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Chapter 4

Control field

In this chapter, the implementation of an active noise control model to the ducted fan

noise prediction code TBIEM3D is described. Section 4.1 describes the analytical

modeling of the control field, and section 4.2 describes the active noise control

algorithms that were used in this study to adjust the control field (i.e., the outputs from

the control sources) such that reduction of the radiated fan noise is achieved.

4.1 Analytical model

The implementation of active noise control to the TBIEM3D code has to be done in a

manner that is compatible with the BIEM method. The active noise control

implementation should not introduce any assumptions that would compromise the

effectiveness and capabilities of the duct fan noise prediction code TBIEM3D. Thus, if

infinite duct theory were to be used to model the modes that are generated by the control

sources and that propagate in the duct, TBIEM3D would be constrained to consider only

ducts of a simple cylindrical shape, and reflection at the duct openings of the modes

generated by the control sources would be neglected. Also, use of the Rayleigh integral

(as in almost all of the models reviewed in section 1.3) to compute the radiation of the

control modes into the far field would imply that the duct is embedded in a baffle and
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would therefore limit the computation of the controlled pressure field to the region

upstream or downstream of the duct opening. This approach would prevent the user from

taking advantage of TBIEM3D ‘s ability to compute noise radiation in the shadow region

(i.e., to the side) of the duct.

By computing the field generated by the control sources in the same manner as the fan

noise field was computed, the control field would implicitly include reflection from the

duct openings, upstream and downstream radiation, refraction at the edges of the duct,

etc.. With this approach, the features that would make an active noise control model more

advanced than current ones would be preserved. Hence, a scattering approach is used to

compute the control field. The field generated by the control sources in free space is

computed first, and is then used to compute the scattered component of the control field

through the BIEM procedure described in Chapter 2. The analytical expression for the

incident field generated by the control sources is derived next.

Figure 4.1: Control source model
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The control sources are modeled by point monopoles and are organized into Na axial

arrays of Nc point monopoles placed along the duct inlet inner wall at  r=rc  where dc rr ≤ ;

z=z l , l=1,2,...,Na; ψ =ψ j , j=1,2,...Nc, as described in Figure 4.1.

The incident field generated by the control sources is obtained by solving the

following wave equation in an unbounded space
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where l,jq  is the strength of the jth  source in the lth  array and � is the frequency of

excitation of the control sources. Reflections from the fan are not taken into account.

The procedure used in Chapter 3 to find the solution of the inhomogeneous wave

equation describing the fan noise radiation is also used in this section to compute the

solution of Eq. (4.1).

First, Eq. (4.1) is nondimensionalized, yielding
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Next, this equation is expressed in the stretched, moving frame of coordinates

described previously by Eq. (3.17) and Eq. (3.18). In that reference frame, Eq. (4.2) is

written as
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Now, it is noted that the term )(q j
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Therefore, Eq. (4.3) becomes
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Assuming that the solution of the above equation is of the form

( ) timi-

m

m
ii eeZ)(r,Ptz,,r,p ωψ

∞

−∞=
∑=ψ , (4.8)

Eq. (4.7) can be written as
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where Ω~Nn h  was defined in Chapters 2 and 3 as the fan blade passage frequency and its

associated harmonics. In a feedforward control algorithm these frequencies will

correspond to the frequencies of excitation ω~  of the control sources.

Also, let

Nnm h= (4.11)

where Nn h  is the circumferential order of the modes generated by the fan and m is the

circumferential order of the modes generated by the control sources. From Eq. (4.10), Eq.

(4.11) and Eq. (3.28),
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Thus, combining Eq. (4.12) with Eq. (4.9) yield
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It is observed that the left hand side of this equation is of the same form as the left hand

side of Eq. (3.26). Therefore, referring to the analysis done in section 3.2.1 (Eq. (3.28)

through Eq. (3.33)), Eq. (4.13) can be written as
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where κ is defined by Eq. (3.27). Introducing the following variable
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Eq. (4.14) becomes
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This equation is the inhomogeneous Helmholtz equation for Qi(r,Z). The Green’s

function for the Helmholtz operator of this equation is known and is defined as
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where 222 )ZZ(cosrr2rrR ′−+ψ′′−′+= is the distance, in cylindrical coordinates,

between two points M and M’.

Therefore, applying the Green’s function technique, the solution of the Helmholtz

equation is given by

j
ca

mi
l,j

N

1j

N

1=l

m
i eq

2

1
)Z,r(Q ψ

=
∑∑πβ

−=

rdZde)ZZ()rr()ZZ,r,r(G ZMi
lcm

Z0r

′′−′δ−′δ′−′ ′κ
∞

−∞=′

∞

=′
∫∫ . (4.18)

Noting that
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the solution of the inhomogeneous Helmholtz equation becomes
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where
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Therefore, the resulting expression for the pressure field generated in the unbounded

space by the circumferential arrays of control sources (i.e., point monopoles) is
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In order to compute the scattered field through the procedure described in Chapter 2,

both the Qi term defined by Eq. (4.23) and its derivative with respect to r need to be

known. Taking the derivative of Eq. (4.23) with respect to r yields
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The terms described in Eq. (4.23) and Eq. (4.25) are computed numerically using the

method of Gauss-Legendre for the integration procedure.

4.2 Active control algorithms

Feedforward active control systems were modeled in this study. Figure 4.2 shows a

schematic of a feedforward active control system implemented in a turbofan engine inlet.

The control sources are placed along the circumference of the duct inner wall while the

error (pressure) sensors are positioned in the acoustic far field (shown) or along the duct
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inner wall (not shown). The fan produces a disturbance sound field at the blade passage

frequency and its harmonics. This unwanted noise field propagates through the duct and

radiates into the far field. A sensor mounted on the engine, near the fan station, generates

sinusoidal signals that are correlated with the blade passage frequency and harmonics and

are input into an array of compensators. The outputs from the compensators are the

control signals. The control sources (speakers), driven by the control signals, generates

the secondary sound field that destructively interferes with the fan noise field.

compensators

blade
passage
sensors

fan

control sources
error sensors

control
inputs

reference
signal

Figure 4.2: Schematic of a feedforward active control system.
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In the control system configurations that were modeled in this work, the error sensors

were microphones placed in the far field of the duct inlet and/or outlet, along the aircraft

fuselage, or along the duct inner wall. The control algorithms corresponding to each

modeled active control system configuration are described next.

4.2.1 Far field error sensors

A schematic of the control system configuration using error sensors placed in the far

field of the inlet is presented in Figure 4.3.

fan stage

control source
arrays

error sensors

R

∆ψ

Figure 4.3: Schematic of a control system using far field error sensors.
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A total of S control sources are placed along the duct inner wall (referring to section

4.1, S=Na*Nc), and E error sensors are placed in the far field to monitor the radiated

pressure. The control sources generate the secondary or control field aimed to

destructively interfere with the primary field, i.e. the radiated fan noise. The control

signals driving the control sources are determined so as to minimize the pressure at the

error sensors location.

The pressure pe
t at the eth far field error sensor is the sum of the pressure pe

p due to the

primary field and the pressure pe
s due to the secondary field at that error sensor, i.e.,

pe
t = pe

p + pe
s (4.26)

The control sources are grouped into control channels; the control sources within any

given control channel are driven by the same control signal amplitude. Therefore,

assuming that there is a total of L control channels, the pressure pe
s due to all the control

sources at the eth error sensor is given by

 pe
s = (U)T [R] (pe,s ), s=1,2,...,S (4.27)

where [R] is the control source configuration matrix for the L control channels. [R] is of

dimensions L×S. The elements Rl,s of the matrix [R] are complex numbers that represent

the magnitude and phase of each control source grouped into the lth channel and driven by

the lth  control amplitude Ul. For example, the following elements of the configuration

matrix: 1, -1, i, -i and 0, where i corresponds to the complex number (0,1), represent in-

phase, out-of-phase, 90 degrees out-of-phase, -90 degrees out-of-phase and disconnected

condition, respectively. The elements of the vector (U)T

(U)T = (U1,U2,...,UL),  (4.28)

where the superscript T indicates transpose, are the control amplitudes driving each

control channel. The elements of the vector (pe,s)
T

(pe,s )
T = (pe,1, pe,2, ..., pe,S ) (4.29)



72

correspond to the pressure at the eth error sensor due to each  control source.

Thus, the total pressure at each far field error sensor can be expressed as

(pe )
t
e=1,2,...,E  = (pe)

p
e=1,2,...,E  +  (U)T [R] [pe,s] e=1,2,...,E;  s=1,2,...,S (4.30)

or

(pe )
t
e=1,2,...,E  =  (pe)

p
e=1,2,...,E  +  (U)T [H]T (4.31)

where [H] is called the transfer matrix. [H] is of dimension E×L and its elements

correspond to the complex output at each error sensors due to a unit input from each

control channel.

The optimum complex control amplitude inputs, Ul, are obtained by minimizing a

cost function, which is defined as the sum of the squared moduli of the pressures at the

error sensors, i.e,

 J = (pe )
t H  (pe)

t  (4.32)  

where the superscript  H denotes the complex conjugate of the vector transpose.

It can be shown that J is a quadratic function of the complex control amplitudes Ul

(Nelson and Elliott 1992), which has a global minimum for a certain control amplitude

vector (U). This optimum vector (U) can be evaluated by setting to zero the derivatives of

J with respect to the real and imaginary part of the control amplitudes. The optimum

control amplitude vector is then given by

(U)opt = - ( [H]H [H] )-1  [H]H  (pe)
p

e=1,2,...,E  (4.33)

For the case of equal number of error sensors and control channels (i.e. E=L), the above

equation reduces to

(U)opt = - ( [H] )-1 (pe)
p

e=1,2,...,E  (4.34)

and the pressure at all the error sensors is theoretically driven to zero.
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4.2.2 Fuselage error sensors

A schematic of the configuration of the control system using fuselage error sensors is

 presented in Figure 4.4.

fan stage

control source
arrays

error sensors

plane fuselage

Z (duct axis)

Figure 4.4: Schematic of a control system using fuselage error sensors.

The error sensors are placed along the fuselage of the aircraft in a configuration that

is parallel to the axis of the fan duct. Since the error sensors are all located within a single

plane (r,�0, Z), they will not be able to register the necessary phase information that will

indicate to the controller that spinning modes need to be targeted for control. This



74

inability would prevent the controller from driving the control sources to generate

spinning modes. To overcome this problem, the control system is pre-configured in a

manner that will ensure the generation of  spinning modes that will destructively interfere

with the ones generated by the fan: in order to generate the mth order circumferential

spinning mode, each control source array is composed of 4m control sources (Burdisso et

al. 1995) and is driven by a single control channel. In each control array, the control

sources are evenly distributed around the circumference of the duct and the phase shift

between successive control sources is set to 90 degrees. So, in the case were a single

control source array is used to generate the control field, the configuration matrix R (cf.

section 4.2.1) reduces to a line vector formed by the sequence (1, i, -1, -i) repeated four

times, and Eq. (4.30) becomes

(pe )
t
e=1,2,...,E  = (pe)

p
e=1,2,...,E  +

U1 (1, i, -1, -i, 1, i, -1, -i, …) [pe,s] e=1,2,...,E;  s=1,2,...,16. (4.35)

Since the duct modes are assumed to radiate axisymmetrically from the duct

openings, this configuration of the control system is also expected to minimize the noise

radiating toward the ground: by reducing the sound radiation toward the fuselage within a

certain sector, one will also implicitly reduce the sound radiation toward the ground

within that same sector. In the instance where the modes radiating from the duct openings

can not be assumed to be axisymmetrical, additional axial arrays of error sensors could be

placed around the aircraft fuselage in order to control the sound radiation at different

azymuthal angles.

4.2.3 Wavenumber error sensors

With the wavenumber error sensors technique, instead of minimizing the pressure at

the error sensors placed in the far field or along the aircraft fuselage, certain components

of the axial wavenumber spectrum of the inlet (or outlet) duct sound field are minimized
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in an attempt to reduce the acoustic radiation toward specific directions of the far field.

The principle of this active noise control approach is described next. Wavenumber

sensors were first implemented by (Smith and Burdisso 1999). Related details of the

method can also be found in (Joseph et al. 1997).

The wave equation in a cylindrical duct with steady axial flow can be expressed as
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tc
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where M, the flow Mach number, is assumed negative in the inlet of the duct and positive

in the outlet. Referring to section 3.1, the solution to Eq. (4.36) is of the form

)]zk)t(m[iexp()rk(JA)z,,r(p nm
z

mn
rmnmnm −−Ω= ψψ ψ . (4.37)

Introducing Eq. (4.37) back into the convected wave equation, Eq. (4.36), leads to the

following relation (Rice and Heidmann 1979)

( )2mn
z

2mn
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2mn
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Figure 4.5: Relationship between axial, radial and circumferential wavenumbers.
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Noting that the radial wavenumber mn
rk ψ  denotes the combined radial-circumferential

wavenumber in the (r,ψ) plane (Rice and Heidmann 1979), Eq. (4.38) indicates that the

wavenumber mnk  normal to the wave front of the (m,n) mode is equal to mn
zkMk − . The

angle mnθ  (see Figure 4.5) between the wavefront of the (m,n) mode and the duct axis

can therefore be calculated from

mn
z

mn
zmn

kMk

k
cos

−
=θ . (4.39)

This equation shows that the axial wavenumber mn
zk  of a propagating duct acoustic mode

is uniquely related to the axial modal propagation angle mnθ . Thus, Eq. (4.39) indicates

that for a mode propagating toward the inlet ( 0M1 ≤≤− ) or outlet ( 1M0 ≤≤ ) of the

duct, mnθ  decreases as mn
zk  increases and vice versa.

Furthermore, it has been established (Rice and Heidmann 1979) that the axial modal

propagation angle mnθ  and the angle of peak radiation mn
peakθ  are related to the mode cut-

off ratio mnξ  (see Eq. (3.7)) as
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Combining Eqs. (4.39), (4.40) and (4.41) yields the following expression for the angle of

peak radiation as a function of the axial wavenumber:
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This equation is the basis for the wavenumber sensor control technique; it indicates that

the radiated peak far field pressure angle mn
peakθ  is also uniquely related to the axial

wavenumber associated with a given mode. This means that minimizing the modal

amplitude of a mode component that propagates with a specific axial wavenumber zk

corresponds to reducing the noise radiated toward a specific direction of the far field (i.e.,

at the angle of peak radiation of the targeted mode). This relation between the angle of

peak radiation and the axial wavenumber of a given mode is presented in Figure 4.6 for

five different flow Mach numbers and a free space wavenumber k of 18 m-1 (free space

wavenumber considered in the active noise control case that is presented in Chapter 6).

 

Figure 4.6: Relationship between the axial wavenumber and the angle of

peak radiation. k=18.31 m-1.
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From this figure, it is seen that for a given free space wavenumber k and flow Mach

number M, the angle of peak radiation increases as the axial wavenumber decreases (i.e.,

as the mode gets closer to cut-off) and vice versa. Therefore, to reduce sound radiation

toward the sideline of the duct or towards the ground, the duct modes propagating with

the smaller axial wavenumbers have to be targeted for control. Conversely, in order to

reduce sound radiation toward the axis of the duct, the modes propagating with the larger

axial wavenumbers have to be targeted for control.

The configuration of the control system used for the wavenumber sensor technique is

depicted in Figure 4.7.

M

control source
array

control
sources

r

Z

p(Z1) p(Z2)
p(ZNs)

∆Z

Kz+

p(Φ) ≈ p(Zn) e i Kz n ∆ZΣ
n

Φ

duct inlet

Figure 4.7: Schematic of a control system using inlet

wavenumber error sensors.
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This control system is designed to detect and target the different modes propagating in

the duct based on their axial wavenumbers.

An axial array of Ne pressure sensors is placed along the duct inlet (or outlet) inner

wall. The acoustic pressure p
ne

p due to the primary field is computed at the location of

these sensors, and these values are used to compute an estimate )k(T z
p ∗ of the

wavenumber spectrum component corresponding to a target axial wavenumber ∗
zk .

)k(T z
p ∗ is given by

znki
N

1n

p
nz

p ez

e

e

e
ep)k(T ∆

=

∗ ∗∑≈ (4.43.a)

which is the wavenumber transform (Fuller et al. 1996)

dze)z(f)k(F zki
z

z∫
∞

∞−

= (4.43.b)

 approximated by a discrete summation over the number of  pressure sensors placed along

the duct inner wall. ∆z corresponds to the spacing between pressure sensors.

The wavenumber spectrum )k(T z
p , Nyquist

zz kk0 ≤≤ , gives a decomposition of the

in-duct pressure field in terms of the axial wavenumber. It presents peaks at axial

wavenumber values that correspond to modes propagating in the duct. The peaks

occuring at positive values of  kz correspond to modes propagating toward the duct inlet,

while the peaks occuring at negative values of  kz correspond to modes propagating

toward the duct outlet. The Nyquist axial wavenumber Nyquist
zk  is the highest axial

wavenumber that can be resolved by the error sensor array for a particular configuration.

It is given by (Hardin 1986)

z
k Nyquist ∆

= π
. (4.44)



80

Note from Eq. (4.42) that this maximum axial wavenumber also corresponds to a

minimum far field angle of peak radiation peakθ  that can be resolved by the control

system.

In order for the control system to detect properly the wavenumber of the

propagating modes, the spacing ∆z between pressure sensors must be such that

2
z minλ
≤∆ , where 

max,z
min k

2πλ =  , kz,max being the largest axial wavenumber in the flow.

The reason for this criteria is best understood by looking at the example illustrated in

Figure 4.8.

Figure 4.8: Illustration of aliasing.

0

Z
2 ∆Z 3 ∆Z 4 ∆Z

∆Z

cos (k1 z)cos (k2 z)
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 In that figure, a sinusoidal signal cos (k1 z) of wavelength 
1

1 k

2πλ =  is sampled at a rate

2
z 1λ≥∆  (the dots represent samples). From the sampled data, the sinusoid cos (k2 z) of

wavelength 
2

2 k

2πλ =  is seen to be indistinguishable from the sinusoid of wavelength 1λ .

The signal cos (k1 z)  can not be recognized from the sample data and is instead identified

as being the signal cos (k2 z). This phenomenon is called aliasing, and is the reason why a

sampling rate (i.e., ∆z) of no more than half the minimum wavelength must be used

where data having a minimum wavelength are analyzed.

A single array of control sources is used to generate the control field that will

minimize )k(T z
p ∗ . In order to ensure the generation of the desired control spinning

modes, the control source array is configured as described in section 4.2.2 for the

fuselage error sensor technique. An estimate )k(T z
s ∗  (due to the secondary field) of the

wavenumber spectrum component corresponding to the target axial wavenumber ∗
zk  is

given by

znki
N

1n

s
nz

s ez

e

e

e
ep)k(T ∆

=

∗ ∗∑≈ . (4.45)

s
ne

p  is the pressure at the th
en  error sensor due to all the control sources. It is defined as

s
ne

p = U0 (R) ( s,ne
p )s=1,2,…,S (4.46)

where U0 is the control input driving each control source, (R) is the configuration vector

for the control source array (defined as in section 4.2.2), and ( s,ne
p )s=1,…,S is a vector

whose elements s,ne
p  correspond to the pressure at the th

en  pressure sensor due to the sth

control source.

The optimum control input (U0)opt is determined such that



82

)k(T z
p ∗ + )k(T z

s ∗ = 0. (4.47)

Therefore,

∑
=

∆
=

∗

∗

−=
e

e

ez

e

N

1n

znki
S,...,2,1ss,n

z
p

opt0

e)p()R(

)k(T
)U( . (4.48)

Thus, by minimizing a specific wavenumber component of the spectrum at one particular

frequency, the control system targets the mode that propagates in the duct with that

specific axial wavenumber and achieves noise reduction at the angle of peak radiation of

the targeted mode. Hence, targeting the lower wavenumber components will attenuate the

radiation toward the sideline of the duct, while minimizing the higher wavenumbers will

reduce the noise radiated more the duct axis.


