 2 10.3 2 3267 120.8 675 11.4 327 4.8 22 0.5
v4 68 1 16.2 3267 119.6 675 10.1 675 9.9 71 1.0
v5 68 1 16.2 3267 121.3 675 8.9 675 8.9 42 0.7

v1 94 1 6.4 1190 17.8 38 0.7 34 0.6 30 0.5
v2 92 2 6.5 222 2.7 15 0.5 11 0.4 9 1.2

reorder v3 94 2 7.4 2 2903 72.1 61 1.2 38 0.7 28 0.5
v4 96 2 7.4 4698 176.1 125 1.9 125 1.9 32 0.7
v5 97 3 7.2 9557 273.1 68 1.2 53 0.9 39 0.8

v1 141 1 2.8 4862 286.8 101 1.6 7 0.3 7 0.3
v2 142 1 5.6 5878 298.4 148 2.2 148 2.4 79 1.3

twostage3 v3 141 2 5.7 3 2636 97.8 101 1.6 60 1.1 27 0.6
v4 141 1 7.1 2636 96.0 69 1.4 37 0.8 29 0.6
v5 141 1 5.1 2568 94.7 188 3.2 123 2.3 38 0.7

v1 73 1 20.5 − >1800 12473 171.3 2 0.3 2 0.3
v2 74 2 27.4 − >1800 13434 197.6 150 2.2 67 1.4

szymanski v3 73 1 20.5 2 − >1800 10180 136.7 73 1.3 61 1.1
v4 73 1 26.7 − >1800 14365 207.7 591 8.9 79 2.2
v5 73 1 20.0 − >1800 − >1800 73 1.3 61 1.2

v1 128 2 25.8 − >1800 2112 31.7 1739 25.1 287 8.7
v2 130 2 22.1 − >1800 2292 34.6 1133 16.4 223 6.4

bluetooth v3 130 1 22.3 2 − >1800 2324 35.3 1154 16.5 276 5.3
v4 131 5 38.2 − >1800 2617 40.6 2617 41.5 532 13.8
v5 133 3 39.1 − >1800 2437 38.5 2437 36.1 417 11.9

v1 115 1 26.9 52 0.9 52 0.9 52 0.9 32 0.8
v2 116 2 15.5 1077 19.7 277 4.1 277 4.1 68 3.3

circularbuf v3 116 1 6.9 2 3794 171.8 770 14.3 126 1.9 21 0.5
v4 118 2 15.3 3794 173.1 2916 105.6 462 7.4 46 1.5
v5 117 1 28.2 − >1800 924 17.8 924 18.1 102 3.3

v1 1168 5 9.2 − >1800 1724 433.9 501 223.3 422 136.1
v2 1624 3 1.9 − >1800 898 117.3 10 141.6 10 141.6

nbds-list v3 1626 4 5.2 2 − >1800 4660 701.6 503 102.9 503 103.2
v4 1887 5 3.5 − >1800 6007 698.9 35 90.7 14 80.4
v5 1885 3 5.0 − >1800 1304 160.7 198 73.2 175 53.1

v1 1734 2 10.3 − >1800 − >1800 1874 263.6 1266 202.7
v2 2095 2 3.0 − >1800 4645 228.0 284 61.6 180 56.5

nbds-skiplist v3 2095 2 3.2 2 − >1800 − >1800 299 61.9 223 59.9
v4 2100 3 0.4 − >1800 7508 266.3 5 48.3 5 48.2
v5 2101 1 2.5 − >1800 − >1800 550 65.6 417 56.3

v1 2234 1 0.3 − >1800 4818 218.6 9 170.1 9 169.5
v2 2322 2 8.6 − >1800 − >1800 2686 650.8 2686 632.6

nbds-hashtable v3 2375 2 7.3 2 − >1800 − >1800 1684 440.5 1453 416.1
v4 2418 2 2.7 − >1800 9474 730.8 612 258.8 431 190.3
v5 2422 2 4.6 − >1800 17556 1396.2 849 337.1 763 303.5

Total 34926 70585.0 17149.7 3478.4 2816.7

4.4. EVALUATION 63

bolic execution as well as the total execution time. And in many cases, Incremental can finish the

execution in seconds while the baseline algorithm does not stop after 30 minutes.

100 101 102 103
100

101

102

103

Runs (Full Exploration)

R
un

s
(S

C
IA

-n
ew

)

100 101 102 103
100

101

102

103

Time (s) (Full Exploration)
T

im
e

(s
)

(S
C

IA
-n

ew
)

Figure 4.8: SCIA (new) versus standard symbolic execution.

Second, the two scatter plots in Figure 4.9 compares between DPOR and Incremental. The goal is

to depict how much performance improvement can be achieved by Incremental over DPOR alone.

Similarly, the dots below the diagonal lines are the winning cases of Incremental.

100 101 102 103
100

101

102

103

Runs (DPOR)

R
un

s
(S

C
IA

-n
ew

)

100 101 102 103
100

101

102

103

Time (s) (DPOR)

T
im

e
(s

)
(S

C
IA

-n
ew

)

Figure 4.9: SCIA (new) versus DPOR-only symbolic execution.

Again, the Incremental method brings significant performance improvement compared to DPOR.

However, there are also some dots slightly over the diagonal lines, despite that they have the same

or a smaller number of runs. This situation comes from the additional computation overhead of the

64 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

static slicing, summary computation, as well as the summary-based pruning, that makes the total

execution slower than DPOR. But, overall, the runtime using SCIA versus DPOR alone is 83%

smaller.

It is worth pointing out that, while the Incremental method in Conc-iSE is able to bring a per-

formance improvement, it could also bring a drastic reduction in the execution time compared to

DPOR alone. For instance, in nbds-list v2 (Table 4.3), Conc-iSE detects that the changes does

not impact any shared variable access. Then the execution process can quickly skip exploring the

whole state space and terminates after just one run.

100 101 102 103
100

101

102

103

Runs (CIA)

R
un

s
(S

C
IA

)

100 101 102 103
100

101

102

103

Time (s) (CIA)

T
im

e
(s

)
(S

C
IA

)

Figure 4.10: Comparing CIA versus SCIA.

Next, Figure 4.10 compares the two incremental approaches (CIA and SCIA). This comparison

shows the effect of reusing the predicate summaries. Similar to previous cases, sometimes the

summary based technique is not able to provide a significant reduction causing the runtime to

be slightly higher; this usually occurs when the backward impact analysis causes many useful

summaries to be removed. Nonetheless, on most cases the summary based technique is able to

have a significant reduction in the number of runs leading to a reduction in runtime.

4.5. CONCLUSION 65

4.4.3 Threats to Validity

Fundamentally, an incremental analysis is only applicable when the code modification affects a sub-

set of the entire program: if the entire program is modified then the incremental analysis degrades

to the non-incremental one. Conc-iSE is more suitable in a software development environment

where numerous small changes are made rather than monolithic changes. So, the manual modifi-

cations made during the experiments affected a subset of the entire program. The modifications

from nbds are developer made modifications. Overall, the modifications affected around 0.3% to

10.3% of the program. It remains to be shown if this reflects the majority of software development

scenarios.

Since Conc-iSE is expected to run frequently on small modifications there may be a large time

burden on developers. The problem of when to schedule tests is considered as an orthogonal

issue (e.g., Herzig et al. [63]). The tests on sequential programs are limited to one small example

which may not reflect typical sequential C programs. Additional replication over more sequential

programs would be required to see if the summary based technique is a good fit. Similarly, further

repetitions on more concurrent programs would be required to make stronger generalizations.

4.5 Conclusion

I have presented Conc-iSE, the first summary-based incremental symbolic execution algorithm for

concurrent programs. The new change-impact analysis in Conc-iSE is inter-procedural and thread-

safe, capable of more accurately identifying instructions affected from the code changes between

two program versions. I have also showed how execution summaries computed from the previous

program can be used to prune redundant runs during the symbolic execution of the new program.

66 CHAPTER 4. INCREMENTAL SYMBOLIC EXECUTION

I have implemented Conc-iSE and evaluated it on a large set of multithreaded C programs. The

experimental results show that Conc-iSE can significantly reduce the runtime cost of symbolic

execution compared to state-of-the-art techniques.

Chapter 5

Symbolic Execution of PLC Code

Programmable logic controllers (PLCs) are specialized computers for automating electro-mechanical

processes in a wide variety of industrial applications, including factory assembly lines, transporta-

tion systems, and smart power grids. PLCs are often equipped with domain-specific operating

systems and virtual machines for executing software code written in programming languages such

as Structured Text (ST), Ladder Diagram (LAD), and Sequential Function Chart (SFC). Since PLC

software control critical infrastructures (e.g., the SCADA systems), design defects or implementa-

tion bugs may lead to catastrophes. However, despite the already widespread use of PLCs, auto-

mated testing tools are still lacking. In this work, we fill the gap by developing the first symbolic

execution based tool for automatically testing PLC software.

Although symbolic execution has been applied to many programming languages, prior to this work,

it has never been applied to multitask PLC software code. One reason is that PLC software are

written in specialized and somewhat archaic languages that differ from mainstream programming

languages, thus lacking open-source development tools. Another reason is that PLC software are

periodic programs that often do not terminate, and they involve multiple tasks running concurrently

67

68 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

with respect to each other. Tasks may own different levels of priorites, where tasks with higer prior-

ities could preempt low-priority tasks. Thus, precise modeling of this non-conventional execution

semantics is difficult.

In this work, I solve the problems by leveraging an open-source PLC compiler named Matiec [87]

and the symbolic execution tool Cloud9 [38].

5.1 Introduction

First, I leverage Matiec to translate each PLC task from the original language (e.g., ST) to C. The

C code is functionally-equivalent in that each of its program paths has a corresponding path in the

original PLC task, which ensures that tests generated from the C code can be mapped back to the

PLC. Second, I synthesize a test harness (i.e., the main() function in C) to invoke PLC tasks as

threads. Threads are further constrained to precisely model the priority-based preemptive schedul-

ing as defined in the PLC program semantics. Finally, I extend Cloud9 to symbolically execute

the multithreaded C model. The new symbolic execution procedure systematically generates test

cases to cover both paths of each periodic task and interleavings of these tasks.

Figure 5.1 shows the overall flow of the new method SYMPLC, where P denotes the PLC program,

and the translation from P to C is implemented in the Matiec PLC compiler. The new symbolic

execution procedure based on Cloud9 produces test cases of the form (in, sch), where in denotes

the input data and sch denotes the interleaving schedule. Since Cloud9 only supports coarse-

grained thread scheduling, I extended it to execute multithreaded C code at a finer granularity.

Furthermore, I develop several PLC-specific reduction techniques that leverage the periods and

priorities of tasks as well as visited states to efficiently pruning redundant interleavings. Since

these redundant interleavings are due to PLC-specific program semantics, they cannot be removed

5.1. INTRODUCTION 69

by state-of-the-art partial order reduction (POR) techniques [51].

PLC Program (P)
and Properties

Modeling
in C

Adding
Test Harness

and Constraints

Current Input
(in, sch)

PLC Symbolic
Execution

based on KLEE

Generate New
Test Input

Redundancy
Pruning

(period, priority,
stateful)

Figure 5.1: The overall flow of SYMPLC.

One advantage of SYMPLC as a software tool is the flexibility resulted from its separation of the

modeling and analysis phases. In the modeling phase, it focuses on capturing the precise seman-

tics of PLC programs written in various languages by constructing the functionally-equivalent C

model. Each PLC language may be handled by a dedicated front-end; multiple front-ends may be

developed without interfering each other. Eventually, PLC tasks, regardless of which languages

they were written in, are merged into the same C model that simulates the preemptive scheduling

using threads. In the analysis phase, it focuses on executing the multithreaded C model as effi-

ciently as possible, without worrying about complications of the PLC languages. Thus, the overall

architecture allows SYMPLC to easily support new languages and new PLC execution platforms.

Another advantage of SYMPLC is the efficiency resulted from the PLC-specific interleaving reduc-

tion techniques. Since these new techniques are designed specifically for the PLC task scheduling,

they are more effective than generic partial order reduction (POR) techniques. The experiments

show POR is often ineffective for removing redundant executions in PLC programs due to their

semantic differences from thread interleavings. For example, in standard multithreaded programs,

two threads with the same priority level are allowed to preempt each other, whereas in PLC pro-

grams, they are not allowed to preempt each other. Furthermore, PLC tasks are executed periodi-

70 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

cally, which means they never terminate. The new reduction techniques in SYMPLC are designed

to take advantage of these unique characteristics.

SYMPLC is a test input generation tool. As such, it differs from existing tools for simulating, veri-

fying, or synthesizing PLC software. Specifically, simulators [25, 77, 97] can execute PLC code in

controlled environments, but they require the users to handcraft test inputs. In contrast, SYMPLC

automatically generates these inputs. Verification tools [47, 80, 96] are designed to formally prove

the correctness of properties in models of PLC software, but these formal models are at a much

higher level of abstraction than the actual software code. In contrast, SYMPLC directly executes

the actual PLC code. Synthesis tools [33, 34] have the ambitious goal of generating PLC code

directly from formal specifications, thus bypassing the programmers completely. However, these

tools only synthesize small programs with single tasks due to scalability problems. In comparison,

SYMPLC is more scalable and can uniformly handle both single- and multi-task PLC programs.

In conclusion, I make the following contributions:

• I propose the first symbolic execution based method for automatically testing PLC software

written in languages of the IEC 61131-3 standard, by first translating the original PLC tasks

to C code and then applying symbolic execution to generate the test inputs.

• I propose a number of PLC-specific reduction techniques for eliminating redundant interleav-

ings, which are more effective in reducing the interleaving search space than state-of-the-art

POR techniques.

• I implement the new methods and experimentally evaluate them on a set of PLC programs

to show SYMPLC’s efficiency and effectiveness in detecting property violations.

5.2. MOTIVATION 71

5.2 Motivation

In this section, I use examples to illustrate bugs in PLC programs and explain why SYMPLC is

necessary to detect them.

5.2.1 Single-task PLC Programs

Figure 5.2 shows three PLC programs that implement a two-player game named Responder [31],

where I0.0, I0.1 and I0.2 are inputs from the game host and two players, while Q0.0 and Q0.1 are

outputs for the players. The program consists of two sections: CONFIGURATION and PROGRAM.

The CONFIGURATION section declares global variables and allocates resource (CPU) to a task.

For example, Task T1 is started every 10 milliseconds and each time it executes an instance named

Game of the program ProgA. The actual code of ProgA, provided in the PROGRAM section, has

two statements. The first statement at Line 12 reads from I0.0, I0.1, Q0.0, and Q0.1 and then

computes the new value for Q0.0, while the second statement computes the new value for Q0.1.

Initially, all inputs, outputs, and global variables are set to false. The host starts the game by setting

I0.0 to true. Then, the players try to respond as quickly as possible by setting their inputs to true.

If the first player is faster, its output Q0.0 becomes true, indicating she has won. But if the first

player is slower, the second player’s output Q0.1 becomes true. After a player’s output becomes

true, it should remain true until the host sets I0.0 back to false.

The program in Figure 5.2 (a) is buggy because, when both players respond at the same time, the

program is not able to set both outputs to true (indicating a tie). Instead, it is biased toward the first

player – since the PLC program is executed sequentially, i.e., one line after another, Q0.0 will be

set to true first, which prevents Q0.1 from being set to true subsequently.

72 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

1 CONFIGURATION PLC_Cell1

2 VAR_GLOBAL

3 I0.0: BOOL; I0.1: BOOL; I0.2: BOOL;

4 Q0.0: BOOL; Q0.1: BOOL;

5 END_VAR

6 RESOURCE CPU_Responder ON CPU001

7 TASK T1 (INTERVAL := t#10ms, PRIORITY := 1);

8 PROGRAM Game WITH T1 : ProgA;

9 END_RESOURCE

10 END_CONFIGURATION

11 PROGRAM ProgA

12 Q0.0 := (I0.1 OR Q0.0) AND (NOT Q0.1) AND I0.0 ;

13 Q0.1 := (I0.2 OR Q0.1) AND (NOT Q0.0) AND I0.0 ;

14 END_PROGRAM

15

(a) The initial (buggy) implementation

1 VAR_GLOBAL

2 ...; M0.0: BOOL; M0.1: BOOL;

3 END_VAR

4 ...

5 PROGRAM ProgA

6 M0.0 := (I0.1 OR Q0.0) AND (NOT Q0.1) AND I0.0 ;

7 M0.1 := (I0.2 OR Q0.1) AND (NOT Q0.0) AND I0.0 ;

8 Q0.0 := M0.0;

9 Q0.1 := M0.1;

10 END_PROGRAM

11

(b) Revised but still buggy implementation

1 PROGRAM ProgA

2 M0.0 := (I0.1 AND (NOT Q0.1) OR Q0.0) AND I0.0 ;

3 M0.1 := (I0.2 AND (NOT Q0.0) OR Q0.1) AND I0.0 ;

4 Q0.0 := M0.0;

5 Q0.1 := M0.1;

6 END_PROGRAM

7

(c) The correct implementation

Figure 5.2: Three implementations of the PLC Responder in ST.

To fix this bug, developers could introduce two auxiliary global variables M0.0 and M0.1 as

shown in Figure 5.2 (b), to buffer the temporary outputs before assigning them to Q0.0 and Q0.1,

respectively. Thus, setting M0.0 to true does not prevent M0.1 from becoming true. Indeed, when

the two players respond at the same time, both outputs will be set to true.

Unfortunately, the revised program is still faulty. Assume that both outputs have been set to true

at the end of the first task execution because two players responded concurrently. Since task T1

executes periodically, during the next task execution, Q0.1 being true will force Q0.0 to become

false, and Q0.0 being true will force Q0.1 to become false. Thus, both outputs become false at the

5.2. MOTIVATION 73

end of the second execution, which is not expected. Recall that the expected behavior is that both

outputs remain true, until the host ends the game.

To fix the second bug, developers may have to revise the code to what is shown in Figure 5.2 (c).

Compared with the program in Figure 5.2 (b), the modification is actually minor – by simply

enlarging the scope of the two logical-OR operators to include Q0.0 and Q0.1. Because of this

modification, after Q0.0 and Q0.1 become true, they will remain true during all subsequent ex-

ecutions of T1 regardless of the new input data, until the host ends the game by setting I0.0 to

false.

These three examples show that even a simple PLC program with a single task may have sub-

tle bugs in its implementation due to the non-conventional program semantics. Thus, automated

testing tools such as SYMPLC would be invaluable.

5.2.2 Multi-task PLC Programs

Figure 5.3 shows a two-task PLC program which implements a simplified version of the robotic

controller from [26]. The RESOURCE section contains the two tasks, both of which are assigned to

the device CPU001. Task T1 has a shorter period (100ms) and a higher priority, while task T2 has

a longer period (200ms) and a lower priority. In PLCs, tasks with higher priorities may preempt

low-priority tasks, but not vice versa. Assume tasks never miss their corresponding deadlines,

then implicitly, the timing constraint is that T1 finishes its execution within 100ms and T2 fin-

ishes within 200ms. Furthermore, the two tasks are associated with programs ProgA and ProgB

defined below.

The PROGRAM sections provide the source code of the tasks, which share two global variables. In

addition, ProgA reads from the input variable Sensor_input, whereas ProgB does not read

74 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

1 CONFIGURATION PLC_Cell2

2 VAR_GLOBAL

3 Obstacle : BOOL := 0; Forward : INT := 50;

4 END_VAR

5 RESOURCE CPU_main ON CPU001

6 TASK T1 (INTERVAL := t#100ms, PRIORITY := 1); //High

7 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //Low

8 PROGRAM Fast WITH T1 : ProgA;

9 PROGRAM Slow WITH T2 : ProgB;

10 END_RESOURCE

11 END_CONFIGURATION

12
13 PROGRAM ProgA

14 VAR_INPUT

15 Sensor_input : INT;

16 END_VAR

17 Obstacle := 0;

18 IF (Sensor_input <= 10) THEN

19 Obstacle := 1;

20 Forward := -100;

21 END_IF;

22 END_PROGRAM

23
24 PROGRAM ProgB

25 IF (Obstacle = 0) THEN

26 Forward = 100;

27 END_IF;

28 END_PROGRAM

29

Figure 5.3: A Multi-task PLC Program in Structured Text.

from any primary input.

ProgA is responsible for obstacle detection, e.g., by setting Forward to the reverse speed -100

when the value of the input Sensor_input indicates an obstacle ahead. ProgB computes the

forward speed of the robot if no obstacle is detected. Thus, both tasks may write to the variable

Forward (Lines 20 and 26). The race condition would cause a problem in the following scenario:

• T1 runs first and Sensor_input is greater than 10;

• T1 finishes its first execution of ProgA;

• T2 starts and proceeds to the statement at Line 26, then it is preempted by T1 before writing

to Forward;

• T1 detects an obstacle and sets Forward to -100, and finishes its second execution of

5.2. MOTIVATION 75

ProgA;

• T2 continues the execution of ProgB.

At this moment, the value of Forward is -100, and should have remained -100, but ProgB

overwrites it to 100 as illustrated by Figure 5.4. The erroneous value is not expected, and may

result in the robot hitting the obstacle.

Obstacle := 0
Forward := 50

0ms 100ms 200ms

Sensor_input > 10

Obstacle := 0

Sensor_input ≤ 10

Obstacle := 1
Forward := -100

Forward := 100

Figure 5.4: The task interleaving that fails the assertion.

Note that detecting the kind of bug shown in Figure 5.4 is not easy, since it requires a combination

of the right input data (Sensor_input being > 10 in the first execution of ProgA and ≤ 10

in the second execution of ProgA) and task interleaving (ProgB is preempted by the second

execution of ProgA right before the write to Forward). Although in practice, simulators may

be used to reproduce this bug after it is detected, the users are required to handcraft the error-

triggering input data in the first place, which is difficult. Furthermore, simulators do not have the

capability of systematically exploring the space of task interleavings. In contrast, SYMPLC solves

the problem by automatically exploring the combined input and interleaving space. Thus, given

the source code of this PLC program, SYMPLC will generate not only the failure-triggering test

data but also the corresponding task schedule.

76 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

5.3 Modeling PLC Program Semantics

SYMPLC first translates PLC tasks to equivalent C code, and then models their execution seman-

tics using threads.

5.3.1 Translating PLC Tasks to C

Variables. PLC programs have different variable types. For example, the keyword VAR_INPUT

defines read-only input variables, VAR_OUTPUT defines output-only variables, and the type

VAR_EXTERNAL defines the global variables. There are eight such usage types in IEC 61131-3

standard, all of which are mapped by SYMPLC to proper variables in the C program. The transla-

tion is mostly straightforward except for inputs, which require special handling.

Inputs. Variables such as sensor_i1 and sensor_i2 at Line 15 in Figure 5.5 are primary

inputs. They need to be fed a symbolic value every time the corresponding task is activated. This

is accomplished by calling the API function symplc_mk_symbolic, which returns a symbolic

value for the variable. SYMPLC applies value-range constraints over these symbolic values to

ensure that they always concretize to values allowed by their types. The use of symbolic values

simulates the fact that input data may be arbitrary.

Timers. The behavior of PLC timers is abstracted by treating the output of each timer invocation

as a symbolic variable: it is either true or false since both values are possible at run time. It ensures

that actions depending on different timer outputs are always covered. Although this modeling

approach may introduce potentially redundant test cases, it has the advantage of not missing any

valid test input. Furthermore, the redundant test cases may be eliminated by the new PLC-specific

reduction techniques implemented inside SYMPLC.

5.3. MODELING PLC PROGRAM SEMANTICS 77

1 bool Obstacle = 0; int Forward = 50;

2 void ProgA (int Sensor_input){

3 Obstacle = 0;

4 if (Sensor_input <= 10){

5 Obstacle = 1;

6 Forward = -100;

7 }

8 }

9 void ProgB (){

10 if (!Obstacle){

11 Forward = 100;

12 }

13 }

14 void thread1 () {

15 int sensor_i1, sensor_i2;

16 symplc_mk_symbolic(&sensor_i1, ...);

17 symplc_mk_symbolic(&sensor_i2, ...);

18 ProgA(sensor_i1);

19 //symplc_task_boundary();

20 ProgA(sensor_i2);

21 }

22 void thread2 () {

23 ProgB();

24 }

25 int main(void){

26 pthread_t t1, t2;

27 for (i=0; i<MAX_ITER; i++) {

28 //symplc_hyperperiod_begin();

29 pthread_create(&t1, 0, thread1, 0);

30 pthread_create(&t2, 0, thread2, 0);

31 //symplc_set_priority_n_period(t1, 1, 100);

32 //symplc_set_priority_n_period(t2, 2, 200);

33 pthread_join(&t1);

34 pthread_join(&t2);

35 //symplc_hyperperiod_end();

36 assert(Obstacle == (Forward == -100)); // property

37 }

38 }

39

Figure 5.5: The Multithreaded C Model of the ST Program.

Statements. The translation of PLC program statements from the ST language to C is straight-

forward because as a programming language, C is strictly more expressive than ST. Thus, any ST

statement in the original program can be expressed by a corresponding C statement. Furthermore,

since the number of built-in functions in ST (library functions) is fairly small, each of these func-

tions may be replaced by a corresponding C function. In our implementation, the translation from

ST code to C code is carried out by the Matiec PLC compiler, which has been designed to con-

forme to the popular IEC 61131-3 standard. In Figure 5.5, for example, the program statements of

the PLC robotic controller are translated into the C code at Lines 1-13.

78 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

5.3.2 Constructing the Test Harness

The test harness is the main() function that treats PLC tasks as threads and incorporates them to a

complete C program. In Figure 5.5, for example, the test harness consists of Lines 14-38. There are

two separate issues in simulating PLC tasks using threads. The first one is constructing a thread for

potentially multiple invocations of each task (Lines 14-24). The second one is using these threads

to simulate the periodic execution of PLC tasks (Lines 25-38).

It is always feasible to simulate PLC task interleaving semantics using threads because threads

have strictly more permissive interleaving semantics. That is, all possible interleavings allowed by

PLC tasks are included in the set of interleavings allowed by threads. However, threads may allow

certain interleavings that are not possible in PLCs. Thus, SYMPLC has to constrain the threads

in its C model to make the modeling of PLC tasks precise. Toward this end, the first step is to

construct all threads for a hyper-period.

Hyper-period. PLC tasks in the same program may have different periods. For instance, in the

running example, T1 has a period of 100ms and T2 has a period of 200ms. In this context, a

hyper-period is the least common multiplier of the periods of all tasks. Thus, the hyper-period of

the running example is 200ms. Clearly, within a hyper-period, T1 will be executed twice and T2

will be executed once. The reason why using the hyper-period is because timing-related program

behaviors repeat themselves after each hyper-period. Thus, focusing on analyzing the tasks within

each hyper-period is important. Furthermore, the hyper-period will be used to reduce the symbolic

execution cost. In the C model, I construct one thread for all the execution instances of each task in

a hyper-period. That is why in Figure 5.5, thread1() invokes ProgA twice, but thread2()

invokes ProgB only once.

Periodic execution. Next, SYMPLC construct a for-loop in the main() function to execute all

5.4. SYMBOLIC EXECUTION PHASE 79

threads concurrently. Each iteration of the for-loop corresponds to a hyper-period. The total num-

ber of iterations is bounded by a user-defined parameter MAX_ITER, since PLC programs in gen-

eral are non-terminating programs. Within each hyper-period, SYMPLC first creates the threads

and then set their parameters (period and priority). These parameters will be passed to the sym-

bolic execution engine to avoid exploring interleavings that are not allowed by the PLC program

semantics. As shown in Figure 5.5, SYMPLC uses special API functions to signal the boundary of

the hyper-period and boundaries of tasks within each thread.

Assertions. The assertion at the end of the hyper-period represents the property to be checked. In

PLC programs, developers may use the ASSERTION(. . .) keyword to specify a property. Such

assertions are translated into assertions in the C program straightforwardly. SYMPLC also allows

users to specify additional assertions, which are inserted at the end of the hyper-period (e.g., at

Line 36 in Figure 5.5). Assertions are reachability properties because each assert(c) may be mod-

eled as if(!c) ERROR, where ERROR is an error location. During symbolic execution, if any error

location is reached, the symbolic execution tool produces an error-triggering test case.

5.4 Symbolic Execution Phase

5.4.1 Multithreaded C Model for PLC

The multithreaded C model of a PLC program consists of a set of periodic tasks T = {T1, . . . , Tn}.

Each task Ti ∈ T, where 1 ≤ i ≤ n, denotes an instance of a PLC program within a hyper-period.

Consider the program named ProgA in Figure 5.5, which has two instances in a hyper-period

(Lines 18 and 20). In our C model, these two instances are considered as different tasks in T.

Tasks share a set GV of global variables. Each Ti also has a set LVi of local variables. In addition,

80 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

each Ti may read from a set PI of primary inputs. Thus, Ti can be viewed as a sequential program

that reads from primary inputs as well as global variables, updates the global variables, and com-

putes the outputs. Since tasks are executed periodically, in addition to being a sequential program,

each Ti has the following attributes:

• Ti.tid denotes the unique identifier of the task;

• Ti.priority denotes the priority level of the task;

• Ti.period denotes the execution period of the task within a hyper-period;

• Ti.startT denotes the starting time of task Ti’s current period;

• Ti.endT denotes the ending time of the task Ti’s current period.

Due to PLC’s non-conventional interleaving semantics, for any two tasks Ti and Tj , where i 6= j,

• if Ti.priority < Tj.priority , then Tj may preempt the execution of Ti at any time between

Ti.startT and Ti.endT , but Ti cannot preempt Tj;

• if Ti.priority = Tj.priority , neither task may preempt the other task.

This is different from the standard interleaving semantics of a multithreaded program, where

threads with the same priority are allowed to preempt each other.

The execution of task Ti leads to a sequence of events t1, . . . , tk. For ease of presentation, we

assume each event t ∈ Ti inherits all attributes of the task Ti including tid, priority, period, startT,

and endT. In other words, t.startT and t.endT are the expected start time and end time of the

period of the task Ti. In addition, SYMPLC introduces t.task to denote the task Ti that generates

the event t.

Some events in a PLC program are reads and writes of global variables, while others are compu-

tations over local variables. Local operations are further divided into branching statements e.g.,

if(c), and assignments lv = exp, where exp may be arithmetic computations, bit-string opera-

5.4. SYMBOLIC EXECUTION PHASE 81

tions, boolean operations, etc. Without loss of generality, we assume if(c) involves only local

variables, because if (exp(gv)), where gv ∈ GV, can always be replaced by lv = gv; if (exp(lv)),

where lv ∈ LVi is a newly added local variable and if (exp(lv)) involves only local variables. Thus,

during symbolic execution, SYMPLC only need to consider two types of events:

• interleaving schedule events, which perform context switches right before global reads and

writes;

• sequential computation events, which are either if (c) or assignments over local variables.

Only interleaving schedule events may affect the execution order of different tasks. Thus, we will

focus on analyzing them to identify redundant interleavings. In contrast, sequential computation

events are handled in the same way as in standard symbolic execution tools.

5.4.2 Overall Algorithm

Algorithm 5 shows the overall execution procedure of a multi-task PLC program, which builds

upon the baseline symblic execution Algorithm 1. For bravity, I omit the same part of the recursive

procedures and highlight the main differences.

Specifically, if s is an interleaving schedule node (right before a global read or write), SYMPLC is

invoked recursively to explore each possible schedule together with the subsequent events (Lines 7-

11). If s is a sequential computation node (local statement within a task), SYMPLC is invoked

recursively to explore each branch and assignment (Lines 5-6 and Lines 12-13, respectively). Upon

reaching the end of an execution (Lines 14-15), SYMPLC generates the corresponding test case

and backtracks from the current state.

Subroutine NextSymbolicState takes the current state s and the event t as input, and returns the

82 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Algorithm 5: Symbolic execution of a multi-task PLC program.
1 Initially: State stack S = ∅; Start Explore(s0) with the symbolic state s0.

2 Explore(State s)
3 begin
4 S.push(s);
5 if s is a b-PP node then
6 . . .
7 else if s is an i-PP node then
8 while ∃t ∈ s.enabled\s.done and ¬IsRedundant(s, t) do
9 Explore(NextSymbolicState(s, t)); // γ event (enhanced)

10 s.done← s.done ∪ {t};
11 end

12 else if s is other sequential computation node then
13 . . .
14 else
15 . . .
16 end
17 S.pop();
18 end

19 NextSymbolicState(State s, Event t)
20 begin
21 . . .
22 end

23 IsRedundant(State s, Event t)
24 begin
25 if t is redundant regarding the POR theory then
26 return true;
27 end
28 return false;
29 end

newly computed symbolic state s′ as output. Here we omit the details of this process since it

remains the same as in standard symbolic execution procedures in the literature.

The challenge is mitigating the combinatorial blowup associated with the interleaving schedule

events (Lines 8-11) because in the worst situation, the number of different interleaved executions

can be exponential in the number of global operations. Traditional techniques for mitigating the

interleaving explosion problem are based on partial order reduction (POR) [51], the main idea

of which is to group interleavings into a set of equivalence classes, and then pick a representa-

tive interleaving of each class while skipping the other (redundant) interleavings. In Algorithm 5,

this is implemented inside Subroutine IsRedundant . However, POR does not consider the addi-

5.5. PLC-SPECIFIC REDUCTIONS 83

tional interleaving constraints imposed by PLC tasks. As such, it is not effective in mitigating the

interleaving explosion problem in PLC programs.

5.5 PLC-specific Reductions

This section presents three new reduction techniques designed to take advantage of the unique

characteristics of PLC programs. Specifically, they are related to leveraging information from

(1) the priorities of tasks, (2) periods of tasks, and (3) previously visited program states during

symbolic execution.

Algorithm 6 shows the details of the first two reductions. The third reduction will be presented in

Section 5.5.3. Here the subroutine IsRedundant returns true if executing t from the state s is re-

dundant, either it is due to DPOR or infeasibility regarding the PLC interleaving semantics. Within

the current hyper-period, t′ is the last event chosen before reaching s (Line 7). The subsequent two

sections illustrate how these two types of reductions make use of t′ in more details.

5.5.1 Priority-based Reduction

In this new reduction, SYMPLC imposes three rules following the way PLCs schedule their tasks:

1. The active task with the highest priority must be scheduled to run before all other active tasks

whenever a hyper-period starts.

2. A running task can only be preempted by another running task with a strictly higher priority;

3. If a high-priority task starts before the period beginning of a low-priority task, there must be

no interleavings between these two tasks.

84 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Algorithm 6: Deciding if event t chosen at s is redundant.

1 IsRedundant(State s, Event t)
2 begin
3 if t is redundant regarding the POR theory then
4 return true;
5 end

6 // Priority-based reduction.
7 let t′ be the last event in S before reaching t;
8 if t′ is NULL then
9 if t.priority is not the highest in s.enabled then

10 return true;
11 end

12 else
13 if t is about to preempt t′ then
14 if t′.priority ≥ t.priority or t′.startT ≥ t.startT then
15 return true;
16 end

17 end

18 // Period-based reduction.
19 if t′.tid 6= t.tid then
20 if t′.endT < t.startT or t′.startT ≥ t.endT then
21 return true;
22 end

23 end
24 if t is the last event in t.task then
25 if ∃th, tl ∈ S that th.tid==t.tid and th preempted tl then
26 if ∃t′′ ∈ S that t′′.task interleaved with t.task and t′′.startT ≥ tl.endT then
27 return true;
28 end

29 end

30 end

31 end
32 return false;
33 end

Algorithm 6 formalizes these rules in Lines 8-17. First, when both high-priority task and low-

priority task are enabled and ready to run, the high-priority task should always run first. This

corresponds to the conditions at Lines 8-11: if t′ does not exist, it means t is the first event in the

current hyper-period. At this moment, the PLC must choose the highest-priority task to execute.

Thus, if t is not the highest-priority task, IsRedundant returns true.

On the other hand, if t′ exists and t is about to preempt t′, we first leverage the task priorities

to perform a reduction, and then leverage both the priorities and the periods to perform another

5.5. PLC-SPECIFIC REDUCTIONS 85

reduction. Specifically, SYMPLC checks two the following conditions at Line 14.

The first condition at Line 14 ensures that t has a strictly higher priority than t′, because PLCs only

allow high-priority tasks to preempt low-priority tasks. And tasks having the same level of priority

are not allowed to preempt each other. The second condition makes use of periods of the tasks.

Note that at this point, t’s priority is higher than that of t′. The condition checks if the (expected)

start time of the period of t is before the (expected) start time of the period of t′. If this is the case,

the interleaving is infeasible because the low-priority event t′ should not have occurred before t (it

should only be executed after the end of t’s period).

Consider the PLC program in Figure 5.3 again as an example, but with an important modification—

setting the INTERVAL of T1 to t#200ms instead of t#100ms. Since both tasks now need

t#200ms, the hyper-period becomes 200ms, meaning ProgA and ProgB are invoked once

each in the new threads thread1 and thread2, respectively. The control flow of these two new

threads are shown in Figure 5.6, where nodes are the global reads or writes and solid lines are the

control flows. Recall that the primary input Sensor_input is modeled as a symbolic variable,

thus allowing both branches immediately after the node 1 to be taken. In contrast, the branches

immediately after the node 4 depend only on the value of the global variable Obstacle.

If it were a standard multithreaded program, each thread would be allowed to preempt the other one

at the control flow nodes, thus leading to a total of 12 interleavings, as shown in the second and fifth

columns of Table 5.1, labeled All-Interleavings. Among them, the two interleavings marked with ⋆

would violate the assertion. After applying the DPOR algorithm, for example, eight interleavings

would remain while the other four would be removed. Specifically, 1-2-4-3 is removed because

it is equivalent to 1-2-3-4; 1-4-5-2-3 is equivalent to 1-4-2-5-3; 4-1-5 is equivalent to

4-5-1; and 4-1-5-2-3 is equivalent to 4-5-1-2-3.

However, applying SYMPLC’s new priority-based reduction would lead to significantly fewer in-

86 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

1 RESOURCE CPU_main ON CPU001

2 TASK T1 (INTERVAL := t#200ms, PRIORITY := 1); //High

3 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //Low

4 PROGRAM Fast WITH T1 : ProgA;

5 PROGRAM Slow WITH T2 : ProgB;

6 END_RESOURCE

7

Figure 5.6: The control flow graph of the modified program.

terleavings. In fact, only two interleavings would remain, which are shown by the red and blue

dotted lines in Figure 5.6. This is because, according to our second rule, all six interleavings in Col-

umn 2 except 1-4-5 and 1-2-3-4 are infeasible, because the low-priority task (T2) preempts

the high-priority task. Similarly, according to our first rule, all six interleavings in Column 6 are

infeasible, because when both T1 and T2 are active and ready to run at the beginning, the PLCs

would always choose to execute the high-priority task (T1).

Since the erroneous interleavings (4 and 10) are not explored by SYMPLC, and SYMPLC termi-

5.5. PLC-SPECIFIC REDUCTIONS 87

Table 5.1: Explored interleavings with priority-based reduction.

ID All-Interleavings DPOR SymPLC ID All-Interleavings DPOR SymPLC

1 1-4-5 X X 7 4-5-1 X

2 1-2-3-4 X X 8 4-1-5

3 1-2-4-3 9 4-1-2-5-3 X

4 ⋆ 1-4-2-3-5 X 10 ⋆ 4-1-2-3-5 X

5 1-4-2-5-3 X 11 4-1-5-2-3

6 1-4-5-2-3 X 12 4-5-1-2-3 X

nates after two hyper-periods (due to the termination condition to be presented in Section 5.5.3),

Then the validity of this assertion condition proves.

SYMPLC’s implementation uses an on-the-fly computation to decide whether the current inter-

leaving is feasible. Take the second rule as an example. Whenever an instruction accessing global

variables is interpreted in the symbolic execution engine, SYMPLC checks the priority of its task

against the operation history of current execution. If a preceding operation is from an active task

whose priority is higher than the current one, then the interleaving resulted from executing t at s

should be skipped. The first and the third rule are developed in a similar fashion.

In Figure 5.6, for instance, interleaving 4-5-1 is determined to be infeasible immediately after

the first node 4 is reached by SYMPLC, since the first rule is violated. Therefore, SYMPLC

backtracks from node 4 while skipping the interleavings numbered 8-12 entirely.

5.5.2 Period-based Reduction

SYMPLC develops two rules over task interleaving in this new reduction:

1. Two tasks are allowed to interleave when their expected execution periods overlap in time;

2. If a high-priority task Th preempts a low-priority task Tl, Th must not interleave with any

task whose period begin time is not earlier than the period end time of Tl.

88 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Algorithm 6 formalizes these rules at Lines 19-31. Recall that t.startT and t.endT are the expected

logical time when the period of t begins and ends (we are not concerned with the actual start time

and end time of t, except that they must fall within the period). Without these rules, any two

operations from different threads would have been allowed to execute concurrently in the same

hyper-period. However, since each task must meet its own deadline, some of them can never run

concurrently.

1 CONFIGURATION PLC_Cell1

2 RESOURCE CPU_main ON CPU001

3 TASK T1 (INTERVAL := t#100ms, PRIORITY := 1); //H-priority

4 TASK T2 (INTERVAL := t#200ms, PRIORITY := 2); //M-priority

5 TASK T2 (INTERVAL := t#300ms, PRIORITY := 3); //L-priority

6 PROGRAM Fast WITH T1 : ProgA;

7 PROGRAM Const WITH T2 : ProgB;

8 PROGRAM Slow WITH T2 : ProgC;

9 END_RESOURCE

10 END_CONFIGURATION

Task T1

Task T2

Task T3

Hyper-Period

0 100 200 300 400 500 600 ms

C1 C2

B1 B2 B3

A1 A2 A3 A4 A5 A6

Figure 5.7: Three periodic tasks with a hyper-period of 600ms.

Consider the program in Figure 5.7 as an example, which has three tasks T1, T2 and T3 with

periods 100ms, 200ms and 300ms, respectively. Thus, the hyper-period is 600ms, allowing T1 to

execute six times, T2 to execute three times, and T3 to execute twice. For ease of presentation, let

the six instances of T1 be denoted from A1 to A6, the three instances of T2 be denoted from B1 to

5.5. PLC-SPECIFIC REDUCTIONS 89

B3, and the two instances of T3 be denoted C1 and C2.

Without the timing-related information, symbolic execution would have to explore all possible

interleavings of these tasks, including the obviously infeasible ones between A1 and B2, for exam-

ple, which do not overlap in time. These infeasible interleavings will be removed by applying our

reduction rules.

SYMPLC first compare the task IDs of t′ and t in Algorithm 6 – different IDs means they belong to

different tasks. The next rule at Line 19 is straightforward, since interleavings cannot occur if the

two tasks do not overlap in time. In the running example, the period of A1 is [0ms, 100ms] while

the period ofB2 is [200ms, 400ms]. Obviously, events in A1 do not occur concurrently with events

in B2. Similarly, the periods of B3 and C1 do not overlap. Both of these two cases are handled by

the conditions at Lines 20 of Algorithm 6.

The second rule (Lines 24-30) is more subtle because the infeasible interleavings are deduced via

a preceding interleaving, based on both periods and priorities of involved tasks. As shown in

Figure 5.7, the period B2 is expected to start before A4. Thus, it appears that A4 may interleave

with B2. However, if B2 preempts C1 in a particular execution, then B2 must end before the end of

the period of C1, to allow C1 to meet its deadline. Since B2 would have ended before the start of

the period of A4, it cannot run concurrently with A4. Thus, in this particular example, A4 and B2

can no longer interleave.

This example also illustrates the third priority-based reduction rule (Line 14) proposed in Sec-

tion 5.5.1: A3 starts from the 200ms, while the earliest time B2 can start is 200ms. Since T1 has

a higher priority, and A3 starts earlier than B2, the execution of A3 cannot be interrupted by B2.

Thus, any interleaving between them is guaranteed to be infeasible.

90 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

5.5.3 Stateful Exploration

Algorithm 7: Next state computation with stateful reduction.
1 NextSymbolicState(State s, Event t)
2 begin
3 . . .

4 if t is halt then
5 s′ ← normal_end_state;
6 else if . . . then
7 . . .
8 else if t is plc_hyperperiod_end then
9 if s ⊆ visited then

10 s′ ← normal_end_state;
11 else
12 s′ ← s;
13 end

14 else
15 . . .
16 end
17 return s′;
18 end

Next is the state-based reduction. Recall PLC tasks are periodic and thus never terminate. Further-

more, symbolic execution by default is geared toward detecting bugs as opposed to proving the

correctness of properties. Thus, applying SYMPLC with a user-specified depth bound in general

will never prove the absence of bugs in a PLC program. However, information of already-visited

states may be leveraged to detect early-termination conditions. This allows SYMPLC to drastically

reduce the number of test cases, as well as prove the correctness of properties.

Algorithm 7 shows the modified subroutine NextSymbolicState in Algorithm 5 that implements

this method. At the end of each hyper-period, it checks if the new symbolic state s′ has been

visited previously. If the answer is yes, it returns the normal_end_state instead of s′ which forces

SYMPLC to backtrack immediately.

In general, the state of a PLC program is a valuation of all variables as well as program counters

(PC) of all tasks. However, since we are concerned with the program state only at the end of

a hyper-period (where all tasks have ended and local variables are out of the scope), only the

5.6. EVALUATION 91

valuation of global variables needs to be considered.

Let R be the set of all reachable states of a PLC program at the end of the hyper-period. Ideally,

SYMPLC should generate enough test cases to cover all states in R. Experiments show that, due

to the nature of these PLC programs, the termination condition can often be met after a few hyper-

periods. It also means SYMPLC should be designed to terminate as soon as the symbolic execution

procedure stops generating previously unexplored states.

Consider a benchmark program named IndustrialAuto4 from [33], which contains a state ma-

chine whose state variable, CSTATE6, may take a number of values. A brute-force application

of SYMPLC would result in exponentially many program paths as the number of hyper-periods

increases. For example, after five hyper-periods, the number of executions becomes 3176. In con-

trast, applying our new stateful reduction decreases the total number of executions down to 45.

Furthermore, since the symbolic execution procedure detects the early-termination condition after

3 hyper-periods, all unfalsified properties are considered to be formally proved.

5.6 Evaluation

5.6.1 Subjects and Methodology

I have implemented SYMPLC and evaluated it on 93 PLC benchmark programs, including 49

single-task programs and 44 multi-task programs. In total, they consist of 26,713 lines of ST

code, which translate to 62,926 lines of C code. Properties are expressed as assertions embedded

in the source code. During the experiments, I evaluated the execution time of SYMPLC as well

as its effectiveness in detecting property violations. I also compared the PLC-specific reduction

techniques with state-of-the-art POR techniques; for comparison, we implemented the DPOR al-

92 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

gorithm [51] in SYMPLC. The experimental results show that SYMPLC can efficiently generate

test cases for all benchmark programs, and for multi-task PLC programs, in particular, the new

reduction techniques significantly outperform the state-of-the-art POR technique.

I have implemented SYMPLC based on the Matiec PLC compiler [87] and the Cloud9 symbolic

virtual machine [38]. SYMPLC uses Matiec compiler to translate ST code of each PLC task to

ANSI C, and creates a test harness to incorporate these tasks. The resulting multithreaded C model

is then executed by the extended Cloud9, which uses KLEE [23] internally for symbolic execution.

SYMPLC extended Cloud9 to handle the PLC-specific program features.

I designed the experimental evaluation for the following research questions:

• Can SYMPLC efficiently handle both single-task and multi-task PLC programs? Is SYM-

PLC effective in detecting property violations as well as proving their correctness?

• Are the PLC-specific reduction techniques (stateful, period, and priority) effective in reduc-

ing the search space? Do they outperform state-of-the-art POR techniques?

For comparison purposes, I implemented the state-of-the-art dynamic partial-order reduction (DPOR)

algorithm [51] in SYMPLC to identify and remove redundant interleavings.

I evaluated SYMPLC on two sets of benchmark programs. The first set consists of 49 single-

task PLC programs collected from various online sources [31, 33, 71]. The second set consists

of 44 multi-task PLC programs that implement several embedded controllers [26, 27]. Each PLC

program has 30 to 3,418 lines of ST code, which translate to 90 to 8,783 lines of C code. In

total, they consist of 26,713 lines of ST code, which translate to 62,926 lines of C code. The C

code is first compiled to LLVM bitcode and then symbolically executed by the modified Cloud9.

Correctness properties are expressed as assertions embedded in the programs. All experiments

execute on a desktop computer with 8 GB RAM and a 3.4 GHz CPU running Ubuntu 12.04 Linux.

5.6. EVALUATION 93

5.6.2 Results on Single-task PLC Applications

Table 5.2 shows the experimental results on single-task PLC programs. Since each hyper-period

has one task, the number of iterations is the same as the number of tasks executed. Here Columns 1–

3 present the program name, the number of lines of original ST code, and the number of lines of

generated C code of each benchmark. Columns 4-8 show the detailed results of SYMPLC, in-

cluding the maximum number of iterations reached (#.Iter), whether stateful reduction detected

convergence (Conv), the number of tests generated, execution time in seconds, and the instruc-

tion coverage (#.ICov). The last three columns show the assertion checking results, including the

number of undecided, falsified, and proved assertions.

If SYMPLC finds an execution that fails an assertion, the assertion is falsified. If SYMPLC does

not find such an execution before reaching early termination, the assertion is proved. Otherwise,

the assertion remains undecided.

Traditionally, symbolic execution is understood as a technique more suitable for falsifying asser-

tions than proving their correctness. That is why results in Table 5.2 are a pleasant surprise: since

our stateful reduction is effective in detecting early-termination conditions, SYMPLC can prove

154 assertions (in addition to falsifying 34 assertions). As a result, there are only 18 undecided

assertions. In contrast, without stateful reduction, the total number of undecided assertions would

have been 172.

Furthermore, the number of iterations ranges from 2 to 14, indicating that repeatedly executing the

same PLC tasks after that many hyper-periods does not lead to new program states. Instead, the

main difficulty in testing these PLC programs resides in covering the input space – it is precisely

what symbolic execution is designed for.

The average Instruction Coverage for all benchmarks is 89.7%, which did not reach 100% even

94 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Table 5.2: Results of SYMPLC on single-task PLC programs.

Program
LOC

#.Iter Conv #.Tests Time (s) #.ICov (%)
Assertions

ST C Undet. Falsified Proved

G4LTL_ST1 470 1,249 5 Y 305 36.2 89.1 0 0 1

G4LTL_ST2 188 504 5 Y 316 13.2 87.5 0 0 1

G4LTL_ST3 111 252 6 Y 116 4.9 87.3 0 0 2

G4LTL_ST4 1,409 4,279 7 Y 1,498 140.2 44.5 0 1 1

G4LTL_ST5 321 855 5 Y 240 9.6 97.8 0 0 2

G4LTL_ST6 69 154 2 Y 67 2.5 98.5 0 2 1

G4LTL_ST7 86 156 2 Y 272 1231.9 78.2 0 0 1

G4LTL_ST8 488 1,661 8 Y 368 16.3 74.4 0 0 5

G4LTL_ST9 577 914 10 Y 686 69.7 92.6 0 1 1

G4LTL_ST10 257 435 6 Y 354 27.8 99.8 0 1 2

IndustrialAuto1 45 145 2 Y 12 0.6 95.1 0 0 2

IndustrialAuto2 43 150 2 Y 10 0.5 95.5 0 2 2

IndustrialAuto3 206 379 4 Y 289 10.6 99.7 0 1 3

IndustrialAuto4 65 172 3 Y 45 1.7 98.9 0 0 3

IndustrialAuto5 105 273 3 Y 65 2.1 98.8 0 1 7

IndustrialAuto6 126 276 6 Y 25 1.0 84.1 0 0 9

IndustrialAuto7 126 275 5 Y 34 1.3 92.4 0 0 8

IndustrialAuto8 199 485 13 Y 55 3.1 60.0 0 0 11

IndustrialAuto9 2,444 8,291 14 Y 143 8.8 11.7 0 2 9

IndustrialAuto10 1,195 3,266 12 No 5,084 >3600 34.3 15 1 0

IndustrialAuto11 75 218 3 Y 23 0.9 97.8 0 0 8

IndustrialAuto12 1,580 3,781 6 Y 3,216 813.1 99.9 0 0 14

IndustrialAuto13 255 607 8 Y 130 4.9 61.5 0 1 6

IndustrialAuto15 3,418 8,783 8 Y 1,349 151.8 65.7 0 1 11

IEC-1 30 90 2 Y 6 0.4 83.2 0 0 1

IEC-2 53 135 2 Y 619 25.6 97.9 0 1 1

IEC-3 118 260 2 No 8,041 >3600 98.4 2 2 0

IEC-4 66 173 6 Y 216 9.1 92.5 0 0 3

IEC-5 32 72 2 Y 6 0.3 88.2 0 0 2

IEC-6 52 140 2 Y 306 9.9 98.0 0 0 1

IEC-7 173 474 3 Y 37 2.5 85.1 0 1 1

LD-Program1 89 136 3 Y 1,084 64.5 79.1 0 0 4

LD-Program2 336 403 2 No 10,508 >3600 67.0 1 0 0

LD-Program3 92 135 11 Y 231 10.3 99.6 0 1 1

LD-Program4 110 150 2 Y 601 29.9 74.9 0 1 2

Mixer 181 251 4 No 5,088 >3600 88.6 0 2 0

Evaporator 178 238 2 Y 287 11.9 81.7 0 1 3

Hydraulic 118 128 2 Y 54 2.4 83.0 0 0 4

Safe 215 313 2 Y 1,724 199.5 92.0 0 0 2

Logic 234 322 2 Y 125 6.2 78.9 0 1 8

Lift 187 169 2 Y 160 8.1 71.6 0 0 2

Plastic 187 215 2 Y 360 22.6 75.1 0 0 2

Bargraph 126 143 4 Y 4,316 429.6 98.0 0 0 2

Jedyka 80 92 7 Y 132 4.5 99.5 0 2 0

Glowny 70 86 4 Y 62 2.1 93.5 0 2 1

IL-Tool 137 171 2 Y 362 20.4 99.2 0 1 2

Shutter 83 125 4 Y 643 49.6 94.3 0 3 0

Alarm 68 107 4 Y 326 22.4 99.5 0 1 1

Fountain 50 95 9 Y 339 28.7 99.6 0 1 1

Total 16,923 42,183 50,335 17,913 18 34 154

5.6. EVALUATION 95

for benchmarks that converged, apparently because some of these instructions are unreachable.

5.6.3 Results on Multi-task PLC Applications

This section analyzes the performance differences between non-stateful and stateful exploration

inside SYMPLC, and then compare the various interleaving reduction techniques.

Table 5.3 shows the results on multi-task PLC programs. Columns 1-3 present the program name

and statistics of the hyper-period, including the total number of tasks and global operations exe-

cuted in each hyper-period, because they are closely related to the complexity of the interleaving

exploration. Columns 4-9 show results of SYMPLC without stateful reduction, including the max-

imum number of iterations reached, the amount of generated test cases, the run time, and the

assertion checking results. Columns 10-15 show results of SYMPLC with stateful reduction. Here

the time bound is 10 minutes and the hyper-period iteration bound is also 10.

Since non-stateful SYMPLC cannot detect convergence, it does not prove properties. In contrast,

stateful SYMPLC can prove the correctness of properties. The results show that stateful SYM-

PLC only needed a few hyper-periods to detect convergence. In contrast, non-stateful SYMPLC

frequently timed out or generated more test cases (1.4 million versus 11K). Both two methods

detected 17 assertion violations, but stateful SYMPLC also proved 27 assertions, whereas non-

stateful SYMPLC did not.

Table 5.4 shows the result of comparing different interleaving reduction techniques. Here, KLEE

denotes the default symbolic execution algorithm in Cloud9 augmented with the capability of han-

dling threads. DPOR denotes the enhanced version of KLEE where I added the implementation

of dynamic partial order reduction. Among the three PLC-specific reductions, Period denotes

the period-based reduction technique, Priority denotes the priority-based reduction technique, and

96 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Table 5.3: Results of SYMPLC on multi-task PLC programs.

Program
Hyper-period Non-Stateful Stateful

#.Task #.Ops #.Iter #.Test #.Time
Assertions

#.Iter #.Test #.Time
Assertions

Und Fal Pro Und Fal Pro

nxt2.prog1 3 16 10 10 0.2 1 0 0 3 3 0.4 0 0 1

nxt2.prog2 3 16 10 1027 2.8 0 1 0 2 7 0.4 0 1 0

nxt2.prog3 5 27 10 59048 372.2 1 0 0 2 5 0.4 0 0 1

nxt2.prog4 7 37 10 59767 >600 1 0 0 2 5 0.4 0 0 1

nxt2.prog5 5 28 4 109,669 >600 0 1 0 2 43 0.7 0 1 0

nxt2.prog6 7 38 4 71,631 >600 0 1 0 2 43 0.8 0 1 0

nxt2.prog7 7 38 3 66,907 >600 1 0 0 2 91 1.4 0 0 1

nxt3.prog1 5 15 5 43,313 >600 1 0 0 3 24 0.6 0 0 1

nxt3.prog2 7 19 4 57,396 >600 0 1 0 2 93 1.2 0 1 0

nxt3.prog3 8 28 4 15,080 >600 1 0 0 2 20 0.8 0 0 1

nxtway01 6 42 5 41,629 >600 1 0 0 2 25 0.6 0 0 1

nxtway02 6 46 3 35,449 >600 0 1 0 3 149 2.4 0 1 0

nxtway03 9 62 3 33,809 >600 0 1 0 3 978 16.2 0 1 0

nxtway04 9 66 4 26,988 >600 0 1 0 2 575 10.4 0 1 0

nxtway05 6 38 9 11122 >600 1 0 0 3 11 0.6 0 0 1

nxtway06 6 34 4 46,580 >600 0 1 0 3 860 12.1 0 1 0

nxt.pi00 6 46 5 21,808 >600 0 1 0 2 55 1.2 0 1 0

nxt.pi01 6 46 4 23,348 >600 1 0 0 2 98 1.7 0 0 1

nxt.pi02 8 62 3 21,139 >600 0 1 0 2 368 6.5 0 1 0

nxt.pi03 5 38 4 25,406 >600 0 1 0 3 179 2.9 0 1 0

trans01 6 41 3 26,367 >600 0 1 0 3 502 7.9 0 1 0

trans02 6 41 6 498 >600 1 0 0 4 27 0.9 0 0 1

trans03 6 39 4 33,572 >600 0 1 0 5 2,638 38.7 0 1 0

trans04 6 41 4 29,326 >600 1 0 0 3 73 1.4 0 0 1

trans05 9 59 5 11582 >600 1 0 0 3 19 0.8 0 0 1

attend01 6 35 5 34,658 >600 1 0 0 4 64 1.2 0 0 1

attend02 6 42 3 32,932 >600 0 1 0 3 388 5.9 0 1 0

attend03 6 48 4 20,723 >600 1 0 0 2 119 2.3 0 0 1

attend04 6 39 4 23,537 >600 1 0 0 3 101 1.9 0 0 1

att4_01 7 40 3 23,655 >600 1 0 0 3 855 14.5 0 0 1

att4_02 7 33 4 32,505 >600 1 0 0 3 105 1.9 0 0 1

race01 6 47 3 21,990 >600 0 1 0 2 166 2.6 0 1 0

race02 6 38 5 17,730 >600 0 1 0 3 41 0.9 0 1 0

race03 9 63 3 14,960 >600 1 0 0 2 275 6.7 0 0 1

nobadmode01 6 34 4 22,915 >600 1 0 0 3 88 1.5 0 0 1

nobadmode02 7 45 4 10,840 >600 1 0 0 3 86 2.3 0 0 1

nobadmode03 6 52 3 14,051 >600 1 0 0 3 614 13.1 0 0 1

nobadmode04 6 51 5 12,666 >600 1 0 0 3 102 2.2 0 0 1

ctm01 7 123 7 47067 >600 1 0 0 9 131 2.2 0 0 1

ctm02 7 120 5 82,330 >600 1 0 0 4 178 2.5 0 0 1

ctm03 6 115 9 72,135 >600 1 0 0 5 82 1.2 0 0 1

aso_01 11 67 2 20,269 >600 1 0 0 2 438 12.4 0 0 1

aso_02 9 49 2 19,204 >600 1 0 0 2 90 2.9 0 0 1

aso_03 9 53 3 26,610 >600 0 1 0 2 452 9.4 0 1 0

Total 1,423,248 24,975 27 17 0 11,266 199 0 17 27

5.6. EVALUATION 97

Table 5.4: Results of comparing different reduction techniques.

Program KLEE [23] DPOR [51] PLC-specific Reductions

Period Priority Period+Priority

#. Test Time (s) #. Test Time (s) #. Test Time (s) #. Test Time (s) #. Test Time (s)

nxt2.prog1 43,960 >600 135 1.6 135 1.6 3 0.4 3 0.4

nxt2.prog2 44,200 >600 19 0.5 19 0.5 7 0.4 7 0.4

nxt2.prog3 44,595 >600 5,644 62.2 3,839 39.5 24 0.6 5 0.4

nxt2.prog4 45,683 >600 47,652 >600 35,531 452.3 40 0.7 5 0.4

nxt2.prog5 50,067 >600 52,666 >600 47,422 >600 144 1.5 43 0.7

nxt2.prog6 44,442 >600 46,521 >600 45,867 >600 528 5.1 43 0.8

nxt2.prog7 44,383 >600 46,280 >600 45,394 >600 827 9.8 91 1.4

nxt3.prog1 47,159 >600 48,111 >600 44,560 >600 250 3.3 24 0.6

nxt3.prog2 52,490 >600 54,248 >600 41,011 >600 5,792 59.9 93 1.2

nxt3.prog3 45,842 >600 54,851 >600 25,527 >600 3,117 37.8 20 0.8

nxtway01 53,425 >600 43,799 >600 41,003 >600 195 2.7 25 0.6

nxtway02 51,317 >600 45,304 >600 45,633 >600 1,646 22.2 149 2.4

nxtway03 51,609 >600 35,932 >600 39,562 >600 35,445 >600 978 16.2

nxtway04 60,785 >600 45,557 >600 38,916 >600 31,045 >600 575 10.4

nxtway05 51,589 >600 38,140 >600 39,562 >600 713 10.1 11 0.6

nxtway06 46,392 >600 50,025 >600 45,756 >600 4,608 68.6 860 12.1

nxt.pi00 49,470 >600 39,158 >600 40,716 >600 561 8.2 55 1.2

nxt.pi01 49,978 >600 40,446 >600 39,212 >600 1,226 16.9 98 1.7

nxt.pi02 48,670 >600 28,824 >600 29,922 >600 10,216 169.9 368 6.5

nxt.pi03 43,048 >600 40,384 >600 39,884 >600 239 3.7 179 2.9

trans01 40,869 >600 42,269 >600 40,684 >600 5,170 78.9 502 7.9

trans02 40,893 >600 38,720 >600 39,364 >600 99 2.1 27 0.9

trans03 36,714 >600 43,546 >600 43,602 >600 11,112 168.6 2,638 38.7

trans04 38,568 >600 35,123 >600 25,535 >600 357 5.3 73 1.4

trans05 49,880 >600 46,138 >600 35,480 >600 4,207 69.3 19 0.8

attend01 43,298 >600 54,320 >600 57,849 >600 222 3.1 64 1.2

attend02 32,541 >600 56,541 >600 18,866 >600 20,292 12.8 388 5.9

attend03 46,143 >600 35,023 >600 35,585 >600 343 5.1 119 2.3

attend04 45,951 >600 36,224 >600 32,570 >600 432 6.5 101 1.9

att4_01 47,312 >600 40,691 >600 36,861 >600 2,391 37.2 855 14.5

att4_02 46,969 >600 34,278 >600 40,327 >600 364 5.5 105 1.9

race01 45,610 >600 38,334 >600 37,424 >600 500 7.2 166 2.6

race02 45,277 >600 17,756 231.9 2,236 32.2 176 3.9 41 0.9

race03 44,974 >600 22,145 >600 32,658 >600 28,112 >600 275 6.7

nobadmode01 49,094 >600 46,622 >600 40,932 >600 314 4.6 88 1.5

nobadmode02 43,561 >600 51,877 >600 6,616 144.6 16,862 346.7 86 2.3

nobadmode03 43,525 >600 49,719 >600 48,408 >600 2,745 49.9 614 13.1

nobadmode04 43,962 >600 42,283 >600 37,739 >600 2,558 46.5 102 2.2

ctm01 51,345 >600 51,810 >600 776 11.4 846 10.9 131 2.2

ctm02 55,711 >600 63,599 >600 54,294 >600 621 7.8 178 2.5

ctm03 49,343 >600 51,875 >600 41,839 >600 97 1.3 82 1.2

aso_01 42,260 >600 39,386 >600 10,582 >600 20,607 >600 438 12.4

aso_02 44,403 >600 43,847 >600 12,461 >600 29,191 >600 90 2.9

aso_03 44,235 >600 40,646 >600 11,785 >600 23,108 >600 452 9.4

Total 2,041,542 26,400 1,786,468 24,296 1,433,944 22,822 267,352 4,895 11,266 199

98 CHAPTER 5. SYMBOLIC EXECUTION OF PLC CODE

Period+Priority denotes the full-blown implementation of the reductions in SYMPLC. All meth-

ods shown in Table 5.4 were used in conjunction with the stateful reduction. For each individual

method, the result table shows the number of test cases generated and the total execution time in

seconds. Since the time limit was set to 10 minutes, >600s means the corresponding method was

forced to terminate after running out of time.

As shown in the total numbers in the last row, the full-blown reduction implemented in SYMPLC,

denoted (Period+Priority), significantly outperformed KLEE and DPOR, two state-of-the-art sym-

bolic execution techniques. Specifically, the reduction in the number of test cases is more than

two orders of magnitude. Furthermore, the full-blown reduction is significantly more efficient

than Period-based reduction (11,266 versus 1,433,944) or Priority-based reduction (11,266 ver-

sus 267,352) alone. This means applying both Period and Priority based reductions has led to

synergistic impact.

5.7 Conclusion

I have presented the first symbolic execution tool SYMPLC for automatically testing single- and

multi-task PLC programs. SYMPLC takes the PLC source code as input, translates it into C

code, and then applies symbolic execution. As such, it can systematically explore feasible paths

of individual PLC tasks as well as their interleavings. Toward this end, the main contribution is

developing a number of PLC-specific reduction techniques for eliminating redundant interleavings.

Experimental results show that SYMPLC is efficient in handling a large number of PLC benchmark

programs. On multi-task PLC programs, in particular, the new reduction techniques significantly

outperform the state-of-the-art partial order reductions technique.

Chapter 6

Adversarial Symbolic Execution

Side-channel attacks are security attacks where an adversary exploits the dependency between

sensitive data and non-functional properties of a program such as the execution time [43, 75], power

consumption [76, 86], heat, sound [54], and electromagnetic radiation [53, 102]. For timing side

channels, in particular, there are two main sources of leaks: variances in the number of executed

instructions and variances in the cache behavior.

Instruction-induced leaks are caused by differences in the number and type of instructions executed

along different paths: unless the differences are independent of the sensitive data, they may be ex-

ploited by an adversary. Cache is a high-speed storage between the fast CPU and the slow memory

where cache-induced leaks are caused by differences in the number of cache hits and misses along

different paths. The corresponding timing characteristics may reveal sensitive information of the

program, thus allowing an adversary to conduct side-channel attacks.

Existing methods for detecting timing leaks or proving their absence often ignore the cache all

together while focusing on instruction-induced leaks. For example, Chen et al. [32] used Cartesian

99

100 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

Hoare Logic [113] to prove the timing leak of a program is within a bound; Antonopoulos et

al. [9] used a similar technique that partitions the set of program paths in a way that, if individual

partitions are proved to be timing attack resilient, the entire program is also timing attack resilient.

Unfortunately, these methods ignore the cache-timing characteristics. Even for techniques that

consider the cache [13, 28, 37, 46, 78, 119], their focuses have been on leaks manifested by the

program itself when running alone, without considering the cases when it is executed concurrently

with some other (benign or adversarial) threads.

In this work, I show side-channel leak-freedom, as a security property, is not compositional. That

is, a leak-free program when running alone may still be leaky when it is interleaved with other

threads, provided that they share the same CPU and memory subsystem. This is the case even

if all paths in the program have the same number and type of instructions and thus do not have

instruction-induced timing leaks at all. Unfortunately, no existing method or tool is capable of

detecting such timing leaks.

6.1 Introduction

I develop a new method, named Adversarial Symbolic Execution, to detect such concurrency-

related timing leaks. Specifically, given a program where one thread conducts a security-critical

computation, e.g., by calling functions in a cryptographic library, and another thread is (either ac-

cidentally or intentionally) adversarial, the new method systematically explores both paths in these

threads and their interleavings. The exploration is symbolic in that it covers feasible paths under

all input values. During the symbolic execution, I aim to analyze the cache behavior related to

sensitive data to detect timing leaks caused by the interleaving.

Figure 6.1 shows the flow of the new leak detector SYMSC, which takes the victim thread P , a

6.1. INTRODUCTION 101

Program P ′

(Thread T2)

Concurrent
Program P ′′

Program P
(Thread T1)

Symbolic
Execution

Adversarial
Cache Modeling

SMT Solving

Cache
Configuration

Cache-timing
Leakage

Adversarial
Thread Schedule

Figure 6.1: Flow of the cache timing leak detector SYMSC.

potentially adversarial thread P ′, and the cache configuration as input. If P ′ is not given, SYMSC

creates it automatically. While symbolically executing the program, SYMSC explores all thread

paths and searches for an adversarial interleaving of these paths that exposes divergent cache be-

haviors in P . There are two main technical challenges. The first one is associated with systematic

exploration of the interleaved executions of a concurrent program so as not to miss any adversarial

interleaving. The second one is associated with modeling the cache accurately while reducing the

computational cost.

To address the first challenge, I developed a new algorithm for adversarially exploring the inter-

leaved executions while mitigating the path and interleaving explosions. Specifically, cache timing

behavior constraints, which are constructed on the fly during symbolic execution in SYMSC, are

leveraged to prune interleavings redundant for detecting leaks and thus speed up the exploration.

To address the second challenge, I developed a technique for modeling the cache behavior of a pro-

gram based on the cache’s type and configuration, as well as optimizations of the subsequent con-

straint solving to reduce overhead. For each concurrent execution (an interleaving of the threads)

denoted π = (in, sch), where in is the sensitive data input and sch is the interleaving schedule,

SYMSC constructs a logical constraint τt(in, sch) for every potentially adversarial memory access

t, to indicate when it leads to a cache hit. Then, SYMSC seeks two distinct values of the data input,

102 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

in and in′, for which the cache behaves differently: τt(in, sch) 6= τt(in
′, sch), meaning one of

them is a hit but the other is a miss, and they are due to differences in the sensitive data input.

I have implemented SYMSC based on LLVM and the KLEE symbolic virtual machine [23], and

evaluated it on twenty benchmark programs. These security-critical programs are ciphers taken

from cryptographic libraries in the public domain; they have 14,455 lines of C code in total. Since

these programs are crafted by domain experts, they do not have obvious timing leaks when running

alone, such as unbalanced branching statements or variances in lookup-table accesses. However,

the experiments of applying SYMSC show that they may still have timing leaks when being exe-

cuted concurrently with other threads.

To summarize, I make the following contributions:

• I develop an adversarial symbolic execution method capable of detecting cache timing leaks

in a security-critical program when it runs concurrently with other threads.

• I implement and evaluate our method on real-world cipher programs to demonstrate its ef-

fectiveness in detecting concurrency-related timing leaks.

6.2 Motivation

In this section, I use examples to explain the difference between self-leaking and concurrency-

induced leaking.

Figure 6.2(a) shows a program whose execution time is dependent of the sensitive variable k. It is

a revised version of the running example used in [30], for which the authors proposed the leak-free

version shown in Figure 6.2(b). The two programs have the same set of instructions but differ in

where the highlighted load instruction is located: line 5 in P and line 9 in Pr.

6.2. MOTIVATION 103

6.2.1 A Self-leaking Program and the Repair

/* k is sensitive input */

1: char p[256];

2: unsigned char k;

3: char q[256];

4:

5: load reg1, p[k]

6: if (k <= 127)

7: load reg2, q[255-k]

8: else

9: load reg2, q[k-128]

10: add reg1, reg2

11: store reg1, p[k]

k=0 : <miss, miss, miss>

1≤k≤255: <miss, miss, hit>

(a) A leaky program P

/* k is sensitive input */

1: char p[256];

2: unsigned char k;

3: char q[256];

4:

5: if (k <= 127)

6: load reg2, q[255-k]

7: else

8: load reg2, q[k-128]

9: load reg1, p[k]

10: add reg1, reg2

11: store reg1, p[k]

0≤k≤255: <miss, miss, hit>

(b) The leak-free version Pr

Figure 6.2: A program with cache-timing leak (cf. [30]).

Consider executing the two programs under a 512-byte direct-mapped cache with one byte per

cache line, as shown in Figure 6.3. The choice of one-byte-per-cache-line — same as in [30]

— is meant to simplify analysis without loss of generality. Specifically, the 256-byte array p is

associated with the first 256 cache lines, while variable k is associated with the 257-th cache line.

Due to the finite cache size, q[255] has to share the cache line with p[0].

q[254]
......

q[1]
q[0]
k
p[255]
......

p[1]
p[0], q[255]

256 bytes

256 bytes

Figure 6.3: The direct-mapped cache layout (cf. [30]).

There are two program paths in P , each with three memory accesses: load (line 5), load (line

7 or line 9), and store (line 11). However, depending on the value of k, these three memory

accesses may exhibit different cache behaviors, thus causing data-dependent timing variance.

Assume that k’s value is 0, executing P means taking the then branch and accessing p[0],

104 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

q[255], and p[0]. The first access to p[0] is a cold miss since the cache is empty at the

moment. The access to q[255] is a conflict miss because the cache line (shared by q[255]

and p[0]) is occupied by p[0]; as a result q[255] evicts p[0]. The next access to p[0] is

also a conflict miss since the cache line is occupied by q[255]. All in all, the cache behavior is

<miss,miss,miss> for k=0.

This sequence is also unique in that all other values of k would produce <miss,miss,hit> as

shown at the bottom of Figure 6.2(a). This means P , when running alone, leaks information about

k. For example, upon observing the delay caused by <miss,miss,miss> via monitoring, an

adversary may infer that k’s value is 0.

Program Pr is a repaired version [30] where the load is moved from line 5 to line 9 as in Fig-

ure 6.2(b). Thus, the load accessing p[k] at line 9 always generates a cold miss (0<k≤255) or

a conflict miss (k=0). Consequently, the store at line 11 is always a hit. Thus, for all values of

k, the cache behavior remains <miss,miss,hit> – no information of k is leaked.

6.2.2 New Leak Induced by Concurrency

Although Pr is a valid repair when the program is executed sequentially, the situation changes when

it is executed concurrently with other threads. Specifically, if using one thread (T1) to execute Pr

while allowing a second thread (T2) to run concurrently, Pr may exhibit new timing leaks.

Figure 6.4 shows a two-threaded program comprising T1 and an adversarial T2 that accesses a new

variable tmp. Assume tmp is mapped to the same cache line as p[1]. Then, it is possible for T2

to cause T1 to leak information of its secret data. There are various ways of mapping tmp to the

same cache line as p[1], e.g., by dynamically allocating the memory used by tmp or invoking a

recursive (or non-recursive) function within which tmp is defined as a stack variable.

6.2. MOTIVATION 105

/* [Thread T1] */

1: char p[256];

2: unsigned char k;

3: char q[256];

4:

5: if (k <= 127)

6: load reg2, q[255-k]

7: else

8: load reg2, q[k-128]

9: load reg1, p[k]

10: add reg1, reg2

11: store reg1, p[k]

/* [Thread T2] */

12: unsigned char tmp;

13: load reg3, tmp

14: ...

Figure 6.4: Concurrent program with side-channel leak.

Table 6.1 shows the six interleavings of threads T1 and T2. The left half of this table contains three

interleavings where T1 took the then branch of the if-statement, while the right half contains

three interleavings where T1 took the else branch. In each case, the four columns show the

ID, the execution order, the cache sequence of thread T1, and the value range of k. For example,

in 6-9-11-13, the store at line 11 is a cache hit because its immediate predecessor (line 9)

already loads p[k] into the cache. Since the last load at line 13 comes from thread T2, the cache

behavior sequence of T1 is <miss,miss,hit>, denoted <m,m,h> for brevity.

Table 6.1: Interleavings and thread T1’s cache sequences.

ID Interleaving Cache-seq k ID Interleaving Cache-seq k

1 6-13-9-11 <m,m,h> [0,127] 4 8-13-9-11 <m,m,h> (127,255]
2 6-9-11-13 <m,m,h> [0,127] 5 8-11-9-13 <m,m,h> (127,255]
3 6-9-13-11 <m,m,h> [0,1)∪(1,127] 6 8-9-13-11 <m,m,h> (127,255]

<m,m,m> 1

Although context switches between the threads T1 and T2 may occur at any time in practice, for the

purpose of analyzing cache timing leaks, I assume they occur only before the load and store

statements. Furthermore, I only focus on these memory accesses when they are mapped to the

same cache line, e.g., between the load in T2 and statements that access p[k] in T1.

Figure 6.5 shows details of interleaving 6-9-13-11. The blue and orange rectangles represent

the load and store accesses, respectively, and the red dashed poly-line shows their execution

order. The first three load operations all cause cache misses, whereas the last store could be a

106 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

q[254]
......

q[1]
q[0]

k
p[255]
......

p[1], tmp
p[0], q[255]

p[k]

p[k]

q[255-k]

T1

tmp

T2

Figure 6.5: Interleaving 6-9-13-11 and the cache layout.

cache hit if (k!=1) and a cache miss if (k=1). When (k=1), the four memory accesses would be

q[254], p[1], tmp, and p[1]. The first two trigger cold misses. The third one (tmp) triggers

a conflict miss as the cache line was occupied by p[1]. Evicting this cache line would then lead

to another conflict miss for the subsequent store to p[1].

The examples presented so far show that, even for a timing-leak-free program (T1), running it

concurrently with another thread (T2) may cause it to exhibit new timing leaks. This is the case

even if the two threads (T1 and T2) are logically independent of each other. In other words, they do

not need to share variables or communicate through messages; they can affect each other’s timing

behaviors by sharing the same cache system.

6.2.3 Adversarial Symbolic Execution

The goal of developing a new symbolic execution method is to detect such timing leaks. More

specifically, SYMSC concerns with two application scenarios, depending on whether the adversar-

ial thread (T2) exists in the given program or not.

Case 1. Thread T2 is given, together with fixed addresses of the memory region accessed by T2.

In this case, T2 is an integral part of the concurrent system that also contains the security-critical

computation in T1. Since the only source of non-determinism is thread interleaving, SYMSC aims

6.3. THE THREAT MODEL 107

to check if the concurrent system itself has timing leaks.

Case 2. Thread T2 is not given, but created by SYMSC, and thus the addresses of the memory

region accessed by T2 are assumed to be symbolic. This is when, inside the cache layout of

Figure 6.5, the address of tmp would be made symbolic, thus allowing it to be mapped to any

cache line (as opposed to be fixed to the 2nd line). There are now two sources of non-determinism:

thread interleaving and memory layout. SYMSC explores both to check if T1 may leak information

due to interference from T2.

In the second case, when T2 executes a memory load instruction t, for example, the symbolic

address addr may be mapped to any cache line. The purpose of having such aggressive adversarial

addressing is to allow SYMSC to conduct a (predictive) what-if analysis: it searches all potential

memory layouts to check if there exists one that allows T2 to cause a timing leak.

6.3 The Threat Model

This section reviews the technical background and present the threat model, which defines what an

adversary can or cannot do.

6.3.1 Cache and the Timing Side Channels

The execution time of a program depends on the CPU cycles taken to execute the instructions and

the time needed to access memory. The first component is easy to compute but also less important

in practice, because security-critical applications often execute the same set of instructions regard-

less of values of their sensitive variables [126]. In contrast, leaks are more likely to occur in the

second component: the time taken to access memory. Compared to the time needed to execute an

108 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

instruction, which may be 1-3 clock cycles, the time taken to access memory, during a cache miss,

may be tens or even hundreds of clock cycles.

There are different types of cache based on the size, associativity and replacement policy. For

ease of comprehension, SYMSC uses direct-mapped cache with LRU policy, but other cache types

may be handled similarly. Indeed, in the experiments both the direct-mapped cache and the 4-way

set-associative cache were evaluated and they led to similar analysis results.

Let’s assume the security-critical program P implements a function c ← f(k, x), where k is the

sensitive input (secret), x is the non-sensitive input (public), and c is the output. In block ciphers,

for example, k would be the cryptographic key, x would be the plaintext, c would be the ciphertext,

and f would be the encryption or decryption procedure. Let the execution time of P be τP (k, x).

Since there may be multiple paths inside P , when referring to a particular path p ∈ P , we use

τp(k, x). But if there is no ambiguity, we may omit the detail and simply use τ(k, x). We say P is

leak-free if τ(k, x) remains the same for all input values. That is,

∀x, k1, k2 . τ(k1, x) = τ(k2, x)

Here k1 and k2 are two arbitrary values of k. Since in practice, decision procedures (e.g., SMT

solvers) are designed for checking satisfiability, instead of proving the validity of a formula, SYMSC

tries to falsify it by checking the formula below:

∃x, k1, k2 . τ(k1, x) 6= τ(k2, x)

Here, SYMSC searches for two values of k that can lead to differences. If the set of instructions

executed by P remains the same, SYMSC only needs to check whether τ(k1, x) and τ(k2, x) have

the same number of cache hits and misses. Furthermore, in the threat model where the attacker

6.3. THE THREAT MODEL 109

can only observe (passively) the execution time of P , but not control or observe x, SYMSC can

reduce the computational cost by fixing a value x of x arbitrarily and then checking if τ(k1) and

τ(k2) have the same number of cache hits and misses.

6.3.2 Example of an Attack

This section shows a concrete example of exploiting cache timing leaks in concurrent systems. The

goal is to illustrate what an adversary may be able to achieve in practice.

uint8_t *buf = 0; uint32_t size = INPUT_SIZE; uint32_t idx = 0;

/* [Thread T1] */

1: uint8_t S[256] = {0x4b,...};

2: uint8_t out[64] = {0};

3: for(int i=0; i<size;)

4: if (i < idx)

5: memcpy(out,buf+i,64);

6: for (int j=0;j<64;j++,i++)

7: out[j] &= S[key[j]];

8: write(out, ...);

9: else

10: sleep(50);

/* [Thread T2] */

11:

12: buf=(uint8_t *)malloc(size);

13: while(idx<size)

14: memcpy(buf+idx,read(...),64);

15: idx+=64;

16:

......
S[192]-S[255]
S[128]-S[191]
S[64]-S[127]
S[0]-S[63] , buf[960]-buf[1023]

......
buf[0]-buf[63]

......
64 bytes

32KB
6
j<64

5
i<idx

10

i<size

T1

15

14

idx<size

T2

idx: 960

Figure 6.6: A two-threaded encryption program.

Figure 6.6 shows a two-threaded program, its cache mapping, and the thread-local control flows.

Initially, T2 allocates a memory area (buf) whose size matches the input. Although the in-

put size may be arbitrary, here, let’s assume it is an integral multiple of 64, e.g., 1024 bytes

(INPUT_SIZE=1024). In the while-loop (line 14) T2 reads 64 bytes from input every time to

fill buf. Thread T1 tracks the progress (idx) of T2 (line 4) and repeatedly retrieves 64-byte data

from buf to the array out (line 5). The encryption on out involves the S-Box array S and a given

110 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

key (lines 6-7). Once the data is encrypted, T1 sends it out (line 8). When T1 finds that buf runs

out of data, it sleeps for 50ms (line 10).

First, I explain why the program has a timing leak. Here a 32KB direct-mapped cache is used and

each cache line is 64 bytes. The S-Box array S hence maps to 4 cache lines and the buf array maps

to 16 cache lines. For brevity, I only focus on the important arrays (S and buf) while assuming

other variables do not affect the cache mapping. Furthermore, in this example I assume S and buf

share one cache line as highlighted in Figure 6.6.

The graph in Figure 6.6 shows an interleaving of T1 and T2, where the dotted red arrow represents

a context switch after T2 executes the memcpy statement (line 14) while T1 just reaches the for-

loop at line 6. The text above the arrow means idx’s value is 960 at the moment, indicating thread

T2 has just accessed the last 64 bytes of buf at line 14.

After the context switch, T1 enters the for-loop (line 6) and reads S[key[j]] at line 7. Note that

the offset to S’s base address depends on key[j], thus different keys may make thread T1 access

different items of S. Let’s pick two 64-byte keys k1 and k2 which differ in the first eight bits:

10000000 for k1 and 00000000 for k2. Using k1, thread T1 first reads key[0] and S[128].

The access to S[128] would lead to a cache hit if i is greater than 63. This is because after the

for-loop (lines 6-7) finishes once (i=64 then), S[128] is already mapped to cache and no further

accesses evict it.

In contrast, with k2, thread T1 loads S[0] which maps to the cache line shared with the items in

buf[960-1023]. Recall that, before the context switch, T2 just accessed the area starting from

buf+idx (buf[960]). Consequently T1’s access to S[0] causes a conflict miss because the

shared cache line was occupied by buf. Thus, a leak appears: two keys (k1 and k2) leading to

divergent cache behaviors at a program location due to thread interleaving.

6.3. THE THREAT MODEL 111

The exposed leak is due to the sharing of cache between S and buf, which is crucial to SYMSC’s

threat model. In this program, S has a fixed size while buf is dynamically allocated at run time

based on the input data. Furthermore, INPUT_SIZE is a variable affected by the external input.

Although the actual input size cannot be arbitrarily large in practice, for this exploit to work, it

only needs to be larger than the total cache size, which is 32KB.

Thus, the attacker could mutate the input to alter the buffer size, hence affecting the memory

layout. Furthermore, real applications sometimes use relatively large fixed buffers. For example,

in OpenSSH [6], the scp program has a 16KB buffer for COPY_BUFLEN and the sftp program

has a 32KB buffer for DEFAULT_COPY_BUFFER. Moreover, OpenSSH’s SSHBUF_SIZE_MAX

buffer for a socket channel is as large as 256MB. These large buffers allow room for attackers to

construct the desired cache layout.

A similar scenario can be found in the open-source implementation of HPN-SSH [5], which is

an enhancement of OpenSSH [6] by leveraging multi-threading to accelerate the data encryption.

Figure 6.7 shows the code snippet directly taken from the HPN-SSH [5] repository: On the left-

hand side are threads created to run the thread_loop function, shown on the right-hand side,

which repeatedly calls AES_encrypt to encrypt data given by the user (line 327). By controlling

the size and content of the data, as well as the number of threads, a malicious user is able to affect

both the memory layout and the thread interleaving.

/* cipher-ctr-mt.c */

...

504:for(i=0;i<CIPHER_THREADS;i++){

......

507: pthread_create(...,

thread_loop,...);

......

509:}

/* cipher-ctr-mt.c */

238:static void*
239:thread_loop(void *x) {

......

326: for(i=0;i<KQLEN;i++) {

327: AES_encrypt(q->ctr,

q->keys[i],&key);

......

Figure 6.7: Concurrency-related code in HPN-SSH [5].

The experimental evaluation in Section 6.7) shows that the AES subroutine from OpenSSL in-

112 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

deed has cache timing leaks, which may subject HPN-SSH to attack scenarios similar to the one

illustrated in Figure 6.6.

6.4 Adversarial Symbolic Execution

This section presents the baseline algorithm and then enhances it to search for cache timing leaks.

6.4.1 The Baseline Algorithm

Here let’s assume that the entire program consists of a finite set {T1, . . . , Tn} of threads where

each thread Ti (1 ≤ i ≤ n) is a sequential program. Without loss of generality, let’s assume T1 is

critical and any of T2, . . . , Tn may be adversarial.

Still, Algorithm 1 acts as the baseline symbolic execution procedure except that, for the purpose of

detecting timing leaks, it considers two events as dependent also when they are mapped to the same

cache line. Here, an execution is characterized by π = (in, sch) where in = {k, x} is the data

input and sch is the thread schedule, corresponding to a total order of events e1 . . . en, and the stack

S is a container for symbolic states. Each s ∈ S is a tuple 〈M, pcon, branch, enabled , done, crt〉,

whereM, pcon, branch, enabled and done retain their original meanings in Algorithm 1 and the

new item crt denotes the event chosen to execute at s. I omit other details since they are consistent

with those in Algorithm 1.

Also note that, in the prior work, symbolic execution would allow interleavings between global

(γ) events only if they have data conflicts, i.e., two events from different threads are accessing

the same memory address, and at most one of them is a memory read. This is because only such

6.4. ADVERSARIAL SYMBOLIC EXECUTION 113

accesses may lead to different states if they are executed in different orders. However, in SYMSC,

whether these events are mapped to the same cache line also matters.

6.4.2 Enhanced Algorithm

Algorithm 8 shows the enhancement in SYMSC over the baseline algorithm 1, where the main

difference is in the interleaving points (highlighted in blue). Upon entering the while-loop at line

8, it first checks if an enabled event t may lead to a timing leak by invoking DivergentCacheBe-

havior(s,t). Details of the subroutine will be presented in Section 6.5, but at the high level, it

constructs a cache behavior constraint τt and then searches for two values, k1 and k2, such that

τt(k1) 6= τt(k2).

Since detecting such divergent behaviors is computationally expensive, prior to invoking the sub-

routine, SYMSC makes sure that event t indeed may be involved in an adversarial interleaving.

This is determined by AdversarialAccess(s,t) which checks if (1) t comes from the critical thread

T1 and (2) there exists a previously executed event t′ = s′.crt where s′ ∈ S and the two events (t

and t′) may map to the same cache line.

For the running example in Figure 6.4, in particular, Algorithm 8 would explore the first three in-

terleavings in Table 6.1 before detecting the leak. The process is partially illustrated by Figure 6.8,

where events t1:load q[255-k], t2:load p[k] and t3:store p[k] belong to thread T1

whereas t4:load tmp belongs to thread T2.

Assume T1 executes t1 to reach t2 and T2 is about to execute t4: this corresponds to the figure on

the left. At this moment, s.enabled = { t2, t4 }. If t4 is executed before t2, AdversarialAccess(s,t2)

would evaluate to true because t2 comes from the critical thread and p[k] may be mapped to the

same cache line as tmp accessed by t4. However, there is no timing leak at t2, because p[k]

114 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

Algorithm 8: Symbolic Execution in SYMSC
1 Initially: State stack S = ∅; Start Explore(s0) with the symbolic state s0.

2 Explore(State s)
3 begin
4 S.push(s);
5 if s is a b-PP node then
6 . . .
7 else if s is an i-PP node then
8 while ∃t ∈ s.enabled\s.done do
9 if s is a memory access point then

10 if DivergentCacheBehavior(s, t) then
11 generate test case;
12 s.done← s.done ∪ {t};
13 continue;
14 end
15 end
16 Explore(NextSymbolicState(s, t));
17 s.done← s.done ∪ {t};
18 end
19 else if s is other sequential computation node then
20 . . .
21 else
22 . . .
23 end
24 S.pop();
25 end

26 NextSymbolicState(State s, Event t)
27 begin
28 . . .
29 s.crt← t;
30 return s′;
31 end

32 DivergentCacheBehavior (State s, Event t)
33 begin
34 if AdversarialAccess(s, t) then
35 τt ← compute t’s cache hit constraint;
36 if ∃k, k′ such that τt(k) 6= τt(k

′) then
37 return true;
38 end
39 end
40 return false;
41 end

42 AdversarialAccess(State s, Event t)
43 begin
44 if t is from the critical thread then
45 let s′ ∈ S and t′ = s′.crt;
46 if ∃t′ that t and t′ may map to the same cache line then
47 return true;
48 end
49 end
50 return false;
51 end

differs from t1’s access q[255-k], meaning the cache behavior at t2 remains the same for all

values of k.

6.5. ADVERSARIAL CACHE ANALYSIS 115

p[k]

p[k]

q[255-k]

T1

tmp

T2

p[k]

p[k]

q[255-k]

T1

tmp

T2

p[k]

p[k]

q[255-k]

T1

tmp

T2

Figure 6.8: The three interleavings generated by SYMSC.

If t2 were executed before t4, we would have the second scenario in Figure 6.8. At this moment,

s.enabled = { t3, t4 }. If t4 is executed after t3, the interleaving would be 6-9-11-13, which does

not have timing leaks either. But if t4 were executed before t3, the third scenario would appear in

Figure 6.8, where AdversarialAccess(s, t3) evaluates to true, τt3(k) evaluates to false for (k=1)

but to true for (k6=1)∧(k≤127), as shown in Table 6.2, leading to divergent cache behaviors in

6-9-13-11.

6.5 Adversarial Cache Analysis

SYMSC’s method for detecting divergent cache behaviors works as follows. First, it constructs the

behavioral constraint for each memory access. Then, it solves the constraint to compute a pair of

sensitive values that allows the constraint to return divergent results.

6.5.1 Cache Modeling

Recall that the entire program contains T1 and T2, among other threads, where T1 invokes the

critical computation and T2 is potentially adversarial. During symbolic execution, SYMSC con-

ducts context switches when load or store instructions may be mapped to the same cache line.

116 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

Here, each interleaving p corresponds to a data input in and a thread schedule sch. The data input

is divided further into in = {k, x}, where k is sensitive (secret) and x is non-sensitive (public).

Whenever the value of x is immaterial, SYMSC assumes in = {k}.

• An interleaving p is a sequence of memory accesses denoted p(sch, in) = {A0, ..., An}where

sch represents the order of these accesses and in represents the data input.

• Each Ai, where i ∈ [0, n], denotes a memory access.

• pconi(k) is the path condition under which Ai is reached.

Thus, when pconi(k) is true, meaning Ai is reachable, SYMSC checks if Ai leads to a cache hit:

• τi(k) denotes the condition under which Ai triggers a cache hit.

• addri denotes the memory address accessed by Ai.

• tag(addr) is a function that returns the unique tag of addr.

• line(addr) is a function that returns the cache line of addr.

Thus, the cache-hit condition defines as follows:

τi(k) ≡
∨

0≤j<i

(

tag(addrj) = tag(addri) ∧

∀l ∈ [j+1, i−1]
∣

∣line(addrl) 6= line(addri)
)

(6.1)

For each memory access Ai, SYMSC traverses the preceding memory accesses in the interleaving

p to see if any such Aj may result in Ai being a cache hit. This is done by comparing the tag of

addri to that of addrj—a hit is possible only when two tags are the same. Furthermore, any other

memory access (Al) between Ai and Aj must not evict the cache line occupied by Aj (and hence

Ai). This means, for all j < l < i, we have line(addrl) 6= line(addri).

If Ai always causes a cache hit, or a miss, it cannot leak sensitive information because it implies

6.5. ADVERSARIAL CACHE ANALYSIS 117

∀k1, k2 . τi(k1) = τi(k2). In contrast, if τi(k) evaluates to true for some value of k but to false for

a different value of k, then it is a leak.

6.5.2 Leakage Detection

After constructing τi(k), which is the cache-hit condition for a potentially adversarial memory

access Ai, SYMSC instantiates the symbolic expression twice, first with a fresh variable k1 and

then with another fresh variable k2. SYMSC uses an off-the-shelf SMT solver to search for values

of k1 and k2 that can lead to divergent behaviors.

Precise Solution The precise formulation is as follows:

∃k1, k2 . (k1 6= k2) ∧ τi(k1) 6= τi(k2) (6.2)

Theoretically, SYMSC needs to conduct this check at every memory access Ai, where i ∈ [0, n],

along the symbolic execution path p. If the above formula is satisfiable, the SMT solver will return

values k1 and k2 of variables k1 and k2, respectively.

Two-Step Approximation Since computing both values at the same time is expensive, in practice,

SYMSC can also take two steps:

• First, solve sub-formula ∃k1 . τi(k1) to compute a concrete value for k1, denoted k1.

• Second, solve sub-formula ∃k2 . (k1 6= k2)∧ τi(k1) 6= τi(k2) to compute a concrete value k2

for k2.

Since the formula solved in each step is (almost twice) smaller, the solving time can be reduced

significantly. Furthermore, a valid solution (k1 and k2) is guaranteed to be a valid solution for the

original formula as well. However, in general, the two-step approach is an under-approximation:

118 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

when it fails to find any solution, it is not a proof that no such solution exists. To make the two-step

approach precise, one would have to apply it repeatedly, each time with a different k1 computed in

the first step, until all solutions of k1 is covered. Nevertheless, experiments show that, in practice,

applying it once is often accurate enough to detect the actual leak.

6.5.3 The Running Example

Let’s revisit the example in Figure 6.4 to show how SYMSC detects the leak. Recall that SYMSC

would generate the six interleavings shown in Table 6.1. For each interleaving, Table 6.2 shows

the line number (#line) of every access Ai, path condition pconi, memory address addri, and the

cache-hit constraint τi.

Table 6.2: Cache-related information of interleaving p.

line i pconi addri τi cache

6 0 k ≤ 127 q[255-k] false miss
9 1 k ≤ 127 p[k] tag(p[k]) = tag(q[255− k]) miss

13 k ≤ 127 tmp
tag(tmp) = tag(p[k])∨

2
(

tag(tmp) = tag(q[255− k]) miss
∧line(tmp) 6= line(p[k])

)

11 k ≤ 127 p[k]
tag(p[k]) = tag(tmp)∨ miss

3
(

tag(p[k]) = tag(p[k]) or

∧ line(p[k]) 6= line(tmp)
)

hit

Inside the interleaving 6-9-13-11, for instance, upon reaching the load of q[255-k] at line

6, the path condition would be (k ≤ 127). Since it is the first memory access, τ0 must be false

(cache miss). SYMSC will record this memory address for further analysis.

Next is the load of p[k] at line 9. SYMSC builds τ1 and checks its satisfiability. Since p[k]

and the preceding q[255-k] correspond to different memory addresses, the tag comparison in τ1

returns false, indicating a cache miss. The load at line 13 accesses tmp. Since tmp is different

from any of the elements in arrays p and q, the tag comparisons in τ2 return false, making A2 a

6.6. OPTIMIZATIONS 119

cache miss.

Similarly, τ3 for the store at line 11 is shown in the last row of Table 6.2. It is worth mentioning

that τ3 only compares p[k] (addr3) with tmp (addr2) and p[k] (addr1) but not q[255-k]

(addr0) because SYMSC finds that, if the access to tmp does not evict the cache line used by its

preceding access to p[k] (addr1), the last store to p[k] (addr3) must be a cache hit; SYMSC

stops here to avoid further (and unnecessary) analysis.

Differing from τ0, τ1 and τ2, the constraint τ3 depends on k due to the constraint line(p[k]) 6=

line(tmp). Specifically, τ3(k) is true when (k! = 1 ∧ k ≤ 127) and is false when (k = 1).

In SYMSC, two symbolic variables k1, k2 will be used to substitute k in the symbolic expression

of τ3(k), to form τ3(k1) and τ3(k2). Solving the satisfiability problem described by τ3(k1) XOR

τ3(k2) would produce the assignment {k1=0 and k2=1}, which makes τ3(0) evaluate to true and

τ3(1) evaluate to false.

6.6 Optimizations

Symbolic execution, when applied directly to cipher programs, may have a high computational

overhead because of the heavy use of arithmetic computations and look-up tables in these programs.

This section presents techniques for reducing the overhead based on two insights. First, when

conducting cache analysis, we are not concerned with the actual numerical computations inside

the cipher unless they affect the addresses of memory accesses that may depend on sensitive data,

e.g., indices of lookup tables such as S-Boxes. Second, for the purpose of detecting leaks, as

opposed to proving their absence, we are free to under-approximate as long as it does not diminish

the leak-detection capability of our analysis.

120 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

6.6.1 Domain-specific Reduction

By studying real-world cipher programs, I have found the computational overhead is often associ-

ated with symbolic indices of lookup tables such as the one shown in Figure 6.9.

1 uint8_t SBOX1[64] =

{0x6f,0x3c,0x77,0xb7,0x2f,0x7b,0x5f,0xc6, ...};

2 uint8_t SBOX2[64] =

{0x3d,0x4c,0x5f,0xb6,0xd1,0xff,0x3e,0xed, ...};

3 void encrypt(uint8_t *block){

4 for (int idx = 0; idx < 64; idx++){

5 block[idx] |= SBOX1[block[idx]];

6 block[idx] ^= SBOX2[block[idx]];

7 }

8 }

9

Figure 6.9: Example code for accessing S-Box lookup tables.

Here, block points to a 8-byte storage area whose content depends on the cryptographic key;

thus, the eight bytes are initialized with symbolic values. Accordingly, indices to the S-Box tables

– block[idx] at line 4 – are symbolic. However, not all memory accesses should be treated as

symbolic. For example, the address of block[idx] itself, and the address of local variables such

as idx should be treated as concrete values to reduce the cost of symbolic execution. Therefore,

SYMSC conduct a static analysis of the interleaved execution trace p to identify the sequence of

memory accesses that need to be kept symbolic while avoiding the symbolic expressions of other

unnecessary memory addresses.

Also, a program may have multiple S-Box arrays, like SBOX1 and SBOX2 in Figure 6.9. Two

successive accesses to SBOX1 and SBOX2 (at lines 5 and 6) cannot form a cache hit no matter

what the lookup indices are. Therefore, SYMSC do not need to invoke the SMT solver to check

the equivalence of these symbolic addresses. This can significantly cut down the constraint-solving

time.

6.7. EVALUATION 121

6.6.2 Layout-directed Reduction

Another reduction is guided by the memory layout. In LLVM, memory layout may be extracted

from the compiler back-end after the code generation step. Recall that when analyzing a pair of

potentially adversarial addresses, SYMSC needs to compare them with all other addresses accessed

between them to build the cache behavior constraint. More specifically, to check if A2 is a cache

hit because of A1 along the execution A1 −B1−, ...,−Bn −A2, SYMSC needs to check if any Bi

(1 ≤ i ≤ n) could evict the cache line used by A1. Due to the large value of n and often complex

symbolic expression of Bi, the constraint-solving time could be large.

The optimizing approach in this case is to directly compare A1 and A2 while postponing the com-

parisons to Bi. This is based on the observation that, in practice, the cache line of A1 can possibly

be evicted by Bi only if the differences between their addresses is the multiple of the cache size

(e.g., 64KB), which may not be possible in compact cipher programs. For example, in a 64KB

direct-mapped cache, for B1 to evict the 64-byte cache line of A1, their address difference has to

be 216 = 64KB. In a 4-way set-associative cache, their address difference has to be 214 = 16KB.

Furthermore, in the event that A2 has a cache hit due to A1, SYMSC can add back the initially-

omitted comparisons to B1, . . . , Bn to undo the approximation.

6.7 Evaluation

I have implemented SYMSC using the LLVM compiler [82] and Cloud9 [20] symbolic execution

which builts upon KLEE [23]. SYMSC enhanced Cloud9 in three aspects. First, it extended its

support for multi-threading by allowing context switches prior to accessing global memory; the

original Cloud9 only allows context switches prior to executing a synchronization primitive (e.g.,

122 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

lock/unlock). Second, it made Cloud9 fork new states to flip the execution order of two simultane-

ously enabled events when they may be mapped to the same cache line; the original Cloud9 does

not care about cache lines. Third, it let Cloud9 record the address of each memory access along

the execution, so it can incrementally build the cache-hit constraint. Based on these enhancements,

I implemented the cache timing leak detector and optimized it for efficient constraint solving.

After compiling the C code of a program to LLVM bitcode, SYMSC executes it symbolically to

generate interleavings according to Algorithm 8. The cache constraint at each memory access is

expressed in standard KQuery expressions defined in KLEE [23]. By solving these constraints,

SYMSC can obtain a concrete execution that showcases the leak, including a thread schedule, two

input values k1, k2 and the adversarial memory address.

6.7.1 Subjects and Methodology

I evaluated SYMSC on a diverse set of open-source cipher programs. Specifically, the first group

has five programs from a lightweight cryptographic system named FELICS [45], which was de-

signed for resource-constrained devices. The second group has four programs from Chronos [42],

a real-time Linux kernel. The third group has four programs from the GNU cryptographic library

Libgcrypt [3], while the remaining programs are from the LibTomCrypt [2], the OpenSSL [4], and

a recent publication [28]. They include multiple versions of several well-known algorithms such as

AES [4, 42] and DES [3, 42], which are useful in evaluating the impact of cipher implementations

on the performance of SYMSC.

Table 6.3 shows the statistics of these benchmark programs. The LOC and LL columns denote

the lines of C code and the corresponding LLVM bit-code. The KS column shows the size of the

sensitive input in bytes. The maximum number of memory accesses on program paths of each

6.7. EVALUATION 123

Table 6.3: Benchmark statistics

Name LOC LL KS MA Name LOC LL KS MA

AES[4] 1,429 4,384 24 771 FCrypt[42] 437 1,623 12 428
AES[42] 1,368 4,144 24 788 KV_name[28] 1,350 1,402 4 19
Camellia[2] 776 5,319 16 1,301 LBlock[45] 930 4,010 10 1,618
CAST5[2] 735 2,790 16 909 Misty1[1] 391 1,199 16 270
CAST5[42] 883 4,190 16 1,180 Piccolo[45] 301 1,034 12 350
Chaskey[45] 248 638 16 242 PRESENT[45] 194 272 10 94
DES[3] 596 2,166 8 963 rfc2268 [3] 388 870 16 149
DES[42] 1,010 3,926 8 1,029 Seed[3] 607 3,535 16 979
Kasumi[1] 350 1224 16 259 TWINE[45] 256 562 10 229
Khazad[42] 838 463 16 123 Twofish[3] 1,048 4,510 16 1,180

benchmark is shown in the MA column, which indicates the computational cost of the program.

Each program in the benchmark suite has from 194 to 1,429 lines of C code. In total, there are

14,455 lines of C code, which compile to 49,048 lines of LLVM bit-code. These numbers are

considered substantial because ciphers are typically compact programs with highly computation-

intensive operations, e.g., due to their use of loops and lookup-table based transformations. For

example, the program named PRESENT has only 194 lines of C code but 8,233 memory accesses

at run time.

SYMSC analyzed these benchmark programs using two types of caches: direct-mapped cache and

four-way set-associative cache. The cache size is 64KB with each cache line consisting of 64 bytes;

thus, there are 64KB/64B = 1024 cache lines, which are typical in mainstream computers today.

The experiments were designed to answer two questions:

• Can SYMSC detect cache-timing leaks exposed by concurrently running a program with

other threads?

• Are the optimizations in Section 6.6 effective in reducing the cost of symbolic execution and

constraint solving?

124 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

All experiments are conducted with Ubuntu 12.04 Linux running on a computer with a 3.40GHz

CPU and 8GB RAM. For all evaluations I set the timeout threshold to 1,600 minutes.

6.7.2 Results Obtained with Fixed Addresses

Table 6.4: Results of leak detection with fixed addresses.

Name

Precise Two-Step

#.Inter #.Test Time (m) #.Inter
#.Test

Time (m)
step1 / step2

AES[4] 57 55 430.2 57 55 / 55 140.3
AES[42] 1 0 288.9 1 1 / 0 41.4
Camellia[2] 1 0 0.1 1 1 / 0 0.1
CAST5[2] 1 0 0.1 1 1 / 0 0.1
CAST5[42] 1 0 0.1 1 1 / 0 0.1
Chaskey[45] 1 0 0.1 1 1 / 0 0.1
DES[3] 16 15 7.8 16 16 / 15 3.5
DES[42] 1 0 0.1 1 1 / 0 0.1
FCrypt[42] 16 15 4.1 16 15 / 15 8.1
Kasumi[1] 1 0 0.1 1 1 / 0 0.2
Khazad[42] 25 23 206.5 25 23 / 23 83.0
KV_Name[28] 1406 0 0.5 1406 1406 / 0 0.4
LBlock[45] 1 0 0.1 1 1 / 0 0.1
Misty1[1] 1 0 0.1 1 1 / 0 0.1
Piccolo[45] 1 0 0.1 1 1 / 0 0.1
PRESENT[45] 1 0 0.1 1 1 / 0 0.1
rfc2268[3] 1 0 0.1 1 1 / 0 0.1
Seed[3] 1 0 0.1 1 1 / 0 0.1
TWINE[45] 1 0 0.1 1 1 / 0 0.1
Twofish[3] 1 0 0.1 1 1 / 0 0.2

Table 6.4 shows the results obtained using fixed addresses in the cache layout (Case 1 in Sec-

tion 6.2.3). Column 1 shows the benchmark name. Columns 2–4 present the result of computing

the precise solution for our cache analysis problem. The last three columns show the result of run-

ning the simplified, two-step version, where the solution for ∃k1, k2 . τ(k1) 6= τ(k2) is computed

in two steps, by first computing a value of k1 and then computing a value of k2. In each method,

the result table shows the number of interleavings explored (#.Inter), the number of leaky memory

accesses detected (#.Test), and the execution time in minutes (m). For the two-step approach, we

6.7. EVALUATION 125

also show the number of leakage points detected after the first step and after the second step.

Among these twenty programs, SYMSC detected leakage points in four: ASE from OpenSSL [4],

DES from Libgcrypt [3], FCrypt from Chronos [42], and Khazad from Chronos [42]. I manually

inspected these four programs in a way similar to what is described in Section 6.3.2, and confirmed

that all these leakage points are realistic. Furthermore, the two-step approach returned exactly the

same results as the precise analysis for all benchmark programs, but in significantly less time.

I also conducted our experiments using 4-way set-associative cache instead of direct-mapped

cache. The results of these experiments are similar to the ones reported in Table 6.4. Therefore, I

omit them for brevity.

Nevertheless, the similarity is expected. For example, a 1024-byte S-Box would be mapped to 16

consecutive cache lines in directed-mapped cache as well as 4-way set-associative cache, provided

that the cache size is 64KB and the line size is 64-byte. The only minor difference is that, in the 4-

way set-associative cache, SYMSC needs four adversarial memory accesses from thread T2 to fully

evict a cache set. But if SYMSC have already detected the first adversarial address (say addr), the

remaining three could simply be addr+cache_size, addr+2*cache_size, and addr+3*cache_size.

Thus, there is no significant difference from analyzing direct-mapped cache.

6.7.3 Results Obtained with Symbolic Addresses

The results shown in Table 6.4 are useful, but also somewhat conservative. A more aggressive

analysis is to assume the adversarial thread T2 may access memory regions whose cache layout is

symbolic (refer to Case 2 in Section 6.2.3).

Table 6.5 shows the experimental results obtained using direct-mapped cache and symbolic ad-

126 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

Table 6.5: Results of leak detection with symbolic addresses.

Name #.Acc

Precise Two-Step

#.Inter #.Test Time(m) #.Inter
#.Test

Time(m)
step1 / step2

AES [4] 1,026 224 220 1016.4 224 220 / 220 237.5
AES[42] 2,568 141 139 >1600 256 302 / 254 548.3
Camellia[2] 2,590 176 172 830.8 176 172 / 172 303.5
CAST5[2] 1,815 167 164 >1600 384 381 / 381 1337.4
CAST5[42] 1,392 183 180 >1600 384 381 / 381 1392.5
Chaskey[45] 1,380 1 0 0.1 1 1 / 0 0.1
DES[3] 2,135 144 127 38.6 144 164 / 127 27.2
DES[42] 2,539 119 114 >1600 194 187 / 183 1191.5
FCrypt[42] 428 64 60 15.1 64 60 / 60 20.1
Kasumi[1] 1,785 83 82 >1600 96 94 / 94 151.9
Khazad[42] 684 114 103 >1600 248 254 / 240 165.3
KV_Name[28] 140 1406 0 0.5 1406 1406 / 0 0.5
LBlock[45] 4,068 1 0 0.1 1 1 / 0 0.1
Misty1[1] 2,966 76 75 >1600 96 94 / 94 265.1
Piccolo[45] 5,103 1 0 0.1 1 1 / 0 0.1
PRESENT[45] 8,233 1 0 0.2 1 1 / 0 0.2
rfc2268[3] 3,190 113 112 303.4 113 112 / 112 42.9
Seed[3] 1,632 201 197 >1600 320 316 / 316 1505.1
TWINE[45] 10,492 1 0 0.1 1 1 / 0 0.1
Twofish[3] 12,400 2514 84 >1600 900 84,063 / 76 >1600

dresses in thread T2 (Case 2 in Section 6.2.3). The first two columns show the benchmark name

and the maximum number of memory addresses accessed by an interleaving at run time. The Pre-

cise column shows the result of computing the precise solution for our cache analysis problem. The

Two-Step column shows the result of running the simplified version. In both cases, SYMSC reports

the total number of interleavings explored by symbolic execution (#.Inter), the number of leaky

memory accesses detected (#.Test), and the total execution time in minutes (m). For Two-Step, the

number of leaky accesses is further divided into two subcolumns: the leaky accesses detected after

the first step and the leaky accesses detected after the second step.

The results show that, for most of the benchmark programs, the overhead of precisely solving our

cache analysis is too high: on nine of the twenty programs, it could not complete within the time

limit. In contrast, the two-step analysis was able to complete nineteen out of the twenty programs.

In terms of accuracy, the two-step approach is almost as good as precise analysis: in all completed

6.7. EVALUATION 127

programs, they detected the same number of leakage points, which indicate a possible combination

of adversarial threads and memory layout that can trigger timing leaks.

The results also show that, for the same type of cryptographic algorithms (such as AES), differ-

ent implementations may lead to drastically different overhead. For example, SYMSC detected

34 more leakage points in the AES implementation of Chronos [42] than that of OpenSSL [4].

However, the AES of Chronos took almost twice as long for our tool to analyze. For DES imple-

mentations from Libgcrypt [3] and Chronos [42], SYMSC detected a slightly different number of

leakage points, but the time taken is significantly different (27.1 minutes versus 1191.5 minutes).

In contrast, for the two versions of CAST5, SYMSC detected the same number of leakage points in

roughly the same amount of time. For the benchmark where Two-Step took a long time, I found it is

due to the increasing size of symbolic constraints which consist of the addresses in S-Box accesses.

Typically the later a S-Box access in a loop, the larger its symbolic address expression would be.

In Twofish, SYMSC timed out because of the large number of "may-be-related" event pairs (i.e.,

accessing the same S-Box but not the same cache line), which made SMT solving difficult.

6.7.4 Discussion

Based on the results, the two research questions have clear answers. First, SYMSC is able to

identify cache timing leaks in concurrent programs. Specifically, using symbolic addresses in the

adversarial thread demonstrates the possibility of triggering leaks in a concurrent system, whereas

using fixed addresses in the analysis allows shows that such leaks are more practical. Second,

SYMSC’s optimization techniques are effective in reducing the computational overhead, which is

demonstrated on a diverse set of real-world cipher programs.

SYMSC searches for sensitive inputs as well as an interleaving schedule that, together, trigger

128 CHAPTER 6. ADVERSARIAL SYMBOLIC EXECUTION

divergent cache behaviors. If an individual program path has a constant cache behavior, e.g., all

the memory accesses refer to fixed memory addresses regardless of the value of the sensitive input,

then timing leaks are impossible. By checking for and leveraging such conditions, SYMSC can

reduce the computation cost even further. For instance, with naive exploration, SYMSC would

have generated 1,406 interleavings for the benchmark program named KV_name. However, with

the above analysis, it does not have to generate any interleaving. In this example, KV_name’s

4-byte symbolic input only affects the branch conditions but does not taint any memory access

address. Thus, many paths are explored by symbolic execution. However, no leak is detected on

these paths.

Another example is Chaskey, which has a single program path, together with 1,380 memory

accesses on this path. These memory addresses are all independent of the 16-Byte symbolic input,

which means no leakage point can be found by SYMSC.

6.8 Conclusion

I have presented a symbolic execution method, SYMSC, for detecting cache timing leaks in a

computation that runs concurrently with an adversarial thread. SYMSC systematically explores

both thread paths and their interleavings, and relies on an SMT solver to detect divergent cache

behaviors. Experiments show that real cipher programs do have concurrency related cache timing

leaks, and although it remains unclear to what extent such leaks are exploited in practice, SYMSC

computes concrete data inputs and interleaving schedules to demonstrate these leaks are realistic.

To the best of our knowledge, this is the first symbolic execution method for detecting cache timing

side-channel leaks due to concurrency.

Chapter 7

Conclusions

In this dissertation I first introduce the background of my research works and then establish the

fundamental concepts in Chapter 1 and Chapter 2, respectively.

From Chapter 3 to Chapter 6 I describe in detail the motivations, key algorithms, implementa-

tions, and evaluations of my main contributions — four new symbolic execution based methods

for analyzing various concurrent software systems . These methods cover the testing and veri-

fication of standard multithreading semantics, non-standard concurrency semantics and program

non-functional properties.

Specifically, the Assertion Guided Symbolic Execution is a new state space reduction technique

for eliminating redundant program paths and thread interleavings during symbolic execution; the

Incremental Symbolic Execution is a method for generating test inputs by exploring only new be-

haviors introduced by code changes between two program versions; the SYMPLC is a method for

systematically testing PLC software written in industrial languages specified by the IEC 61131-3

standard; and the Adversarial Symbolic Execution is a method that analyzes the timing character-

129

130 CHAPTER 7. CONCLUSIONS

istics of concurrent program executions detect cache timing side-channel leaks.

All of these aforementioned works have been published as peer-reviewed papers in mainstream

Software Engineering conferences. I believe that these works have been making considerable

contributions to the crossing research directions of symbolic execution and concurrency.

Bibliography

[1] Botan. https://botan.randombit.net/.

[2] LibTomCrypt. http://www.libtom.net/LibTomCrypt/, .

[3] Libgcrypt. https://gnupg.org/software/libgcrypt/index.html, .

[4] OpenSSL. https://github.com/openssl/openssl/tree/OpenSSL_0_9_7-stable.

[5] High Performance SSH/SCP - HPN-SSH. https://www.psc.edu/hpn-ssh.

[6] OpenSSH. http://www.openssh.com/.

[7] Borja Fernandez Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles Tournier,

Simon Bliudze, Jan Olaf Blech, and Víctor Manuel González Suárez. Applying model

checking to industrial-sized PLC programs. IEEE Trans. Industrial Informatics, 11(6):1400–

1410, 2015.

[8] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and Brian Gaeke. LLVM:

A low-level virtual instruction set architecture. In ACM/IEEE international symposium on

Microarchitecture, San Diego, California, Dec 2003.

[9] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and

Shiyi Wei. Decomposition instead of self-composition for proving the absence of timing

131

https://botan.randombit.net/
http://www.libtom.net/LibTomCrypt/
https://gnupg.org/software/libgcrypt/index.html
https://github.com/openssl/openssl/tree/OpenSSL_0_9_7-stable
https://www.psc.edu/hpn-ssh
http://www.openssh.com/

132 BIBLIOGRAPHY

channels. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 362–375, 2017.

[10] John D. Backes, Suzette Person, Neha Rungta, and Oksana Tkachuk. Regression verification

using impact summaries. In International SPIN Workshop on Model Checking Software,

pages 99–116, 2013.

[11] Thomas Ball. A theory of predicate-complete test coverage and generation. In Formal

Methods for Components and Objects, Third International Symposium, FMCO 2004, Leiden,

The Netherlands, November 2 - 5, 2004, Revised Lectures, pages 1–22, 2004.

[12] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan.

String analysis for side channels with segmented oracles. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 193–204, 2016.

[13] Tiyash Basu and Sudipta Chattopadhyay. Testing cache side-channel leakage. In 2017 IEEE

International Conference on Software Testing, Verification and Validation Workshops, ICST

Workshops 2017, Tokyo, Japan, March 13-17, 2017, pages 51–60, 2017.

[14] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded pro-

grams from arbitrary program contexts. In ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages, and Applications, pages 491–506, 2014.

[15] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Counterexample-guided abstraction

refinement for PLCs. In International Workshop on Systems Software Verification, 2010.

[16] Sebastian Biallas, Mirco Giacobbe, and Stefan Kowalewski. Predicate abstraction for pro-

grammable logic controllers. In Formal Methods for Industrial Critical Systems - 18th

International Workshop, pages 123–138, 2013.

BIBLIOGRAPHY 133

[17] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. RWset: Attacking path explosion

in constraint-based test generation. In International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 351–366, 2008.

[18] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisti-

cated points-to analyses. In ACM SIGPLAN Conference on Object Oriented Programming,

Systems, Languages, and Applications, OOPSLA ’09, pages 243–262, New York, NY, USA,

2009. ACM.

[19] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. Symbolic path cost analysis for side-

channel detection. In International Conference on Software Engineering, pages 424–425,

2018.

[20] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic exe-

cution for automated real-world software testing. In European Conference on Computer

Systems, pages 183–198, 2011.

[21] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In ASE,

pages 443–446, 2008.

[22] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In USENIX Symposium

on Operating Systems Design and Implementation, pages 209–224, 2008.

[23] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In USENIX Symposium

on Operating Systems Design and Implementation, pages 209–224, 2008.

[24] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen,

Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing in practice:

134 BIBLIOGRAPHY

Preliminary assessment. In International Conference on Software Engineering, pages 1066–

1071, 2011.

[25] Henrik Carlsson, Bo Svensson, Fredrik Danielsson, and Bengt Lennartson. Methods for

reliable simulation-based PLC code verification. IEEE Trans. Industrial Informatics, 8(2):

267–278, 2012.

[26] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Time-bounded analysis of real-time sys-

tems. In International Conference on Formal Methods in Computer-Aided Design, pages

72–80, 2011.

[27] Sagar Chaki, Arie Gurfinkel, and Nishant Sinha. Efficient verification of periodic programs

using sequential consistency and snapshots. In International Conference on Formal Methods

in Computer-Aided Design, pages 51–58, 2014.

[28] Sudipta Chattopadhyay. Directed automated memory performance testing. In Tools and

Algorithms for the Construction and Analysis of Systems - 23rd International Conference,

TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS, pages 38–55, 2017.

[29] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. Quantifying

the information leak in cache attacks through symbolic execution. CoRR, abs/1611.04426,

2016.

[30] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. Quantifying

the information leak in cache attacks via symbolic execution. In Proceedings of the 15th

ACM-IEEE International Conference on Formal Methods and Models for System Design,

MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017, pages 25–35, 2017.

[31] Gang chen, Xiaoyu Song, and Ming Gu. PLC program verification and analysis using the

BIBLIOGRAPHY 135

coq theorem prover. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(1):30–34,

2010.

[32] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnerabilities using

quantitative cartesian hoare logic. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 875–890, 2017.

[33] Chih-Hong Cheng, Chung-Hao Huang, Harald Ruess, and Stefan Stattelmann. G4LTL-ST:

automatic generation of PLC programs. In International Conference on Computer Aided

Verification, pages 541–549, 2014.

[34] Chih-Hong Cheng, Yassine Hamza, and Harald Ruess. Structural synthesis for GXW speci-

fications. In International Conference on Computer Aided Verification, pages 95–117, 2016.

[35] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection of thread safety viola-

tions via coverage-guided generation of concurrent tests. In International Conference on

Software Engineering, pages 266–277, 2017.

[36] Duc-Hiep Chu and Joxan Jaffar. A framework to synergize partial order reduction with state

interpolation. In International Haifa Verification Conference, pages 171–187, 2014.

[37] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. Precise cache timing analysis via sym-

bolic execution. In 2016 IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), Vienna, Austria, April 11-14, 2016, pages 293–304, 2016.

[38] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea.

Cloud9: A software testing service. Operating Systems Review, 43(4):5–10, 2009.

[39] Lori A. Clarke. A system to generate test data and symbolically execute programs. IEEE

Trans. Software Eng., 2(3):215–222, 1976.

136 BIBLIOGRAPHY

[40] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Formal verification of safety

PLC based control software. In Integrated Formal Methods - 12th International Conference,

pages 508–522, 2016.

[41] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

International Conference on Tools and Algorithms for Construction and Analysis of Systems,

pages 337–340, 2008.

[42] Matthew Dellinger, Piyush Garyali, and Binoy Ravindran. Chronos linux: A best-effort

real-time multiprocessor linux kernel. In Design Automation Conference, pages 474–479.

IEEE, 2011.

[43] Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré, Jean-

Jacques Quisquater, and Jean-Louis Willems. A practical implementation of the timing at-

tack. In Smart Card Research and Applications, This International Conference, CARDIS ’98,

Louvain-la-Neuve, Belgium, September 14-16, 1998, Proceedings, pages 167–182, 1998.

[44] E. Dijkstra. A Discipline of Programming. Prentice Hall, NJ, 1976.

[45] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and

Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things. Cryptology

ePrint Archive, Report 2015/209, 2015. http://eprint.iacr.org/2015/209.

[46] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. Cacheau-

dit: A tool for the static analysis of cache side channels. In Proceedings of the 22th USENIX

Security Symposium, Washington, DC, USA, August 14-16, 2013, pages 431–446, 2013.

[47] Jean-Marie Farines, Max Hering de Queiroz, Vinicius G. da Rocha, Ana Maria M. Carpes,

François Vernadat, and Xavier Crégut. A model-driven engineering approach to formal

http://eprint.iacr.org/2015/209

BIBLIOGRAPHY 137

verification of PLC programs. In IEEE Conference on Emerging Technologies & Factory

Automation, pages 1–8, 2011.

[48] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. Con2colic testing. In

ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 37–47, 2013.

[49] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.

[50] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.

In ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages

110–121, 2005.

[51] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-

ing software. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, pages 110–121, 2005.

[52] Haojie Fu, Zan Wang, Xiang Chen, and Xiangyu Fan. A systematic survey on automated

concurrency bug detection, exposing, avoidance, and fixing techniques. Software Quality

Journal, 26(3):855–889, 2018.

[53] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Con-

crete results. In Cryptographic Hardware and Embedded Systems - CHES 2001, Third

International Workshop, Paris, France, May 14-16, 2001, Proceedings, number Generators,

pages 251–261, 2001.

[54] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth acous-

tic cryptanalysis. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 444–461,

2014.

138 BIBLIOGRAPHY

[55] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Ap-

proach to the State-Explosion Problem. Springer, 1996. ISBN 3-540-60761-7.

[56] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In

Programming Language Design and Implementation, pages 213–223, June 2005.

[57] Patrice Godefroid. Compositional dynamic test generation. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pages 47–54, 2007.

[58] Patrice Godefroid. Software model checking improving security of a billion computers. In

International SPIN Workshop on Model Checking Software, page 1, 2009.

[59] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz

testing. In Network and Distributed System Security Symposium, 2008.

[60] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS. In Com-

puter Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25,

1997, Proceedings, pages 72–83, 1997.

[61] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. Assertion

guided symbolic execution of multithreaded programs. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 854–865, 2015.

[62] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.

Software Tools for Technology Transfer, 2(4), 2000.

[63] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art of testing

less without sacrificing quality. In International Conference on Software Engineering, ICSE

’15, pages 483–493, Piscataway, NJ, USA, 2015. IEEE Press.

BIBLIOGRAPHY 139

[64] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. muZ - an efficient engine for

fixed points with constraints. In International Conference on Computer Aided Verification,

volume 6806 of Lecture Notes in Computer Science, pages 457–462, 2011.

[65] G. Holzmann, E. Najm, and A. Serhrouchni. SPIN model checking: An introduction. Inter-

national Journal on Software Tools for Technology Transfer, 2(4):321–327, 2000.

[66] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Harrold. Testing

concurrent programs to achieve high synchronization coverage. In International Symposium

on Software Testing and Analysis, pages 210–220, 2012.

[67] Shin Hong, Matt Staats, Jaemin Ahn, Moonzoo Kim, and Gregg Rothermel. The impact of

concurrent coverage metrics on testing effectiveness. In IEEE International Conference on

Software Testing, Verification and Validation, pages 232–241, 2013.

[68] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence

graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, January 1990.

[69] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. Boosting concolic testing via

interpolation. In ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

48–58, 2013.

[70] Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-aware preemption prioritiza-

tion. In International Symposium on Software Testing and Analysis, pages 133–143, 2011.

[71] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Programming Industrial Automa-

tion Systems: Concepts and Programming Languages, Requirements for Programming Sys-

tems, Decision-making Aids. Springer Science & Business Media, 2010.

[72] Kari Kähkönen and Keijo Heljanko. Testing multithreaded programs with contextual un-

140 BIBLIOGRAPHY

foldings and dynamic symbolic execution. In International Conference on Application of

Concurrency to System Design, pages 142–151, 2014.

[73] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction: An optimal

symbolic partial order reduction technique. In International Conference on Computer Aided

Verification, pages 398–413, 2009.

[74] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,

1976.

[75] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, pages 104–

113, 1996.

[76] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances

in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.

[77] Lock-Jo Koo, Chang Mok Park, Chang Ho Lee, SangChul Park, and Gi-Nam Wang. Simula-

tion framework for the verification of PLC programs in automobile industries. International

Journal of Production Research, 49(16):4925–4943, 2011.

[78] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Automatic quantification of cache

side-channels. In International Conference on Computer Aided Verification, pages 564–580,

2012.

[79] Markus Kusano and Chao Wang. Assertion guided abstraction: A cooperative optimization

for dynamic partial order reduction. In IEEE/ACM International Conference On Automated

Software Engineering, pages 175–186, 2014.

BIBLIOGRAPHY 141

[80] E. V. Kuzmin, Valery A. Sokolov, and D. A. Ryabukhin. Construction and verification of

PLC-programs by LTL-specification. Automatic Control and Computer Sciences, 49(7):

453–465, 2015.

[81] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. Dif-

ferential assertion checking. In ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 345–355, 2013.

[82] Chris Lattner and Vikram Adve. The LLVM Compiler Framework and Infrastructure Tu-

torial. In LCPC’04 Mini Workshop on Compiler Research Infrastructures, West Lafayette,

Indiana, Sep 2004.

[83] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.

[84] Steffen Lehnert. A taxonomy for software change impact analysis. In Proceedings of the

12th International Workshop on Principles of Software Evolution and the 7th annual ERCIM

Workshop on Software Evolution, pages 41–50, 2011.

[85] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering symbolic execution

to less traveled paths. In ACM SIGPLAN Conference on Object Oriented Programming,

Systems, Languages, and Applications, pages 19–32, 2013.

[86] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks - Revealing

the Secrets of Smart Cards. Springer, 2007.

[87] MATIEC. IEC 61131-3 compiler. URL: https://www.openhub.net/p/matiec.

[88] A. W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, pages 279–324. Springer,

1986.

[89] Kenneth L. McMillan. Lazy annotation for program testing and verification. In International

Conference on Computer Aided Verification, pages 104–118, 2010.

142 BIBLIOGRAPHY

[90] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for

points-to analysis for java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, January 2005.

[91] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detection. SIG-

PLAN Not., 42(1):327–338, January 2007.

[92] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. SIG-

PLAN Not., 41(6):308–319, June 2006.

[93] NBDS. Non-blocking data structures. URL: https://code.google.com/p/nbds/.

[94] NED. ned productions: nedmalloc URL: http://www.nedprod.com/programs/portable/nedmalloc/.

[95] Johanna Nellen, Erika Ábrahám, and Benedikt Wolters. A CEGAR tool for the reachability

analysis of PLC-controlled plants using hybrid automata. In Formalisms for Reuse and

Systems Integration, pages 55–78. 2015.

[96] Johanna Nellen, Kai Driessen, Martin Neuhäußer, Erika Ábrahám, and Benedikt Wolters.

Two CEGAR-based approaches for the safety verification of PLC-controlled plants. Infor-

mation Systems Frontiers, pages 1–26, 2016.

[97] Sang C. Park, Chang Mok Park, Gi-Nam Wang, Jonggeun Kwak, and Sungjoo Yeo. PLCStu-

dio: Simulation based PLC code verification. In Proceedings of the 2008 Winter Simulation

Conference, pages 222–228, 2008.

[98] Corina S. Pasareanu, Neha Rungta, and Willem Visser. Symbolic execution with mixed

concrete-symbolic solving. In International Symposium on Software Testing and Analysis,

pages 34–44, 2011.

[99] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-run side-channel

analysis using symbolic execution and max-smt. In IEEE 29th Computer Security Foun-

BIBLIOGRAPHY 143

dations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 387–400,

2016.

[100] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incremental

symbolic execution. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 504–515, 2011.

[101] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik Bultan.

Synthesis of adaptive side-channel attacks. IACR Cryptology ePrint Archive, 2017:401,

2017.

[102] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures

and Counter-measures for Smart Cards, pages 200–210. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2001.

[103] Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Augustine.

Dex: A semantic-graph differencing tool for studying changes in large code bases. In IEEE

International Conference on Software Maintenance, pages 188–197, 2004.

[104] Niloofar Razavi, Franjo Ivancic, Vineet Kahlon, and Aarti Gupta. Concurrent test generation

using concolic multi-trace analysis. In Asian Symposium on Programming Languages and

Systems, pages 239–255, 2012.

[105] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for java using

annotated constraints. In ACM SIGPLAN Conference on Object Oriented Programming,

Systems, Languages, and Applications, OOPSLA ’01, pages 43–55, New York, NY, USA,

2001. ACM.

[106] Neha Rungta, Suzette Person, and Joshua Branchaud. A change impact analysis to charac-

144 BIBLIOGRAPHY

terize evolving program behaviors. In IEEE International Conference on Software Mainte-

nance, pages 109–118, 2012.

[107] K. Sen. Scalable Automated Methods for Dynamic Program Analysis. PhD thesis, UIUC,

2006.

[108] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path model-

checking tools. In International Conference on Computer Aided Verification, pages 419–

423. Springer, 2006.

[109] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for

C. In ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 263–272,

2005.

[110] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: A se-

lective record-replay and dynamic analysis framework for javascript. In ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 488–498, 2013.

[111] Koushik Sen, George C. Necula, Liang Gong, and Wontae Choi. Multise: Multi-path sym-

bolic execution using value summaries. In ACM SIGSOFT Symposium on Foundations of

Software Engineering, pages 842–853, 2015.

[112] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic execution using ranged

analysis. In ACM SIGPLAN Conference on Object Oriented Programming, Systems, Lan-

guages, and Applications, pages 523–536, 2012.

[113] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety properties. In

ACM SIGPLAN Conference on Programming Language Design and Implementation, pages

57–69, 2016.

BIBLIOGRAPHY 145

[114] Herb Sutter and James R. Larus. Software and the concurrency revolution. ACM Queue, 3

(7):54–62, 2005.

[115] SV-COMP. 2014 software verification competition. URL: http://sv-comp.sosy-

lab.org/2014/, 2014.

[116] SV-COMP. 2015 software verification competition. URL: http://sv-comp.sosy-

lab.org/2015/, 2015.

[117] Valerio Terragni, Shing-Chi Cheung, and Charles Zhang. RECONTEST: effective regres-

sion testing of concurrent programs. In International Conference on Software Engineering,

pages 246–256, 2015.

[118] Nikolai Tillmann and Jonathan de Halleux. PEX – white box test generation for .NET. In

International Conference on Tests and Proofs, pages 134–153, 2008.

[119] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Ascertaining uncer-

tainty for efficient exact cache analysis. In International Conference on Computer Aided

Verification, pages 22–40, 2017.

[120] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. Chopped symbolic

execution. In International Conference on Software Engineering, pages 350–360, 2018.

[121] Willem Visser, Corina S. Pasareanu, and Radek Pelánek. Test input generation for java con-

tainers using state matching. In International Symposium on Software Testing and Analysis,

pages 37–48, 2006.

[122] Bjoern Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multi-threaded software

with Impact. In International Conference on Formal Methods in Computer-Aided Design,

pages 210–217, 2013.

146 BIBLIOGRAPHY

[123] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. Cached: Identifying

cache-based timing channels in production software. In 26th USENIX Security Symposium

(USENIX Security 17), pages 235–252, 2017.

[124] Mark Weiser. Program slicing. In International Conference on Software Engineering, ICSE,

pages 439–449, 1981.

[125] Jerod W. Wilkerson. A software change impact analysis taxonomy. In IEEE International

Conference on Software Maintenance, pages 625–628, 2012.

[126] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-

channel leaks using program repair. In International Symposium on Software Testing and

Analysis, 2018.

[127] Guowei Yang, Sarfraz Khurshid, Suzette Person, and Neha Rungta. Property differencing

for incremental checking. In International Conference on Software Engineering, pages

1059–1070, 2014.

[128] Wuu Yang. Identifying syntactic differences between two programs. Softw., Pract. Exper.,

21(7):739–755, 1991.

[129] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Efficient stateful dynamic partial order

reduction. In SPIN Workshop on Model Checking Software, pages 288–305, 2008.

[130] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and Chen Zhao. Post-

conditioned symbolic execution. In IEEE International Conference on Software Testing,

Verification and Validation, pages 1–10, 2015.

[131] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. Maple: A coverage-

driven testing tool for multithreaded programs. In ACM SIGPLAN Conference on Object

Oriented Programming, Systems, Languages, and Applications, pages 485–502, 2012.

BIBLIOGRAPHY 147

[132] Tingting Yu. TACO: test suite augmentation for concurrent programs. In ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 918–921, 2015.

[133] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. Simrt: An automated framework to

support regression testing for data races. In International Conference on Software Engineer-

ing, pages 48–59. ACM, 2014.

	Titlepage
	Abstract
	General Audience Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Organization

	Preliminaries
	Concurrent Programs
	Generalized Interleaving Graph (GIG)
	Baseline Symbolic Execution

	Assertion Guided Symbolic Execution
	Introduction
	Motivation
	Summarizing the Explored Executions
	Computing Predicate Summary at b-PP Nodes
	Computing Predicate Summary at i-PP Nodes

	Pruning the Redundant Executions
	Assertion Guided Pruning
	Interaction with DPOR
	Proof of Correctness

	Optimizations
	Leveraging Static Program Slicing
	Approximating the Summary Constraints

	Evaluation
	Conclusion

	Incremental Symbolic Execution
	Introduction
	Motivation
	Pruning with Change-Impact Analysis
	Pruning with Execution Summary

	The Incremental Approach
	The Overall Algorithm
	Change-Impact Analysis
	Redundant Path Pruning

	Evaluation
	Subjects and Methodology
	Experimental Results
	Threats to Validity

	Conclusion

	Symbolic Execution of PLC Code
	Introduction
	Motivation
	Single-task PLC Programs
	Multi-task PLC Programs

	Modeling PLC Program Semantics
	Translating PLC Tasks to C
	Constructing the Test Harness

	Symbolic Execution Phase
	Multithreaded C Model for PLC
	Overall Algorithm

	PLC-specific Reductions
	Priority-based Reduction
	Period-based Reduction
	Stateful Exploration

	Evaluation
	Subjects and Methodology
	Results on Single-task PLC Applications
	Results on Multi-task PLC Applications

	Conclusion

	Adversarial Symbolic Execution
	Introduction
	Motivation
	A Self-leaking Program and the Repair
	New Leak Induced by Concurrency
	Adversarial Symbolic Execution

	The Threat Model
	Cache and the Timing Side Channels
	Example of an Attack

	Adversarial Symbolic Execution
	The Baseline Algorithm
	Enhanced Algorithm

	Adversarial Cache Analysis
	Cache Modeling
	Leakage Detection
	The Running Example

	Optimizations
	Domain-specific Reduction
	Layout-directed Reduction

	Evaluation
	Subjects and Methodology
	Results Obtained with Fixed Addresses
	Results Obtained with Symbolic Addresses
	Discussion

	Conclusion

	Conclusions
	Bibliography

