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Playing to Win: Applying Cognitive Theory and Gamification to Augmented Reality for 

Enhanced Mathematical Outcomes in Underrepresented Student Populations 

 

TeAirra Brown 

ABSTRACT 

 

National dialogue and scholarly research illustrate the need for engaging science, math, 

technology, and engineering (STEM) innovations in K-12 environments, most importantly in low-

income communities (President’s Council of Advisors on Science and Technology, 2012). 

According to Educating the Engineer of 2020, “current curricular material does not portray STEM 

in ways that seem likely to excite the interest of students from a variety of ethnic and cultural 

backgrounds” (Phase, 2005). The National Educational Technology Plan of 2010 believes that one 

of the most powerful ways to transform and improve K-12 STEM education it to instill a culture 

of innovation by leveraging cutting edge technology (Polly et al., 2010).  Augmented reality (AR) 

is an emerging and promising educational intervention that has the potential to engage students 

and transform their learning of STEM concepts. AR blends the real and virtual worlds by 

overlaying computer-generated content such as images, animations, and 3D models directly onto 

the student’s view of the real world. Visual representations of STEM concepts using AR produce 

new educational learning opportunities, for example, allowing students to visualize abstract 

concepts and make them concrete (Radu, 2014). Although evidence suggests that learning can be 

enhanced by implementing AR in the classroom, it is important to take into account how students 

are processing AR content. Therefore, this research aims to examine the unique benefits and 

challenges of utilizing augmented reality (AR) as a supplemental learning technique to reinforce 

mathematical concepts while concurrently responding to students’ cognitive demands.  



 

 

To examine and understand how cognitive demands affect students’ information 

processing and creation of new knowledge, Mayer’s Cognitive Theory of Multimedia Learning 

(CTML) is leveraged as a theoretical framework to ground the AR application and supporting 

research. Also, to enhance students’ engagement, gamification was used to incorporate game 

elements (e.g. rewards and leaderboards) into the AR applications. This research applies 

gamification and CTML principles to tablet-based gamified learning AR (GLAR) applications as 

a supplemental tool to address three research objectives: (1) understanding the role of prior 

knowledge on cognitive performance, (2) examining if adherence to CTML principles applies to 

GLAR, and, (3) investigating the impact of cognitive style on cognitive performance. Each 

objective investigates how the inclusion of CTML in gamifying an AR experience influences 

students’ perception of cognitive effects and how GLAR affects or enhances their ability to create 

new knowledge.  

Significant results from objective one suggest, (1) there were no differences between 

novice and experienced students’ cognitive load, and, (2) novice students’ content-based learning 

gains can be improved through interaction with GLAR. Objective two found that high adherence 

to CTML’s principles was effective at (1) lowering students’ cognitive load, and, (2) improving 

GLAR performance. The key findings of objective three are (1) there was no difference in FID 

students’ cognitive load when voice and coherence were manipulated, and, (2) both FID and FD 

students had content-based learning gains after engagement with GLAR. 

The results of this research adds to the existing knowledge base for researchers, designers 

and practitioners to consider when creating gamified AR applications. Specifically, this research 

provides contributions to the field that include empirical evidence to suggest to what degree CTML 

is effective as an AR-based supplemental pedagogical tool for underrepresented students in 



 

 

southwest Virginia. And moreover, offers empirical data on the relationship between 

underrepresented students’ perceived benefits of GLAR and it is impact on students’ cognitive 

load.  This research further offers recommendations as well as design considerations regarding 

the applicability of CTML when developing GLAR applications. 
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GENERAL AUDIENCE ABSTRACT  

 

 

The purpose of this research is to examine the unique benefits and challenges of using 

augmented reality (AR) to reinforce underrepresented students’ math concepts while observing 

how their process information. Gamification and Mayer’s Cognitive Theory of Multimedia 

Learning (CTML) principles are applied to create tablet-based gamified learning AR (GLAR) 

applications to address three research objectives: (1) understanding the role of prior knowledge on 

cognitive performance, (2) examining if adherence to CTML principles applies to GLAR, and, (3) 

investigating the impact of cognitive style on cognitive performance. Each objective investigates 

how the inclusion of CTML in gamifying an AR experience influences students’ perception of 

cognitive effects and how GLAR affects or enhances their ability to create new knowledge. This 

research offers recommendations as well as design considerations regarding the applicability of 

CTML when developing GLAR applications for underrepresented students in southwest Virginia. 
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 1 

1 Introduction 

 

1.1 Statement of Problem 

National dialogue and scholarly research illustrate the need for science, math, technology, 

and engineering (STEM) innovations in K-12 environments, and more importantly, its need in 

low-income communities (President’s Council of Advisors on Science and Technology, 2012). 

Today, success of low-income children in public school is difficult to achieve. A 2008 report 

submitted by the House Bill 2722 Advisory Committee states, “the education system was never 

designed to educate the diversity of students currently in public schools.” As a result, the disparity 

between various socioeconomic groups of students is known as the achievement gap. This issue 

encompasses many problems such as the lower achievement level that low-income students 

demonstrate in subjects such as reading and mathematics. One of the initiatives implemented to 

close the achievement gap is the No Child Left Behind (NCLB) Act of 2002. The goal of NCLB 

was to monitor students’ progress toward achieving grade level expectations through annual 

assessments, and to hold schools accountable for the results (Thompson, 2007; NCES, 2011).  

Despite remarkable efforts and safeguards such as NCLB, the achievement gap remains 

present due to key differences between the educational communities of underserved and high-

income students (NCLB Act, 2001). A pivotal difference between these communities is the 

engagement and cognitive development (or lack thereof) for students to achieve expected goals. 

Therefore, researchers must continue to develop interventions to close the achievement gap to 

address these differences. The National Educational Technology Plan of 2010 believes that one of 

the most powerful ways to transform and improve K-12 STEM education it to instill a culture of 
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innovation through technology use. Research suggests, moving forward, that we need to leverage 

cutting-edge technology to engage students and ensure their development of STEM capabilities 

reach levels beyond what was considered acceptable in the past (Rosenberg, 2005). Utilizing 

technology is an educational intervention that offers great promise at effectively promoting student 

achievement and closing the gap. One of these emerging and promising learning technologies is 

augmented reality (AR), which according to the 2010 Horizon Report, has the potential to impact 

learning and transform students' learning experiences (Johnson, Larry, Smith, & Stone, 2010).  

AR blends the real and virtual worlds by overlaying computer-generated content such as 

images, animations, and 3D models directly onto the student’s view of the real world.  AR offers 

great promise by leveraging the unique blending of virtual objects and the real world to produce 

new educational opportunities by, for example, allowing students to visualize abstract concepts 

and make them concrete (Radu, 2014). AR could increase engagement and positively impact the 

cognitive processes of students if it is well-designed (Dunleavy, Dede, Mitchell, 2009). The visual 

representations of concepts using AR produce learning gains that are difficult to achieve in other 

educational technologies (Wu et al., 2013); however, there are some limitations and drawbacks 

that should be addressed if we want to leverage AR in the K-12 environment.  

Some of the potential challenge researchers face are creating authentic AR learning 

environments, engaging students beyond the novelty effect and reducing students’ cognitive load. 

Cognitive load is the total amount of mental effort and/or information that the working memory 

can hold at a given time (Sweller, 1988; 2010). According to Haslma and Hamilton (2010), 

understanding how students learn and how their cognitive load can be affected is essential when 

designing learning technology. Currently, AR learning applications are not driven by pedagogy 

but more by the strengths and weaknesses of the AR authoring software and tools (Lee et al., 
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2004). This limitation hinders the design of AR and could lead to applications having too much 

information, irrelevant graphics and virtual objects, or burdensome user interaction (Medula, 

2012). AR should improve students’ conceptual understanding of learning content and keep them 

engaged without overwhelming them cognitively. Thus, in order to facilitate learning with AR, 

researchers need to limit the demands on students’ working memory to manageable pieces 

otherwise students’ learning will be limited by overloading the cognitive abilities of students 

(Sweller, 1998; Ayres, 2006).  

Another drawback: AR learning applications are being designed without considering the 

cognitive differences among students and how these differences affect students’ information 

processing (O’Shae et al, 2001). In order for students to reach their maximum learning potential, 

the design of AR should support individual factors so the use of technology is not detrimental to 

learning (Radu, 2014). The design of AR could impact the cognitive and psychology development 

of students; therefore, cognitive differences should be taken into account. However, research is 

still needed to investigate how cognitive differences could influence how students use and 

understand the educational content when using AR. Although Radu (2014) began to examine how 

students’ psychological and physiology development influence their ability to use AR applications, 

further analyses are needed to ensure AR meets the cognitive needs of the students to improve 

learning outcomes.   

1.2 Motivation  

Educators and researchers are constantly seeking educational technology to meet the needs 

of all students. The utilization of AR for educational purposes can impact the learning environment 

for students by increasing their engagement and immersing them in an augmented environment 

where they can take an active role in learning process by manipulating virtual objects (Billinghurst, 
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Kato, & Poupyrev, 2001). For example, Construct3D allowed students to inspect three dimensional 

geometric structures by virtually rotating the structures using their hand. As the student moved the 

structure, they were able to analyze the properties of the structures by viewing multiple 

perspectives and manipulating scalability to zoom in and out (Kaufmann, Schmalstieg & Wagner, 

2000). With the evolution and advancement of AR, it is important for researchers to investigate 

how to effectively design the technology for educational enhancement. Understanding how to 

optimally design AR learning applications that lower the cognitive demands on students and 

facilitate learning is a high priority (Bruning et al., 2004).  

Although previous studies show that AR can potentially improve learning by increasing 

the understanding of spatial relationships, providing authentic contextualized learning 

experiences, improving long-term recall and cultivating positive collaborations, both the 

educational and technological communities remain unclear on the cognitive demands AR has on 

the working memory (Shelton & Hedley, 2003).  

There is limited research and evidence to help designers identify students’ cognitive 

processing abilities when using multimedia instruction, especially in the K-12 learning 

environment. According to Calhoun (2012), prior research involving cognitive processing relied 

heavily on the development of multimedia instruction without emphasis on the effects of the 

multimedia design techniques or how to measure cognitive processing. Therefore, this research 

will consider the role of Mayer’s Cognitive Theory of Multimedia Learning (CTML), an 

educational psychology theory, to account for cognitive processes of students within the K-12 

environment. Understanding the role of CTML and how the design of AR affects cognitive load 

will help build the current body of knowledge. It will enhance the literature by documenting the 

specific benefits and challenges of grounding AR in CTML. This research will provide strategies 
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to maximize students’ cognitive processing as well as strengthen researchers and designers’ 

capacity to better design and utilize AR in the classroom to help all students exceed expected 

learning goals.  

1.3 Theoretical Framework  

CTML will guide this research to examine the effect of cognitive load and ground the AR 

applications in learning theory. CTML states that the human brain can only process a finite amount 

of information in a given sensory channel and processing of sensory information is processed 

separately according to its modality (Mayer & Moreno, 2003). Thus, the limited working memory 

of the brain may be the most critical factor that needs to be considered in how students are 

processing information (Mayer, 2005). Sometimes the working memory of students is overloaded 

due to inappropriate methods of presenting learning content (De Jong, 2010). Mayer bases CTML 

based on three assumptions: 1) working memory includes dual channels of modality which allow 

for visual and auditory processing; 2) the channels have a limited capacity for processing 

information which can be overloaded; and 3) learning is an active process that integrates new 

information with prior knowledge then stores to long-term memory (Mayer & Moreno, 2003).  

According to Mayer, knowledge construction from auditory and visual cues happens when the 

student is engaged in five cognitive processes (figure 1): 

1. selecting relevant words for processing in auditory working memory,  

2. selecting relevant images for processing in visual working memory,  

3. organizing selected words into a verbal model,  

4. organizing selected images into a pictorial model, and,  

5. integrating the words and images with each other and with prior knowledge. 
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Figure 1: The Cognitive Theory of Multimedia Learning (Mayer, 1997) 

 

CTML assumes that “information must be actively selected, organized and integrated with 

existing prior knowledge in order for learning to occur.” Students must be able to select and 

organize information in working memory then integrate these representations with prior 

knowledge. The theory is centered on the idea that students build meaningful connections with 

content when they process information using two modalities. These processes allow students to 

build a mental representation from the content being presented, then transfer that representation to 

knowledge efficiently. The theory assumes that the representations need to be actively organized 

and integrated with existing prior knowledge in order for learning to occur. When a student can 

fully engage in all five cognitive processes (figure 1) then they are actively learning without 

experiencing cognitive overload (Sorden, 2012).   

Essentially, CTML encompasses the ideas from other researchers and is influenced by 

other theories such as Cognitive Load Theory and Dual-Coding Theory. Mayer used these theories 

to help with the creation of several principles he proposed for designing learning technology that 

addresses his three assumptions and reduce cognitive load. Some of the principles he proposed to 
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guide the design of multimedia learning are: coherence, personalization, segmenting, contiguity, 

and signalizing. Imploring these principles to shape the design of technology should reduce 

extraneous processing, promote the transformation of free cognitive resources and maximize the 

use of cognitive processing needed for processing information (Rusanganwa, 2013; Sung & 

Mayer, 2013; Ayers, 2013; Aldalalah, 2012; Ibrahim, Antonenko, Greenwood, & Wheeler, 2012; 

Florax & Ploetzner, 2010).  

Thus, it follows that AR that is designed inappropriately may hinder students’ abilities to 

engage the five cognitive processes and subsequently, hinder their understanding of concepts. 

Research shows that AR learning applications are effective at helping students encode and retain 

information into long term memory to be retrieved later for real-world application or to solve a 

new problem (Majoros & Neumann, 2001; Valimont, 2002). However, CTML doesn’t explain 

how utilizing multi-modal sensory AR applications aid in information processing and integration 

in the working memory by retrieving prior knowledge.  

Therefore, it is hypothesized that the inclusion of CTML and applying Mayer’s principles 

when designing and creating AR will maximize the limited capacity of the working memory and 

account for the information being presented through dual modality (Clark, Nguyen & Sweller, 

2011; Mayer, 2010; Mayer, Fennell, Farmer, & Campbell, 2004; Moreno & Mayer, 2002).  

1.4 Research Purpose, Objectives and Questions  

The main purpose of this research is to examine the unique benefits and challenges of 

utilizing augmented reality (AR) as a supplemental learning technique to reinforce mathematical 

concepts while responding to students’ cognitive resources. Specifically, this research will 

evaluate the effectiveness of CTML as an AR-based learning pedagogy and investigate how the 



 

 8 

inclusion of AR in the classroom could impact the cognitive load of fifth grade students. Since the 

opportunity to use AR in fifth grade classrooms to engage students and respond to their cognitive 

demands has not been fully realized, an aim of this work is to better understand how to provide 

students with authentic technology-based learning experiences that keep them engaged while not 

overloading them cognitively. To enhance students’ engagement, gamification was used to 

incorporate game elements (e.g. rewards and leaderboards) into AR applications created 

specifically to support this research.    

Gamification applies game-like elements and principles in a non-gaming environment with 

the desired outcome of increasing engagement, motivation and learning. Gamification is not solely 

about developing a game, but instead about applying game attributes to stimulate students, leaving 

them excited about learning (Arnold, 2014). Successful gamified applications assert and intertwine 

game elements while providing feedback and encouraging the student to work toward the next 

level (Morris et al, 2013; Wood & Reiners, 2012). Based on previous empirical studies, it is 

hypothesized that the application of gamification in this study will increase students’ engagement 

and cognitive processing (Busteed, 2013; Hamari, Koivisto & Sarsa, 2014).  

This research will apply gamification and CTML principles to tablet-based gamified 

learning AR (GLAR) applications as a supplemental tool to address three research objectives as 

summarized in table 1. The advantages of using tablets include the fact that tablets are less 

obtrusive and cost-effective and are more representative of technology currently found in the 

classrooms (as opposed to expensive head-worn AR technology). Despite the lower cost point, 

tablet-based AR can still provide students benefits such a sense of immersion and multiple viewing 

perspectives. 

 



 

 9 

Table 1: Research Objective Summary 

Objective 

1. Understanding the role 

of prior knowledge on 

cognitive performance  

2. Examine if adherence to 

CTML principles apply to 

GLAR  

3. Investigate the impact of 

cognitive style on cognitive 

performance  

 

Research 

Questions 

Does prior exposure to 

learning content have an 

actual and perceived effect 

on GLAR performance? 

 

Does prior exposure to 

learning content effect 

cognitive load when using 

GLAR application 

“Celestial Blast”? 

 

Will engagement with 

GLAR improve content-

based learning gains for 

students with and without 

prior exposure to learning 

content? 

Does GLAR interfaces’ level of 

adherence to CTML principles 

affect students’ cognitive load? 

 

Does high adherence to the 

principles of CTML result in 

higher students’ GLAR 

performance? 

Is the cognitive load of field-

independent and field-dependent 

students impacted when voice and 

coherence principles of CTML are 

manipulated in GLAR application 

“Build-A-World”? 

 

Does students’ cognitive style 

impact GLAR performance when 

voice and coherence principles of 

CTML are manipulated in GLAR 

application “Build-A-World”? 

 

Are there content-based learning 

gains for field-independent and 

field-dependent students when 

voice and coherence principles of 

CTML are manipulated in GLAR 

application “Build-A-World”? 

 

Independent 

Variables 

Prior Knowledge   

(2 levels) 

Display Adherence  

Interfaces (3 levels)   

 

Cognitive Style (2 levels) 

Voice Principle (2 levels) 

Coherence Principle (2 levels) 

 

Dependent 

Variables 

Pre- and Post- Assessment 

Scores  

High Game Score 

Game Attempts 

NASA TLX 

Focus group interviews   

High Score 

Game Attempts 

NASA TLX 

QUIS Survey 

Pre- and Post- Assessment Scores  

High Score 

Correct Game Question Percentage  

NASA TLX 

QUIS Survey   

 

Experimental 

Design 

n = 35 

Mixed method  

Between-subjects design  

 

n = 22 

Single factor repeated measures 

Within-subjects design  

 

Display Adherence Interfaces –  

3x3 Latin square 

n = 26 

2 x 2 x 2 mixed factor design with 

one between-subject factor and two 

within-subject factors 

 

Cognitive Style (2) x 

Voice Principle (2) x  

Coherence Principle (2) x – 

randomize 

 

Objective 1: Understanding the role of prior knowledge on cognitive performance  

 Research Question 1: Does prior exposure to learning content have an actual and perceived 

effect on GLAR performance? 
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Hypothesis (H1):  There are significant actual difference in GLAR performance between 

students with and without exposure to learning content. 

 Research Question 2: Does prior exposure to learning content effect cognitive load when 

using GLAR application “Celestial Blast”? 

Hypothesis (H2): There are significant difference in cognitive load between students with 

and without exposure to learning content when using GLAR application “Celestial Blast”. 

 Research Question 3: Will engagement with GLAR improve content-based learning gains 

for students with and without prior exposure to learning content? 

Hypothesis (H3): Engagement with GLAR improves content-based learning gains for both 

students with and without prior exposure. 

Hypothesis (H4): There is no significant difference between content-based learning gains 

for students with and without prior exposure. 

Objective 2: Examine if the adherence to CTML principles apply to GLAR  

 Research Question 4: Does GLAR interfaces’ level of adherence to CTML principles affect 

students’ cognitive load? 

Hypothesis (H5): Students’ cognitive load is significantly lower when there is high 

adherence to the principles of CTML. 

 Research Question 5: Does high adherence to the principles of CTML result in higher 

students’ GLAR performance? 

Hypothesis (H6): High adherence to the principles of CTML does result in higher students’ 

GLAR performance.  
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Objective 3: Investigate the impact of cognitive style on cognitive performance   

 Research Question 6: Is the cognitive load of field-independent and field-dependent 

students impacted when voice and coherence principles of CTML are manipulated in 

GLAR application “Build-A-World”? 

Hypothesis (H7): The cognitive load of field-dependent students is significantly lower in 

the VonChigh condition relative to the other conditions when voice and coherence principles 

of CTML are manipulated in “Build-A-World”. 

Hypothesis (H8):  Field-independent students’ cognitive load will not be significant 

different across the four experimental design conditions when the voice and coherence 

principles of CTML are manipulated. 

 Research Question 7: Does students’ cognitive style impact GLAR performance when 

voice and coherence principles of CTML are manipulated in GLAR application “Build-A-

World”? 

Hypothesis (H9): Field-dependent students perform significantly higher relative to field-

independent students when the experimental condition of the coherence principle is high 

in the GLAR application “Build-A-World”. 

Hypothesis (H10): Field-independent students’ GLAR performance improves when the 

experimental condition of the voice principle is off in the GLAR application “Build-A-

World”.  

 Research Question 8: Are there content-based learning gains for field-independent and 

field-dependent students when voice and coherence principles of CTML are manipulated 

in GLAR application “Build-A-World”? 
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Hypothesis (H11): There are content-based learning gains for both field-independent and 

field-dependent students after engagement with “Build-A-World”. 

Hypothesis (H12): The content-based learning gains is significantly higher for field-

dependent students relative to field-independent students after engagement with “Build-A-

World”. 

1.5 Methodology Overview  

This research is composed of three studies that used controlled human-subjects 

experiments to address questions related to each objective. As described in detail in Chapters 3, 4 

and 5, these objectives were examined through multiple data collection instruments and 

techniques. In each study, the target population was fifth grade students at Title I schools in the 

state of Virginia and the settings were controlled environments on the campus of Virginia 

Polytechnic Institute and State University and the Boys and Girls Club of Southeast Virginia.   

The design of each study supports the overarching goal of examining to what extent CTML 

is an effective theoretical framework for designing GLAR applications and investigating how 

principles of CTML may reduce students’ cognitive load. Each objective investigates how the 

inclusion of CTML in gamifying an AR experience influences students’ perception of cognitive 

effects and how it affects or enhances their ability to create new knowledge. 

1.5.1 Objective 1 - Understanding the role of prior knowledge on cognitive performance 

The cognitive demands for interpreting and integrating information may be overwhelming 

for some students due to the lack of prior knowledge related to a specific learning topic (Jones, 

Gardner, Taylor, Wiebe & Forester, 2010). Experienced students need less working memory to 

organize and integrate new information than novice students due to more robust schemas stored in 
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their long-term memories and prior exposure to content. Study one utilized a mixed method, 

between-subjects experimental design involving 35 students to examine how experienced and 

novice students perceive their cognitive load after interacting with a GLAR application. The 

quantitative research methods evaluated the influences GLAR had on students with regard to 

cognitive load and knowledge creation. Complementary qualitative data adds an additional layer 

of information on students’ perceived cognitive effects after being exposed to the GLAR 

application. The qualitative data was gathered through open-ended focus groups, whereas the 

quantitative data was collected through pre- and post- assessments and cognitive load surveys. The 

results of study one aim to give direct insights into students’ perspectives in regard to possible 

benefits and challenges of using GLAR, their perceived cognitive load and how prior knowledge 

may affect cognitive load and knowledge creation. 

1.5.2 Objective 2 – Examine if the adherence to CTML principles apply to GLAR 

Research in cognitive education that takes into account the limitations of students’ working 

memory has identified the importance of designing multimedia learning content that does not 

overwhelm them resulting in increased learning outcomes (Ayres, 2006). Study two examines how 

a GLAR interfaces’ degree of adherence to CTML principles effects students’ cognitive load and 

performance. A single factor repeated measures within-subjects experimental design was used to 

compare effects on students’ cognition after using three GLAR interfaces, each of which created 

by manipulating the degree of adherence to CTML principles. Twenty-two students were exposed 

to all three interfaces. Quantitative data revealed that deviations from CTML principles negatively 

affected students’ cognitive load. Results of study two support the assumption that adherence of 

CTML’s design principles is effective in GLAR learning settings. 
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1.5.3 Objective 3 - Investigate the impact of cognitive style on cognitive performance   

Researchers, such as Johri and Olds (2011), recommend that learning environments 

enhanced by technology can be improved by understanding individual differences among students. 

The literature suggests that researchers can better understand individual differences and account 

for differences among students by using cognitive styles (D’Mello, Craig, Fike, & Graesser, 2009). 

Cognitive style is a consistent individual difference characterized by the manner in which students 

perceive, organize and process information (Price, 2004). Study three examined the impact of 

designing GLAR interfaces to account for cognitive style differences among students in relation 

to their cognitive load, performance and learning gains. The study employed a 2 x 2 x 2 mixed 

factor design with one between-subject factor and two within-subject factors. Twenty-six students 

participated where fifty percent of participants were screened as field-dependent learners and the 

other fifty percent as field-independent learners. The quantitative data affords examination of how 

students’ cognitive style impacts their cognitive load and performance when the voice and 

coherence principles of CTML are manipulated in GLAR applications. The results of study three 

aim to bolster the claim that utilizing cognitive style to inform the design of GLAR applications is 

an effective approach for accounting for students’ cognitive differences.  

1.6 Significance of Research  

It is important to acknowledge that as educational and technological fields mature, 

technology designers need to gain more exposure to educational research studies guided by various 

educational psychology theories. Even so, because there is a great deal of focus on bringing 

technology into the classroom, it is crucial that the instructional design supported by AR be based 

on grounded learning theories (Newstetter & Svinicki, 2014). Although most studies of 

educational AR applications have claimed increased learning outcomes, these studies generally 
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lack a theoretical basis in educational research. Along with grounding AR applications in learning 

theory, researchers must further consider the cognitive effects that AR technology will have on 

students’ potential learning gains. 

This research will provide a novel base of knowledge for researchers, designers and 

practitioners to consider when creating GLAR applications.  This in turn will ensure that resulting 

GLAR applications support effective cognitive processing and help students learn more efficiently. 

CTML theory appears to be well-suited to ground AR applications because it reveals how well 

students can process information based on modality and representation of concepts. It promises to 

offer designers some guidance to design AR that aims to reduce cognitive load and focus students’ 

attention on vital information while processing the learning content. However, to our knowledge, 

no other work has applied CTML to AR learning settings.  Thus, this research provides 

contributions to the field that include empirical evidence on the degree to which CTML is 

effective as an AR-based pedagogical tool for underrepresented students in southwest Virginia.  

And moreover, provides empirical data on the relationship between underrepresented students’ 

perceived benefits and the impact of GLAR on students’ cognitive load.  

Since the opportunity to leverage GLAR in the classroom has not been fully realized, this 

research will further offer recommendations to consider when creating GLAR applications.  By 

following these recommendations, GLAR designers will increase the likelihood of having a 

positive effect on students’ cognitive load which in turn likely contributes to students’ ability to 

actively process information. The findings from this research will inform designers 

consideration of the assumptions of CTML when designing GLAR applications and, ultimately 

improve students’ learning experiences without overwhelming them.  
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CTML does not explicitly take into account individual differences and cognitive 

development of students. Most research conducted on the assumptions and principles of CTML 

was conducted with college-aged participants (McTigue, 2009); therefore, this research will 

determine whether the same benefits can be generalized to other populations such as 

underrepresented students in 5th grade classrooms. By applying CTML and its principles, this 

work reveals how GLAR can be leveraged to meet the educational needs of students in fifth grade 

classrooms, and especially those at Title I schools. 

Rather than attempt to change the actual material that students learn, this research aims to 

enhance the way students learn by enabling tangible and interactive experiences in gamified AR 

environments. Since fifth grade is one of the formative years for students, it is important to reduce 

students’ cognitive load so they can learn how to select, organize and integrate the learning content 

to achieve their maximum learning potential. Furthermore, quantifying the strengths and 

challenges of GLAR with respect to an established theoretical framework will reveal how AR may 

be utilized in the classroom to meet the needs of students’ cognitive strategies.  

1.7 Dissertation Overview  

This dissertation uses the manuscript format to present the body of research. Chapter 2 

summarizes the current literature on educational AR, gamification and the theoretical framework 

guiding this research. Chapter 2 also provides a critical assessment of related research to highlight 

gaps in the field. Within each of the following three chapters (Chapter 3-5), the methodology 

utilized in the study, data collection and analysis of the data, results, study findings, implications 

and conclusions are discussed.  Chapter 3 describes students’ experiences with the GLAR 

application and their perceived, as well as measured cognitive effects. Chapter 4 investigates to 

what degree CTML can provide effective theoretical guidance for designing GLAR applications 
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to reduce cognitive load. Chapter 5 examine the cognitive differences amongst students and the 

effects of cognitive styles on cognitive load. Chapter 6 provides recommendations as well as 

design considerations to assist with the development of future K – 12 GLAR applications.    
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2 Literature Review 

 

2.1 Gamification  

The use of technological innovations is constantly being incorporated in classrooms. The 

2013 State of Online Gaming Report hypothesized that more than 1.2 billion people would play 

games on computers, tablets or smartphones by the end of 2013 (NewZoo, 2013). According to 

Jane McGonigal in 2011, “over a half billion people played video games for at least an hour a day 

and over five million people in the US alone play games for at least forty hours a week” 

(McGonigal, 2011). With these statistics, it is apparent that there is something about gaming that 

captivates and engages people of all ages. Business and marketing industries started the concept 

of gamification by using elements such as avatars, leaderboards, progress bars, badges, and 

trophies to capture attention and change the behavior of their users (Linder & Zichermann, 2010; 

Zichermann & Cunningham, 2011). In 2002, Nick Pelling was searching for a way to make 

electronic transactions efficient and fun. In the process, he found a way to use user-interfaces that 

resembled a game and coined the term gamification (Pelling, 2011). He simply defined 

gamification as “the use of game-thinking and game mechanics to solve problems” with the end-

goal to motivate the user behavior (Deterding et al, 2011). However, the definition has been 

expanded over the years to use game elements or anything that invokes the same reaction that 

games do in a non-gaming environment to impact motivation (Deterding, Dixon, Khaled, & Nacke, 

2011; Deterding, Sicart, Nacke, O’Hara, & Dixon, 2011; Johnson et al., 2013; Domínguez et al., 

2013). 
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Some researchers describe gamification as “a process of enhancing a service with 

affordances for game-like experiences to achieve an intended outcome” (Huotari & Hamari, 2011). 

This process comprises taking an activity that already exists and adds something to enhance the 

user’s experience.   In order to achieve behavior change in a fun and engaging way, there are two 

important aspects of gamification to consider. The first aspect is stressing the non-game 

environments that gamification acts upon must carry important resonance for users working in 

their real life. The second aspect is applying gaming characteristics or structures in which game 

elements can be applied effectively (McGonigal, 2011).  

2.1.1 Gamification Elements  

Gamification is not solely about developing a game, but instead about applying game 

attributes to stimulate students, leaving them excited about learning (Arnold, 2014). Some of these 

attributes that are utilized are gamification elements. Successful gamification depends on several 

elements to provide feedback and encourage the user to work towards the next level (Morris et al, 

September 2013; Wood & Reiners, 2012).  

In the literature there are many gamified elements that can be used in the pedagogical 

process to make a successful environment for the student. Although there are many elements, 

Schell believes all are of equal importance and must interact seamlessly (Schell, 2008). The key is 

to implement the elements thoughtfully as an integral part of the gamified environment. Some of 

those elements include:  

Badges: A visualization of rewards that represent skills, knowledge, achievements and other 

desirable behaviors of traits the user as they accomplish certain goals. Badges should 

impact the social aspect of the environment as it motivates users extrinsically (Robson, 

Plangger, Kietzmann, McCarthy, & Pitt, 2015).  
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Storytelling: A sequence of events that builds upon one another to create a story. Students are most 

satisfied when the story is clear, simple, and they can build on and learn from previous 

events (Deterding, 2011). 

Levels: A benchmark or objective consists of increasingly difficult levels that users work towards 

that provides feedback on their progress. Levels should provide short-term goals for the 

user that promotes the practice of new skills and knowledge while they demonstrate 

mastery (Robson, Plangger, Kietzmann, McCarthy, & Pitt, 2015).  

Score: Points that are gained by the user for accomplishing specific tasks. The point system should 

be a way for users to track their progress as they achieve certain goals (McGonigal, 2011a).  

Feedback: Information designed to induce a behavior, thoughts, or actions of the user. Feedback 

should provide users with a timely response to help them adjust and stay on the right track 

to achieve goals (Kapp, 2012).  

Progress: A tracking bar to indicate a user’s advancement towards a certain goal. The tracking bar 

should appear publicly to the user to remind them how many tasks are left and/or how 

many accomplishments they have achieved (Costa, Wehbe, Robb, and Nacke, 2013).  

Freedom to Fail: Permission for the user to fail multiple times with minimal consequences so they 

can reconsider their approach to the certain goal. Freedom to fail should reduce the anxiety 

of the user and make winning more pleasurable (Abramovich et al., 2013; Jovanovic & 

Devedzic, 2014).  

A great gamified environment asserts and intertwines the game elements into the non-

gaming environment to provide an engaging experience. Understanding and effectively applying 

these elements will help increase student engagement and limit the novelty effect of gamification 

(Farzan et al., 2008, Koivisto & Hamari, 2014). Through the heightened use of these elements (i.e., 
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points, levels, badges, etc.), research shows positive potential for increased engagement in fields 

such as exercise, healthcare, business, and education (Hamari et al., 2014; Kapp, 2012a, 2012b; 

Zichermann & Cunningham, 2011).  

2.1.2 Gamification and Education  

After observing the positive benefits of gamification in the corporate and marketing fields, 

game designers such as Gabe Zichermann (2011) and Yu-Kai Chou (2014) explored how 

gamification could be leveraged in the educational realm to transform learning. Gamification could 

be easily applied to the educational market through activities such as points, storytelling and 

badges (Leaning, 2015, p. 160). The benefits of applying various game elements, incentivized 

point systems, or leveling up prove be effective pedagogical approaches in education (Deterding, 

2011). It has the potential to increase positive feelings by applying gamification elements to 

increase students’ learning outcomes (Kapp, 2013). According to Knapp, rewards, such as point 

gain, levels, and feedback, could improve students’ motivation and engage them in a meaningful 

learning process (Kapp, 2013). In the education, gamification is utilized to maximize students’ 

motivation and engagement by captivating their attention and inspiring them to continue learning 

initiatively (Huang & Soman, 2013). 

For maximum engagement it is important not to confused gamification with game-based 

learning. Game-based learning utilizes pre-established games or learning based simulations in their 

complete form to accomplish learning objectives, whereas students play games to learn content 

(Nolan & McBride, 2014). The difference is gamification does not necessarily involve playing 

games and use learning as a starting point so students “learn as if they were playing a game” while 

game-based learning use an actual game as the starting point then apply learning concepts to it 

(Simões et al., 2013, p. 348). Essentially, gamification is a “non-gaming environment that applies 
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gaming elements” with purpose while game-based learning emphasizes using games as the starting 

point of instructional purposes (Draeger, 2014).    

Since its conception, a plethora of studies have been conducted on gamification to explore 

its contextual definition as it pertains to education (Deterding et al., 2011; Erenli, 2013; Hamari et 

al., 2014; Teräs, Teräs, & Reiners, 2014).  The most used definition of gamification in education 

literature is given by Kapp (2012) which states that gamification is “using game-based mechanics, 

aesthetics, and game thinking to engage people, motivate action, promote learning, and solve 

problems” (p. 10). Researchers believe that in education, gamification is a way of creatively 

incorporating educational play in a course without jeopardizing the academic rigor of a curriculum 

(Deterding, Dixon, Khaled, & Nacke, 2011). Literature states that student motivation is increased 

when game-like characteristics are applied to an academic curriculum that assists students to learn 

more efficiently (Cheong, Filippou, & Cheong, 2014; Lee & Hammer, 2011). 

2.1.3 Implications  

The U.S. Department of Education once stated that “educational gamification has the 

potential to move the dial on student engagement, time-on-task, and student outcomes” (U.S. 

Department of Education, 2012). The application of gamification in an educational setting has 

been cited to improve critical thinking and multi-tasking, as well as develop other important skills 

necessary for students of this generation to be successful (Kapp, 2012b; Prensky, 2001; Shapiro, 

2015a). Leveraging gamified characteristics in education will play a major role in shaping 

curricula and increasing engagement. The lack of student engagement could lead to higher rates 

of academic failure and students not reaching their maximum learning potential (Busteed, 2013). 

In 2014, Hamari, Koivisto and Sarsa investigated the effectiveness of gamification in 

education through a systematic literature review of empirical studies. The investigation indicated 
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that gamification provides positive effects on students’ engagement, satisfaction, lessening of 

disruptive behavior, increased cognitive growth and improved attention spans (Abramovich, 

Schunn, & Higashi, 2013; Busteed, 2013; Seaborn & Fels, 2015, p. 20). However, these positive 

effects may vary depending on the implementation of gamification. Hamari found that if educators 

leverage gamified principles such as continuous challenges, interesting storylines, flexibility, 

rewards and a combination of realism, fun and imagination, then students would accomplish the 

said results. From the literature review, the most popular game elements used were badges, points, 

and feedback (Bartel & Hagel, 2014; Giannetto, Chao, & Fontana, 2013; Holman, Aguilar, & 

Fishman, 2013; Morrison & DiSalvo, 2014; Thomas & Berkling, 2013; Todor & Pitica, 2013). 

While there have been many studies that support gamifying education, there are some 

concerns and criticisms were some studies that showed no statistical benefit (Erenli, 2013; Hamari 

et al., 2014; McGonigal, 2011a). They showed no statistical effect because the studies evaluated 

the collection of components together instead of isolating the individual components of 

gamification to understand effects. The need for more empirical studies to determine which 

gamification elements are contributing to the increase in engagement, which are ineffective, and 

which have a negative effect on students’ achievement is evident (Borges et al., 2014; Dicheva et 

al., 2015; Hamari et al., 2014). Also, most of the literature on gamifying education has presented 

examples where gamification was either used in high school or higher education settings as a 

motivator for improved student engagement. Few studies investigate the impact of a gamified 

environment in elementary education (Hamari et al., 2014). Unfortunately, there also seem to be 

little research on the pedagogical approach to curriculum design and how using gamification in 

education, with little theoretical grounding is dependent on the instructional context (Bahji et al., 

2013; de-Marcos et al., 2014; Domínguez et al., 2013). The studies evaluating gamification in 
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education is limited; therefore, more empirical studies are needed to address these several 

shortcomings and gaps in the literature.  

Although there are some limitations, the literature supports that gamification is a new and 

exciting way to motivate and positively affect students. Similarly to AR, the goal of gamification 

is to improve learning, not change or replace it (Landers, 2014). Kapp recommends that a well-

designed gamified environment provides a representation of reality with hypothetical or imagined 

details, which closely aligns with AR (Kapp, 2011). Combining these two concepts allow for 

students to become active participants in the learning environment while learning contextually so 

they learn how to apply abstract ideas in meaningful ways and increase cognitive recognition (Van 

Eck, 2006; Carnes, 2011). These concepts encourage exploration, reflection, and individual 

construction of meaning to promote engagement and deeper understanding of the content being 

presented (Galarneau, 2005; de-Marcos et al., 2014; Domínguez et al., 2013). 

2.2 Augmented Reality  

Virtual reality (VR) is the technological predecessor of augmented reality (AR). VR 

replaces the real environment with a simulated environment, where AR adds virtual information 

to the user environment (Burdea, 2003).  According to Milgram and Kishino (2015), AR and VR 

are closely related, but they reflect different levels of user immersion in environments where real 

and computer-generated objects co-exist (Milgram et al., 1995). In environments created by VR, 

users are completely immersed and cannot interact with the real world around them. Chang (2010) 

believes that VR increases motivation of students participating in educational practices which 

improves learning (Chang et al., 2007). As the demands of education evolve, there is a need for 

students to be more involved with their physical learning environment and the technology (Brown, 
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2006). A solution to this need is utilizing both the virtual objects and the real world, which led to 

the creation of AR.  

AR is an interactive system that blends the real world and virtual world by utilizing 

computer elements to provide an additional layer of information over the user's physical 

environment. AR is in the middle of a continuum called mixed reality (Milgram, 1994). Mixed 

reality, shown in figure 2, is the incorporation of virtual and real worlds to create new environments 

so users can interact with real and virtual objects (Milgram, 1994). AR places digital computer-

generated elements such as images, animations, and 3D models and/or sound directly on the user’s 

view of the real world in real time. Kapp and Balkun (2011) states that with AR the real-world 

environment is enhanced by adding digital content because it allows users to be engaged in the 

real world while also receiving virtual information at the same time (Kapp, 2011). Chan and his 

colleagues (2012) emphasize that AR “supplements reality rather than replaces it” (Chang et al., 

2012). Furthermore, Kipper and Rampolla (2013) believed that AR takes virtual information such 

as video, or touch sensations and overlays them in a real environment so the worlds become one 

(Kipper & Rampolla, 2013). The user is now able to co-exist with the virtual information and learn 

from it without being completely removed from the physical aspects of the real world (Kapp & 

Balkun, 2011). Along with becoming one, combining the real world and virtual objects allows 

students to visualize abstract concepts to make them concrete. 



 

 26 

 

Figure 2: Virtually Continuum (Milgram & Kishino, 1994) 

According to Azuma (1997), AR systems are characterized by three properties: “(1) 

Combine real and virtual objects in a real environment. (2) Align real and virtual objects with each 

other. (3) Run interactively, and in real time.” (Azuma, 1997). Azuma emphasizes spatial 

registration and believes that without the two worlds, i.e., virtual and real world, being aligned that 

the AR application will not reach its full potential (Azuma, 1997). The full potential of AR, as 

opposed to VR, is the user’s ability to participate in the real world that is supplemented with virtual 

objects.  

2.2.1 Augmented Reality Types  

Some of the technological advantages of using AR over VR is the decreased processing 

power and increased registration requirements in order to align the real world with virtual objects. 

According to Van Krevelen and Poelman (2010) there are three technological categories: 

handheld, head-worn and spatial. Handheld devices are light weight and simpler to render digital 

computer-generated elements. Due to their portability, low-priced point and ease of use, handheld 

devices make AR accessible in more settings, including the classroom (Van Krevelen & Poelman, 

2010, p. 4).   Head-worn devices are attached to the user’s head and render digital computer-

generated elements directly to the eyes. Since these devices are more powerful, HMDs are heavy 

and may need to be connected to a computer. This restricts mobility and it is not easy to use in the 
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classroom.  Spatial devices utilize GPS positioning and the device location to display specifically 

placed digital computer-generated elements in the environment (Johnson et al., 2010). According 

to Kapp and Balkun, the position-based applications recognize spatial positioning and compare the 

virtual elements from a “library” of elements stored in the device and overlays that element on to 

the real-world (Kapp & Balkun, 2011). Although spatial devices are costly, they allow for 

unconstrained mobility in the classroom. The level of immersion in an interactive AR system 

depends on the technology utilized.  

Another classification for an AR system is whether it utilizes a marker or marker less based 

AR systems (Johnson et al., 2010). Similar to a spatial device, marker less AR systems detect the 

real world by using GPS, sensors and device’s camera to place the virtual objects in a specific 

place. This system tracks an object in the real world without using a marker. A marker contains 

programmed information such as text, images and 3D models that can be seen by using the camera 

on a computer or mobile device. Each marker has a unique pattern so when the camera views the 

marker, it reads the programmed information that is embedded in the code on the marker and 

render specific digital computer-generated elements on the screen (Madden, 2011). Once 

programmed, the marker can be placed anywhere within the field of view of the camera and the 

information will appear. If the marker is moved, the information being rendered will move as well, 

allowing the user to view the digital computer-generated elements from different angles (Hubbard, 

2009). 

2.2.2 AR in Education  

As the demands of education evolve, there is a need for students to be move involved with 

their physical learning environment and the technology (Blagg, 2009; Dunleavy et al., 2009). A 

solution to this need is utilizing both the virtual objects and the real world, which led to the creation 
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of AR. According to Dunleavy (2014), AR is defined as “combining the real and a virtual world, 

seamlessly.” An AR environment that seamlessly integrates the virtual and real world can increase 

learning gains by allowing students to interact with an intuitive interactive system where they can 

manipulate virtual information while participating in learning activities in the classroom. Gelenbe 

et al. (2005) found that allowing students to experiment with virtual objects increased their 

understanding of concepts and problem solving skills.  

The EDUCAUSE Learning Initiative (2005) believed AR has the potential to enhance 

school curriculum across the nation and make the learning experience richer by allowing students 

to become active participants in the learning process. For instance, the manipulation of models 

allows students the opportunity to learn at their own by actively interacting with real environments 

and augmented information. They can immerse themselves into the learning content to identify 

spatial relationships and orientation among objects. This helps students gain a richer understanding 

of the learning content and improve on their problem solving skills. They will also be able to 

interact with their peers, which provides the opportunity to facilitate collaborative learning 

(Billinghurst, Weghorst, & Furness, 1998).  

According to Furness, Winn, & Yu (1997), the “degree of immersion is a very important 

implication for education.” A high degree of immersion generates a more authentic learning 

environment, in which increases students’ sense of presence and engagement in such an 

environment. Here, presence is defined by Witmer and Singer as a students’ subjective experience 

of being in a virtual environment (Witmer & Singer, 1998). Winn (2002) stated that “the higher 

the presence the students have the more engagement and involvement the students feel when they 

act in the virtual environment. As a result, the students learn more from observing the space around 

them. The reason for this phenomenon is that when students are more engaged in the virtual 
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environment, they are more motivated to interact with the environment, thus resulting in higher 

levels of learning” (Winn, 2002). 

AR has particular features that require students to think critically. According to Winn and 

Jackson (1999), when students manipulate objects in a virtual environment it helps them to 

“distribute cognitive activities” and improve decision making skills. Students using their bodies to 

directly manipulate AR objects plays a significant role in cognition embeddedness and provides 

them with “sensorimotor feedback” (Shelton, Hedley, 2004). Winn (2002) claimed that in a virtual 

learning environment, cognition is embodied in our physical action. In the 2011 Horizon Report, 

Johnson et al. note that students can use AR to create knowledge by gathering and processing 

information by moving from one location to another. By physically interacting with their 

surroundings, students can connect their learning to the real world which increases knowledge 

retention through multiple sensory experiences (O’Shea, Mitchell, Johnston, & Dede, 2009). As 

an educational medium, AR increases learning through manipulation, immersion, and active 

participation activities. Krocker (2012) remarks that “AR can become the fundamental user 

interface for 21st century learners”. Therefore, researchers must examine the effectiveness, 

benefits and challenges of utilizing AR in an educational context. 

2.2.3 Limitations  

Although AR has the potential to transform education, there are a few limitations that 

hinders the technology being integrating into the classroom. The EDUCAUSE Learning Initiative 

(2005) suggested several barriers when implementing AR in an educational environment i.e., 

cognitive overload, novelty effect, and limited authoring tools. 
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Cognitive overload is when cognitive processes aroused by a learning activity exceeds the 

processing capacity of the working memory (Mayer & Moreno, 2003). Many researchers have 

reported that students feel overwhelmed using AR applications due to inappropriate presentation 

of learning content or high complexity of the learning content being presented (De Jong, 2010). 

Because of these issues, students experience cognitive overload and the inability to self-guide 

themselves to engage with the learning content using AR applications. When a student experiences 

cognitive overload, their understanding of the material being presented is greatly demised. To 

properly deliver learning content without overloading students’ mental capacities, the AR 

application should properly be paced so students do not rush through the learning material and 

provide guidance on working through the learning material without being redundant (Dunleavy et 

al., 2009). 

Researchers concluded that some of the interest and excitement surrounding educational 

AR could be associated with the novelty of the technology (Di Serio, et al., 2012). According to 

Tulving and Kroll, the novelty effect is a phenomenon that is observed in human performance 

when special treatment or attention is given to new technology. Although the novelty of AR may 

have an influence on students, it can be overcome by fostering positive class interactions, 

collaborations, creating authentic learning environments and mental models as well as longer 

exposure to the material (Vincenzi et al., 2003).   

Another limitation of designing educational AR is the available authoring tools. Most of 

the current tools are complex, difficult to maintain and may require specific or customized 

hardware. To help researchers and educators develop their own AR applications, some developers 

have released free source code (Krosinsky, 2011). These open-sources programs are important 

because typically developers are not educators so it provides them with the opportunity to be 
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included in the design process and add educational value to the learning content being delivered 

(Laurence, 2010).  

Understanding the limitation of utilizing AR in an educational environment is essential for 

researchers as well as designers of AR applications if they want to truly enrich the learning 

environment. Simply engaging students in collaborative activities and evaluating their conceptual 

learning is not enough (Dillenbourg, 2002). Therefore, researchers need to provide effective AR 

applications that engage students beyond the novelty effects, reduce cognitive load, and promote 

continuous learning. 

2.2.4 Conclusion 

AR is a captivating technological tool that allows students to manipulate virtual objects 

and see multiple representations and perspectives. Researchers believe that with these attributes of 

multimedia learning, AR has the potential to be an assist to the educational community (McLellan, 

2003). However, further research is necessary to find the most appropriate instructional design 

approach for AR. According to Dede, without appropriate instructional design principles AR is 

useless and will not meet its full potential (Refsgaard & Henriksen, 2004). The research suggests 

that it is not AR itself that is important, but the added value it brings to the learning environment 

when it is grounded in a theoretical framework. CTML is a theory, which provides a framework 

to help guide the design of multimedia technologies such as AR. Many researchers believe that 

leveraging the principles and strategies of CTML in the development of AR is just as important as 

or more important than the AR itself.  Therefore, the next section will crucially review CTML, its 

principles and how it can be utilized to add educational value to AR as an instructional delivery 

tool. 
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2.3 Cognitive Theory on Multimedia Learning  

Recently, technology has been used in the classroom to combat students' lack of motivation 

and engagement in tradition classrooms. These technologies have the potential to do more than 

increase engagement, motivation, and collaboration; they could completely change the overall 

experiences of students due to the deviation from tradition classroom instruction. In order to 

maximize the effectiveness of technology such as GLAR applications, the design should minimize 

students’ cognitive loads and positively impact cognitive processing. Research states that cognitive 

theories such as Paivio’s dual coding theory, Chandler and Sweller’s cognitive load theory (CLT), 

and Mayer’s Cognitive Theory of Multimedia Learning (CTML) focus on the mental processes of 

students so they can actively process information and rebuild their cognitive architecture.  

Chandler and Sweller’s CLT presumes that within the learning process, “the interaction 

between limited working memory and organized existing information stored in long-term memory 

may lead to the risk of cognitive overload” (Sweller, 2005; Sweller, Van Merrienboer, & Paas, 

1998). To eliminate students experiencing cognitive load, the technology should control for two 

types of cognitive load by effectively presenting learning content that meets students’ needs 

(Sweller, 2005; van Merrienboer & Kester, 2005). Total cognitive load is comprised of intrinsic, 

extraneous, and germane cognitive load (Sweller, 2005). Intrinsic cognitive load is affected by the 

difficulty level of the students while extraneous cognitive load is affected by the presentation and 

design of information (Sweller, 2005).  Germane cognitive load is students’ efforts as they 

construct mental schemas for constructing knew knowledge (Chandler & Sweller, 1991; Sweller, 

2005; Sweller et al., 1998). Mayer’s CTML provides theoretical basis for making learning efficient 

by using principles to minimize cognitive load by reducing intrinsic and extraneous loads while 
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increasing germane cognitive processing. Essentially, CTML frees the students’ working 

memories, which allows them to better process visual and auditory information (Mayer 2005).  

2.3.1 Working Memory  

Mayer (2009) believe that “the central work of multimedia learning takes place in working 

memory” (p. 62). Working memory is the temporary storing of information that can be quickly 

lost if it is not processed and stored into the long-term memory because of its limited capacity. 

Working memory is actively gathering information from either the sensory memory or long-term 

memory where prior knowledge is stored (Sweller, 2004). It is important to note that long term 

memory does not have any capacity limitation. Working memory allows a student to leverage their 

prior knowledge stored in the long-term memory to be integrated with new information so schemas 

are formed (Sweller, 1988). In agreement with Low and Sweller, other researchers also defined 

schemas as “a cognitive construct that schematically organizes information for storage in long 

term memory” (Schüler, Scheiter, & van Genuchten, 2011; Baddeley, 1992; Mayer, 2001). 

Schemas integrate prior knowledge with bits of information as a single element rather than several 

huge pieces of information (Sweller, 1994), which makes more use of the limited space in the 

working memory. Once schemas are formed, they become larger and more complex as new 

information is incorporated (Chi, Feltovich and Glaser, 1981).   

According to Baddeley, the theory of working memory has three components: central 

executive, visuospatial sketchpad and phonological loop, or simply put, processing, encoding and 

retrieving information (Baddeley, 1992). The central executive component selects and organizes 

information from the GLAR environment; essentially, it controls the student’s attention then 

transfer information into the long-term memory (Baddeley, 2000). The visuospatial sketchpad 

receives the spatial information being presented while the phonological loop gathers the audio 
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information from the GLAR environment. These dual channels system, which is a temporarily 

storage location, manages the retrieving and encoding of relevant information that is needed for 

learn.  Although Mayer believes that in order for people to learn, we need to maximize the use of 

both channels to actively process information and expand the limit capacity of working memory, 

Baddeley’s theory is the channels are independent of each other (Paas, Renkl & Sweller, 2004). 

Utilizing both channels to present information as CTML proposes will prevent cognitive overload 

and help the student capitalize on their working memory limitations as well as the limitation of 

each channel (Sweller, van Merrienboer, Jeroen & Paas, 1998; Mayer, 1998).  

Literature has densely documented the limitation of the working memory. Although 

majority of the learning process occurs within the working memory, Miller proposes that the 

central working memory capacity limit at one time is around three to seven pieces of information 

when storing information and two to three pieces when processing information (Miller, 1956; 

Cowan, 2010). Pieces of information could be defined as a picture, numbers, letters, words, audio 

and/or character. Cowan believes there is also a time limitation of about thirty seconds to seven 

minutes of working memory capacity for processing depending on the task (Cowan, 2001, 2014). 

The limitations of time and storage capacities of the working memory provides a challenge for 

keeping the students engaged and focused. The final limitation is being aware of the ways that the 

visual and verbal channels work together to process information. Knowing these limitations is 

important to presenting information to students and applying the principles of CTML to the design 

GLAR applications.  CTML should assist with the processing of information within the working 

memory. Researchers and designers have the ability to manage the limitations of working memory 

through understanding the restraints and utilizing dual-coding (Igo, Kiewra, Zumbrunn, & 

Kirschbaum, 2007).  
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2.3.2 Dual Coding Theory 

Research states the implication of using both channels concurrently to process information 

rather than one channel alone can overcome working memory limits which is known as dual-

coding (Mayer, 2001; Sweller et al., 1998).  David Paivio believes that human cognition can 

simultaneously handle language with nonverbal objects and events (Paivio, 1986).  Based on these 

beliefs, he developed the dual coding theory which reinforces the concept of concurrently 

processing information. Dual coding theory suggests that the brain process information in two 

separate cognitive subsystems that handles two different types of information that may be stored 

in long-term memory if both subsystems are used (Clark & Paivio, 1991; Reed, 2006). One of the 

subsystems manages the representations and processing of non-verbal sensory information and the 

second subsystem deals with processing of language, text and auditory sensory information. It is 

important to note that although there are two distinct subsystems, each of the subsystems can 

retrieve non-verbal, verbal and sensory input (Paivio, 1986; Harskamp, Mayer & Suhre, 2007; 

McTigue, 2009). Each subsystem has a limited capacity to receive information by sensory 

perception via the visual and auditory channel. Sensory information that is coded using the visual 

and auditory channel shape mental models that allows other information to be retrieved from long-

term memory (Brunyé et al., 2006).  

According to Kobayaski, when information is dual coded there is an increase in the 

probability that the information can be retrieved from long term memory (Kobayaski, 1986). The 

probability is increased because when a memory is not available in one subsystem, the other 

subsystem is available to retrieve memory and encode it with the new information (Kuo & Hooper, 

2004). This retrieval process can facilitate learning by providing students with the ability to process 

and recall concrete information. Dual coding theory infer that learning concrete information can 
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be simpler for students because it can be conveyed using both text and images. However, abstract 

information is harder to represent using dual coding, so it could hinder students from forming 

mental models and slower retrieval of a previous memory from long-term memory (Hanafi, 1983). 

Slower retrieval hinders students' learning processes because it requires more working memory to 

comprehend and process new information.  

To account for the processing of concrete and abstract information, Paivio provides a 

general framework for educational psychology that defines the role of visual and auditory 

processing to help facilitate learning (Jonassen, 1996).  Research states that information processed 

using dual coding of the two cognitive subsystems has a positive influence on the learning content 

being presented to the student (Clark, 1987; Mayer & Sims, 1994; Mayer & Moreno, 1998; Rieber, 

Boyce & Assad, 1990). By conducting empirical studies, researchers found that dual coding 

integration of information when verbal and nonverbal information is presented together produce 

more learning advantages than singularly using repetition (Najjar, 1995).  Many researchers have 

supported the dual coding theory and have reported the benefits of leveraging the theory to enhance 

the learning environment.  

Particularly, Mayer used Paivio’s dual coding theory to influence the development of 

CTML. Similar to Paivio, Mayer believes that well-designed instruction that presents information 

in both modalities can leverage the two cognitive subsystems, which should increase learning gains 

(Mayer et al., 1999). Since multimedia learning deals with the visual and auditory channels, dual 

coding theory provides limits for the amount of information students can process in either of the 

channels at any one time without overloading their cognitive systems (Ploetzner, Lippitsch, 

Galmbacher, Heuer, & Scherrer, 2009). CTML addresses how using two cognitive subsystems to 

process information allows for encoding at a deeper level than just using one subsystem which 
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increases students’ performance in memory retrieval tasks (Mayer, 2009). Since GLAR 

applications can provide students with both visual and auditory information, it is important to 

understand how they use both channels to process information, form mental models, and learn 

with the application.  

2.3.3 Cognitive Load Theory 

Researchers acknowledge that working memory can only process a finite amount of 

information at a given amount of time while long term memory has endless capacity for permanent 

storage new information (Sweller, van Merriënboer, & Paas, 1998; Miller, 1956; Simon, 1974; 

Clark, Nguyen, & Sweller, 2006). CLT investigates the cognitive architecture of the human brain 

that aligns to how effective learning and understanding of new learning content happens to prevent 

overload of a student’s limited working memory.  Overload occurs when working memory does 

not process new information due lack of sufficient cognitive resources which hinders learning 

(Chandler & Sweller, 1991; Sweller, 1999). Sweller argues that in order for maximum learning to 

occur the limitations of working memory needs to be addressed to help students’ process new 

information and integrate in long-term memory. Therefore, CLT provides a framework for how to 

efficiently present information so new information can be processed in working memory and 

stored in long-term memory through schema construction (Paas, Renkl, & Sweller, 2003).  

According to Paas and Sweller, if the available capability of the students' working memory 

is exceeded when new information is presented they will experience cognitive load (Paas & 

Sweller, 2012). Cognitive load is “the amount of information the working memory can hold at a 

given time” (Cooper, 1998). Whereas mental effort is the cognitive capacity spent on completing 

a task (Sweller, 1998). Within working memory there are three types of total cognitive load: 

intrinsic load, extraneous load, and germane load (Sweller, 2010; Sweller, 1994). All these loads 
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have an impact on cognitive load and the limitation of working memory capacity (Paas, Renkl, & 

Sweller, 2003). Although intrinsic and extraneous load are additive, the combination of all the 

loads should not exceeded the capacity of working memory (Paas, Renkl & Sweller, 2004). If total 

cognitive load is exceeded while trying to complete a task, learning can be jeopardized. This 

capacity of working memory varies for each person that why it is important to control each of the 

loads.  These loads will be further explained below and how to control these loads.  

Intrinsic Cognitive Load: Intrinsic cognitive load is one’s level of difficulty that is defined 

by the natural complexity of the information they must learn (Sweller, 1988). This load allows the 

processing of information to happen simultaneous which is necessary for understanding to occur. 

Sweller indicates that intrinsic load is based on the number of interacting pieces of information 

that has to be processed in the working memory. A piece of information is defined be any type of 

learning content, information or schema that is processed by working memory (Sweller, 2010). If 

there is an increased in pieces of information or the relationships between pieces of information is 

too complex there will be more intrinsic cognitive load imposed on working memory (Sweller & 

Chandler, 1994; Paas, Renkl, et al., 2003; Gerjets, Scheiter, & Catrambone, 2004). Since students 

process information differently, intrinsic cognitive load is unique to each student (Kalyuga, 2005). 

However, low level of element interactivity will reduce intrinsic load for all students. It allows the 

elements to be processed in segments so students do not have to keep them all in working memory 

at the same time (Leahy et al., 2003).  Pollock, Chandler, and Sweller argue that intrinsic load 

cannot singularly be reduced by instructional design because it is dependent on the complexity and 

number of new information being presented (Pollock, Chandler & Sweller, 1998). Nevertheless, 

assimilating information into smaller pieces to be processed separately has been shown to manage 

intrinsic cognitive load (Moreno, 2007; Mayer et al., 2003).  
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Extraneous Cognitive Load: Essentially, extraneous cognitive load is the strain placed on 

working memory processing by having the students select, organize and integrate unnecessary 

information (Sweller et al., 1998). Extraneous load is affected when information is ineffectively 

presented to students (DeLeeuw & Mayer, 2008). Ineffective instructional design introduces 

unnecessary information that is not needed for learning to occur which increases extraneous load 

(Bannert, 2002; Sweller, 2005). Although information or elements can be presented in multiple 

ways, it is essential that relevant only information is presented and grouped closer together in time 

and space, so it reduces the demands on working memory and extraneous load. By reducing 

extraneous load, it provides more working memory for students to understand and construct new 

schemas (Paas, et al., 2004; Sweller, 1993). This load is also dependent on the prior knowledge of 

each student (Sweller, 2010). If the information depends greatly on students' existing knowledge, 

it diverts working memory capacities away from creating new schemas and increases extraneous 

load (Mayer et al., 1995). Thus, a plethora of CTL research is focused on how extraneous load 

affects students and how it can be reduced through effective instructional design.  Extraneous 

cognitive load should minimize the information gathering and filtering process to increase schema 

construction.  

Germane Cognitive Load: Germane cognitive load is cited in the literature as the most ideal 

or effective load that leads to understanding of information while intrinsic and extraneous 

cognitive loads impede understanding (Mayer & Clark, 2010; Sweller, 1994). Germane cognitive 

load is needed for integrating new information with existing schemas in working memory then 

storing it in long-term memory (Kirschner, 2002). According to Kalyuga, germane load is the 

amount of resources allocated for processing after accounting for intrinsic and extraneous load 

(Kalyuga, 2011; Sweller et al., 2011). Germane cognition can only be obtained when there are 
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available working memory resources. Therefore, it is imperative that intrinsic and germane loads 

are managed adequately so the total cognitive load is not exceeded and its available working 

memory resources for more schema construction (Kalyuga, 2011; Mayer, 2009). Therefore, the 

instructional designers should take advantage of free working memory resources to foster 

generative processing which contributes to effective learning. Sweller believes germane load 

results in deeper learning when the student effectively use their working memory resources to 

attach new information to existing knowledge stored in long-term memory (Sweller, 1998). Mayer 

suggests engaging in the selection, organization, and integration of the information by using 

guiding and pacing techniques. The primary goal of CTL is to enhance germane load and focus on 

the processing, construction and automation of schemas which is necessary for students to learn 

(Paas & Sweller, 1998, p. 265).  

Sweller initially believed learning could only be improved by reducing extraneous load 

(Sweller, 1988). When extraneous load is reduced, more of the available working memory 

resources can be dedicated to additional information processing (Heo & Chow, 2005).  However, 

recent literature suggests that since intrinsic load cannot be managed the aim is to maximize 

germane load in addition to reducing extraneous load, which promotes processing in working 

memory (Mayer, 2012; Sweller, 2010).  If intrinsic and extraneous loads are both high, there are 

no resources for germane load and the limited capacity in working memory may be overload. Thus, 

in order to prevent cognitive overload all three loads needs to be managed appropriately so that 

learning is more efficient (van Merriënboer & Ayres, 2005). When total cognitive load cannot be 

properly managed, learning may not happen because there are no available resources to allocate 

for processing (Sweller et al., 2011).  
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CTL is a learning or instructional theory that explains how to improve the cognitive 

processes of students while they are learning (Cooper, 1998; Brunken, Pass, & Leutner, 2003; van 

Merrienboer & Sweller, 2005). It accounts for the human cognitive infrastructure by assuming the 

capacity of working memory is limited when people learn (Sweller, 2005). Essentially, CTL's 

objective is to provide a framework that improves student learning by effectively presenting 

learning content. Thus, accounting for the three types of cognitive load, which manage limitations 

of their working memory, so students are not cognitively overwhelmed. CTML leverage notions 

of CTL to understand how information is perceived and processed in working memory using dual 

modality (Kombartzky, Ploetzner, Schlag, & Metz, 2010; Reed, 2006). 

2.3.4 Cognitive Theory on Multimedia Learning  

Technology is being increasingly applied in K-12 environments to enhance student 

learning. However, extensive research on how technology can be incorporated in the classroom to 

enhance cognitive learning and development has not been done (Mayer & Anderson, 1991; Sorden, 

2005). To fill the theoretical gap, Richard Mayer and other researchers conducted empirical 

research on how specific design techniques could improve learning.  From these studies, Mayer 

realized that the available theories were not examining students' cognitive processing; he 

developed CTML which is an educational psychology theory. CTML was created to include the 

results of empirical studies influenced by dual coding theory and cognitive load theory, which was 

discussed in previous sections, as a theoretical framework. These theories are the basis on CTML 

that support the concept of working memory having limitations and the brain effectively 

processing information using both the auditory and visual channels. Sweller believes cognitive 

load happens when material being presented is organized effectively so the student can focus and 

not use unnecessary cognitive resources (Sweller, 2010). Paivio noted that research was needed to 
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address the cognitive load limitations that students may experience when working with technology 

(Paivio, 1998). CTML explains how using technology people process information through visual 

and auditory channels and integrate it with prior knowledge already stored in long-term memory 

to form new connects. Although CTML was first created in 1997, it has been expanded over the 

years to account for the types of cognitive load of students will encounter when learning. CTML 

attempts to decease extraneous processing, foster essential processing, and enhance generative 

processing while promoting active learning (Mayer, 2009).  

Fundamentally, CTML was developed based on three assumptions: dual channel 

assumption, limited capacity assumption, and active processing assumption (Mayer, 2005).  The 

dual channel assumption states that students have two separate channels (i.e. auditory and visual 

channels) in working memory that processes visual and auditory information. This assumption is 

based on the Baddeley’s dual coding theory which explains how utilizing both types of information 

reduce the demands of working memory. Mayer believes the two channels work together to create 

cross-channel representations and foster intrinsic load (Mayer, 2005). The dual channels gives 

people the opportunity to build verbal and visual mental models simultaneously which produce 

increased learning gains. The dual channel assumption supports the fundamental claim of CTML 

that people learn best when visual and auditory information are presented simultaneously rather 

than words or images alone (Mayer, 2012). The second assumption of limited capacity is based on 

two theories: cognitive load theory and dual coding theory. Both theories state that each channel 

in working memory has a limited capacity and students can only process a certain amount of 

information at a given time (Mayer & Moreno, 2003; Baddeley, 1999). CTML claims that if 

working memory limits are exceed then generative processing increases and hinders learning. The 

final assumption of CTML assumes that to effectively learn a student is actively processing 
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information (Mayer 2005). Cognitive processes are required to make sense of the information 

being presented so mental models can be created; therefore, enabling generative processing 

(Wittrock, 1974). Mayer proposes that the outcome of active learning leads to students’ ability to 

select, organize, and integrate new information with existing knowledge, so coherent mental 

representations can be constructed (Mayer & Moreno, 2002; Mayer & Moreno, 1998).  

According to Mayer, active learning happens when students participate in five cognitive 

processes: selecting relevant visual information, selecting relevant audio information, organizing 

the select visuals, organizing the selected audio, and integrating visual and auditory information 

with one’s prior knowledge that is stored in the long-term memory (Kalyuga, 2011; Kombartzky 

et al., 2010; Mayer, 2005, 2009). These five cognitive processes are necessary for learning to 

occur. If multimedia is cognitively demanding, students will not be capable of selecting, 

organizing, and integrating new information because their available working memory capacity 

would be consumed (Mayer, 2009). During the selection process, the student must determine 

which information is necessary to learning the material being presented. Once the necessary 

information is selected it is held in the working memory. According to Moreno, holding auditory 

and visual information in working memory simultaneously is optimal for constructing mental 

models (Moreno, 2003). If the new information is too complex, it requires more essential 

processing. Actively organizing the information uses generative processing which allows for 

mental models to be created in working memory (Kalyuga, 2011).  Mayer states that the integration 

of the mental models with prior knowledge is a demanding cognitive process (Mayer, 2005). He 

recommends students build simple mental models that make sense to them, so the process is less 

demanding. It is important to note that the five cognitive processes are not a linear method. 

Kalyuga states that the student may complete some of the processes multiple times and in any 
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order depending on their prior knowledge, working memory capacity and cognitive loads 

(Kalyuga, 2011). Understanding and managing the limitations of cognitive loads will lead to 

deeper learning, retention and meaningful transfer of material being taught (Mayer, 2009).  

Based on these assumptions, Mayer identifies five scenarios in which cognitive overload 

may occur. The sources of cognitive overload could include many things such as one channel or 

both channels requiring too much cognitive processing. The first scenario is visual overload where 

the visual channel is overwhelmed. To reduce visual overload, Mayer suggests offloading some of 

the visual information to the auditory channel (Mayer & Moreno, 2002). The second scenario 

happens when both channels (i.e., visual and auditory) are overloaded with too much information. 

Cognitive load can be reduced by segmenting the information over a duration of time, so 

everything is not presented at once which allows for cognitive processing to happen. The third 

scenario is when extraneous or unnecessary background information is presented. Eliminating 

unnecessary information or directing the student to the essential information will reduce this 

cognitive load. Presenting essential information in an unclear and disorganized manner is the 

fourth scenario. This type of cognitive load can be reduced by presenting material in a logical 

approach using close proximity. The final scenario is described by Mayer and Anderson as “the 

loss of information due to the need for storing information in a representational holding pattern 

during the presentation of additional information” (Mayer & Anderson, 1991, 1992). It is 

important that the additional information does not replace the information being held in the 

working memory.  To reduce this cognitive load the student should have time to encode the first 

set of information into long-term memory before receiving new information. In each scenario, the 

suggestion to reduce cognitive load aims to redistribute essential processing and limit 

representational holding (Mayer & Moreno, 2002). Understanding the limitations of the working 
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memory will improve students’ ability to build mental representations of the material being 

presented (Mayer, 2010). If too much information is provided to student it forces them to utilize 

too much of their working memory which impedes the learning process (Mayer, 2010).   

Leveraging CTML in the classroom produce cognitive advantages that cannot be achieved 

using traditional methods (Mayer, 2005). Muthukumar believes that Mayer’s CTML is one of the 

key theories in the field of educational psychology that explains students’ mental reasoning and 

how they process new information (Muthukumar, 2005).  Although CTML describes how 

cognitive processes occur in two separate channels to decease extraneous processing, foster 

essential processing, and enhance generative processing, there are some issues it does not address 

when leveraging it in empirical studies. According to Wiserma and Jurs, CTML research lacks 

ecological validity because most studies occur in a highly controlled setting and does not replicate 

a traditional classroom environment (Wiersma & Jurs, 2013). The results of the controlled setting 

may not be transferrable to an actual classroom where things are dynamic and unpredictable. 

Moreover, the generalizability of specific demographics is limited and the results on one target 

population may not be reflected in the results of another population (Schüler et al., 2011). Although 

there are some issues, they do not invalidate the findings of CTML. The implementation of this 

theoretical framework will provide guidance for designers, educators and researchers on how to 

select and develop multimedia technology that improves students learning. The CTML framework 

provides design principles that will reduce cognitive load while increasing the retention and 

transfer of learning content.  In the next section, the principles are furthered discussed on how they 

were established based on results from several empirical experiments.  
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2.3.5 CTML’s Design Principles 

The overarching aim of CTML is to decrease extraneous cognitive load, manage intrinsic 

cognitive load and increase germane cognitive load. From extensive evidence-based research 

Mayer and his colleagues created several principles to address each cognitive load so student can 

reach their maximum learning outcomes (Mayer, 2009, 2001). According to Mayer, there are five 

principle that explain how extraneous cognitive load can be decreased: redundancy, coherence, 

signaling, spatial contiguity and temporal contiguity principles. To manage intrinsic cognitive 

load, Mayer identified two principles that could be leveraged in multimedia technology design: 

segmentation and modality principles (Mayer, 2009). Finally, the personalization principle is 

utilized to increase germane cognitive load. If the working memory exceeds its limitation, then 

cognitive overload occurs and hinders student learning. Therefore, the eight principles are used to 

design appropriate instruction that maximize the students’ available cognitive recourse in working 

memory to ensure the limitations are not exceeded.  

Signaling: The objective of the signaling principle is to reduce extraneous cognitive load by using 

cues so students are able to comprehend the material being presented (Mayer & Moreno, 

2003). Highlights, arrows, lines, graying out unnecessary information are examples of cues 

that are used to reduce cognitive processing in the working memory (Mayer & Moreno, 

2003). By using cues, students do not utilize unnecessary cognitive resources locating 

important information or integrating nonessential information into schemas. According to 

Mayer, students learn more effectively when cues are used to guide their attention to vital 

information (Mayer, 2010). Thus, signaling help decrease the amount of searching required 

to process information. However, if signaling is used when extraneous load is low and 
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intrinsic load is nurtured, it could be distracting and hinder students’ ability to understand 

the information (Harp & Mayer, 1998).  

Personalization: The objective of the personalization principle is to design material by accounting 

for individual differences of students as they process information (Mayer, 2005). Mayer 

suggests that the use of conversational style rather than a formal style to present 

information will acknowledge the various learning difference of students (Mayer, 2008). 

Clark and Mayer also found that students learn better from a human voice versus a 

computer-generated voice. Therefore, what is said and how it is said are important 

influences to consider when presenting information.  The use of conversational style and 

human voice allows students to create personal and relevant connections with the 

information and encourage them to work harder to learn the material (Mayer, 2008). Thus, 

research suggest that students work harder to understand when they feel they are in a 

conversation which reduces cognitive load (Mayer, Fennell, Farmer, & Campbell, 2004). 

The personalized principle provides students with more cognitive resources to focus on the 

material being presented so schemas can develop. 

Segmentation: The objective of the segmentation principle is to reduce cognitive load in working 

memory when complex information is presented (Mayer & Chandler, 2001). The principle 

claims that students learn better when the information is divided into short segments that 

they can control rather than continuously (Mayer & Moreno, 2003; Astleitner & Wiesner, 

2004). Thus, deeper understanding and reducing cognitive load on working memory 

happens when the student can integrate the smaller segments they find cognitively 

demanding into schemas before moving on to the next set of segmented information 

(Mayer & Chandler, 2001; Mayer, 2009). Mayer (2001) believes that allowing the student 
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time to understand each segment facilitates their ability to make connections with prior 

knowledge and manage their cognitive load. Although providing students with control over 

the material can increased learning gains, reduced extraneous load and improve germane 

load, the segmentation principle should take their prior knowledge into consideration. 

Previous research studies report that students with higher prior knowledge experienced 

high intrinsic and extraneous cognitive loads when the segmentation principle was 

incorporated (Lusk et al., 2009; Park et al., 2009; Tabbers & Koeijer, 2010).  

Coherence: The coherence principle objective is to reduce extraneous load by eliminating 

irrelevant visual and auditory information (Mayer, 2005). The inclusion of irrelevant 

information will cause unnecessary extraneous load on working memory which hinders 

learning (Moreno & Mayer, 2000). Thus, students learn best when extraneous material is 

excluded rather than included. According to Clark and Mayer, this is the single most 

important principle and cautious selection of visual and auditory information is needed to 

ensure maximum learning outcomes. All information presented should be relevant and 

support the instructional goals so working memory capacity is available to make 

connections.   Therefore, designers should not add extraneous material in an attempt to 

“spice up” or make a boring lesson exciting for the student. This may have a negative 

impact on learning because the extraneous information requires increased cognitive 

resources and prevent the student from building schemas (Mayer, Bove, Bryman, Mars, & 

Tapangco, 1996; Mayer et al., 2001; Moreno & Mayer, 2000a). Hence, Mayer suggests 

taking a minimalist approach in which only the relevant material needed to achieve the 

instructional goal is included.  
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Redundancy: The redundancy principle objective is to reduce extraneous cognitive load by 

ensuring unnecessary or similar information is not presented in multiple forms (Mayer & 

Moreno, 2003). The presentation of redundant information through the visual channel at 

the same time as the auditory channel will place great cognitive demands on working 

memory and hinders learning (Sweller, 2004; Clark & Mayer 2003). Thus, redundant or 

repeated information should be eliminated to reduce extraneous cognitive load and decline 

the load of the visual channel. Mayer and Moreno believe that if the redundant visual 

information is not removed it creates an additional step and causes students to attend to 

both channels which slows essential processing (Moreno & Mayer, 2002). According to 

Sweller, prior knowledge should be taken into account because when students with higher 

prior knowledge are provided information they already know, demands are placed on 

working memory because the schemas students are trying to create are already stored in 

their long-term memory (Sweller, 2005).  

Modality: The modality principle objective is to present visual and auditory information at the 

same time to ensure dual coding occurs (Mayer & Anderson, 1991, 1992; Mayer & Sims, 

1994; Paas, & Merriënboer, 1994). Receiving information through dual channels instead 

of a single channel creates a deeper understanding of material and effectively expands 

working memory capacity to reduce extraneous load (Sweller, 2005). By expanding 

working memory capacity, the student has more cognitive resources to process information 

and create mental models (Kalyuga, 2008). Thus, students learn better when receiving 

information through multimodality presentation because the visual channel is being off-

loaded by some of the processing occurring on the auditory channel. According to Clark 

and Mayer, the modality principle is beneficial for students with little prior knowledge to 
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organize the new information into coherent representations and integrate those 

representations with other information to increase learning (Clark & Mayer, 2011). 

Therefore, the modality principle is most effective when intrinsic load is high and prior 

knowledge is low.  

Spatial Contiguity: The spatial contiguity principle objective is to coordinate information is space 

to lessen cognitive demands on working memory (Mayer, 2005). When information 

presented through multimodality is place close together, it reduces the cognitive demands 

in working memory because the students do not need to hold the information in their 

working memory while they search or wait for to hear or see corresponding information. 

Thus, students learn better when visuals and text are presented in close proximity rather 

than apart (Mayer, 2005). Although the spatial contiguity principles reduce extraneous 

cognitive load by closely placing information together, so students can build 

representations, it could create the spilt attention effect (Astleitner & Wiesner, 2004). The 

spilt attention effect occurs when the visual channel is overloaded with too much visual 

information; therefore, researchers caution designers to only include relevant information, 

so students are not forced to decide what information requires their attention (Mammarella, 

Fairfield, & Di Domenico, 2013).  

Temporal Contiguity: The temporal contiguity principle objective is to reduce extraneous load by 

have presenting auditory and visual information simultaneously. This principle focuses on 

the temporal distance of information. Thus, students learn better when multimodality 

presentation of information is temporally synchronized rather than separated in time 

(Mayer & Moreno, 2003). Successively presenting information requires students to retain 

information in working memory while they search or wait to hear or see corresponding 
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material which is cognitively demanding (Fletcher & Tobias, 2005). Therefore, the 

temporal contiguity principle is needed to reduce unnecessary cognitive load by 

coordinating information in time.   

Voice: The objective of the voice principle is to provide multimedia learning instructions using a 

human voice with a local accent rather than a machine or computer generated voice or 

foreign machine (Mayer et al., 2003).  This principle states that students learn best and can 

better transfer knowledge from unaccented, human voices (Mayer, 2014). The inclusion of 

a computer generated voice or foreign accent will decrease students’ motivation to engage 

in deep, active processing of the information perceived and hinder performance on 

problem-solving transfer tasks. This principle also suggest that people learn more from 

instructional videos when words are presented in a conversational style rather than a formal 

style (Kartal, 2010).  According to Mayer and his colleagues, a conversational tone has a 

great impact on a student’s ability to transfer their knowledge from the AR application to 

the new task verses using a formal style (Mayer et al., 2004). Researchers found that 

utilizing the voice principle increase generative processing of instructions and is driven by 

the student’s processing of social motivational cues embedded in the instruction (Mayer, 

2009). Therefore, when thinking about instructional design, including the voice principle 

will increase the social connection between instructor and the student because social 

motivational cues have been shown to be a key consideration in improving learning.  

Instructional design principles were developed by Mayer and his colleagues so educational 

multimedia technology can effectively be leveraged in the classroom to deliver material to students 

without overwhelming them cognitively (Mautone & Mayer, 2001; Mayer & Johnson, 2008; 

Mayer & Moreno, 2002; Moreno & Mayer, 2006). If the eight design principles are implemented 
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properly, visual and auditory information can be presented simultaneously to students to minimize 

extraneous cognitive load, foster essential cognitive processing, and maximize generative 

cognitive processing. The redundancy, coherence, signaling, spatial contiguity, and temporal 

contiguity principles address design features that reduce extraneous cognitive load (Chandler & 

Sweller, 1992). Segmentation and modality principles are used to manage essential processing, so 

students have cognitive resources available to organize information and deeper learning can occur 

(Sweller, 2010). Using the personalization principle, students' learning outcomes are improved by 

increasing germane cognitive load (Mayer & Moreno, 2003). The eight principles consider the 

limitations of working memory, assume of multimodality presentation and the active learning 

process to provide designers with effective strategies to develop multimedia technology that meets 

the cognitive needs of students and enhances their learning experience.   

2.3.6 Measuring Cognitive Load  

Since there are many factors that influence cognitive load, it is difficult to measure the 

amount of mental effort a person exerts while performing a specific task as well as the specific 

type of load affected. Mental effort is how much effort is exerted by the participant to 

accommodate task demands while mental load is cognitive demands imposed by the task which is 

measured using many different techniques. The major techniques cited in the literature are 

subjective measurements, physiological measurements and task-and performance-based 

measurements. Mental effort and mental load both contribute to cognitive load. There is a plethora 

of assessments available that measure specific cognitive load types (i.e. NASA TLX, and 

subjective rating scales) (Brünken et al., 2003; Leppink et al., 2013). However, the literature states 

that it is challenging to measure specific types of cognitive load. Sweller and Kalyuga propose that 

specific types of cognitive load can be measured by controlling for other types of cognitive load 
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and one’s prior knowledge (Sweller, 2011; Kalyuga, 2011). Yet, Kalyuga argues that germane 

cognitive load can be manipulated since manipulations of germane cognitive load would influence 

intrinsic cognitive load (Kalyuga, 2012). Choosing the appropriate technique and measurement 

tool depends on what the researcher wants to measure and must align to the specific objectives of 

the study (Annett, 2002, p. 984).  Below are the following techniques and tools:  

Subjective measurements are a direct or indirect way to report cognitive efforts using 

scaled numerical values rating scales by participants (Kalyuga, 2011). These rating scales provide 

a premeditated measurement of cognitive load since the scales are completed after the specific 

task. Paas argues that in order for rating scales to collect accurate data the participants should be 

capable of reflecting on their cognition and indicating their mental efforts used (Paas et al., 2003). 

Kalyga claims that since spontaneous measurement is not available, the measure may not be 

reliable (Kalyuga, 2011, p.15). Subjective measurements are easy to implement and provide high 

validity results. However, results are sensitive to participants’ environment, culture or individual 

differences which may cause bias and have a hard time distinguishing between the three types of 

cognitive load.   

Direct subjective measurements: The participant self-reports their perceived stress level after 

completing a task. Sweller defines direct measurements as “the rating of the difficulty of 

the materials”, which is directly relates to the cognitive load the participant experienced 

(Sweller, 1999).   

Indirect subjective measurements: The student self-reports their perceived mental effort through 

evaluation of pre and posttests or knowledge assessment to understand material after 

completing a task. Researchers concluded that if students’ performance improve on the 

posttest then students’ extraneous cognitive load was reduced (Clarebout & Elen, 2007; 
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Medula, 2012). This technique is frequently used to evaluate cognitive load; however, 

researchers found it difficult to explain how mental efforts relates to cognitive load (Paas, 

2003).  

Frequently used subjective measurements are NASA Task Load Index, the Subjective 

Workload Assessment Technique and the Rating Scale of Mental Effort (RSME).  NASA TLX 

and SWAT are multidimensional scales that have the capability of measuring direct sources of 

load instead of measuring overall workload. RSME is a simple and direct way to assess mental 

effort; however, they are less sensitive to overall workload (Kalyuga, 2011). Paas developed the 

Paas’ mental effort rating scale which was the first subjective tool that demonstrate how people 

can evaluate their perceived mental load using a mathematical number (Paas et al., 2003). 

According to Mayer, Paas’ scale is the most used subjective measure of working memory load 

within the CTML literature (Mayer, 2009).  

Objective measurements are performance and behavior measurements to understand 

cognitive load. Objective measurements can also be collected directly or indirectly. Performance 

based measures evaluate the overall quality of cognitive load by deriving an index of the user’s 

workload from the participant’s performance when completing specific tasks. Researchers assume 

that high performance is the result of low cognitive load (Brünken et al., 2003). Performance is 

commonly cited measure of cognitive load that is difficult to differentiate between the three types 

of cognitive load (Mayer, 2011). 

Direct objective measurements: Direct objective measurements use physiological and behavioral 

measures to evaluate total cognitive load through brain activity during a task. Direct 

objective measurement should be used in a controlled setting with small sample sizes 

(Tabbers & Van der Spoel, 2011; Whelan, 2007). The limitations of direct measurement 
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are the inaccurate measurement of high order thinking abilities and not being able to 

distinguish which cognitive load is being affected (Sweller, 2011). If the task requires the 

student to think critically then direct objective techniques cannot accurately measure 

cognitive load (Just et al., 2001; Whelan, 2007).  

Indirect objective measurements: The participant self-reports their perceived level of difficulty and 

stress (Whelan, 2005). This rating determines the overall cognitive load and specific types 

of cognitive load affected after viewing information or completing a specific task (Brünken 

et al., 2003). Indirect objective measures help to measure cognitive load as well as 

differentiate which type of cognitive load is affected. This is the most commonly method 

for investigating cognitive load effects. 

Behavioral and learning outcome measures are the most used direct objective techniques. 

Another technique involves time needed to solve a problem. According to Bruken, the more time 

spent on a particular task, then the more difficult the task is which results in high cognitive load 

(Brunken et al., 2005). Moreover, he also believed that little time spent on a particular task could 

result in high cognitive load because the student stops committing cognitive resources to learn 

(Brunken et al., 2005). The main limitation of this technique is the incapability of measuring 

distinct sources of load of cognitive load and low sensitivity to changes in the task. 

Physiological techniques are an indirect objective approach to measure cognitive load by 

examining the participant’s physiological activities. These techniques offer an improved 

understanding on which of the three cognitive load types is effected following a single or repeated 

approach or experiment for the same person (Whelan, 2007). Cognitive efforts are measured by 

evaluating the change in physiological indicators such as heart rate, eye activity, galvanic skin 

response and brain waves (Whelan, 2007, p. 3). This data is collected continuously and 



 

 56 

automatically during an experimental study. Although researchers believe changes in cognitive 

functioning are reflected in physiological indicators, they have some concerns for using this 

technique (Paas & van Merriënboer, 1994). These measures are invasive, expensive and are 

difficult to repeat (Luximon & Goonetilleke, 2001). According to Zhang and Luximon (Zhang & 

Luximon, 2005), this technique may include personal and environmental bias that do not pertain 

to the task (Brünken, Plass, & Leutner, 2003).  

Dual task methodology is another objective approach that provides concurrent 

measurements of cognitive load that requires the participants to complete primary and secondary 

tasks simultaneously. Since the two tasks are processed at the same time, the performance score 

after completing the primary task is compared to the score on the primary and secondary task to 

determine the amount of cognitive load imposed by the primary task during critical thinking 

activities (Brünken, Plass, & Leutner, 2003). Assuming cognitive demands increase, additional 

resources are utilized, which will result in increased cognitive load. The additional resources 

needed to complete the secondary task would be limited by what is already utilized on the primary 

task. Selecting and implementing an effective secondary task is difficult for researchers because 

the secondary task should not intervene with the primary task and both tasks should use the same 

cognitive resources (Sweller, 2011).  If the secondary task is ineffective, it could lead to cognitive 

overload which decreases primary task performance and increase extraneous cognitive load 

(Whelan, 2007).  

Although many researchers have tried to investigate how to quantify cognitive load, a goal 

standard technique has not been identified (Van Gerven et al., 2004; Folker et al., 2005; Paas & 

van Merrienboer, 1993; Tabbers et al. 2004). Research concludes that as of now, subjective 

measurements are the best available techniques to measure mental effort (Zhang & Luximon, 
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2015). Since direct objective measures are too invasive, subjective rating scales are more practical, 

cost efficient and effective. Also utilizing multiple measures can be leveraged to enhance the 

accuracy of measuring mental efforts. Regardless of the techniques used, it is important to 

accurately measure mental efforts, so students can achieve their maximum workload while 

maintaining their performance level. 

2.3.7 Limitations  

CTML has developed a theoretical framework that provides guidelines for effective 

instructional design that consistently have shown positive effects on learning. However, there are 

a few limitations in the literature when applying CTML, i.e., ecological validity, generalizability, 

and measuring cognitive load. Many researchers have investigated the effectiveness of combining 

several of the design principles in a controlled experiment while only a few studies have been done 

to examine individual principles of design to validate the framework. Highly controlled 

experiments have produced significant learning gains; however, the results are not generalizable 

and do not translate to a traditional classroom environment (Tabbers et al., 2004).  Many studies 

address the cognitive needs of students however, it is difficult to measure cognitive load, especially 

in children, so more studies are needed to address this.  Moreover, when designing for children, it 

is difficult to evaluate their prior knowledge and account for the differences in prior knowledge of 

each individual student. In most of the studies, prior knowledge was evaluated using pre-

assessments (Mayer, 2010). However, Sweller recommends developing a more robust assessment 

that can alter content presentation in response to the input and cognitive changes in the student 

(Sweller, 2005).  
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2.3.8 Conclusion  

Research supports that applying the principles of CTML will improve the cognitive 

processing of students in a technology enhanced environment (Mayer, 2010; Aldalalah, 2012; 

Florax & Ploetzner, 2010). Mayer leverages other cognitive theories to explain how the human 

brain processes information. Baddeley’s theory of working memory influenced CTML by 

providing an understanding of the limitations of working memory and the role of prior knowledge 

to creating schemas. Paivio’s dual coding theory and Sweller’s CLT provides techniques to 

optimize the way information is presented to reduce cognitive overload. The aforementioned 

theories form the basis for CTML that human information processing uses dual modality channels, 

which are limited, that allows for information to be actively organized and integrated with prior 

knowledge for learning to happen (Mayer & Moreno, 2003; Moreno & Mayer, 2000; Garner et al., 

1989).  

Studies in the literature haven’t investigated the role prior knowledge has on the 

development of schemas in the working memory. The literature also has not addressed which 

principles are most effective at reducing intrinsic and extraneous loads while increasing germane 

cognitive loads. To address the gaps and limitation of the literature, this research will use the 

guidelines provided by CTML to design the GLAR application to account for limitations and the 

principles to effectively deliver educational content to students to optimize their cognitive 

processing (Mayer & Moreno, 2003).  
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3 Understanding the Role of Prior Knowledge and Students’ Perspectives  

 

3.1 Introduction  

The National Educational Technology Plan of 2010 believes that one of the most powerful 

ways to transform and improve K-12 STEM education is to instill a culture of innovation through 

the use of technology (Polly et al., 2010). Recently, technology such as augmented reality (AR) 

has been used by teachers to combat students’ lack of motivation and engagement in traditional 

classrooms. However, AR has the potential to do more than increase engagement and motivation 

due to deviation from traditional classroom instruction by completely changing the overall learning 

experiences of students. Research has shown that, when correctly deployed in the classroom, AR 

can improve memory recall, kinesthetic and experimental learning, spatial abilities, and increase 

motivation and collaboration amongst students when compared to traditional classroom 

approaches (Polly et al., 2010; Morrison et al., 2009; Kaufman & Dunser, 2007).  

Along with using new novel technology, another way to captivate students is to gamify 

their learning environments. Through gamification, game-based mechanics and game-like 

elements are used in a traditionally non-gaming environment to engage students to solve problems 

and learn as if they are playing a game. Researchers believe gamification is a way to creatively 

incorporate educational play in a course without jeopardizing the academic rigor of curriculum 

(Deterding, Dixon, Khaled, & Nacke, 2011). With the successful usage of game elements (e.g. 

rewards and leaderboards) the delivery of information in an activity can be transformed into an 

effective learning environment. The application of gamification in educational settings has been 

associated with improved critical thinking and multi-tasking, as well as development of other 
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cognitive skills necessary for students to be successful (Kapp, 2012; Prensky, 2001; Shapiro, 

2015). 

Although learning can be enhanced by implementing technology in the classroom or by 

gamifying the learning environment, it is important to take into account established learning 

theories that support how students learn (Kirkwood & Prince, 2005). Before implementing a new 

technology such as gamified AR in the classroom, the educational purpose of its use should be 

grounded in learning theories in order for the technology to be effectively designed and used. Also, 

the most critical challenges that researchers must overcome is effective integration of gamified AR 

in the classroom to reduce cognitive load, engage students beyond the novelty effect and increase 

transfer of knowledge (Appleton, 2005; Clark & Mayer, 2003; Paas et al., 2005).  

Many theories have been developed to address technology integration while focusing on 

the principles of learning and the effects of technology on cognition. In particular, the Cognitive 

Theory of Multimedia Learning (CTML) addresses how information should be presented to 

account for students’ limited working memory. CTML focuses on the mental processes of students 

so they can actively process information presented without experiencing cognitive load (Mayer, 

1997). This research leverage CTML to guide instructional design of gamified learning AR 

(GLAR) applications while evaluating the cognitive effects GLAR on students.  

3.2 Purpose of the Study  

The goal of this study is to reveal how the use of gamified AR effects the cognitive system 

of students with and without prior knowledge of the learning content.  An additional aim is to 

generate recommendations for using game elements to design gamified AR activities to account 

for cognitive load. Prior knowledge is an important factor in the ability for students to generate 
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inference and create new knowledge (Fincher-Kiefer, 1992; O'Reilly & McNamara, 2007), 

organize new knowledge to form mental representations (Rawson & Kintsch, 2004), and generally 

improves comprehension (Lipson, 1982; Shapiro, 2004). CTML examines the process limitations 

of students’ working memory and their ability to handle multiple bits of information 

simultaneously (Mayer & Chandler, 2001). CTML assumes that prior knowledge is necessary to 

overcome these limitations and enrich students’ mental representation of information being 

presented (Mayer, 2005). Although a positive relationship between prior knowledge and learning 

has been supported in the educational psychology literature (Shapiro, 2004; Thompson & 

Zomboanga, 2003), further research on the effects of prior knowledge when using technology is 

needed to bring more clarity on how it influences students’ cognitive load. Therefore, a goal of 

this study is to investigate the effects of prior knowledge on students’ cognitive load. In addition, 

we will examine which game elements students perceive as helpful and distracting during a 

gamified AR activity.  

For this study, focus groups were utilized as an approach to gather information from 

students on how to improve the development of GLAR applications and how the use of game 

elements may minimize or maximize cognitive load. The effects of prior knowledge on knowledge 

creation was examined using pre-/post- assessments and cognitive load surveys.  

3.3 Related Work 

3.3.1 Prior Knowledge 

Bloom (1976) suggested that one-half of the variance on relevant cognitive achievements 

measures can be explained by “those prerequisite types of knowledge, skills, and competencies 

which are essential to the learning of a particular new task or set of tasks.” According to Dochy 
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(2002), prior knowledge generally explains between 30 and 60 percent of the variance in study 

results and overrules all other variables. Researchers such as Newman and Schwager (1995) 

investigated how students with different levels of prior knowledge seek help during problem 

solving activities in math while Duff (2004) examined how prior knowledge, among other 

variables, affected how first-year accounting and business students approached learning. Lee, 

Pliskin, and Kahn (1994) examined the relationship between performance and the students’ prior 

knowledge in a computer science course. The results of these studies indicate significant 

correlation of prior knowledge on learning. These studies found that students with prior knowledge 

had a significantly higher performance than students without prior knowledge. These studies 

strongly suggest that prior knowledge is an important factor which plays a vital a role in facilitating 

students’ cognitive achievements.  

Piaget's (1985) theory of cognitive development suggests that prior knowledge is the key 

to learning development. Mayer expressed the importance of prior knowledge on processing 

information when using educational technology. His research suggests that using multiple 

channels to produce mental representations allows students to integrate the information presented 

with prior knowledge to construct new knowledge (Mayer, 2005). Research conducted by Contero, 

suggests that AR supported by CTML can be used in the learning environment to reduce gaps in 

a student’s knowledge and significantly account for cognitive load (Contero & Alcaniz, 2010).  

3.3.2 Why a student’s perceptive approach?  

ecoCampus was an educational-based AR simulation game that was created to improve 

sustainability education of engineering students through the development and exploration (Ayer, 

Messener & Anumba, 2013). Situating ecoCampus allowed first-year engineering students to 

“create a variety of hypothetical design concepts, visualize those designs in the context of an 
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existing space, and receive performance feedback about those concepts related to sustainability 

and other key building metrics.” Five weeks after the implementation of ecoCampus in the 

classroom, students participated in focus groups. The small focus groups offered students the 

opportunity to share their overall perceptions of the AR activity and have an open discussion with 

their peers on how they felt about ecoCampus. Feedback from the focus group sessions helped 

researchers understand how instructional principles can be used to build other AR applications 

similar to ecoCampus. Researchers concluded that gathering students’ perspective allowed them 

to understand how students interacted with the application, and to gain insight on whether students 

felt ecoCampus provided them with enough information to make effective decisions and increased 

their interest in the building design process.  

Ayer, et al. demonstrated that a student’s perceptive approach offered students a less-

structured method to provide their thoughts on how AR learning activities can increase their 

knowledge of design content and impact their learning environment. Although focus groups were 

not anonymous, students felt comfortable giving their feedback in sessions because of the 

unstructured format and support of their peers. Many researchers believe that gathering students’ 

perspectives through focus groups provides researchers with rich information because students are 

able to openly discuss their experiences as well as expand and disagree with other students’ ideas 

and opinions (Morgan, 1996).  

3.4 Experimental Testbed: Celestial Blast. A Gamified Learning AR application   

For this research, a custom GLAR application was built to serve as a key testbed 

component.  Unlike other AR applications that require participants to wear head-mounted displays 

or use spatial projectors, this study developed a handheld tablet-based AR application. Celestial 

Blast is an interactive AR game developed to reinforce the mathematical concept of angles to 
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participants.  The goal of Celestial Blast is for participants to identify and classify incoming 

asteroids’ angle of attack as right, obtuse, acute or straight. Once identified and classified, 

participants must use a turret to measure and then destroy asteroids.  

Celestial Blast was developed in the COGENT Lab at Virginia Polytechnic Institute and 

State University by five undergraduate Computer Science students using Unity and the AR ToolKit 

library. To deploy Celestial Blast requires an Android tablet to render the virtual information and 

a printed AR marker to position the virtual information into the real-world scene. An AR marker 

is a printed pattern or picture that contains a pre-programmed visual pattern that the tablet camera 

can recognize and use to determine the position and pose of AR content. The marker used in 

Celestial Blast was movable, allowing the participants to view the virtual objects from different 

angles (Hubbard, 2009). For this gamified AR activity, the marker stood up vertically in front of 

the tablet so it was within the tablet camera’s field of view at all times (see figure 3). 

 
Figure 3: Experimental Setting 
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The learning content used to inform the design of Celestial Blast came from the Virginia 

Department of Education 5th grade curriculum. The GLAR application addressed two specific 

learning aims adopted from Virginia Public Schools’ Standard of Learning. Aim one states that 

participants should be able to identify and classify angles as right, obtuse, acute or straight. The 

second aim states that participants should be able to measure right, obtuse, acute and straight 

angles. The application was designed by leveraging principles of gamification and CTML. 

Celestial Blast is composed of six gamification elements: rewards, freedom to fail, progress, 

feedback, score, and levels. Each gamification element is integrated into the application design to 

help participants interact with virtual objects and focus their attention on understanding the 

learning content. Based on CTML design principles, the application utilizes dual channels of 

modality to allow for visual and auditory processing. Also, auditory and visual information is 

presented simultaneously to reduce participants’ cognitive load when interacting with the 

application.  

Celestial Blast, as shown in figure 4, was designed around the theme that there are friendly, 

peaceful and super tiny “ploofs” that need participants’ help. Participants have to save the ploofs’ 

town (shown in green, below the turret in figure 4) from being destroyed by incoming asteroids. 

The asteroids and ploofs’ town are shown virtually using AR and can only be seen through the 

Android tablet. Each asteroid approaches the town from a different angle and is labeled with a 

number denoting incoming angle of attack in degrees. The town is rendered on the marker in one 

of three color coded states. When the town is green, it is in a healthy, strong condition; when the 

town is yellow it indicates that the town has been hit by two asteroids; and when the town is red, 

it is very close to destruction, and a single additional asteroid hit will destroy the town. On top of 

the town, a turret is rendered that participants manipulate in order to destroy incoming asteroids. 
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The bottom of the screen displays the health bar, the amount of ammunition remaining, angle 

classification and score. The heath bar allows participants to track the health of the ploofs’ town, 

ammo remaining tracks how much ammunition is left, and angle classification is correlated to the 

position of the turret. Participants must pay attention to the text that correlates to the turret angle 

as well.  For example, it the turret is at twelve degrees the classification will indicate acute.  

To play the game, participants position their finger on the tablet surface to drag the turret 

along an invisible protractor arc. Once the turret position and the angle of the incoming asteroid 

match, participants release their finger to fire the laser and destroy the asteroid. The more accurate 

the laser fire, the more points participants earn. Also, the longer participant’s keep the town safe, 

the more points and ammo they will earn. Accurately matching the angles of the incoming asteroids 

to the angle of the turret will also conserve ammo. When participants run out of ammo, they can 

refill by correctly answering questions about angles. Questions were adapted from Virginia 

Standards of Learning sample and practice questions on the topic.  If a question is answered 

incorrectly, participants can no longer protect the town and the game is quickly over. Once the 

game has ended, participants can keep replaying during the remaining allotted activity time to 

attempt to set a new personal or classroom high score.  
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Figure 4: Celestial Blast Interface 

 

3.5 Methodology  

This section outlines the research questions, describes the research design and includes the 

approaches used to address the research questions. It also outlines characteristics of the 

participants, research setting, instrumentation for data collection, research limitations and 

assumptions. 

3.5.1 Research Questions and Hypotheses  

The study addresses the following research questions: 

Research Question 1: Does prior exposure to learning content have an actual and perceived 

effect on GLAR performance? 

Hypothesis (H1): There are significant actual difference in GLAR performance between 

students with and without exposure to learning content 
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Research Question 2: Does prior exposure to learning content effect cognitive load when 

using GLAR application “Celestial Blast”? 

Hypothesis (H2): There are significant difference in cognitive load between students with 

and without exposure to learning content when using GLAR application “Celestial 

Blast”. 

Research Question 3: Will engagement with GLAR improve content-based learning gains 

for students with and without prior exposure to learning content? 

Hypothesis (H3): Engagement with GLAR improves content-based learning gains for both 

students with and without prior exposure. 

Hypothesis (H4): There is no significant difference between content-based learning gains 

for students with and without prior exposure. 

3.5.2 Research Design  

This study used a mixed method, between-subjects two-group experimental design with 

purposive sampling. Both quantitative and qualitative data were used to examine the perception of 

participants with respect to cognitive load, content-based learning gains, user experience and 

usefulness of gamification elements. Participants were broken in two groups:  experienced 

participants and novice participants. Since purposive sampling was used to gather participants, the 

groups were naturally occurring and not randomly assigned.  

3.5.2.1 Independent and Dependent Variables  

This study has one independent variable which was prior knowledge, with two levels, 

novice and experienced.  Participants were considered novice if they did not have prior exposure 

to the learning content which was confirmed by their school teacher. We considered participants 
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experienced if they had prior exposure to the learning content during the 2016 – 2017 academic 

year.  

The dependent variables of the study were results on pre-/post- assessment, learning gains, 

average game score, highest game score, number of plays and cognitive load scores. The dependent 

measures were collected through self-reported cognitive load surveys (NASA TLX), pre-/post-

assessments and GLAR game metrics.  

 Pre-/Post- assessment results: pre-assessment determined the participants’ level of 

understating of learning content before exposure to Celestial Blast. The results ranged from 

0 (lowest/no questions answered correctly) to 10 (highest/all questions answered 

correctly). The post-assessment determined the participants’ level of understanding of the 

learning content after exposure to Celestial Blast. The results ranged from 0 (lowest/no 

questions answered correctly) to 10 (highest/all questions answered correctly).  

 Learning gains: these gains are calculated as the differences between pre- and post- 

assessment results, and ranged from -3 (lowest/worst) to 6 (highest/best).  

 GLAR game metrics: average score across all games played, highest score achieved, and 

number of game plays. Students had the freedom to fail and replay Celestial Blast multiple 

times within the allotted time, the number of game plays can ranged from 1 (best) to infinite 

(worst).  

 Cognitive load scores:  average workload from NASA TLX survey ranged from 0 (lowest 

workload) to 1 (highest workload).  
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3.5.2.2 Focus Groups 

The study also utilized focus groups to capture participants’ perceptions on how the gamified AR 

activity affected them cognitively, it also helped researchers understand how participants 

perceived the application and identify what gamification elements kept them focused on the 

learning content.  

3.5.3 Participants  

Understanding the target population is crucial component of establishing a valid 

experiment with reliable data and conclusion (Creswell, 2009).  Most of the existing literature 

investigating AR as an educational tool has included participants in higher education, e.g., 

community college and four-year universities (Appleton, 2005).  To expand on this body of 

literature, the target population for this study was fifth grade students from Title I schools in 

Virginia Public School system. Title I is a funding program provide by the U.S. Department of 

Education to “assist low income and at-risk students who are struggling academically to obtain a 

high-quality education and reach, at minimum, proficiency on challenging state academic 

achievement standards and assessments” (U.S. Department of Education, 2011). Title I funding 

was created out of the No Child Left Behind Act of 2002 with hopes of closing the achievement 

gap between students in low socioeconomic and high-income communities. This study engaged 

35 participants from four different elementary schools in the Southwest region of Virginia. Each 

school had fifth grade classroom sizes between 9 to 16 students. All participants were educated 

through grade four and passed Virginia SOLs in order to move onto the fifth grade.  

We gained access to participants through Virginia Tech’s Kindergarten-to-College (K2C) 

program. This program was developed to inspire potential first-generation college students to 

pursue degrees in higher education. K2C brings fifth grade students from Title I schools in Virginia 
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to Virginia Tech’s Blacksburg campus to participate in STEM activities and gain first-hand 

exposure to cutting edge research and technology. There was a total of four schools who 

participated in the study, two schools provided access to novice participants and the other two 

schools provided access to experienced participants. Individual schools visited Virginia Tech 

Blacksburg campus on separate occasions over the course of one month.  

The experienced group contained 17 participants, and novice group contained 18 

participants. It was assumed that both groups had a basic understanding of a protractor which 

allowed navigation through the GLAR application without being completely confused.  

3.5.4  Research Setting  

This research occurred during the spring semester of the 2016-2017 Virginia Tech 

academic school year. The study was conducted on the Virginia Tech Blacksburg campus in a 

controlled classroom to alleviate potential distractions such as off-task participants, hallway noise 

or interruptions, and control for lighting. Natural outdoor lighting can cause glare on the tablets 

and prevent tablet cameras from reliably detecting AR markers.  

Inside the classroom, participants sat in groups of six. However, each participant had their 

own Android tablet and marker. At the start of the study, the marker was placed directly in front 

of participants but they could move it at any time per their preference and desire.  

3.5.5 Instrumentations 

3.5.5.1 Pre-/Post- Assessments  

In order to evaluate participants’ prior knowledge on angles, participants were given a pre-

assessment that included questions derived from previous SOL assessments. To evaluate whether 

or not new knowledge was created after interacting with Celestial Blast, a post- assessment was 
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also administered. Both the pre- and post- assessment had ten questions that required participants 

to demonstrate their ability to identify, classify and measure angles. Although the pre- and post-

assessments were separate, both used multiple choice format for questions to mimic the style of 

actual SOL tests. The SOL questions used were state-approved in accordance with Virginia 

Department of Education guidelines and meet state educational standards. The assessments were 

deemed reliable and an effective assessment instruments by state administrators.  

3.5.5.2 NASA Task Load Index (TLX) 

NASA TLX (Hart and Staveland, 1988) was used to assess a direct, subjective 

measurement of participants’ perceived cognitive load during the gamified AR activity. The TLX 

contains multidimensional scales assessing six dimensions: mental demand, physical demand, 

temporal demand, performance, effort, and frustration. Table 2 provides a summary description 

for each dimension as well as the endpoints used in their measuring scale (Valdehita, Ramiro, 

Garcia, Puente, 2004). Each dimension operates on a 21-point ordinal Likert scale (1 = very low 

and 21 = very high).  

Through extensive validation studies, Hart and Staveland (as well as others) have 

established NASA TLX as a valid and effective measure of self-reported cognitive load.  

Additional researchers concluded that NASA TLX’s six dimensions accounted for significant 

variance in cognitive load (Bortolussi, Kantowitz & Hart, 1985; Byers, Bittner & Hill, 1989; Hart 

& Staveland, 1988; Haworth, Bivens & Shively, 1986; Vidulich & Tsang, 1986).  

The NASA TLX was not altered from its original state and when analyzing data from the 

survey, researchers choose to use the raw scores instead of weighted scores. The use of raw scores 

has been recommended when broad segments of work are examined; weighted scores are 

recommended when specific work tasks are examined or when different work segments are 
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compared (Hart, 1992). It was determined that elementary school students are capable of self-

reporting their perceived mental effort using an ordinal scale such as NASA TLX therefore we 

expect NASA TLX to be a valid instrument for this age demographic (Paas & van Merriënboer, 

1993; Brown, 1999; Paas et al., 2008; Gopher & Braune, 1984). Also, according to Flesch-Kincaid 

Grade Level Readability formula and the Automated Readability Index the understandability and 

reading level of the NASA TLX corresponds to a fifth grade level.  

Table 2: NASA TLX Rating Scale 

 
 
 

3.5.5.3 Focus Group 

This research used focus groups to gather information from the participants on the overall 

usefulness of the GLAR application and whether participants’ cognitive load increased or 

decreased while interacting with GLAR.  

Krueger and Casey (2000) defined focus groups as: “a carefully planned discussion 

designed to obtain perceptions on a defined area of interest in a permissive, nonthreatening 
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environment. ... The discussion is relaxed, comfortable, and often enjoyable for participants as 

they share their ideas and perceptions. Group members influence each other by responding to ideas 

and comments in the discussion.” 

Focus groups allow a small group of six to ten participants to have an open discussion led 

by a moderator (Patton, 2005). The role of the moderator is to ask questions when discussion on a 

particular topic ends and to redirect participants when they began to get off topic. The goal is to 

generate the maximum amount of different ideas and opinions from as many different participants 

in the allotted time. Participants should feel comfortable sharing their views without 

constraints.  Focus groups are structured around a set of predetermined questions but allow 

participants’ discussion to be unstructured. However, follow-up questions are used as needed to 

clarify and expound on participants’ answers.  

For this work, focus groups elicited participants’ perspectives that aim to help researchers 

evaluate participants’ perceived cognitive load and the existing GLAR application, as well as 

garner feedback on how to improve future GLAR applications to minimize cognitive load. The 

focus groups allowed participants the opportunity to express their thoughts in loosely-structured 

setting and interact with other participants during the discussion. For this research, focus group 

discussions were audio recorded and the moderator took extensive notes to help with the 

transcription process.  

3.5.6 Data Collection Procedures  

This study employed a five-step process: 

1. Introduction to Research Team and Celestial Blast Instructions (~10 min) 

2. Pre- Assessment (~10 min) 



 

 75 

3. Interact with Celestial Blast (~30 min) 

4. Post- Assessment (~10 min) 

5. Focus Group Interviews (~20 min) 

 First, participants were introduced to the primary researcher and designers of the GLAR 

application. The research team gave a presentation on game instructions and showed an example 

on how to use Celestial Blast.  This presentation occurred during the first 10 minutes of the 

gamified AR activity. Next, participants completed a pre- assessment survey to evaluate their prior 

knowledge by answering SOL questions on a specific mathematical area (i.e., angles). Researchers 

gave verbal instructions and answered questions as needed. Following the pre- assessment, 

participants interacted with Celestial Blast individually for thirty minutes. During game play, 

researchers walked around to assist participants if they had any questions on the learning content 

or AR interface (see figure 5). For example, if a participant was having trouble seeing the graphics, 

the researcher instructed the participant to manipulate or move the AR marker to increase or 

decrease their field of view or rotate the graphic.  



 

 76 

 
Figure 5: Researchers assisting participants 

 

After the learning activity, all participants completed the post- assessment to evaluate if 

there were any learning gains. Following the post- assessment, participants completed the NASA 

TLX, which allowed them to self-report their cognitive load during the gamified AR activity. Once 

again, the researchers gave verbal instructions and answered questions as needed.  

During the final step, participants were placed in groups of 5 and 6 to participate in focus 

groups. These groups were homogenous with respect to prior knowledge since only one school 

participated in the study at a time. They sat in a circle and two researchers joined each group. One 

researcher served as a note taker and observer while the other researcher served as the moderator. 

The moderator asked participants questions and facilitated the conversation. If they noticed one of 
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the participants was not engaging in the conversation, the researcher purposely directed a question 

to that participant. This was an important strategy to ensure focus group data included feedback 

from all participants.  

3.6 Results  

3.6.1 Research Question 1 

Does prior exposure to learning content have an actual and perceived effect on GLAR 

performance? 

3.6.1.1 Descriptive Statistics  

Actual GLAR performance was analyzed using three game metrics of Celestial Blast: (1) 

average game score, (2) highest game score, and, (3) number of game plays. Descriptive statistics 

for these three game metrics by prior exposure can be found in tables 6, 7, and 8. The data shows 

novice students had a median average game score of 1045.86, with minimum and maximum 

average game scores of 516.76 and 3044.25 respectively; median highest game score was 2705 

respectively, with minimum and maximum highest game scores of 1420 and 6520; and median 

number of plays was 7, with minimum and maximum number of plays of 4 and 17 respectively.  

Experienced students had a median average game score of 1279.72, with minimum and maximum 

average game scores of 349.615 and 7025 respectively; median highest game score was 3447.5 

respectively, with minimum and maximum highest game score of 1170 and 9174; and median 

number of plays was 7, with minimum and maximum number of plays of 1 and 13 respectively.  

 

 

 



 

 78 

Table 3: Descriptive Data for Number of Game Plays by Prior Exposure   

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  8.647 3.904 17 4 17 6 7 12 

Experienced 6.389 3.664 18 1 13 3 7 9 

Note. Lower number of game plays resulted in improved GLAR performance  

 

 

 
Table 4: Descriptive Data for Highest Game Score by Prior Exposure  

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  3138.52 1555.79 17 1420 6520 1675 2705 4075 

Experienced 4166.78 2544.167 18 1170 9174 2091.25 3447.5 6809.75 

 

 

Table 5: Descriptive Data for Average Game Score by Prior Exposure  

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  1340.98 742.49 17 516.76 3044.25 807.78 1045.86 1679.29 

Experienced 2117.88 1886.14 18 349.62 7025 618.06 1279.72 3342.65 
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Figure 6. Average Game Score by Prior Exposure 
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Figure 7. Highest Game Score by Prior Exposure 
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Figure 8. Number of Game Plays by Prior Exposure 

 

3.6.1.2 Hypothesis Testing 

Hypothesis (H1): There are significant actual difference in GLAR performance between students 

with and without exposure to learning content. 

Kruskal-Wallis tests were conducted on each of these measures to evaluate differences 

between students with, and without, prior exposure to the learning content. All three tests found 

no significant differences (table 6): (1) average game score, Z = 0.545, p = 0.586, (2) highest game 

score, Z = 0.908, p = 0.364, and, (3) number of game plays, Z = 1.428, p = 0.153; therefore, we 
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can reject hypothesis 1 and assume prior exposure to learning content does not have an actual 

effect on GLAR performance. The effect size was also calculated to better understand the 

magnitude of the difference between groups (Sullivan & Richard, 2012). Using the Z score 

obtained from Kruskal-Wallis analyses, the Wilcoxon effect size was calculated using: r = 
𝑍

√𝑛
, 

where n is the total number of samples. The Wilcoxon effect size is considered large when it is 

more than 0.5, medium when it is between 0.3 and 0.5, and small when it is less than 0.3 (Grissom 

& Kim, 2012). Therefore, the effect size for average game scores, highest game score and number 

of plays are deemed small.  

Table 6. GLAR performance Kruskal-Wallis Test Results 

 n Chi-square df p-Value Z-Value R 

 

Average Game Score 35 0.3148 1 0.586 0.545 0.092 

Highest Game Score 35 0.854 1 0.364 0.908 0.153 

Number of Plays  35 2.088 1 0.153 1.428 0.241 

 

3.6.1.3 Qualitative Coding Process of Focus Group Data 

Once the focus group interviews were completed, the recorded conversations were 

transcribed and analyzed using a three-step coding process. Throughout the coding process, we 

noted our thoughts in analytical memos to help make comparisons amongst the categories, codes 

and clusters and ultimate derive key themes. In open coding, categories evolved from the analysis 

of the transcripts by grouping words and phrases together. The outcome of the open coding process 

was the emergence of 25 categories. Some of the emerging categories were frustrations, 

engagement, functionality, collaborations, novelty and gamification elements. During this step, 

memos allowed us to determine how to begin to explain how GLAR impacted student 

performance. Next, axial coding helped aggregate the categories to identify codes that describes 

relationships amongst categories. Codes were grouped together by category and subcategory to 
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make sense of the focus group data. This was an iterative process, in which we constructed, 

deconstructed, and reconstructed categories and sub-categories to identify13 key codes that were 

effective at explaining and making sense of the data. Lastly in selective coding, we developed 

meaningful clusters that connected together related axial codes that explains how students 

perceived their GLAR performance. The clusters were compared and contrasted with each other 

to investigate interconnections between novice and experience students. These clusters were 

subsequently developed into the five key themes.  

3.6.1.4 Qualitative Findings of GLAR performance by Prior Exposure    

The qualitative coding of the focus group transcripts uncovered five key themes. First, the 

use of gamification elements had a positive effect on game performance for both students with and 

without prior exposure to the learning content. Second, understanding of learning content impacted 

students game performance. Third, students reported that their sense of engagement was beneficial 

to their GLAR performance. Fourth, students reported feeling stressed and frustrated with the game 

functionality and design. Fifth, both students with and without prior exposure to the learning 

content reported that PLearning was important for successful GLAR performance. PLearning was 

a term defined by the participant as play and learning simultaneously.   The five key themes from 

the qualitative data further explains the quantitative results to create a richer description of the 

overall findings for research question one.   

Below we outline the key themes by participant classification and identify significant 

statements from the raw focus group transcripts (see table 7).  
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Table 7. Key Themes from Qualitative Coding  

Themes Novice Students’ Quotes Experienced Students’ Quotes 

 

Use of Gamification 

Elements  

“The information at the bottom of 

the screen in the progress bar 

helped me be successful at playing 

the game.” 

 

“I did not like the theme of the 

game because it was not realistic 

and I wanted it to be related to 

sports.” 

 

“I like seeing the explosions 

feedback because I know I was 

playing the game right.”  

 

 

“If I looked at my score during the 

game I would have been stressed to 

keep getting a higher score; 

therefore, I waited until the end of 

the game to look at my score 

because I wanted to focus on the 

asteroids.” 

 

“Being able to see my score 

throughout the game was helpful 

and the best part.” 

 

“This game was addictive 

because I kept wanting to get a 

high score. “ 

 

 

“I was comfortable playing the 

game because the progress bar at 

the bottom helped me.”  

 

 

 

“Being able to keep playing the 

game after dying was helpful 

and motivated me to keep 

getting a better score.” 

 

“I like clearing the levels 

because I was doing something 

rewarding like saving the 

ploofs.” 

 

 

 

 

“The +30 and +5 feedback was 

helpful to know how I was 

doing.” 

 

Understanding of 

Learning Content  

“It was hard for me to make 

connections between the angles and 

incoming asteroids… I wish I 

would have known more about 

angles before playing the game.” 

 

“Seeing the number on the 

asteroids helped me to make 

connections on what the angle 

classification was.” 

 

 

“The AR helped me to visualize the 

angle and made it easier for me to 

identify and classify the angles.” 

“Since I got my angles down I 

wasn’t stressed because if it said 

to shoot an acute angle I knew 

what an acute angle was.” 

 

 

“I had to put in a lot of effort 

because the game requires a lot 

of concentration and focus 

especially when they started 

coming faster.” 

 

“I died a few times because I 

thought 90 was acute but I was 

taught acute was less than 90 
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“My performance was bad because 

I didn’t know anything about 

angles.” 

 

“Since I didn’t know the angles I 

had to think harder to remember 

what the classification was and it 

made me a little stressed.” 

 

degrees but from the game I 

learned 90 is a right angle.” 

 

“The game was easy because I 

understand how to identify and 

classify angles.” 

 

“I was able to develop and 

reinforce my angle knowledge 

quickly by playing the game.” 

 

 

 

Benefits of 

Engagement  

“I was not stressed playing the 

game because it kept me engaged.” 

 

 

 

“The game was engaging, and I was 

upset I didn’t get to finish.” 

 

“I would give this game a 9 out of 

10 on the engagement scale 

because playing in real world was 

better than paper.” 

 

 

“The game was entertaining and 

additive because I was so engaged 

in shooting the asteroids.” 

 

“The game was engaging and 

educational because of the story of 

protecting the ploofs.” 

 

“The game was engaging and 

normally I get annoyed after 

playing a game but not with this 

one.” 

 

“I wanted to keep playing the 

game because it was addicting.” 

 

“I give this game an engagement 

score of 8 because it was 

challenging and forced me to act 

and think quickly to shoot the 

asteroids.” 

  

“The game could help everyone 

because it is engaging.” 

 

 

“The AR made the game more 

alive and engaging.” 

 

Game Functionality 

and Design  

“Seeing the angles in my real world 

was helpful in my game 

performance verses learning with 

paper how we normally see it.” 

 

 

“I like having both the sound and 

graphics at the same time…. The 

numbers on the asteroids helped me 

play the game better.” 

 

“Having the angle number and 

classification in the sphere at the 

bottom and having to match it to 

the asteroid I wanted to destroy 

helped with my performance.” 

  

“Sometimes when I got to a 

higher level all the asteroids 

were mentally demanding.” 
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“The game made me think a lot 

because I had to see if I would hit 

the asteroid and had to think about 

the angle at the same time.” 

 

 

“I was stressed a little bit because it 

was a lot of asteroids at one time 

and it was hard for me to focus.” 

 

“Answering the question when I 

had one ammunition left was the 

best featured of the game that really 

helped me.” 

 

“I’m grateful for the questions to 

get more ammo because it 

stopped the time and gave me 

more time to think.” 

  

 

“I think the game could use more 

sounds and graphics.” 

 

 

“I like the visuals and the sound 

because it helped me learn and 

pay attention.” 

 

PLearning (Playing 

and Learning 

Simultaneously)  

 

“PLearning is better than learning 

because it is a fun way to learn 

boring stuff.” 

   

“Playing the game helped me to 

learn about angles while having 

fun.”  

 

“The fact that you guys were able 

to incorporate learning math into a 

game that was fun was great.” 

 

“Playing with the turret in the game 

reminded me of moving along a 

protractor and it was helpful.” 

 

“I wish the game had multi player 

mode so I could play and learn 

together with my friends.” 

 

“I like that I was learning but 

still having fun and that was a 

rare thing.” 

 

“This game is the best game ever 

because it’s a teaching game and 

fun.” 

 

“Playing the game helped me on 

the post-assessment.” 

 

 

“By moving the turret I felt like 

I was moving a protractor which 

was fun and helpful. “ 

 

“I don’t think I did well when 

playing the game because I don’t 

like to play games and learn…. I 

would rather just play games for 

fun without learning.” 

 

 

3.6.2 Research Question 2 

Does prior exposure to learning content effect cognitive load when using the GLAR 

application “Celestial Blast”? 
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3.6.2.1 Descriptive Statistics 

Cognitive load was assessed using the dependent measure of average workload which is 

the unweighted NASA TLX results. Descriptive statistics for average workload across prior 

exposure is summarized in table 8. The data shows novice students had a median average workload 

of 0.45, with minimum and maximum average workload of 0.11 and 0.83 respectively and 

experienced students had a median average workload of 0.45, with minimum and maximum 

average workload of 0.16 and 0.76 respectively.  

 
Figure 9. Comparing Average Workload by Prior Exposure 
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Table 8. Descriptive Data for Average Workload by Prior Exposure 

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  0.448 0.140 17 0.117 0.758 0.367 0.45 0.529 

Experienced 0.484 0.173 18 0.167 0.833 0.381 0.45 0.594 

 

3.6.2.2 Hypothesis Testing  

Hypothesis (H2): There are significant differences in cognitive load between students with and 

without exposure to learning content when using the GLAR application “Celestial Blast”.  

A Kruskal-Wallis test was conducted to evaluate differences between students with and 

without prior exposure to the learning content on median change in average workload. The test 

showed no significant differences in average workload, Z = 0.380, p = 0.704, between students 

with and without exposure to the learning content (table 9); therefore, we can reject the hypothesis. 

The effect size for cognitive load was 0.064.   

 

Table 9. Cognitive Load Kruskal-Wallis Test Result 

 n Chi-square df p-Value Z-Value r 

 

Average Workload 35 0.157 1 0.704 0.380 0.064 

 

 

3.6.3 Research Question 3 

Will engagement with GLAR improve content-based learning gains for students with and 

without prior exposure to learning content? 
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3.6.3.1 Descriptive Statistics 

Content-based learning gains were assessed using the dependent measures of (1) pre-

assessment results and (2) post-assessment results. Since we were interested in the relative 

difference between pre- and post- assessments (as opposed to a raw single score), we did not take 

into account chance performance. Any effects of chance performance would be the same for both 

pre- and post-assessment results. Descriptive statistics for FID and FD students across pre- and 

post- assessments are summarized in tables 12 and 13. The data shows novice students had a 

median pre-assessment score of 4, with minimum and maximum pre-assessment scores of 2 and 7 

respectively; and median post-assessment score of 7, with minimum and maximum post-

assessment scores of 2 and 8 respectively.  Experienced students had a median pre-assessment 

score of 9, with minimum and maximum pre-assessment scores of 3 and 10 respectively; and 

median post-assessment score of 9, with minimum and maximum post-assessment scores of 7 and 

10 respectively.   
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Figure 10. Comparing Pre- and Post-Assessment by Prior Exposure 

 

 

Table 10. Descriptive Data for Pre-Assessment by Prior Exposure   

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  4.059 1.478 17 2 7 3 4 5 

Experienced 8.056 1.862 18 3 10 7 9 9 

Note. The maximum possible score on pre-assessment was 10.  

 

Table 11. Descriptive Data for Post-Assessment by Prior Exposure 

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  5.412 1.698 17 2 8 4.5 6 6.5 

Experienced 9.056 0.938 18 7 10 8 9 10 

Note. The maximum possible score on post-assessment was 10.  
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3.6.3.2 Hypothesis Testing 

Hypothesis (H3): Engagement with GLAR improves content-based learning gains for both 

students with and without prior exposure.  

Two Wilcoxon Signed-ranked tests were conducted to evaluate if there were significant 

differences between pre- and post- assessments for both students with and without prior exposure 

to learning content. For novice students, the Wilcoxon Signed-rank test indicated significant 

differences between pre- (Mdn = 4) and post- (Mdn = 6) assessment scores, Z = -3.418, p < 0.0001. 

The effect size of the pre- and post-assessment for novice students was r = 0.829. For experienced 

students, the Wilcoxon Signed-rank test did not find significant differences between pre- (Mdn = 

9) and post- (Mdn = 9) assessment scores, Z = 0.805, p = 0.421. The effect size was r=0.189. 

Therefore, we reject the hypothesis and assume that engagement with Celestial Blast did not 

improve the content-based learning gains for both students with and without prior exposure to the 

learning content. 

Table 12. Novice Students’ Wilcoxon Signed-rank Test Results 

 Novice Post-Assessment –  

Novice Pre-Assessment 

Z 

p 

-3.418 

< 0.0001* 

 

Table 13. Experienced Students’ Wilcoxon Signed-rank Test Results 

 Experienced Post-Assessment – 

Experienced Pre-Assessment 

Z 

p 

0.805 

0.421 
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Hypothesis (H4): There are significant differences between content-based learning gains for 

students with and without prior exposure.  

 Learning gains were quantified using a difference score that was calculated as the 

difference between the pre-assessment and post-assessment scores. Descriptive statistics for 

difference score between students with and without prior exposure is summarized in table 14. The 

data shows novice students had a median difference score of 1, with minimum and maximum 

difference scores of -1 and 4 respectively and experienced students had a median difference score 

of 1, with minimum and maximum difference scores of -2 and 6 respectively.  

 
Figure 11. Comparing Assessment Score Differences by Prior Exposure 
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Table 14. Descriptive Data for Assessment of Learning Gains by Prior Exposure  

      Percentile 

 M SD n Min Max 25 50 75 

 

Novice  1.353 1.538 17 -1 4 0 1 2.5 

Experienced 1 2.058 18 -2 6 -1 1 2.25 

 

A Kruskal-Wallis Test was conducted to evaluate hypothesis 4 and determine if there 

were differences between students with and without prior exposure to learning content on 

median change in content-based learning gains. The test was not significant, Z = -1.219, p = 

0.223; therefore, we reject the hypothesis and assume that there are no significant differences 

between content-based learning gains for students with and without prior exposure. The effect 

size of the learning gains was r = .136. 

Table 15. Assessment of Learning Gains Kruskal-Wallis Test Result 

 n Chi-square df p-Value Z-Value r 

 

Learning Gains 35 0.675 1 0.223 -1.219 0.136 

 

3.7 Discussion  

The goal of this study is to investigate the effects of prior knowledge on content-based 

learning gains, students’ cognitive load and GLAR performance. The key, significant findings 

from this study suggest, (1) there were no differences between novice and experienced students’ 

cognitive load, and, (2) novice students’ content-based learning gains can be improved through 

interaction with GLAR.  

3.7.1 GLAR performance (Research question 1)  

If students have strong prior knowledge of a topic that is related to the learning activity, 

then the inclusion of GLAR may increase their performance during the activity (Oulasvirta & 
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Saarilouma, 2004). In this study, experienced students tended to have better highest and average 

game scores as compared to novice students (which bolster the claims by Oulasvirta and 

Saarilouma). While there were no statistically significant differences between the two groups for 

each dependent measure of GLAR performance, there were identifiable differences at p=0.092 for 

average game score. Hoffman (2010) noted that the use of a different model or increasing the p-

value of the test could provide statistically significant differences between novice and experienced 

students GLAR performance. Recent research indicates that p-values between 0.05 and 0.1 can be 

considered “marginally significant”. We believe these “marginally significant” differences could 

be explained by the qualitative data.  

Most of the qualitative findings between students with and without prior exposure to 

learning content were similar. However, their opinions did differ amongst some of the five key 

themes.  While each key theme is discussed separately below, it is important to note that we cannot 

conclude which key theme or interaction of themes had the greatest effect on GLAR performance.  

Use of Gamification Elements. According to Kapp, gamification elements are considered 

important constructs that intrinsically motivate students and improve performance (Kapp, 2012). 

Experienced students felt that gamification elements such as high score, freedom to fail, and levels 

gave them the additional motivation to perform. Participant eleven shared in the focus group, 

“Being able to keep playing the game after dying was helpful and motivated me to keep playing 

to get a high score.” And a commonly noted comment across the experienced group indicated that, 

“The game was addictive because I wanted a high score.” However, for novice students, 

gamification elements such as narrative and high score were distracting and possibly hindered 

their GLAR performance. According to participant 34, “If I looked at my score during the game, 

I would have been stressed to keep getting a higher score; therefore, I waited until the end of the 
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game to look at my score because I wanted to focus on the asteroids.” The inclusion of gamification 

elements may be overwhelming to students who are unfamiliar with the learning content; therefore, 

when using gamification elements, instructional GLAR designers should consider prior exposure 

to learning content (Hanus & Fox, 2015; Landers, 2014).  

Understanding of Learning Content. Understanding learning content is key to students’ 

performance with GLAR. Experience students complained about being frustrated with the learning 

material being presented in Celestial Blast. This qualitative finding was not surprising because 

experienced students were not building new knowledge, so it is expected that they would 

experience some frustration due to the expertise reversal effect.  Indeed, participant 34 mentions 

“I was annoyed and didn’t enjoy the game until the asteroids started coming faster and made me 

think harder.” However, both novice and experienced students reported improved understanding 

of learning content after using Celestial Blast. Participant 14 mentioned, “I was able to develop 

and reinforce my angle knowledge quickly by playing the game.” Likewise, participant 22 said, 

“On the pre-assessment I did badly and I performed bad because I didn’t know anything about 

angles. But I think I got an 8 out of 10 on the post-assessment.” Both experienced and novice 

students found the GLAR learning activity to be useful and help them better understand the 

learning content being presented. Also it is important to mention that experienced students were 

overconfident in their Celestial Blast performance. For example, experienced students reported 

that “the game was easy because I (already) understand how to identify and classify angles,” and 

“since I got my angles down I wasn’t stressed because if it said to shoot an acute angle I knew 

what an acute angle was.”  However,  their actual GLAR average and highest game scores were 

not significantly different as compared to novice students.  
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Benefits of Engagement. Jenson (2009) stressed the importance of engaged learning, 

which activates students to participate emotionally, cognitively, and behaviorally, which in turn 

improves performance. Both novice and experienced students noted the importance of 

engagement, as evident by one of the novice students’ comments that, “I would give this game a 

9 out of 10 on the engagement scale because playing in the real world was better than using paper 

to learn.” Comments similar to this were echoed for novice and experienced students alike. Within 

the context of Celestial Blast, gamification and AR was successful at increasing engagement to 

participate in higher order cognitive processing. Experienced participant 13 reported, “I give this 

game an engagement score of 8 because it was challenging and forced me to act and think quickly 

to shoot the asteroids.”   

Game Functionally and Design. There were some frustrations expressed about game 

functionality and overall design. Combining elements of AR, gamification and CTML to learning 

content can compound some frustrations, turning what was intended to be a fun and interactive 

experience into the opposite. Although students like that GLAR was a different approach to 

traditional in-classroom learning methods, some reported being stressed and overwhelmed which 

hindered their performance. Some of the comments included: “Sometimes when I got to the higher 

level all the asteroids were mentally demanding,” and, “I was stressed because it was a lot of 

asteroids at one time and it was hard for me to focus,” and, “The game was lagging which caused 

some frustration and made me die a lot.” Thus, it appears that game functionality and design 

impacted both novice and experienced student Celestial Blast performance. Therefore, further 

research is needed to examine each component of Celestial Blast’s functionality and user interface 

design. According to Dicheva et al. (2015), student responses are critically important to good 

testing processes when designing any kind of gamified technology. Therefore, by identifying 
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which functionality and elements cause dissatisfaction, instructional designers can avoid these 

elements and instead embrace improved designs when designing future GLAR applications.  

PLearning (Playing and Learning Simultaneously). Lastly, plearning (play+learning) 

was a term that emerged from the focus group interviews. When discussing playing and learning 

simultaneously, both novice and experienced students made such comments as, “PLearning is 

better than learning because it is a fun way to learn boring stuff,” and, “I really felt like I was 

learning and that is a rare thing while playing a game,” and, “I liked that I was learning but still 

having fun at the same time.” Similar sentiments were echoed during the focus group interviews. 

These comments present evidence that plearning had a positive effect on GLAR game 

performance.  

3.7.2 Cognitive load (Research question 2) 

Our results suggest that GLAR designers and developers should account for prior exposure, 

otherwise a one size fits all approach could have a negative impact on experienced students’ 

cognitive load. According to Mayer, both the complexity of learning content and prior exposure 

to that learning content can effect students’ cognitive load (Mayer, 2003). There were no 

significant differences in self-reported measures of cognitive load between students with and 

without prior exposure to learning content. An explanation of why prior exposure did not have a 

significant effect on cognitive load might be found in the design of Celestial Blast, since Celestial 

Blast was not designed to meet the individual needs of students with and without prior exposure 

(and instead was designed to examine the effect of prior exposure). Therefore, when designing 

GLAR applications, it is important to note that a GLAR application designed for novice students 

may not reduce the cognitive load of experienced students and vice versa (Sweller, 2003).   
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We could have also observed no differences in cognitive load findings because reporting 

contexts were different. That is, novice students could have reported cognitive load based on the 

complexity of the learning material while experienced students could have reported cognitive load 

based on the difficulty of the game play. Quotes from the focus group qualitative data supports 

this explanation. Novice participants mentioned, “Since I didn’t know the angles I had to think 

harder to remember what the classification was and it made me a little stressed,” and likewise, “It 

was hard for me to make connections between the angles and incoming asteroids… I wish I would 

have known more about angles before playing the game.” Whereas, experienced stated “I felt 

stressed being the game because it was too many asteroids coming,” and similarly, “Sometimes 

when I got to a higher level all the asteroids were mentally demanding.”  

3.7.3 Content-based learning gains (Research question 3)  

The differences in median pre- and post-assessment scores for novice students was found 

to be significant. The positive increase in content-based learning gains for novice students may be 

attributed to the instructional design of GLAR using CTML. That is, Celestial Blast’s design 

successfully helped novice students learn the relevant content as evidenced by the significant 

difference in pre- and post-assessment scores. 

There were no significant differences for content-based learning gains for experienced 

students. This result was somewhat surprising because CTML suggests students with prior 

exposure to learning content should also experience content-based learning gains.  These findings 

may be due to the expertise reversal effect. The expertise reversal effect is the phenomenon 

whereby students with prior exposure to learning content “experience either neutral or sometimes 

negative effects when utilizing technology meant to reduce cognitive load for students without 

prior exposure to learning content” (Blayney et al., 2010; Kalyuga et al., 2003).  Although CTML 
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assumes that prior knowledge is necessary to overcome these limitations of working memory, Paas 

and Ayres noted that when processing new information there are working memory limitations 

(Paas & Ayres, 2004). According to Sweller (1988), the reversal is due to the redundancy of 

processing information that is already stored in the long-term memory. As a result, the experienced 

students having prior exposure to the learning content may not need the same guidance that novice 

students need when using GLAR applications.  

Lastly, the learning gains of novice students were not found to be significantly different 

than the learning gains of experienced students.  Both students with and without prior exposure 

had increased learning gains of approximately ten percent. We contributed these findings to lower 

order of thinking required to play Celestial Blast. This supposition is better understood by 

categorizing the level of thinking involved in playing Celestial Blast using Bloom’s Revised 

Taxonomy (Anderson and Krathwohl, 2001). 

Bloom’s Revised Taxonomy is the interaction of two dimensions (1) knowledge, and, (2) 

cognitive process (see Figure12). In the context our study, both novice and experienced students 

needed factual understanding (knowledge dimension) of basic elements regarding angles such as 

points, lines, line segments, and rays. Additionally, we believe that remember, understand and 

apply (cognitive process dimension) are most closely associated with the cognitive processes 

students utilized when interacting with Celestial Blast. Using this taxonomy, Celestial Blast 

primarily engaged students in lower order thinking that corresponds to the learning object Respond 

(circled in Figure 12).  
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Figure 12. Bloom’s Revised Taxonomy 

Note. Each of the colored blocks shows an example of a learning objective that generally 

corresponds with each of the various combinations of the cognitive process and knowledge 

dimensions (Anderson & Krathwohl, 2001).  

 

  During Celestial Blast, lower order thinking occurred when the students were asked to 

employ factual knowledge to identify and classify the incoming asteroids’ angle of attack as right, 

obtuse and acute. Once identified and classified, participants used the turret to measure and then 

destroy asteroids. Since this was a repetitive routine of shooting asteroids and did not require the 

students to participate in higher-order thinking (such as manipulating the learning content to 

hypothesize or arrive at new conclusions), we believe both students with and without prior 
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exposure to learning content were able to obtain a greater understanding of angles. Research 

conducted by Micheller (2002) suggests that to determine differences between students with and 

without prior exposure to learning content, a higher-order of thinking when using GLAR may be 

required. Therefore, future studies should investigate if engagement with higher order thinking has 

an effect on content-based learning gains. 

3.7.4 Implications  

The results of this study suggest the importance of considering prior knowledge and 

limitations of working memory when designing GLAR applications for underrepresented students. 

Additionally, this study indicates that an emphasis should be placed on considering the differences 

in prior knowledge when creating multimedia AR instruction. Further, it is important to note that 

a GLAR application that supports novice students may not necessarily support the cognitive 

processes of experienced students (and vice versa). 

This work also suggests that teachers could use GLAR in fifth grade Title 1 classrooms as 

a supplemental tool to assist students in developing and understanding of the basic principles of 

angle identification and classification as well as how to measure angles. The results of this study 

indicate the use of GLAR to be most effective for novice students who have not been exposed to 

learning content. Celestial Blast appears to have helped novice students gain a greater 

understanding of angles, which we propose provides a strong foundation to succeed in more 

advanced angle topics. Instructional designers should consider the importance of prior exposure 

when designing tablet-based GLAR applications, by for example, (1) increasing students’ game 

play time, (2) developing separate applications, (3) using a scaffolding technique, and/or, (4) 

allowing students to select their starting game level.  
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This study provides students’ perceptions of the benefits of interacting with GLAR 

applications grounded in CTML and these perceptions could in turn be used to influence the design 

of future GLAR applications focused on reinforcing angles. Students support the idea that the use 

of gamification elements, understanding learning content, engagement, game functionality and 

plearning were beneficial to GLAR game performance. Our results further support the idea that 

the use of gamification in developing AR grounded in CTML facilitates positive game 

performance by creating tangible and interactive learning experiences.  

Lastly, although we did not close the content-based learning gap between novice and 

experienced students in this study, the utilization of tablet-based GLAR offers promise to help 

equalize the differences between student with and without prior exposure. Further research is 

needed to provide empirical evidence that GLAR could help be an equalizer.  

3.7.5 Assumptions and Limitations 

There were a few assumptions made in this study. First, it was assumed that novice 

participants were not exposed at all to the relevant learning content during the 2016-2017 academic 

school year. However, it is difficult to account for this because participants could have been 

exposed to the learning content in an after-school program or at home and this possibility was not 

explicitly captured. Another assumption was that the experienced group consisted of participants 

with the same background knowledge, which may not be accurate. Within and between groups, all 

participants had varying levels of knowledge because they had different teachers and came from 

different schools.  

Another assumption made was that fifth-grade students have the ability to self-report the 

amount of cognitive load they experience during the gamified AR activity. To support this 
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assumption, it should be noted that researchers Gopher and Braune (1984) found that elementary 

students were more than capable at providing a numerical value to assess their perceived stress, 

frustration and mental effort.  

One limitation of this study was the number of participants. Because the small sample size 

of 35, it is difficult to generalize the results of this study. However, the results can be reasonably 

generalized to fifth grade students who live in lower socioeconomic condition and attend Title I 

schools in Virginia. Also, the sample of participants was not fully random due to gaining access 

to the specialized population.  

Another limitation of this study is that participants preferred cognitive style may or may 

not be supported by the design of Celestial Blast. This individual factor could have an impact on 

cognitive load, and since cognitive style was not assessed, researchers were not able to determine 

if self-reported cognitive load scores were affected.  Note that the effect of cognitive style on 

GLAR and learning performance is the subject of Study 3 (see Chapter 5). 

A final limitation of the study was getting participants to fully engage in focus groups 

activities to discuss their opinions, thoughts, and perceptions. To help mitigate, at the beginning 

of focus group session, the moderator stated that the group was a “safe” and judgement-free space 

for everyone to contribute. 
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4 Applying CTML Principles to Gamified Learning AR Applications  

 

4.1 Introduction  

Recently, the increased development and deployment of technology has made it possible 

for students to be immersed in new and engaging learning environments.  Technology can help 

facilitate and increase learning as well as engage students in learning opportunities through 

collaboration and simulation (Carmigniani et al., 2010). As technologies start to transform K-12 

classrooms, researchers have to further investigate how to design technology user interfaces that 

are effective for learning but do not unnecessarily place additional burdens on students’ cognitive 

load.  Although a variety of instructional design frameworks and principles exist that focus on the 

design of the technology, there is no framework that serves as a best-fit for every instructional 

situation (Gregory & Chapman, 2012).  According to Gustafson and Branch (2002), there are more 

published instructional frameworks than there are unique learning environments for them to be 

applied to. Therefore, it is important to identify appropriate frameworks or principles that are 

applicable for GLAR applications and further take into account the relationship between cognitive 

load and student learning.  

Research in cognitive education that takes into account the limitations of students’ working 

memory has identified the importance of designing multimedia learning content that does not 

overwhelm students with the ultimate aim of increasing student outcomes. Researchers suggest 

that educators should follow the recommendations of Mayer’s Cognitive Theory of Multimedia 

Learning (CTML) as they develop technology to be implemented in K – 12 learning environments 

(Burkes, 2007; Sorden, 2005; Gerjets et al, 2004; Mayer, 2009). CTML acknowledges the 
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limitations of working memory to facilitate learning by not overloading the cognitive abilities of 

the student (Ayres, 2006). Leveraging CTML will allow researchers to structure how best to 

present information while simultaneously reducing students’ cognitive load. Therefore, a goal of 

this work is to determine if CTML is appropriate to guide the design of GLAR applications. To 

achieve this, we conducted user studies to examine how the manipulation of CTML affects 

students’ cognitive load.  

4.2 Purpose of the Study 

Specifically, this study aims to examine if principles provided by CTML can 

appropriately be applied to GLAR to maximize students’ cognitive resources to reduce 

cognitive load and determine whether or not adherence to CTML principles is associated 

with positive student GLAR performance. Although GLAR is a captivating educational tool, 

research suggests that it is not AR itself that is important to improving the quality of learning 

(Dede, 2016). Therefore, we posit that principles of CTML are good candidates to guide the design 

of GLAR, foster meaningful pedagogy and reduce students’ cognitive load. Since there is limited 

empirical research on what specific principles of CTML can reduce cognitive load, determining 

which principles of CTML may reduce cognitive load in GLAR is an area of research that needs 

to be addressed. However, Mayer claims that coherence, signaling, temporal contiguity and spatial 

contiguity will help with the reduction of cognitive processing. For this study, we chose to examine 

those four principles of CTML: coherence, signaling, temporal contiguity and spatial contiguity to 

investigate Mayer’s claims. These principles will guide the design of three GLAR applications and 

determine how student cognitive load is affected by manipulating the degree to which GLAR 

interface designs adherence to these principles. We will measure cognitive load effects via 
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cognitive load surveys administered after students interact with the three GLAR applications, each 

embodying different levels of adherence to four CTML principles. 

The results of this study will enhance the understanding of how manipulating coherence, 

signaling, temporal and spatial contiguity principles of CTML affects student cognitive load. We 

expect that this work will inform researchers of the educational benefit of using CTML to 

appropriately influence the design GLAR applications. Further, this study will reveal if the 

principles applied to a GLAR application will help or hinder students’ performance.   

4.3 Related Works  

4.3.1 Cognitive Theory of Multimedia Learning (CTML) 

When discussing learning theories, it is important to understand what signifies learning and 

how cognitive architecture impacts learning (Sweller, Van Merrienboer, & Paas, 1998). CTML is 

based on the human cognitive architecture and supports the supposition that (1) working memory 

has capacity limitations, and, (2) the brain can effectively process information using both the 

auditory and visual channel.  According to Mayer (2010), CTML supports the notion that people 

learn better with audio and visual information presentation than with audio or visual presentation 

alone.  CTML explains how if technology is designed properly, people can leverage its attributes 

to effectively process information through visual and auditory channels by leveraging three 

important cognitive processes: selecting, organizing, and integrating (Moreno & Mayer, 2001). 

These cognitive processes are necessary in order for learning to occur.  If the technology is 

cognitively demanding (e.g., above and beyond the cognitive demand of the learning content), 

students will not be capable of selecting, organizing and integrating new information with prior 



 

 107 

knowledge because their available working memory capacity will be consumed by the cognitive 

overhead demanded of the technology (Mayer, 2009). 

CTML provides a framework for understanding how students learn in a technology 

included environment (Mayer, 2009).  This theory offers explicit design principles to instructional 

designers to help reduce cognitive load demands on the student and increase the retention and 

transfer of targeted learning content. When implemented into applied technology for learning, the 

principles provide guidance on how to develop multimedia technology that improves students 

learning by effectively presenting the learning content.  

4.3.2 CTML’s Design Principles  

Educators are increasingly relying on technology to deliver learning content to students. 

Research shows that technology can achieve significant learning outcomes when it is explicitly 

designed to take the student and human cognitive limitations into consideration (Paas, Renkl, & 

Sweller, 2003; Clark, Nguyen, & Sweller, 2005; Sweller, 2005).  According to Jones et al., (2010), 

the cognitive capabilities for interpreting and integrating information is limited for some students.  

Therefore, CTML provides design principles for the creation of multimedia instructional 

technology that focuses on efficiently responding to students’ cognitive resources and “help 

learners integrate new information with prior information they already understand” (Mayer, 2005; 

Mayer & Moreno, 2010; Moreno & Mayer, 2010). Utilizing CTML principles to design 

instructional technology has been shown to result in deeper learning and reduced cognitive load 

by using both visual and auditory working memory channels (Mayer, 2009; Sweller, 2010). 

Essentially, the principles give guidance on how to best combine audio and visual information 

presentation to manage cognitive load, and reduce extraneous load processing (Mayer, 2009). 

Extraneous load is the strain placed on working memory by having students select, organize and 
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integrate unnecessary information (Sweller et al., 1998). Presenting information that distracts the 

student and is not necessary for accomplishing the learning objective will results in increased 

extraneous load and can hinder the learning process (DeLeeuw & Mayer, 2008). Extraneous load 

can be controlled by effective instructional design of the learning content.  

Mayer identified four specific CTML principles that help with the reduction of extraneous 

load and management of cognitive load processing: coherence, signaling, temporal contiguity and 

spatial contiguity (Mayer, 2009). The objective of the coherence principle is to reduce extraneous 

load by eliminating irrelevant visual and auditory information (Mayer, 2005). According to Clark 

and Mayer, this is the single most important principle as cautious selection of visual and auditory 

information is needed to ensure maximum learning outcomes.  Most studies that examine the 

coherence principle have reported that the inclusion of extraneous information hinders learning 

(Bryant, 2010; Lusk, 2008; Mayer et al., 2008; McCrudden & Corkill, 2010; Rowland et al., 2008; 

Rowland-Bryant et al., 2009; Verkoeijen & Tabbers, 2009). For example, a study conducted by 

Garner et al. (1989) examined how adults’ and college students’ learning was affected when given 

selective passages with and without irrelevant details included in a narrative. Researchers found 

that the addition of irrelevant both aural and visual information decreased the processing of the 

main idea of the passage for both adults and college students (Garner et al, 1989). Additionally, 

Lehman et al., found that the inclusion of extraneous information may cause the student to 

incorrectly assume that the irrelevant information is the primary objective and incorrectly construct 

a mental model around the irrelevant information (Lehman et al, 2007). It was concluded that the 

disruption in constructing a correct mental model hinders the student from the true learning 

objective and achieving content-based learning gains. Mayer, Heiser and Lonn (2001) conducted 

a study to investigate the addition of college-aged video clips to make the presentation of 
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information more interesting. Researchers had one group of students view a three-minute narrated 

amination on lighting formation while the second group of college-aged students viewed the same 

presentation containing an additional one-minute video clip that was related to lighting but not the 

primary objective of the presentation. The study concluded that the students in the second group 

performance was hinder when competing problems regarding the formation of lighting. Adding 

the unnecessary visuals increased extraneous load processing (Mayer et al, 2000). Similarly, to 

adding unnecessary visual information, Moreno and Mayer (2001) found that adding unnecessary 

audio can also increase cognitive load.  Moreno and Mayer performed a study to examine the 

transfer of knowledge by having college-aged students view a multimedia presentation containing 

animation and concurrent narration. The first group of students received either no additional audio, 

background music, nor sounds effects and the second ground received both background music and 

sounds effects. This study found that students who received both sounds and music performed 

worse than groups not receiving audio. Also, students in the second group performed worse than 

the first group. From the results reported in these studies, Mayer suggests taking a minimalist 

approach to design in which only the relevant material needed to achieve instructional goals is 

included. However, there are some criticisms that these studies were all preformed in a laboratory 

setting and with adults or college-aged students (McTigue, 2009). Research suggest that further 

studies are needed to examine how the inclusion of extraneous information can affect K-12 

students in an authentic learning environment (Harskamp et al., 2007; Issa et al., 2011; Muller et 

al., 2008).  

The objective of the signaling principle is to reduce extraneous cognitive load by 

highlighting essential learning content so students are able to organize and comprehend the content 

being presented (Mayer & Moreno, 2003).  Signaling uses cues to highlight and direct students’ 
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attention to significant information (Mautone & Mayer, 2001). By using cues, students do not 

utilize unnecessary cognitive resources locating information or integrating nonessential 

information into their memory schemas. According to Mayer, students learn more effectively when 

cues are used to guide their attention to vital information (Mayer, 2010). To evaluate the 

effectiveness of signaling, Mautone and Mayer (2001) used dynamic cues to highlight important 

information in an animation that explains to participants how airplanes lift. Although the effect 

size of this study was small, the study found that participants showed positive cognitive benefits 

when exposed to signaling within animations. Mayer and Moreno (2003) investigated the role of 

auditory cueing when highlighting important information and found that students who received 

animation using narrated cues outperformed students who did not receive any auditory cues when 

asked to solve problem-solving transfer questions. According to Katzer and Treue (2006) the use 

of auditory cues is more attentional than visual cues at orienting the student to focus on essential 

information that has been highlighted. Beck (1987 and 1990) found that students who received 

visual cues such as arrows, labels and pointers to identify critical information in animations 

outperformed their counterparts who had no visual cues. Through the use of visual cues, Beck 

concluded that students were able to conduct memory traces based on dual retrieval and reinforce 

critical information into their working memory (Beck, 1987). Additionally, Tabbers, Martens & 

Merrienboer (2004) believed that “adding visual cues to illustrations resulted in higher student 

retention scores.” Although visual and auditory cues are processed differently, using both cues 

simultaneously reduce demand on working memory (Moreno & Mayer, 1990). Janelle et al (2003) 

found that students demonstrated less errors and increase retention of learning content when using 

video modeling to present information with both visual and auditory cues as compared to students 

who just received visual cues. Their results bolster the claim that processing auditory cues in 



 

 111 

addition to congruent visual cues “enhances perceptual representation and retention” and thus can 

reduce cognitive load (Janelle et al., 2003). While the inclusion of signaling eliminates distractions, 

decrease search time of important information and help decrease cognitive processing in the 

working memory, there is more empirical evidence needed to examine the use of color coding as 

a viable signaling cue (DiVita, Obemayer, Nugent, & Linville, 2004). Although color coding 

allows participants to build mental models in which colors are connected with certain information, 

such encodings could also increase cognitive load when many sets of color coding are utilized in 

a visual display.  

The aim of the temporal contiguity principle is to reduce extraneous load by presenting 

auditory and visual information simultaneously.  According to Mayer, students learn better when 

multimodality presentation of information is temporally synchronized rather than separated in time 

(Mayer & Moreno, 2003). Separating information in time forces students’ cognitive resources to 

hold the one channel of information (e.g., aural) in their working memory until the other channel 

(e.g., visual) is presented (Fletcher & Tobias, 2005), which can result in increased extraneous load 

and reduced content-based learning gains. Studies show that temporal contiguity helps students 

make more significant connections between relevant pieces of information. For example, Moreno 

and Mayer (1998) conducted a study that delivered information on lighting to college-aged 

students using narration and animation. The first group “viewed the presentation of animation and 

narration concurrently” and the second group viewed the animation presentation in it entirely then 

viewed the narration. This study concluded that students in group one significantly outperformed 

students who did not view the information simultaneously. Additionally, Mayer and Anderson 

(1991) found that students’ transfer of knowledge was significantly higher when they viewed an 

animation simultaneously with narration explaining how pumps work in comparison to students 
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who viewed an animation after the narration was played (Mayer & Anderson, 1991). There are 

multiple studies that replicated a similar format to examine temporal contiguity in different subject 

areas (Kalyuga & Sweller, 2004; Mayer & Sims, 1994; Mousavi et al., 1995). These studies all 

conclude that presenting auditory and visual information at the same time rather than in succession 

increases transfer of knowledge and reduces cognitive load by utilizing dual coding.  

The purpose of the spatial contiguity principle is to coordinate information in space to 

lessen cognitive demands on working memory (Mayer, 2005). When related multimodal 

information are presented in spatial proximity, working memory cognitive demands are reduced 

by reducing the amount of time students have to hold the information in their working memory 

while they acquire additional information. When applying the spatial contiguity principle to reduce 

extraneous load, only information relevant to the learning task should be included so students are 

not forced to decide what information requires their attention (Mammarella, Fairfield, & Di 

Domenico, 2013). Research conducted by Chandler and Sweller examined the effects of spatial 

contiguity on learning by separating text from diagrams. They proposed that students would 

experience increased cognitive load because extra processing was needed to integrate the spatially 

separated information in working memory (Chandler and Sweller, 1991). The study concluded that 

students who viewed information in high spatial proximity had increased performance in both 

written and practical skill demonstrations.  Mayer (1989) also investigated spatial contiguity by 

presenting college-aged students on-screen text both near and far from corresponding visuals 

depicting automotive braking systems. This study revealed that students can transfer more 

information on post- assessments when information presented in proximity (as compared to when 

information is not proximal). Furthermore, Mayer stated “learning is impaired when on-screen text 

is spatially separated from visual materials” (p.366). When solving practical problems, Tindall-
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Ford, Chandler, and Sweller (1997) found that students learn better when instructions are placed 

near diagrams as opposed to students who received instructions placed below the diagram (Tindall-

Ford et al., 1997). The aforementioned studies suggest that placing relevant information spatially 

near each other reduces extraneous processing; however, there are no studies that gives specifics 

metrics on how spatial contiguity could help with the creation of new mental models (Mayer & 

Sims, 1994). Therefore, further research is needed to understand exactly where diagrams and text 

information should be coordinated to minimize students having to hold information in their 

working memory.    

Numerous studies conducted by Mayer and colleagues show significant conclusions on 

how leveraging the aforementioned principles of CTML will optimize students’ learning 

experiences in multimedia presentations such as animations, PowerPoints and web interfaces. 

However, these principles have been investigated individually rather than examining how they 

may interact with each other. According to Johnson (2008), considering the principles as non-

interacting factors may lead to overconfidence that CTML is effectively guiding multimedia 

technology design that reduces extraneous load and manages cognitive load processing. 

Additionally, there is limited research in the application of CTML principles to the design of 

augmented reality technologies such as GLAR applications. Therefore, a contribution of this work 

is the examination of how adherence to multiple, interacting CTML principles in an augmented 

reality learning application may reduce students’ cognitive load.    

4.4 Research Questions  

The study addresses the following research questions:  

Research Question 1: Does GLAR interfaces’ level of adherence to CTML principles affect 

students’ cognitive load? 
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Hypothesis (H1): Students’ cognitive load is significantly lower when there is high 

adherence to the principles of CTML. 

Research Question 2: Does high adherence to the principles of CTML result in higher 

students’ GLAR performance? 

Hypothesis (H2): High adherence to the principles of CTML does result in higher students’ 

GLAR performance.  

4.5 Study Overview   

This study used a single factor repeated measures within-subjects experimental design to 

measure the effects of adhering to different principles of CTML on student cognition.  A repeated 

measures design is frequently used in psychological research when it is desired to compare 

different treatment effects while reducing error variances by using participants as their own control 

(Lindsey, 1999).  In this design, participants are being measured using the same cognitive load and 

user satisfaction scales to show comparisons between means obtained after the participant interacts 

with each of the three interfaces. Using repeated measure allows researchers to determine which 

interface will reduce cognitive load as well as which interface will cause the most cognitive load 

in participants. 

For this study, the single factor is the GLAR application (Celestial Blast) manipulated at 

three levels with respect to adherence to CTML principles: high adherence, medium adherence, 

low adherence (described in detail below). The manipulation systematically added and removed 

specific auditory and visual user interface components. Even though the three interfaces were 
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visually and aurally different (due to experimental manipulations), each interface contained the 

same learning content and overall game play.  

4.6 Independent Variable: Celestial Blast Adherence to CTML Principles 

Similar to study one, the Celestial Blast tablet-based AR application was used to 

manipulate the main independent variable. For an explanation of Celestial Blast (see section 3.4).   

For this study, we created three different variants of Celestial Blast to examine how 

different levels of adherence to four CTML principles i.e., coherence, signaling, temporal 

contiguity and spatial contiguity when designing GLAR applications effects participants’ 

cognitive load, performance and satisfaction.  

 High Adherence Interface: strictly adheres to CTML principles to reduce the 

amount of cognitive load participants utilize when interacting with GLAR.  

 Medium Adherence Interface: slightly deviates from the principles of CTML 

increasing the amount of non-relevant information presented while providing 

participants with minimal indication of important information.  

 Low Adherence Interface: aims to overload participants with information in the 

visual channel without highlighting significant information.  

The aims of Medium and Low adherence interfaces were deviate from the principles of 

CTML to examine if participants’ cognitive load increases.  

4.6.1 High Adherence Interface 

This section details how the four principles of CTML were manipulated in the design of 

the high adherence interface of Celestial Blast (Figure 13).  For coherence, it is essential to only 
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present the participants with relevant information. Thus, the high adherence interface included the 

following information: angle number, angle classification, ammunition indicator, score, town’s 

health, SOL question and on-screen text notifications when participants cleared a level and earned 

bonus points. These seven pieces of information were presented because they are relevant to the 

participant successfully completing the mission of protecting the town.   

 For the signaling principle, cues were used to highlight significant pieces of information 

presented. Aural voiceover cues were used to highlight incoming asteroids that require the 

participants’ immediate attention. The voiceover is a female human voice that alerts participants 

of incoming asteroids once an asteroid is within 5 degrees of hitting the town. The region to attend 

to is signaled; therefore, if an asteroid was coming in at 20 degrees and within 5 degrees of hitting 

the town the cue would say “Asteroid coming is acute.  Other important information such as the 

town’s health was also signaled using color and shape.  Specifically, when the town is in a healthy 

state it is green and its corresponding health bar is fully illuminated.  After the town has been hit 

once, the town shape will change from green to yellow and the health bar will decrease by one.  

The final interface element manipulated via signaling principle is the ammunition indicator that 

decrements by one every time a participant fires the laser. 

The spatial contiguity principle was applied to the high adherence interface by coordinating 

related information and placing them in close spatial proximity. The angle degree and region in 

which the turret was pointed is placed together under the image of the turret so participants can 

quickly identify the position of the turret. Displaying text of the incoming asteroid angle number 

directly on the incoming asteroid helps participants build representations and identify the region 

to move the turret. For example, seeing an incoming asteroid with a text label of “141” allows the 

participant to quickly acknowledge that the asteroid is in the obtuse region. Lastly, SOL questions 
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participants must answer to regain ammunition and the visual answers to the questions were 

displayed at the same time so participants would not have to remember the question then see the 

corresponding answers.    

For temporal contiguity, audio and visual information is presented simultaneously.  For 

example, when the laser is accurately fired at an asteroid the participant hears an explosion 

acknowledging the asteroid is destroyed, and simultaneously the number of points earned is 

visually displayed (e.g., +30) along with an auditory alert (e.g., “You have earned 30 points”).  

Further, when a level is cleared, on-screen text visually appears (e.g., “Level 5 Cleared”) and 

participants receive a simultaneous auditory alert (e.g., “Good Job! You have cleared another 

level”).  

 
Figure 13. High Adherence Interface for Celestial Blast 
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4.6.2 Medium Adherence Interface 

The medium adherence interface (Figure 14) of Celestial Blast manipulated the four CTML 

principles in different ways. For coherence, four additional pieces of information were added 

(above and beyond information presented in the high adherence interface): town health statistics, 

background music, sound effects and two towns participants did not have to protect.  These 

additions presented participants with irrelevant information, which was intended to demand 

unnecessary cognitive resources to determine what information is most important to achieving the 

mission of Celestial Blast to protect the ploof’s town.  These four pieces of information was 

selected based on feedback we received from user studies conducted in the COGENT lab at 

Virginia Tech. For the signaling principle, the health bar and ammunition indicator cues were 

removed, which we hypothesized would hinder participants’ ability to understand what resources 

were available to help protect the town. Removing signals also increases their cognitive load 

because the participant needs to search for additional information to understand how to play the 

game. The voiceover cues were modified to no longer highlight significant information and instead 

announced every third asteroid even if the cued asteroid was not a threat to the town. Our 

hypothesis was that deviation from the signaling principle would force participants to integrate 

information in working memory that utilizes unnecessary cognitive resources.  Spatial contiguity 

was manipulated by increasing the amount of space between the presentation of images and on-

screen text by 1.5 inches (when displayed on an eight-inch tablet). For example, the angle 

classification and specific angle increased spatially in the horizontal dimension by 1.5 inches. Our 

hypothesis was that increasing the distance between information elements would increase the 

cognitive demands in working memory because participants have to hold information such as angle 

number in their working memory while they search for related information such as angle 
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classification. Lastly, five second temporal delays were added to the presentation of aural and on-

screen text.  Adding temporal and visual delays to the medium adherence interface made it difficult 

for participants to make significant connections between information. For example, when 

participants clear a level, text is displayed (e.g., “Level 5 Cleared”), however, the accompanying 

auditory alert (e.g., “Good Job! You have cleared another level”) did not render until 5 seconds 

later.   

 
Figure 14: Medium Adherence Interface of Celestial Blast 
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4.6.3 Low Adherence Interface   

The low adherence interface (Figure 15) was designed to increase the cognitive load 

demand of participants which in turn, we hypothesized would negatively affect task performance. 

The coherence principle was manipulated by adding four random pieces of unnecessary visual 

information: timer, astronaut, positive feedback delivered via on-screen text, and a UFO.  These 

four pieces of unnecessary visual information was selected based on feedback we received from 

user studies conducted in the COGENT lab at Virginia Tech. Presenting participants with 

unnecessary and unrelated content increases extraneous load and making connections between 

irrelevant pieces of information may impose a high cognitive load.  The increase in cognitive load 

occurs when the participant must split their attention between integrating multiple pieces of 

information into their working memory. All cues to highlight significant information were 

removed from the low adherence interface. Without selective attention cueing, participants have 

to split their attention between multiple pieces of information and may not be able to identify 

important information from irrelevant. To manipulate the spatial contiguity principle, the space 

between images and on-screen text was increased to 3 inches horizontally (as views on an eight-

inch tablet). For temporal contiguity, the presentation of audio and on-screen text was delayed by 

10 seconds. Thus, when a participant accurately destroyed an asteroid, the sound acknowledging 

the laser had been fired was played ten seconds after the explosion. We hypothesized that 

separation of audio and visual information forced participants to expand their mental efforts by 

directing their cognitive resources to encode the visual information in their working memory until 

the audio cue was played.  
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Figure 15. Low Adherence Interface of Celestial Blast 

  



 

 122 

Table 16: Summary of Celestial Blast Interface Conditions 

  

Celestial Blast Interface Condition 

 

CTML 

Design 

Principle 

 

High Adherence 

 

Medium Adherence 

 

Low Adherence 

 

Coherence 

Seven pieces of information:  

 

1. Health Bar  

2. Ammunition Indicator  

3. Angle Classification and 

number 

4. Score  

5. SOL Question  

6. Voice Alerts  

7. On-Screen Text 

Notification (i.e. Level 

Cleared)  

 

Eleven pieces of 

information (4 additional 

pieces of information as 

compared to high 

adherence) 

 

8. Town health Statistics  

9. Two additional towns  

10.  Background music  

11. Sound effects 

 

  

Fifteen pieces of 

information (4 more 

pieces of additional 

information as compared 

to medium adherence) 

 

12. Game timer  

13. UFO  

14. Astronaut  

15. Positive Feedback  

  

Signaling 1. Voiceover Cues 

2. Town changing color  

3. Health bar  

4. Ammunition Indicator  

5. Color coding  

Eliminate three signals:   

 

1. Health Bar 

2. Ammunition Indicator  

3. Voiceover Cues were 

still present but not used 

to highlight significant 

information 

 

No signaling present   

Spatial 

Contiguity 

1. Angle degree and region of 

turret  

2. Angle number and asteroid  

3. SOL question and answers  

 

Increase spatial placement 

horizontally by 1.5 inches   

Increase spatial placement 

vertically by 3 inches   

Temporal 

Contiguity  

1. Laser fired and explosion  

2. Points received and audio 

alert  

3. Level cleared notification 

and audio alert  

 

Increase temporal delays 

by 5 seconds 

Increase temporal delays 

by 10 seconds  
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4.7 Dependent Measures  

The dependent variables of the study were average game score, highest game score, number 

of plays and cognitive load scores. The dependent measures were collected through self-reported 

cognitive load surveys (NASA TLX), and GLAR game metrics.  

 GLAR performance: average score across all games played, highest score achieved, and 

number of game plays. Students had the freedom to fail and replay Celestial Blast multiple 

times within the allotted time, the number of game plays ranged from 1 (best) to infinite 

(worst).  

 Cognitive load scores:  average workload from NASA TLX survey ranged from 0 (lowest 

workload) to 1 (highest workload).  

4.8 Methodology 

Each participant was exposed to all three adherence interface conditions. After each 

interaction with an interface, participants completed a cognitive load survey and user satisfaction 

survey. The sequence in which participants experienced different adherence interface conditions 

using a three by three Latin square to mitigate ordering effects such as those associated with 

practice and fatigue. 

The dependent variables were game scores, perceived cognitive load, and user satisfaction 

scores. To measure the effect of adherence of students’ cognitive load, participants self-reported 

their mental workload after interacting with the three experimental conditions of Celestial Blast. 

To assess participants’ GLAR performance, we collected game scores achieved after exposure to 

each experimental condition of Celestial Blast and user satisfaction scores from user satisfaction 

surveys. 
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4.8.1 Participants  

Understanding the target population is a crucial component of establishing a valid 

experiment with reliable data and conclusions (Creswell, 2009).  Most of the existing literature 

investigating AR as an educational tool has included students in higher education such as those 

attending community college and four-year universities (Appleton, 2005).  Also, according to 

McTigue (2009), most of the research on CTML principles has primarily been conducted with 

college-aged students in a laboratory setting and not applied to younger populations. To expand 

on the body of literature, the target population for this study was fifth grade students from Title I 

schools in the Virginia Public School system. Title I is a funding program provided by the U.S. 

Department of Education to “assist low income and at-risk students who are struggling 

academically to obtain a high-quality education and reach, at minimum, proficiency on challenging 

state academic achievement standards and assessments.” A purposive group of 22 students from 

two different schools in the Southwest region of Virginia were recruited.  Each school had fifth 

grade classroom sizes between 9 and 16 students. All students had completed a public education 

through grade four and passed Virginia SOLs in order to move on to the fifth grade.  

We gained access to students through the Virginia’s Tech Kindergarten-to-College (K2C) 

program. This program was developed to educate potential first-generation college students about 

pursing a higher education. The program brings fifth grade students from Title I schools in Virginia 

to Virginia Tech’s Blacksburg campus to participate in STEM activities and gain first-hand 

exposure to cutting-edge research and technology.  

Based on the 2016 Mathematics Standards of Learning Curriculum Framework academic 

calendar, it was assumed that all students had been introduced to mathematics learning content on 

geometric angles during the 2016-2017 academic school year and had a basic understanding of a 
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protractor.  The basic understanding of a protractor allowed the students to accomplish the goal of 

Celestial Blast.  

4.8.2  Research Setting  

This research was conducted on Virginia Tech campus in a controlled classroom. Study 

one utilized the same research setting to collect data on understanding the role of prior knowledge 

on participants’ perceived cognitive load. For more details, see section 3.5.4.  

4.8.3 Instrumentation  

4.8.3.1 NASA Task Load Index (TLX)  

NASA TLX is a direct, subjective measurement of participants’ perceived cognitive load 

after interacting with a GLAR application. We also used NASA TLX in study one to measure 

mental workload. See section 3.5.5.2 for a detailed description of NASA TLX.  

4.8.3.2 User Satisfaction Survey 

A 12-question post activity evaluation survey was developed to gather participants’ 

attitudes of CTML design principles, presentation of learning content and overall perceptions of 

the adherence interfaces (e.g., which interface were perceived to alleviate cognitive load and 

increase the understanding of the leaning content). This survey was adopted from the 

Questionnaire for User Interaction Satisfaction (QUIS) 7.0 (Harper, Slaughter, & Norman, 1997). 

QUIS measures participants’ perception of an interface through assessment of the participants’ 

subjective satisfaction. The QUIS was proven to be reliable and valid after extensive testing and 

seven revisions. Also, according to the SMOG Index, Gunning Fog formula and Coleman-Liau 

Index the understandability and reading level of QUIS corresponds to a fourth grade level which 

indicates it is an appropriate instrument to use with elementary aged students. Questions were 
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phrased to elicit forced-choice, 5-point Likert scale responses ranging from 1=no, to 3=maybe, to 

5=yes.  Examples of questions include: Was too much information presented? Did the auditory 

alerts help you protect the town? See Appendix H, I, and J for the complete user satisfaction 

questionnaires. For this dissertation work, we did not formally assess the results via statistical 

analysis; however, Appendix O contains simple descriptive statistics for the complete user 

satisfaction questionnaire.    

4.8.4 Data Collection Procedure  

This study employed a five-step process. First, participants were introduced to the primary 

researcher and undergraduate developers of Celestial Blast. The research team gave a presentation 

of game instructions and then demonstrated how to play Celestial Blast. The presentation and 

introduction and occurred during the first ten minutes of the session. Next, participants were 

randomly divided into three groups to control for the order in which groups of participants 

experienced the three adherence interfaces. During game play, we walked around to assist 

participants if they had any questions on the learning content or AR interface as shown in Figure 

4.  For example, if a student was having trouble seeing the graphics, the researcher instructed the 

student to manipulate or move the AR marker, to increase or decrease their field of view. During 

each interaction, the participants were responsible for recording their game scores.   

After interacting with one adherence interface condition, all participants completed NASA 

TLX survey to self-assess their perceived cognitive load and user satisfaction survey. During the 

fourth and final steps, participants experienced the other two adherence interface conditions, as 

shown in table 17. Similar to step three, participants completed the NASA TLX and user 

satisfaction survey after interacting with the second and third Celestial Blast adherence interfaces.  
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Table 17: 3x3 Latin square 

  

Step Three 

 

 

Step Four 

 

Step Five 

 

Group One 

 

High Adherence 

Interface 

Medium Adherence 

Interface 

Low Adherence 

Interface 

 

Group Two 

 

Medium Adherence 

Interface 

Low Adherence 

Interface 

High Adherence 

Interface 

 

Group Three 

 

Low Adherence 

Interface 

High Adherence 

Interface 

Medium Adherence 

Interface 

 

4.9 Results  

4.9.1 Research Question 1  

Does GLAR interfaces’ level of adherence to CTML principles affect students’ cognitive load? 

4.9.1.1 Descriptive Statistics 

For average workload, the unweighted NASA TLX scores were reported as a measure of 

cognitive load.  Descriptive statistics of cognitive load across adherences interfaces are reported 

in table 18. The data shows high adherence interface a median average workload of 0.23, with 

minimum and maximum average workload of 0 and 0.62 respectively.  Medium adherence 

interface had a median workload of 0.40, with minimum and maximum average workload of 0.11 

and 0.975 respectively. Low adherence interface had a median workload of 0.70, with minimum 

and maximum average workload of 0.26 and 0.92 respectively.  
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Figure 16. Comparing Average Workload by GLAR Interfaces’ Adherence 

 

 

Table 18. Descriptive Data for Average Workload by GLAR Interface Designs 

      Percentile 

Interfaces M SD n Min Max 25 50 75 

 

High Adherence   0.311 0.155 22 0 0.617 0.208 0.338 0.410 

Medium Adherence 0.410 0.235 22 0.108 0.975 0.219 0.396 0.536 

Low Adherence 0.645 0.189 22 0.258 0.917 0.548 0.7 0.796 

Note. Lower average workload is better 
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4.9.1.2 Hypothesis Testing  

Hypothesis (H1): Students’ cognitive load is significantly lower when there is high adherence to 

the principles of CTML. 

A Friedman’s test was conducted to evaluate differences between GLAR interfaces’ level 

of adherence to CTML principles on median change in students’ average workload scores. The 

test for average workload was significant; therefore, we know at least one of the GLAR interfaces 

has a median different from the others. 

Table 19. Average Workload Friedman’s Test Result 

 n Chi-square df p-Value 

 

Average Workload 22 30.220 2 <0.0001* 

 

To test hypothesis 1, a post-hoc Wilcoxon pairwise comparison for Friedman’s tests was 

conducted using Bonferroni Correction. If the p-value is less then 
m2


where m # of pair-wise 

comparisons to be made which would typically be 








2

k
 if all pair-wise comparisons are of interest.   

For this experiment, we can make a total of m = 3
2

3









 pair-wise comparisons so we compared 

p-values to 00833.
)3(2

05.
 . When comparing the p-values to 0.008 for both average workload and 

mental demand scores, we concluded that there is significant difference between low adherence 

interface and high adherence interface as well as between low adherence interface and medium 

adherence interface. When comparing medium adherence interface to high adherence interface, 

we fail to conclude that these interfaces differ significantly. Since the p value was not significant 

for the high adherence interface, the hypothesis was accepted. The comparisons identified that 
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students’ cognitive load is significantly lower in the high adherence interface compared to the low 

and medium adherence interfaces; therefore, we accept the hypothesis. The effect size can be 

calculated using the formula: r = 
𝑍

√𝑛
, where n is the total number of samples. The effect size is 

considered large when it is more than 0.5, median when between 0.3 and 0.5, and small when less 

than 0.3 (Grissom & Kim, 2012). The effect size for the difference between the low adherence 

interface and high adherence interface was r = 1.073. The difference between low adherence 

interface and medium adherence interface has an effect size of r = 0.878. The effect size for the 

difference between the medium adherence interface and high adherence interface was r = 0.342.  

Table 20. Nonparametric Comparisons for each Pair using Wilcoxon Method using Average Workload Scores 

Level - Level Z-Value p-Value r 

 

Low High 5.035 < .0001* 1.073 

Low Medium 4.119 < .0001* 0.878 

Medium High 1.608 0.108 0.342 

 

4.9.2 Research Question 2 

Does high adherence to the principles of CTML result in higher students’ GLAR performance? 

4.9.2.1 Descriptive Statistics 

For game metrics, average game score, highest game score and number of game plays were 

analyzed as measures of GLAR performance. Descriptive statistics for game performance across 

GLAR interfaces are summarized in tables 21, 22 and 23. The data shows high adherence interface 

a median average game score of 927, with minimum and maximum average game scores of 264.44 

and 3686.67 respectively; median highest game score was 1560 respectively, with minimum and 

maximum highest game scores of 455 and 6120; and median number of plays was 4, with 

minimum and maximum number of plays of 3 and 9 respectively. Medium adherence interface 
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had a median average game score of 533.75, with minimum and maximum average game scores 

of 320 and 4150 respectively; median highest game score was 1397.5 respectively, with minimum 

and maximum highest game scores of 495 and 4240; and median number of plays was 5, with 

minimum and maximum number of plays of 1 and 9 respectively. Low adherence interface had a 

median average game score of 597.5, with minimum and maximum average game scores of 146.67 

and 2357.5 respectively; median highest game score was 1072.5 respectively, with minimum and 

maximum highest game scores of 205 and 4395; and median number of plays was 6, with 

minimum and maximum number of plays of 2 and 9 respectively.  

 
Figure 17. Comparing Number of Game Plays by GLAR Interfaces’ Adherence 
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Figure 18. Comparing Average Scores by GLAR Interfaces’ Adherence 
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Figure 19. Comparing Highest Game Scores by GLAR Interfaces’ Adherence 

 

 

Table 21. Descriptive Data for Number of Game Plays by GLAR Interface Designs 

      Percentile 

Interfaces M SD n Min Max 25 50 75 

 

High Adherence   5.045 2.399 22 3 9 3 4 6.75 

Medium Adherence 5.363 2.341 22 1 9 3.75 5 7.25 

Low Adherence 5.545 2.219 22 2 9 3.75 6 7 

Note. Lower number of game plays resulted in improved GLAR performance  
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Table 22. Descriptive Data for Highest Game Score by GLAR Interface Designs 

      Percentile 

Interfaces M SD n Min Max 25 50 75 

 

High Adherence   2162.36 1564.23 22 455 6120 853.75 1560 3493.75 

Medium Adherence 1760.86 1181.22 22 495 4240 795 1397.5 2327.5 

Low Adherence 1251.36 861.22 22 205 4395 803.75 1072.5 1476.25 

 

Table 23. Descriptive Data for Average Game Score by GLAR Interface 

      Percentile 

Interfaces M SD n Min Max 25 50 75 

 

High Adherence   1179.92 885.85 22 264.44 3686.7 438.36 927 1541.25 

Medium Adherence 911.31 877.15 22 320 44150 434.89 533.75 970.24 

Low Adherence 621.44 467.36 22 146.67 2357.5 320.17 579.5 659.06 

 

4.9.2.2 Hypothesis Testing  

Hypothesis (H2): High adherence to the principles of CTML result in higher students’ GLAR 

performance.  

Three Friedman’s tests were conducted to evaluate differences on median change in GLAR 

average game scores, highest game scores and number of plays between students when adherence 

to CTML principles were manipulated in GLAR interfaces. The Friedman’s test for average game 

score and highest game score were significant; therefore, we know at least one of the GLAR 

interfaces has a median different from the others. The Friedman’s test for the number of game 

plays was not significant. 

Table 24. Friedman’s Test Result for Average Game Score, Highest Game Score and Number of Game Plays 

 n Chi-square df p-Value 

 

Average Game Score 22 13.482 2 0.0012* 

Highest Game Score 22 8.049 2 0.0179* 

Number of Game Plays 22 1.564 2 0.458 

 



 

 135 

To test, hypothesis 2, post-hoc Wilcoxon pairwise comparisons for Friedman’s tests on 

average game score and highest game score was conducted using Bonferroni Correction where we 

compared p-values to 0.00833. When comparing the p-values to 0.008 for highest game scores, 

we concluded that there is significant difference between low adherence interface and high 

adherence interfaces and has an effect size of r = 0.568. When comparing medium adherence 

interface to high adherence interface as well as low adherence to medium adherence interface, we 

fail to conclude that these interfaces differ significantly with effect sizes are r = 0.235 and r   0.393  

respectively. When comparing the p-values to 0.008 for average game scores, we accept the 

hypothesis and concluded that there is significant difference between medium adherence interface 

and high adherence interface with an effect size of r = 0.458 as well as between low adherence 

interface and high adherence interface with a large effect size of r = 0.758. But when comparing 

low adherence interface to medium adherence interface, we fail to conclude that these interfaces 

differ significantly and the effect size of this comparison is r = 0.348. The comparisons identified 

the high adherence interface as being significantly higher when looking at students’ GLAR 

performance.   

Table 25. Nonparametric Comparisons for each Pair using Wilcoxon Method using Average Game Scores 

Level - Level Z p-Value  r 

 

Low Medium -1.6314 0.1028 0.348 

Medium High -2.1478 0.0317* 0.458 

Low High -3.5561 0.0004* 0.758 

 

 
Table 26. Nonparametric Comparisons for each Pair using Wilcoxon Method using Highest Game Scores 

Level - Level Z p-Value  r 

 

Medium High -1.185 0.2359 0.253 

Low Medium -1.8426 0.0654 0.393 

Low High -2.6641 0.0077* 0.568 
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4.10 Discussion  

The goal of this study is to (1) examine if principles provided by CTML can appropriately 

be applied to GLAR and reduce students’ cognitive load, and, (2) determine whether or not 

adherence to CTML principles is associated with positive GLAR performance. Key results from 

the empirical study revealed that high adherence to CTML’s principles was effective at (1) 

lowering students’ cognitive load, and, (2) improving Celestial Blast performance. These findings 

are aligned to what is predicted by CTML (Mayer, 2005), but also bolsters multiple research 

studies in multimedia learning that show reduced cognitive load and improved performance when 

multimedia interface designs strictly adhere to CTML principles (Van Dusen, 1997; Lai et al., 

2013; Kim & Kim, 2012).  

4.10.1 Cognitive load (Research question 1)  

Mayer advocates for adherence to principles of CTML as an effective methodology to 

reduce cognitive load and account for the amount of information that can process at one time 

(Mayer & Moreno, 2002).  According to Mayer, using the coherence, signaling, spatial contiguity 

and temporal contiguity principles of CTML will reduce and mange students’ cognitive load. The 

results of this study support Mayer’s claim by providing evidence that suggest high adherence to 

principles of CTML is helpful at efficiently reducing student cognitive load and moreover that 

derivation from CTML principles will significantly increase student cognitive load when using 

tablet-based GLAR applications. Thus, when interacting with the high adherence interface, 

students may not have to use as many working memory resources to select, organize and integrate 

auditory and visual information which in turn could be why we observed lower reported average 

workload.  
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The observed increase in cognitive load when using the medium and low adherence 

interfaces could be from the students experiencing stress when trying to actively participate in the 

cognitive processes of selecting, organizing and integrating. This stress could have been attributed 

to (1) only using one modality in the low adherence interface or overloading the visual and auditory 

channels in the medium adherence interface, (2) organizing the visual and auditory content in an 

illogical manner, and/or, (3) complexity of the learning content. According to literature, when 

students are stressed they are not capable of fully participating in cognitive processes which 

contributes to cognitive overload and hinders students’ performance (Chen & Chang, 2009; 

Eysenck & Calvo, 2002).  

4.10.2 GLAR performance (Research question 2)  

Our study revealed that students interacting with the high adherence interface had 

significantly higher GLAR performance as compared to students interacting with the medium and 

low adherence interfaces. The observed low performance could be due to students being distracted 

by (1) the inclusion of unnecessary information not related to the learning content, (2) the absence 

of signaling, and, (3) the increase in temporal and spatial contiguity. Although we concluded that 

closely adhering to the principles of CTML could increase students’ tablet-based GLAR 

performance, our findings do differ from earlier studies conducted using 2D multimedia 

technology (Chang, Chien, Chiang, Ming-Chao & Hsin-Chih, 2013; Savoy, Proctor & Salvendy, 

2009). For example, Wolf (2009) found that adhering to CTML principle did not increase 

performance using PowerPoint to deliver multimedia instruction to college aged students. While 

CTML’s principles were designed to addresses presenting information in diverse multimedia 

materials and technologies to increase performance, adherence to the principles may not 

necessarily apply to the development of all technology as predicted by Mayer and colleagues 
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(Mayer, 2009; Sorden, 2005; Burkes, 2007). The results of our study suggest that CTML’s 

principles are potentially applicable and effective for designing tablet-based gamified augmented 

reality applications. Further research using tablet-based GLAR is needed to validate our findings.  

4.10.3 CTML’s Design Principles  

The satisfaction survey results found in Appendix O suggest that students were indifferent 

about the use of coherence in tablet-based GLAR. Students felt that presented irrelevant 

information such as background music and additional graphics, made the GLAR application more 

interesting and, therefore, more effective. This finding suggests that low coherence (e.g., interfaces 

with irrelevant information) may actually contribute to maintaining students’ attention and 

increasing GLAR performance. Muller et al. (2008) suggest that contrariety to the coherence 

principle, multimedia designers should “include irrelevant but interesting audio, graphics, and text 

to increase students’ interest and attention for the purpose of enhancing learning.” The interesting 

but irrelevant information in Celestial Blast could have been for example, the dancing astronaut 

and flying UFO.  Additionally, arousal theory concludes that emotionally arousing students with 

irrelevant but interesting information can result in increased motivation (Reisenzein, 1994). The 

assumption of arousal theory is students learn best when they maintain an optimal level of 

emotionally arousal. However, each student has a unique arousal level that is right for them.  Thus, 

more research is needed to investigate the use of coherence while determining what is the 

appropriate inclusion of irrelevant but interesting information to keep each students aroused when 

interacting with tablet-based GLAR applications.  

Signaling: The data gathered from the satisfaction survey indicate that not adhering to 

signaling contributed to students’ increased cognitive load. The mean score displayed in Appendix 

O indicates that students found the signaling principle to be effective at reducing the amount of 



 

 139 

time and amount of information that students held in their working memory as compared to 

coherence, spatial contiguity and temporal contiguity. These results echo results of other studies 

that found signaling reduced cognitive load by structuring information that guided students to the 

most pertinent information (Xing, 2006). The main advantage of using signaling in Celestial Blast 

was to draw students’ attention to important information such as the ammunition indicator and 

health bar, and to use voiceover cues as a cognitive guide to helps students make sense of the 

game.    

 Spatial contiguity: Survey results suggest that manipulation of spatial contiguity had an 

effect on students; interaction with GLAR. In the medium and low adherence interface, students 

could have experienced increased cognitive load due to the spilt-attention effect. According to 

Mayer, the spilt-attention effect can occur when the visual channel is overloaded such that 

searching for and identifying relevant visual information requires significant attentional and 

cognitive resources. For example, instead of isolating text from graphics, the integration of related 

information should be placed together to reduce or eliminate the split-attention effect (Paas et al, 

2003). Therefore, effectively applying spatial contiguity to the design of GLAR applications can 

help with the management of working memory limitation and reduce cognitive load.  

Temporal contiguity: Similarly to Rummer and his colleagues (2011), we found no 

advantage of adhering to temporal contiguity when simultaneously and sequentially presenting 

audio and visual information to students such as (1) the laser fired and explosion, (2) points 

received and audio alert, and, (3) level cleared notification and audio alert.  Of the four principles 

used to design the GLAR application, students’ responses indicate that they were indifferent and 

least effected by manipulation of the temporal principle. Findings from other studies investigating 

the simultaneous presentation of information using temporal contiguity also indicate ambiguity 



 

 140 

about its efficacy (Michas & Berry, 2000; Mayer & Johnson, 2008). Therefore, more research is 

needed to understand when and how temporal contiguity is best used when designing GLAR 

applications.   

Although Mayer and other researchers provide extensive research on the importance of 

using the four design principles studied herein to reduce cognitive load, this study found that all 

of Mayer’s principle claims may not hold when considering the design of tablet-based GLAR 

applications for our specialized population. Specifically, further research is needed to support the 

claim that coherence and temporal contiguity reduce cognitive load and increase GLAR 

performance. Also, for this study, students’ comprehension of learning content was not assessed; 

therefore, no conclusions can be drawn as to whether high adherence to CTML principles will 

have an effect on content-based learning gains.  

4.10.4 Implications  

This research is crucial for understanding how adherence to CTML principle can affect 

students’ cognitive load and game performance when using tablet based GLAR application. To 

the best of our knowledge, this work is the first to apply CTML’s principles (original designed and 

tested for 2D multimedia learning applications) to the design of tablet-based augmented reality 

applications.  Thus, this work contributes the body of literature by providing a starting point for 

other researchers interested in designing education-based GLAR applications focusing on the 

mathematical concept of angles. In fact, most educational research studies to date on educational 

AR applications have lacked a theoretical basis. This work further provides evidence that CTML 

may be an appropriate framework to ground and guide the development of GLAR applications that 

aim to reduce students’ cognitive load and reinforce mathematical concepts in underrepresented 
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students. This study also suggests adhering to the principles of CTML may allow student to engage 

in effective cognitive processing which in turn improved their GLAR performance.  

4.10.5 Assumptions and Limitations 

There were a few assumptions made in this study. We assumed that all participants had the 

same mathematics background knowledge which may not be accurate. In all likelihood, within and 

between groups, all participants had varying levels of knowledge because they had different 

mathematics teachers and came from different schools.  

Another assumption made was that fifth-grade participants have the ability to self-report 

the amount of cognitive load experienced during the gamified AR activity. To support this 

assumption, it should be noted that researchers Gopher and Braune (1984) claim that elementary 

students are more than capable at providing a numerical value to assess their perceived stress, 

frustration and cognitive load.  

Lastly, we assumed that the degree in which we manipulated the principles of CTML 

between GLAR adherence interfaces was sufficient enough to determine differences in GLAR 

performance and cognitive load among the students. Results suggest that the low, and medium 

adherence interface conditions did indeed effect cognitive load and GLAR performance. 

A limitation of this study is the potential for participants’ preferred cognitive style to be 

unmatched (or matched) by Celestial Blast interface design. This individual factor could have had 

an impact on students’ actual cognitive load, and thus self-reported cognitive load scores. 

Another limitation of the study was ensuring participants were fully engaged during the 

three gamified AR sessions. To overcome this limitation, at the start of each session, researchers 

encouraged participants to achieve the highest possible score amongst all other participants. 



 

 142 

Participants with the highest scores were acknowledged and awarded with pancakes, while all 

other participants received Skittles candy. More research is needed to determine the appropriate 

time in which students should be exposure to GLAR adherence interfaces before fatigue or 

distraction effects occur.   

In this study, four principles of CTML were manipulated collectively rather than 

individually.  Therefore, we cannot determine which particular principle(s) had the greatest impact 

on cognitive load and GLAR game performance (although the user satisfaction survey provides 

some insights). More research is needed to investigate the individual principles of CTML in 

gamified AR settings.  

Also, the user satisfaction survey data was not formally nor fully analyzed. Therefore, 

future research should examine this data more deeply, by for example, performing a cluster 

analysis to determine internal consistency amongst the individual principles. Another future 

analysis could be to perform an analysis of variance on survey response data to analyze differences 

among the principles.  

There were limitations concerning the small sample size of twenty-two participants, which 

has clear ramifications for the generalizability of the study to larger populations. However, the 

results can be generalized to fifth grade students who live in lower socioeconomic settings and 

attend Title I schools in Virginia.   

Students’ exposure time to the GLAR interfaces is another limitation of this study. 

Allowing students more time to interact with the different interfaces of Celestial Blast could 

possibly result in different cognitive load and game performance results.   
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Lastly, the sample of participants was not fully random due to the need to gain access to a 

specialized population.  This lack of random sample could impact the study by (1) lowering the 

level of generalization of research findings, and, (2) it is difficult to estimate sampling variability 

as well as (3) how your study represents the entire population.  
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5 Impact of Cognitive Styles on Cognitive Load    

 

5.1 Introduction  

Recently there has been an increase in the introduction of technological innovations in 

everyday life. With the evolution and advancement of these technologies, it is important for 

researchers, especially in the educational field, to investigate how to effectively use them for 

educational enhancement. Studies already report that emerging technologies are changing the way 

students engage and learn both in and outside of the classroom (Zimmerman, 2007; Song & Keller, 

2001; Martin et al., 2011). One such emerging learning technology is augmented reality (AR) and 

according to the Horizon Report it has the potential to significantly impact learning (Johnson et 

al., 2010). Although many benefits of AR have been reported such as increased collaborations and 

motivation (Kaufmann & Schmalstieg, 2003; Liu et al., 2009), improvements in kinesthetic 

learning (Feng et al., 2008; Kortranza et al., 2009), increased spatial abilities (Arvanitis et al., 

2007; Martin-Gutierrez et al., 2010), further research is needed to fully understand the cognitive 

effects AR interfaces and experiences may have on students.  

To understanding cognitive effects, we can begin by examining the numerous individual 

differences amongst students using different AR interface designs. Researchers, such as Johri and 

Olds (2011), have suggest that learning environments enhanced by technology can be improved 

by understanding and designing to individual differences. Individual differences should be taken 

into account when considering factors that affect learning and ways learning can be maximized. 

Messick (1976) believed education should capitalize on individual differences in order to promote 

greater learning achievements. Therefore, the literature suggests that researchers can better 
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understand individual differences and account for such differences amongst students using 

cognitive styles (D’Mello, Craig, Fike, & Graesser, 2009). Cognitive style is defined by Messick 

(1976) as consistent individual differences in which students prefer to perceive, organize and 

process information. Messick further purports that the influence of cognitive styles extends to 

almost all human activities that involve cognition. Ehrman (1999) suggests that knowledge about 

students’ cognitive styles will enable researchers and educators to better understand students’ 

stages of cognition and the psychological effects students may experience when using AR. Further, 

researchers have determined that cognitive style is a factor that affects a number of areas in the 

classroom such as the way teachers teach, the way students learn, students’ preferences and 

students’ academic achievement (Clark, 1971; Witkin, Lewis, & Weil, 1968; Oltman, 

Goodenough, Witkin & Freeman, 1974).  

According to Cakan (2006), delivering content in a manner consistent with students’ 

cognitive style is one of the most significant factors that may impact students’ learning outcomes 

because it allows students to make sense of the classroom environment by collecting, analyzing, 

evaluating, and interpreting data. Knowledge of cognitive styles may not only be valuable in 

determining the most effective teaching and learning methods, but also how to properly design 

technology-based learning applications. According to Refsgaard and Henriksen (2004), it is also 

valuable in developing guidelines that effectively present information to students while accounting 

for their cognitive differences (Refsgaard & Henriksen, 2004). In order to maximize students’ 

cognitive outcomes and design effective AR learning applications, researchers and developers 

should adopt established cognitive theory in order to account for students’ cognitive styles and to 

structure the presentation of information. One such theory that can inform design based on the 

cognitive resources of students is Mayer’s Cognitive Theory of Multimedia Learning (CTML) 
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(Moreno, 2004). CTML provides principles that account for students’ cognitive differences and 

processes and when used in multimedia learning design, results in systems that empower students 

to actively process and organize information held in working memory.  

However, little research has been conducted on accounting for individual cognitive 

differences when applying principles of CTML. It is important to investigate whether certain 

design principles of CTML correlate to a certain cognitive style (e.g., field-independent students) 

better than other design principles. More research is needed to investigate the relationship between 

students’ cognitive style differences and presentation of information to ensure that emerging 

technology interfaces do not overwhelm students. Therefore, this study will investigate how 

students’ cognitive style can inform the design of AR learning interfaces with the goal of 

improving students’ cognitive performance.   

5.2 Purpose of the Study  

The objective of this research is to establish if there is a relationship between students’ 

cognitive style and cognitive load when designing a gamified learning AR (GLAR) application. 

Specifically, this study investigates how accounting for individual differences using cognitive style 

influence cognitive load and the creation of new knowledge when using a GLAR application. 

Cognitive style is an important factor to consider when designing GLAR because it is the manner 

in which students perceive, organize and process information (Price, 2004). The research will 

develop an understanding on how certain principles of CTML effects the way students perceive 

and process information based on their cognitive style; examining both field-dependent and field-

independent cognitive styles. This research will further analyze cognitive load, content-based 

learning gains and game performance to examine to what degree CTML principles map to a 

particular cognitive style.  Specifically, this research will systematically vary both the voice and 
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coherence principles of CTML, using four GLAR interfaces to determine if differences exist 

between field-independent (FID) and field-dependent (FD) students’ cognitive outcomes (and in 

turn inferring to what degree these principles support students’ cognitive needs).  

This research proposes that the consideration of cognitive styles might provide researchers 

with GLAR design insight to help minimize the cognitive load of students interacting with such 

GLAR applications. The results of this study will determine if cognitive styles are an important 

consideration when designing GLAR applications. Additionally, the research will add to the 

existing literature by establishing guidelines on how to reduce cognitive load in GLAR 

applications while accounting for individual differences. 

5.3 Related Works  

An important focus of psychological research into student learning concerns the cognitive 

aspects of learning. The study of cognitive styles is an area of research that supports the 

psychological implications on students. Early researcher that understand students' abilities to form 

concepts, solve problems and build mental models led to interest and research in students' cognitive 

styles. Numerous definitions of cognitive style are available, but to guide this research we define 

cognitive style as the ways in which a student conceptually organizes and process information in 

the environment based on their perceptual and intellectual abilities (Merriam & Caffarella, 1991). 

To understand cognitive styles and their educational significance, Witkin et al. (1977) began to 

investigate the impacts on cognition by identifying the complementary cognitive styles termed 

field dependence and field independence; two of the most commonly cited cognitive styles in the 

scientific literature.  
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The key difference between FD and FID students is the way in which they process visual 

information (Riding & Cheema, 1991). According to Witkin (1977), FD students may need more 

specific instructions in “problem solving strategies” or a clear definition of learning objectives and 

performance outcomes as compared to FID students who may perform better when allowed to 

develop their own strategies (Witkin, 1977). In 1971, Grieve and Davis investigated the role of 

cognitive style on two different methods of instruction (i.e., expository and discovery) with ninth 

grade geography students. The research concluded that FD students had significant difficulty in 

acquiring knowledge of Japan’s geography and had difficulty applying the information to new 

situations. However, FID students have the ability to organize and apply the information to new 

situations on their own (Grieve & Davis, 1971). Messick (1976) points out that FID students can 

easily differentiate objects from embedding contexts, and have more facility with tasks requiring 

differentiation, whereas FD students tend to experience events globally in an undifferentiated 

fashion. Lastly, FD students have a great connection to social orientations such as conversations 

with other students to understand the information presented while FID students prefer to work 

alone to distinguish concrete information from complex perceptual fields. Such results were 

bolstered by a study conducted by Fitzgibbons and Goldberger (1971) which investigated the 

relationship between cognitive style and memory recall. The study found that FD students can 

more easily recall material of a social nature or related to social interactions verses FID students 

whom more easily recall information that is task related (Fitzgibbons & Goldberger, 1971). 

Essentially, FID students are not distracted by irrelevant information and can acknowledge 

important visual information easily. While FD students can be distracted by irrelevant information, 

thrive on social interactions and benefit from visual cues to help identify important information.   
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Research by Lin and other researchers have shown that cognitive style is the best individual 

factor to consider when developing interfaces and assessing the role of individual differences in 

student learning outcomes (Lin, Huang, & Kuo, 2009). A study conducted by Parcels (2008) found 

that designing online instructions to match the cognitive style of FD students resulted in increased 

performance on pre- and post- assessments. According to Parcels (2008), understanding students’ 

cognitive style and designing online instructions to meet individual cognitive needs has a positive 

impact on achievement for both FD and FID students. However, a study conducted by Hall (2000) 

found that interactive treatments provided by a computer program to support cognitive styles did 

not improve the performance of FD students. His research presented geography students jigsaw 

puzzle that was created using a computer program. The jigsaw puzzle was made from maps and 

“randomly varied the type of interactivity available to students when solving the puzzles.” He 

hypothesized that FD students would solve the puzzles quicker with more accuracy when they 

interacted with the jigsaw puzzle.  However, FID students were faster (Hall, 2000). Ogle (2002) 

conducted a study to investigate how students’ cognitive style affects learning outcomes in a 

virtual environment. His research also found that there were no significant differences in test scores 

for participants who received information virtually versus non-virtually. However, there was a 

significant interaction effect for FID students who received information in a virtual environment. 

Overall, this study concluded that virtual environments had no effect on the recall ability of FD 

students and a positive effect for FID students. The aforementioned studies establish how students’ 

differences can affect learning; however, more research is needed that addresses how to 

specifically meet the needs of FD students. Also, research that examines the role of cognitive styles 

when using AR applications is missing in current literature (Chen & Tsai, 2012).  
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5.3.1 CTML design principles  

Research shows that technology can achieve significant learning outcomes when it is 

explicitly designed to take the student and human cognitive limitations into consideration (Paas, 

Renkl, & Sweller, 2003; Clark, Nguyen, & Sweller, 2005; Sweller, 2005). CTML provides 

principles to help guide the design of technology such as AR to account for the cognitive 

differences amongst students.  Researchers believe the voice and coherence principles of CTML 

can help respond to students’ cognitive processing and meet the needs of both FD and FID 

students. The objective of the coherence principle is to reduce extraneous load by eliminating 

irrelevant visual and auditory information (Mayer, 2005). According to Clark and Mayer, this is 

the single most important principle as cautious selection of visual and auditory information is 

needed to ensure maximum learning outcomes.  Most studies that examine the coherence principle 

have reported that the inclusion of extraneous information hinders learning for all students (Bryant, 

2010; Lehman et al., 2007; Lusk, 2008; Mayer et al., 2008; McCrudden & Corkill, 2010; Rowland 

et al., 2008; Rowland-Bryant et al., 2009; Verkoeijen & Tabbers, 2009). The objective of the voice 

principle is to help with the processing of information by embedding social-motivational cues in 

instructions (Mayer, 2009). According to Mayer, all students specially FD students perform better 

on problem solving transfer tasks and increase their understanding of the learning content when 

audio is delivered by human voices instead of simulated voices. Studies have further found that 

voice alone has a significant impact on learning for all students and removal of social cues results 

in negative effects on learning outcomes especially in FD students (Lin et al., 2016; Mayer, 2009; 

Mayer et al., 2003; Ahn, 2010).  
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5.3.2 Supporting Field Dependent Students  

Field dependence is a mode of perceiving the environment wherein one’s perception is 

controlled by their surrounding and whereby the surrounding parts are undetectable.  When a 

person is FD, they have a global approach to problems and have difficulty disembodying parts and 

imposing structure on an ambiguous situation (Witkin et al., 1977). Since a FD student may have 

difficulty for example, distinguish objects from their backgrounds, they often require more 

"explicit instruction in problem solving strategies" (p. 25). FD students are oriented more towards 

social activities and prefer to participate in collaborative activities. They learn material with social 

context and seek externally defined goals and reinforcement. Although their approach to learning 

is passive, they constantly monitor and respond to their authentic environment by utilizing their 

senses to process information.  They also use existing organization of material to help when 

cognitively processing new information.  

Therefore, the coherence principle will be leveraged to take a minimalist approach to 

GLAR design, providing well-defined goals and include necessary information needed to 

understand learning content being presented. Since stress tends to impair memory in FD students, 

the GLAR applications should provide students with a clear and straightforward application that 

reduces ambiguity but also ensures the learning content is not repressed. By limiting the amount 

of information presented to FD students, GLAR applications may reduce students’ stress while 

improving their critical thinking skills and ability to work. The voice principle will provide FD 

students with social cues, aural alerts and positive feedback to increase social connectedness. 

Using conversational feedback and creating a social presence within GLAR may help students 

relate to learning content and increase students’ ability to transfer knowledge from the GLAR 

application to a new task. 
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5.3.3 Supporting Field Independent Students  

Field independence is a mode of perception where an individual experiences new 

environments in discrete parts rather than a continuous whole (Anderson, 1988). A person who is 

FID can distinguish concrete information from its context and takes a self-directed approach to 

learning. According to Witkin et al. (1977), FID students prefer to work alone in solitary learning 

activities and exhibit greater skill in organizing information in working memory. Superior 

cognitive restructuring ability appears to enhance the student's ability to learn the content while 

working alone. These students perceive information analytically and can find organization in an 

unstructured environment while using an active approach to learning. They learn more in the 

absence of external reward and when intrinsic motivation is present. FID students are less 

susceptible to interferences from outside influences and can navigate through non-salient 

information in order to determine relevant information.  

Although stress has less effect on FID students’ cognition, it is still important to utilize 

appropriate design principles to manage students’ cognitive load. For FID students, the GLAR 

application leverages voice and text to present information using dual channels. According to 

Mayer, students learn more when information is conveyed using audio and visual rather than visual 

presentation alone. By including auditory cues, FID students will have the opportunity to construct 

new mental models that include new knowledge and information already present in their long-term 

memory (which in turn deepens contextual learning).  However, the aural cues will not include 

voice-based positive feedback as described above for field-dependent students. Positive feedback 

could be considered bothersome for FID students and hinder contextual learning.  The coherence 

principle is used to present FID students information in a top down, logical order. Although FID 

students can distinguish between relevant and non-relevant information, it is easier and quickly for 
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them to process an abundant amount of information when they can encode the information with 

existing knowledge to give it meaning. Thus, GLAR applications should adequately challenge 

students by presenting them with relevant but abstract information while also using dual channel 

modality.  

5.4 Research Questions  

Research Question 1: Is the cognitive load of field-independent and field-dependent students 

impacted when voice and coherence principles of CTML are manipulated in GLAR 

application “Build-A-World”? 

Hypothesis (H1): The cognitive load of field-dependent students is significantly lower in 

the VonChigh condition relative to the other conditions when voice and coherence 

principles of CTML are manipulated in “Build-A-World”. 

Hypothesis (H2):  Field-independent students’ cognitive load will not be significant 

different across the four experimental design conditions when the voice and 

coherence principles of CTML are manipulated.  

Research Question 2: Does students’ cognitive style impact GLAR performance when 

voice and coherence principles of CTML are manipulated in GLAR application 

“Build-A-World”? 

Hypothesis (H3): Field-dependent students perform significantly higher relative to field-

independent students when the experimental condition of the coherence principle 

is high in the GLAR application “Build-A-World”. 
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Hypothesis (H4): Field-independent students’ GLAR performance improves when the 

experimental condition of the voice principle is off in the GLAR application “Build-

A-World”. 

Research Question 3: Are there content-based learning gains for field-independent and 

field-dependent students after engagement with GLAR application “Build-A-

World”? 

Hypothesis (H5): There are content-based learning gains for both field-independent and 

field-dependent students after engagement with “Build-A-World”. 

Hypothesis (H6): The content-based learning gains is significantly higher for field-

dependent students relative to field-independent students after engagement with 

“Build-A-World”. 

5.5 Study Overview  

This study is a 2 x 2 x 2 mixed factor experimental design with three independent variables: 

voice principle (on, off) within subjects, coherence principles (low, high) within subjects and 

cognitive style of the participant (FID, FD) between subjects. This research design aims to 

investigate the impacts of FID and FD cognitive styles on participants’ cognitive performance 

when the voice and coherence principles of CTML are manipulated in a GLAR application. 

5.6 Experimental Testbed: Build-A-World. A Gamified Learning AR Application  

For this work, we designed and built an AR application as a research testbed that afforded 

the research team the ability to manipulate the voice and coherence principles of CTML in a 

gamified AR educational setting.  Build-A-World is an interactive, handheld, tablet-based AR 

application developed to reinforce the mathematical concepts of area, perimeter and volume to 
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sixth grade participants. This GLAR application is designed to be used as a supplemental tool to 

complementary educational approaches whereby students can strengthen their existing mental 

models. Unlike other AR applications that require participants to wear head-mounted displays or 

use spatial projectors, Build-A-World was developed in the COGENT Lab at Virginia Polytechnic 

Institute and State University by five undergraduate Computer Science students using Unity and 

the AR ToolKit library. To deploy the Build-A-World requires an Android tablet to render the 

virtual content and a printed AR marker to position the virtual information into the real-world 

scene. An AR marker is a printed pattern or picture that contains a pre-programmed visual pattern 

that the front-facing tablet camera can recognize and use to determine the tablet’s position and 

pose. For this application, there are five markers: four stationary and one moveable allowing the 

participants to view the virtual objects from different angles (Hubbard, 2009).  

The learning content used to inform the design of Build-A-World came from the Virginia 

Department of Education curriculum. The gamified AR application addressed three specific 

learning aims adopted from Virginia Public Schools’ Standard of Learning. Aim one suggests that 

participants must calculate the perimeter, area and volume in standard units of measurement. The 

second aim was for participants to differentiate among perimeter, area and volume for a given 

scenario. The final aim was for participants to identify whether the application of the concept of 

perimeter, area or volume is appropriate for a given situation.  

Build-A-World was designed by leveraging principles of gamification and CTML 

(described in Sections 2.1.1 and 5.3.1, respectively). The interface is composed of five 

gamification elements: feedback, score, narration, rewards, and freedom to fail. Each element is 

implemented to help engage participants succeed in the activity by directing their attention to 

important content. Based on CTML, the application utilizes dual channels of modality to allow for 
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both visual and auditory processing. Also, auditory and visual information is presented 

simultaneously to reduce their cognitive load when interacting with the application. The coherence 

principle of CTML ensures that only relevant information related to area, perimeter and volume 

are presented to participants which helps ensure that participants’ working memory resources are 

managed efficiently. The voice principle of CTML is leveraged but using a human voice to deliver 

auditory alerts and messages to help develop social connectedness with participants. Social 

connectedness is defined as a cognitive representation of the degree participants feel connected to 

other participants, the technology and/or social interactions (Lee & Robbins, 1995).   

Build-A-World, as shown in figure 20, was designed around a sci-fi gamification theme 

whereby aliens from the outer reaches of space where traveling to Mars to visit their Martians 

friends. However, to support the visit, the Martians have to first build a place for the aliens to land 

their UFOs. Participants have to help the Martians build a landing strip with a defined perimeter 

so the Aliens can safely land their UFOs. The participants have 15 minutes to build the landing 

strip with the accurate perimeter. The design mission allows participants to use their creativity and 

apply their content knowledge to accomplish the task.  
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Figure 20: Build-A-World Interface 

 

Build-A-World initially provides participants with a limited amount of material to build 

the landing strip. There are four materials the participants can use to build their landing strip: steel, 

wood, crystal and brick.  To play the game, participants first select which material they want to 

use then double tap anywhere on the tablet surface in the location where they want the material 

block to be placed. Each material block is 1 x 1 x 1 unit in size and can be placed side by side or 

stacked on top of each other in all three dimensions. As participants build the landing strip, they 

place virtual material blocks into the real-world (e.g., on the table in the classroom), and can view 

their 3D designs from arbitrary locations by walking and pointing the tablet back toward the fixed 

printed marker (where their virtual design is displayed).  To acquire more material, participants 

visit the markets by first walking to one of four room locations (corresponding to each material 
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market) where printed markers have been mounted to the wall.  Students then questions relating 

to the learning content that were adapted from Virginia Standard of Learning. If a question is 

correctly answered in the market, participants will receive a random amount of building material. 

However, if a question is answered incorrectly after two attempts participants will receive a new 

question. In order to leave a market and gain additional material, the participant must correctly 

answer at least one question. After each visit to a market, participants may continue building their 

landing strip until the structure is completed. Throughout gameplay, participants can inspect the 

perimeter of their structure to assess the current perimeter and plan modifications needed to 

eventually meet the target perimeter. If they are successful at building the landing strip and have 

time remaining, participants have the opportunity to freely build anything they want with an 

unlimited amount of material. If the current perimeter does not match the target perimeter, 

participants must keep working on the landing strip and answering questions until the target 

parameter is met or the 15 minutes expire. The experimental setting and examples of participants 

utilizing the GLAR application are displayed in figures 21 and 22. 
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Figure 21: Experimental Setting 
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Figure 22: Participants utilizing Build-A-World 
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5.7 Independent and Dependent Variables 

To explore the interaction between CTML design principles and participants’ cognitive 

style differences, four Build-A-World interface conditions were created by crossing the two 

conditions of the voice and coherence principles as shown in table 27. Each of the four Build-A-

World conditions require participants to build a different sized landing strip.  

5.7.1 Voice Principle: 2 levels (on and off), within-subjects  

In voice-on conditions, participants were presented aural voiceover cues such as narrations, 

alerts and positive feedback. The voiceovers were a male human voice used to highlight significant 

information and encourage participants throughout the game. For example, when UFOs were five 

minutes away from Mars, participants receive an auditory alert saying, “The Aliens are five 

minutes away! Hurry and complete the landing strip before they arrive!” At the market, 

participants receive positive feedback such as “Congratulations! You have answered another 

question correctly.” The inclusion of voiceovers increases the processing of significant 

information for participants that interpret social communication as vital information which allows 

for deeper active processing of the social cue. For voice-on, the use of positive feedback and 

encouragement can foster a sense of connectedness with other participants and the GLAR 

application. Therefore, by examining voice as an independent variable we can give insights on 

how social connections such as feedback effects cognitive load, GLAR performance and content-

based learning gains. For voice-off conditions, all voiceover cues were removed. Removing 

voiceovers decreases the degree of social connection perceived by some participants and can 

negatively affect content-based learning gains when participants have to allocate more effort to 

understand significant information.  
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5.7.2 Coherence Principle: 2 levels (high and low), within-subjects  

In high-coherence condition (figure 23), a minimalistic interface was used that includes 

only information relevant to the mission. Thus, the high-coherence condition includes the core six 

pieces of information necessary for participants to complete the challenge. (1) The top of the screen 

displays the four types of materials as well as how many blocks are remaining for each material 

type. (2) Beneath the materials is the delete mode function, which allows participants to remove 

unwanted material blocks. (3) The mission statement is displayed beneath the materials, which 

informs participants of the game’s objective and the target perimeter of the landing strip. The 

bottom of the screen displays: the timer, perimeter check and submit buttons. (4) The timer 

displays how much time is remaining in the mission. (5) The perimeter check button allows 

participants to highlight which material blocks they want to inspect the perimeter of their landing 

strip.  (6) And finally, the submit button allows participants to calculate the perimeter of the 

highlighted blocks. High coherence should allow for visual perceptiveness which is defined by the 

ability to distinguish important parts of the interface from the complete interface or cognitive 

restructuring (Messick, 1993). By examining coherence as an independent variable we can give 

insights on visual perceptiveness.  



 

 163 

 
Figure 23: High Coherence Interface for Build-A-World 

 

In the low-coherence condition (figure 24), participants are exposed to nine pieces of 

information, six of which are the same as those presented in the high-coherence condition.  The 

additional three pieces of information include: score, updates on incoming UFOs, and blocks 

placed. (7) As participants earn more points, the score is visually updated. (8) The updates on 

incoming UFOs are displayed on every three minutes as both an auditory and visual alert. For 

example, the first alert says “The Aliens have just started their journey to Mars. You have 11 

minutes to finish the landing strip.” (9) The blocks placed displays the total number of blocks 

placed in the scene at and is updated as participants add and delete material blocks. The additional 

pieces of information in low-coherence conditions presented participants with irrelevant 
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information, which focuses them to utilize unnecessary cognitive resources to determine what 

information is important: a task that is likely harder for some participants than others. 

 
Figure 24: Low Coherence Interface for Build-A-World 

 

Table 27: The study employed four Build-A-World Interface Conditions 

 Coherence Principle 

Voice Principe   

  

Low 

 

 

High 

 

 

On 

 

 

VonClow 

 

VonChigh 

 

Off 

 

 

VoffClow 

 

VoffChigh 
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Participants were exposed to all four experimental conditions. To prevent ordering effects, 

exposure to conditions were randomly order per participant. According to Easterby (1984), it is 

important to prevent ordering effects because such effects can impact performance as well as the 

cognitive processes that affect comprehension.  

5.7.3  Cognitive Style: 2 levels (field dependent and field independent), between-subjects  

Cognitive style is the way a student organize and process information that is distinct to 

them (Witkin et al., 1977). According to Cakan, cognitive styles is the most significant factor that 

may impact students’ learning outcomes because it allows the student to make sense of the 

classroom environment by collecting, analyzing, evaluating, and interpreting data. There are two 

types of cognitive style: field dependent and field independent. Field dependent students require 

more organizational structure to distinguish information within a larger visual field and rely on 

social connectedness while field independent students are analytical and can distinguish concrete 

information from a larger visual field.  

We used the Group Embedded Figures Test (GEFT) to determine the cognitive style of 

participants. The GEFT is a twenty minute test that requires participants to locate and outline 18 

simple geometric figures hidden within a drawing of a larger, more complex geometric shape. The 

score of the test ranges from zero to eighteen where one point is given for each correctly outlined 

simple figure. If a participant scored between 2 and 10 we identified them as FD and scores from 

11 to 18 allowed us to identify FID participants.  

5.7.4 Dependent Variables  

The dependent variables of the study were cognitive load scores, results on pre-/post- 

assessment, learning gains, game score and percentage of correct answers. The dependent 
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measures were collected through self-reported cognitive load surveys (NASA TLX), pre-/post-

assessments and GLAR game metrics.   

 Pre-/Post- assessment results: pre-assessment determined the participants’ level of 

understating of learning content before exposure to Celestial Blast. The results ranged from 

0 (lowest/no questions answered correctly) to 10 (highest/all questions answered 

correctly). The post-assessment determined the participants’ level of understanding of the 

learning content after exposure to Celestial Blast. The results ranged from 0 (lowest/no 

questions answered correctly) to 10 (highest/all questions answered correctly).  

 Learning gains: these gains are calculated as the differences between pre- and post- 

assessment results, and ranged from -3 (worst) to 6 (best).  

 GLAR game metrics: game score achieved and percentage of correct answers. Students 

visited the market place to gain additional material and in order to leave the market, they 

had to correctly answer at least one question. Percentage of correct answers was calculated 

by dividing the number of total questions asked by the number of questions they correctly 

answered and ranged 0 (lowest/no questions answered correctly) to 1 (highest/all questions 

answered correctly). It is important to note that correctly answering questions in the market 

place had no effect on the game score.  

 Cognitive load scores:  average workload from NASA TLX survey ranged from 0 (lowest 

workload) to 1 (highest workload).  
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5.8 Methodology  

5.8.1 Participants 

The target population for this study will be fifth grade students from Title I schools in 

Virginia Public Schools. Title I is a funding program provide by the U.S. Department of Education 

to “assist low income and at-risk students who are struggling academically to obtain a high-quality 

education and reach, at minimum, proficiency on challenging state academic achievement 

standards and assessments.”  

The study employed 26 participants from different Title I schools in the Southeast region 

of Virginia. All participants completed a public education through the fourth grade and passed 

necessary Virginia SOLs in order to move onto the fifth grade. Researchers gained access to the 

participants through the Boys and Girls Club (BGC) of Southeast Virginia. The BGC is an 

afterschool program that encourages children, especially those who at risk, to realize their full 

potential as productive and responsible citizens. The organization emphasizes “school work and 

offers programs on character and leadership development, the arts, health and life skills, and 

computer skills” while promoting a sense of competence, usefulness and belonging to the boys 

and girls. BGC advocates for educational advancement to prepare students for future opportunities 

as they work diligently to achieve their dreams (BGCA, 2012). 

Participants were first divided into two groups based on their cognitive style (FID and FD) 

as determined by the Group Embedded Figures Test. These two groups were further divided in 

half to create four groups of participants (two groups of FID, two groups of FD) to match the four 

interfaces conditions described in table 27. 
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Since all 26 participants had graduated 4th grade, it was assumed that all participants had 

been introduced to area, perimeter and volume during grade five of their academic career and have 

a basic understanding of these concepts. This basic understanding allowed participants to navigate 

through the four interface conditions and answer questions throughout the experiment.  

5.8.2 Research Setting  

The study was conducted at Franklin Middle School in Franklin, Virginia during the fall 

semester of the 2017-2018 academic school year. Inside the classroom at Franklin Middle School, 

participants sat in the appropriate cognitive style group that was assigned (based on results of the 

GEFT). Each participant received their own Android tablet and marker. Participants in the FID 

groups worked independently while participants in the FD groups worked collaboratively to 

complete the Build-A-World mission.   

5.8.3 Instrumentation  

5.8.3.1 Group Embedded Figures Test  

To evaluate cognitive style, participants were given the Group Embedded Figures Test 

(GEFT), developed by Oltman, Raskin and Witkin (1971). GEFT is a perceptual exercise that 

requires subjects “to locate a simple figure embedded within a more complex geometric figure” 

and then trace around the located simple figure. The test is an easy instrument to administer and 

widely accepted as a measure of determining cognitive styles (Rusch et al., 1994). GEFT is 

comprised of three sections in which there are seven practice questions in section one, nine test 

items in section two and nine test items in section three that have a time limit. A subject’s score is 

based on the combined number of simple figures correctly traced within twenty minutes. The score 

of the test ranges from 0 to eighteen where one point is given for each correctly outlined simple 
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figure. If a subject score between 2 and 10 they are identified as FD and scores from 11 to 18 

indicate FID subjects.  

Results from research conducted by Witkin et al. (1977) found that GEFT is a valid and 

reliable method of assessing if a subject is FID or FD. Keyser and Sweetland found that "GEFT 

can yield data that provide insights for those engaged in cognitive style research" (p. 193). Further, 

Thompson and Melancon (1987) note that the GEFT "... produces expected and desired variations 

when subjects are adults rather than children" (p. 770). However, Flexer and Roberge (1983) 

reported a reliability coefficient of 0.79 for performance of sixth and seventh grade participants.  

5.8.3.2 Pre-/Post- Assessments 

In order to assess participants’ prior knowledge about area, perimeter and volume, 

participants were given a pre- assessment that included questions derived from previous SOL 

assessments. To evaluate content-based learning gains after interacting with Build-A-World, a 

post- assessment was also administered. Both the pre- and post- assessment had ten questions that 

required participants to demonstrate their ability to calculate, and differentiate amongst, area, 

perimeter, and volume. Although each assessment was different, both used multiple choice answer 

format to mimic the style of actual SOL questions. The SOL questions used were state approved 

and in accordance with Virginia Department of Education guidelines, meeting state educational 

standards. 

5.8.3.3 NASA Task Load Index (TLX) 

NASA TLX, a commonly used instrument in many fields of human factors and related 

research, was used to measure cognitive load. For a detailed description, see section 3.5.5.2.   
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5.8.3.4 User Satisfaction Survey 

Similar to study two, a user satisfaction survey was used to evaluate satisfaction of Build-

A-World. For more details, see section 4.7.3.2. Additionally, Appendix K, L, M, and N for the 

complete user satisfaction questionnaires. For this dissertation work, we did not formally assess 

the results via statistical analysis; however, Appendix P contains simple descriptive statistics for 

the complete user satisfaction questionnaire.    

5.8.4 Data Collection Procedures  

This study required six separate sessions with participants at the Boys and Girls Club. 

During the first session, the primary researcher and GLAR designers administered the GEFT to 

participants per the GEFT administering guidelines. The primary researcher scored the GEFT, 

recorded the scores and placed the participants in their respective groups. Lastly during session 

one, participants completed a pre- assessment to evaluate their prior knowledge on the learning 

content. During the assessment, researchers gave verbal instructions and answered questions as 

needed.  At the beginning of the second session, the research team gave a presentation to 

participants that outlined game instructions, how to generally use the AR tablet application, and 

led a two-minute interactive demonstration on how to play Build-A-World. Sessions 2 through 5 

were used to expose each of the four participant groups to each of the four interface conditions. At 

the beginning of each session, participant groups were randomly assigned an interface condition 

they would be interacting with during the session. Participants were given thirty minutes to 

complete the Build-A-World mission, during which time researchers assisted FID participants if 

they had any questions on the learning content or GLAR interface. For example, if a FID 

participant was having trouble seeing the graphics, the researcher would have instructed the 

participant to manipulate, rotate or move the AR marker to increase or decrease their field of view 
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or view the structure they were building from a different perspective. FD participants were 

instructed to communicate and work together to help one another if they experienced any 

problems. At the conclusion of sessions two through five, each participant recorded their game 

score, completed a NASA TLX survey, and answered user satisfaction survey questions. The 

rotation of interfaces across sessions were randomized (without replacement) to mitigate possible 

practice and/or learning effects. In the final session, participants completed a post- assessment to 

assist in determining whether there were any content-based learning gains. As with the pre- 

assessment, the researchers gave verbal instructions and answer questions as needed.  

5.9 Results  

5.9.1 Research Question 1 

Is the cognitive load of field-independent and field-dependent students impacted when voice and 

coherence principles of CTML are manipulated in GLAR application “Build-A-World”? 

5.9.1.1 Descriptive Statistics 

For cognitive load, the unweighted NASA TLX scores were reported as a measure of 

average workload. We used the Levene Test to determine if it was appropriate to utilize ANOVA 

to analysis the average workload data and calculated the variability and homogeneity among the 

data for FID and FD students. A test of homogeneity of variances found F(3, 48) = 0.482, p = 

0.093. Homogeneity has not been violated. Then, we conducted Kolmogorov-Smirnov tests to 

determine if the normality assumption has been violated. The tests demonstrated the assumption 

of normality was violated for the VonChigh condition (Z = .114, p = 0.061, with slight skewness to 

the left = -0.426, kurtosis = -0.358), the VonClow condition (Z = .190, p < 0.0001, with slight 

skewness to the left = -0.315, kurtosis = -0.787), the VoffChigh condition (Z = .152, p < 0.05, with 
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slight skewness to the left = -0.202, kurtosis = -0.528), and the VoffClow condition (Z = .105, p = 

0.0001, with slight skewness to the left = -0.407, kurtosis = -0.315) was not violated. Because the 

robust nature of ANOVA, it was utilized to analyze the non-parametric data because “the 

limitations associated with the violation of normality are reduced and the effect of normality upon 

Type I error rates is minimal because the observed skewness was not in the extremes” (Hinkle, 

Wiersma, & Jurs, 2003). The descriptive statistics presented in table 28 displays the means, 

standard deviation and standard error for average workload which was used for hypotheses testing.  

 

 

Note. Lower average workload is better 

Figure 25. Experimental Conditions Impact on Average Workload by Cognitive Style  
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Table 28. Means, Standard Deviations and Standard Errors of Average Workload 

 FID FD 

 M SD SE M SD SE 

VonChigh 0.238 0.177 0.050 0.229 0.201 0.056 

VonClow 0.289 0.142 0.039 0.471 0.168 0.047 

VoffChigh 0.279 0.136 0.037 0.528 0.160 0.044 

VoffClow 0.284 0.128 0.036 0.708 0.194 0.053 

 

5.9.1.2 Hypothesis Testing  

The analysis of cognitive load utilized a 2 x 2 x 2 mixed method Analysis of Variance 

(ANOVA) to address research question 1 and test specific hypotheses relating to research question 

1. This ANOVA model contained two within-subject factors: Voice (on, off), and Coherence (high, 

low).  Levels of the within-subjects factors are crossed with one another as shown in table 27. 

There was one between-subjects factor: Cognitive Style (FD and FID). The results of the ANOVA 

for the average workload are displayed in table 29. We found main effects of cognitive style (F 

(1,1) = 42.514; p = < 0.0001), voice principle (F (1,1) = 19.487; p = < 0.0001) and coherence 

principle (F (1,1) = 13.636; p = 0.0004) on average workload. There was a two-way interaction 

effect of cognitive style by voice (F (1,1) = 14.753; p = 0.0002) and cognitive style by coherence 

(F (1,1) = 7.967; p = 0.0058) on average workload; however, we found no interaction effect of 

voice by on average workload (F (1,1) = 0.681; p = 0.411).  

Table 29. ANOVA Results for Fixed Effects of Average Workload  

 Average Workload 

 

Source F p 

Cognitive Style 42.514 < .0001* 

Voice 19.487 < .0001* 

Coherence 133.6359 0.0004* 

Cognitive Style x Voice 14.753 0.0002* 

Cognitive Style x Coherence 7.9674 0.0058* 

Voice x Coherence  0.6815 0.4111 

Cognitive Style x Voice x Coherence 0.0129 0.9097 
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Hypothesis (H1):  The cognitive load of field-dependent students is significantly lower in the 

VonChigh condition relative to the other conditions when voice and coherence principles of CTML 

are manipulated in “Build-A-World”.  

To address hypothesis 1, we conducted a post-hoc analysis to find differences between FD students 

across the experimental conditions. The Tukey HSD post-hoc analysis (table 30) showed that FD 

students had significant differences across the experimental conditions and average workload was 

significantly lower for FD students in the VonChigh condition as compared to all other voice and 

coherence conditions. The effect size was calculated using the formula: d = 
µ1−  µ2

𝜎𝑝𝑜𝑜𝑙𝑒𝑑
. According to 

Cohen (1998), the effect size is considered large when it is more than 0.8, median is between 0.5 

and 0.8, small is between 0.5 and 0.2 and there is no effect when it is less than 0.2. The effect size 

for the post-hoc analysis is included in Table 30. Therefore, we can accept the hypothesis 1 and 

assume that the cognitive load of FID students is significant lower in the VonChigh condition relative 

to the other conditions when voice and coherence principles of CTML are manipulated.  

Table 30. Tukey HSD post-hoc analysis of Cognitive Style across experimental conditions 

 

Cognitive Style Comparisons Difference Std Err p d 

 

 

FD 

VoffClow VonChigh 0.478846 0.064837 < 0.0001* 2.89678 

VoffChigh VonChigh 0.298077 0.064837 0.0003* 1.80322 

VonClow VonChigh 0.241667 0.064837 0.0076* 1.46196 

VoffClow VonClow 0.23718 0.064837 0.0095* 1.43482 

VoffClow VoffChigh 0.180769 0.064837 0.1102 1.09356 

VoffChigh VonClow 0.05641 0.064837 0.988 0.34125 

 

 

FID 

VonClow VonChigh 0.051282 0.064837 0.9932 0.31023 

VoffClow VonChigh 0.046795 0.064837 0.9961 0.28309 

VoffChigh VonChigh 0.041667 0.064837 0.9981 0.25206 

VonClow VoffChigh 0.009615 0.064837 1 0.05817 

VoffClow VoffChigh 0.005128 0.064837 1 0.03102 

VonClow VoffClow 0.004487 0.064837 1 0.02715 
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Hypothesis (H2): Field-independent students’ cognitive load will not be significant different 

across the four experimental design conditions when the voice and coherence principles of CTML 

are manipulated. 

To address hypothesis 2, a Tukey HSD was conducted to compare the cognitive load of 

FID students across the experimental conditions. The Tukey HSD post-hoc analysis showed no 

significant difference in average workload across experimental conditions for FID students. 

Therefore, we can accept hypothesis 2 and should be noted that this finding does not necessarily 

mean that cognitive load is equivalent across all conditions where voice and coherence principles 

of CTML were manipulated but instead suggest that there are no major differences in cognitive 

load.  

5.9.2 Research Question 2  

Does students’ cognitive style impact GLAR performance when voice and coherence principles of 

CTML are manipulated in GLAR application “Build-A-World”? 

5.9.2.1 Descriptive Statistics 

Game scores and percentage of correct answers (proportion of correct answers to the total 

number of questions asked in the market place) were reported as a measure of GLAR performance. 

First, we tested the assumption of homogeneity of variances using the Levene statistic, F(1, 26) 

=1.026, p = 0.039. This assumption has not been violated. Next, we conducted Kolmogorov-

Smirnov Tests to determine normality of game scores and percentage of correct answers data. For 

the Von condition (Z = .065, p = 0.200, with slight skewness to the left = -0.591, kurtosis = -0.223), 

the Voff  condition  (Z = .190, p < 0.0001, with slight skewness to the left = -0.513, kurtosis = -

0.215), the Chigh condition  (Z = .152, p = 0.093, with slight skewness to the left = -0.178, kurtosis 

= -0.822), and the Clow condition (Z = .105, p = 0.002, with slight skewness to the left = -0.421, 
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kurtosis = -0.926).  Although Von condition violated normality, ANOVA was utilized to analyze 

the non-parametric data because “the limitations associated with the violation of normality are 

reduced due to the robust nature of ANOVA and the effect of normality upon Type I error rates is 

minimal because the observed skewness was not in the extremes” (Hinkle, Wiersma, & Jurs, 

2003). Table 31 displays the means, standard deviation and standard error for game score and table 

32 displays the means, standard deviation and standard error for unweighted percentage of correct 

answers, which were used for hypotheses testing.  

 

 

 

Figure 26. Game Score for Coherence Principle by Cognitive Styles 
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Figure 27. Game Score for Voice Principle by Cognitive Styles 

 

Table 31. Means, Standard Deviations and Standard Errors of Game Score 

 FID FD 

 M SD SE M SD SE 

Von 3234.62 2012.35 394.65 4242.31 2007.52 393.71 

Voff 2598.08 1609.56 315.66 2257.69 836.38 164.02 

Chigh 2782.69 1619.379 317.59 3111.54 1769.71 347.07 

Clow 3050 2047.29 401.51 3388.46 1898.96 372.42 
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Figure 28. Percentage of Correct Answers for Coherence Principle by Cognitive Styles 
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Figure 29. Percentage of Correct Answers for Voice Principle by Cognitive Styles 

 

Table 32. Means, Standard Deviations and Standard Errors of Percentage of Correct Answers  

 FID FD 

 M SD SE M SD SE 

Von 0.794 0.238 0.047 0.647 0.242 0.047 

Voff 0.749 0.259 0.050 0.552 0.263 0.052 

Chigh 0.801 0.224 0.044 0.687 0.259 0.051 

Clow 0.742 0.270 0.052 0.511 0.222 0.043 

 

5.9.2.2 Hypothesis Testing 

Two 2 x 2 x 2 mixed method ANOVAs were conducted to compare means of percentage 

of correct answers and game scores from FID and FD students across voice and coherence 

conditions. These ANOVAs addresses research question 2 and tested specific hypotheses relating 
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to research question 2. The results of the ANOVA for the game score are displayed in table 33. 

We found no effects of cognitive style (F (1,1) = 1.0138; p = 0.3165) and coherence principle (F 

(1,1) = 0.6743; p = 0.4136) on game score. There was a main effect for voice principle (F (1,1) = 

15.6415; p = 0.0001) on game score. We found interaction effects of cognitive style by voice (F 

(1,1) = 4.1374; p = 0.0447) on game score; however, there were no effects of cognitive style by 

coherence (F (1,1) = 0.0002; p = 0.4136), or voice by coherence (F (1,1) = 2.7259; p = 0.1020) 

on game score. The effect size for the voice principle d = 0.6423 and the two-way interaction of 

cognitive style by voice d = 0.1699.   

The results of the ANOVA for the percentage of correct answers are also displayed in 

table 33. We found a main effect of cognitive style (F (1,1) = 12.7979; p = 0.0005) and 

coherence principle (F (1,1) = 5.8765; p = 0.0172) on percentage of correct answers. There was 

no effect for voice principle (F (1,1) = 2.1050; p = 0.1501) on percentage of correct answers. We 

found no effects of cognitive style by voice (F (1,1) = 0.2693; p = 0.6050), cognitive style by 

coherence (F (1,1) = 1.4844; p = 0.2261), and voice by coherence (F (1,1) = 0.3248; p = 0.5701) 

on percentage of correct answers. The effect size for the coherence principle d = 0.353 and 

cognitive style d = 0.553.   

 

Table 33. ANOVA Results for Fixed Effects of Game Score and Percentage of Correct Answers 

 Game Score Percentage of 

Correct Answers 

 

Source F p F p 

Cognitive Style 1.0138 0.3165 12.7979 0.0005* 

Voice 15.6415 0.0001* 2.1050 0.1501 

Coherence 0.6743 0.0447* 5.8765 0.0172* 

Cognitive Style x Voice 4.1374 0.4136 0.2693 0.6050 

Cognitive Style x Coherence 0.0002 0.9885 1.4844 0.2261 

Voice x Coherence  2.7259 0.1020 0.3248 0.5701 

Cognitive Style x Voice x Coherence 0.1580 0.6919 0.2903 0.5913 
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Hypothesis (H3): Field-dependent students perform significantly higher relative to field-

independent students when the experimental condition of the coherence principle is high in the 

GLAR application “Build-A-World”.  

A Tukey HSD post-hoc analysis was conducted to test hypothesis 3 and find differences 

between students across the coherence condition. The analysis showed that FD students had 

statistically higher percentage of correct answers when the experimental condition of coherence 

was low; however, there were no statistical differences in game scores or percentage of correct 

answers when coherence is high. We can reject hypothesis 3 and assume that FD students did not 

perform significant higher relative to FID students when the experimental condition of the 

coherence principle was high in the GLAR application.  

Table 34. Tukey HSD post-hoc analysis of Coherence Principle for Game Score and Percentage of Correct Answers 

 

Measure Comparisons Difference Std Err p-Value d 

 

Game Score 
FD Clow FID Chigh 605.769 468.6386 0.5699 0.35851 

FD Clow FID Clow 338.462 468.6386 0.8880 0.20031 

FD Chigh FID Chigh 328.846 468.6386 0.8962 0.19462 

FD Chigh FID Clow 61.538 468.6386 0.9992 0.03642 

% of Correct 

Answers 
FID Chigh FD Clow 0.2426385 0.0682424 0.0032* 0.98613 

FID Clow FD Clow 0.1976692 0.0682424 0.0238* 0.80337 

FID Chigh FD Chigh 0.1475846 0.0682424 0.1412 0.59981 

FID Clow FD Chigh 0.1026154 0.0682424 0.4393 0.41705 

 

Hypothesis (H4): Field-independent students’ GLAR performance improves when the 

experimental condition of the voice principle is off in the GLAR application “Build-A-World”.  

To address hypothesis 4, a Tukey HSD was conducted to compare the game scores and 

percentage of correct answers of FID students across the voice conditions. A Tukey HSD post-hoc 
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analysis showed that FID students had statistically higher percentage of correct answers when the 

voice principle was off; however, there was no statistically difference between game scores when 

the voice principle was off. We can reject hypothesis 4 and assume that FID students did not 

perform significant higher relative to FD students when the voice principle was off in the GLAR 

application. 

 

Table 35. Tukey HSD post-hoc analysis of Voice Principle for Game Score and Percentage of Correct Answers 

 

Measure Comparisons Difference Std Err p d 

 

Game Score 
FD Von FID Voff 1644.231 468.6386 0.0038* 0.97309 

FD Von FID Von 1007.692 468.6386 0.1449 0.59637 

FID Von FD Voff 976.923 468.6386 0.1655 0.57816 

FID Voff FD Voff 340.385 468.6386 0.8863 0.20145 

% of Correct 

Answers 
FID Von FD Voff 0.2426385 0.0682424 0.0032* 0.98613 

FID Voff FD Voff 0.1976692 0.0682424 0.0238* 0.80337 

FID Von FD Von 0.1475846 0.0682424 0.1412 0.59981 

FID Voff FD Von 0.1026154 0.0682424 0.4393 0.41705 

 

5.9.3 Research Question 3 

Are there content-based learning gains for field-independent and field-dependent students after 

engagement with GLAR application “Build-A-World”? 

5.9.3.1 Descriptive Statistics 

Content-based learning gains were assessed using the dependent measures of (1) pre-

assessment results, and, (2) post-assessment results. Since we were interested in the relative 

difference between pre- and post- assessments (as opposed to a raw single score), we did not take 

into account chance performance. Any effects of chance performance would be the same for both 

pre- and post-assessment results. Descriptive statistics for FID and FD students across pre- and 
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post- assessments are summarized in table 36 and 37. That data shows FID students had a median 

pre-assessment score of 7, with minimum and maximum pre-assessment scores of 3 and 10 

respectively; and median post-assessment score of 9, with minimum and maximum post-

assessment scores of 7 and 10 respectively.  While FD students had a median pre-assessment score 

of 4, with minimum and maximum pre-assessment scores of 1 and 9 respectively; and median 

post-assessment score of 7, with minimum and maximum post-assessment scores of 3 and 9 

respectively.  

 
Figure 30. Comparing Pre- and Post-Assessment by Cognitive Style 
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Table 36. Descriptive Data for Pre-Assessment by Cognitive Style   

      Percentile 

Cognitive Style M SD n Min Max 25 50 75 

 

Field Dependent  4.384 2.103 13 1 9 3 4 5 

Field Independent 6.846 1.951 13 3 10 5 7 8 

Note. The maximum possible score was 10.  
 

 

Table 37. Descriptive Data for Post-Assessment by Cognitive Style   

      Percentile 

Cognitive Style M SD n Min Max 25 50 75 

 

Field Dependent  6.923 1.498 13 3 9 6 7 8 

Field Independent 8.692 1.031 13 7 10 8 9 9.5 

Note. The maximum possible score was 10.  

 

5.9.3.2 Hypothesis Testing 

Hypothesis (H5): There are content-based learning gains for both field-independent and field-

dependent students after engagement with “Build-A-World”.  

 Two Wilcoxon Signed-ranked tests were conducted to evaluate hypothesis 5 and determine if 

there were significant differences between pre- and post- assessments for FID and FD students. 

For FID students, the Wilcoxon Signed-rank test indicated significant difference between the pre- 

(Mdn = 7) and post- assessment (Mdn = 9) scores, Z = 3.41, p = 0.0054. With the Z score an effect 

size was calculated using the formula: r = 
𝑍

√𝑛
, where n is the total number of samples. The Wilcoxon 

effect size is considered large when it is more than 0.5, median when it is between 0.3 and 0.5, and 

small when it is less than 0.3 (Grissom & Kim, 2012). Therefore, the effect size of the pre- and 

post- assessment was r = .946.  For FD students, the Wilcoxon Signed-rank test indicated 

significant difference between the pre- (Mdn = 4) and post-assessment (Mdn = 7) scores, Z = 3.76, 
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p = 0.0034 with an effect size of r = 1.042. We can accept hypothesis 5 and assume that there are 

content-based learning gains for both FD and FID students after engagement with “Build-A-

World”.  

 
Table 38. Field-Independent Students’ Wilcoxon Signed-rank Test Results  

 FID Post-Assessment –  

FID Pre-Assessment 

Z 

p 

3.411 

0.0054* 

 

Table 39. Field-Dependent Students’ Wilcoxon Signed-rank Test Results 

 FD Post-Assessment – FD Pre-Assessment 

Z 

p 

3.756 

0.0034* 

 

Hypothesis (H6): The content-based learning gains are significantly higher for field-dependent 

students relative to field-independent students after engagement with “Build-A-World”.  

Content-based learning gains were quantified using the difference score that was calculated 

as the difference between the pre-assessment and post-assessment scores. Descriptive statistics for 

difference score between FID and FD students are summarized in table 40. That data shows FID 

students had a median difference score of 2, with minimum and maximum difference scores of -1 

and 6 respectively and FD students had a median difference score of 3, with minimum and 

maximum difference scores of -2 and 5 respectively. 
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Figure 31. Assessment of Learning Gains by Cognitive Style 

 

Table 40. Descriptive Data for Assessment of Learning Gains by Cognitive Style   

      Percentile 

Cognitive Style M SD n Min Max 25 50 75 

 

Field Dependent  2.528 2.436 13 -2 5 1 3 4.5 

Field Independent 1.846 1.951 13 -1 6 0.5 2 3 
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A Kruskal-Wallis test was conducted to evaluate differences between FID and FD students 

to median change in content-based learning gains differences. The test was not significant; 

therefore, we reject the hypotheses and assume that the content-based learning gains for FD and 

FID students are relatively the same. The test revealed an effect size of r = 0.239.   

Table 41. Learning Gains Kruskal-Wallis Test Result 

 n Chi-square df p-Value Z-Value R 

 

Difference Score 26 1.550 1 0.223 -1.219 0.239 

 

5.10 Discussion  

Prior research has found that cognitive style accounts for key differences between students 

with regard to social connectedness and visual perceptiveness. However, few investigations to our 

knowledge have studied how students’ cognitive style may influence cognitive load, performance 

and content-based learning gains when using GLAR applications. Therefore, the purpose of this 

study was to establish if there is a relationship between students’ cognitive style and cognitive 

outcomes when interacting with GLAR applications. Specifically, this study investigates how 

designing GLAR for individual differences in cognitive style may influence cognitive load, 

performance and content-based learning. The key findings are (1) cognitive load of FD students 

is significantly lower in the VonChigh condition relative to the other conditions when voice and 

coherence were manipulated, (2) there was no difference in FID students’ cognitive load when 

voice and coherence were manipulated, and, (3) both FID and FD students had content-based 

learning gains after engagement with Build-A-World. These findings add to the body of literature 

that cognitive style is an individual difference that can be linked to cognitive load and learning 

gains in GLAR.   
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5.10.1  Cognitive load (Research question 1)  

Exposing all students to each of the four experimental conditions allowed us to investigate 

which condition(s) help students develop their own personal strategies for interacting with Build-

A-World. This study revealed that FD students experienced less cognitive load in the VonChigh 

condition as compared to the other three voice × coherence conditions. These findings could be 

interpreted as using tablet-based GLAR that embraces voice and coherence may support social 

connectedness and visual perceptiveness. Recall that social connectedness refers to the relationship 

students have with other students and voiceovers that provide positive feedback and vocal 

encouragement. Research conducted by Shaver and Goldenberg (2005) found that social 

connectedness could have important cognitive benefits and influence how students interact with 

information. Visual perceptiveness is students’ ability to identify significant information from 

visual or textual content to associate with a more difficult learning task (Lyons-Lawrence, 1994; 

Liu & Reed, 1994). Further, studies show that FD students are generally not visually perceptive 

without assistance from the learning content or delivery mechanism (Kali, 2002).  Since voice and 

coherence are known to support social connectedness and visual perceptiveness respectively, the 

results may suggest that GLAR interfaces that support voiceovers and visual cueing help FD 

students develop effective learning strategies which, in turn can reduce their cognitive load. It is 

important to note that for this study social connectedness was not directly manipulated. Therefore, 

the findings can differentiate what aspect of the voice principle is supported by social 

connectedness. These findings could also be due to the fact that voice guidance coupled with high 

coherence resulted in a structured and undifferentiated GLAR user interface.  This interface in turn 

may have enabled FD students to more easily organize system-presented information, and 

ultimately lower the cognitive demand required to use the interface. Lastly, the sample could have 
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been biased based on previous classroom experiences with applications providing voiceover cues 

such as feedback or students’ auditory preference.  

On the other hand, FID students exhibited no significant differences in cognitive load 

across the four experimental voice and coherence conditions. These results support the notion that 

the manner of information presentation (i.e., via voice and coherence) does not appear to affect 

FID students’ visual perceptiveness.  That is, FID students may be able to use many different 

GLAR interfaces to isolate important information without experiencing differing levels of 

cognitive load. Lastly it is known that, when faced with a large amount of information, FID 

students do not rely on social connectedness to develop strategies on how to select, organize and 

integrate important information into their mental models.   

5.10.2 GLAR performance (Research question 2) 

In terms of performance, this study revealed that FD students had higher game scores as 

compared to FID students when using GLAR designed to provide social connectedness (i.e. when 

voice is on and coherence is high). This was a notable finding since it contradicts research findings 

that suggest FD students do not perform as well and score lower than FID students (Grieve & 

Davis, 1996), (Davis, 1991). One explanation for FD students’ higher game scores could be that 

they worked harder than the FID students; a supposition supported by the fact FD students reported 

increased levels of cognitive load as compared to FID students. This try harder effect may be 

effective for now; however, in a longitudinal study we may see FD students experience fatigue 

and disengagement, which would potentially mitigate the relative performance gains.  

Although FID students had lower game scores as compared to FD students, FID students 

solved more problems with fewer mistakes than FD students which is aligned with other research 
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findings. According to Ishmail and King (1985), FID students tend to achieve higher scores in 

mathematics on standardized tests because they are analytical and able to think abstractly to 

acquire algorithmic knowledge. Taken in sum, this study provides empirical evidence that 

designing GLAR applications that account for cognitive style offers promise to improve GLAR 

performance for FD students as measured by game score, but may not assist FD students in 

accurately answering questions related to learning content.   

5.10.3 Content-based learning gains (Research question 3)  

Delivering learning content in a manner that is sensitive to individual differences and aligns 

with students’ different cognitive styles can significantly impact student learning outcomes. We 

found that both FID and FD students had statistically significant content-based learning gains after 

engagement with the GLAR application. The positive increase in content-based learning gains for 

FD students may be attributed to the instructional design of GLAR using coherence and voice. 

That is, by leveraging voice coupled coherence may have reduced ambiguity and helped FID 

students relate to the learning content.   

Additionally, we found no meaningful differences between FD and FID students’ learning 

gains. A possible explanation for no significant findings could be contributed to the ceiling effect. 

Specifically, because FID students scored an average 10 (of 10) on the pre-assessment, there was 

little to no room for improvement in post-assessment score. According to Uttl (2005), ceiling 

effects occurs when “assessments are relatively easy so that a large proportion of participants 

obtain either maximum or near-maximum scores and the true extent of their abilities cannot be 

determined.” Because we used standardized assessments, our ability to account for the ceiling 

effect in measuring differences between FID and FD students was limited. FID students have 

potentially stronger mathematical abilities than FD students (Lin, Hwang, & Kuo, 2009), thus to 
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mitigate ceiling effect in future studies, the characteristics of participants should be carefully 

considered with regards to selecting or designing assessments.   

5.10.4 Voice Principle  

In this study, the voice principle was manipulated to specifically help FD students by 

fostering social connectedness via positive feedback and encouragement, which in turn aimed to 

support deeper processing of instructional messages such as “The Aliens have just started their 

journey to Mars”, and “You have 11 minutes to finish the landing strip. Keep working hard.” FID 

students were expected to have comparable GLAR game scores for both voice-on and voice-off 

conditions.  Although we observed improved FID student game scores when voice was on (as 

compare to voice off), we expected voice to be an unnecessary principle to respond to student’s 

cognitive resources since the finding was not significant and FID do not typically rely on social 

connectedness to accomplish tasks or goals (e.g., answer questions in the marketplace).  

The body of literature on the voice principle is mixed, yet most studies report an increase 

in the degree of social connectedness perceived by the student (Moreno 2009; Mayer et al., 2003). 

Moreover, according to Durbridge, voiceovers such as those included in Build-A-World can 

improve cognition by adding clarity, meaning and motivation and by directly conveying a personal 

narrative that is more engaging than written text (Durbridge, 1984). We believe Build-A-World in 

turn, offers promise since our results suggest GLAR applications may reduce FD students’ 

cognitive load and increase their performance.  

5.10.5 Coherence Principle  

Since FD students are generally not visually perceptive and take a global approach to 

problem solving (Allinson & Hayes, 1996), we believe high coherence provided FD students with 
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a minimalist interface where the visual information was (1) organized in a logical manner, and, (2) 

included only the necessary information needed to play the game. We did not observe that the 

coherence principle assisted FD students with visual perceptiveness and this could be due to the 

degree in which we manipulated conditions of coherence (i.e., differences in coherence conditions 

were not sufficient enough to determine differences in GLAR performance).  

However, we did observe that FD students had higher game scores than FID students in 

both low and high coherence interfaces; which was unexpected. When coherence was low, we 

expected FID students to have higher game scores than FD students because FID students are able 

to leverage more concurrent (and potentially distracting) information when developing their own  

cognitive strategies. According to Witkin et al. (1977), field independent students have the ability 

to create structure using their own cognitive schemes or strategies. Therefore, when there is no 

structure present in the material, FID students should have greater performance and reduced 

cognitive load (as compared to FD students since FID students can, in theory, employ their own 

strategies to distinguish relevant and irrelevant information. More research is needed to observe 

the inconsistencies we found in our study.   

5.10.6 Implications  

To maximize learning outcomes in GLAR, it is useful to apply principles of CTML as well 

as employ techniques that account for cognitive differences among students. This study provides 

an example of how to design a tablet-based GLAR application that accounts for student cognitive 

style when delivering fifth grade area, perimeter and volume learning content. The findings suggest 

that accounting for cognitive style in GLAR interface design could help lower the cognitive load 

of both FD and FID students, which in turn, could improve their learning experiences. This 

research also offers evidence that utilizing the voice and coherence principles of CTML can lower 
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cognitive load and increase content-based learning gains specifically for FD students. However 

from the results of this study, it is difficult to determine whether or not varying combinations of 

voice and coherence can be creatively leveraged to improve learning experiences for FID students. 

It is also difficult to differentiate the voice principle from social connectedness such social 

connectedness was not directly manipulated.  

Most research examining cognitive style and CTML is conducted in laboratories under 

controlled conditions.  Thus, a contribution of this work lies in the fact that we conducted this 

study in actual fifth grade classrooms, and thus the work provides insights into whether GLAR 

applications could actually be used in real-world environments. Literature on controlled laboratory 

research provides evidence supporting the use of CTML to meet the needs of both FD and FID 

students, while in a real-world environment using tablet-based GLAR, only FD students showed a 

reduction in cognitive load. The results of this study reiterate the importance of accounting for 

cognitive style differences amongst students when using tablet-based GLAR applications. 

However, more research is needed to validate the use of FID (as well as FD) traits to guide the 

design of future GLAR applications for use in classroom settings.  

5.10.7 Assumptions and Limitations   

In this study, we assumed that all students had the same mathematical knowledge of area, 

perimeter and volume, which may not be accurate. In all likelihood, within and between groups, 

all students had varying levels of content knowledge because they had different mathematics 

teachers and came from different schools.  

When creating GLAR game metrics, game score and percentage of correct answers, we 

assumed that both metrics were sensitive and reliable to investigate students’ GLAR performance. 
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The results revealed that game score was not a sensitive metric; therefore, future studies should 

develop a more detailed, rich, complicated game score that can reveal experimental effects.  

Another assumption made was that fifth-grade participants have the ability to self-report 

their cognitive load experienced during the gamified AR activity. To support this assumption, it 

should be noted that researchers Gopher and Braune (1984) claim that elementary students were 

more than capable at providing a numerical value to assess their perceived stress, frustration and 

cognitive load.  

Lastly, we assumed that the GLAR interface differences in voice and coherence were 

sufficient enough to elicit differences in GLAR performance and cognitive load amongst students. 

There was limited pilot testing because of time constraints and limited availability to the target 

populations.  Therefore, more research should include deeper pilot testing of GLAR applications 

to ensure that differences in students’ reported cognitive load and GLAR performance are due to 

differences in interface design. 

A limitation of this study is the small sample size of twenty-six participants, which has 

clear ramifications for the generalizability of the study to other content areas, grade levels and 

regions of the Country. Also, the sample of participants was not fully random due to recruitment 

of the specialized population.  Therefore, the level of generalization is lower and we recommend 

increasing the sample size in future studies.  

The duration of exposure time to the GLAR application was another limitation of this 

study. Research states that FD students “require more time than FID students to complete tasks in 

computerized settings” (Liu & Reed, 1994) and “more time in general to process information” 
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(Burton et al., 1995; Davis, 1991). Therefore, allowing FD students longer exposure times could 

possibly result in different cognitive load and student performance results.  

Lastly, since this research was not conducted in a controlled environment, there was some 

noise present in data collection methodologies such as environmental distractions, student stress, 

disengagement or off-task students, and interruptions.  
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6 Conclusion  

The increased development of educational technology has made it possible to provide students 

with hands-on, rich experiences aimed to ignite their passion for STEM and increase learning 

achievements. However, many students in K – 12 underserved communities do not have access to 

these technologies and thus are not equipped to achieve similar STEM educational levels of 

learning.  This dissertation work aimed to examine the potential of commodity tablet-based GLAR 

applications as a supplemental learning tool in fifth grade classrooms at Title I schools, in hopes 

of identifying ways in which to minimize the achievement gap. There were three objectives 

working towards this aim; each grounded in the CTML theoretical framework: (1) understanding 

the role of prior knowledge on cognitive performance, (2) examining if adherence to CTML 

principles (developed for 2D multimedia learning) applies to gamified learning augmented reality, 

and, (3) investigating the impact of students’ cognitive style on cognitive performance with 

GLAR. Objective one aimed to give direct insights into students’ perspectives in regard to possible 

benefits and challenges of using GLAR, their perceived cognitive load and how prior knowledge 

may affect cognitive load and knowledge creation. Objective two examined how GLAR interfaces’ 

degree of adherence to CTML principles effected students’ cognitive load and performance. 

Objective three aimed to bolster the claim that utilizing cognitive style to inform the design of 

GLAR applications is an effective approach for accounting for students’ cognitive differences.  

The results of this work suggest that GLAR applications grounded in CTML have potential as 

an effective supplemental tool that can be leveraged in fifth grade classrooms at Title 1 schools to 

enhance students’ learning experiences. Specifically, this work further provides evidence that 

CTML may be an appropriate framework to ground and guide the development of GLAR 

applications that aim to reduce students’ cognitive load. This work also shows the importance of 
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considering individual differences such prior knowledge and cognitive styles when designing 

GLAR applications. For example, we found that the same GLAR application used for students 

without prior knowledge students may not necessarily support the cognitive processes of students 

with prior knowledge. Additionally, our findings suggest that accounting for cognitive style in 

GLAR interface design could help lower the cognitive load of both field-dependent and field-

independent students, which in turn, could improve their learning experiences and outcomes.  

6.1 Research Contributions  

To the best of our knowledge, this work is the first to apply CTML’s principles to the 

design of tablet-based GLAR applications. Therefore, this work contributed to literature by 

providing a set of empirical evidence on the unique benefits and challenges of utilizing augmented 

reality (AR) as a supplemental learning technique to reinforce mathematical concepts while 

responding to students’ cognitive resources.  Specifically, this work provides:  

 Novel tablet-based GLAR applications for reinforcing mathematical concepts, Celestial 

Blast and Build-A-World 

 A new novel base of knowledge for researchers, designers and practitioners to consider 

by providing a starting point for other researchers interested in designing tablet-based 

GLAR applications for mathematical content for underrepresented students in southwest 

Virginia.  

 Empirical evidence on the effects of adherence to CTML principles when designing 

GLAR applications similar to Celestial Blast and Build-A-World to maximize students’ 

cognitive outcomes  
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 Empirical data on the relationship between students’ perceived benefits and the impact of 

GLAR applications, Celestial Blast and Build-A-World on students’ cognitive load.  

 An understanding of the pedagogical value of tablet-based GLAR applications for 

underrepresented students in southwest Virginia  

 A mixed-methods study that utilized quantitative and qualitative research to gather 

students’ perspectives. The qualitative findings in this study were able to add new layers 

of support, rationale and explanation to quantitative results. 

 Students’ perspectives as a way to improve the development of future GLAR applications 

for underrepresented students.  

 Evidence that suggests designing GLAR to consider individual differences such as prior 

knowledge and cognitive styles can improve students’ learning and cognitive outcomes.  

 A usability evaluation for understanding the impact and consequences of combining 

multiple design principles of CTML to inform GLAR applications. 

6.2 Recommendations for design considerations  

This research offers recommendations as well as design considerations to assist with the 

development of future GLAR applications aimed to reinforce mathematical concepts of 

underrepresented students in fifth grade. These recommendations were derived from lessons 

learned through conducting this dissertation work.  

1. Design applications to highlight the features and affordances of GLAR such as engaging 

students in multi-modal sensory and spatial tasks.  

2. AR excels at augmented the real-world, so leverage the “real-world” classroom as part of 

the GLAR application design.  
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3. Create interactive experiences that encourage students to get up, and move, and to view 

virtual content from many perspectives (another advantage AR affords). 

4. Develop personalized versions of GLAR applications to support individual differences 

and students’ preferences.  

a. Provide corrective feedback so students can adjust their performance to adopt 

more productive learning strategies; 

b. Provide scaffolding to enhance individualized learning outcomes; 

c. Customize the pace and delivery of learning content so GLAR applications meet 

the needs of all students; 

d. Provide level selection so students can determine where they want to start 

interacting with GLAR (thus supporting varying levels of students’ prior 

knowledge), and; 

e. Provide a hint or help button so students can receive assistance if they are having 

difficulty. 

f. Provide differentiated instruction that the student is receptive to.  

5. Incorporate built in assessments to allow students and potentially teachers to see what 

students are learning from, and during the engagement with GLAR.  

6. Conduct usability evaluations with student and teachers to gather specific feedback on 

GLAR application throughout the development process. Incorporate feedback into future 

iterations of the GLAR application to improve the experiences of your users.  

7. Be cautions when selecting themes or stories that guide the design of GLAR applications. 

Unrealistic themes may cause students to become disengaged in the learning activity if 

they cannot relate to the learning content.    
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8. Design multiplayer GLAR applications to foster collaborative learning.  

6.3 Future Research   

Payne-Tsoupros (2010) cautioned the educational community in that attempting to close the 

achievement gap may actually result in “high-achieving students regressing toward the mean 

instead of the low-achieving students improving.” Additional research is needed to investigate how 

both high- and low- achieving student learning is effected from engaging with GLAR. This can be 

observed by collecting longitudinal data which provides researchers with a richer and more 

complete understanding on GLAR’s impact on achievement, and what improvements could be 

made to GLAR ensure all students are improving.  

Another opportunity for future research is to investigate what other learning content areas 

can be effectively reinforced using GLAR and what learning content areas are difficulty to deliver. 

For example, our study provides evidence that GLAR can reinforce mathematical spatial learning 

content on angles, area and perimeter, but for example, GLAR may not be a fit for understanding 

18th century English literature. It is important for future research to acknowledge the limitations of 

GLAR to increase student learning outcomes whilst also supporting student cognitive resources 

and to study the types of learning activities GLAR applications are well-suitable for.  

Finally, learning applications are being designed without considering the perspectives of 

educational stakeholders on how technology can be effective leveraged in the classroom (Cuban, 

2003). Investigating teachers’ perceptions would help identify what difficulties they face in the 

classroom and how GLAR could be potentially integrated into the classroom to address those 

difficulties. Further, future research can examine to what extent teachers require training when 

integrating GLAR in the classroom.  
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 237 

 

Appendix J. User Satisfaction Survey for Low Adherence Interface 

 

  



 

 238 
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Appendix L. User Satisfaction Survey for VoffClow Interface 
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Appendix M. User Satisfaction Survey for VonChigh  Interface 
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Appendix N. User Satisfaction Survey for VoffChigh Interface 
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Appendix O. User Satisfaction Survey Results Chapter 4 

 
All participants completed a user satisfaction survey on their evaluation and opinions about 

the three GLAR interfaces on a Likert Scale of 1 to 5, with 1 being no and 5 indicating yes. Tables 

42, 43 and 44 displays the descriptive statistics for each question.  

 

Table 42. Means and Standard Deviations of User Satisfaction Survey Results for High Adherence Interface 

Questions Mean SD 

1. Was it too much information presented?  1.94 1.03 

2. Was the graphics distracting or annoying? 2.61 1.04 

3. Did the graphics help you understand the angles?  4.49 1.23 

4. Was the sound distracting or annoying?  2.89 0.96 

5. Did the sound help you protect the town? 4.49 0.89 

6. Was it too much sound and graphics? 3.00 1.23 

7. Did the colors (red, yellow and blue) on the asteroid help you 

protect the town?  

4.86 1.38 

8. Did the voice help you to know where the asteroid was coming 

from?  

3.86 1.01 

9. Did the town changing colors help you protect the town? 2.97 1.20 

10. Did the health bar help you protect the town?  3.43 1.04 

11. Was the meaning of the graphics easy to understand?  3.31 1.09 

12. Did hearing the sound and seeing the graphics at the same time 

help play the game?  

3.05 1.00 

13. Did seeing the angle classification and number at the bottom 

help you protect the town? 

4.37 1.06 

 

 
Table 43.Means and Standard Deviations of User Satisfaction Survey Results for Medium Adherence Interface 

Questions Mean SD 

1. Was it too much information presented?  3.88 1.16 

2. Was the graphics distracting or annoying? 3.00 0.97 
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3. Did the graphics help you understand the angles?             3.57 1.12 

4. Was the sound distracting or annoying?  4.49 0.97 

5. Did the sound help you protect the town?  3.29 1.20 

6. Was it too much sound and graphics?  3.43 1.22 

7. Did you play attention to the score while playing?  4.66 1.19 

8. Did the voice help you to know where the asteroid was coming 

from?  

3.37 0.99 

9. Was it distracting or annoying having multiple towns?  4.40 1.14 

10. Was the meaning of the graphics easy to understand?  1.94 1.03 

11. Was hearing the sound and seeing the graphics at different 

times stressful?  

3.34 1.06 

12. Do you want the angle classification and number to be 

displayed closer together?  

2.97 1.12 

 
Table 44. Means and Standard Deviations of User Satisfaction Survey Results for Low Adherence Interface 

Questions Mean SD 

1. Was it too much information presented?  

 

1.09 1.01 

2. Was the graphics distracting or annoying? 

 

2.07 1.17 

3. Did the graphics help you understand the angles?  

 

            3.06 0.87 

4. Was the dancing man a distracting or annoying?  

 

2.37 1.10 

5. Do you want the game to have sound?  

 

4.23 1.06 

6. Was it too many graphics?  

 

3.17 1.07 

7. Did you play attention to the score while playing?  

 

4.31 1.12 

8. Did you play attention to the UFO?  

 

4.43 0.87 

9. Was it distracting or annoying having multiple towns?  

 

3.98 1.00 

10. Was the meaning of the graphics easy to understand?  

 

2.89 0.96 

11. Was it difficult to play the game?  

 

4.95 0.88 

12. Do you want the information to be displayed closer together?  4.63 1.38 
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Appendix P. User Satisfaction Survey Results Chapter 5 

 
All participants completed a user satisfaction survey on their evaluation and opinions about 

the GLAR interfaces when voice and coherence is manipulated on a Likert Scale of 1 to 5, with 1 

being no and 5 indicating yes. Tables 45, 46, 47 and 48 displays the descriptive statistics for each 

question.  

 

Table 45. Means and Standard Deviations of User Satisfaction Survey Results for VoffClow Interface 

Questions Mean SD 

1. Do you want the game to have sound? 3.68 1.89 

2. Not having sound allowed me to focus on the mission.  

 

2.48 1.30 

3. If the app had a talking voice, you could play the game better.  4.05 1.21 

4. Do you wish the game had a voice encouraging you while 

playing the game?  

 

3.97 1.56 

5. If the app had a talking voice, it would have been distracting?  

 

2.67 1.08 

6. Was reading the words while playing the game distracting?  

 

3.94 1.49 

7. Did the words help you complete the mission?  

 

3.73 1.07 

8. Did you notice the UFOs?  

 

4.08 0.98 

9. Was the dancing man distracting?  1.42 1.12 

10. Was there too much graphics?  

 

2.43 1.39 

11. Did you pay attention to the score when playing the game?  

 

4.57 1.04 

12. Did you pay attention to the number of blocks displayed at 

bottom of screen?  

1.65 1.44 

13. Was seeing words like “Nice” encouraging? 

 

3.87 1.01 

14. Do you think you can accomplish the mission without the 

positive feedback?   

2.13 0.97 

15. Was reading the words while playing the game distracting?  3.82 1.49 

16. Did you play attention to the UFOs?  

 

2.37 1.12 

17. Did seeing the blocks on your desk help you understand 

perimeter? 

3.05 1.38 
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18. Was the game fun?  4.65 1.01 

19. Was playing the game hard?  

 

4.88 1.09 

20. Was reading the words on the screen easy?  

 

3.82 1.42 

21. Was it easy to learn to play the game? 

 

1.05 0.86 

22. Did placing the blocks help you understand perimeter?  

 

4.45 1.11 

23. Did answering the questions help you to learn more about area, 

perimeter and volume?  

3.50              1.24 

24. Was placing the blocks easy?  

 

3.57 1.56 

25. Was answering questions in the market place easy?  

 

3.43 1.02 

 

Table 46. Means and Standard Deviations of User Satisfaction Survey Results for VoffChigh Interface 

Questions Mean SD 

1. Do you want the game to have sound 4.60 1.39 

2. Not having sound allowed me to focus on the mission.  

 

1.86 1.49 

3. If the app had a talking voice, you could play the game better.  

 

            3.86 1.49 

4. Do you wish the game had a voice encouraging you while 

playing the game?  

 

4.45 1.07 

5. If the app had a talking voice, it would have been distracting?  

 

3.00 1.27 

6. If the app had animations, it would have been distracting.   

 

4.86 1.33 

7. Was there too much graphics?  

 

4.66 1.19 

8. If the app had positive feedback, you could play the game 

better. 

 

2.63 1.16 

9. Do you wish the game showed you the score while you were 

playing?  

 

4.03 1.28 

10. Not having a talking voice allowed me to focus on the mission.  

 

2.63 1.08 

11. If the app had positive feedback, it would have been 

distracting 

 

3.30 1.86 
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12. Did seeing the blocks on your desk help you understand 

perimeter?  

4.54 1.61 

13. Was the game fun?  

 

2.89 1.07 

14. Was playing the game hard?  

 

3.73 1.22 

15. Was reading the words on the screen easy?  3.67 1.76 

16. Was it easy to learn to play the game? 

 

1.69 1.11 

17. Did placing the blocks help you understand perimeter?  

 

3.36 1.09 

18. Did answering the questions help you to learn more about area, 

perimeter and volume?  

 

3.66 1.31 

19. Was placing the blocks easy?  

 

3.67 1.29 

20. Was answering questions in the market place easy?  3.31 0.94 

 

 
Table 47. Means and Standard Deviations of User Satisfaction Survey Results for VonClow Interface 

Questions Mean SD 

1. Did you notice the talking voice?  

 

3.69 1.13 

2. Did the voice help you complete the mission? 

 

2.40 1.14 

3. Did the talking voice help you get a higher score?  

 

            3.94 1.07 

4. Did hearing “good job” encourage you? 

 

3.57 1.20 

5. Were the voice alerts distracting?  2.66 1.19 

6. Did you pay attention to the talking voice? 

 

3.69 1.17 

7. Was reading the words while playing the game distracting?  

 

4.57 0.98 

8. Did the words help you complete the mission?  

 

2.49 1.01 

9. Did you notice the incoming UFOs?  

 

3.46 1.09 

10. Was there too much sound and graphics?  

 

2.54 1.44 

11. Did you pay attention to the score when playing the game?  

 

2.74 1.40 

12. Did you pay attention to the number of blocks placed 

displayed at bottom of screen?  

2.51 1.27 

13. Was seeing words like “Nice” encouraging?   3.51 1.38 
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14. Do you think you can accomplish the mission without the 

positive feedback?   

 

2.09 1.01 

15. Was reading the words while playing the game distracting?  

 

3.17 1.07 

16. Did you play attention to the dancing man?  3.97 1.10 

17. Did seeing the blocks on your desk help you understand 

perimeter? 

3.37 1.00 

18. Was the game fun?  

 

3.37 0.97 

19. Was playing the game hard?  

 

4.49 0.89 

20. Was reading the words on the screen easy?  3.37 0.97 

21. Was it easy to learn to play the game? 

 

3.34 0.94 

22. Did placing the blocks help you understand perimeter?  

 

4.27 1.09 

23. Did answering the questions in the market place help you to 

learn more about area, perimeter and volume?  

 

2.87 1.13 

24. Was placing the blocks easy?  

 

4.05 0.89 

25. Was answering questions in the market place easy?  4.21 0.91 

 

 
Table 48. Means and Standard Deviations of User Satisfaction Survey Results for VonChigh Interface 

Questions Mean SD 

1. Did you notice the talking voice?  

 

4.52 0.97 

2. Did the voice help you complete the mission? 

 

4.24 0.89 

3. Did the talking voice help you get a higher score?  

 

            3.63 1.00 

4. Did hearing “good job” encourage you? 

 

4.71 1.13 

5. Were the voice alerts distracting?  1.89 0.96 

6. Did you pay attention to the talking voice? 

 

4.00 1.03 

7. If the app had animations, it would have been distracting.   

 

2.06 0.87 

8. Was there too much sound and graphics?  

 

1.29 1.20 

9. If the app had positive feedback, you could play the game 

better. 

3.34 1.06 
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10. Do you wish the game showed you the score while you were 

playing?  

3.83 0.90 

11. If the app had positive feedback, it would have been 

distracting.  

3.31 1.08 

12. Did seeing the blocks on your desk help you understand 

perimeter?  

3.57 1.12 

13. Was the game fun?  

 

4.43 1.22 

14. Was playing the game hard?  

 

3.97 1.19 

15. Was reading the words on the screen easy?  2.46 1.54 

16. Was it easy to learn to play the game? 

 

2.69 1.13 

17. Did placing the blocks help you understand perimeter?  

 

3.51 1.38 

18. Did answering the questions help you to learn more about area, 

perimeter and volume?  

 

4.69 1.13 

19. Was placing the blocks easy?  

 

3.66 1.19 

20. Was answering questions in the market place easy?  3.37 0.97 

 


